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The problem of finding the time-optimal control of the systems

X

All(t)x + Alz(t)z + Bl(t)u

&
n

AZl(t)x + Azz(t)z + Bz(t)u

and

Re
[}

f(x,t) + F(x,t)z + Bl(x,t)u

E W = g(x,t) + G(x,t)z + By(x,t)u

is treated where x €R", z €R™, 1 > 0 is a small positive parameter and

u € Rr is constrained. The time-optimal control of these systems is shown

to possess a two time~scale property when the '"fast" state z is stable.
This property is that the optimal control is composed of a control in a
slow time-scale followed by a control time in a fast time-scale. The
"slow'" control is primarily concerned with steering the '"slow'" state x.
Based on the two time-scale property a near optimal control is presented
which can be calculated on reduced order time-optimal control problems of

order n and m. Some new stability bound results and some examples

illustrating the near optimal control are presented.
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1. INTRODUCTION

1.1 Problem Description

Control problems for singularly perturbed systems with unconstrained
control have been given considerable attention and major results have been
obtained [1]. For these problems the concept of time scale decomposition
has been developed providing a separation of slow and fast dynamics and
a reduction in problem order.

More recently, results (2-4] have been obtained for the time-optimal

control of linear time-invariant singularly perturbed systems. For these

problems, time scale decomposition again implies a separation of slow and
fast dynamics and a reduction of problem order. Due to the control
constraint invariably present in time~optimal problems, the control is
characterized by a slow control, primarily dependent on slow dynamics,
followed by a fast control primarily dependent on fast dynamics. This is
referred to as the two time-scale property. The implication of this
property is that the time-optimal control of systems with slow and fast
states should first concentrate on steering the slow states near to their
desired final state. Then the control should concentrate on rapidly

steering the fast states to their desired final state while steering the

slow states the remaining small distance to their final state.

The time-optimal problem treated here is that of finding the coatrol
which steers the slow and fast states of a singularly perturbed system
from a fixed initial point to a fixed final point in minimum time. A
major concern of this thesis is the extension of the classes of systems,
for which the two time-scale property of the time-optimal control of
singularly perturbed systems has been revealed, to include linear time-

varying systems and a class of nonlinear systems. Thirs is done by taking




S :

expansions in the singular perturbation parameter u, of the necessary

conditions provided by the minimum principle. Once the two time-scale
property is revealed, two systems of reduced order are defined. These
systems are referred to as the reduced order system, or slow subsystem,

and the fast subsystem. It is computationally simpler to solve control

problems for these systems due to the order reduction and the removal of
the full order system's stiffness associated with the singular perturbation
parameter w. The purpose in revealing the two time-scale property is to
make it possible to demonstrate that a near time-optimal control can be
constructed, for singularly perturbed linear time-varying systems and a
class of nonlinear systems, by concatenating a time-optimal control for
the reduced order system and a time-optimal control for the fast sub-~
system:

One method often used in improving the near-optimal controls which
are developed for singularly perturbed systems is asymptotic expansions
in the singular perturbation parameter p. In this thesis another method

is presented for time-optimal problems. This method is called the inter-

mediate géint algorithm and was originally developed [5,6] for the time-

optimal control of linear time-invariant systems. Originally the
algorithm was designed for singularly perturbed systems which are block
diagonalized. Since it is often difficult to block diagonalize nonlinear
systems, the intermediate point algorithm is altered for the treatment of
some nonlinear examples.

This thesis also contains some new stability results for linear time-
varying singularly perturbed systems. Previously [7,8], it was shown via

Liapunov functions that for u small enough, the stability of two subsystems

is sufficient for the stability of a full order system. The main thrust




of the results presented here is the discovery of upper bounds for the

singular perturbation parameter u such that for p smaller than these
bounds the systems under consideration are uniformly asymptotically

stable.

1.2 Research in Time-Optimal Control

According to Fel'dbaum one of the earliest theoretical papers on
time-optimal control was published in 1949 [9]. 1In [10] Fel'dbaum
presents the phase plane approach to time-optimal control. It appears to
be in response to the difficulties encountered in finding necessary
conditions for the optimality of constrained control problems, such as
the time-optimal control problem, that the maximum principle was developed
by Pontryagon, et al. {11]. 1n [12] Boltyanskii has produced a highly
readable book in which a proof of the maximum principle is given in terms
of the time-optimal problem. From this proof he generalizes to treat
other problems. Thus one might say that time-optimal control can be
looked at as being at the base of the maximum principle.

At the same time as the above work was going on, Neustadt, Lasalle
and Hermes was treating time-optimal problems in the United States. 1In
1952 Bushaw [39] for some simple systems demonstrated that a bang-bang
control was time-optimal. In 1959 Lasalle [13] presented the proof of
the bang-bang principle which in essence states that for linear time-
varying systems if there exists a time-optimal control, there exists a
bang-bang time-optimal control. A bang-bang control is one which utilizes

all the control available by only taking values on the edge of the

control constraint. This and other results are presented in {14].




Neustadt and Eaton developed an iterative method for determining the

initial values of the costates. Neustadt's work treats continuous systems
and Eaton considered discretized systems (12]. Plant [15] later treated
a number of iterative methods which may be applied to time-optimal control
problems,

A number of papers have been published which consider specific
problems or systems (16,17,18,19]. It is interesting to note that in
(18] the time-optimal control for a triple integrator is calculated. This
control law was implemented in the lunar module of an Apollo spacecraft
and performed very well. 1In [20] the sensitivities in cost and position
to small changes in the switching times of bang-bang controls are derived.
Two papers which consider computational techniques for finding time-
optimal controls are of interest [21,22]. The method treated in (22] is
essentially a switching time sensitivity method. Beginning with a guess
for the time-optimal control a successive approximation for changes in
switching times is set up such that the error in reaching the final point
is decreased. In [21], a hill climbing method is applied in nested
iterations to find time-optimal controls.

1.3 Singular Perturbation Results

The singular perturbation approach to differential equations has been
used for some time. A long list of such references is contained in (23].
More recently singularly perturbed optimal control problems have been
treated and a survey of major results is contained in [1]. 1In this thesis
two major areas of singular perturbation work have been touched on. The
first area is covered in Chapter 2 and deals with the uniform asymptotic

stability of singularly perturbed linear time-varying systems [7,8,24,25,

26,27].




The rest of the thesis which at times relies on the results con-

tained in Chapter 2 deals with the development of decomposed time-optimal
control for singularly perturbed systems. As mentioned earlier, the
initial work for the time-optimal control of singularly perturbed system
is contained in [2,3,4]. 1In [5,6] an iterative method which is based on
the theory in [2,3,4} is developed. This method computes time-optimal
controls for full order systems from the solutions to reduced order time-
optimal control problems. It is called the intermediate point algorithm
in this thesis and is described in Chapter 4.

A recent paper (28] treats the problem of finding the time-optimal
control of singularly perturbed time-varying systems which are nonlinear
in the slow state and linear in the fast state and control. In [29] the
feedback time-optimal control of the reduced order system of a linear
time-invariant singularly perturbed system is treated. There, it is
shown that this control steers the slow state to within a compact subset
of the origin (the final desired point) and the fast state to some point
which is a finite distance from the origin. Two results for related
problems are [30,31] where the time-optimal controls of systems with

regular perturbations are treated.

1.4 Chapter Review

Chapter 2 might more properly be called Preliminaries. It contains
the derivation of bounds for singularly perturbed systems. The stability
of the fast subsystem takes on added importance in the study of time-
optimal control. It is shown in Chapter 3 that the stability of the fast

subsystem is a necessary condition for the two time-scale property and

therefore these bounds guarantee this property. In the next section of

..
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Chapter 2 an example of the application of these bounds is presented
followed by the discussion of a stability assumption for a class of non-
linear singularly perturbed systems. Thisz assumption is later used in
the development of the two time-scale property in Chapter 5. Then the
chapter is ended with a presentation of a block diagonalization trans-
formation (used in Chapter 3) and some lemmas concerning the expansion
of two common integrals via integration by parts.

Chapter 3 is first concerned with revealing the two time-scale
property of time-optimal control for linear time-varying singularly
perturbed systems. Then a near optimal control is defined based on this
property.

In Chapter 4 the intermediate point algorithm is defined and dis-
cussed. Following this an example of its applicalion is presented.

Chapter 5 begins by showing that a class of nonlinear systems
possesses the two time-scale property of time-optimal control. Then a
near optimal control for these systems is proposed and its near optimality
proved.

Nonlinear examples are presented in Chapter 6. One of these examples
is not within the classes of systems treated earlier in the thesis. How-
ever, based on the intuition gained during the earlier work, a near-
optimal control i: found for these systems and the intermediate point
algorithm is applied in revised form to improve on the near optimal
control.

Finally, Chapter 7 contains the conclusions and possible directions

of future research.
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1.5 Notation

Vectors and scalars are generally represented by lower case letters
and matrices by upper case letters. The derivative with respect to time
of a vector x or a matrix A is denoted by x or A. The transpose of a
matrix A is denoted by A’. The norm of a matrix A is written [A|. The

norm used here is

= 2.1/2
la]l = (= % )

where the Gij are the elements of the matrix A. For the norm of a scalar

this reduces to the absolute value. A set U composed of objects u

characterized by some property P is defined by
U = {u:u has the property P} .

Throughout this thesis a vector f£(x,t) is written as f in cases where no

confusion will result from dropping the dependence on x and t.
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2. STABILITY PROPERTIES
2.1 Introduction
In this chapter some bounds on p are found which guarantee the
uniform asymptotic stability of
X = All(t)x + Alz(t)z + Bl(t)u (2.1a)
pz = A21(t)x + A22(t)z + Bz(t)u (2.1b)

where x € Rn, z € ﬁm, u €R" and u is greater than zero. The following
assumptions are made:
(i) The matrices Aij(t), i,j = 1,2, are bounded and have
bounded first derivatives for all t.

(ii) The eigenvalues Ki(t) of A,,(t) satisfy

- Re(A,(£)) <- Y <0 (2.2)

for all t where Y is a constant.

(iii) The reduced system

S—

. -1
W= (All(t) - Alz(t)Azz (t)A21(t))W 2%

é Ao(t)w

has w = 0 as the uniformly asymptotically stable
equilibrium.
In Lemmas 2.2 and 2.3 under assumptions (i) and (ii), a bound My is

found such that for u € (O,uo) the equilibrium y = 0 of the fast subsystem

by = Ay, (E)y (2.4)




is uniformly asymptotically stable. Then in Lemma 2.4, under assumptions
(i), (ii) and (iii), a bound By is found such that for u € (O,ul) the
equilibrium, u = 0, x = 0 and z = 0 of the full order system (2.1) is
uniformly asymptotically stable. Under (i), (ii) and (iii) it has been
known for some time [7,8] that (2.1) is uniformly asymptotically stable
for u small enough. 1In (24] it is shown that under (1) and (ii), (2.4)
is uniformly asymptotically stable. The new results here are the bounds
ub and “1'

After these stability lemmas have been stated and proved, a

stability -assumption concerning the nonlinear system

x = £(x,t) + F(x,t)z + B, (x,t)u (2.5a)

pz = g(x,t) + G(x,t)z + B, (x,t) u (2.5b)

is presented and discussed in preparation for Chapter 5 where the time~
optimal control of (2.5) is treated.

Finally a diagonalization transformation and two lemmas are pre-
sented. In these lemmas expansions in W are presented for two integrals
which appear often in the development in this thesis.

The stability lemmas for systems (2.1) and (2.4) are presented in
Section 2.2 and an example illustrating the use of these lemmas is pre-
sented in Section 2.3. Section 2.4 contains the discussion of a stability
assumption for system (2.5). Section 2.5 contains the diagonalization

transformation and in Section 2.6 expansions in u are derived for two

integrals.
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2.2 The Stability of Linear Time-Varying Systems

In the presentation of this section we will need the well-known

lemma of Gronwall.

Lemma 2.1 (Gronwall's Lemma [32]). Let A(t) be a real continuous
function and Y(t) a non-negative continuous function on the interval
[to,tl]. If a continuous function y(t) has the property that

t

y(t) LX) + [ Y(s)y(s)ds
t
0

for t, < t <t., then on the same interval

l’
t t
y(t) SAt) + [ Ms)Y(s)exp([ Y(r)dt)ds .
t s
0

E . The proof of this lemma is contained in (321].

