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The problem of finding the time-optimal control of the systems

A11(t)x + A12(t)z + B1(t)u

= A~~ (t)z + A22 (t)z + B2(t)u

and

— f(x ,t) + F(x,t)z + B1(x,t)u

= g(x ,t) + G(x ,t)z +

is treated where z E ~n, ~ E Rm, ~~ > 0 is a small positive parameter and

~ € R’~ is constrained. The time-optimal control of these systems is shown

to possess a two time-scale property when the “fast” state z is stable.

This property is that the optimal control is composed of a con trol in a

slow time-scale followed by a control time in a fast time-scale. The

“slow” control is primarily concerned with steering the “slow” state x.

Based on the two time-scale property a near optimal control is presented

which can be calculated on reduced order time-optimal control problems of

order rt and m . Some new stability bound results and some examples

illustrating the near optimal control are presented .
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1. INTRODUCTION

1.1 Problem Descript ion

Control problems for singularly perturbed systems with unconstrained

control have been given considerable attention and major results have been

obtained Li]. For these problems the concept of time scale decomposition

has been developed providing a separation of slow and fast dynamics and

a reduction in problem order.

More recently, results [2-4] have been obtained for the time-optimal

control of linear time-invariant singularly perturbed systems. For these

problems, time scale decompos ition again implies a se paration of slow and

fast dynamics and a reduction of problem order. Due to ~he control

constraint invariably present in time-optimal problems , the control is

characterized by a slow control , primarily dependent on slow dynamics ,

followed by a fast control primarily dependent on fast dynamics. This is

referred to as the two time-scale property . The implication of this

property is that the time-optimal control of systems with slow and fast

states should first concentrate on steering the slow states near to their

desired final state. Then the control should concentrate on rapidly

steering the fast states to their desired final state while steering the

slow states the remaining small distance to their final state.

The time-optimal problem treated here is that of finding the control

which steers the slow and fast states of a singularly perturbed system

from a fixed initial point to a fixed final poi:it in minimum time. A

major concern of this thesis is the extension of the classes of systems,

for which the two time-scale property of the time-optimal control of

singularly perturbed systems has been revealed , to include linear time-

varying systems and a class of nonlinear systems . Thi~ is done by taking

Ag  ss~ .~~~~~~~~. .~~~~~ _ , .
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expansions in the singular perturbation parameter p., of the necessary

conditions provided by the minimum principle. Once the two time-scale

pro perty is revealed , two systems of reduced order are defined . These

systems are referred to as the reduced order system, or slow subsystem,

and the fast subsystem. It is coinputationally simpler to solve control

problems for these systems due to the order reduction and the removal of

the full order system’s stiffness associated with the singular perturbation

parameter p.. The purpose in revealing the two time-scale property is to

make it possible to demonstrate that a near time-optimal control can be

constructed , for singularly perturbed linear time-varying systems and a

class of nonlinear systems, by concatenating a time-optimal control for

the reduced order system and a time-optimal control for the fast sub-

system.

One method often used in improving the near-optimal controls which

are developed for singularly perturbed systems is asymptotic expansions

in the singular perturbation parameter p.. In this thesis another method

is presented for time-optimal problems. This method is called the inter-

mediate point algorithm and was originally developed [5,6] for the time-

optimal control of linear time-invariant systems. Originally the

algor ithm was designed for singularly perturbed systems which are bl ock

diagonalized. Since it is often difficult to block diagonalize nonlinear

systems, the intermediate point algorithm is altered for the treatment of

some nonlinear examples.

This thesis also contains some new stability results for linear time-

varying singularly perturbed systems. Previously [7,8], it was shown via

Liapunov functions that for ~ small enough , the stability of two subsystems

is sufficient for the stability of a full order system. The main thrust

~

..— - ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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of the results presented here is the discovery of upper bounds for the

singular perturbation parameter p. such that for p. smaller than these

bounds the systems under considera tion are unifor mly asymptotically

stable.

1.2 Research in Time-Optimal Control

According to Fel’dbaum one of the earliest theoretical papers on

time-optimal control was published in 1949 [9]. In [10] Fel’dbauni

presents the phase plane approach to time-optimal control. It appears to

be in response to the difficulties encountered in finding necessary

conditions for the optimality of constrained control problems, such as

the time-optimal control problem, that the maximum principle was developed

by Pontryagon, et al. [11]. In [12] Boltyanskii has produced a highly

readable book in which a proof of the maximum principle is given in terms

A of the time-optimal problem. From this proof he generalizes to treat

other problems. Thus one might say that time-optimal control can be

looked at as being at the base of the maximum principle.

At the same time as the above work was going on, Neustadt, Lasalle

and Hermes was treating time-optimal problems in the United States. In

1952 Bushaw [39] for some simple systems demonstrated that a bang-bang

control was time—optimal. In 1959 Lasalle [13] presented the proof of

the bang-bang principle which in essence states that for linear time-

varying systems if there exists a time-optimal control, there exists a

bang-bang time-optimal control.. A bang-bang control is one which utilizes

all the control available by onl y tak ing val ues on the edge of the

control constraint. This and other results are presented in [14].

- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ——-‘a - -
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Neustadt and Eaton developed an iterative method for determining the

initial values of the costates. Neustadt ’s work treats continuous systems

and Eaton considered discretized systems [12]. Plant [15] later treated

a number of iterative methods which may be applied to time-optimal control

problems.

A number of papers have been publ ished which consider specific

problems or systems [16,17 , 1.8 , 19]. It is interesting to note that in

[18] the time-optimal control for a triple integrator is calculated . This

control law was implemented in the lunar module of an Apollo spacecraft

and performed very well. In [20] the sensitivities in cost and position

• to small changes in the switching times of bang-bang controls are derived.

Two papers which consider computational techniques for finding time—

optimal controls are of interest [21,22]. The method treated in [22] is

essentially a switching time sensitivity method. Beginning with a guess

for the time—optimal control a successive approximation for changes in

switching times is set up such that the error in reaching the final point

is decreased . In [21], a hill climbing method is applied in nested

iterations to find time-optimal controls.

1.3 Singular Perturbation Results
a

The singular perturbation approach to d i f ferent ia l  equations has been

used for some time. A long list of such references is contained in [23].

More recently singularly perturbed optimal control problems have been

treated and a survey of major results is contained in Li]. In this thesis

two major areas of singular perturbation work have been touched on. The

first area is covered in Chapter 2 and deals with the uniform asymptotic

stability of singularly perturbed linear time-varying systems 7,8,24 ,25 ,

26 ,27].

-— .~~~. .-~~~~
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The rest of the thesis which at times relies on the results con-

tained in Chapter 2 deals with the development of decomposed time-opttmal

control for singularly perturbed systems. As mentioned earlier, the

initial work for the time-optimal control of singularly per turbed system

is contained in [2,3,4]. In [5,6] an iterative method which is based on

the theory in [2,3,4] is developed. This metI~od computes time-optimal

controls for full order systems from the solutions to reduced order time-

optimal control problems. It is called the intermediate point algor ithm

in this thesis and is described in Chapter 4.

A recent paper [28] treats the problem of finding the time-optimal

control of singularly perturbed time-varying systems which are nonlinear

in the slow state and linear in the fast state and control. In [29] the

feedback time-optimal control of the reduced order system of a linear

time-invariant singularly perturbed system is treated . There, it is

shown that this control steers the slow state to within a compac t subset

of the origin (the final desired point) and the fast state to some point

which is a finite distance from the origin. Two results for related

problems are [30,31] where the time-optimal controls of systems with

regular perturbations are treated.

1.4 Chapter Review

Chapter 2 might more properly be called PLC 1.iminaries. It contains

the derivation of bounds for singularly perturbed systems. The stability

of the fast subsystem takes on added importance in the study of time-

optimal control. It is shown in Chapter 3 that the stability of the fast

subsystem is a necessary condition for the two time-scale property and

therefore these bounds guarantee this property. In the next section of

S

- - -- — - .~—--
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Chapter 2 an example of the application of these bounds is presented

followed by the discussion of a stability assumption for a class of non-

linear s ingularly per turb ed systems . This assumption is later used in

the development of the two time-scale property in Chapter 5. Then the

chapter is ended with a presentation of a block diagonalization trans-

formation (used in Chapter 3) and some lem~as concerning the expans ion

• of two co on integrals via integration by parts.

Chapter 3 is first concerned with revealing the two time-scale

property of time-optimal control for linear time-varying singularly

perturbed systems . Then a near optimal control is defined based on this

property.

In Chapter 4 the intermediate point al gorithm is defined and dis-

cussed . Following this an example of its app lication is presented .

Chapter 5 begins by showing that a class of nonlinear systems

• possesses the two time-scale property of time-optimal control. Then a

near optimal control for these systems is proposed and its near optimality

proved.

Nonlinear examp les are presented in Chapter 6. One of these examples

is not within the classes of systems treated earlier in the thesis . How-

ever, based on the intuition gained during the earlier work, a near-

optimal control iz tound for these systems and the intermediate point

algorithm is applied in revised form to improve on the near optimal

control.

• Finally, Chapter 7 contains the conclusions and possible directions

of future research.

— .. -A — ~~~~~~~~~~~~~~~~~~~~~~~~~
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1.5 Notation

Vectors and scalars are generally re prese nted by lower case letters

and matrices by upper case letters. The derivative with respect to time

of a vector x or a matrix A is denoted by ~ or A. The transpose of a

matrix A is denoted by A’. The norm of a matrix A is written ~~~ The

norm used here is

= (E Q~~2)l/2

1 where the C.~~ are the elements of the matrix A. For the norm of a scalar

• . 
this reduces to the absolute value. A set U composed of objects u

charac terized by some property P is defined by

U = [u:u has the property P)

• Throughout this thesis a vector f (x ,t) is written as f in cases where no

confusion will result from dropping the dependence on x and t .

~~~.iL~
I
_ •1 
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2. STAZILITY PROPERTIES

2.1 Introduction

In this chapter some bounds on p. are found which guarantee the

uniform asymptotic stability of

A 

= A11(t) x + A12 (t)z + B1(t)u (2.la)

= A21 (t)x + A22 (t)z + B
2(t)u (2.lb)

where x E R~, z E R
m
, u E R

r and p. is greater than zero. The following

assumptions are made :

• (i) The matrices A
i~
(t)

~ 
i,j = 1,2, ar e bounded and have

• bounded first derivatives for all t .

(ii) The eigenvalues X
i(t) of A22 (t) sa tisfy

Re(X i( t ) )  < - ~y’ < 0 (2.2)

for all t where y is a constant.

(iii) The reduced system

(A11 (t) — A12 (t)A 22~~ (t)A 21(t))w 
(2.3)

~ A0
(t)w

has w 0 as the uniformly asymptotically stabl e

equilibrium.

• In Lemmas 2.2 and 2.3 under assumptions (i) and (ii), a bound p.0 
is

found such that for p. E (0,p .0) the equilibrium y = 0 of the fast subsystem

A22(t)y (2.4)

- •  •~~~~~ ~•~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-~~~-‘-.-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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is uniforml y asymptotically stable. Then in Lemma 2.4, under assump tions

• (i), (ii) and (iii), a bound p.1 is found such that for p. E (0,p .1
) the

equilibr ium, u 0, x 0 and z = 0 of the full order system (2.1) is

uniformly asymptotically stable. Under (i), (ii) and (iii) it has been

known for some time [7,8] that (2.1) is uniformly asymptotically stable

• for p. small enough. In [24] it is shown that under (i) and (ii), (2.4)

is uniformly asymptotically stable. The new results here are the bounds

p.0 
and p..~.

After these stability lemmas have been stated and proved, a

stability assumption concerning the nonlinear system

• = f(x ,t) + F (x,t)z + B1(x,t)u (2.5a)

= g(x ,t) + G(x,t)z + B2(x,t) u (2.5b)

is presented and discussed in preparation for Chapter 5 where the time-

optimal control of (2.5) is treated.

Finall y a diagonalization transformation and two lemmas are pre-

sented. In these lemmas expansions in p. are presented for two integrals

which appear often in the development in this thesis.

The stability let as for systems (2.1) and (2.4) are presented in

Section 2.2 and an example illustrating the use of these le=nas is pre-

sented in Section 2.3. Section 2.4 contains the discussion of a stability

assumption for system (2.5). Section 2.5 contains the diagonalization

transformation and in Section 2.6 expansions in p. are derived for two

integrals.
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2.2 The Stability of Linear Time-Varying Systems

• In the presentation of this section we will need the well-known

lemma of Gronwall.

Lemma 2.1 (Gronwall’s Leunna [32]). Let X(t) be a real continuous

function and Y(t)  a non-negative continuous function on the interval

[t 0, t 1
]. If a continuous function y(t) has the property that

t

y(t) < X(t) + j ’ Y(s)y(s)ds
to

for t
0 

< t < t1, then on the same interval

t t

y(t) < X(t) + J’ X( s)Y ( s)exp( ~ y( t )dt )ds
to

The proof of this lemma is contained in [32].

In the next lenrna a bound ~ on p. is found to guarantee that the

equilibrium y = 0 of system (2.4) is uniformly asymptotically stable under

assumptions (i) and (ii). Assumption (i) implies

~A22 (t) - A22 (t 0) <
~~(t-t0) 

(2.6)

where ~ is a cons tan t equal to the maximum of 1A22 (t) for all t by the

mean value theorem. Also for t > to there exists a K such that

it—to t-to
A22 (t

0)I 
-

~~~

e <Ke (2.7)

when (ii) is satisfied [38].

