

2

C

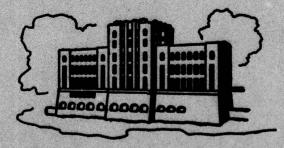
UC 28 1970

BUSITE

lage

A

DISTRIBUTION STATE Approved for public a


Distribution Unli

יושה שביו

by Donald B. McDonald

sponsored by

U.S. Army Corps of Engineers Contract No. DACW25-77-C-0062

IIHR Report No. 213

Iowa Institute of Hydraulic Research The University of Iowa Iowa City, Iowa

March 1, 1978 78 07 17 171

ABSTRACT

CORALVILLE RESERVOIR WATER QUALITY STUDY October 1976 - September 1977

IIHR Report No. 213

The Coralville Reservoir Water Quality Project was initiated in 1964 and has continued without interruption since that time. The purpose of the study has been the determination of the effects of a flood control reservoir on the chemical and biological characteristics of its parent river. Samples for a number of physical, chemical and biological water quality parameters were collected from the Iowa River upstream from the reservoir; from the top, mid-depth, and bottom of the reservoir; and from the Iowa River at two points downstream from the dam.

Data obtained during this study have consistently shown that the limnology and water quality of the Iowa River and Coralville Reservoir have been influenced primarily by four factors: 1) non-point source pollution resulting from agricultural activities in the drainage basin; 2) the hydrological characteristics of the Iowa River; 3) the morphometry of the Coralville Reservoir; and 4) the fluctuations in the storage and pool level of the reservoir resulting from flood control operation. During the present water year, October 1976 - September 1977, the significance of non-point source pollution and the hydrological characteristics of the river were especially evident. Throughout most of the 1977 water year river flow into the impoundment was far below normal and as a result concentrations of several parameters were substantially lower than levels observed during prior years. These effects were especially evident in the case of turbidity, suspended solids, nitrates and bacterial populations which reached their maximum concentrations during high flow periods and exhibited minimal levels during extended periods of low flow.

Special studies were also instituted to determine concentrations of several organochlorine pesticides in fish collected from the Iowa River and Coralville Reservoir. Fish were collected on a monthly basis at three locations: 1) the Iowa River near the county road a short distance above the impoundment, 2) the Coralville Reservoir near the Lake MacBride Fisheries Station, and 3) the Iowa River a short distance below the dam. Species collected included typical bottom feeding forms as well as carnivorous species. A comparison of data obtained during the present (1976-1977) study with that obtained during earlier studies indicates that a steady decrease in pesticide levels in fish taken from the Coralville Reservoir has occurred over the past eight years.

78 07 17 171

BIBLIOGRAPHIC DATA 1. Report No. SHEET IIHR Rept 213	- 2.	3. Recipie	ent's Accession No.
. Title and Subsitle		5. Report March	Date 1978
Coralville Reservoir Water Quality Study Oct 1976 - Sept 1977	-	6.	
Author(s)		8. Perform No.	ning Organization Rept
Donald B McDonald Performing Organization Name and Address Institute of Hydraulic Research			t/Task/Work Unit No.
Institute of Hydraulic Research 🛛 🖉 University of Iowa IowaCity, Iowa 52242		11. Contra	ect/Grant No.
2. Sponsoring Organization Name and Address US Corps of Engineers		13. Type o Covere	of Report & Period ed
		14.	
15. Supplementary Notes			antan ang ka
6. Abstracts See attached	<u></u>		in the strate
7 Key Words and Document Analysis. 170. Descriptors			
water, quality, study			
water, quality, study 17b. Identifiers/Open-Ended Terms			
water, quality, study 17b. Identifiers/Open-Ended Terms 17c. COSATI Field/Group 18. Availability Statement		19. Security Class (This Report) UNCLASSIFIED	21. No. of Pages 50
17. Key Words and Document Analysis. 17e. Descriptors water, quality, study 17b. Identifiers/Open-Ended Terms 17c. COSATI Field/Group 18. Availability Statement Unlimited			

the second s

2

INSTRUCTIONS FOR COMPLETING FORM NTIS-35 (Bibliographic Data Sheet based on COSATI)

Guidelines to Format Standards for Scientific and Technical Reports Prepared by or for the Federal Goyernment, PB-180 600).

1. Report Number. Each individually bound report shall carry a unique alphanumeric designation selected by the performing organization or provided by the sponsoring organization. Use uppercase letters and Arabic numerals only. Examples FASEB-NS-73-87 and FAA-RD-73-09.