In the next lemma a bound | on p is found to guarantee that the
equilibrium y = 0 of system (2.4) is uniformly asymptotically stable under

assumptions (i) and (ii). Assumption (i) implies
Ay (£) = Ayp(tp) | S B(t-ty) (2.6)

where B is a constant equal to the maximum of }Azz(t)l for all t by the

mean value theorem. Also for t 2 t, there exists a K such that

t-t t-t |

o, 0 |

Aan(E )( -Y t——-—) |
e % VLB < Ke B (2.7) i

when (ii) is satisfied L38l.
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Let §22(t,t0) be the state transition matrix of (2.4) and define
¢(t,to)
t-t
0
s [59
2270
WEtgd S0, 06,8 - o it (2.8)
Lemma 2.2. Let (i) and (ii) be satisfied and for any a € (0,Y),
let f = c?/BK. Then for p € (0,1), ¢(t,t,) satisfies
¢(to,to) =0 (2.9)
and
t-t
ke
ottt | £ 2 55 g TP (2.10)
e”(a"-uKB)
where 0 = ¥ - & > 0.
Proof of Lemma 2.2. The definition of ¢(t,to) implies (2.9) and
(2.11),
t-t,
v A,,(t) Aunll) = B () Ayu(ta) ===
2 20 2270
oCe,ty) = 2 oe ) + 22 m 2 e L ¢ %k
Applying the variation of constants formula to (2.1l) we obtain
T-t
t-T 0
o I e
.1 2270’ e g 2270’ | Tu
e,tg) =S [ e (Ag5(M) = Ayy(eg))e dr
t
0
= (2.12)
t e )("to)
A ——
1 2 22907 &
+p{ Pt T (Ayy () = Ayy(Ep))e dr .

o((t=ty)/ )

Let Y= a + ¢, multiply (2.12) through by e and let
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a((t-tg)/ W

ﬂ(t,to) = e p(t,t.)
- to yield
t-t
t g(__—g)A (t).‘.:_".I
ﬂ(t,to)”];f g b g ed 0(”)
%o

o=

At

220 "

X (Azz('\') - A22(to))e dr

T-t T=t
g g O) A22"‘0)( m 0)
+Ef (e, T)e (Ayp (T) = Ay5(Ep))e dr .
to
We next construct the successive approximation

t-t

£ glsdi & (t)(l"—T)

(1) 1 ( \ 220

1 (t,ty) = 5 f e L P L

t

0

-t
-

220 %
X (Byy(T) = Agy(tgd)e ar

T-t
o=
ﬂ(k) (t, e #

(2.13)

S rt

+ L
W

0

Tty
o
X (ayy(T) = Agy(EQ))e 227707 B g

with initial guess 1% (e, ty) = 0. Substituting (2.6) and (2.7) into

(2.13) and integrating for ﬂ(l)(t,to) we obtain

t-t
0
2. =Ql— - 2
m(l)(tsto)! fﬂ(_z.?. e 0.( ] } kf__t.g) <2 XK E
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for all t,t

o © 2 toe Taking the difference between two successive

terms for T we obtain

(k+1) (k)
ﬂ (tsto) = T] (t’to)

-1 a® e, n - 1% D e, )

t e rr

0

(T—to) (T-to

g A ,(t.) -———J

n 2270 b

X e (A22(T) - Azz(to))e dt .

Substituting in (2.6) and (2.7) yields

m® ) (e e - 1% ¢e,ep |

5 s (k-1) kg
b O R (€, 7) [BK (

t

0

Suppose for k < p
1% e,n - 1% Ve, m| <c®

where C(k) are constants. Then by (2.14)

®* D ee,e - 1 e, | 255 ™

for all £t and t > toe Since for k = 1

A
11 e,y - 1D e, m| <2 E2

’
G.zez
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we have by induction
(k+1) (k) ﬁ@ls.k E(E.B.
- <
I (e - T (t,t0>\_2‘ 2) ( 22) .
a ae
Define p = _E@% Since
a
() (0) ke (3-1)
11 e,e) - 1 O,enl < £ 0, - 177 (e |
0 ot = 0 0
k-1 l—'KZE
< 2(p + e+ p+1) 53
Qe
=2 (1-pk uKZB
l-p c.2e2
then for p <1l or u < G.Z/BK
1m M®(e,e)| = lim In® e e0) - 1 e, )
koo k ==
B I <
=\1-p c:.2e2 ez(c.z-p.ﬁK)
Thus for p < 0.2/51( the successive approximation (2.13) converges to a ﬂ
solution which satisfies
2
et | < 2 5=
e” (a"-uBK)
t-t
ol
| Now e ' (p(t,to) = T\(t,to) and therefore
: -c(t-to)
loce,eg) | s 5282 —e 1 ¥ ], (2.15)
e (G- '\J'EK) j 1
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This completes the proof of Lemma 2.2.

This lemma implies that for u € (0,{.) the fast subsystem (2.4) is
uniformly asymptotically stable for any a € (0,Y) where -Y is the constant
upper bound on the real parts of the eigenvalues of Azz(t). A consequence
of the proof of this lemma is equation (2.10) which provides a bound on
the error incurred in approximating the state transition matrix §22(t,t0)

of (2.4) by the transition matrix

t-t,
855(t) =4
e
of the time-invariant system
by = Ay, (t0)Y . (2.16)

As can be seen this error is O(u) and exponentially decaying with an

0(p) time constant.

Lemma 2.3. Let assumptions (i) and (ii) be satisfied and set
by = YZ/EK. Then for u € (O,ub) system (2.4) is uniformly asymptotically

stable,

Proof of Lemma 2.3. Define My = YZ/SK and Q = % JuBK + Y/2 where

B < (O,HD). Then 0 = Y - a>0 and for p € (O,po) equation (2.15) implies
that (2.4) is uniformly asymptotically stable since the definition of C

implies that c? - WYK8 is never equal to zero. The proof is finished.

In Lemma 2.4 it is assumed that (iii) is satisfied and the fast sub-
system (2.4) is uniformly asymptotically stable. Under these assumptions

the bound - is found such that for u € (O,ul) the equilibrium u = 0,

x=0and 2z =0 of (2.1) is uniformly asymptotically stable. Then in
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Lemma 2.5 the bounds of Lemmas 2.3 and 2.4 are combined to find the
bound uf such that under (i), (ii) and (iii) and for p € (O,p*) the
above equilibrium is uniformly asymptotically stable.

In oxrder to simplify the statement and proof of the lemma, the

transformed system

x = Ag(t)x + Ap,(E)T

(2.17)
WM = W(L(E) + L(E)AG(E)IX + A, ()T + WL(E)A,,(E)T
is treated which is the result of applying the transformation
T=z+A,, () 4, (0x Lz +L(t)x (2.18)
22 21 = ‘

to (2.1) with u set equal to zero. Here AO is as defined in (2.3).
Clearly if (2.17) is uniformly asymptotically then the equilibrium u = 0,

x =0 and z = 0 of (2.1) is uniformly asymptotically stable.

Lemma 2.4, Let (2.3) and (2.4) be uniformly asymptotically stable
systems so that their state transition matrices satisfy (2.19) and (2.20)

respectively

-0, (t=t,.)
lagt )| Skpe O (2.19)

‘.ézz(:,:o) | 2 R,e ‘ (2.20)

M, and M, exist such that for all t

If constants Ml, 2 3

Ay | 2My, (LA, () | 2Ny,

L(t) + LAy ) | <y, , (2.21)
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then for all y € (O,ul), where

i

Hy g KM, + KM KM,

the equilibrium u = 0, x = 0 and z = 0 of (2.1) is uniformly asymptotically

stable.

Proof of Lemma 2.4. Applying the variation-of-constants formula to

(2.17) yields

X t
x(t) = 8 (t,t)xg + [ §,(t, M4, (N7
%0
t
N(EY = &, (t,t )Ty + [ &), (e, MLIDA (DT
%o
t
+£ 2,,(t, LT + LIDA (M)x(T)dT
0

where

-1
To = 29 + Ayp (Egay (Eg)%g -
The bounds of equations (2.19), (2.20) and (2.21) imply

-0, (t-t,) » -G, (t-7)
e ! . xq | + i) Ke . Ml}
t

0

x(e)| <K ) ldr (2.22)

1
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f — T
|

. .t_fQ} g, ¢ o (s_f.} |
; In(e) | S Kpe A |n0]+{ Kye & v M, |N(T) [ar |
0 (2.23)
t e {.t_:I)
+{ Ree 2 * g fx(my far .
0

In this proof we apply Gronwall's Lemma to (2.23) and then to (2.22) to
derive an upper bound B such that for u € (O,p.l), the absolute values

|x(t)‘ and lﬂ(t)! are bounded by a decreasing exponential. Letting

0‘2t/u.
w(t) = e m(t)‘ in equation (2.23) yields

gt/ k
w(t) _sze s {'ﬂo\ +‘f K2e
t

0

021'/p,
M, lx(7) lar

t
+ K Myw ()T .
%o

Applying Gronwall's Lemma and integrating, we obtain

Gztolp. K2M2(t-to)

W(t) 5 Kze \note
i ' RM. (t-T) O, T/p
+[ e e K,e 4 M, lx(m) ld~
e
0
: which yields
-G, (t-t ) = ~C, (t=7)
me ] <xe > %l +{ RMge > |x(mlar (2.24)
0

= L - i > .
where Ty 62/5.. KMy In the following we will need Ty 0




Substituting (2.24) into (2.22) yields

-0, (t-t,) t -g, (t-T) -0, (T-t.)
1 0 1
lx(e) | < ke %o | + {0 K e M K, [T le 8 0
i t -0, (t-1) ¢t -0, (t-s)
F + f Kle 1 MI(I K2M3e 3 |x(s)lds)dT
which implies
K.MK T || -0, (t-t )  KMK || -0,(t=t.)
171.2'0
Sl Rl e

KM.KM, £ -0 (t-1)
& 11273 I & 3 ]x(T)|dT .

0'1 s

(0,55 =
Let y(t) = e 3 lx(t)\, apply Gronwall's Lemma and integrate to
obtain

K.MKo |7, | o -0, (t-t.)
HONE Sl B rocnd ORI




20
Thus for (2.17) to be uniformly asymptotically stable we need in-
equalities (2.25) and (2.26) to be satisfied,
%
Gy mg - By >0 (2.25%
K.M.K_M
1717273
03 - - >0 ' (2.26)
1
Let
%

] o KM, + KM KM,

If u € (0,u1), inequalities (2.25) and (2.26) are satisfied and therefore
(2.17) is uniformly asymptotically stable which implies that the
equilibrium u = 0, x = 0 and z = 0 as the full order system (2.1) is

uniformly asymptotically stable. Lemma 2.4 is proved.
The corollary follows directly from Lemmas 2.3 and 2.4.

*
Corollary 2.5. Let p =,min(:0,pl). Assumptions (i), (ii) and

%
(iii) guarantee that for ¢ € (O,u ), the equilibrium u = 0, x = 0 and

z =0 of (2.1) is uniforaly asymptotically stable.

2.3 Example

The example illustrates the calculation of the stability bounds for

i derived in the last section for the system




f

21
X ~4 + cos t 1 0 ] X
2, | = R SN TSP l-llsintcost! |z |.
!
uéz 0 -1 =1.1sin tcos t -1+ 1.1 sinzt § z,
~ - o - - -
(2.27)
The reduced system is
X = (-3.474 + cos t - 1.222 sin’t)x (2.28)
and the fast subsystem is
. -1+ 1.1 coszt 1 ~1.1 sin t cos t
pl = n. (2.29)

-1 -1l.1sintcost -1+1.1 sinzt

When g = 1 an unstable fundamental solution of (2.29) is

éz(t,O) =

even though the eigenvalues of Azz(t) have real parts = -0.45 for all

t [33, p. 147]. Since system (2.27) satisfies (i) and (ii) and system

(2.28) is uniformly asymptotically stable, we know that for p sufficiently

small, both systems (2.29) and (2.27) are uniformly asymptotically stable.
Fixing the coefficients of the fast subsystem at any t = to, we

obtain the linear time-invariant system

K -1 + 1.1 coszt0 1 4 1.1 sin ty cos t,
pll = i1l (2.30)

-1 - 1.1 sin t, cos t -1+ 1.1 sinzt

0 0

0
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The state transition matrix for (2.30) is

eAzz(to)*
oo Gy (tg)eos(.8357-0,, (£))) &, (t;)sin(.8357)
=e a,, (t4)sin(.8357) Gy (£4)C08(.8351-5,, (£))
t-t

where T = T

0y (tg) = (L.377 - 1.617 sinzto +1.73 sin4t0)1/2 ,
a12(t0) = (1.198 - 1.317 sin tg cos to) >

u21(to) = (-1.198 - 1.317 sin ty cos to) »

Gzz(to) = (1.377 - 1.617 coszt0 + 1.734 cosz"tco)]'/2 s
6, (5y) = tan” 1 (.614 - 1.317 sin’t) ,

8,5(t,) = tan” (.614 - 1.317 cos’ty) .

Using as a norm (Zk;'.i 2(!:0))1/2 we find that K = 7,358 and Y = 0.45.

i
Correspondingly we find the max ‘Azz(t)[ = 1.555 = 8. The values of 8, K
and Y and Lemma 2.3 imply that uy = .0177 and that for 0 < p < by» System
(2.29) is uniformly asymptotically stable.

