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ABSTRACT

The design and implementation of a symbolic input and computation
package and its application to the development of several new surface
interpolation schemes are described. Capabilities such as the composi-
tion of operators and symbolic differentiation have been incorporated
into the system. This allows, in particular, the specification of
boolean sum projectors. Thé new schemes which have been implemented

include an interpolant to randomly spaced data and a “shape operator"

which has quadratic precision.
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INTRODUCTION

Recent work in Computer-Aided Geometric Design can be classified
into the following three a:eas [9]: graphical input/output, man-
machine communications and mathematical representation. In any ef-
fort toward developing new mathematical schemes of surface represen-
tation, a computer, with its associated graphics hardware and soft-
ware, has become an indispensable tool.

However, despite the current sophistication of computer graphics
technolagy, there is still room for improvement at. the computing end
of CAGD research. Each time a new surface interpolation scheme is
conceived, a significant amount of work in the form of mathematical
manipulations, analysis and subsequent software implementation has
to be done, before a computer display can be produced. A large amount
of this work can be viewed as error-prone, time-consuming overhead
when one considers that much of the underlying mathematical operations
and software implementations of different polynomial interpolation
schemes are basically similar in nature. They mostly deal with eval-
vating functions, taking partial derivatives, composing linear
oﬁerators, and the like.

Much of the tedious symbolic algebraic manipulations heretofore
done by hand could be implemented as part of a software system for

researching CAGD techniques. Such an approach would especially be

N e S s g e




useful to CAGD in view of the theorems developed by Barnhill and
Gregory [2,3], Gordon [11], Cohen and Riesenfeld [7], which concern
boolean sum interpolants and their interpolation and precision pro-
perties. These theorems provide a framework in which old or new
interpolants can be "combined" to form other interpolants which will
possess the desirable properties and eliminate some of the short-
comings of the original interpolants. One of the more powerful re-
sults of boolean sum interpolation theory is a composition theorem

due to Barnhill and Gregory [2] that states the boolean sum of two

projectors
PO8Q = P+Q-PQ

has at least the interpolation properties of P and the function pre-

cision of Q. Here we recall that an operator P is linear if

P(af + bg) = aP(f) + bP(qg)

and idempotent if

P(P(f)) = P(f)

and that a projector is a linear, idempotent operator {11]. The
polynomial precision of a projector P is the set of polynomials which
P will reproduce.

Poeppelmeier [15] provides an illustration of this theovem by
combining Shepard's projector, which interpolates to function and
first derivative data at randomly positioned points, but has only

linear precision (i.e., it only reproduces planes exactly) and the
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Barnhill-Gregory nine-parameter interpolant, which has cubic preci-
sion, to obtain an interpolant with the interpolation properties of
Shepard's formula, but with cubic precision. Barnhill and Gregory
[2,3], Cohen and Riesenfeld [7] have also shown how boolean sum
theory can be used to produce interpolants free from compatibility
constraints, the requirements for some interpolants that the data
given over the boundary of a patch be continuous everywhere on the
boundary and that the mixed partials be equal at the patch corners.
One of the earliest (and by now classic), boolean sum interpol-
ants is the Coons Patch [8]. It can be derived as follows: define

projectors P] and P2 by

PF(xy) = (1-y)F(x,0) + yF(x,1) (1.1)
PF(x,y) = (1-x)F(0,y) + xF(1,y)

(see Figure 1). The boolean sum of these projectors is then the

bilinearly blended Coons Patch:

(P] ® PZ)F(x,y) = (P] * Py = P]PZ)F (1.2)
+ (1-y)F(x,0) + yF(x,1)
+ (1-x)F(0,y) + xF(1,y)
- (1-y)[(1-x)F(0,0) + xF(1,0)]
- y[(1-x)F(0,1) + xF(1,1)]

It can be readily seen that this last expression, especially the part
involving thke tensor product P]PZF, can be obtained formally by a

process that is pure symbol manipulation.




g (0.1) @15 o (.

(0,0) (1,0) (0,0) (1,0)

Figure 1. Projector definitions on the unit square.
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In order to motivate this work further, we look at the defini-
tion of a few more boolean sum interpolants. First; for the bicubic

Coons Patch, define P] and P2 by

PyF(xsy) = dg(¥)F(x,0) + ugly)F(x,1) + ¢y (¥)F (x,0) + Uy (Y)F (xa1)

1.3}

PF(xy) = 8g(x)F(0,y) + 4g(xIF(1,y) + 4 (X)F (0.y) + 4 (x)F (1,y)

where

(t-1)%t (1.4)

dlt) = (t122t4) ,  g)(t)

t2(t-1)

Wlt) = t2t3) (e
are the cardinal basis functions for cubic Hermite interpolation on
[0,1]. The boolean sum of P] and Py '

(P 8 Po)F(xuy) = dy(y)F(x,0) + Uy(y)F(x,1) + ¢, (¥)F,(x,0)