2. Leave blank.

- 3. Recipient's Accession Number. Reserved for use by each report recipient.
- 4. Title and Subtitle. Title should indicate clearly and briefly the subject coverage of the report, subordinate subtitle to the main title. When a report is prepared in more than one volume, repeat the primary title, add volume number and include subtitle for the specific volume.
- 5. Report Date. Each report shall carry a date indicating at least month and year. Indicate the basis on which it was selected (e.g., date of issue, date of approval, date of preparation, date published).
- 6. Performing Organization Code. Leave blank.
- 7. Author(s). Give name(s) in conventional order (e.g., John R. Doe, or J. Robert Doe). List author's affiliation if it differs from the performing organization.
- 8. Performing Organization Report Number. Insert if performing organization wishes to assign this number.
- 9. Performing Organization Name and Mailing Address. Give name, street, city, state, and zip code. List no more than two levels of an organizational hierarchy. Display the name of the organization exactly as it should appear in Government indexes such as Government Reports Index (GRI).
- 10. Project/Task/Work Unit Number. Use the project, task and work unit numbers under which the report was prepared.
- 11. Contract/Grant Number. Insert contract or grant number under which report was prepared.
- 12. Sponsoring Agency Name and Mailing Address. Include zip code. Cite main sponsors.
- 13. Type of Report and Period Covered. State interim, final, etc., and, if applicable, inclusive dates.
- 14. Sponsoring Agency Code. Leave blank.
- 15. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with ... Translation of ... Presented at conference of ... To be published in ... Supersedes ... Supplements ... Cite availability of related parts, volumes, phases, etc. with report number.
- 16. Abstract. Include a brief (200 words or less) factual summary of the most significant information contained in the report. If the report contains a significant bibliography or literature survey, mention it here.
- 17. Key Words and Document Analysis. (a). Descriptors. Select from the Thesaurus of Engineering and Scientific Terms the proper authorized terms that identify the major concept of the research and are sufficiently specific and precise to be used as index entries for cataloging.

(b). Identifiers and Open-Ended Terms. Use identifiers for project names, code names, equipment designators, etc. Use open-ended terms written in descriptor form for those subjects for which no descriptor exists.

(c). COSATI Field/Group. Field and Group assignments are to be taken from the 1964 COSATI Subject Category List. Since the majority of documents are multidisciplinary in nature, the primary Field/Group assignment(s) will be the specific discipline, area of human endeavor, or type of physical object. The application(s) will be cross-referenced with secondary Field/Group assignments that will follow the primary posting(s).

- 18. Distribution Statement. Denote public releasability, for example "Release unlimited", or limitation for reasons other than security. Cite any availability to the public, other than NTIS, with address, order number and price, if known.
- 19 & 20. Security Classification. Do not submit classified reports to the National Technical Information Service.

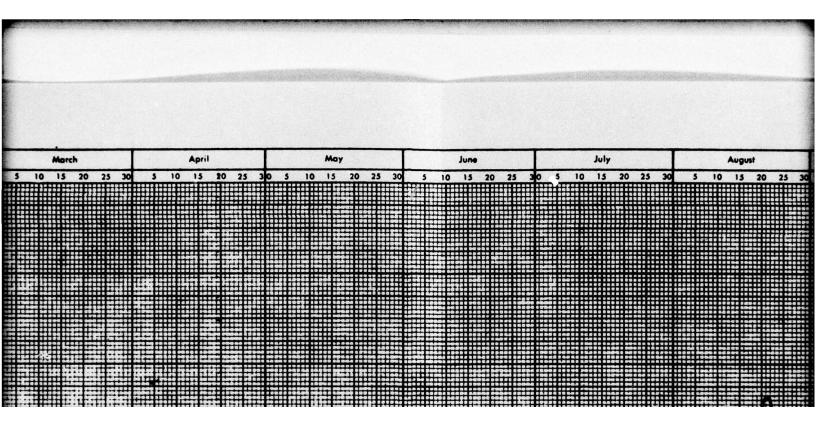
at the star is a set

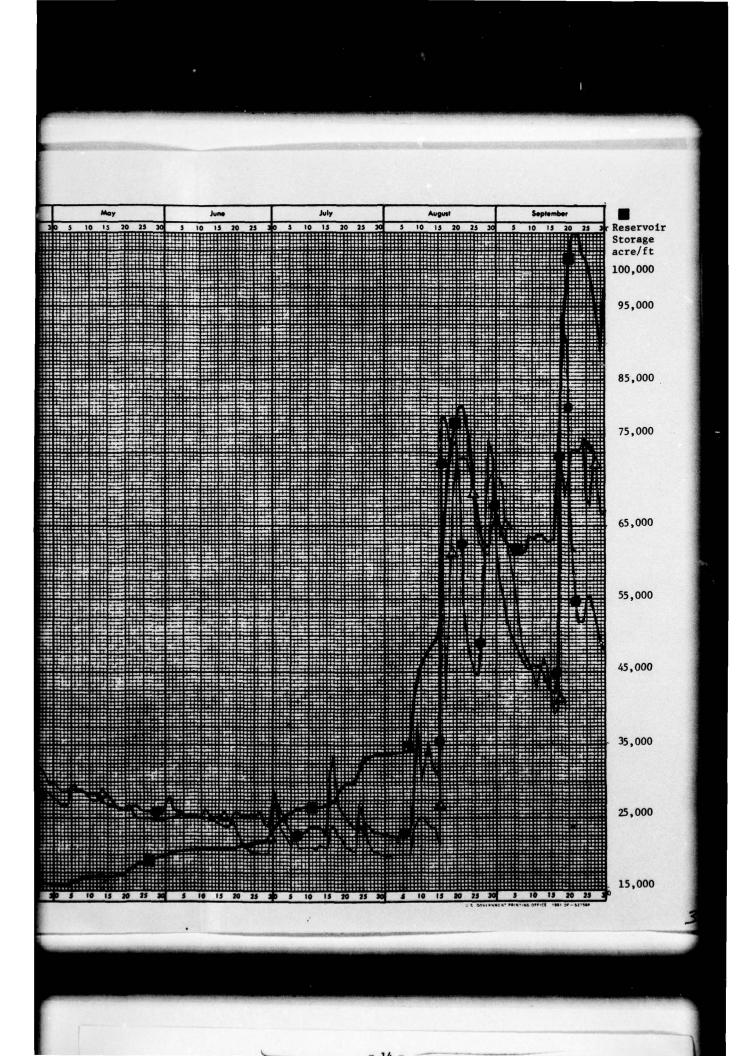
21. Number of Pages. Insert the total number of pages, including introductory pages, but excluding distribution list, if any.