_______ • 
• .

• . • - ~~ ~~••~~~ _~~•

•

~• ~~~~•_• . • •• • •.•~~~



gi 
~~~~~~~~~~~~ ~~~~~~~~~~~~ • .~~~

._____

11

Let 122(t,t0) be the state transition matrix of (2.4) and define

cp(t ,t0)

t- toA (t )
ç(t,t0

) ~~~ ~22(t,t0) 
- e 22 0 p. (2.8)

Lemma 2.2. Let (i) and (ii) be satisfied and for any a. E (0 ,?) ,

let ~ = a.2/~K. Then for p. E (O,~i), cp (t,t0) satisf ies

cp (t0,t0) = 0 (2.9)

and

t-tol

~cp(t,t0) < 2  
2 ~

2a e ~ 1 (2.10)
e (a. -p .K~ )

where ~~ = - a . >  0.

Proof of Lemma 2.2. The definition of cp(t,t0
) implies (2.9) and

• (2.11),

ç(t,t0) 
A22 (t) p(t,t0) + 

A22(t) - A22 (t0) e
A22 (t0) 

(tt o)
, (2.11)

Apply ing the var iation of cons tants formula to (2.11) we obtain

1•- t

~ A t ) ~~~~~~~ A ( t ) 0

~(t,t0
) e 22 0 p. (A 22(1) - A22(t0))e 22 0 p. dT

to
(2.12)

t A ( t ) 
0

+~ J’ cp(t,r) (A22(1) 
- A22 (t0))e 22 0 p. 

dT

to

Let Y a. + C , mult iply (2 .12) through by e and let 

-
- ..-•• .-

~~~~
- • - • - - -•-. - - - 
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Tt(t,t0
) e ~(t,t0)

to yield

11(t,t0) 
= e ) e 2 2 0L i

A22 (t0) (  —

~~

X (A22 (1) - A22(t0))e 
~ 1d’r

t ~~~~~~ 
A (t ) 0

~ 
p. I(A22(1) 

- A22(t0))e 
22 0 p. d r

• to

We next construct the successive 
approximation

= 

~ 

e L )  e
A22 (t O) 

~~~~
)

A
X (A22 (~ ) - A22(t0))e 

22(t0)~—~~~ d~
(2.13)

•r- t
t _ _ _

+~~
j
~ 

~~~~~~~~~ 
p.

1•
~ to

• X (A 22(~ ) - A22(t0))e 2 2 0  ~ dT

with initial guess T~
0
~ (t,t0) 

= 0. Substituting (2.6) and (2.7) into

(2.13) and integrating for T~~~~(t,t0) 
we obtain

<~~~~~~~ ~~~~~~~~ ~fl2 
< 2
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for all t,t~, t > to. Taking the difference between two successive

terms for T~ we ob tain

- ~
(k) ( t t )

1! (~~
(k) (t T)

to
r-t

X e (A22 (1) - A22(t0))e 
d.r

Substituting in (2.6) and (2.7) yields

- ~
(k)

(tt) I
- (2.14)

.~S tTI~~(t~~) 
- ~

(k_l)
(t,l.)~~K ( ..t0) e p.

to

Suppose for k < p

- ~
(k

~
l) (t T ) 1 < C~~~

where C~~~ are constants . Then by (2.14)

l~
(k+l)(tt) - 

~~~~~t,t0)1 
<

~~~~~ 
c~~

for all t,t0 
and t > to. Since for k I

- •fl
(k_l)

(t,.r)I < 2 
a.2:2
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we have by induction

~~
(k+l)(tt) - ~

(k) ( t t )  < 2  
f

~~~~

)

k 

~~~

Define p = ~~~~~~~ Sinc e

- 
~~
°
~(t,t0)I 

~ ~~~~~~~ 

~~~t , t
0

) -

< 2(pk 1 ÷. . . + p+ 1 )  ~~~~~~~~~

— 2 ~~~ ____

1-p a.2e2

then for p < 1 or p. < a.2/~K

= 

k~~~~~~~~~~~~~~
0 

-

2 ~~~~ 
— 2  p.K

2
e

— 1-p a.
2
e
2 

— 

e
2(a2—p .~K)

Thus for p. < c.2/~K the successive approximation (2.13) converges to a

solution which satisfies

1fl (t,t0)L~~
2 2 2e (a. - p.$K)

(t_t
o)

Now e ~~ 
~p(t,t0

) = T~(t,t0
) and therefore

t— t

~ 2 2  e . (2.15)
e (o. -p .~K)

__________ ________________ ~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .
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This completes the proof of Lemma 2.2.

This lemma implies that for p. € (O ,~ ) the f ast subsystem (2.4) is

unifo rmly asymptotical ly stable for any a E (0,?) where -? is the constant

upper bound on the real parts of the eigenvalues of A22(t). A consequence

of the proof of this lemma is equation (2.10) which provides a bound on

the error incurred in approximating the state transition matrix ~22 (t,t0)

of (2.4) by the transition matrix

e
A22 (t0) 

0

of the time-invariant system

p.y = A22 (t0)y . (2.16)

As can be seen this error is O(~) and exponentially decaying with an

O(p.) time constant.

Lemma 2.3. Let assumptions (i) and (ii) be satisfied and set

p.0 ?~/~K. Then for p. € (O ,p~) system (2.4) is uniformly asymptotically

stable.

Proof of Lemma 2.3. Define ?
2
/~K and a = ~~ /~ 1K + y J 2  where

p. E (0 ,p .0
). Then C = V - a >  0 and for p. € (0,p~) equation (2.15) implies

that (2.4) is uniformly asymptotically stable since the definition of a.

implies that a.
2 

- pK~ is never equal to zero. The proof is finished.

In Lemma 2.4 it is assumed that (iii) is satisfied and the fast sub-

system (2.4) is uniformly asymptotically stable. Under these assumptions

the bound p.
1 

is found such that for p. E (O ,p~) the equilibrium u 0,

x 0 and z 0 of (2.1) is uniformly asymptotically stable. Then in

• • • J

~

-

~

==•

~ 

~~~~~~~ • • •~~~~~~~~~ •~~~. -



• • ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Lemma 2.5 the bounds of Lemmas 2.3 and 2.4 are combined to find the

bound such that under (i), (ii) and (iii) and for p. E (O,p .*) the

above equilibrium is uniformly asymptotically stable.

In order to simplify the statement and proof of the lemma, the

transformed system

x = A
0

(t)x + A12(t~ 1)
(2.17)

p.11 p.(L(t) + L(t)A0(t))x + A22 (t)T1 +

is treated which is the result of applying the transformation

• 11 = z + A22 (t)~~A21(t)x ~ z + L( t)x (2.18)

to (2.1) with u set equal to zero. Here A
0 is as defined in (2.3).

Clearly if (2.17) is uniformly asymptotically then the equilibrium u = 0,

x = 0 and z = 0 of (2.1) is uniformly asymptotically stable.

Lemma 2.4. Let (2.3) and (2.4) be uniformly asymptotically stable

systems so that their state transition matrices satisfy (2.19) and (2.20)

respectively

I~0 (t ,t0) I < K1e (2.19)

~ to, t > t ot— t

I~ 22 (t,t0) < K2e 
2 p. 

. (2.20)

If cons tants H1, H2 and H
3 
exist such that for all t

< M 1, ~L( t)A 12(t) 5 N2,

L( t) ~~
- L ( t ) A 0 (t)  < H3 , (2.21)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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then for all p. € (0 ,p1
), where

= 
a~K~M2 ÷ K1

M
1
K2
M
3

the equilibrium u = 0, x = 0 and z = 0 of (2.1) is uniformly asymptotically

stable.

Proof of Lemma 2.4. Applying the variation-of-constants formula to

(2.17) yields .

x(t ) = ~0 (t ,t0)x3 + r
• to

11(t) = ~22 (t,t0~~0 + ~
to

A 
- +5 ~22 (t , T) (L( T) + L ( ~ )A

0
(T))x(T)dT

‘where

= z
0 

+ A2~

The bounds of equations (2.19), (2.20) and (2.21) imply

-C (t-t  ) t -a (t-’r)Ix(t) < K
1
e ~ ~ 1x 0 I + J’ K1

e ~ H1 ~
T~( -T) dT (2.22)

to

4

~ LI 
_ _ _ _ _

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— —-— ————
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-a
I 11(t )~ < K

2
e 2 p. I 11~I +J’ K2e 

2 p. M2 I~fl(T)Id’r

o (2.23)
t -~~(~~1)

+ S K
2
e 2 p. N Ix (~

) Id~
t
0

In this proof we apply Gronwall ’s Lemma to (2.23) and then to (2.22) to

derive an upper bound such that for p. € 
~~~~~~ 

the absolute values

• I x (t and 111(t) are bounded by a decreasing exponential. Letting

• Ct/ p.
w( t) e 2 111(t) in equation (2.23) yields

C t / p .  t

w(t) <K2e 
2 0 

~
11o I + R~e 

2 
M
3
1x(’r) Id~

+ S K
2
N2 

T)d~to

Apply ing Gronwall ’ s Lemma and integrating, we obtain

a t ip . K H (t-t )
w ( t ) < K 2e 2 0  

~110 Ie 2 2  0

t K M (t- r) a
+ $ e 

2 2 
K2e 

2 
N3 Ix (~

) ~di
to

which yields

—C
3

( t — t
0

) t — C
3

( t — T)
111(t) 1 < K2

e + 5 K
2
M
3
e x(r) 1d1 (2.24)

to

where ~3 

~

2
/p. - K2M2

. In the following we will need > 0.

• 
_ _  

.•~~~
~—
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Substituting (2.24) into (2.22) yields

• —a 1(t-t 0) -a
1(t- r) —a (r- t )

Ix t) < K 1e 1x 0 I + 5 K1e M1K2 111o le ~ 0

to

t a (t.. r) t —a ( t -s)
+ $ K1e M1(J’ K

2
N
3
e ~ tx(s ) Ids dT

to to

which implies

I K1N1K2 I11O 1I -a
1
(t-t

0
) K

1
N1K2 1110 1 -a3 (t-t0)

Ix (t ) I .c - e + e

L 3 1  J 3 1

K N K M ~ -a (t-’r)
+ $ e k(ild~r.1 t0 

-

a t
Let y( t) = e ~ ~x ( t ) I ,  ap p ly Gronwall ’ s Letmna and integrate to

obtain

K1N1K2 1T10 1 J . C
1 

-c7
3

(t-t
0

)
lx (t ) I ~ a3-a~ K1M1K2M3 

e

+ [Ki Ixo l - 
K1M1K2 I11O I] 

(1 +~~)e 1 0

K1N1K2M2

+ 
~~~~~~

Cl 
- 

~~ 
- 
KlMiK2 l~o i~ 

( al

where

K1M1K2N3
Cl
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Thus for (2.17) to be uniformly asymptotically stable we need in-

equalities (2.25) and (2.26) to be satisfied,

0~
cr
3
=~~

a
~~~K2N2

>O  (2.25)

K1M1K N
a3 — ~~

2 3 > 0 .  (2.26)
1

Let

— ~ia2
- 

+ K1M1K2M3

If p. € (0,p .]) ,  inequalities (2.25) and (2.26) are satisfied and therefore

(2.17) is uniformly asymptotically stable which implies that the

equilibrium u = 0, x = 0 and z = 0 as the full order system (2.1) is

uniformly asymptotically stable. Lemma 2.4 is proved.

The corollary follows directly from Lemmas 2.3 and 2.4.

*
• Corollary 2.5. Let p. = min(u.0,p.1

). Assumptions (i), (ii) and

(iii) guarantee that for p. € (Q,p.*) ,  the equilibrium u = 0, x = 0 and

z = 0 of (2.1) is unifor :~ly asymptotically stable.

2.3 Example

The example illustrates the calculation of the stability bounds for

p. derived in the last section for the system

f. . - ~~~ —• — - ______________________________L ‘. 
-— — — - — — —-

~~
• - •

--
~~~~

-• •-



• 21

-4 + cos t 1 o 1 x

= 1 -l + 1.1 cos 2t 1 - 1.1 sin t cos t

.22 0 —l = 1.1 sin t cos t — l + 1.1 sin
2
t ~

-

(2.27)

• The reduced system is

= (—3.474 + cos t - 1.222 sin 2t)x (2.28)

and the fast subsystem is

1-i + 1.1 cos 2t 1 — 1.1 sin t cos ti
• p.

~~
= I  2 1 1 1 .  (2.29)

L~~ 
— 1.1 sin t cos t —l + 1.1 sin t J

• When p. = 1 an unstable fundamental solution of (2.29) is

.lt —t• e cos t e sin t
• L,(t,O) =

.lt . -t
—e s~.n t e cos t

even though the eigertvalues of A22 (t)  have real parts = -0.45 f o r  al l

t [33, p. 147]. Since system (2.27) satisfies (i) and (ii) and system

(2.28) is uniformly asymptotically stable , we know that for p. sufficiently

small, both systems (2.29) and (2.27) are uniformly asymptotically stable.

Fixing the coefficients of the fast subsystem at any t = t0, we

obtain the linear time-invariant system

. 1-1 + 1.1 cos
2
t
0 

i + 1.1 sin t cos t ~
(2.30)

L— i - 1.1 sin t 0 cos — l + 1.1 sin2t0 J



- -• -
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The state transition matrix for (2.30) is

e
A22 (t0) ~

e
_
.451[

11 0 11 0 a.12(t 0)sin( .835i) 1
a.21(t 0)sin( .835 T) a.22 (t 0)cos(.835 T— ô22 (t0))J

t- t
o• where ~r = p.

a11(t0) = (1.377 - 1.617 sin2t
0 + 1.734 sin

4
t
0)~~

’2

= (1.198 - 1.317 sin t0 cos t
0)

a.21(t0) = (—1. 198 - 1.317 sin t0 cos t
0

)

= (1.377 - 1.617 cos
2
t
0 

+ 1.734 cos4t0)~~
2

611(t 0) = tan~~ ( .6 l 4  — 1.317 sin 2t0)

ä22(t0) = taa~~~(.6l4 — 1.317 cos
2
t
0)

• 
. Using as a norm (Z

~i~
2
(t
o
))112 we find that K = 7.358 and V = 0.45 .

Correspondingly we find the max 1A22(t) 1 1.555 = ~~. The values of ~~, K

and V and Lemma 2.3 imply that p...~ .0177 and that for 0 < p. < i0,  system

(2.29) is uniformly asymptotically stable.

Since is found by taking various matrix norms it is conservative.