+ % (.V)Fy(x:])
(1.5)

+ GUF(0.y) + 4p(x)F(T,y) + & (x)F, (0.y) + ¥ (X)F, (T,y)

- GLEG(XIF(0,0) + U(x)F(1,0) + & (x)F, (0,0) + ¥, (x)F, (1,0)]

= BT IF(0.1) + ¥g(xIF(TLT) + & (XIFL(0,1) + ¥ (x)F, (1,1)]

e s i i




- N80, (0,0) + g (XIF,(1,0) + &y (x)F, (0,0) + v (x)F, (1,0)]

- w](y)[®0(X)Fy(0.1) + WO(X)Fy(l,l) + ¢](X)ny(0,l) +y (x)F,(1,1)]

y

then yields the bicubic Coons Patch.
Now we examine an interpolant over a triangular domain of defini-

tion, Nielson's interpolant [4]. See Figure 2. Define
P]F = xF(l-y,y) + yF(x,1-x) (1.6)

P,F = (Q; 8 Q))F = F(0,y) + F(x.0) - F(0,0)

where

Q]F = F(0,y) and 02F = F(x,0)

P1F interpoiates to F on E3 and P2F interpolates to F on E] U EZ’

(Py 8 P)F = xF(1-y,y) + yF(x,1-x) | (1.7)
+ F(0,y) + F(x,0) - F(0,0)
- x[F(0,y) + F(1-y,0) - F(0,0)]
- y[F(0,1-x) + F(x,0) - F(0,0)]

interpolates to F all along the boundary of the standard triangle.
Barnhill and Gregory have generalized this to interpolate cross

boundary derivatives [3].




(0,1)

(0,0) (1,0)

Figure 2. The standard triangle.




A1l of the above examples demonstrate quite vividly that the
computation of boolean sums is a symbol manipulation process. While
the above cases can all be done fairly easily by hand, examples a-
bound where the computation of boolean sums is no longer a painless
operation. Poeppelmeier's work [15] is a case in point. Recall

that he used the Barnhill-Gregory interpolant

]
UF(x,y) = I ¢/ (1-x)’ r 060+ TG
i=0 i=g ' 7

1 : i aipzr
+ ifo ¢i(T:y)(1-y) Fi,O(O‘y) s —E;;?‘ (0,y)

2
-2l [ebdBn0.0 - (0]

xty

where
(PoF)(0,y) = &g(¥)F(0,0) + ¢(y)Fy 1(0,0) + vg(y)F(0,1) (1.9)

+ W](Y)FO,](OJ)

3P F
[—sé—] (0,y) = ylo(y)F(2,0) + &1 (y)Fy 1(0,0) + vy(y)F(0.1)

(1.10)

+ ‘b](y)FO’](Ov])] A d\O(y)F],O(O'O) * ‘t‘](Y) (0,0)

“fo,1

dX x:o 1 u’o(.y)[F]'o(O"l) = FO,](O'))J




aFO ](x.l-x)
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=0

The ¢i(t) and wi(t) are the cardinal basis functions for Hermite
two point Taylor interpolation on (0,1) given in (1.4). U is itself
a boolean sum of 2 projectors. It was then discretized, i.e.,

changed into a form which will accept discrete data, to obtain

"

UF(x,y) = &(3550 [85(x)F(0,0) + &) (x)Fy ((0,0) + 4y(x)F(1,0)

+ 4y (F) 5(1,0))

+

750 (=) L-x)Fg 1(0,0) + xFy 1(1,0)]

¢1(1-x

+

U750 [ (IF(0,1) + & ()IFy (0,1) = Fy 4(0,1)]
+ Yo (x)F(1,0)
+ y (0F ((1,0) - Fg 1(1,0)]]
+ 0,5 Q=) -0 4(0.1) + Fy 1(0.1)]
+ x[Fy (1,0) + Fy 1 (1,0)]

- 5(XIF(0,1) = #{(xITF (0.1) = Fy ({01 = 4g(x)F(1,0)

o e
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= ‘bi(x)[F]'o(]'o) - FO,]“'O),]}]

+ 0(2) (1-9) ((1-9)F; 1(0,0) + yF; 1(0,1) = y[o4(¥)F(0,0)

]

+ 41(y)Fy 1(0,0)

+

U(YIF(0.1) + Wi (¥)Fy 1 (0,1)] = 85(y)F; 5(0,0)

#()[-Fy 1(0,0) - Fy 1(0,0) + Fy 1(1,0)]

= WO(y)[F!’O(O’T) = FO,](O’])]

b (0)[=Fg 1(0,1) + 50-F5 1(0,1) = Fy 4(0,1) + Fy 1(1,0)

+ Fy o(1,0) + 6F(0,1)

+

- Fo1(1,00ID)

xty

el
- !~¥i§illll [-F],O(O’O) + F],0(0‘1) + FO,](O,O) & FO‘](lao)]-

At this point it should be obvious that generating formulas like the
preceding by hand is a time-consuming, painstaking proucedure. In-
creasing the complexity even further, Poeppelmeier then took the

boolean sum of Shepard's projector S with the above interpolant,

R P e ——
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m
SF » ifo Ay )F(xgayg) + (exg)F, (xgyg) + (y-y)F (xgay)]
(1.11)
where
m
)
J:;(](x-xj)z + (y-yj)z)
. J
Halasyl - » ecits (1.12)
I 5 )
k=0 20 ((x-x,)" + (y-y,)%)
L7k :

to obtain a new interpolant.