The second second

22. NTIS Price. Leave blank.

FORM NTIS-35 (REV. 10-73)


The Section B if Section D 5 NANNOUNC D JUSTI. ICATION BSTRBUTTON AVAILABILITY CODES SPECIA CORALVILLE RESERVOIR WATER QUALITY STUDY WATER YEAR OCTOBER 1, 1976 TO SEPTEMBER 30, 1977 Annua Submitted by Donald B./McDonald, Professor Division of Energy Engineering University of Iowa 66p. Mar company 78 IIHR-213 DACW25-77-C- \$\$62 Project Supervisor: Donald B. McDonald, Professor of Energy Engineering Research Assistants (Part-time):


Suzanne Bangert Judy Freitag Tracy Middleton Scott Prill Mary Beth Watson

Data for plotting hydrological graph (Plate 1) furnished by U.S. Geological Survey

188 300

+++++++++++++++++++++++++++++++++++++++			
	 	++++++++++++++++++++++++++++++++++++++	1.11.1
	 		+++

	Thin		

GENERAL

Description of the Area and Scope of the Project

The Coralville flood control dam is located in Johnson County, Iowa, about three miles north of Iowa City. At conservation pool level, 680 feet msl, it forms a lake 21.7 miles long with a surface area of 4,900 acres. At spillway level, 712 feel msl the lake extends 35.1 miles upstream from the dam. Surface area of the lake at this elevation is 24,800 acres. During a period in the late winter and early spring the level of the pool is reduced to 670 feet msl in anticipation of the use of the impoundment for flood control. At this level the reservoir has an area of 1,820 acres.

Surveys conducted in 1974 and 1975 indicate that at spillway level (712 feet msl) reservoir capacity is 469,400 acre feet; 40,300 acre feet at conservation pool level (680 feet msl); and 10,600 acre feet at 670 feet msl.

The Coralville Reservoir Water Quality Project was initiated in 1964 and has continued without interruption since that time. The purpose of the study has been the determination of the effects of a flood control reservoir on the chemical and biological characteristics of its parent river. Samples were collected from the Iowa River upstream from the reservoir; from the top, mid-depth and bottom of the reservoir and from the Iowa River at two points downstream from the dam. From October 1976 through July 1977 samples were collected and analyzed twice monthly for all parameters except plankton which was enumerated on a monthly basis. During August and September 1977 samples were collected on a weekly basis and analyzed for temperature, conductivity, turbidity, dissolved oxygen, pH, carbon dioxide, alkalinity ammonia and orthophosphate. All other parameters, including plankton, were determined on a twice monthly basis. Determinations of pH, carbon dioxide, alkalinity, dissolved oxygen and temperature were made in the field at the time of collection. Turbidity, conductivity, phosphate, ammonia nitrogen, nitrate nitrogen, solids, threshold odor, 5-day 20°C biochemical oxygen demand and total and fecal coliform and fecal streptococcus populations were determined in the laboratory. Plankton counts were made to determine genera and numbers present.

During the current year special studies were also carried out to determine the concentrations of several organochlorine pesticides in fish from the Coralville Reservoir and the Iowa River upstream and downstream of the impoundment. Fish were collected on a monthly basis when weather conditions permitted. These studies are described in detail in the "special studies" portion of this report.

Administrative and Fiscal

The project was continued under the same arrangement as during the preceding year. The U.S. Army Corps of Engineers, Rock Island District, furnished the major portion of the financial support. The University of Iowa furnished the remainder of the funds for the project. Laboratory space was furnished by the University of Iowa.

METHODS

Field

Routine water samples were collected throughout the year utilizing a Kemmerer water sampler. All reservoir samples were collected from the Mehaffey Bridge, about 6¹/₂ miles above the Coralville Dam.