In a computer simulation the fast subsystem (2,29) was numerically

integrated for the initial condition z1(0) z
2
(0) = 1 for various values

of ~~. It was found that for p. < .65, the solution was exponentially

decayIng. In Figures 2.1, 2.2 and 2.3 the solution for z1 is shown for p.

equal 0.1, 0.4 and 0.7 respectively. From Figures 2.1 and 2.2 it can be

seen as expected , that for smaller p. the exponential decay is more rapid.

- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• • 

~~~~~~~~~~~~~ 
•.

~~ - ~~~~~~~~~ • —-~~~~~~~— A~~~~•
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We next find a bound for the stability of the full order system

(2.27).  From Lemma 2.3 we obtain

t~22(t,t0) I < K 11 + 2 2 ~~~ 1 e~~
t
~~ . (2.31)

L e (a.-PK3)J

If we let ci = a = V/2 we obtain a value for ~ of .00442. For p. € (0,~)

we may use the bounds of (2.31) for ~22(t,t0). Thus

K = K 1 i+ 
2pK8 12 

L e(a -pXB)J

and a
2 = a = .225. From equation (2.28)

— 
-l.89(t-t

0)lx(t ) 1 .~~ 
Ix~te -

which yields K
1 

= 1 and a
1 

= 1.89.

Values for M1, N2 and N3 
arc 1, 1.956 and 7.09 respectively. Sub-

stituting these values into

1 2
— a1K2M2 + K1M1K2M3

yields p..~ = .00317. Since p..~ < ~ we know from Corollary 2.5 that for

p. E (0,p.1
) system (2.27) is uniformly asymptoticall~r stable.

This example illustrates the use of Lesmas 2.2, 2.3, 2.4 and

Corollary 2.5 in obtaining stability bounds of p. in system (2.27). The

bounds K
2 
and a

2 
are direct results of Lemma 2.2, thus making it unnecessary

to determine the state transition matrix for the fast subsystem directly. •
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2 .4 A Stability Assumption

In Chapter 5 the t ime-optimal control of nonlinear system (2.5) is

treated where x E R~ , z E ~m u € Rr and p. is greater than zero . The

purpose of this section is to discuss the acceptability of stability

assumption which is made in Chapter 5 concerning system (2.5).

We assume that the Jacobians g (x , t) and (B2 (x ,t )u)  and the partialx x
2 .derivatives and ~~~~
— exist and are continuous with respec t to x and t .

The controls under consideration satisfy the constraint

u E U  = [u: ~u~ l < 1 , i =

• and their components u~ are piecewise constant with a finite number p of

discontinuities at the instants t . ‘where

t < t  < t  < ... < t0 1 2 p

• 
• 

That is, at the instants t~ at least one of the components of u is

switching from one constant value to another constant value. Suppose we

choose art arbitrary control ~(t) satisfying the above, and apply it to

(2.5) to create the trajectory ~(t),~~(t). It is assumed that for ~(t)

the inverse of G(~ ,t)~~ exists for t E [t05t~].

The stability assumption to be discussed in this section may be

stated :

(i) The equilibrium w 0 of the system

= G(~(t),t)w (2.32)

is uniformly asymptotically stable , for p. small

enough.

.

‘
I •••~ 

, .1
._~~~A._.•.. . ~~~~~~~~~~~~~~~~~~~~~~~~ •
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The approach used in the application of singular perturbation

methods to approximate the solution to (2.5) with control input ~(t) is -
•

to set p. = 0 in (2.5b) to yield

z - G(x , t) 
Lg(x ,t) - G(x , t) 1B2 (x , t )u  (2.33)

where the bar (~) denotes p. 0. Substituting (2.35) in (2.5a) yields

the reduced order system

= f
0(,t) + B0(x,t)u

~ f(,t) - F(~ ,t)G(x,t)~~g(x,t) (2.34)

+ (B1(x ,t) - F(x ,t)G(x ,t)

One assumption [26] which will guarantee that the solution x(t) of

(2.34) with input ~ (t) provides an approximation for ~~( t )  is that the

equilibrium z of system (2.5b) is uniformly asymptotically stable. We

will show that the assumption (i) above is equivalent .

Consider ~(t) and a(t ) as inputs to (2.Sb). Then (2.5b) may be

treated as the linear time-varying system

= G(t)z + ~(t) + B2 (t )a (t )  (2.35)

which has the solution

z (t ) = 
~p.
(t,to)zo +~~~j~ ~p.

(t,~~~~(id~
0 (2.36)

t+•~r ~p~(t~ 1•)B2
(1•)~~(1•)di’ .

to

I

- —~~
--

—~~~~~~~~~ - • ~~~~~~~~~~~~~~~~~~~~~~
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Along any control interva l (tj,t .÷i) during which u(t) = K where K

is a vector of constants, we may integrate (2.36) by parts to yield

z(t )  
~p.(t ,ti)z i

‘ 1A A —l- G(t) g(t) + ~p.
(t~t~)C(t.) ~~(t~ )

+ r ~p.(~,T) [a(T) -1
~(T) + C(~)~~~~~)]d~ (2.37)

+ G(t)~~B2(t)K +

t .
A _l* A —1 ’+ 5 ~p.

(t~ T)CG(i•) 82
(T)K + G(T) 82(T)KJd T

• ti

where z~ is the value of z at t~~. Since ~ ( t)  = g(,~(t),t), B2(t) 
a B2(~ (t),t)

and G(t) a G(~(t),t), (2.37) may be written

z(t) = ~p.
(t~t~)[z~ + ~~~~~~~~~~~~~~~~~~~~~~~~~~ + B2(~ (ti),t.)K)J

- G(~(t),t) 
1g(~(t),t) —

t (2.38)

+ 5 ~p.
(t,1•)[G(i•)~

1
(~ (.r) + B2(r)K)

ti

+ G(T)~~ (~(1) + 32 (T )K ) Jd 1

Suppose that ~~~(t , t 1) satisfies
- 

~c4
t t

t)
I~ p.

(ts ti) I < Ke p. 
, (2.39)

• ~~•~~~•—• • -—  ••••~~~ ~~~~~~ •~ ••~ - •  — _
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then the integral in equation (2.38) is O(p.) and the first term will

exponentially decay with O(p.) time constant. This exponential decay is

referred to as boundary layer phenomena and occurs at each switching of

the control ~(t). The remaining (middle) term in equation (2.38) is

simply the equilibrium we wish to be uniformly asymptotically stable.

Assuming that (2.39) is satisfied is the same as the above assumption.

• It has been shown that under this assumption

z(t) = z( t) + 0(p.) + boundary layer terms

Therefore substituting z(t) into (5.la) to yield the reduced otder system

will result in x(t) being art approximation of x(t).

2.5 A Diagonalization Transformation

In this section system (2.1) and its adjoirtt system

• - A11(t)p - ~~~ A21(t)q
(2.40)

q = - A12( t)p - 
~~~ A22 (t)q

will be lower block diagonalized and upper block diagonalized respectively

using the transformation def ined by

lx i I I -pF(t) rx -

1 (2.4la)

LC J L0 ‘m Lz 
•

r~i r~ °] lpl
I I = I n I (2.41b)

L11~ L~
(t)’ I

~J L~ J

This diagonalizat ion will simplify the process of revealing the main

results of the next chapter.  When (2.41a) is applied to (2.1) and (2.41b)



— _ _ _ _  •-~~~~ ~~~~~~~~~~~~~~~~~ 
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3].

to (2.5) the result is

= (A11 
- FA21)X + GC + (B 

- FB2)u1 (2.42)

= A21X + (A22 + pA21F)C + B2u

and

a - (A11 - FA21)
’
~ 

- 
~ ~~~~ 

(2.43)

• 
a - - ~ (A22 + pA21F)

’T~

where

= A~2 
- A2

’
2F
’ - iF ’ + pF’Ai’1 - pF’A~1F

’ (2.44)

and (~‘,T~’) are the adjoint variables corresponding to (x ’,C’) . In the

work presented in this thesis the problem under consideration is that of

time-optimal control. In order for this problem to have meaning the time

• required for the control must be finite. Therefore we only consider

• transforming systems (2.1) and (2.40) on the finite interval

Chart; [34] has shown that under the assumption that the eigenvalues

of A22(t) have real parts strictly less than zero, there exists a bounded

solution F(t,p.)’ to G(t)’ = 0. He further shows that one solution

G(t)’ = 0 is

F(t,p.)’ = A~2 
1
A~

’
2 + 

p W (t ,p .) (2.45)

where W(t,p.) can be shown to be bounded on [t
0 3 t

1]. Substituting (2.45)

into (2.42) and (2.43) yields
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x = A1(t )X + (B (t )  — pW (t,p.)B2(t))u0 
(2.46)

p.~ 
a A21(t )X + A2 (t) C + B2(t)u

and

= - A1 (t)~ - A~1 
(t)11p. (2.47)

• 1~~~ -~~~A2 
(t)T1

where

A1~~~A0 - pWA21

A2 ~ A22 + pA21A12A22
1 + p.2A21W 

(2.48)

W~~~W(t,p.)

B0 = B1 -

and

A0 ~ A11 
- A12A22

1
A21

Thus (2.46) is lower block diagonal and (2.47) is upper block diagonal.

2.6 Expansions of Two Integrals

In this section the two integrals

11 ~22 (t , T ) ~~~ t E [t0,t1] - (2.49)
to

and

12 1 N(s)~ 22(s,t0)ds t E [t0, t1] (2.50)
t
o 

— •——
~~~~~~~~~~~~~

--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - • - - • • • - - -- • - -  — -  

~~~~~~
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are expanded as series to 0(p.
3) wher e ~22 (t,t0) is the state transition

matrix of the fast subsystem (2.4). The following assumptions are made:

• (i) The matrices A22(t) and N(t) are continuous and

have continuous derivatives on [t03t1
] to any

desired order.

(ii) The eigenvalues X~ (t) of A22 (t) satisfy

Re(A~(t)) < -V < 0 t E [t0, t1]

where V is constant.

Lemma 2.6. Under (i) and (ii) the integral I~ may be

• expanded as

= -pA22~~ (t)N(t) +

- p.
2
A ~~(t;A ~

1
(t)N(t) + p.

2
~22(t,t0)A 22~~(t0)

(2.51)

x A22~~ (t0)N( t
0) 

- p.
2
A22

2( t )N( t)

+ p.2~ 22 (t ,t 0)A22
2 (t 0)N(t 0) + 0(p .3)

for p. sufficiently small.

Proof of Lemma 2.6. The integral I~ may be express ed

Il 
= S ~22 (t , T) ~ A22

(~)p  22 
1
(~ )N(~)dT .t o

Let t ing

dw = - ~~~

and

v a — 

~~22~~~~~~
(i

________ 
-r _

~
•A_

~•~•_._l —----~~~~~~~--~~ J ~~~~~~~~~~~~~~ 
_. 
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implies

and

dv a - pA22 
1(1)N (T)d ’r  - pA22~~~( ’r)N(T)d ’r

which yields

Ii 
- ~~22(t,T)A22 (‘r)N(~ ) + p . 5

‘rat
0

+ p . !to
• Noting that for p. su f f ic ien tl y small system (2.4) is uniformly

asymptotically stable by Lemma 2.3 and integrating these two integrals

by parts yields

t

• I]. = —

‘rat0

r 
-

- p.
2
~~~(t,’r)A22~

2
(’r)~~(’r)l + 0(p .3)

which yields (2.51) and Lemma 2.6 is proved.

Lemma 2.7.  Under (i) and (ii) the integral 12 may be

expanded as

—•~~~~~~~ __ ._~~~~~~~~~~~~~~~~~~ ;_ - • • :-• - -
~~- 

• .-- - • -

— —— . 
~~~~~~~~~~~~~~~~ _~ •~__
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12 
= N( t)A22 (t)~~22 (t ,t

0
) - pN(t0)A22~~(t0)

— p.
2
~ (t)A 22

2
(t)~ 22(t,t0) + p.

2
N(t

0
)A 22~~ (t0)

(2.52)

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ p.2N (t 0)A22~~ (t 0)A 22~~ (t0) + O( p .3)

for p. sufficiently small.

The proof of Lenmia 2.7 follows analogously to that of Lemma 2.6.

I
~

I . • - — - - - - - -  
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3. TD4E-OPTINAL CONTROL OF TThE-VARYING SYSTEMS

3.1 Introduction and Problem Statement

In this chapter we treat the time-optimal control of system (2.1)

which for convenience is rewritten here

a A11(t)x + A12(t)z + B1(t)u
(3.1)

= A21(t)x + A22(t)z + B
2
(t)u 

-

where x € R
rt
, z € RW

. u E R
r and p. is a scalar which is greater than zero.

For all t, the matrices A~~(t)~ ~,j = 1,2, are bounded with bounded

derivatives and the eigenvalues of of A22(t) satisfy

Re(X~(t)) < -V < 0

The main results of this chapter are the two time-scale property and the

development of a near time-optimal control for (3.1). The necessary

conditions of the minimum principle are applied to demonstrate the two

time-scale property, that the time-optimal control of (3.1) is composed

of an initial interval of control in a slow time-scale followed by an

interval of control in a fast time-scale. Based on this property a near

optimal control is proposed which is made of a time-optimal control of the

reduced order system

= (A11 
- A12A22 

1A21)x + (B1 
- A12A22~~B2)u 

(3.2)

~ A0(t)x + 30
(t)u

followed by a time—optimal control  of the fast subsystem

= A21(t)xF + A22(t)~ + B 2 ( t )~~ . (3.3)

•—~~ • • - ~~~~~~~~~~~ •— =~ -•- - ~~~~~~~~~~~~~~~~~ 
—•--~ ~~~~~~—-•- • • -•.--~~--•-• •• •-•~~~~~~~ • •• . • . - . - •-•-•- • • ••
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The advantage of this near optimal contro l is that it requires control

computations only on reduced order systems.

The time-optimal control problem treated here is that of finding

*• the control u (t) constrained

u Eu a Cu: 1u~ I < 1 , i a

• which steers the state (x ’,z ’)’ of (3.1) from the fixed initial state

• (x0~, :0
°’ at time t0 

to the fixed final state (x
’
’. zr’)’ itt minimum

t ime T • For notational purposes is defined t
f 

= T + t0 . System (3.1)

is assumed to satisfy the following condition in order to guarantee the

existence of the time-optimal u*(t).