Since ) is found by taking various matrix norms it is conservative.
In a computer simulation the fast subsystem (2.29) was numerically
integrated for the initial condition zl(O) = zsz) = 1 for various values
of w. It was found that for w < .65, the solution was exponentially

decaying. In Figures 2.1, 2.2 and 2.3 the solution for z, is shown for p

equal 0.1, 0.4 and 0.7 respectively. From Figures 2.1 and 2.2 it can be

seen as expected, that for smaller u the exponential decay is more rapid.
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We next find a bound for the stability of the full order system

(2.27). From Lemma 2.3 we obtain

]@22(1:,:0) | <x |1+ 2 —2—2&— Pl (2.31)
; e (@'~ uKB)
' If we let @ = 0 = Y/2 we obtain a value for | of .00442. For p € (0,1)
4 we may use the bounds of (2.31) for sz(t,to). Thus
;
]
i' K, =k [1+ 250
e” (07 -uKB)
|
and 02 =0 = ,225. From equation (2.28)
', = -1.89(t-£ )
Ree | < lxg le
which yields K, = 1 and o, = 1.89.
R | Values for M., M, and M_ are 1, 1.956 and 7.09 respectively. Sub-

1 2 3

stituting these values into

. ‘iz
= TR M, + KM KM,

yields b= .00317. Since = < [l we know from Corollary 2.5 that for
€ (O,ul) system (2.27) is uniformly asymptotically stable.

This example illustrates the use of Lemmas 2.2, 2.3, 2.4 and
Corollary 2.5 in obtaining stability bounds of u in system (2.27). The

bounds K, and 0, are direct results of Lemma 2.2, thus making it unnecessary

2 2

to determine the state transition matrix for the fast subsystem directly.
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2.4 A Stability Assumption

In Chapter 5 the time-optimal control of nonlinear system (2.5) is
treated where x € Rn, z € Ry, u €RF and W is greater than zero. The
purpose of this section is to discuss the acceptability of stability
assumption which is made in Chapter 5 concerning system (2.5).

We assume that the Jacobians gx(x,t) and (Bz(x,t)u)x and the partial

3B

derivatives %% and szz exist and are continuous with respect to x and t.

The controls under consideration satisfy the constraint
u €U = {u: \ui‘.f 1y &= Lot}

and their components u, are piecewise constant with a finite number p of

i

discontinuities at the instants tj where

< < < LA < .
to tl tz tp

That is, at the instants t, at least one of the components of u is

b
switching from one constant value to another constant value. Suppose we
choose an arbitrary control a(t) satisfying the above, and apply it to
(2.5) to create the trajectory ﬁ(t),ﬁ(t). It is assumed that for §(t)
the inverse of (}(:7:,1:)_1 exists for t € ﬂto,tp].

The stability assumption to be discussed in this section may be

stated:

(i) The equilibrium w = 0 of the system
W o= G(R(t),t)w (2.32)

is uniformly asymptotically stable, for u small

enough.
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The approach used in the application of singular perturbation
methods to approximate the solution to (2.5) with control input a(t) is

to set w =0 in (2.5b) to yield

Z=- c(;,t)'lg('i,c) - c(’i,t)‘lsz&,c)u (2.33)

where the bar () denotes p = 0. Substituting (2.35) in (2.5a) yields ;

the reduced order system
X = fo(?:',t) + Bo(';,t)ﬁ'
85, - FE0)6GE, ) T, t) (2.34)
+ (31&,:) - F(;,t)G(;,t)-le(;,t)): .

One assumption [26] which will guarantee that the solution ;(t) of
(2.34) with input G(t) provides an approximation for x(t) is that the
equilibrium'; of system (2.5b) is uniformly asymptotically stable. We

will show that the assumption (i) above is equivalent.

Consider x(t) and a(t) as inputs to (2.5b). Then (2.5b) may be

treated as the linear time-varying system
kz = G(t)z + §(£) + B,y(e)G(E) (2.35)
which has the solution

§u(t,?)§(f)d7
0 (2.36)

o S5 00

1
z(t) = éu(c,to)zo +;

t
+d [ Qu(t,f)ﬁz(T)G(T)df .

1
o

€0
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Along any control interval (ti’ti+l) during which u(t) = K where K

is a vector of constants, we may iategrate (2.36) by parts to yield
z(t) = @u(t,ti)zi

OB TORE F ORI TN

t .
+[ 8, EM T + & Em lar (2.37)
t

1

+ 6(c)'1ﬁ2(t)x + §u(t,ti)6(ti)_lﬁ2(ti)K

t . .
+[ 8 (e, 6B,k + &n '8, (nKar

S

where z, is the value of z at ti. Since g(t) = g(x(t),t), ﬁz(t) = Bz(ﬁ(t),t)

and G(t) = G(X(t),t), (2.37) may be written

2(6) = (6,12 + 6G(e ) e HaR(E,) ) + ByE(ey), e )R]

- GER(E),6) g @(E),8) - GR(B),0) B, (R(e), 00K

" (2.38)
" RN A

+] 206N E + By(nK)
G
X

+ &M @M + Bymplar

Suppose that Qu(t,ti) satisfies
-of—1)
‘Qu(c’ti)!-f Ke L (2.39)
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then the integral in equation (2.38) is O(u) and the first term will
exponentially decay with O(u) time constant. This exponential decay is
referred to as boundary layer phenomena and occurs at each switching of
the control G(t). The remaining (middle) term in equation (2.38) is
simply the equilibrium we wish to be uniformly asymptotically stable.
Assuming that (2.39) is satisfied is the same as the above assumption.

It has been shown that under this assumption
z(t) = ;(t) + 0(p) + boundary layer terms .

Therefore substituting ;(t) into (5.la) to yield the reduced order system

will result iniz(t) being an approximation of x(t).

2.5 A Diagonalization Transformation

In this section system (2.1) and its adjoint system

. 1
Pl i All(t)p = ; AZl(t)q
(2.40)

. 1
q = = Alz(t)p = TL Azz(t)q

will be lower block diagonalized and upper block diagonalized respectively

using the transformation defined by

X I -uF(E) [ x ]
= (2.41a)
LC 0 Im g J
'5" T 0] (s
= (2.41b)
L0 CROMENE S B S

This diagonalization will simpiify the process of revealing the main

results of the next chapter.

When (2.4la) is applied to (2.1) and (2.41b)
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to (2.5) the result is

X = (A11 - FAZI)X + GC + (B1 - FBZ)u

(2.42)
BE = Ay X + (4,5 + 14, F)C + Byu
and
g -- (ay, ~ FA,)'E - 2 asT
" (2.43)
> ’ 1 ’
where
ZRBRE S S 4ot t
G(t)" = A12 A22F WF° + uF All WF A21F (2.44)

and (£7,M’) are the adjoint variables corresponding to (X% C’) . In the
work presented in this thesis the problem under consideration is that of
time-optimal control. In order for this problem to have meaning the time
required for the control must be finite. Therefore we only consider
transforming systems (2.1) and (2.40) on the finite interval [to,tlj.
Chang [34] has shown that under the assumption that the eigenvalues
of Azz(t) have real parts strictly less than zero, there exists a bounded
solution F(t,u&' to G(t)' = 0. He further shows that one solution
G(t)! =0 is

1

F(t,) = A%, A], + W(t,p) (2.45)

where W(t,u) can be shown to be bounded on [to,t I Substituting (2.45)

i
into (2.42) and (2.43) yields
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X = A (E)X + (By(e) - Wi(E,w)B,(E))u
(2.46)
pe = A21<t)x + A2<c>c + B, (t)u
and
é - = Al (t)g = %' A21 (t)ﬂ
(2.47)
. 1
: N=-2a, @©
where
B b
by o'thg = Wiy, s
A ~1 2
A, B A+ A A + 05w,
2 = 822 21%12%22 21 (2.48)
w A wee,w ,
=3
By = By = 410855 By
and
PO R
e R s R T

Thus (2.46) is lower block diagonal and (2.47) is upper block diagonal,

2.6 Expansions of Two Integrals

In this section the two integrals

t
I, = [ &,(c,HN(NdT t € Leg,t,] - '(2.49)
%o
and
t
I, = [ N(s)&,,(s,ty)ds t €[t ] (2.50)
t

0




are expanded as series to O(ug) where ézz(t,to) is the state transition

matrix of the fast subsystem (2.4). The following assumptions are made:

(i) The matrices Azz(t) and N(t) are continuous and
have continuous derivatives on [to,tl] to any
desired order.

(ii) The eigenvalues ki(t) of Azz(t) satisfy
< .y £
Re (1, (£)) Y <0 t € Eto,tl]
where Y is constant.
Lemma 2.6. Under (i) and (ii) the integral I1 may be
expanded as
L = -pa LeNE) + B, (tt )AL T(EINCE)
g " tHg BN W2y (EsEp)An,  (EgIN(E,
g wl, ok w 2 1
o =1 2, =2 ¥
X A22 (to)N(to) - A22 (t)N(t)

2 -2 s 3
) (t )N
+ W .zz(t,to)A22 \tO)V(tO) + 0(p)

for u sufficiently small,

Proof of Lemma 2.6. The integral I, may be expressed

1
t
L= 8,06, A, (D,  (DN(TAT
17d F2t®T it 22 .
0
Letting
dw® o= §onlt, Yhaq (Ve
w i TgB Ny 1A Bap% IS
and

V.- HAZZ-I(T)N(T)
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ekl S o dls O

(2.51)




implies
‘ w = sz(ts"')

and
dv = - HAzz-l(T)N(T)dT - quz-l(T)&(T)dw

which yields
t t

I, = - p.@zz(t,T)Azz-l(T)N('r) o+ QZZ(C,T)AZZ'I(T)N(T)dT
1‘=to t.o

t
+ u{ 3, (8, DAy, T (DR(DAT

0

Noting that for p sufficiently small system (2.4) is uniformly

by parts yields

t
I, = - by, (E, DAy, (DN |
™=t
0
‘ 2 L oo =1 ;
- 1, (8, DAy, (May, (DN |
e ‘r==t0
‘A 2 2, ot 3
- BT, (6, MA,y T(MN(M |+ 0w

1’=to

which yields (2.51) and Lemma 2.6 is proved.
Lemma 2.7. Under (i) and (ii) the integral I2 may be

expanded as

IR Y T Y

34

asymptotically stable by Lemma 2.3 and integrating these two integrals

e it e
il i e e et il i 3
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- A -1 § -1

2. -2 2 ol
- N(E)A,, (:)ézz(t,:o) T RN(EDA), ()
(2.52)

- N®)Ay, T (08, (0, (¢ 8 )

+ WNCEIAy, T (6)8p, " (5) + 0047

for u sufficiently small.

The proof of Lemma 2.7 follows analogously to that of Lemma 2.6.
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3. TIME-OPTIMAL CONTROL OF TIME-VARYING SYSTEMS

3.1 Introduction and Problem Statement

In this chapter we treat the time-optimal control of system (2.1)

which for convenience is rewritten here

x = A, (t)x + A, . (t)z + B, (t)u
11 12 ) (3.1)

w2 = Ay (B)x + A ,(t)z + B, (t)u

where x € Rn, z €R™, u €R' and u is a scalar which is greater than zero.
For all t, the matrices Aij(t), i,j = 1,2, are bounded with bounded

derivatives and the eigenvalues of A, of Azz(t) satisfy

i

Re(ki(t)) =¥ <0,

The main results of this chapter are the two time-scale property and the
development of a near time-optimal control for (3.1). The necessary
conditions of the minimum principle are applied to demonstrate the two
time-scale property, that the time-optimal control of (3.1l) is composed
of an initial interval of control in a slow time-scale followed by an
interval of control in a fast time~scale. Based on this property a near

. optimal control is proposed which is made of a time-optimal control of the

reduced order system

- -1 - -1 -
X = (Ayp = Ajghgy Agp)x + (B) = Ajohyy Bylu
(3.2)
] A < T
s Ao(t)x + Bo(t)u
1
3 followed by a time-optimal control of the fast subsystem
] s 2 2.8 -
F A Wz A21(t)xF Azz(t)z + 2(t)u . (3.3)
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The advantage of this near optimal control is that it requires control
computations only on reduced order systems.

The time-optimal control problem treated here is that of finding

*
the control u (t) constrained
u €U = {u: ]uil_f 1, i = 1,.e.,r}
which steers the state (x7,z7)’ of (3.1) from the fixed initial state
/ a4 : ’ N/ :

(xo » 2, )/ at time to to the fixed final state (xF » Zp ) in minimum

* * : * *
time T . For notational purposes tf is defined tf =T + to. System (3.1)

is assumed to satisfy the following condition in order to guarantee the
existence of the time-optimal u*(t).
(1) There exist t1 and Mo such that for all p € (O,uol
there exists a control u(t,w) € U which steers (x4 z%)
from (xo', zof)’ to (xFI, zF’)’ within time t1~to
According to Theorem 17 of [35, p. 127], (i) guarantees the existence of

*
u (t) for p € (O,poj. The normality of the control problem is assumed.