Upstream river samples were taken at Johnson County Road "O". Samples of the outflow for the reservoir were collected from the Iowa River

- 2 -

about one mile below the Coralville Dam. Samples were also taken from the Iowa River at the University Water Plant intake.

Laboratory

All laboratory work was performed in the water laboratory of the Energy Engineering Division, located in the University Water Treatment Plant. All of the chemical tests were made in accordance with Standard Methods¹ or EPA² procedures.

Total and fecal coliform and fecal streptococcus counts were made by use of the Millipore Filter procedure. Plankton counts were made on centrifuged samples by use of the Whipple micrometer disc and the Sedgwick-Rafter slide. Both of these procedures are described in Standard Methods. A sample of uncentrifuged water was also examined from each site in order to include those blue-green algae that are lighter than water and are eliminated by the centrifuging process. A summary of methods used in routine analysis is given in Table 1. Determination of pesticide residues in fish utilized extraction procedures and gas chromatographic techniques described in the Pesticide Analytical Manual.³

Quality Control

Quality control procedures were implemented for all laboratory analysis, field sampling techniques and data handling.

All biological procedures were performed in accordance with Standard Methods. Bacterial analyses were carried out utilizing sterilized collection bottles, sterile, disposable petri dishes and quality medias. Incubator temperatures were routinely monitored with thermometers with National Bureau of Standards certification.

- 3 -

Chemical procedures were performed in accordance with Standard Methods or EPA procedures. Standards were run within the matrix of the samples ct all times. The bulk of the reagents used were American Chemical Society certified quality or top line reagents from reputable companies. All instruments involved in analyses were part of an annual or semi-annual preventive maintenance program.

Physical analyses were run in accordance with Standard Methods. Instruments utilized in the analysis were part of the preventive maintenance program. Residue weights were determined on balances which are calibrated yearly.

Sampling procedure included preservation and/or any required special handling as directed in the EPA Manual of Methods.⁴

OBSERVATIONS

PHYSICAL CONDITIONS

Hydrological (Plate 1):

During the 1976-1977 water year flow into the impoundment as measured at the Marengo gauging station was far below normal from October to mid-August resulting in lower reservoir stage and relatively stable pool level. During January and early February inflow was extremely low ranging from 24 cfs from January 29 to February 1 to 66 cfs on February 15. Runoff increased slightly in mid-February but remained far below normal. A maximum spring flow of 559 cfs was reported on March 13. During the remainder of the spring and most of the summer, flows into the impoundment were below normal. Mean flows during this period ranged from 329 cfs in March to 114 cfs in June. A low summer flow of 73 cfs occurred in early August. Inflow increased markedly during the latter half of August and throughout September when river stage was well above normal. During the period August 16-September 30 upstream river flows ranged from 875 to 11,400 cfs.

- 4 -

Reservoir level remained stable from October through November at ca 679 to 680' msl and then declined slowly from December through mid-February reaching a low of 673.88' msl on February 17. Elevation of the impoundment rose slightly during late February and March peaking at 679.69'msl on May 1. Because of low inflows, water levels in the impoundment remained low throughout the spring and summer period and did not reach 680' msl until mid-August. High inflow during late August and September resulted in rapid increases in reservoir level which varied from ca 681 to 689' msl during the August 15-September 30 period. A maximum level of 689.33'msl was attained on September 22.

Discharge from the dam was maintained at the normal minimum of 150 cfs from October to February 16 when rates were dropped to 100 cfs because of the extremely low inflow. In spite of continued low inflow, discharge was increased during March to a maximum of 1,100 cfs on March 29 in order to reduce reservoir pool to 670' msl for flood control purposes. Discharge rates were gradually reduced for April through June 17 when a minimum release rate of 75 cfs was established and maintained until mid-August. Heavy rainfall and runoff on August 19 necessitated increasing the release rate to a maximum of 4,000 cfs and discharge fluctuated between 700 and 4000 cfs throughout the remainder of the period.

Temperature (Table 2):

Water temperatures followed the seasonal pattern of previous years. River and reservoir temperatures were above 20°C (68°F) from mid-May through early September. A maximum upstream river temperature of 28.7°C (83.7°F) was observed on July 7. A maximum downstream river temperature of 29.0°C (84.2°F) was observed on July 12 at the University Water Plant Station.

- 5 -

Maximum reservoir temperatures of $28.6^{\circ}C$ ($83.5^{\circ}F$) were observed at the surface of the impoundment on July 7 and 12. Intermittent thermal stratification was observed in the impoundment in mid-May through mid-July. A maximum temperature differential of $4.5^{\circ}C$ ($8.1^{\circ}F$) was observed on June 28.

Turbidity (Table 3):

Because of abnormally low rainfall and runoff during much of the period, turbidity values above the impoundment were generally lower than those of the previous year ranging from 6 to 320 NTU and rarely exceeding 40 NTU's. In the reservoir, a maximum value of 81 NTU was observed during April while turbidity values of less than 10 NTU were frequently observed from early November to late February. Turbidity values within and below the impoundment were generally lower than upstream values.