(i) There exist t1 
and p.0 

such that for all p. E (O,p.~]

there exists a control u(t,p.) EU which steers (x ’, z’) 
-

from (x
0”, 

z
0~
)’ to (X

F
/, z

r
’)’ within time t1—t0

.

According to Theorem 17 of [35, p. 127], (i) guarantees the existence of

• u*(t) for p. E (O ,p .~J. The normality of the control problem is assumed.

3.2 Necessary Conditions from the Minimum Pr inciple

In this section the minimum principle is applied to the control

problem. Then a diagonalization transformation and expansions in ~ are

used in the necessary conditions to reveal the two time-scale property.

The Hamiltonian to be minimized is

H = 1 + p ’A11x + p’A12z + p’B1
u

(3.4)

+ ~ q ’A21x + ~ q’A22z + ~~~ q’B2
u

—~~•• — ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where

— A ~‘ A ‘~p —  £l~]].p ~2 q
• 

(3.5)
1q = - A12’p 

- 
~~~, 

A
2~ q

and

u*(t) = - SGN[B
1
’p + -

~~ 82
’q]  . (3.6)

• The normality of the control implies that

B1
1( t ) p(t )  + ~ B~~~(t )q(t )  ~~ S(t) = 0

only at isolated times t~ and not on a finite interval. Thus the

• switchings of the components of the optimal control will occur at the

instants t~ at which one of the components s~ , i= 1,...,r of S setisfies

s~(t.) = 0

• The instants t . are referred to as the zeroes of S.

If we let ~(t,t0) be the state transition matrix of (3.1) satisfying

A12 1.
~~ ~~t,t0) = L~ A 1 I ~(t ,t0) (3.7)

p. 21 p.
A22j

then (3.6) may be written

• u*(t) a - SGN 
[[Bl

/: B2i~’ct~t)][...J ] (3.8)

where and q~ are the values of p(c)  and ‘i(t) at t .  A candidate

for the optimal control could be found by determining t
f~ ~F 

and such

~~~~ II~ I — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -- —

~~~ 
- •-  •

~~
•-

~~
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that u
*
(t) steers (x’,z’)’ from (x

0
’,z0

’)’ to (x
F
’,z.j.’)’. This is in

general a difficult problem due to the stiffness which results from the

• presence of p..

The minimum principle provides the additional necessary condition

H(t ) = O

• which implies that as p. 0, remains bounded and therefore is

- 

0(p) .  
-

In order to reveal the two time-scale property the diagonalization

transformation (2.41) is applied to (3.1) and (3.5) to yield

• ( = (A1 
- FA21)% + Ge + (B1 

- F32)u1 (3.9)

p.C = A21X + (A22 + pA21F) ~ + B2u

and

= - (A11 
- FA21)

’
~ - ~ A21

’
~ 

(3.10)

ii = - - ~ (A22 +

where

G’(t) = A12’ 
- A22’F’ 

— pF + p.F’A11’ 
- pF’A21

’F’ . (3.11)

In Section 2.4 it is shown that for p. sufficiently small and t € [t0, t1]

a solution of

G(t)’ — 0

is

F(t)’ = A22
’
~~ A21’ + ~W(t,p.)

’ (3.12)

.

LU --
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where W ~ w(t,p.) is 
bounded. Substitution of (3.12) into (3.9) and 

(3.10)

yields

A
1
X +  (B0 

- (3.13)

a A21X + A2 C + B2u

and

a - A1
’
~ 

- I A21 ~ (3.14)

e—~~~
_ 

~

where A1 ~ A0 
- ~~A21, A2 ~ A22 

+ pA21A12A22 
~ + p.~A21W and A0 and B0

are as defined in (3.2). 
Letting ~0(t,

t0) 
and ~ 22 (t ,t0

) be the state

transition matrices satisfying

~~~~ 
~0

(t ,t0
) = A0

(t)~0
(t,t0) 

(3.15)

and

• ~~ ~22(t,
t
0) 

A22(t)~ 22
(t,t0) 

(3.16)

yields the approximate 
solution to (3.14) 

•

~(t) = ~o
’(t ,t)

~F 
-

— A21
1 (t)A 2’(t) Q

2’(t f~ t) + 0(p .) ]T~. (3.17)

~(t) a ~22 ’(t ,t)~~ + 0(p) 
(3.18)

where ~~~~, and are the values of ~ and ~ at t~ . TransformatiOn (2.41)

and (3.12) imply

p(t) ~(t) (3.1.9)

q(t) - ~(t )  - pA22
l(t)~~A12

’(t)P(t) + 0(p2)

A
’

— —~~~~~~~~~~ •~~~
•,-.•
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and

=
• (3 .20)

*-l * 2
= + pA22’(t~ ) Al2’(tf)pF + O(p. 

) .

The substitution of (3.17), (3.18) and (3.20) into (3.19) yields

p(t) = ~o’(t , t )(p F - A21’(t~)A2’(t )~~q~)

+ A21’ (t)A 2’(t) 1
~ 22 ’(t f , t)q~ + 0(p ) (3.21)

q(t) = ~22’(t ,t)(c~ + ~~22’(t)~~A].2’(t)p~)

- PA22’(t) A12
1(t)~0

’(tf,t)(P~ - A21’(t~)A2’(t )~~q~)

(3.22)

—

+ 0(p2)

Finally substituting (3.21) and (3.22) into u*(t), (3.6), yields

u*(t) a - SGN~~0’(t)~ 0
’(t~ ,t)(p~ - A21’(t)A2’(t )~~q~)

+ B0’(t)A21
’(t)A

2
’(t)~~~22’(tf,t)q~ (3.23)

* ri. *-l *
+ B2 ’(t)~~22

1(t f ) t ) L ~ q~ + A22
1(t

f ) A12 (t f )P~

+0(p)] .

Lennna 2.1 implies that for p. small enough ~22 (t , t0) is bounded by a

decaying exponential with 0(p.) time constant. This implies that

~22 ’(t , t)  is exponentially decaying in reverse time.

Lemma 3.1. The time-optimal control u (t) is composed of an initial

interval of control in a slow time-scale followed by an interval of control

• •~~~~~~~ 
-
~~~~~ , ~~ ~~~~~~~~~~~~~~~~~~~~~~ -- -~~~~~.-••~~
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in a fast time-scale. In particular, for any € > 0 there exis ts ~ and 
¶

— *such that for p. E [O , p.], u (t) satisfies

_SGN[Bo
’(t)

~ o
’(t ,t)pF 

+ O(p.) + 0(€)]

t E £t0, t -’r)

= _SGNCB
0
’(t)P~ + B

2
’(t)~ 22’(t ,t) (3.24)

X + A22’ ( t ) ~~ A12 ’(t~ )p~ + 0(p) ]

t E [t~— -’r,t ]

where ‘r = 0(p).

• Proof of Lessna 3.1. By Lemma 2.1 there exists, for p small eno ugh,

a constant K such that
*t_ t f

1~ 22’(t ,t) < Ke for t < t

Letting Ke a 
~ implies ‘r = - ~ ln(~) where C is chosen such that

~ 1. Thus ¶ 0(p) and for t <

~~22 ’(t , t) < e . (3.25)

Recalling that q
~ 

— O(p.) and noting that ‘r = 0(p) implies that

= I + 0(p.) t E [t— ’r,t ]  
•

and hence we have (3.24). For small enough € and p., the switchings on the

slow interval [t0, t -’r] are primarily dependent on ~0’(t ,t) and the

switchings on the fast interval [t- ’r,t ]  of length 0(p), are pr imarily

dependent on B
0~~ and ~22’(t ,t). Thus the switchings on the initial

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~ •~~ ~~~~~~~
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interval are in a slow time-scale and the switchings on the final

Interval are in a fast time-scale and Lemma 3.1 is proved.

Since ¶ is 0(p), x(t -T) is 0(p) from Thus the two time-scale

property implies that the control on the slow control interval steers x

to 0(p) from The fast switchings in [t-r,t ]  steer z to z~ and x

the last 0(p) distance to x~ . Based on this argument the near-optimal

control is proposed in the next section.

3.3 Slow and Fast Control

The reduced con trol pr oblem is that of fi nding the con trol ~
*
(t) E U

• which steers the state i~ of the reduced order system (3.2) from x0 at time
to x,, in minimum time F

k
. For notational purposes = + t

0
. Since

setting p. to 0 in (3.1) to yield (3.2) implies that z may be steered

instantaneousl y, the reduced problem does not include the steering of z.

The minimum principle yields the following necessary conditions for

the reduced control problem. The Hamiltonian to be minimized for u € U

is

H = I + p’A0x + p’B
0~
i (3.26)

where p satisf ies

p = - A
0
(t)p (3.27)

and

a - SGNCB
0
’p(t)] . (3.28)

The solution of (3.27) is

p(t) — - ~0
’(~~~,t)~~ (3.29)

• 
--

~~ • 
- - • - —-
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which when substituted into (3.28) yields

~~~(t) = - SGN[B
o~~o

’(
~~

,t)pF
] . (3.30)

We let ~ (t) ,~~(t) be the resul t of  app lying ~~ (t) to the full order system

(3.1) and ~*(t) be the optimal trajectory for the reduced order sys tem

(3.2).

Lemma 3.2. Let ~~~(t) be applied to (3.1). Then

A

x(t) a x (t) + 0(p) (3.31)

for t € [t0,~~ ].

Proof of Len!na 3.2. Let e(t) = X(t) - x(t), then

= A
0

( t)e - pWA 21(t)X - p.WB
2
u

where it is assumed that e(t0
) = 0. The error e(t) satisfies

e( t)  = - p. 

~ ~0(t,’r)W(’r,p.)
[A 21(’r)X(’r) + B2(’r)u(’r)]d’r

Ott [t0,!Jx(t), A21 ( t)  and B2(t) are bounded and u E U. Therefore

e(t) O(p.). Lenmia 2.1 implies that there exists ~ such that for

p. E (O,~ ) z(t) is bounded on [t0,~~~] and thus transformation (2.41)

impl ies

~ ( t)  = X ( t)  + o(p.)

Finally this implies that

A *x(t) — x + 0(p.)

and Lemma 3.2 is proved.

—• -•- ~~~~~~~ — ~~~~~~~U~~~~~~~~~~~ k I  — rn _ ~~~~~~~~~
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The slow state control problem is that of finding the control

u*(t) E U which steers x of (3.1) from x0 to XF in minimum time T
*. For

this problem the initial value of z is z0 
and its f inal value is free

which implies that = 0. Thus equation (3.24) implies

_SGNEB
o
’
~o
’(t f, t)PF + 0(p) + 0(c)]

t E

u*(t) a (3.32)
S 

_SGN[BQ
’PF 

+ B2
1
~ 22

1(t~ ,t)A22’(tf)
1
Al2’(tf )P F

+ O(p.)] t € [t -’r,t~ ]

and u (t) also possesses the two time-scale property. On the slow

interval [t0, t - ’ r) the switchings of u
*(t) are primarily dependent on

30’~Q
’(t

f~
t)P~ . As p — 0, t — t~ and by (3.31) ~ (t)  ‘ x*(t). Therefore

as p. 0, p~ ~F

Lenma 3.3. Let the zeroes of B0
’(t)~0

’(t
f~t)P~ 

of the reduced order

control (3.30) be simple. Then for small enough p. the switching times of

u (t) on Ct0, t -i) are 0(p.
a) different from those of ~~t). 

Furthermore

the minimum time T for the slow control problem satisfied

a + 0(p.
a
) (3.33)

where a > 0 is constant.

Proof of Lemma 3 3 .  The fact that the zeroes of

are simple implies that the control sequence of u (t) is, for p. small

enough, the same as the control sequence of u (t) on [t0, t -r ). The

choice of the parameter ~ is dependent 
act the reverse time exponential

decay of ~22 ”(t ,t) and hence satisfies

• 1
- —--  - - --

• ~~~~ •~~~~~ -
• - a ~~~ • •  • • • - ~~~~~~~~~~~~ ~~~
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h i s C = 0

The 0(c) and O(p.) terms of (3.32) shift the switching times of ~~~(t) by

some pr-dependent variations. Since these variations go to zero as p. 0

there exists b > 0 such that these variations are 0(b) For a finite

• number of switching instants t~ of ~~ (t)

* —* b
T5

= T  + O(p .)+~~

where ¶ a 0(p). Thus there exists a > 0 such that

* —* a
T
~~~~

T + 0(p.)

and Lemma 3.3 is proved.

Lenma 3.3 suggests that by varying the switchings of u*(t) by some

method such as art iterative method [6] or switching sensitivities [22]

• and adding some fast switchings on the ¶ interval the control u (t) may be

found. Thus ~~ (t) is a near-optimal control for the slow control probl em

in the sense that it steers x to 0(p.) from x~, and requires the near-optimal

time T

The point z(~~) of the fast state z at after the application of

to the full order system will be some finite distance from z~ for

p. small enough, by the stability Leimua 2.1. Thus the time-optimal control

• u (t) which steers the state of (3.1) from z(tf) to will require 0(a)

time. For any bounded control on an 0(p) interval the slow state x will

only be moved an 0(p) distance.

Let uf(t) be the control which time-optimally steers z of the fast

subsystem (3.3), where x
7 

is the final slow state , from z(~~) to in

time Tf
.

I 

~~~~ •~~~~~~-- _~~~. -~~~•
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Lemma 3.4. The control

—*u (t) t € [t,,,t~)_* ~1

u (t) a (3 .34)
t E [~:;;~:; +

is a near time-optimal control for (3.1) in the sense that it steers

(x ’, z’)’ to a point which is O(p.) from .(x~~~z~~)’. Furthermore

* —* a
T = T + 0(p) + O(p. ) . (3.35)

Proof of Lemma 3.4. As discussed above = 0(p) and therefore

x(~~~+~~~) =x ~~+O(~)

Since x will be 0(p) from on [~~~,t + T), u~(t) will steer z from

z(tf) to 0(p) from z~. The control u (t) requires time T + T
F 

and

therefore by equation (3.33)

* —* a
• T = T + 0(p) + O(p. )

*The time T for time-optimally steering both x and z must be greater than

*T8. Since it is possible to steer the fast state in 0(p) time, equa tion

(3.35) is satisfied and Lemma 3.4 is proved.