As ﬁew interpolants are constantly being developed which invar-
iably require the use of boolean sums at some stage, for considera-
tions such as compatibility, interpolation and precision, we find an
increasing need to incorporate an algebraic manipulation capability
into a function and interpolant display system.

Toward the above goals, this research has been concerned with
translating some of the mathematical objects and operations required
in developing new interpolants into programming constructs. The
implementation includes a command language processor, scanner,
parser, symbolic computation, and formula evaluation routines. This
package has been incorporated as a subsystem to SURFED, an interact-
ive interpolant display and manipulation system implemented by the
University of Utah CAGD Group. The entire system runs on an E & S

Picture System connected to a PDP 11/4%, taking 27K words of memory.




GENERAL FUNCTIONAL SPECIFICATION AND STRUCTURE
OF THE SYSTEM

Before we proceed to describe the mechanisms used in the imple-
mentation of the system, we should be more precise about the prob-
lems we propose to solve. A good way to give this description is
via a high-level functional specification of the system. Some cap-
abilities in the following list, particularly those that pertain
to interpolant display and manipulation, and domain specification,
are part of the original SURFED system, and should be credited to

the work of Riesenfeld, Little, Herron and Dube.

System Requirements

1. The system should run in interactive mode, allowing the user to
enter interpolants and data from the terminal. The Picture
System display and tablet allow him to specify different views
of surfaces displayed. SURFED must also allow the user to ﬁ
interactively manipulate the shape of the surfaces being dis- '
played by changing the data being approximated. é

2. It should be possible to enter an interpolant in symbolic form
and have it displayed as a surface in either parametric or
explicit form. The forms of interpolants accepted are rational

bivariate polynomials which contain point functional data.

S U ——
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‘Partial and mixed partial derivatives may be necessary for des-
cribing a functional expression.

3. Surfaces are defined for the standard domains below:

a. Rectangular grid
b. Triangulated grid
c. Randomly spaced data points.

4. Function and interpolant definitions are stored by the system
and can be referred to by name when used in subsequent defini-
tions. This, along with a composition operator, allows the
definition of boolean sum projectors. Thus expressions that
may appear repeatedly in subsequent definitions need only be
defined once. .

The block diagram of Figure 3 further illustrates the structure
of the system. The symbol manipulation capabilities are additions
to the "Human Interface" and "Interpolant Computations” parts of the
original SURFED system.

A more detailed explanation of the way the system functions can
only be given by a user's manual of the system, therefore, we devote

the rest of this chapter to such a manual.

User's Manual for the System

Input to the system is in the form of a command file. The

commands accepted are the following:

DEFINE CONSTANT
DEFINE FUNCTION
DEFINE PROJECTOR

e —

el o,
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Interpolant
Computations

(boolean sums,
evaluations)

surfaces
stored
as
arrays

Interpolant &
Human '
Functional Data
Soa | Interface
(Terminal & CRT) Shape manipulation
Commands
such as
Move, visual
Rotate, feedback
Scale,
Interpolant
Selection,
etc.
Graphical
Display =
= Routines
-

Figure 3. Structure of the system.
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DELETE
DISPLAY
EXIT.

In addition, a REDEFINE can be substituted for the above occurrences
of DEFINE.
We now give a more detailed description of the commands. The

items enclosed in angle brackets: < > are described two sections

later, where we give a BNF description of the expression syntax used

in the system.
Commands

1. DEFINE CONSTANT
This command begins a section of definitions, each of which must
begin on a new line and end in a semicoion. Each constant defin-
jtion has the syntax

<name> = <integer> s

2. DEFINE FUNCTION

This begins a section of function definitions, each of which

g e ————

must be preceded by one of the following lines:
GLOBAL
LOCAL CIRCULAR

. e e ————

LOCAL RECTANGULAR <integer>
where the integer is between 1 and 4. The two LOCAL definition
types indicate that the function definition that follows is

identically zero outside either a circular or rectangular domain.

This is used in defining, for example, haystack functions for




—
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randomly spaced data. For each data point one local circular
domain, and up to four local rectangular domains, may be speci-

fied. Each function has the form:

<pame> = <expr> .