Specific Conductance (Table 4):

Specific conductance values in the reservoir ranged from 942 µmho/cm in February to 216 µmho/cm in August. Values in the river ranged from 283 µmho/cm above the impoundment in August to 913 µmho/cm in December. Lowest specific conductance values accompanied the rapid increase in river and reservoir levels following rainfall in August while highest values occurred during cold low flow winter periods when ground water input accounted for a large proportion of the river flow.

Solids (Tables 5-7):

High suspended solids concentrations are characteristic of heavy runoff, particularly from agricultural lands. Due to below normal river flows during much of the present year, suspended solids values were usually below normal from October through July. Maximum suspended solids concentrations

- 6 -

of 1,880 mg/l were observed in the upstream river in late August. Maximum suspended solids level in the reservoir was 188 mg/l.

Highest dissolved solids concentrations were present in the upstream river from December through early February when river flows were extremely low and ground water, high in dissolved solids, made up a major portion of the river flow.

CHEMICAL CONDITIONS

Dissolved Oxygen (Table 8):

Dissolved oxygen concentrations exhibited considerable fluctuation during the current period. A maximum value of 16.6 mg/l (126% saturation) was observed in the reservoir in late March. From late October through early April, dissolved oxygen values greater than 10 mg/l were common except during periods from late January to early March when reduced runoff resulted in a high ratio of oxygen, poor ground water in the upstream river and, ultimately, the reservoir. This condition was augmented by a reduction in photosynthesis and oxygen transfer from the atmostphere due to snow and ice cover and, as a result, oxygen concentrations declined to 2 mg/l (13.8% saturation) in the river on January 25 and to levels of less than 1 mg/l in the reservoir middepth and bottom samples in late February and early March. These low dissolved oxygen levels were apparently responsible for a fish kill within the reservoir which was reported by the Iowa Conservation Commission in February.

Absence of rainfall and runoff contributed to chemical stratification and low dissolved oxygen values at the reservoir middepth and bottom from mid-April to mid-July when oxygen values ranging from less than 0.1 to 6.0 mg/1 were observed.

- 7 -

Severe oxygen depletion occurred in the impoundment during August following a rapid increase in reservoir level which inundated large stands of terrestrial vegetation that had developed in the reservoir flood plain during the period of low pool elevation in the spring and summer. The subsequent death and decay of this vegetation resulted in reduced oxygen concentrations ranging from 0.9 mg/l at the surface to 0.2 mg/l at the bottom on August 23. Numerous dead and dying fish, primarily gizzard shad, were observed during this period but the extent of the fish kill was not determined.

Carbon Dioxide (Table 9):

Free carbon dioxide was absent during October and November but, in spite of large algal populations, was usually present in the river and the reservoir from December through the remainder of the water year. Maximum carbon dioxide concentrations of 20 to 28 mg/l were observed in the reservoir in late February and early March when dissolved oxygen values were low and ground water input made up a significant portion of the river flow. High carbon dioxide values were also observed in September.

Alkalinity, Hardness, pH (Tables 10-14):

These three factors are interrelated and influenced by climatic and hydrological conditions as well as the activities of aquatic organisms. Phenolphthalein alkalinity was generally lower than during the previous three years and inversely proportional to carbon dioxide concentrations. Phenolphthalein alkalinity was usually present during October and November and from late March through early April but was generally absent for the remainder of the year.

Highest total hardness concentrations occurred in December through early March. Lowest values occurred in August.

- 8 -

Determinations of pH were conducted bimonthly from October through May and weekly thereafter. Values were generally low ranging from 6.9 to 8.6. Maximum pH values occurred in July. Minimum values occurred in February.

Orthophosphate (Table 15):

Because of low rainfall and a subsequent reduction in runoff from agricultural land, average orthophosphate concentrations in the river and the impoundment from October through July were generally lower than those observed during previous years. Concentrations ranging from 0.02 to 0.32 mg/1 were observed above the impoundment and were, as in previous years, slightly higher than downstream values which ranged from 0.01 to 0.25 mg/1. Orthophosphate concentrations in all areas were generally less than 0.10 mg/1 from October through July.

Ammonia Nitrogen (Table 16):

Maximum levels of ammonia nitrogen occurred in late February and early March when concentrations as high as 6.4 mg/l were present on the reservoir bottom. It is likely that these high levels were associated with the decay of fish and other aquatic organisms that had succumbed to the oxygen depletion in the impoundment during February.

Low ammonia nitrogen values (< 0.1 mg/l) occurred during low flow periods in November, July and September. Low values also occurred in August.

Nitrate Nitrogen (Table 17):

As a result of low runoff, nitrate nitrogen concentrations were lower than those observed in the previous year. Maximum values were observed in the upstream samples during late August thru September when rainfall and runoff were high. A maximum value of 5.40 mg/l occurred in the upstream river on

- 9 -

September 13 when all sampling stations reached their maximum nitrate levels for the period. Concentrations rarely exceeded 0.50 mg/l except during March, early April, late August and September. Values less than 0.10 mg/l were commonly found in the reservoir during November and December, and late June through July.