As pointed out in the introduction, Section 3.1, the near optimal

control is computed as the time-optimal controls for two reduced order

systems (3.2) and (3.3). As developed here, this control requires the

knowledge of z(~~)which may be found from integration of system (3.1)

with the control u (c). Singular perturbation techniques are well

developed for such differential equations and imply that for small enough

• 
~~~~~~ •~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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z(~~) = z( t ) + O(p.) (3.36)

where

- A22 
1
A21x 

- A22 
1
B2
u . (3.37)

Thus the use of z(~~) instead of z( t ) will introduce another O(p.)

error in z when it is not possible to compute z(tf).

The following letnna makes it possible to replace the assumption of

the normality of the time-optimal control for the full order system (3.1)

by the assumption of the normality of the time-optimal controls for the

reduced order system (3.2) and the fast system (3.3).

Lemma 3.5. Assume that the reduced order control ~~~(t) and the fast

• control ~i~(t) are normal. Then for small enough p. the control u*(t) is

• normal.

Proof of Lemma 3.5. The minimum principle implies that

1 —* —*
u
f
(t) = — SGNL~ B2

’(t)~ 22’(tf + Tf,t)q~] . (3.38)

Let F(t) = B
2
’(t)~ 22

1(t
1 
+ T~ ,t) and S(t) = B

0’(t)~0’(~~ ,t). The

normality assumption on ~*(t) and ~~ (t) implies that the components f~ (t)

and si(t), i = 1,...,r of F(t) and S(t) satisfy

and 

f~(t)a0

s~(t )=O

at isolated instants of time t~ . By equation (3.24) for u*(t) :~normality of u (t) implies the normality of u (t )  for t ‘ Lt0~
t
f 

- ¶) arid

* * __ _ *  *-the normality of u (t) implies the normality of u (t) for t ~~ Lt
1 

-

• arid therefore Leim~a 3.5 is proved.

- ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ‘  ~~~~~~• •



PT-
• 49

4. THE INTERNED lATE POINT ALG0RIT~~

4.1 Introduction

This chapter presents the intermediate point algorithm which exploits

the two time-scale property developed in the last chapter. As pointed out

there, the time-optimal control can be viewed as being made of two parts.

The first part is primarily concerned with the control of slow states

while the second part is primarily concerned with the control of fast

states. Corresponding to the two parts of the control, the optimal

trajectory is divided into two parts. The point lying at the intersection

of the slow and fast part of the optimal trajectory is called the inter-

mediate point. The intermediate point algorithm consists of iterations

for the intermediate point based ott computations for lower order systems.

From the intermediate point the slow and fast parts of the control are

• calculated.

The system for which the algorithm is developed is

x = A
1x + 31u (4.la)

= A
2
z + B2u (4.lb)

where x € R~, z E R
is
, u E R

r and p. > 0. In [3] a transformation is

presented which transforms linear time-invariant singularly perturbed

systems to the form of (4.1). The eigenvalues X~ of A2 satisfy

Re(X~) < 0 , (4.2)

u is constrained

u Eu = ~u: u
i~ 

< 1, ~ = l , . . . ,r 3  (4.3)

• ~i~• • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J~~T~~~~•~ --
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and (4.1) is completely controllable from each component u . of control.

• This controllability implies the normality of the problem treated here

which is that of finding the control u*(t) which steers (x’,z’)’ of (4.1)
• frost (x0 ’, z3’)’ at t

0 
= 0 to (x.f/,zF

#)’ in minimum time ~~~~ For small p.

(4.la) is referred to as the slow subsystem, (4.lb) as the fast subsystem

-
• and x and z as the corresponding slow and fast states.

Systems (4. ha) and (4.lb) are equivalent to the systems referred to

• as the reduced order and fast subsystems in the last chapter. Conse-

quently Lemma 3.4 implies that a near-optimal control is

a (t) t E Co,;)
• ~ (t) = (4.4)

u
f(t) t E [T~ ,T)

where a
5
(t) time-optimally steers x from x0 to x~ and ~f(t) time-optimally

steers z from z(T ) to zE,. This control is near ~~tisal in the sense that

• it steers z to and x to 0(p.) from x~ and T = T + 0(p.).

4.2 The Intermediate Point Algorithm

Since every part of a time-optimal trajectory for (4.1) is an optimal

trajectory, the time—optimal control u*(t) can be viewed as a concaten-

ation of two optimal controls

u*(t) t E [o ,t )
* 

5 I

* * (4.5)
u
f
(t) t € [t 1,r ) -

where t
1 
is same intermediate time when the state x is at an intermediate

point x(t1) .  The interval [t1,T ] is expected to be considerably shorter
than [o,~~]. The controls u*(t) and u (t) are time—optimal to and from

the intermediate point. We denote the slow and fast parts of the inter-

mediate by x1 and z1, that is, x(c1) — x1 and z(t1) = z
1
.

-- —-- ---- • —
-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - 
_____-a ~~~~~~~~~~~~ a~ a~~~~ -
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The name of the intermediate point algorithm comes from the fact

that this algorithm iterates for an intermediate point, which lies oct

• the optimal trajectory. In each iteration the nth iterate for the inter-

mediate point is denoted by (x1~,z1~) and the corresponding 
iterate for

the intermediate time is denoted t
1
0
.

The first guess for the intermediate point is provided by the near

• optimal control (4.4) . The intermediate time is defined

t = T
1 S

The slow intermediate point is defined

0xI = x T .

The control: a
5
(t) and ~f(t) are thus first guesses u5

0(t), uf
°(t) for

u5
(t) and u

f
(t) respectively. As the next guess x

1 
for x

1
, we define

the point which will be s:eered to x~, b y u f
(t). In general, if we have

an nth guess U
f 

(t) for Uf (t) , then x
1 

which is transferred to x~ by

u
f
(t) is

A t a-f Tct 
A

• x
1 

= e x~, 
- e (‘r)di (4.6)

C
I

where T~ 
- is the minimum time in which uf

rt
(t) steers z from to

z~. On the other hand is the point to which u5
ct
(t) steers z to

while optimally steering the slow state x from x0 to x1~ 
in time

that is,

z
1~ 

= e
A
2(+ z

0 
+ 

C1 

e
A
2( 

~ 
) 
B
2
u rt
(~ )d~ . (4.7)

I... ..i
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Expressions (4.6) and (4.7) for x
1
n 
and and the definitions of

*
u5(t) and Uf 

( t)  constitute the intermediate point algorithm. The nth

iteration consists of the following four steps:

Step 1. Find u~~(t) which steers x of (4.la) frost x0 to

in minimum time t
1~~.

Step 2. Evaluate n from (4.7).

Step 3. Find uf~(t) which st:ers ZOf (4.lb) from z1
n to

in minimum time T -

Step 4. Knowing uf
tt (t), T~ and t1~ from the n-l step, evaluate

from (4.6).

• The procedure initialized with x1
° x~. It terminates when

- C (4.8)

where e is a preassigned scalar such as c = io
6 . Then U f~ (t) will steer

(x ‘,z’)’ from x
1

t
~
/
,z1

tt /)I to (xV ,zp’)’• Thus the control

u ’
~(t) t E [o, t1~

a (4.9)
u (t) t E [t1

rt , r fl ]

will steer (x’,z’)’ from (x
0’,

z0’)’ to (x~
/,z~’)’. A test for the

optimahity of this control is given in Leu~na 4.1.

The convergence properties of this algorithm have not been treated

with any rigor. What is known is that for a number of examples which are

presented in Cs] the convergence was quite rapid, sometimes in less than

ten iterations. The idea which led to the development of the algorithm

which may contain the seed for a convergence proof is simple. For ~

small enough the last interval of constant control of u5
rt(t) will be long

LL~1 
_ _ _ _ _ _ _
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enough so that will be arbitrarily close to its equilibrium value at

the end of the interval. In this case making an O(p.) change in x
1~ 

to

• yield x
1~~~ 

will not apprec iably change z
1~ 

and therefore u
f

tt (t) will

change only a small amount. The condition that remains to be discovered

is that under which the small changes in uf
ct
(t) are in the proper

direction f or convergence.

The computationa l eff iciency of the algorithm depends on Steps 1

and 3 which require the calculation of time optimal controls for the

reduced order systems (4.la) and (4.lb). ~or second order subsystems

phase plane techniques can be used. -Thus for fourth order systems with

• second order subsystems the algorithm can be easily implemented . For

higher order systems one of two approaches can be used. The first is to

apply other computational methods for time-optimal control such as those

• in [15,22]. The other approach is to see if the eigenvalues of the system

- 

• are such that the system may be broken down into more than two subsystems.

The advantage of the intermediate point algorithm is that for systems with

smaller p. the convergence should be better. Thus the order of computations

that are needed are reduced and the difficulties characteristic of stiff

systems are removed since the stiffer the systems, the faster the con-

vergence. This indeed is the reason for the development of singular

• perturbation methods for control theory.

As in most optimization procedures , a con trol to which the procedure

has converged and the corresponding final time T, must be tested for

optimality. When this algorithm has converged the control steers the j
state of (4.1) from the initial state to the final state to within the

desired accuracy. The next step is to see if the necessary conditions of

the maximum principle are satisfied . Let the rows of B
1’ and B

2
’ be

• • ~~~-~~~_ 
~~~
——- -—- -—

~~~
•
~~~~

-• • 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



denoted by ~~~~ and ~~~~~~ j l,...,m. Then front equation (3.6) the

components of u*(t) are

* (j)’ 1 (j)’u
1
(t) = - sgn[b

1 p(t) + ~ b2 q(t)] . (4.10)

As the kth switching instant t~
k of any componen t

( )‘  k 1 (S) ’  k
b1 ~(t~ ) +~~~b2 q(t~ ) = 0 . (4.11)

This implies -

I,r* k
k 1. ~t.

b
1~~~~e

1 
_t
j 

~~ 
+ ~ b2~~~~e

2 p. 
q
~ 

. (4.12)

• As the final time the Hamiltonian satisfies

*H(T)=0

which implies

H = 1 + 
~F 

A1xF + PFB1U + ~ q~’A2
z~ + ~~ q~’B2

u = 0 . (4.13)

• These are the conditions of the minimum principle that remain to be

• satisfied which leads to the following conclusion.

Lema 4.1. Suppose the p
~, 

and q
~ 

can be found such that (4.13) is

satisfied and such that for each switching instant ~~~ of each component

of control, (4.12) is satisfied for the switching instants and final time

of the control computed by the intermediate point algorithm. Then the

control computed from the intermediate poin t algorithm satisfies the

necessary conditions of the minimum principle and is therefore a candidate

for the optimal control.

Trots art engineering standpoint we stay be satisfied if the control

U
f

(t) requires a time considerably shorter than u
3
ri(t) ,  since , as was

L. L~~_ 
____ •

•
~~ •-
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discussed in the last chapter tz5
0 (t) should require a time 0(p.) different

front the minimum time needed to steer x from x
0 

to x~ . Thus if with an

additional short interval of control added, x and z can both be steered

to their final values (x~1z~)~ the control if not optimal, may satisfy

our needs anyway. In this statement it has been assumed that u
8~ (t)

requires approximately the same amount of time as u5
0(t) since

should be 0(p.) frost

4.3 Example

System (4.14) represents a generator driving a pump which pumps

water into a reservoir. Water flows from this reservoir into a second

reservoir at a rate proportional to x1, a small change in water depth

around the nominal value x1
. Water also flows out of the second reservoir

at a rate proportional to x2, a small change in water depth around the

nominal depth x
2
.

• The reservoir depths x1 
and x2, the angular velocity z1 of the motor

shaft and the armature current z2 
are the state variables chosen to model

this system.

r -

t i c  -k 0 k 0 x 
• 

01 1 p

k1 
k
2 

0 0 : 0

. 
— 

1 — l + u (4.14)
ZI 0 0 - z

1 
0

- 

° 0 -l/T l/T l/Tj

The parameter p. is inversely dependent on the friction itt the motor and

pump. The control u is the normalized armature voltage.

_ __
~~~

_
~~~~

_
~~

_
i_ _ __ _ •~ ~~~~~~ 
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Substituting possible values into (4.14) yields

-1.5 0 0 0 x
1 

0

x 1.5 -2 0 0 0
2 

= + u . (4.15 )
0 0 -4.54 .091 0

Z
2 

0 0 100 -100 a2 
100

The initial state chosen for this example is

13

x 620 
= . (4.16)

• 
a10 5

45

The problem is to steer the state of this system [~1 x2 x3 x4]
’ from the

initial state to the origin in minimum time. In order to accomplish this

• a linear transformation is applied to (4.15). The system eigenvalues are

-1.5, -2.0, -4.448 and -100.0952. From the values of these eigenvalues

the matrix of eigenvectors is

1 0  1 1

= 
3 1 .6127 - .0152 

(4.17)

o 0 —2.9848 -98.595

o 0 -2.9803 103,530

and its inverse is

1 0 .33472 .309Xl0 3

—l —3 1 —1.2092 — .112Xl0
2

P a 
3 • 

(4.18)
0 0 - .33471 - .318x].0

0 0 - .963Xl0 5 
-.965Xl0

5 

- ~~~~~~~~~ •— ~~~~ -• --- •• --
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A normalization matrix is

+.02087 0 0 0

0 -.05684 0 0
T a (4.19)

0 0 -.007255 0

0 0 0 -.00000964

Applying the transformation (x’,z’) a PT(X’,C’)’ to (4.15) yields

-1.5 0 0 0 -1.5

0 -2.0 0 0 -2
a - u (4.20)

C3 0 0 -4.448 0 C3 -4 448

C4 0 0 0 -100.0952 C4 -100.0952

and the corresponding transformed initial state

-.2294

• X -2.21682 
= 4 (4.21)

C30
.64924X10

7

After ten iterations of the intermediate point algorithm the

control

-1 t E Co . 1.0058)
+1 t E [1.005, 1.5829)

U — (4.22)
—1 t E [1,5829, 1.7281)

+1 t € [1.7251, 1.7350)

was found which steers the state to a final point



--5,- -~~~~~ -— •-—--—~~~- —5- - -
~~~~

--- 
- ______

~~7Xl0
8 

-

X -.9XlO
8

-16 
(4.23)

C3~. -.sxio

- 
C4y 

• 

-.2X10~~
4

This is equivalent to the final state

• 
X1~ 1.46Xl0~~°

X~~~ -5.tl56Xl0~~
°

Z
1~ 

= 
l.082X10~~

8 (4.24)

- 
-l.99X10

15

This example demonstrates the use of a linear transformation in

conjunction with the intermediate point algorithm to find the time—

optimal control for a system not in the form of system (4.1).