DEFINE PROJECTOR
This conmand begins a section of projector definitions, each

with the form:

<pame> = <expr> >

REDEFINE CONSTANT

REDEFINE FUNCTION

REDEFINE PROJECTOR

See Items 1, 2 and 3 for the respective syntax of these commands.
Note that a <name> may appear in a REDEFINE definition section
only if it has been previously defined.

DELETE

This deletes all definitions from the system except for the last
one. This command is used to provide more free storage.

DISPLAY <name> <integer>

This command causes the function or interpolant named to be dis-

played on the CRT and passes controi from the symbol manipulation

subsystem to the rest of SURFED.

The name given must not have been defined to be a constant. The
integer may be 1, 3 or 4, depending on whether the <name> is of
an interpolant or function that is defined over randomly spaced

data, triangular or square patches, respectively.

i

g v e ——
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This command must be followed by a line containing either the

word PARAMETRIC or EXPLICIT, which specifies the mode of display.

EXIT

This causes a normal termination of the SURFED system.

Command File Format

Each command must appear on a separate line. Blank lines are
allowed. Only the first three 1et;ers of any command word needs
to be specified. Thus, DEF FUN is equivalent to DEFINE FUNCTION
and LOC REC to LOCAL RECTANGULAR.

Each definition secticn may contain an arbitrary number of defi-

nitions.

Definition sections may appear in any order and each type of
definition section may appear more than once.
Constant, function and projector names appearing in a definition

must be defined previous to the current definition.

Rules of Expressions Syntax

The syntax of arithmetic expression follows those of FORTRAN,

with the following exceptions:

1. Continuation lines need not be denoted.

2. <expr>: = <a FORTRAN expression whose operand syntax has

been changed as in item 3 below >|<iter> <expr>

e ———— oy v g




Operand Syntax

<operand>: = <integer>|<name>|<var>|<functional>
<integer>: = <digit>|<digit><integer>

<«digit>: = 0[1]2]....|9

<var>: = U|V

<name>: = <letterl>|<letter> <«digit>

<letter>: = A[B]...|Y|Z

<letterl>: = Al... E|G|...[Q|S|T|¥]...]Z

<sub-var>: = <var>(<sub>)|R(<sub>)
<sub>: = <arithmetic expression without parentheses, and
whose operands may only be <name> or <integer>>

<functional>: = F(<argl>,<arg2>)|<diff>F(<aral>,<arg2>)

. <argl>: = 0]1]U(<sub>)
<arg2>: = 0]|1|V(<sub>)
<diff>: = DU|DV|DUDV|DVDU
Examples:

3 .
ag F10,1) is expressed as DUF(0,1).

2
3%5; F(ujavg) as: DUDVF(U(T), v(I)).

18
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Syntax of iterated product or sum notation:

<iter>: = <gp>[<range>]|<op>[<range><cond>]

<op>: = Q|#
<range>: = <name> = <const>,<const>
<const>: = <integer>|<name>

<cond>: = <name>\ = <const>

Thus, the following mathematical expression:

n 10 n
ZO DU + V) 7 T (U - V) 55 LU g Y5 D))
i=1 Jj=1

3

would appear in our command file as:

@LI=1,NJ(U{I+1)+V(1))/4[9=1,10,0=1]

CCU(T)-v (1)) *OVF(U(9-1),V(J-1)) 1]

19

In addition, the composition operator CM{<projector names,

<projector name>) allows the composition of two projectors

to be defined. Note that the second projector in a composi-

tion is currently restricted to not contain any iterated

product or sum expression.

Software Modules Structure

This section describes the major routines that comprise the

system.

modules.

The Command File Processor reads the command file and interprets

Figure 4 contains an overlay tree diagram of these software
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SIMP DIFF AJ [ SUBUV ]
APPLY ks SR e |
[ |
L A SR, |
COMPQS | | EVAL l
J | .
, | I
SCAN PARSE | ORIGINAL I
| SURFED l
i |
________ \

MAIN RCOT

Figure 4.

System software structure.
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each command. When a definition is specified, it enters the name
and type (e.g., PROJECTOR, LOCAL CIRCULAR FUNCTION, etc.) of the
definition into the symbol table, then calls SCAN to perform lexical
analysis on the input string. The parser parses the scanner output
using the operator-precedence parsing technique, modified to take
care of subscript expressions and nested summation and product
expressions.

If the definition being processed contains a composition opera-
tor, PARSE calls COMPOS to perform the composition. It is here
that APPLY is invoked to apply a point functional to a previously
defined operator expression. When the functional being applied
involves the taking of partial derivatives, DIFF is called to per-
form the symbolic differentiation. SUBUV is then invoked to substi-
tute the arguments of the functional in the second operator of the
composition. Some basic simplification is performed, e.g., checking
for a 0 or 1 multiplicand or exponent.