3.2 Necessary Conditions from the Minimum Principle

In this section the minimum principle is applied to the control
problem. Then a diagonalization transformation and expansions in p are
used in the necessary conditions to reveal the two time-scale property.

The Hamiltonian to be minimized is

e ’ ’ ’
H=1+p Allx +p AlZZ +p Blu
(3.4)

2L

l‘.l .:.l./ ,2-_1
+ m qQA,.x + U q A22z 4 5 q‘B,u

2
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where
b= AL’ -2,
11 r 21 (3.5)
e g .
S TRl T
and
*
u (t) = - SGN[Bl'p +-ﬁ Bz’q] . (3.6)

The normality of the control implies that
B, (®)p(e) + 3 B, (6)ae) £s(e) = 0

only at isolated times t:j and not on a finite interval. Thus the
switchings of the components of the optimal control will occur at the

instants tj at which one of the components Sis i= 1,...,r of S satisfies
si(cj) =0 .

The instants tj are referred to as the zeroes of S.

If we let Q(t,to) be the state transition matrix of (3.1) satisfying

. ~yy 412
™ <I>(t,t0) = % . 1 . é(c,to) (3.7)
w21 w22
then (3.6) may be written
P
* ¥ ), * F
u(t) = - s6N [[B.7: B A8 ¢e., )l ... (3.8)
o 3| £ 1
29

*
where pF and % qg are the values of p(t) and q(t) at tf. A candidate

*
for the optimal control could be found by determining tf, pF and g such
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*
that u (t) steers (x”,z7)/ from (xo’,zo’)’ to (xF’,zF’)’. This is in
general a difficult problem due to the stiffness which results from the

presence of M.

The minimum principle provides the additional necessary condition
*
H(tf) =0

which implies that as p -~ 0,'% q., remains bounded and therefore 9y is

F
o(w).

In order to reveal the two time-scale property the diagonalization
transformation (2.41) is applied to (3.1) and (3.5) to yield

X = (A, - FA, )X + GC + (B, - FB,)u
11 91 1 2 (3.9

wg = A21x + (A22 + gAZIF)g + Bzu

and 7

> = 1
§ =« (A, - FA,.)'E - =4, .77
11 21 w21 (3.10)

7 ’ 1 7
where

G/(t) = A, - Ay, ’F/ - WFY 4 WEYA ) - YA FY (3.11)

In Section 2.4 it is shown that for u sufficiently small and t € [to,t1]

a solution of

G(t)’ =0 :

is

s=1 F
21

F(t)’ = A A,/ + W, )’ (3.12)

22
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e W D W(t,u) is bounded. Substitution of (3.12) into (3.9) and (3.10)

wher
yields
%= ALK+ (B, = WB)u
2 9 2 (3.13)
wG = A21x + AZC + 32u
and
é‘°Af§‘lAnﬁ‘
» (3.14)
pl = - Az’ﬂ -
+ 2A W and A nd B
Bifay  Biguiakes

8 g - A -1
where A) & Ag - WAy, Ay S 4g ¥ b, 1812822

Letting QO(t,to) and §22(t,c0) be the state

are as defined in (3.2).

transition matrices satisfying

%E Qo(c,to) = Ao(t)éo(t,to) (3.15)
and
&5, (6,5 = Ay(BEy(65%)) (3.16)
yields the approximate solution to (3.14)
2(e) = 3y (tg )8 - [éo«t;,t)Azl’<c;)A2'(::)‘1
- AZI’(t)Az’(t)-lézl(t;,t) + 0(u)3ﬂF (3.17)

(3.18)

*
\(t) §22 (tfit)“F * 0(“‘)
%
where §F and ﬂF are the values of g and T at t_. Transformation (2.41)

and (3.12) imply
p(t) = §(t)
(3.19)
5
/(e)p(t) + 0w

q(t) = T(E) - quz’(t)-lAlz
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and

(3.20 5
=q. + cey a2 (eF)p. + 0cud ;
nF qF quz f) 12 ( f)pF M ) .

The substitution of (3.17), (3.18) and (3.20) into (3.19) yields

* * % -1
§ol(tf:t)(pF i A21,(tf)A2/(tf) QF)

[}

p(t)

r + A21’(t)Az’(t)-lézz’(t;,t)qF + 0w (3.21)

* s % =1 *
a(t) = &,,7(tet) (qp * g (tg) "A1,7(t)py)

e

, > ,, L * . PN TR |
(3.22)
-, (8) YA (E)A,, Y(E)A, 7 (E) T TE, Y (t, t)
22 12 a1 2 22 ‘g2 S

2
+ 0o(u’) .
Finally substituting (3.21) and (3.22) into u (t), (3.6), yields
e P y 7..% N P P |
u(t) = - SENDB,/(£) 2, (s t) (pp = 4,7 (EL)A, () "ap)

-1. *
+ B .7 (t)A,,  (£)A,/(t) &,,7(t.,t)q
0 21 2 22 £ F (3.23)

’ A rl 7 pEyd o
* By (R)2y (Ep LY G F Agp (B TApp(EgdRg

+0(w] .

Lemma 2.1 implies that for L small enough ézz(c,co) is bounded by a
decaying exponential with O(u) time constant. This implies that

*
@22’(tf,t) is exponentially decaying in reverse time.

*
Lemma 3.1. The time-optimal control u (t) is composed of an initial

interval of control in a slow time-scale followed by an interval of coatrol
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in a fast time-scale. In particular, for any € > 0 there exists @ and T

-
such that for u € [0,u], u (t) satisfies

. -SGNEBO’(t)QO’(t:,t)pF + 0(p) + 0(e)]
*
t € [to,tf-‘r)

G (&) =4 -sGN[B, ‘(t)p, + 32'(t)@22’(c;,t) (3.24)

1 foenThy s
X (G ap *Ay,7 (k) TA, (t)py + o(w ]
* *
t E [tf-T’tf]
where T = 0O(W).

Proof of Lemma 3.1. By Lemma 2.1 there exists, for u small enough,

a constant K such that

tt*

f)
(] < *
for t tf .

o
B g >
18,7 (test) | < Ke

cT

Letting Ke L implies T = --g ln(ﬁ) where € is chosen such that

*

€/K <1. Thus T = 0(y) and for t < te

T’
18, /ety | < e (3.25)
228 °f’ * ’
Recalling that qp = 0(w) and noting that T = O(u) implies that

5 / * > * *
8, (tg,t) = I+ 0(w) t € [tf-T,tf]

and hence we have (3.24). For small enough € and W, the switchings on the
* %
slow interval [to,tf-T] are primarily dependent on @0’(tf,t) and the

* *
switchings on the fast interval [cf-f,tf] of length O(W), are primarily

*
dependent on BopF and §22’(tf,t). Thus the switchings on the initial
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interval are in a slow time-scale and the switchings on the final

interval are in a fast time-scale and Lemma 3.1 is proved.

Since T is O(W), x(t;-f) is O(p) from Xp. Thus the two time-scale
property implies that the control on the slow control interval steers x
to O(p) from Xpe The fast switchings in [t:-f,t:] steer z to Zp and x |
the last O(y) distance to Xpe Based on this argument the near-optimal

control is proposed in the next section.

3.3 Slow and Fast Control

—%
The reduced control problem is that of finding the control u (t) €U

which steers the state x of the reduced order system (3.2) from X, at time

-k

—k —k
0 to x5 in minimum time T . For notational purposes tf =T + to. Since

setting p to O in (3.1) to yield (3.2) implies that z may be steered

t

instantaneously, the reduced problem does not include the steering of z.
The minimum principle yields the following necessary conditions for

the reduced coantrol problem. The Hamiltonian to be minimized for u €U

is
H=1+ E’AOE & ’p"BO'J (3.26)
where ; satisfies
P a- Ay(t)p (3.27)
and
we) = - sanlBp(n)] . (3.28)

The solution of (3.27) is

B(e) = - &/(c,,t)p, (3.29)




which when substituted into (3.28) yields
— — -
u(t) = - SGN[BO'%’(tf,t)pF] . (3.30)

-~ -~ —
We let x(t),z(t) be the result of applying u (t) to the full order system
—%
(3.1) and x (t) be the optimal trajectory for the reduced order system

(3.2).

—
Lemma 3.2. Let u (t) be applied to (3.1). Then

& —
x(t) = x (t) + 0(w) (3.31)
for t € [to,"f*].

Proof of Lemma 3.2. Let e(t) = X(t) - ;(t), then

e = AO(_t)e = LlWAZI(t)X = I-LWBZU

where it is assumed that e(to) = 0. The error e(t) satisfies

t
e(t) = = w [ 3,(e,HW(T, WA, (TIX(T) + By(T)u(T)ldT .
0

On [to,E;]X(t), A21(t) and B,(t) are bounded and u € U. Therefore
e(t) = 0(p). Lemma 2.1 implies that there exists ﬁ such that for
TS (O,ﬁb z(t) is bounded on [to,€¥] and thus transformation (2.41)

implies

x(t) = X(£) + 0(y) .
Finally this implies that

a —%

x(t) =x + 0(w)

and Lemma 3.2 is proved.




The slow state control problem is that of finding the control

%* *

us(t) € U which steers x of (3.1) from Xy to Xp in minimum time Ts. For
this problem the initial value of z is z, and its final value is free
which implies that 9 = 0. Thus equation (3.24) implies

4

(8,"3 (" )
-SGN Bo o(tf,t)pF + 0(w) + 0(e)

*
t € [to,tf-'\']

u:(t) = 4 (3.32)

o ’ 13 Epr PP L
SGNIB Py + B, 8,7 (£, £)8,)7 (£) A1, (Ee)pp |

L + 0(w)] £ € [t:-'r,r_*]

*
and us(t) also possesses the two time-scale property. On the slow

* *
interval [to,tf-f) the switchings of us(t) are primarily dependent on

* * o A —
B3, (tgst)ppe A4S W 7O, £ = £ and by (3.31) %(t) =X (t). Therefore
as w =0, pp ~ Pp
Lemma 3.3. Let the zeroes of BO’(t)éo’(Ef,t)EF of the reduced order
control (3.30) be simple. Then for small enough p the switching times of
* * a —k
us(t) on Cto,tf-T) are O(p ) different from those of u (t). Furthermore

*
the minimum time Ts for the slow control problem satisfied

T: - T + 0™ (3.33)

where a > 0 is constant.

Proof of Lemma 3.3. The fact that the zerces of Bo’(t)§0’(zf,t);F

—ry

are simple implies that the control sequence of u (t) is, for small
* *

enough, the same as the control sequence of us(t) on Eto,tf-f). The

choice of the parameter ¢ is dependent on the reverse time exponential

decay of §22’(t;,t) and hence satisfies




lim € =0 .
p—o0

The 0(e) and O(y) terms of (3.32) shift the switching times of & (t) by

some p~dependent variations. Since these variations go to zero as u — 0

there exists b > 0 such that these variations are O(uP). For a finite

number of switching instants tj of E*(t)
T: = E* + O(uP) + T

where T = 0(p). Thus there exists a > 0 such that
T: =T + o(pd)

and Lemma 3.3 is proved.

. —%

Lemma 3.3 suggests that by varying the switchings of u (t) by some

method such as an iterative method (6] or switching sensitivities (22]
*
and adding some fast switchings on the 7T interval the control us(t) may be
-

found. Thus u (t) is a near-optimal control for the slow control problem
in the sense that it steers x to O(up) from Xp and requires the near-optimal

—it
time T .

—k —%

The point z(tf) of the fast state z at tf after the application of
-
u (t) to the full order system will be some finite distance from Zp for
pw small enough, by the stability Lemma 2.l1. Thus the time-optimal control

%* —%

uf(t) which steers the state of (3.1) from z(tf) to zp will require O(w)
time. For any bounded control on an O(p) interval the slow state x will
only be moved an O(p) distance.

~%
Let uf(t) be the control which time-optimally steers z of the fast

-
subsystem (3.3), where N is the final slow state, from z(tf) to Zp in

" ~de
time Tf.
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Lemma 3.4. The control

T (L) t € [to,—t:)

~k !

u (t) = (3.34)
L

is a near time-optimal control for (3.1) in the sense that it steers

(x%,2z’)" to a point which is O(W) from-(xF’,zF')’. Furthermore
* =k a
T =T + 0(w) +0(p) o (3.35)

~%
Proof of Lemma 3.4. As discussed above Tf = 0(x) and therefore

—k o~k
x(tf + Tf) =xp + o(w) .

r—‘k* % *
Since x will be O(p) from xp on L f,tf + Tf), uf(t) will steer z from

* —% o~k
The control u (t) requires time T + T_ and

z(E;) to O(r) from z F

Fl
therefore by equation (3.33)

* -k a
Ts =T + 0(u) +0(p)

*

The time T for time-optimally steering both x and z must be greater than
%*

Ts. Since it is possible to steer the fast state in Q(u) time, equation

(3.35) is satisfied and Lemma 3.4 is proved.