~~dfp~L! :-~ ~~ 
-~~~~~~=-~~~~~~~~~~~~ —_ • 

~~~~~~~~~ -•
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5. TIME-OPTIMAL CONTROL OF A CLASS OF
NONL INEAR SYSTEMS

3.1 Introduction and Problem Statement

In this chapter the problem treated is that of finding the control

u*(t) which time-optimally steers the state (x~,z/)~ of the nonl inear

System

= f(x ,t) + F(x ,t)z + B1(x,t)u (5.1a)

= g(x,t) + G(x ,t)z + B
2

(x ,t)u (5.lb)

from an initial fixed point (x0’, z0’)’ at time t 0 to a final fixed point

Here x E R~, ~ E R
ts
, p.> 0 and u E R

r 
is constrained

u EU = Eu : ~u1j 
< 1, ~ = l,...,r) . (5.2)

The vectors f(x,t) and g(x,t) and the matrices F(x,t), G(x ,t), B1(x,t)

and B2(x,t) have bounded derivatives with respect to t and x. For piece-

wise cons tant controls ~(t) € U with a finite number of discoritinuities

and the corresponding trajectories ~ (t) and ~( t ) ,  the inverse

exists. Also the homogeneous system

= G(x(t),t)w (5.3)

has w 0 as a uniformly asymptotically stable equilibrium as discussed

in Section 2.5.

The existence and normality of the time-optimal control of system

(5.1) is assumed.

The chapter is organized as follows. In Section 5.2 the necessary

conditions for the time-optimal control u*(t) of (5.1) are stated . From

~~ ‘ -

~~~~~~~~~ —
• _t _ __S••-5 ___ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 5 —— •- -5— — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—.-—- • - • - — - --- • •~~~~~~~•5•• —. —~ --•—•_~ • • — — -——--



these conditions u*(t) is shown to consist of two parts. The first part

is made of switchings in a “slow” time-scale while the second part is

made of switchings in a “fast” time-scale. This is referred to as a two

time-scale property. The reduced order system is defined in Section 5.3.

From the time-optimal control of the reduced order system a near time-

optimal control is proposed and the sense in which it is near optimal

demonstrated. An example is presented in Section 5.4.

5.2 Necessary Conditions

• In this section the necessary conditions of the minimum principle

£36) are applied to the time-optimal control of (5.1). The Hamiltonian

is

H 1 + p’f + p’Fz + p’31u + q’g + -
~~ q’Gz + -~~ q’B~u (5.4)

where the costates p and q, which correspond to x and z respec tively,

satisfy

a - - (FZ) X
/ P - (B

1u)~
’p

- c’ q - 
~~~ (Gz)~’q - -

~~ (B2u)~ ’q , (5.5a)

4a~~~F’p - .
~~G’q .  (5.5b)

Here the Jacobian of a vector is indicated by the subscript. The control

which minimizes the Hamiltonian is

u*(t) = - SGN[31
”p + ~~ B2

’q] . (5.6)

The normality of the time—optimal control implies that

B1 p +~~~B2’q S(x,z,t,p .) = 0

il— r - — — — • 1•__5-_ - -~•_~~~~~~~~ -•~ 
- • - -
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only at isolated times t~ and not on a finite interval. Thus the

switchings of the optimal control will be determined by the instants t~

at which one of the componen ts s~ , i l,...,r of S satisf ies

s~~(x, z , t~~,p .) a o .

The instants t
1 

are referred to as the zeroes of S.

For the sake of simplicity let

A11(x,z,t) = fx (x
~
t) ’ + (F (x , t )z )

~~’ + (B
1

(x,t)u)
~
’,

Ai2 (x,z,t) = g (x ,t)’ + (G(x ,t)z) / + (B
2

(x,t)u) ‘‘x x (5.7)

A21 (x , t) = F(x , t) ’ ,

A22 (x , t) = G(x , t) 1

Substituting (5,7) into (5.5) yields

1• p = - A11p - -; A12q (5.8)

4 = - A 21p -~~~A22q . •

-

We wish to find approximate solutions for p and q to substitute into (5.6)

to reveal the two time-scale property. Therefore we apply the trans-

forma tion

(5.9)
1 — l1~ = — ~ q + A 22 A21p

to (5.8) to yield

— - A0~ -

. i 
(5.10)

4 

--- -5 —- -- 5. --—- - —4



~~62

where

A
0

(x,z,t) = A11 - A12A22
1
A21 (5.lla)

M(x , z , t) = A22
1A21 + A22 

1A21 
- A22

+ A22 
1A21A12A22 

1A21 (5.llb)

and

A2 (x , z , t ,p .) = A22 + WA22 
1
A21A12 . 

- 

(5.llc)

Consider any candidate u(t) for the optimal control and the corresponding

trajectory ~ (t) ,~~(t). Substituting ~ ( t ) ,  ~ (t) and ~(t) into A0, A12, M

and A
2 
results in the time-varying system

= - ~~ (t)~ -

(5.12)

= M(t)g - -
~~ A2

(t)T) ,

- 

- 

and the solution to (5.12) is

~(t) ~0’(tf, t)~~ - I ~~~~~~~~~~~~~~~~~ (5.l3a)
tf

~(t) ~2 (t f , t~~~ + ~ ~2
’(T,t)~ (T)~~(~)dT (5.13b)

t
f

where 
~F 

and are the values of ~ and r1 at the final time tf and the

state transition matrices and 
~2 

satisfy

~~ ~0’(tf~
t) = - ~0

(t)~ 0
/(tf , t) (5.l4a)

and

~~ ~2
1(t

f~
t) = — £2 ( t)~ 2’(t~~ t )  . (5.14b)

—~~~~~ - - _ ~~~~ 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -  -—

~~~~~~~~~
-

-5 
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Since M(T) and ~~(T) are bounded for t E Ct0~tf 3, Lemma 2.6 implies that

T~(t ) = ~2 (tf , t)’flf + 0(W~) . (5.15)

Substituting (5.15) into (5.l3a) yields

~(t) - ~0’(t f~ t)~ p - I ~ o ~~~~~~~~~~~~~~~~~~~~~~
t f - 

(5.16)

+ O( p .)

from which , by Lenmia 2.7, we f ind

~(t) = ~0(tf, t)’~~ + O(p.) . (5.17)

Rather than derive approximate solutions for p and q from (5.9), (5.17)

and (5.15) it is simpler to apply transformation (5.9) to (5.6) and

substitute (5.17) and (5.15) into the result to yield

u*(t) — - ~~~~~~~~~~~~~~~~~ + B 1
~ 2

#(t
~
,t)rIF. + O(p.)) (5.18)

where B
0’ 

= B
1
/ - B2’A22~~

1
A21

/, the * denotes that 
~~~ 

and B2’ 
are

evaluated along the optimal trajectory and t~ is the optimal final time.

Analysis of (5.18) yields the two time—scale property.

L e a  5.1. The time-optimal control u*(t) is composed of an initial

interval of switchings in a slow time-scale followed by an interval of

*switchings in a fast time-scale. Furthermore u (t) satisfies

* 

—SGN [B0’ ~0’(t ,t)~~ + O(p.) + O(€)] t E

u (t) — (5.19)

-SCN[B0’ ~~~~ 
+ B

2~ ~~~~~~~~~~ + O(p.)] t E [t -i ,t )

where I
p.
(t
0~
t) is the state transition matrix of a system which is

uniformly asymptotically stable and € may be chosen arbitrarily small.

_ _  - —
~~~~~~~~~~ -5 •~~~~~~~ -~~~-——
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Proof of Lemma 5.1. The proof proceeds as follows. First it is

shown that

~2
’(t,t) = ~p.

/(t~~t) + O(p.) . (5.20)

Then based on (5.20) the two time-scale property is revealed.

Consider the homogeneous system

— - (A22 + WA 22 
L
A21A12)h (5.21)

with final state at time tf. The solution to (5.21) is

h( t) ~2
/(t

f~
t)1~. . (5.22)

Since (5.3) is uniformly asymptotically stable the homogeneous system

4 = A~~(t)y = - G(~ ( t ), t) y  (5.23)

with state transition matrix ~p.
/(t

f~
t)~ is uniformly asymptotically stable

in reverse time. In terms of (5.22) may be approximated

h( t) = ~p.
/(t

f~t)T~. + PW (tf*t)iL~. • (5.24)

Substituting (5.22) and (5 .24) into (5.18) yields

u*(t) - ~~~~~~~~~~~ + 4/~p.
t ,tYflF 

÷ o(~)] . (5.25)

For any ~~, there exists a and a such that if p. E (O ,~~ )

l~p.
/(tfP t) < ~ for t € Ct

0~
t
f
-1] . (5.26)

Furthermore r = O(p.) which implies

a 
~ + ~(p.) t E [tf

_;t
f
) . (5.27)

------5
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Equations (5.25), (5.26) and (5.27) thus imply (5.19). The initial or

slow control interval is [t0,t -r ) and the final O(p.) interval, called

the fast control interval is £t -T,t~ J. Since ‘r is O(p.), (5.19) implies

that the switchings in the slow control interval are primarily dependent

on B~”~Ø
/(tf, t)~~ for p. small enough. Similarly in the fast control

interval the switchings are primarily dependent on

~~~~~ 
+ B ’~~p.(t ,t)’T1~ . (5.28)

Lemma 5.1 is proved.

One additional fact can be discerned from equation (5.19) for the

control. After the completion of the slow control interval the slow state

x will be within O(p.) of X
F 

since T is O(p.). This agrees with our

intuition since in a system in which some states can be steered much more

rapidly than others, it makes sense that the time-optimal control should

first concentrate on steering the slow states near to their final state

and then steer the fast states rapidly to their final states while also

steering the slow states the last small distance. Based on this under-

standing of (5.19) the near-optimal control will be proposed in the next

section.

5.3 Slow and Fast Control

The reduced order system is defined and the near-optimal control is

proposed in this section . Setting p. to zero in (5.16) yields the reduced

order system

~~~~ ~ 
.

. 

,  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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a f
0

(x,t) + B0(x,t)u

a f(x ,t) - P(x,t)G(x ,t)~~g(~ ,t) (5.29)

+ [3
1

( , t) - F(x ,t)G( c,t)~~B2(x,t)] -.

The reduced order time-optimal problem for this system is that of finding

the control u (t) which steers the state x(t) of (5.29) from the initial

point x0 
at time t

0 
to the final point x.~. in minimum time

The minimum principle provides the following necessary conditions

for the reduced problem:

= I + p ’f~ (x ,t) + p-’B0(x,t)u , (5.30)

= - f
0

(x,t)’ p - (B
0

(x ,t)u) / p , (5.31)

= - SGN[B
0’(x,t)p(t)1 . (5.32)

Along an optimal trajectory ~~(t) system (5.31) is written

= - A
0(t)p (5.33)

which has the solution

a 
~~~~~~~~~ 

(5.34)

Substituting (5.34) into (5.32) yields 
F

— - SGN1B_ ’(~~.t)~0’(~~.t)p...
] (5 35)

where is the optimal final time.

We consider the slow control problem of finding the control u (t)

which steers x of (5.1) from x
0 
at time t

0 
to in minimum time T* and

show that u (t) is a near-optimal control for this problem.

— 5-— .
~~~~~~~~~~ ~~~~~~~~~~~~~~~
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-

Lenm~a 5.2. Let ~(t), (t) be the trajectory corresponding to the

app lication of *(t) to system (5.1) and ~~ (t) be the optimal trajectory

for the reduced order system. Then

~ (t) a ~~(t) + O(p.) . (5.36)

Proof of Lemma 5.2. Let e(t) a x(t)-x(t). The trajectory ~ (t),~~(t)

satisfies

A A A —*x — f (x,t) + F(x ,t)z + 8
1

(x ,t)u
(5.37)

= g(~ ,t) + G(~ ,t)z + B2(~,t)~~ .

Let t~ be the instants at which any of the components of ~~t) switches.