Biochemical Oxygen Demand (Table 18):

Average 5-day biochemical oxygen demand values were similar to those of the previous year. Because of low spring flows the high BOD values frequently observed during spring runoff periods were not observed in 1977. A maximum river value of 12.6 mg/l occurred at the upstream river station on August 29, probably as a result of runoff. Increases in BOD values due apparently to the death of large algal populations were observed in the reservoir in June and in the upstream river in October and November when values ranging from 10.8 to 14.8 mg/l were observed.

Threshold Odor (Table 19):

Average threshold odor values were generally higher than those of the previous year. Extremely high odor values (>250) were observed at the reservoir bottom in March accompanying low dissolved oxygen concentrations. In spite of high odor values in the reservoir at this time downstream odor values did not exceed 24 during March. A Maximum value of 42 was observed in the downstream river in September. Levels were also high in the reservoir and upstream river in September when values of 24 to 56 were measured.

BIOLOGICAL CONDITIONS

Bacteria (Tables 20-22):

Largest total coliform populations frequently occurred at the beginning of periods of increased runoff. Highest counts usually occurred

- 10 -

above the impoundment where a maximum count of 300,000 organisms/100 ml occurred on August 29. A maximum of 130,000 organisms/100 ml occurred below the reservoir at the University Water Plant on August 8 immediately following a heavy rain. Total coliform counts downstream were constantly lower than at the upstream river location. Total coliform counts in reservoir samples were consistently lower than river values ranging from < 10 to 5,200 organisms/100 ml.

Highest fecal coliform levels (ca 105,000 organisms/100 ml) occurred in the upstream river following a period of rainfall in early August. Increased numbers also accompanied runoff in late August and September. Fecal coliform levels were low in all samples taken from October through July and reservoir samples taken during this period frequently contained less than 10 organisms/100 ml. Because of extremely low flows in Clear Creek which enters the Iowa River upstream of Iowa City, fecal coliform counts at the University Water Plant sampling site were only rarely higher than at the site directly upstream. In previous years input from the Clear Creek drainage basin has resulted in elevated fecal coliform counts at the University Water Plant location.

Fecal streptococcus levels generally exhibited fluctuations similar to those of fecal coliform organisms. Values ranged from less than 10 organisms/100 ml in many reservoir samples from October through May to 73,000 organisms/100 ml at the upstream river location on August 8.

Plankton (Table 23):

Plankton populations were sampled on a monthly basis from October through July and twice monthly in August and September. A maximum count of 558,626 organisms/ml was observed in the upstream river sample on June 28. Plankton populations were greater in the reservoir than those observed during the past two years and mean concentration levels frequently exceeded

- 11 -

110,000 organisms/ml in the impoundment during April through early August. A maximum count of 294,993 organisms/ml was observed in a reservoir top sample taken on May 3. The relatively large reservoir plankton populations observed during the spring and summer months were due largely to low turbidity values and stable reservoir level resulting from the lack of precipitation and low river flow present during most of the period.

Plankton diversity was relatively high during the period. Greatest diversity occurred from April to June. Diversity declined following rainfall in mid August. Lowest diversity occurred in the winter and early spring. Diatoms, especially <u>Cyclotella</u> and unidentified flagellates were generally the dominant forms throughout the year. Green algae were relatively common in the spring and early summer but declined during the late summer and early fall months. Blue-green algae were uncommon throughout the period.

OTHER STUDIES

Special studies were instituted in September 1976 to determine concentrations of several organochlorine pesticides in fish collected from the Iowa River and Coralville Reservoir. With the exception of the months of November and December fish were collected on a monthly basis at three locations: 1) the Iowa River near the county road a short distance above the impoundment, 2) the Coralville Reservoir near the Lake MacBride Fisheries Station, and 3) the Iowa River a short distance below the dam. Species collected included typical bottom feeding forms, i.e. channel catfish, bullhead, buffalo, carpsucker and carp, as well as carnivorous species, i.e., crappie, bluegill, walleye and bass. Pesticides determined included aldrin and its metabolite dieldrin, DDT and its metabolites p,p'DDD and p,p'DDE, heptachlor and its metabolite heptachlor epoxide, and lindane and B-BHC.

- 12 -

The results of these determinations are given in Tables 24 through 33. A complete analysis of these results is currently being carried out and will be presented in Judy Freitag's Master's Thesis which will be available in May 1978. The following conclusions are based on preliminary evaluation of the pesticide residue data obtained during the study:

1) A definite pattern in the accumulation of pesticide residues in various species of fish is apparent. Carp, catfish and buffalo exhibited highest concentrations of both dieldrin and DDT. These fish are all bottom feeders which tend to be in close contact with bottom sediments. Since these sediments act as a sink for pesticides, there is a greater availability of pesticides at the sediment water interface. Another basic property of these pesticides that may contribute to increased levels in the above-mentioned forms is the trend towards concentration in body fat. Thus, the higher lipid concentration in tissues of carp and catfish may contribute to the high pesticide concentrations observed in these forms.