When the Command File Processor encounters a DISPLAY command,
it passes control to the SURFED System. which eventually calls
EVAL to evaluate the postfix definition of the projector specified,
and generate values for the surface to be displayed. Since the
function values are not bound until evaluation time, a new expression
need not be created each time the parameters for a surface are changed
during shape manipulation. EVAL was written by simulating recursion
in FORTRAN in order to be able to evaluate nested summation and

product expressions.

In addition to the above, there are many utility routines which




. 4
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are called by the above modules and reside in the lower rnodes of the
overlay tree of Figure 4.

Before we discuss the system in further detail, we consider the
question of why we did not use an existing algebraic manipulation sys-
tem such as REDUCE [13] as a preprocessor to perform the symbolic com-
putation tasks of our system. The answer is that this method does not
provide a sufficiently high level of user interaction. "... an alge-
braic manipulation system achieves its greatest effectiveness if used
ina highly interactive man-machine environment. The steps which the

user takes in solving a problem very often depends upon the results

of preceding calculations and, therefore, a complete "Program” in the
conventionai sense is often impossible to write a priori.” [13].
The system we implemented, which integrates symbolic computation and

surface display functions, does satisfy the interaction requirement.




PROGRAMMING AND DATA STRUCTURING TECHNIQUES

USED IN THE SYSTEM

We now discuss the major design choices involved in the concep-
tion of the system.

FORTRAN was selected for use in writing the system for the com-
pelling reasons of portability, accessibility, efficiency and com-
patibility with the existing host system SURFED. t is well known
to any system designer that the data structures to be used deserve
primary consideration in the design process. Since the objects we
are dealing with are of the general rational, bivariate polynomial
form, how shall we represent them inside the computer?

One method is to use a square array, with indices based on zero.
The coefficients of a bivariate polynomial can be stored in the
entries of the array with the row number of the entry representing
the power of x, and the column number representing the power of y.
This method has the advantages of efficient computation--operations
such as addition, multiplication, taking partial derivatives and
evaluation are fairly straightforward to implement and fast to
execute.

But this representation of polyncmials has been criticized for
wasting storage space in the case of sparse, high degree polynomials,

see [6]. Thus existing algebraic manipulation systems, such as REDUCE
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[13] and ALTRAN [14] reject this method in favorof a list representa-
tionwhich, alongwith storage management routines, does keep memory
requirements down foroperations with sparse, highdegree polynomials,
particularly if they are in more than two variables.

Although a Tist representation generally leads to easy-to-use
recursively defined algorithms and elegant, top-down program develop-
ment, there is the ususal time and space overhead associated with
using a linked list data structure, and its requisite storage manage-
ment routines. Time and space considerations often lead to the use
of a linear array data structure, usually with the sacrifice of
flexibility and elegance.

Moreover, there are several characteristics peculiar to the sys-
tem that prompted the use of a linear array to represent the mathe-
matical formuiae. One such consideration is that the operands in our
expressions may be arbitrary in length. They range from simple vari-
ables and integefs to subscripted variables and mixed partial
derivative functionals, e.g., DUDVF(U(I+1),V(I+1)). In order for a
list structure to accommodate this, either variable-sized nodes or
additional levels of indirection would be required. Pattern matching
and searching, required by operations such as operator composition
and variable value substitution, can be easily performed on a
linear string array .

Considerations such as the above led to the final decision to
store the mathematical expressions as a linear string array, in post-
fix form, similar to the internal form for expressions used in many

compilers and interpreters [12]. Each token in the string has a

bl
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type and value field. A postfix formulation has the well-known ad-
vantage of efficient evaluation. It is also conveniently the output
of the standard operator-precedence parsing technigue and it presents
the tree structure of an expression in an easy to access fashion.
Thus, with this data representation, algorithms which either do or
do not require knowledge of the tree structure of an expression can
process an entire expression with a linear scan.

The most difficult operation that is required to be performed
on the mathematical expressions in this system is that of composition
of two operators. This often involves the taking of derivatives.
In the next section a new symbolic differentiation algorithm is
described, which has been developed to work on an expression in

Tinear array postfix form.

A Non-recursive Algorithm for Symbolic Differentiation Using a

Linear Arrav Data Structure

In this algorithm two stacks of pointers, rather than recursion,
are used to treat nested subexpressions.

A. Data Structures: A linear array, SYMBOLS, two stacks A and B.

B. Assume the algebraic expression to be differentiated is in
syntactically correct postfix form and stored on SYMBOLS begin-
ning at FIRST and ending at LAST.

C. The expression consists of tokens which are either operators or
operands. The operators beiong to the set R = {#, -, *, /, +}.

In the description that follows, we restrict R to be {+, *, t}

for the sake of brevity. Extension of the algorithm to include

|
4
t
:
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- and / should be obvious. The operands in the actual implemen-
tation may be integers, variables, subscripted variables or

point functionals such as Fuv(”i’vi)’ Fu(].O), etc.

We note here that, since the system currently only deals with
rational polynomial forms, the parser only accepts integer expon-
ents, since allowing exponents to be expressions would require
a log function for purposes of differentiation.