As pointed out in the introduction, Section 3.1, the near optimal

control is computed as the time-optimal controls for two reduced order

L systems (3.2) and (3.3). As developed here, this control requires the
-—r
knowledge of z(tf) which may be found from integration of system (3.1)

-l
with the control u (t). Singular perturbation techniques are well

developed for such differential equations and imply that for u small enough
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2(ty) = 2(ty + 0w (3.36)

where

- ol

z=-A, A.X=-A,, B,u. (3.37)

22 =21 22052

Thus the use of ;(E:) instead of z(E;) will introduce another O(W)
error in z when it is not possible to compute z(E:).

The following lemma makes it possible to replace the assumption of
the normality of the time-optimal control for the full order system (3.1)
by the assumption of the normality of the time-optimal controls for the

reduced order system (3.2) and the fast system (3.3).

—k
Lemma 3.5. Assume that the reduced order control u (t) and the fast
~% *
control uf(t) are normal. Then for small enough p the control u (t) is

normal.

Proof of Lemma 3.5. The minimum principle implies that

~% e _]; s —te ~%
Gg(c) = scN[u B, (t)8,,7 (t. + Tf,t)qF] > (3.38)

Let F(t) = B,/(t)8, /(E. + Teyt) and S(t) = B./(t)8 7 (Tr,t). The
2 220 f £ 0 g g
—% ;*
normality assumption on u (t) and uf(t) implies that the components fi(t)

and si(c), i=1,...,r of F(t) and S(t) satisfy

fi(t) =0
and

si(t) =0

%
at isolated instants of time tj. By equation (3.24) for u (t) the

-k * F A *
normality of u (t) implies the normality of u (t) for t < (t - T) and

0'ts
* %*

* * e
the normality of us(t) implies the normality of u (t) for t < Ltf - T,tfj

and therefore Lemma 3.5 is proved.

|
i
{
!
!
|
|
!
|
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4. THE INTERMEDIATE POINT ALGORITHM
4.1 Introduction

This chapter presents the intermediate point algorithm which exploits
the two time-scale property developed in the last chapter. As pointed out
there, the time-optimal control can be viewed as being made of two parts.
The first part is primarily concerned with the control of slow states
while the second part is primarily concerned with the control of fast
states. Corresponding to the two parts of the control, the optimal
trajectory is divided into two parts. The point lying at the intersection
of the slow and fast part of the optimal trajectory is called the inter-
mediate point. The intermediate point algorithm consists of iterations
for the intermediate point based on computations for lower order systems.
From the intermediate point the slow and fast parts of the control are
calculated.

The system for which the algorithm is developed is

x = Ajx + Bju (4.1a)

pz = A,z + Byu (4.1b)

where x €R", z €R™, u €R" and p > 0. 1In [3] a transformation is
presented which transforms linear time-invariant singularly perturbed

systems to the form of (4.1). The eigenvalues li of A, satisfy
Re(li) <0, (4.2)

u is constrained

u €U0 = {u: [u | <1, 1=1,...,r} (4.3)
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and (4.1) is completely controllable from each component u, of control.
This controllability implies the normality of the problem treated here
which is that of finding the control u (t) which steers (x%,z°)’ of (4.1)
from (xof,zo/)’ at t, = 0 to (xF/,zF')’ in minimum time T*. For small u
(4.1a) is referred to as the slow subsystem, (4.1b) as the fast subsystem
and x and z as the correspoanding slow and fast states.

Systems (4.la) and (4.1b) are equivalent to the systems referred to
as the reduced order and fast subsystems in the last chapter. Conse~
quently Lemma 3.4 implies that a near-optimal control is

a(t) t € [o,rs)
a(t) = (4.4)

ug(t) t €(r,,T)
where Gs(t) time-optimally steers x from Xy to Xp and Gf(t) time-optimally
steers z from z(Ts) to Zp. This control is near optimal in the sense that

~ *
it steers z to zp and x to O(y) from X and T =T + 0(n).

4.2 The Intermediate Point Algorithm

Since every part of a time-optimal trajectory for (4.1l) is an optimal
*
trajectory, the time~optimal control u (t) can be viewed as a concaten-

ation of two optimal controls

*
2 u  (t) t € [o,cI)
u (t) = % " (4.5)
ug(t) t & [cI,T ) ;

where tI is some intermediate time when the state x is at an intermediate

*

point x(tI). The interval [tI,T ] is expected to be considerably shorter
* *

than [O,ZI]. The controls us(t) and uf(t) are time-optimal to and from

the intermediate point. We denote the slow and fast parts of the inter-

mediate by X1 and 2o that is, x(tI) = X7 and z(tI) = Z5.
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The name of the intermediate point algorithm comes from the fact
that this algorithm iterates for an intermediate point, which lies on

the optimal trajectory. In each iteration the nth iterate for the inter-

mediate point is denoted by (xIn,zIn) and the corresponding iterate for
the intermediate time is denoted tIn.
The first guess for the intermediate point is provided by the near

optimal control (4.4). The intermediate time is defined

The slow intermediate point is defined

0 =
b il B
The controls us(t) and uf(t) are thus first guesses ug t), ug (t) for
* *
us(t) and uf(t) respectively. As the next guess xI1 for X1 we define
the point which will be steered to Xp by ufo(t). In general, if we have

*
an nth guess ufn(t) for uf(t), then x R which is transferred to X5 by

I
ufn(t) is
n.n n n
A, (t, -T) T8 A (t. -7
n+l 1'I 11 a
X = e X f e Bjug (T)dr (4.6)
e 0
: I
1 n n . 5 n n
1 where T - tI is the minimum time in which ug (t) steers z from zI to
1 Zp. On the other hand zIn is the point to which usn(t) steers z to 24
while optimally steering the slow state x from Xy to xIn in time tIn,
4 that is,
n n_ s
=% eg" S
2 "= 2|7 i T 2|7 B.u (mydrT 4.7)
1 e z 3 6 e 9% ¥ .




52

Expressions (4.6) and (4.7) for xIn and zIn and the definitions of

*
us(t) and ufn(c) constitute the intermediate point algorithm. The nth
iteration consists of the following four steps:

Step 1. Find usn(t) which steers x of (4.la) from Xy to

xIn in minimum time tIn.

Step 2. Evaluate zIn from (4.7).

Step 3. Find uf“(:) which steers z of (4.1b) from zI“ to

n
I .
Step 4. Knowing ufn(t), '1‘n and tIn from the n-1 step, evaluate

zf in minimum time Tn -t

5 o+l
I

The procedure initialized with xIO = Xp- It terminates when

from (4.6).

(4.8)

where ¢ is a preassigned scalar such as § = 10-6. Then ufn(t) will steer

¢ 5 7\” o’ _a‘lyy ’ /N7
(x%427)” from Xp 22 )" to (xF »2p ). Thus the control

n n
u(t) t € [o,tI )

n
= .
b uf"(c) t € CtIn,Tn] ik
will steer (x%,27)/ from (xol,zo’)’ to (xF/,zF’)’. A test for the
optimality of this control is given in Lemma 4.1.

The convergence properties of this algorithm have not been treated
with any rigor. What is known is that for a number of examples which are
presented in (5] the convergence was quite rapid, sometimes in less than
ten iterations. The idea which led to the development of the algorithm
which may contain the seed for a convergence proof is simple. For u

small enough the last interval of constant control of usn(t) will be long

"--.-'..-.....................lll.IlIllIlIlllllll--.......-___________.

e
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enough so that z B will be arbitrarily close to its equilibrium value at

I

the end of the interval. 1In this case making an O(y) change in xIn to
yield xIn+1 will not appreciably change zIn and therefore ufn(t) will
change only a small amount. The condition that remains to be discovered
is that under which the small changes in ufn(t) are in the proper
direction for convergence.

The computational efficiency of the algorithm depends on Steps 1
and 3 which require the calculation of time optimal controls for the
reduced order systems (4.la) and (4.1b). For second order subsystems
phase plane techniques can be used. Thus for fourth order systems with
second order subsystems the algorithm can be easily implemented. For
higher order systems one of two approaches can be used. The first is to
apply other computational methods for time-optimal control such as those
in [15,22]. The other approach is to see if the eigenvalues of the system
are such that the system may be broken down into more than two subsystems.
The advantage of the intermediate point algorithm is that for systems with
smaller u the convergence should be better. Thus the order of computations
that are needed are reduced and the difficulties characteristic of stiff
systems are removed since the stiffer the systems, the faster the con-
vergence. This indeed is the reason for the development of singular
perturbation methods for control theory.

As in most optimization procedures, a control to which the procedure
has converged and the corresponding final time T, must be tested for |
optimality. When this algorithm has converged the control steers the

state of (4.1) from the initial state to the final state to within the

desired accuracy. The next step is to see if the necessary conditions of

the maximum principle are satisfied. Let the rows of Bl’ and 82’ be
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(3’ 1) |
denoted by b1 and b2 » J=1,...,m. Then from equation (3.6) the
*
components of u (t) are :
* ’ / F
ur(e) = - sgalb, B peey +2 b, @ q0)] . (4.10)
b 1 o2
L As the kth switching instant tjk of any component u;(t)
R by P pee + 25,9 e, = 0. (4.11)
This implies -
* k
-t.
-A(T t) /"A
) L L. (1.2 o )
e Pp + b2 e ap - (4.12)
As the final time the Hamiltonian satisfies
*
H(T ) =0
which implies
H=1+p./A +p13u+1 o +1q’Bu=O (4.13)
- A ) 2°%F ¥ “2 ) z

These are the conditions of the minimum principle that remain to be

satisfied which leads to the following conclusion.

Lemma 4.1. Suppose the Pp and qp can be found such that (4.13) is

satisfied and such that for each switching instant :jn

of control, (4.12) is satisfied for the switching instants and final time

of each component

of the control computed by the intermediate point algorithm. Then the.

control computed from the intermediate point algorithm satisfies the

necessary conditions of the minimum principle and is therefore a candidate

for the optimal control.

From an engineering standpoint we may be satisfied if the control

ufn(t) requires a time considerably shorter than usn(t), since, as was
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discussed in the last chapter uso(t) should require a time O(yu) different

from the minimum time needed to steer x from X, to xF. Thus if with an

additional short interval of control added, x and z can both be steered

to their final values (xF,zF), the control if not optimal, may satisfy

our needs anyway. In this statement it has been assumed that usu(t)

requires approximately the same amount of time as uso(t) since xIn

should be O(p) from R

4.3 Example

| System (4.l4) represents a generator driving a pump which pumps

this system.
= s

? .
1 %,
1 2.

. il

3 i 3
: :zz

nominal depth ;2.

water into a reservoir.

0

k 0

P

0 0
ke e
Tm 1+8 148
-1/Te 1T

1,

-

: pump. The control u is the normalized armature voltage.

Water flows from this reservoir into a second
1 reservoir at a rate proportional to X, @ small change in water depth
around the nominal value ;1. Water also flows out of the second reservoir

at a rate proportional to Xy, @ small change in water depth around the

The reservoir depths Xy and Xy the angular velocity z, of the motor

shaft and the armature current z, are the state variables chosen to model

u (4.14)

-4

The parameter u is inversely dependent on the friction in the motor and




Substituting possible values into (4.14) yields

*1 -1.5 0
*2 i 1.5 -2
21 0 0
L 22_ ] 0 o

-
0 0
0 0

-4.54 ,091
100 -100

T r
"y
X
21,
=
z2 1

The initial state chosen for this example is

The problem is to steer the state of this system [x
initial state to the origin in minimum time.
a linear transformation is applied to (4.15).

~1.5, -2.0, -4.448 and -100.0952.