The size of a fish is also related to pesticide concentrations.
 In general larger fish exhibited higher pesticide residues than do smaller forms.

3) Concentrations of DDT and its metabolites in several species of fish collected at the downstream river location were lower than those observed at the upstream river site. This was especially evident in carnivorous species, i.e., crappie, bluegill, bass and walleye. However, concentrations of DDT and its metabolites were relatively uniform in bottom feeding fish (buffalo, carp, carpsucker, channel catfish and bullhead) taken at both river locations.

4) Both groups of fish (carnivores and bottom feeders exhibited lower dieldrin levels at the downstream river location and highest levels in the reservoir.

- 13 -

5) Comparison of data obtained during the 1976-1977 study with that obtained during earlier studies 5, 6, 7, 8, indicates that a steady decrease in dieldrin levels in fish taken from the Coralville Reservoir has occurred over the past eight years. This decrease is likely due to the cessation in the use of aldrin following 1975.

DISCUSSION AND CONCLUSIONS

The Coralville Reservoir Water Quality Study was first implemented in 1964. Data obtained during this period have consistently shown that the limnology and water quality of the Iowa River and Coralville Reservoir have been influenced primarily by four factors: (1) non-point source pollution resulting from agricultural activities in the drainage basin; (2) the hydrological characteristics of the Iowa River; (3) the morphometry of the Coralville Reservoir; and (4) the fluctuations in the storage and pool level of the reservoir resulting from flood control operation.

During the present water year the significance of non-point source pollution and the hydrological characteristics of the river were especially evident. Throughout most of the 1977 water year river flow into the impoundment was far below normal. Mean annual flow during the 1977 water year was the lowest observed since the implementation of the study (1964). Mean monthly flows for the period October--July, 1977 were far below normal while mean flows for August and September were above seasonal norms. Monthly and annual mean flows for the 1964-1977 period are summaried in Table 34.

During the October-July period concentrations of several parameters were substantially lower than levels observed during prior years. These effects were especially evident in the case of turbidity, suspended solids, nitrates and bacterial populations which reached their maximum concentrations in August or September and exhibited minimal levels during extended periods of low flow.

- 14 -

Low inflow and the resultant stable pool level and low turbidity values were also responsible for the large plankton populations observed in the impoundment from April to early August. Extremely high plankton counts were also present in river samples during the April-July period when low flows resulted in substantially lower turbidity values than are usually present. The fact that maximum plankton counts accompanied periods of lower than normal phosphate and nitrate concentrations indicates that decreased light penetration or other factors rather than lack of inorganic nutrients are the limiting factors in plankton production in the Iowa River and Coralville Reservoir system.

The unusual hydrological conditions present during the period were also in part responsible for two episodes of oxygen depletion and a subsequent fish kill in the impoundment. The first fish kill occurred in early February following an extended period of extremely low river flow consisting largely of oxygen poor ground water. This condition, augmented by reduced photosynthetic activity and the limitation of oxygen transfer from the atmosphere due to ice cover, resulted in severe oxygen depletion throughout the impoundment that persisted until early March.

The fact that low dissolved oxygen levels were resulting in a fish kill was first observed on February 5 when some dead fish, primarily gizzard shad, were observed near the Lake MacBride spillway by Iowa Conservation Commission personnel. Many game and rough fish were also observed to be in distress in the area. By February 7 numerous fish in distressed condition were present in that area and a significant number of dead or dying catfish were observed. Some dead fish were also observed directly below the dam which apparently died in the reservoir and were discharged into the downstream river. Ammonia concentrations increased markedly in the reservoir in late February and early March, reaching a maximum of 6.4 mg/l (as N) at the reservoir bottom. These high ammonia

- 15 -

values appeared to be due in part to the decay of fish which died the previous month. The high ammonia and low dissolved oxygen concentrations present in the deeper portions of the reservoir were also accompanied by extremely high threshold odor values which further contributed to the degredation in water quality.

The second oxygen depletion episode occured in late August when increased reservoir level resulted in the innundation and subsequent death and decay of large stands of terrestrial vegetation which had developed in the upper portion of the reservoir flood plain during the period of low pool elevation in the spring and summer. Oxygen concentrations of less than lmg/l were present throughout the impoundment and numerous dead and dying fish, primarily gizzard shad, were observed.

The oxygen depletion and fish kill episodes observed during the current study serve to illustrate the magnitude of the effects of reservoir operation on the limnology of the impoundment. These effects are especially evident during periods of low pool level. The small storage capacity available at the 670' msl flood control pool routinely subjects the fishery of the reservoir to considerable stress as a result of crowding during the normal February drawdown and this problem is further agrevated by the frequent oxygen depletion episodes that occur during the late winter and spring periods. Increasing the minimum pool elevation from 670 to 673' msl. would help alleviate these problems without significantly reducing the flood control capacity of the reservoir.