D. The differentiated result will be another postfix expression
stored beginning at SYMBOLS(LAST+1).

E. In describing the algorithm we make the simplifying assumption
that each. operator or operand occupies one entry in the

SYMBOLS array.

The basic stragecy involves scanning the input string from left
to right, since it is in postfix form; this corresponds to a post- i
order traversal of the expression tree.
Step 1. Begin by differentiating the first symbol, which has to be
an operand.

Step 2. If the end of input has been reached, stop.

s Bt i S —

Step 3. The types of the next two symbols are used to identity

three possibilities.

. . —————

The next two symbols may be:

Case 1: operand-operator
We output the derivative of this subtree and set the
current input pointer to point to the operator. Go

back to Step 2.

il
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Case 2: operand-operand

This means the right subtree associated with the left
subtree just differentiated is not a simple operand but
a subexpression. We set the current input pointer to
the next operand, output two nulls on the output string,
push a pointer to the subtree on the input string which
has just been differentiated onto stack A and push a
pointer to the two nulls on the output string onto stack

B. Go back to Step 2.

Case 3: operator-whatever

This means that we have just finished differentiating
and outputting a right subtree. Now we can pop stacks
A and B to obtain pointers to the corresponding left sub-
tree on both the input and output strings. This is neces-
sary because for the * or / operator, we nced to access
both the differentiated and undifferentiated forms of
both its left and right subtrees. Go back to Step 2.
A more precise description of the algorithm is given below
using the programming language ALGOL. In this description
we assume, for simplicity, that each operator and operand

occupies one entry in the SYMBOLS array.

F. Utility routines:

].
Z.

PUSHA, POPA, PUSHB, POPB operate on stacks A and B.
Operator and operand are predicate functions which test the
type of their arguments.

Get and Put gets from and puts to a token at the specified

position on SYMBOLS and increments the given pointer.

Diff differentiates an operand.




begin

1:aFIRST: FREEv= LAST + 13
put (FREE, diff (SYMBOLS(I))):

while I<LAST do

begin
11:=1+41; I12:=1+2;

{Check next two symbol types.}
If operand (SYMBOLS(I1)) then
1f operator (SYMBOLS(I2)) then
begin
{Case 1: The next two symbols are operand-opera-
tor}
If symBoLs(I2) = '+' then
put (FREE, diff (SYMBOLS(I1)));
put (FREE, '+')
end
else if SYMBOLS(IZ) = '*' then
begin
{Output pointer to SYMBOLS(I1). We are not concerned
with distinguishing between pointer symbols and con-
stants here, and leave that to lower-level routines.}
put (FREE, SYMBOLS(I1); put (FREE,'*')"
put (FREE,diff (SYMBOLS(I1))):

{output pointers to SYMPOLS(I)}

put (FREE, I):

Rk

. = e ——
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put (FREE, '*');: put (FREE, '+')
end
else beain
{SYMBOLS(12) must be exponentiation 't'}
recall that we only allow constant exponents. 1
put (FREE,SYMBOLS(I1)); ji
put (FREE,'*')" 2
{Output pointer to SYMBOLS(I)}
put (FREE,I);
put (FREE,SYMBOLS(I1)); ;
put (FREE,1); put (FREE,'-');
put (FREE, '+')}; put (FREE,'*')
end
I;=12
end
else beain
{Case 2: the next two symbols are operand-operand
pushb(FREE): pusha(l);} j
put (FREE, NULL); put (FREE, NULL); i
[:=11:

put (DIFF(SYMBOLS(I)))

end

else begin

{Case 3. The next one symbol is an operator which

cannot be 't'}

popa (APTR); popb (BPTR);
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If SYMBOLS (I1) '+
then put (FREE, '+')
else begin | &
{SYMBOLS(I1) must be '*'}
put (BPTR,I); put (BPTR,I) g
put (FREE,APTR); put (FREE, '*');
put (FREE,'+")

end;

PRRIRES IR L PN

Note that in the resuTting postfix expression there are pointers
to the root of subtrees (subexpressions). These subexpressions are
reéovered by using a copy operation and noting that in a binary tree,
the number of non-terminal nodes (operators) is always one less than
the number of terminal nodes (operands). Routines that do basic
simplification on the resulting expressions have been implemented

to reduce space requirements.




AN APPLICATION

We now describe an application of the system which uses the

Barnhill-Gregory composition theorem to combine an interpoiant and

an approximant to obtain a C2 interpolant to randomly spaced data with
quadratic precision. The symbolic processing capabilities added to
SURFED permitted rapid implementation of these schemes, since the

time required to translate from mathematical ideas to computer-accept-

able form has been reduced to a fraction of the manual algebraic

manipulation, programming and debugging time previously required.