*10

%20

*10

220

- on

13
6
5

45
L 4

the matrix of eigenvectors is

and its inverse is

r

0 1
1 - .6127
0 -2.9848

0 -2.9803

0 33472
1 ‘1.2092

0 o 0331‘71

0 - .963x107°

1

.0152

-98.595

103, 530
J

.309x10°
«.112%10°
-.318x10°

-.965x10"

ﬁ———\________ﬁ
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0
0
o . (4.15)
0
00
-
(4.16)
. X X ]’ from the
L 23 4

3 ]

2

3

5 |

In order to accomplish this
The system eigenvalues are

From the values of these eigenvalues

(4.17)

. (4.18)




A normalization matrix is

+.02087 0
0 -.05684
T =
0 0 =
0 0
-

0
0
.007255

0

0
0
0

“e 00000964 .
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(4.19)

Applying the transformation (x/,z”) = PT(X’,(”)’ to (4.15) yields

&

7

=
5
*2

&
g&

L

o B .
X, -1.5 0 0 0
*2 0 -2.0 0 0
& i 0
A 0 0 0  -100.0952
T L J
and the corresponding transformed initial state
e e
10 -.229%
%20 : -2.2168
S0 .13455%10°
S0 .64924X10"
" A

-

-

‘1.5
-2
-4!‘.‘48

-100.0952

e

-

u  (4.20)

4.21)

After ten iterations of the intermediate point algorithm the

control "
-1 t € [0, 1.0058)
+1 t € [1.005, 1.5829)
s -1 t € [1,5829, 1.,7281)
L +1 t € [1.7281, 1.7350)

was found which steers the state to a final point

(4.22)
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- -
Xig [..7x078 ]
Lo -.9x1078
= -16 (4.23)
«.5X%
CBF 5X10
-14
-C“. L-.ZXIO ] .
This is equivalent to the final state
= - - -
-10
X 1.46X10
-10
XZF -5.1156Xx10
= -18 (4.26)
Zip 1.082X10
-15
YA -1.99x10 .
= 2F-< . -

This example demonstrates the use of a linear transformation in
conjunction with the intermediate point algorithm to find the time-

optimal control for a system not in the form of system (4.1).
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5. TIME-OPTIMAL CONTROL OF A CLASS OF
NONLINEAR SYSTEMS

5.1 Introduction and Problem Statement

In this chapter the problem treated is that of finding the control
*
u (t) which time-optimally steers the state (x7,z”/)/ of the nonlinear

system
x = f(x,t) + F(x,t)z + B, (x,t)u (5.1a)

pz = g(x,t) + G(x,t)z + B, (x,t)u (5.1b)

from an initial fixed point (xo’,zof)’ at time t., to a final fixed point

0
(xF',zF')’. Here x €R", z €R™, L >0 and u € R® is constrained

u €U = {u: \uil‘f 1, £ = 1,eae,r} . (5.2)

The vectors f(x,t) and g(x,t) and the matrices F{x,t), G(x,t), Bl(x,t)
and Bz(x,t) have bounded derivatives with respect to t and x. For piece-
wise constant controls G(t) € U with a finite number of discontinuities
and the corresponding trajectories ﬁ(t) and E(t), the inverse

G(i(t),t)-l exists. Also the homogeneous system
= G(x(t),t)w (5.3)

has w = 0 as a uniformly asymptotically stable equilibrium as discussed
in Section 2.5. £
The existence and normality of the time-optimal control of system

(5.1) is assumed.

The chapter is organized as follows. In Section 5.2 the necessary

*
conditions for the time-optimal control u (t) of (5.1) are stated. From




*
these conditions u (t) is shown to consist of two parts. The first part

is made of switchings in a '"slow'" time-scale while the second part is
made of switchings in a "fast'" time-scale. This is referred to as a two
time-scale property. The reduced order system is defined in Section 5.3.
From the time-optimal control of the reduced order system a near time-
optimal control is proposed and the sense in which it is near optimal

demonstrated. An example is presented in Section 5.4.

5.2 Necessary Conditions

In this section the necessary conditions of the minimum principle
[36] are applied to the time-optimal control of (5.1). The Hamiltonian

is

Hal+p’f+p’Fz+p’Bu+-tq’g+lq’Gz +-]—'q’B

L 7 24 (5.4)

1

where the costates p and q, which correspond to x and z respectively,

satisfy

D = = - /p = /
P £./p - (F2) /p - (Byu) ’P

i 1 1
~ L8073 G2) /q - 5 (BZU)x’q 5 (5.5a)
q=-Fp- %LG’q ] (5.5b)

Here the Jacobian of a vector is indicated by the subscript. The control

i which minimizes the Hamiltonian is
«Fee) = - senlB,/p + £ 8.7q] . (5.6)
1 B2

The normality of the time-optimal control implies that

1
] B,’p e B,7q = S(x,2,t,4) =0
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only at isolated times t, and not on a finite interval. Thus the

3

switchings of the 6ptimal control will be determined by the instants tj

at which one of the components ;s i=1,...,r of S satisfies
si(x,z,tj,uo =0.

The instants t, are referred to as the zeroes of S.

b
For the sake of simplicity let

A (x,z,8) = £ (x,0) + (F(x,t)2) / + (B, (x,0)u) 7,
Alz(x:zst) = gx(xvt)’ + (G(xst)z)x’ + (Bz<x’t)u)xl9 5.7)
Ay (x,8) = F(x,t),

- /
Azz(x,t) G(x,t)’ .
Substituting (5.7) into (5.5) yields

1
Gl L DL

Qe

(5.8)

1
== Sl G At

e

We wish to find approximate solutions for p and q to substitute into (5.6)

to reveal the two time-scale property. Therefore we apply the trans-

formation
E=0p
(5.9)
1 -1
M=3atdy), 4P
to (5.8) to yield
5""A0§'A12n
(5.10)

.- 1
ﬂ=M§-;A2T\




where

|
[
I -1
i Ao(x,z,t) = All - Ale22 A21 (5.11a)
i o= ul =1 =1
; M(xs2,8) = Ayy Ay Ay, Ay - Ay Adn
: b ek "y (5.11b)
} 22 2112722 “2 5
3
. and
-1
Az(x,z,t,u) = A22 + quz A21A12 o (5.11c)

Consider any candidate G(t) for the optimal control and the corresponding
trajectory ﬁ(t),z(t). Substituting G(t), ﬁ(t) and E(t) into Ao, A12’ M

and A

2 results in the time-varying system

€=- A ()€ - A, (t)N
8 = (5.12)

(R TOLHEE WU

and the solution to (5.12) is
t
g(t) = 87t 008 - [ 3,/(T, 004 ,(D(Mdr (5.13a)
e
t
NE) = 8,/ (t, )T + [ QZ’(T,t)ﬁ(T)§(T)dT (5.13b)
t
£

where §F and UF are the values of € and T at the final time tf and the

state transition matrices @0 and @2 satisfy

%E §y/(tgt) = - &o(c)@o/(cf,t) (5.14a)
and
%E 8,7 (te,t) = = Ay (0)8,7 (2t (5.14b)
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Since ﬁ(T) and €(T) are bounded for t € [to,tf], Lemma 2.6 implies that
- ’

M(e) = 8,7(cL, )N + O(W) (5.15)

Substituting (5.15) into (5.13a) yields

t
B(t) = §5/(t,t)8; - [ &) (T,0)A,,(ME,/ (e, DNAT
ks . (5.16)
+ 0(w)
from which, by Lemma 2.7, we find
8(E) = Bp(t,t) 8, + 0(W) . (5.17)

Rather than derive approximate solutions for p and q from (5.9), (5.17)
and (5.15) it is simpler to apply transformation (5.9) to (5.6) and

substitute (5.17) and (5.15) into the result to yield

o (e &= SGNEB;’QO’(t;,t)gp + B;’Qz'(t;,t)nF +ow] (5.18)

-1
= - / / /
where BO’ Bll B2 A22 A21 O, and Bz are

*
evaluated along the optimal trajectory and tf is the optimal final time.

/, the * denotes that B

Analysis of (5.18) yields the two time-scale property.

*
Lemma 5.1. The time-optimal control u (t) is composed of an initial

interval of switchings in a slow time-scale followed by an interval of

*
switchings in a fast time-scale. Furthermore u (t) satisfies
-SGN(BL 7 & 7(tr,t)E. + O(uw) + 0(e)] t € [t to=T)
0 0 “¢g F 0’ £

ut (L) = (5.19)
-SGN[B;’ §F + B;/ éu‘(cz,t)T\F +0(w] t € [c;-'r,::)

where @u(to,t) is the state transition matrix of a system which is

uniformly asymptotically stable and ¢ may be chosen arbitrarily small.
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Proof of Lemma 5.1. The proof proceeds as follows. First it is

shown that

sz(:’;,c) - @ur(:’f‘,:) +0(p) . (5.20)

Then based on (5.20) the two time-scale property is revealed.

Consider the homogeneous system

. -1
M = = (A, + HA,, Ay A )R (5.21)

with final state ﬂF at time t The solution to (5.21) is

f.
= /
h(t) Qz (tf,t)ﬂF . (5.22)
Since (5.3) is uniformly asymptotically stable the homogeneous system

by = Ay,(t)y = - GE(E),t)y (5.23)

with state transition matrix Qu/(tf’t)’ is uniformly asymptotically stable

in reverse time. In terms of @u, (5.22) may be approximated
h(t) = Qu'(tf,t)nF + uW(tf,t)T\F o (5.24)
Substituting (5.22) and (5.24) into (5.18) yields
* * * %* *
B - / /7 /7
u (t) SeN(B7 8,/ (t,, )5, + B, 3 (te,e) Ty + o] . (5.25)
For any €, there exists a u, and a T such that if p € (O,ub]

8 /(tg,e)| <& for € Cegotemtl o | (5.26)

Furthermore T = O(u) which implies

8y7(test) = I+ O(w) t € [tf-w,: s (5.27)




65

Equations (5.25), (5.26) and (5.27) thus imply (5.19). The initial or
slow control interval is [to,t;-T) and the final O(W) interval, called
the fast coatrol interval is [t:-T,t;]. Since T is O({), (5.19) implies
that the switchings in the slow control interval are primarily dependent
on B;’Qo/(tf,t)gF for p small enough. Similarly in the fast control

interval the switchings are primarily dependent on
* * *
’ / /
B, EF + 132 Qu(tf’t) T\F . (5.28)
Lemma 5.1 is proved.

One additional fact can be discerned from equation (5.19) for the
control. After the completion of the slow control interval the slow state
x will be within O(p) of Xp since T is O(w). This agrees with our
intuition since in a system in which some states can be steered much more
rapidly than others, it makes sense that the time-optimal control should
first concentrate on steering the slow states near to their final state
and then steer the fast states rapidly to their final states while also
steering the slow states the last small distance. Based on this under-
standing of (5.19) the near-optimal control will be proposed in the next

section.

5.3 Slow and Fast Control

The reduced order system is defined and the near-optimal control is

proposed in this section. Setting W to zero in (5.16) yields the reduced

order system
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= fo(;:',t) + Bo(E,t)E
= £(x,t) - Fx,t)6(,t) g, t) (5.29)

+ [B,G0) - FGR,06(078,& 0K -

The reduced order time-optimal problem for this system is that of finding

p— -
the control u (t) which steers the state x(t) of (5.29) from the initial

—re
point X, at time t. to the final point Xg in minimum time T .

0
The minimum principle provides the following necessary conditions

for the reduced problem: |

H=1+p%(x,t) + p/By(x,t)u (5.30) :
P=- £t /0 - Byx,0WLP, (5.31)

X X
(e = - senlBy/(x,0)p(0)] . (5.32)

Along an optimal trajectory ;*(t) system (5.31) is written

L]

P = - Ayt (5.33)

which has the solution
- - — -
- /
P = 9/(tet)pp - (5.34)

Substituting (5.34) into (5.32) yields

Tt) = - SONB /(X ,t)8. /(Teet)p. ] (5.35)
0 9 E F
—%
where tf is the optimal final time.
*
We consider the slow control problem of finding the control us(t)
which steers x of (5.1) from X, at time to to Xp in minimum time T: and

—t
show that u (t) is a near-optimal control for this problem.
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Lemma 5.2. Let i(t),;(t) be the trajectory corresponding to the

—% —%
application of u (t) to system (5.1) and x (t) be the optimal trajectory |

for the reduced order system. Then
- -
x(t) =x (t) + O(W) . (5.36)

Proof of Lemma 5.2. Let e(t) = x(t)-;(t). The trajectory i(t),%(t)

satisfies

Wore

= £(X,t) + F(X,t)z + Bl(i,:)E*
(5.37)

°
~ A

A ~ —*
2z = g(x,t) + G(x,t)z + Bz(x,t)u .

-
Let ci be the instants at which any of the components of u (t) switches.