Then on any interval £ti,tj+1), equation (2.38) implies that

~(t) = *p.
(t~t~)Cz~ +

+ ~~~~~~~~~~~~~~~~~~ - G(~ ,t)
1g(~c,t) (5,38)

- G(x,t) 
1
B2

(x ,t)~T~(t) + 0(p.) .

Thus on [t~~t.~ 1)

a f0(~,t)  ÷ B0(~,t)~~ + O(p.)
(5.39)

- + F(3
~
,t)

~~p.
(t,ti

)W(t
i)

where

W(ti) 
— +

(5.40)
+ B

2
(x(t~ ),t~)~~~(t~ )

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
~—
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Let Xa (t) be the point for all t satisfying the Taylor theorem

for

A A * — —f0(x ,t) + B0(x,t)u = f
0

(x,t) + B
0

(x,t)u
(5.41)

+ (f O (Xa( t )
~

t)  + Bo (xa (t) ,t)~
T

~
) e

then

— (f 0(x (t),t) + B
ø

(x
a(t),t)~~

)xe + 0(p.)

+ F(
~~
t)
~ p.

(t ,ti)W(t~) (5.42)

~ A (t)e + O(p.) + F(t)~~p.
(t,ti

)W(t
~
)

The solution to (5.42) is

e( t) = 
~e
(t
~
t
i)~~

t
i
) + 0(p.)

(5.43)

+ I ~~~~~~~~~~~~~~~~~~~~~~~~~
• t

i

and thus by Lemma 2.2

e(t) — 
~e
(t,ti)e(tj) + 0(p.) . (5.44)

Since e( t
0
) = 0, e(t1) 

a O(p.). If e(t
i
) = 0(p.), then e( tj+1) a Q(p.) by

(5.44) and thus since there are a finite number of

e(~t~) = O(u) t E [t0,~~~] J
and therefore

Ax( t) = x (t) + O(l.L)

and Lemma 5.2 is proved.
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For the slow control of (5.1) the final value z~ is free and there-

fore q
~ 

a 0. Thus transformation (5.9) implies that.

=
(5.45)

1•_IF 
= A22

where A22
1 and A21 are evaluated along the optimal trajectory. Sub-

stituting (5.45) into (5.25) yields

— 
u*(t) = - ~~~~~~~~~~~~~~~~~

(5.46)

+ B
2
’~~p.

/(t~~ t)A22 
1
(t )A21(tf)P~ + O(p.)]

which implies that u*(t) also possesses the two time-scale property. On

an initial interval [t0, t3+ T -~] the switchings are primarily dependent

o: the term B
~
”
~o

F(t
~
,t)p

F
. As p. goes to zero the op:imal trajectory

• x5(t) correspond ing to u5(t) converges to x (t) and u5 (t) converges to

• ~*(t) Therefore B~’~0’(t,t)p~ converges to Bo
/(
~~

,t)
~o

/(tf, t)pF of

equation (5.35). The fast switchings of u (t) dependent on B2’~p.
’(t1~

t)

takes place on the 0(p.) interval

Lemma 5.3. Let the zeroe: of B
0
1(~~,t)~0

I(t 1 t)P~ of (5.32) be

simple. Then there exists a p. such that for p. E (O ,p. 3 the switching

* * a
times of u5(t) on £t0,t0+T5-r3 are 0(p. ) different from these of u (t).
Furthermore the minimum time T for the slow control problem satisfies

* —* a
T5

T + 0(p.)

where T is the minimum time for the reduced order problem and a > 0 is

constant. 

~~~~~~~~~~~~~~~~~~~~~~~
__________ ~~-—• - --5”- - -
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Proof of Lemma 5.3. The fact that the zeroes of

are simple implies that the control sequence of

* —*u (t) — — SGN[B
0’(x ,

t)~ Q’(tf, t)P~S (5.47)

+ O(p.) + O(~ )1 t E

is, for p. small enough, the same as that of ~~~(t) . Here the choice of ~

is dependent on the reverse time exponential decay of ~p.
#(t~~t) and the

difference

B
~
’
~o
/(t ,t)pF 

- ~~~~~~~~~~~~~~~~~~~~

and clearly satisf ies

litn € 0 .

The 0(e) and O(p.) terms in (5.47) shift the switching times by some

variations dependent on p.. Since these variations go to zero as p. -. 0,

they are 0(p.
a
) dependent where a > 0.

Finally since a finite number of switchings are varying by 0(p.
a
)

and r a 0(p .)

* —* a
T5

T +O(p .)

and Let~~a 5.3 is proved.

The point here is not the particular value of a but rather that for

p. ~ (Ø ,p .*3 it is possible, by varying the switchings of ~*(t)  and adding

some fast switchings to find the optimal control. This might be done

either by an iterative method such as the one presented here or by

switching sensitivities [223.

I.. _____________________

— -5’- ~~~~~~~~ -~ —5—- -5- — -5- •z---~ ~~~~~~~~~~ 
— - - — - - 5
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From Lemmas 5.2 and 5.3 it is clear that ~~ (t) is a near-optimal

control for the slow control problem, in the sense that it steers x(t) to

within 0(p.) of x~, in near minimum time

We now begin the task of finding a near optimal control ~*(t) for

the time-optimal control of (x’,z’) to (X ./,~~~~s’) / . Suppose that

is applied to (5.1); then z(~~) will be within some bounded region

surrounding z~. Since z(~~) is some finite distance from ZF and z is

controlled in a fast (~) time scale it is possible to steer z from z(~~)
to zF 

by some fast switchings of O(p.) duration. To this end we define

the fast system

• 
= g(x~,t) + G(x,~,,t)~ + B2(~c~.,t)a (5.48)

where is the fixed final point for x. System (5.48) is linear time-

varying and we consider the problem of finding the control u (t) which

- 
F 

time-optimally steers z from z(~~ ) to z~. Due to the presence of p. in

(5.48) the time T required for u (t) is O(p.). Suppose that ~~~ t) is

applied to (5.1) to drive x to O(p.) from x~. Applying u (t) for an

additional O(p.) time will leave x 0(p.) from

Lemma 5.4. The control

I •~*(~ ) t E [t0,~~~)_*( )  — (  -* —* (5.49)
uf(t) t € Ltf, tf+Tf)

is near optimal in the sense that it steers (x’,z’)’ from (x0’,z0’)’

* * * a
to O(p.) from (x.~#~z~~)/ in near minimum time T + Tf = T + O(p. ).

- -- 

~~~~~~~~~~~~~~~~~~~
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Proof of Lemma 5.4. It has already been shown that u*(t) steers x

to 0(p.) from ~~~ The next step is to show that it steers z to O(p.)

from z~.

On the interval

x(t) = x~, + 0(p.) . 
(5.50)

Let e(t) — z(t) - ( t ) .  Then

= g(x,t)  - g(x
F
,t) + [G(x ,t) - G(x

F
,t)1z (5.51)

+ [B2
(x ,t) - B2(x~~t)J~

By an analogous argument to that in the proof of Lenmia 5.3 and (5.50) it

can be shown that e(t) is O(p.). Since ~~(t) steers z to z~, ~~ (t) steers

z to 0(p.) from z~ .

• * — * a *
Finally Tf O(p.) and therefore Tf 

+ Tf = T + O(p. ) .  The time T

for the slow control problem satisfies

* *

and thus

-4c —* * aT + T
f 

T +O(p .)

This completes the proof of Lemma 5.4.

5.4 Example

This example illustrates the result of app lying the near optimal

-*control u (t) to the control of the system

L -
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~~a - s i n x + ~~~Z1 +~~~z2

~~~~~~ z1 +u (5.52)

— - 2z
2 
+ 2u

where p. = 0.1. Let the initial and final states be (n/2, 0.7, -0.8) and

(0,0,0) respectively. Setting p. = 0 yields the reduced order system

x — - sin x + u . (5.53)

The reduced time-optimal control

?(t) a - 1 t E [0,1) (5.54)

steers ~ from ir/2 to 0. When this control is applied to (5.52), (x,z1,z2)

is steered to (.0679 , -1, -1). This is acceptable if we are not

interested in steering z. For instance if z represents actuator dynamics

• the final position of the actuator may not be important. But suppose we

are interested in steering z to zero. Then we find the control

+ 1 t € [1, 1.1098)

—

— I t E [1.1098, 1.139)

which steers (z1,z2) from (-1, -1) to (0, 0). When ~~~(t)  followed by

i4(t) is applied to (5.52) the state (x,z1,z2) is steered to (0.658, 0,00,

0,00). Thus x is steered to within 57. of its final state, and z is steered

to 0. The near-optimal control is calculated entirely on reduced order

systems.

~~ --
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6. NONLINEAR EXA~4PLES

6.1 Introduction

In this chapter two nonlinear examples are presented. One of these

examples does not fit into the form of system (5.1) and therefore the

theory developed in Chapter 5 is not directly applicable. However, due

to the uniform asymptotic stability of the homogeneous part of the fast

subsystems, both of these examples have the two time-scale property. The

purpose of this chapter is to demonstrate ways to treat particular

problems based on the two time-scale property.

tn each example the controls are calculated for reduced order time-

optimal problems. Then iterative schemes are applied to calculate optimal

controls. The first example is a magnetic suspension system with both

state and control constraints. As a result of the form of the time-

• -

, 

optimal control for the reduced system, a singular arc in the time-optimal

control for the full order system is proposed. The second example is more

complicated and in order to find the time-optimal control for this system

a nested iterative scheme is developed.

In the discussion of each example an effort is made to show the

thinking used in the development of the results. The general approach is

always t’, first find the time-optimal control for the reduced order

system. This time-optimal control steers the slow state x of the full

order system to a point which is 0(p.) from its final desired point. The

first iterative method is designed to perturb this control in such a way

that the resultant control steers x to its final desired final point. Then

the control which s.eers the state of the fast subsystem to its final

desired state in minimum time is found. This contro l steers the state z

- •~~~ •1~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --- - 
- _______________________—-5 ---5 -. 

-5- -



-- - .~~~~~~ - —•---,----——-——--- -~~~ ___ _ _-_____-_ --_ - -~ 5—--.---.- -~ - —~~•—~~~ —- —5- V —  5 —__ ---_ —~~5- — “~~~~~~~ .5-5-.5-r •~~~•5-~5- ~~~~~~~~~~~~~~~~~~~~

75

of the full order system to a point O(p.) from its final desired point.

Once again an iterative method is applied to change this control so that

it steers z to its final state. Then the intermediate point al gorithm

is applied to find the time—optimal control which steers (x ,z’)’ to its

final desired point.

6.2 Magnetic Suspension System -

The system treated here is nonlinear in the state z. Thus this

system is not of the forts of (5.1). From the two time-scale property it

is conjectured that the time-optimal trajectory has a singular arc. Also

a state constraint becomes a control constraint in the reduced problem.

*The problem is to f .nd the control u (t) which time-optimally steers

the state of the system •

lOx
2

a - 20(z) 2/x 1 + 10 (6.1)

L~ — - R z + i

from an initial point (x10, x20, z0) to a final point (x
1~ ,

x
2~ ,

z~) subject

to the constraints u < Umax and Iz l < 1. Also it is assumed that

0.1 < x1 < 1  and Ix 2~ <1. System (6.1) is one possible model of a
magnetic suspension system consisting of an electro-magnet which is

suspending an iron ball beneath it. The states x
1 

and x
2 
are the position

and velocity of the ball, z is the current through the magnet and u is the

voltage input. The parameters L and R represent the inductance and

resistanc e of the magnet.

:~ attempting to control such a system an engineering assumption that

S. made is that the current z can be changed instantaneously from

-5
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one value to another. This corresponds to setting L = 0 and thus L takes

the place of p. in this system. The parameter L is set to zero. Then

(z) 2 ~ v, constrained 0 <v < 1, can be treated as control for the reduced

order system

x = lOx1 2 
. (6.2)

- 20v/x
1
+10

*The reduced problem is to find v (t) which steers (x1,x2) from the

initial point (x 10,x20) to the f inal point (x lF,x2p) in minimum time.

The slow control problem for (6.1) is to find the control u*(t)

which time-optimally steers (x1,x2) from (x 10,x20) to (X1F, x2p) with the

final value of z free. This control is found in two steps. First, a

*near optimal control is found based oct v ( t ) .  Then this control is

iteratively adjusted to u (t). Finally the time-optimal u*(t) is found

• via the intermediate point algorithm. For this system, the value ZF 
is

the amount of current which will hold the ball in the position X1F with

the velocity 
~2F 

a 0. Thus X
1~~~,X

2~~~, Z~~ is a nominal point around which

a regulator can be designed.

The Hamiltonian for the reduced control problem is

H = I. + 10p1x2 
- 20p

2v/x1 + lOp
2 

(6.3)

where p
1 

and p
2 
are the adjoint variables corresponding to the states

and and satisfy

— — 2
p1 — - 2OvpF,f(x,)
.
~~ (6.4)

p2 
lO•
~~

-- - - - 5 5 - 5 -  ‘—~-~- . .___ r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—— -- — —
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By the minimum principle

0 if 20p
2/x1 

< 0
*v (t)  = — _ (6.5)

1 if 20p2/x1 
> 0

and H = 0 along the optimal trajectory. It cart be shown that the reduced

problem is normal and therefore no singular arc arises. Thus v — 0 or

v 1. A phase plane study shows that the possible control sequences in

the region of interest are Ci ,01, Co,i3, Col and Ci ). The reduced system

time-optimal trajectory from (x10,x20) = (0.3,0,0) to (xjF,x2p) = (0.6,0.0)

is plotted in Figure 6.1 and the corresponding time-optimal control is

o t E [0 , .0658)

v*(t)
1 t E [.0658 , .0920)

The next step is to find the slow control u ( t ).  Suppose that the

control sequence which drives (x1,x2) from (x10, x20) to (xlF~x2F) is

[v1,v23. For L sufficiently small a near optimal control is the following:

1. Apply u1 
= + Umax to time-optimally steer z to

at t — t1.

2. App ly u2 — R or 0 to hold z on z2 = v1 until (x1,x2) hits

the switching curve for the reduced system at ~ 
a

3. Apply u
3 ± Umax to time-optimally steer z to z

2 
=

at t = t3 .

4. Apply u4 
= R or 0 to hold on z2 

= v2 until x2 = x~~ at

t — t4 .

At t — t4, x2 x~~, and x1 
is 0(L) frost xlF at the position X1R

(x1 
reached). For smaller L the distance 

~
X1R

_X
1F I is smaller. The near

— 
~~

_ -~m ‘~~~~~
- - -

~ r a _ ~~~~ ~~~~~~ 
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optimal phase plane trajectory for the points (x101x20) (0.3,0.0) and

(x1~~x~~) = (0.6,0.0) is plotted in Figure 6.2 for R = 3. and L = .05.

In Figure 6.3 the corresponding z trajectory is plotted versus time.

Note that for these values of R and L, = 0.68.

The conjecture is that by varying ~~~~~~ ~ = l , . . . ,4 , with the sequence

(u1,u2,u3,u43 the control ~z (t) will be found . If this is true the time—

• optimal trajectory will contain a singular arc as either u
2 
or u

4 
= 0 ott

a finite interval. On this interval z is also zero. When u and 0

the equation for x2(t) is

x2(t) = lot + K (6.6)

where K is a constant. The minimum principle provides the necessary

conditions

H = 1 + p 110x2 
- 20p 2 (z) 2/x 1 + lOp2 

- Rqz/L + qu/L = 0 (6.7)

where the adjoint variables satisfy

2 2
p1 

- 20p
2

(z) 1(x1)

p
2 

— - lOp
1 (6.8)

4 40zp2/x1 + Rq/L

and

u < 0  if q > 0
(6.9)

u > O  if q < O

Thus for u to be 0 on a finite interval, q must be 0 on that interval.

This impl ies

k~~~~ I -~~
-