2
Scheme 1. A C" Interpolant to Randomly Positioned Data

Assume we are given (Xi’ yi), i=1,...,n, arbitrarily spaced
. 2 ; ;
in R®, and at each (xi, yi) we are given function value and tangent

RIS
information F<Xi‘yi)‘ Fx(xi'yi)‘ F (xi.yi). We define below a C

y
interpolant to this data.
First, pre-process the data by finding for each (xi,yi) a

circle Ci with its center at (xi,yi) and radius Ri‘ chosen such that

Ci does not contain any other data point in its interior. We can,

for example, choose R to be the distance from (xi,yi) to its

closest neighbor.

R, = min {(x, - X-)z + (yi at )2}
1<j<n 7 ’

JA

————

J
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The distance function di' that is 0 at (xi,yi) and 1 on aCi, is

defined by

(x - xi)?‘ + iy - yi)2

7
R;

d;(x,y) =

We can now define a mollifying function H; at each (xi,yi):

Q(di(xiY)) s for (X’Y) € Ci
Hi(st) = {
5 elsewhere
where

elt) = (t-1)305t-1)

is the fourth degree polynomial with the following cardinal proper-

ties:

q(0) =1,

and

q'(0) =q(1) = q'(1) = q"(1) =0

To use these Hi as cardinal functions in the interpolant, we

define the truncated Taylor operator:
Li F(xsX) = F(xi'yi) + (x-xi) Fx(xi'yi) g (Y'yi) Fy(xi‘yi)
Then the projector P defined by

n
PE(x,y) = T H.(x.y) LiF(x,y)
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yields a C2 surface that interpo’. .s to function and first derivative.

Scheme 2. A Precision Operator

We now present a projector which can be used as a "shape" operator,

i.e., when it is used as the second projector in a boolean sum, it

helps to produce a projector which preserves the shape of the given
data. It has quadratic precision if we have 9 data points given on

a rectangular grid, and is easy to compute. It is based on the idea
that a multivariate polynomial is its own Taylor series expansion.

That is, a truncated multivariate Taylor series can be thought of as

an operator with polynomial precision up to the term of truncation.

We specialize this to the case of a bivariate Taylor expansion about

the point (a,b) and truncated after the terms of second degree. Thus

we define the operator B:

B F(x,y) = F(a,b) + (x-a) F.(a,b) + (y-b) Fy(a,b)

F__(a,b) F ,b) ‘
+ (x-a)? —Z"‘—Za—— + (y-b)? ﬂé—a—— (4.1)

+ (x-a)(y-b) F, (a,b)

While this operator yields quadratic precision, it requires data that
is almost never given, namely, the first and second derivatives.
We recall that (Conte and deBoor, p. 196) for apolynomial of degree

K, Pk(x),

Pk(k)(x)
= PDxgexpeexd (4.2)




RSN

e

34 j
[ 1
where the right hand term is t: ‘-th divided difference taken over B |
the points XgoXqre s o X
We also note that for
f(x) = x®, f'(a) = f(a+h)2; fla-h) fla-h, a+h] (4.3)

Since we are only concerned with what effect our operator A will
have on the polynomials 1, x, and x2, (4.2) and (4.3) imply that we
can replace the derivative terms in (4.1) with appropriate divided -

differences and retain the quadratic precision property.

Thus we obtain a bivariate quadratic precision operator:

(ats,b) - Fla-s,b)

B F(x,y) = Fla,b) + (x-a) £ -

) +t == \b’t
 (y-by Elatt) - Flab-t)

2 F(a+s,b) - 2F(a.b) + F(a-s.,b)
232

+ (x-a)

)2 F(a,b+t) - 2F(a,b) + F(a,b-t)

+ (y-b
2t2 |

- b- = d=5, Fla-s,b-
+ (x-a)(y-b) Fats,b+t) F(A+Z;E t) - Fla-s,b+t) +Fla-s,b-t) :

Note that B only requires function value information at § points on ﬂ

a rectangle




Bade o

(a-s,b+tL (a+s,b+t)
!
(a-s.b) (a,b) ﬂ (a+5,b)
(a-s,b-th a (at+s,b-t)

and that B interpolates to the 5 points (a,b), (a,b+t), (a,b-t),

(a-s,b), and (a+s,b).

Graphical Studies

Although Scheme 1 is a smooth intérpolant to function value and
derivative information at randemly positioned points, it dces not
have any precision property. This means that while this interpolant
looks acceptable for data values close to 0, (see Table I and Figures 5 and
6), it does not have the shape-preservation property for larger
magnitude data values. Thus for a second set of data, (Table II)
Scheme 1 (Figure 7) looks "bumpy."