Then on any interval [ti’ti+1)’ equation (2.38) implies that
~ A ~1 ~
z2(e) = & (g,e)[z; + GGx(t)),e) Tg(x(ry),t,)
~ -—fe ~ -1 Py
+ B, (x(t ) tu (£)] - G(x,t) g(%,t) (5.38)

- 6(R,8) B, (R, )0 (E) + O(W)

Thus on [ti’ti+1)
X = £,(X,t) + Bo(i,:)ﬁ* + 0(W)
(5.39)

+ F(x,t)ﬁu(t,ti)W(ti)

where

W(E) =z, + G(R(E),t) B (R(E),L)
(5.40)
+ Bz(i(ti) ,ti)?(:i) "

S i
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Let xa(t) be the point for all t satisfying the Taylor theorem
for
Py A — -— — -—)e
£ (x,t) + B (x,t)u = £ _(x,t) + B,(x,t)u
2 . g & (5.41)
p —
+ (g (x,(£),€) + By(x, (), E)u") e ,
then
. —
e = (£,(x (t),t) +By(x,(t),t)u ) e + O(W)
+ F(i,:)%(t,ci)wui) (5.42)
L a(t)e + o(w) + F(t)@u(t,ti)W(ti) ;
The solution to (5.42) is
e(t) = 3 (t,t,)e(ty) + O(W)
(5.43)
t ~
+ [ 2 (e, MF(ME (r,eW(E )dT
t
i
and thus by Lemma 2.2
e(t) = ée(:,:i)e(:i) + 0(p) . (5.44)

Since e(to) = 0, e(tl) = Q(w). If e(ti) = 0(y), then e(ti+1) = 0(p) by
(5.44) and thus since there are a finite number of ti

e(t) = 0(u) ¢ € [t,,te)
v &

and therefore

% —
x(t) = x (t) + O(w)

and Lemma 5.2 is proved.
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For the slow control of (5.1) the final value Zg is free and there-

fore = 0. Thus transformation (5.9) implies that
9

€& = P
EOOR (5.45)

Te = A22-1<‘:)A21(t2)P

where Azz-l and A21 are evaluated along the optimal trajectory. Sub-
stituting (5.45) into (5.25) yields

* * *

u'(t) = - SGN[B, 8,/ (te,t)py

(5.46)

* * =1 *
+ BZ'Qu’(tf,t)Azz (E A, (e )y, + 0¢w) ]

which implies that u:(t) also possesses the two time-scale property. On
an initial interval [to,t0+T:-T] the switchings are primarily dependent
on the term Bgféof(tz,t)pF. As W goes to zero the optimal trajectory
x:(t) corresponding to u:(t) converges to ;*(t) and u:(t) converges to
E*(t). Therefore Bg’ﬁof(t;,t)pF converges to BO/(;*,t)36/(zf,t)pF of
equation (5.35). The fast switchings of u:(t) dependent on B;IQu/(t:,t)

* %
takes place on the O(p) interval [Ts+to-T,Ts+t0].
i - *
Lemma 5.3. Let the zeroes of Bo’(x ,t)QO/(tf,t)pF of (5.32) be
* *
simple. Then there exists a p such that for p € (O,u ] the switching
* * &y —%
times of us(t) on [to,t0¥rs-¢] are O(y ) different from these of u (t).
*
Furthermore the minimum time Ts for the slow control problem satisfies
* =%
T, =T +0()

—
where T is the minimum time for the reduced order problem and a > 0 is

constant.
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Proof of Lemma 5.3. The fact that the zeroes of Bo’f;*,t)Ebl(E;,t)pF

are simple implies that the control sequence of
— —%
ar(e) = - seNlB /(& ,0)8/(Ep, t)pp
(5.47)

+0(p) +0()] ¢t € [to,c0+'r:-'r]

-

is, for p small enough, the same as that of u (t). Here the choice of ¢
*

is dependent on the reverse time exponential decay of @uf(tf,t) and the

difference
* * — - *
9 7 = ’
B2,/ (te,t)pp = By/(x , )8 (te,t) pp
and clearly satisfies

lim € =0 .
B0

The 0(e) and O(Y) terms in (5.47) shift the switching times by some
variations dependent on k. Since these variations go to zero as u — 0,
they are O(pF) dependent where a > 0.

Finally since a finite number of switchings are varying by O(ué)

and T = 0(W)
* =k
T, =T + o(p?)
and Lemma 5.3 is proved.

The point here is not the particular value of a but rather that for
*
w € (0,p ] it is possible, by varying the switchings of :*(t) and adding
some fast switchings to find the optimal control. This might be done

either by an iterative method such as the one presented here or by

switching sensitivities (22].
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From Lemmas 5.2 and 5.3 it is clear that :*(t) is a near-optimal
control for the slow control problem, in the sense that it steers x(t) to
within O(u) of Xn in near minimum time E*.

We now begin the task of finding a near optimal control E*(t) for
the time-optimal control of (x%27/) to (xF/,zF/)/. Suppose that E*(t)
is applied to (5.1); then z(E;) will be within some bounded region
surrounding Zpe Since z(E;) is some finite distance from Zg and z is
controlled in a fast C%? time scale it is possible to steer z from z(z:)
to o by some fast switchings of O(p) duration. To this end we define

the fast system
ME = gkt + G, ©)F + By, ©)F (5.48)

where ey is the fixed final point for x. System (5.48) is linear time-
varying and we consider the problem of finding the control u:(t) which
time-optimally steers z from z(E;) to Zpe Due to the presence of p in
(5.48) the time T; required for u:(t) is O(u). Suppose that G*(t) is
applied to (5.1) to drive x to O(y) from Xpe Applying u;(t) for an

additional O(p) time will leave x O(u) from Xpe

Lemma 5.4. The control

—% —
. u (t) t € [to,tf)
g () =4 _ (5.49)
u:(t) t € tf,E;+f:)

is near optimal in the sense that it steers (x42”7)’ from (xol,zof)/

—c * %* a
to O(p) from (xF/,zF/)/ in near minimum time T + Tf =T + 0(p).
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Proof of Lemma 5.4. It has already been shown that u*(t) steers X

to O(y) from Xp. The next step is to show that it steers z to O(W)

from zF.
O iha ntarval [F ik ]
£2-f" " f
x(t) = xF + O(p) . (5.50)

Let e(t) = z(t) - z(t). Then
Lad-%
= g(x,t) - g(xp,t) + le(x,t) - G(xF,t)]z (5.51)
+ [Bz(x,t) - Bz(xF,t)]G ]

By an analogous argument to that in the proof of Lemma 5.3 and (5.50) it
~ ~*
can be shown that e(t) is O(M). Since uf(t) steers z to zgs U (t) steers

z to O(p) from Zp.

*
f

for the slow control problem satisfies

= %* *
Finally T_ = O(p) and therefore T_ + Tf = Ts + O(uﬁ). The time Ts

£

T

* *
<
S—T

and thus

&

~% *
+To =T + o) .

This completes the proof of Lemma 5.4.

5.4 Example

This example illustrates the result of applying the near optimal

-
control u (t) to the control of the system




-

o 1 1
X = - sin x + > z1 + 2 z

2
uél =-z +u (5.52)

wz, = - 222 + 2u

where p = 0.1. Let the initial and final states be (™2, 0.7, -0.8) and

(0,0,0) respectively. Setting p = 0 yields the reduced order system

X=-sinx+u. (5.53)
The reduced time-optimal control
wit) ==1 ¢ € [0,1) (5.54)

steers x from T/2 to 0. When this control is applied to (5.52), (x,zl,zz)
is steered to (.0679, -1, -1)., This is acceptable if we are not
interested in steering z. For instance if z represents actuator dynamics
the final position of the actuator may not be important. But suppose we

are interested in steering z to zero. Then we find the control

+1 t € [1, 1.1098)
~%
uf(t) =

-1 t € [1.1098, 1.139)
which steers (z;,2,) from (-1, -1) to (0, 0). When T (t) followed by
%
Gf(t) is applied to (5.52) the state (x,zl,zz) is steered to (0.658, 0,00,
0,00). Thus x is steered to within 5% of its final state, and z is steered

to 0. The near-optimal control is calculated entirely on reduced order

systems.
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6. NONLINEAR EXAMPLES
6.1 Introduction

In this chapter two nonlinear examples are presented. One of these
examples does not fit into the form of system (5.1) and therefore the
theory developed in Chapter 5 is not directly applicable. However, due
to the uniform asymptotic stability of the homogeneous part of the fast
subsystems, both of these examples have the two time-scale property. The
purpose of this chapter is to demonstrate ways to treat particular
problems based on the two time-~scale property.

In each example the controls are calculated for reduced order time-
optimal problems. Then iterative schemes are applied to Falculate optimal
controls. The first example is a magnetic suspension system with both
state and control constraints. As a result of the form of the time-
optimal control for the reduced system, a singular arc in the time-optimal
control for the full order system is proposed. The second example is more
complicated and in order to find the time-optimal control for this system
a nested iterative scheme is developed.

In the discussion of each example an effort is made to show the
thinking used in the development of the results. The general approach is
always tn first find the time-optimal control for the reduced order
system. This time-optimal control steers the slow state x of the full
order system to a point which is O(y) from its final desired point. The
first iterative method is designed to perturb this control in such a way
that the resultant control steers x to its final desired final point. Then
the control which steers the state of the fast subsystem to its final

desired state in minimum time is found. This control steers the state z

i e G
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of the full order system to a point O(W) from its final desired point.
Once again an iterative method is applied to change this control so that
it steers z to its final state. Then the intermediate point algorithm
is applied to find the time-optimal control which steers (x%,z%)’ to its

final desired point.

6.2 Magnetic Suspension System

The system treated here is nonlinear in the state z. Thus this
system is not of the form of (5.1). From the two time-scale property it
is conjectured that the time-optimal trajectory has a singular arc. Also
a state constraint becomes a control constraint in the reduced problem.

The problem is to find the control u*(t) which time~optimally steers

the state of the system

X = le2

X

2 .
U 20(z) /x1 + 10 (6.1)

Lz =-Rz + 1

from an initial point (xlo,xzo,zo) to a final point (x 2F,zF) subject

i
to the constraints u < Umax and |z| < 1. Also it is assumed that

0.1 <%y =1 and |x2‘ < 1. System (6.1) is one possible model of a
magnetic suspension system consisting of an electro-magnet which is
suspending an iron ball beneath it. The states X and x, are the position
and velocity of the ball, z is the current through the magnet and u is the
voltage input. The parameters L and R represent the inductance and
resistance of the magnet.

In attempting to control such a system an engineering assumption that

wight be made is that the current z can be changed instantaneously from
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one value to another. This corresponds to setting L = 0 and thus L takes
the place of p in this system. The parameter L is set to zero. Then

2 ”
(z)° = v, constrained 0 €v <1, can be treated as control for the reduced

order system

X, = 10x f
e iy , (6.2) ;
Xy = - 20v/x1 + 10 .

* = =
The reduced problem is to find v (t) which steers (xl,xz) from the
initial point (xlo,xzo) to the final point (xlF,sz) in minimum time.

%*
The slow control problem for (6.1) is to find the control us(t)

which time-optimally steers (xl,xz) from (xlo,xzo) to (xlF’XZF) with the
final value of z free. This control is found in two steps. First, a
*
near optimal control is found based on v (t). Then this control is
* *
iteratively adjusted to us(t). Finally the time-optimal u (t) is found

via the intermediate point algorithm., For this system, the value Zp is

the amount of current which will hold the ball in the position Xp with

the velocity x,_ = 0. Thus xlF’XZF’zF is a nominal point around which

2F

a regulator can be designed.

The Hamiltonian for the reduced control problem is
H=1+ 10p1x2 - ZOsz/xl + 10p2 (6.3)

where ; and E are the adjoint variables corresponding to the states x
1 2 1

and ;2 and satisfy

: - =2
Py = = 20vp,/(x,)
1 ! (68)

Py = = 199 .
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By the minimum principle
0 if 2032/221 <0
*
v (t) = ool i (6.5)
1 if 20p2/x1 >0

and H = 0 along the optimal trajectory. It can be shown that the reduced

problem is normal and therefore no singular arc arises. Thus v = 0 or

v = 1. A phase plane study shows that the possible control sequences in
the region of interest are {1,03, {0,1}, {0} and {1}. The reduced system

time-optimal trajectory from (x ) = (0.3,0,0) to (x ) = (0.6,0.0)

10°*20 1 *oF

is plotted in Figure 6.1 and the corresponding time-optimal control is

0 t € [0, .0658)

vie) =
1 t € (.0658, .0920) .

*
The next step is to find the slow control us(t). Suppose that the

control sequence which drives (xl,xz) from (xlo,xzo) to (x ) is

17" *2F
{vl,vz}. For L sufficiently small a near optimal control is the following:

1. Apply u; =+ Umax to time-optimally steer z to z2 |

at t = tl.

2. Apply u, = R or O to hold z on 22 = v, until (xl,xz) hits

1

the switching curve for the reduced system at t =t

2I
3. Apply uy =+ Umax to time~optimally steer z to z2 =v,
at t = t3.
2 ‘
4. Apply 4, = R or O to hold on z" = L until Xy = X, at
t = th.
At t = ta, Xy = Xpp and Xy is O(L) from X5 at the position R

(%, reached). For smaller L the distance |x | is smaller. The near

1R X1F
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optimal phase plane trajectory for the points (xlo,xzo) = (0.3,0.0) and
(xlF’XZF) = (0.6,0.0) is plotted in Figure 6.2 for R=1 and L = .0S.
In Figure 6.3 the corresponding z trajectory is plotted versus time.
Note that for these values of R and L, X1 = 0.68.

The conjecture is that by varying ti, i=1,...,4, with the sequence
{ul,uz,ua,ua} the control u:(t) will be found. If this is true the time-
optimal trajectory will contain a singular arc as either u, or u, = 0 on

a finite interval. On this interval z is also zero. When u and zq = 0

the equation for xz(t) is
xz(t) = 10t + K (6.6)

where K is a constant. The minimum principle provides the necessary

conditions
2
H =1+ p,10x, - 20p,(2) /%, + 10p, - Rqz/L + qu/L = 0 (6.7)

where the adjoint variables satisfy

b, = - 200, (2% (x))’

p, = - 10p; (6.8)

q = 40zp,/x; + Rq/L

and

u<0 ifq>0

(6.9)
u>0 ifq <0,

Thus for u to be 0 on a finite interval, q must be 0 on that interval.