~~~~
-- ---•— ~~~~~_-— - -

—— — ~~~~~~~~~~~~
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~> z 0 (6.10)

—> H a 3 + p1
10x

2 
+ lOp

2 
= 0

and

—> 
~l 

—

p
2

— lOp
1

—> p
1 

= K1, p
2 

= - lOK
1t + K2 (6.11)

where K1 and K
2 

are constant. Equations (6 .10) and (6.11) imply

-1-lOp2 1 lOOK
1
t 10K

2
= 

lOp 10K + 10K 
- 

K1 1 1 1 
(6.12)

-1-10K

~~~~~~~~~~~ 10K
1

Thus if in (6.6)

-1-10K2
K = 10K

1 
(6.13)

the singular arc satisfies the necessary conditions of the minimum

princip le.

The near optimal control steers (x 13 x2
) from (x10 x20) to (X IR ,x2p

) .

There must be a point (x10 ,x
2~~) such that a near optima l control based on

v*(t) steering (x 1,x2) to this point would steer (x 1, x
2

) to (x lF, x2F).

An iterative method for x
10 

is as follows :

1. Initialize with X
].G 

a

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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2. Find the near optimal control ~~
(n)
(~) to (x

lG~
t t)

, x2F ) .

Let the position reached be

(n+l) 
— 

(ci) (n )
3. — X1G 

- a(xlR 
- X1F

4. If - X1F I < 0.01, stop.

5. Let n n+1 and go to step 2.

Experimentally 0. 0.6 provides convergence within fifteen iterations.

In this way u (t)  is found. In Figure 6.4 the phase plane trajectory

correspond ing to u*(t) for (x10 , x20) = (0.3,0.0) and (xlF ,x2F) = (0.6,0.0)

is plotted and in Figure 6.5, the corresponding z versus time trajectory.

Suppose that u
~
(t) may be found, as above , to steer (x 1,x2) from

(x10,x20 ) to any intermediate point (x113 x21
). Then ~~ may apply the

following intermediate point algorithm to find u*(t) which steers

(x
1
,x2, z) from (x 10, x20, z0) to (x1F, x2F , ZF).

(0) (0)I. Iru t~ alize with x11 
= X1~~3 X21 

a X 2F 3 n = 0.

2.. Find u
5
(tt)
(t) to steer (x 1,x2) to ~~~~~~~~~~~~ in time

-
,

3. Find z(T ( c i)
)

4. Find U f to steer z3 from z3(T5~~~) to x3F in time ~~~~~

5. Find ~1(T5~~~ + T
f~
’
~~)) x2

(T
5~~~ 

+ ~~~~~~~

6. If tx1(T~~~~ + T
f
(t~~) - X

1~~ l + ~x2
(T~~~~ + Tf

(n)
) - 

— 
C

where C is a prede termined allowable error, stop.

7. Integrate (6.1) in reverse time with uf~~~ to find

(n+l) (n+1) (n)
x .x.. _ . That is. u. steers (x •x.) from11 - hi. 1 4

(n-I-i) (n+l)(x11 ,x21 
) to (x lF,x2F).

8. Let n n+l and go to step 2.

After the algorithm converges a control has been found which steers

(x1, x2, z) from (x 10, x20, z0
) to (x lF ,x2p ) in time ~~~~ + ~~~~~ For the

~ 

. 

-~~ 
- -
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problem of steering from (0.3,O.0,.387) to (0.6 ,O.O,.548 ) with L — .05

and R = 1, the intermediate point algorithm converges to drive (x1,x2)

to io .2 from (x1~~~x1~~) .  The times required for this are ~~~~ = .902,

= .002. This is proposed to be time-optimal as T
f~~~ 

is 27. of

acid T5~~~ is 77. larger than the time required for v*(t). In

Figure 6.6 the x
1
-x

2 plus phase plane trajectory is plotted and in

Figure 6.7 the trajectory z versus t is plotted. For systems such as

(6.1) the smaller L the closer T
5

I
~~ + Tf

(tt) 
is into ~f*• Thus there

0 0
exists L such that for L E (O ,L ) the control provided by the intermediate
point algorithm is optimal.

6.3 An Example of Nested Iteratives

The system treated in this example is

ax1 2 2
. 1 (x

2)x2 
a 

~~ (z
2
-x2)e

(6.14)
a - + U

= - 2z
2 + 2x2 + 2u

where the control us is constrained

<1 (6.15)

and ~ is a small parameter greater than zero . The problem under con-

*
sideration is that of finding the control u (t) which time-optimally

steers the state (x1,x2, z1, z2) from a fixed initial point (x10,x20, z10, z20)

to the origin.

k ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ‘ “ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - : - . . 
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Setting ~t. to zero yields the reduced order system

xl - x2
— 2 (6.16)

1— (x2)x 2 = i u e

The solution to the problem of finding the control ~~~~(t) which time-

optimally steers (x1,x2) from (x 10,x20) to the origin, in time f*, is in
[37]. There it is shown that for (x10,z20) in the region c,

2

(x10,x20) EG = [(x 10,x20): l
~ o~ 

<1 + ~~~~~~ ) (6.17)

the optimal control exists and for (x10,x20) not in the region G an

e-optiinal control [36] exists. For the problems considered for (6.14)

and (6.16) it is assumed that (x10,x20) E G.

Since the final desired point is the origin, x~~ = 0, the fast

subsystem is

~Lzl — - z l + u
(6.18)

~~2 2z2 +2u

The near optimal control for system (6.14) is

(t) t ~~[0 ,T )

~(t) 
* —* 

(6.19)
uf(t) t E [~~ ,T +Tf )

where ~~(t) steers (z11 z2) from (z1(~~),z2(r)) to the origin in minimum

t ime 1 .  For the initial point (x10,x201z10,z20) — (1,l,-l,-l) and

— .4, the near optimal control is

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
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t E [0,315)

1 t E [3.3.5,4.80)
~ (t) = (6.20)

-1 t € [4.80 ,5.24)

1 t E [5.24,5.30)

which steers (x1,x2,z1,z2) of (6.14) to (-.29,-.25,0,0,-.2). The phase

plane trajectory of x1 versus x2 is plotted in Figure 6.8. The

corresponding trajectories z1 versus t and z2 versus t are plotted in

Figures 6.9 and 6.10. For ~i. = .1 and the same initial point the near

optimal control

—1 t E [0,3.15)

1 t E [3.15,4.79)

~ (t) = (6.21)
— 1 t E [4.79 ,4.90)

I. t E [4.90 ,4.93)

steers (x1,x2,z1,z2) to (-.06,-.07,
0.O,-’.056) and thus as expected the

near optimal control steers the state to a point closer to the origin.

In order to improve on the near optimal control we make the con-

jecture that the optimal control may be found by perturbing the switching

*times of u(t). This is done in two steps. Let u8(t) be the control

which time—optimally steers (x1,x2) of (6.14) from (x10,x20) to the

origin in time T and let u (t) be the control which time-optimally

steers (z1,z2) from (z1(T ) , z2(T )) to the origin in time T*.

The controls u (t) and ~4(t) are found by an iterative method which
is essentially the same as the one described in the magnetic suspension

example. Here this method will be described in terms of finding the

control u (t). The fast control u (t) is found analogously. 

~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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There must be a point (x1G3x2G) such that the control 
‘
~~t) designed

to steer (x1,x2) from (x10,x20) to (xlG,
x2G) will steer (x1,x2) to any

desired point (xjF,x2F). Thus ~
‘
~~t) for the final point (xlG,x2G) is in

fact u (t). Let (xlR~
X2R) be the point to which ~~(t) steers (x1,x2) of

(6.14). The following is an iterative method for (xic,x2c) and u
*(t).

1. Initialize with (xlG~
°
~
,x2G~

°
~
) (x1~~x~~).

2. Find the control u~~~t which steers (x1,x2) to

~~~~~~~~~~~~ 
in minimum time Let the point

reached by (x1,x2) when u~~~(t) is applied to (6.14)

(n) (n)..,e (xlR )XZR
(iH-l) (n) (n)

3. x1~ - a.(xj~ 
-

(n-I-i) (n) , (ii)
- C.

~
X2R 

-

4. If IXIR~~ 
— X1F I + 

~ 2R 
- X2p~ 

< 0.01, stop.

5. Let n n+l and go to step 2.

After this method has converged u~~~(t) should be u (t). As in the

magnetic suspension the value ~~. 0.6 provides convergence in less than

15 steps for the initial points which were treated experimentally.

In this manner an improved near optimal control is found

*u (t)
S

u (t) = 
* 

(6.22)
I~1f
(t)

For the initial condition (-1,2,-1,-l) considered above and ~~~= 0.4,

—l t E [0,3.06)

* 
I t € [3.06 ,5.00)

~ (t) (6.23)
t E [5.00,5.45)

1 t E [s.~ s,s.s7)

_ _ _
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and steers (x1,x2 z1,z2) to (.032,.076,0.0,.009). This is an improved

control over control (6.20) since it steers the state of (6.14) closer

to the origin.

The intermediate point algorithm can now be applied since it is

possible to find u*(t) to steer (x1,x2) to points (xlF,x2p) and u (t) to

steer (z1,z2) to the origin. Thus, even though (6.14) is not block

diagonalized, controls may be found to steer the slow and fast states to

desired points from controls calculated for reduced order systems.

After six iterations of the intermediate point algorithm the control

-l t E [0,3.105)

6 1 t E [3.105,5.046)
~~ ~(t) = (6.24)

—l t E [5.046 ,5.253)

i t E [5.25 3,5.304)

steers (x1,x2,z1,z2) from the above initial point to (.0047 ,.037 ,- .3XlO 7 ,
-

• 
.0008) for ~j. 2. The intermediate point algorithm is applied in nested

iterations. That is, in each iteration of the algorithm these are
(n) (a) *iterations for u5 (t) and ii

~ 
(t). For u (t), in Figure 6.11, the

versus x
2 

trajec tory is plotted and in Figures 6.12 and 6.13 , the

versus t and z2 versus t trajec tories are plotted.

For this example the intermediate point algorithm does not provide

any particular improvement over the near optima l control ~*(t) The

cont rol is calculated as the concatenation of a t ime-optimal control for

the reduc ed order system and a time-optimal control for the fast subsystem .

The calculation of the time-optimal control for the reduced order system

requires Runga Kutta integration for the switching times and therefore,

since the intermediate point algorithm requires six iterations, it
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requires six times as much integration. With this integration the slow

control cannot be calculated to steer the x states to much closer than

10 2 of the final point. For the same initial state and ~ = 0.2, the

x1-x2 
trajectory corresponding to

—1 t E [0,3.099)

1 t E [3.099 ,4.898)
u (t) = (6.25)

— 1 t E [4.898 ,5.123)

1 t E [5.123 ,5.183)
.4

is plotted in Figure 6.14. The final error is approximately the same as

that in Figure 6.11. The trajectory in Figure 6.11 is apt to be closer

to the shape of the optimal x
1
-x
2 trajectory . However a*(t) requires

Less time and is therefore a better control if our criterion is that of

steering the state close to the final point. This is a case where the

optimal control is not necessarily the best control to use. This is

• particularly true since the models for real systems are not perfectly

accurate anyway .

Thus by using the two time-scale property and the near optimal

controls , iterative methods can be developed in order to steer the state

of a full  order system using controls calculated from reduced order

systems .

~ 

.-,--.
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7. CONCLUSION

In this thesis we first developed stability bounds for ~i. in the

linear time-varying system

— A11(t)x + A12(t )z  + B1(t)u
(7.1)

A21(t)x + A22 ( t )z  + B2 (t)u

That is , for 1.~. within these bounds (under approximate assumptions on

(7.1)) the uniform asymptotic stability of the full order system and fast

subsystem are guaranteed . Then the problem of àteering the state of

(7.1) from a fixed initial point to a fixed final point in minimum t ime - :

was treated. The two t ime-scale property for this problem was revealed

by expanding the necessary conditions of the minimum principle in the

singular perturbation parameter ii. In a similar manner the two time-

scale property of the time-optimal control of

— f(x,t) + F(x,t)z + B1(x ,t )u
(7.2)

= g(x,t) + G(x ,t )z  + B2 (x ,t)u

was revealed. This property implies that the time-optimal control has

switchings in a slow time-scale on an initial interval and then switchings

in a fast t ime-scale on the final interval.

On the basis of the two time—scale property a near time-optimal

control was developed for (7. 1) and (7.2). These ‘tear optimal controls

were applied to the two nonlinear examples and some iterative methods were

developed to improve the near-optimal control.

Thus the main results were the development of bounds for ~ itt (7.1),

the revelation of the two time-scale property for (7.1) and (7.2), the
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development of near optimal controls and the calculation of controls for

some nonlinear examples .

There are several possible directions for future research. The

classes of singular ly perturbed systems which possess the two time-scale

property might be extended. The solution of control problems for

singularly pertu~bed systems with state constraints requires further

study. Such a study would have as its purpose the discovery of properties

of constrained control problems on the basis of the nature of the solution

for near optimal controls calculated for reduced order systems. An

example of this is in the magnetic suspension system presented in the

last section in which a singular arc is proposed based on the time-optimal

cont rol of the reduced order system. For linear time-invariant singularly

perturbed systems it has been shown [29] that the time..optimal feedback

control for the full order system. This result could be extended to

linear time-varying and some classes of nonlinear systems. Finally,

research could be made in order to develop iterative methods designed to

take advantage of the time-scale decomposition which is characteristic of

the solution to other optimal control problems for singularly perturbed

systems .

~~~~~ ~~~~~~~~ ~~~~T~— 
•-
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