To remedy this problem we take the boolean sum of Scheme 1 with

the shape operator of Scheme 2 (Figure 8) and obtain the resultant
interpolant of Figure 9. The only "bumpiness" in this last figure

is induced by a large variation in the given data. Figure 10 ﬂ
demonstrates the quadratic precision property of the interpolant which
is a boolean sum of Schemes 1 and 2, by applying it to the function

x2 + y2. Figures 11 through 18 show how Scheme 1 and its boolean | 4

sum with Scheme 2 behaves for the functions (x2 + yz)

/(1 + x +y),
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Figure 5. Positions of the data points in the [0,1] x
[0,1] domain for the explicit surfaces of
Figures & through 20. See Tables I and II.

Figure 6. Scheme 1. Explicit. Data: Table I.
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Figure 8. Scheme 2. Explicit. Data: Table II.
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Figure 9. Scheme 1 boolean summed with Scheme 2.
Explicit. Data: Table II.

Figure 10. Scheme 1 boolean summed with Scheme 2.
Explicit. Data: x2 + y2,

{
!
:
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Figure 11. Test function (x2 + y)/(1 + x +y). Explicit.

PP
RENWOY X

Figure 12. Scheme 1 boolean summed with Scheme 2. Explicit. |
Data: (x2 + y)/(1 + x +y). The midpoint of
each stick indicates interpolation at that
data point.
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Figure 13. Test function 1/2 sin xn/2 cos ym/2. Explicit.

Figure 14. Scheme 1. Explicit. Data: 1/2 sin xn/2
cos ym/2.

9



Figure 15. Scheme 2. Explicit. Data: 1/2 sin xn/2

Figure 16,

cos yn/2.

43

Scheme 1 boolean summed with Scheme 2, Explicit.

Data: 1/2 sin xn/2 cos yr/2. The midpoint of
each stick indicates interpolation at that
data point.

Mt et e il iy
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Figure 17. Test function 1/2 sin xm cos ym.

-

4

Figure 18. Scheme 1 boolean summed with Scheme 2. Explicit. i3
Data: 1/2 sin xm cos ym. | 3

i

o »

|
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1/2 sin xn/2 cos yn/2, and 1/2 sin xm cos yw, over the area [0,1] x
[0,1]. Note that all of the above figures are of interpolants
defined explicitly over the domain {0,1] x (0,1].

The data sets for the figures mentioned above all contain nine
points that are regularly positioned in the domain space. This is
a constraint in using Scheme 2 as a shape operator. We could remedy
this problem by doing parametric interpolation to the data in the
(x,y,z)-space and specify nine of our points in the domain (u,v)-
space to be regularly spaced. Figure 19 demonstrates the feasibil-

ity of this approach for the data set given in Table III.
Conclusicn

We have seen that, with the addition of some basic symbolic
computation capabilities to SURFED, the correct implementation of a
large class of interpolation and approximation schemes now becomes a
simple and routine matter. Tedious, error-prone and mechanical tasks,
such as translating from mathematical formulation to program, compo-
sition of operators and formal differentiation are no longer the
burden of the researcher.

For the schemes decribed here, the actual symbol manipulation time
is on the order of a few seconds. The time-consuming operation has
been generating values for a surface to be displayed. This involves
calling EVAL hundreds of times for a random data interpolant. This,
perhaps, suggests the need for more sophisticated simplification
routines. Of more certain benefit would be to speed up the

evaluation routine, maybe recoding it in a lower-level language.




Figure 19.

Scheme 1 boolean summed with Scheme 2.
Parametric. Data: Table III.
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This is a one-time effort which would improve the system performance
for the implementation of all future schemes. This certainly has an
advantage over the previous method of FORTRAN coding, manually
optimizing and interfacing with SURFED for each new scheme being
developed.

The symbolic computation part of SURFED currently occupies about
27K of 16-bit words on the PDP-11/45. Better memory management and

use of secondary storage would probably also improve overall per-

'formance of the system.

Other useful extensions of the system involves the specification

of expressions of more general forms. Foremost among these is perhaps

allowing the definition of transfinite interpolants, including the
identity operator. This may imply the need for automatic discreti-
zation of transfinite schemeﬁ. once again done symbolically. The
expression types used may also be extended to include as part of
their definition functions for which symbolic differentiation can be
performed and which are common FORTRAN library functions, e.g., exp,
log and the trigonometric functions. Projectors containing nested
summation and product expressions can perhaps be specified as the
second operator in a composition. Thisvimplies being able to sym-
bolically differentiate such expressions.

The features implemented in this system enable the research
mathematician to study graphically mathematica) surfaces without
becoming involved in the distracting details of software development,
interfacing and implementation. This kind of application of symbolic
computation to numerical analysis should benefit future research in

the area of computer-aided geometric design, by allowing the user

B
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of this package the facility to explore and experiment in a far-rang-
ing and unemcumbered environment of interactive symbolic computation.
This research, as it brings together symbolic processing and
curved surface definition, emphasizes the importance of the non-numer-
ical tasks involved in computer-aided geometric design. Consequently,
it may provide further impetus for researchers in this area to adopt
programming languages like PASCAL, which are considerably better

suited for these kinds of mixed computational problems.
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