This implies
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q=0
=22 =0 (6.10)
i =>H=1+ p110x2 + lOp2 =0
and
= pl = (
pz = - 1091
q=0
=> p; = Kl’ P, = - 10K1t + K2 (6.11)
where Kl and K2 are constant. Equations (6.10) and (6.11) imply
) -1-10p2 o , 100K1t ; lOK2
23 10p, ~ 10K, = 10K K,
(6.12)
-1-101(2
= 10t +—ib—lz—— .
1
Thus if in (6.6)
-1-10K2
K= T (6.13)
1
the singular arc satisfies the necessary conditions of the minimum
principle.
{ The near optimal control steers (xl,xz) from (xlo,xzo) to (le,xzp).

There must be a point (le,XZF) such that a near optimal control based on
* e
v (t) steering (xl,xz) to this point would steer (xl,xz) to (xlF’xZF)'

An iterative method for %16 is as follows:

P
' 1. 1Initialize with x ©

- S T




83

: ¢ = (n) (n)
‘ 2. Find the near optimal control ug (t) to (le ’x2F)°
Let the position reached be le(n).
(atl) _  (n) (n) _
T e R X1p)

(n) <
4o If |xpp- 0 - x| £0.01, stop.

gl
5. Let n *~ n+l and go to step 2.
Experimentally @ = 0.6 provides convergence within fifteen iterationms.
In this way u:(t) is found. 1In Figure 6.4 the phase plane trajectory

*
corresponding to us(t) for (xlo,xzo) = (0.3,0.0) and (xlF’x2F> = (0.6,0.0)

is plotted and in Figure 6.5, the corresponding z versus time trajectory.

*
Suppose that us(c) may be found, as above, to steer (xl,xz) from

(xlo,xzo) to any intermediate point (xlI,x Then we may apply the

21)'

*
following intermediate point algorithm to find u (t) which steers

(xl,xz,z) from (xlo,xzo,zo) to (xlF,xZF,zF).

P 0) _ 0 _ =
1. Initialize with xlI = xlF’XZI XZF, n 0.
(n) (n) (n)
2._ Find ug (t) to steer (xl,xz) to (xlI Xpy ) in time
] p (@)
s

3. Find 2(1, ™).

in time T, ™,

(u)
Ts ) o X3F £

(n)
g e

6. 1f \xl(Ts(n) + Tf(u)) ' xlFl + |lxz("rs(n) '!' Tf(n)) - szl 5 €

E (n)
4. Find ug to steer Zy from z3(

(n)

(n) (n)
5. Find xl(Ts + Tf Y5 xz(Ts + T

where € is a predetermined allowable error, stop.

7. Integrate (6.1) in reverse time with uf(n) to find
(n+l) 5 (n+1) (n)
| 11 il y
' (n+l)
Wy et 17 %2p)

‘ 8. Let n - n+l and go to step 2.

That is, ug

(n+1)) to (z

steers (x..x.) from
L Z

After the algorithm converges a control has been found which steers

) in time Ts(n) + T (n). For the

(xl,xz,z) from (x ¢

10°%20°%0) 0 (%yps¥pp
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problem of steering from (0.3,0.0,.387) to (0.6,0.0,.548) with L = ,05

and R = 1, the intermediate point algorithm converges to drive (x

(n)

1°%2)
-2
to 10 © from (xlF’xlF)' The times required for this are Ts

Tf(n) = .002, This is proposed to be time-optimal as Tf(n) is 2% of

r @ ()

S

= .902,

*
and Ts is 7% larger than E* the time required for v (t). 1In

’

Figure 6.6 the XX, plus phase plane trajectory is plotted and in

Figure 6.7 the trajectory z versus t is plotted. For systems such as
—
(6.1) the smaller L the closer Ts(n) + Tf(n) is into T . Thus there
exists L0 such that for L € (O,LO) the control provided by the intermediate

point algorithm is optimal.

6.3 An Example of Nested Iteratives

The system treated in this example is

X, =X
1 2 2
. 1 (x5)
. Xy =3 (Zpx))e
g ! (6.14)
pzz = - 222 + 2x2 + 2u
where the control us is constrained
lul =1 (6.15)

and p is a small parameter greater than zero. The problem under con-
*
sideration is that of finding the control u (t) which time-optimally

steers the state (xl,xz,zl,zz) from a fixed initial point (xlo'xzo’zlo’zzo)

to the origin.
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Setting u to zero yields the reduced order system
X =x
: . - 2 (6.16)
X, = 5 ue .

The solution to the problem of finding the control ;f(c) which time-
optimally steers (;1,25) from (xlo,xzo) to the origin, in time ?*, is in

(37]. There it is shown that for (xlo,zzo) in the region G,

2
=(%,4)
20 ]

(x10’x20) CiGh= {(xlo,xzo): lxlo\ <1 +e (6.17)

the optimal control exists and for (xlo,xzo) not in the region G an
€-optimal control (36] exists. For the problems considered for (6.14)
and (6.16) it is assumed that (xlo,xzo) € G.

Since the final desired point is the origin, Xop = 0, the fast

subsystem is

uzl = - z1 + u

: (6.18)
u.Ez--222+2{I.
The near optimal control for system (6.14) is
ar(t) e €[0,T)
e Gy(t) e € [T, T +}) i

& -
where uf(t) steers (zl,zz) from (zl(T ),zz(f*)) to the origin in minimum

e
time T_. For the initial point (xlo,x

£ 20) = (1,1,-1,-1) and

20 %102

4 = .4, the near optimal control is
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/
-1 t € [0,315)
1 t € [3.15,4.80)
ace) = < (6.20)
-1 t € (4.80,5.24)
\ 1 t € (5.24,5.30)

which steers (xl,xz,zl,zz) of (6.14) to (-.29,-.25,0,0,-.2). The phase
plane trajectory of X, versus x, is plotted in Figure 6.8. The
corresponding trajectories z, versus t and z, versus t are plotted in
Figures 6.9 and 6.10. For W = .l and the same initial point the near

optimal control

~1 t € [0,3.15)
‘) 1 t € [3.15,4.79)
B < -1 t € (4.79,4.90) e
l 1 t € [4.90,4.93)

steers (xl,xz,zl,zz) to (-.06,-.07,0.0,~-.056) and thus as expected the
near optimal control steers the state to a point closer to the origin.

In order to improve on the near optimal control we make the con-
jecture that the optimal control may be found by perturbing the switching
times of u(t). This is done in two steps. Let u:(t) be the control
which time-optimally steers (xl,xz) of (6.14) from (xlo,xzo) to the
origin in time T: and let u;(t) be the control which time-optimally
steers (zl,zz) from (zl(T:),zz(T:)) to the origin in time T*.

The controls u:(t) and u:(t) are found by an iterative method which
is essentially the same as the one described in the magnetic suspension
example. Here this method will be described in terms of finding the

* *
control us(t). The fast control uf(t) is found analogously.
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There must be a point (le,xZG) such that the control :*(t) designed

to steer (xl,xz) from (xlo,xzo) to (le,xZG) will steer (xl,xz) to any
~k
desired point (xlr’xZF)' Thus u (t) for the final point (le,xZG) is in

*
fact us(C). Let (le’xZR) be the point to which ;*(t) steers (xl,xz) of

*
(6.14). The following is an iterative method for (le,xZG) and us(t).

© , ©
2G

1. Initialize with (le 33X (xlF,xZF).

2. Find the control ;(n)t which steers (;1;;2) to

(xlc(n),xzc(n)) in minimum time ?(n). Let the point

reached by (xl,xz) when ;(n)(t) is applied to (6.14)

(n) (n)
be (le Xy e

(n+l) (n)
3 X16 = X0
e XZG(n) i G(XZR

(n)
(n)

- &lxppt 7 - Xpp)s

*2¢ - Xgp)-
4, If ‘le(n) - xlF\ + ‘XZR(n) - XZFl'f 0.01, stop.
5. Let n <~ n+l and go to step 2.
After this method has converged ;(n)(c) should be u:(t). As in the
magnetic suspension the value Q = 0.6 provides convergence in less than
15 steps for the initial points which were treated experimentally.

In this manner an improved near optimal control is found

u:(t)

() = (6.22)

u:(t) .

For the initial condition (-1,2,-1,-1) considered above and w = 0.4,

(
-1 t € (0,3.06)
* 1 t € [3.06,5.00)
& (t) -{ (6.23)
-1 t € [5.00,5.45)
Ll t € [5.45,5.57)

T!"




95

and steers (xl,xz,zl,zz) to (.032,.076,0.0,.009). This is an improved
control over control (6.20) since it steers the state of (6.14) closer
to the origin.

The intermediate point algorithm can now be applied since it is
possible to find u:(t) to steer (xl,xz) to points (xlF’XZF) and u;(t) to
steer (zl,zz) to the origin. Thus, even though (6.14) is not block
diagonalized, controls may be found to steer the slow and fast states to
desired points from controls calculated for reduced order systems.

After six iterations of the intermediate point algorithm the control

(
=1 t € (0,3.105)
1 t € [3.105,5.046)
u® ) = ﬁ (6.26)
-1 t € [5.046,5.253)
L 1 t € [5.253,5.304)

steers (xl,xz,zl,zz) from the above initial point to (.0047,.037,-.3X10-7,

g | .0008) for w = 2. The intermediate point algorithm is applied in nested
iterations. That is, in each iteration of the algorithm these are
(n) (n) *
iterations for ug (t) and ug (t). For u (t), in Figure 6.11, the x

1

versus x, trajectory is plotted and in Figures 6.12 and 6.13, the z,

versus t and z, versus t trajectories are plotted.

2
For this example the intermediate point algorithm does not provide

i any particular improvement over the near optimal control E*(t). The

| control is calculated as the concatenation of a time-optimal control for

{ the reduced order system and a time-optimal control for the fast subsystem.

L The calculation of the time-optimal control for the reduced order system

3

requires Runga Kutta integration for the switching times and therefore,

since the intermediate point algorithm requires six iterations, it
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requires six times as much integration. With this integration the slow

99

control cannot be calculated to steer the x states to much closer than
10-2 of the final point. For the same initial state and u = 0.2, the

X) =X, trajectory corresponding to

r
-1 t € [0,3.099)
1 t € [3.099,4.898)
& () =ﬁ (6.25)
-1 t € [4.898,5.123)
1 t € [5.123,5.183)
\

is plotted in Figure 6.14. The final error is approximately the same as
E that in Figure 6.11. The trajectory in Figure 6.11 is apt to be closer
E' to the shape ofrthe optimal ®,-X, trajectory. However G*(t) requires
less time and is therefore a better control if our criterion is that of
steering the state close to the final point. This is a case where the
optimal control is not necessarily the best control to use. This is
: | particularly true since the models for real systems are not perfectly
accurate anyway.
Thus by using the two time-scale property and the near optimal
controls, iterative methods can be developed in order to steer the state

of a full order system using controls calculated from reduced order

systems.
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7. CONCLUSION
In this thesis we first developed stability bounds for p in the
linear time-varying system
x = A, (E)x + A ,(t)z + B, (t)u e

pz = Ay (E)x + A, (t)z + By(t)u .

That is, for p within these bounds (under approximate assumptions on
(7.1)) the uniform asymptotic stability of the full order system and fast
subsystem are guaranteed. Then the problem of steering the state of
(7.1) from a fixed initial point to a fixed final point in minimum time
was treated. The two time-scale property for this problem was revealed
by expanding the necessary conditions of the minimum principle in the
singular perturbation parameter p. In a similar manner the two time-

scale property of the time-optimal control of

x = f(x,t) + F(x,t)z + B, (x,t)u
(7.2)

pz = g(x,t) + G(x,t)z + Bz(x,t)u
was revealed. This property implies that the time-optimal control has
switchings in a slow time-scale on an initial interval and then switchings
in a fast time-scale on the final interval.

On the basis of the two time-scale property a near time-optimal
control was developed for (7.1) and (7.2). These near optimal controls
were applied to the two nonlinear examples and some iterative methods were
developed to improve the near-optimal control.

Thus the main results were the development of bounds for u in (7.1),

the revelation of the two time-scale property for (7.1) and (7.2), the

o el

akatis
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development of near optimal controls and the calculation of controls for
some nonlinear examples.

There are several possible directions for future research. The
classes of singularly perturbed systems which possess the two time-scale
property might be extended. The solution of control problems for
singularly perturbed systems with state constraints requires further
study. Such a study would have as its purpose the discovery of properties
of constrained control prcblems on the basis of the nature of the solution
for near optimal controls calculated for reduced order systems. An
example of this is in the magnetic suspension system presented in the
last section in which a singular arc is proposed based on the time-optimal
control of the reduced order system. For linear time-invariant singularly
perturbed systems it has been shown (29] that the time-optimal feedback
control for the full order system. This result could be extended to
linear time-varying and some classes of nonlinear systems. Finally,
research could be made in order to develop iterative methods designed to
take advantage of the time-scale decomposition which is characteristic of

the solution to other optimal control problems for singularly perturbed

systems.
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