In spite of relatively low reservoir stage during much of the period the Coralville Reservoir, as in previous years, contributed to the reduction of certain parameters in the Iowa River directly below the impoundment. This was expecially true in the case of total coliforms, turbidity and plankton. Lesser reductions in phosphate ammonia, threshold odor and BOD values were also observed. These comparisons are summarized in Table 35.

- 10 -

REFERENCES CITED

- 1. American Public Health Association, American Water Works Association and Water Pollution Control Federation, <u>Standard Methods for the Examination</u> of Water and Wastewater, 14th Ed. APHA New York, N.Y. (1976)
- 2. U.S. Environmental Protection Agency, <u>Methods for Chemical Analysis of Water</u> and Wastes, Cincinnati, Ohio (1974).
- U.S. Dept. of Health, Education and Welfare, Food and Drug Administration, <u>Pesticide Analytical Manual Vol. 1 (1968).</u>
- 4. U.S. Environmental Protection Agency, <u>Handbook for Analytical Quality Control</u> <u>in Water and Wastewater Laboratories</u>, Cincinnati, Ohio (1972).
- 5. Mehta, Suman Chander; 1969. <u>The Limnological Factors Affecting Pesticide</u> <u>Residues in the Iowa River and Coralville Reservoir</u>, M.S. Thesis University of Iowa.
- Morris, R.L. & L.G. Johnson (1970). <u>Pesticide Levels in Fish and Bottom</u> <u>Silts from Iowa Streams</u>. Report #71-10 University of Iowa State Hygienic Laboratory.
- 7. Shaw, William F. 1972. <u>Factors Affecting Pesticide Residues in Fish in the</u> Lake MacBride and Coralville Reservoirs. M.S. Thesis University of Iowa.
- 8. Bulkley, Ross V. 1977. <u>Pesticides in Iowa Surface Waters:</u> Summary of a Workshop Held March 1977. Iowa State University, Ames, Iowa.

.

		Ceralvil	Le Reservo	ir No. 2		University Water Plant
Date 1976-77	"O" Iowa	Тор	Mid- Depth	Bottom	Iowa River Downstream	
Oct 11	13.2	14.6	14.6	14.4	14.6	15.0
26	6.0	8.5	7.7	7.5	9.3	12.4
Nov 9	2.4	4.7	4.2	4.4	5.8	9.0
22	0.0	1.6	1.7	1.8	2.6	7.7
Dec 14	0.9	1.7	2.9	3.4	2.2	8.0
28	0.0	0.5	0.5	0.7	1.6	4.5
Jan 10	0.0	0.0	0.3	0.4	0.0	6.6
25	0.1	0.5	0.8	1.4	1.8	6.3
Feb 8	0.1	0.1	1.0	1.3	1.0	6.1
22	0.4	3.8	3.7	3.2	2.9	8.1
Mar 8	1.3	5.2	4.7	4.6	5.4	11.0
14	FA	11.2	7.6	7.6	FA	FA
21	3.9	5.1	4.9	4.6	5.2	12.0
Apr 5	6.2	6.6	6.5	6.4	8.4	11.9
19	20.4	21.0	20.4	19.4	18.7	20.6

TEMPERATURE (°C)

Table 2 (cont'd)

		Coralvil	le Reserve	oir No. 2		
Date 1976-77	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	Universit Water Plant
May 3	15.8	16.5	15.7	15.6	16.0	18.6
17	23.0	24.0	22.8	19.8	21.8	23.7
Jun 14	21.3	22.7	21.9	21.4	22.9	24.2
21	22.4	27.2	25.0	24.2	25.0	28.0
28	27.9	28.4	26.1	23.9	27.1	28.4
Jul 7	28.7	28.6	27.6	25.6	27.9	28.9
12	28.1	28.6	28.0	26.2	28.7	29.0
18	24.2	26.1	26.6	26.5	26.5	FA
25	27.0	27.6	27.3	26.4	27.8	28.4
Aug 8	21.6	25.2	25.3	24.5	25.5	25.0
23	22.2	21.9	21.6	21.6	21.7	26.7
29	22.1	23.6	22.9	22.6	23.0	25.2
Sep 6	22.9	26.8	24.2	24.0	23.8	25.8
13	19.1	21.3	21.0	21.0	22.1	24.6
22	18.8	18.7	18.4	18.4	19.2	22.2
27	17.8	17.9	17.5	17.9	18.6	20.8
1	255 11	11 13 10	8 29 8-3	20 15	8 787 44 15	
FA - Field	accident		23 - 1 22 - 1	23 50	6 200 12	

TURBIDITY N.T.U.

Table 3

	100 - Vill	Coralvil	le Reserv	oir No. 2			
Date 1976-77	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	University Water Plant	
Oct 11	15	10	15	25	15	20	
26	15	10	10	10	10	10	
Nov 9 22	10 	5	5 	5	5 	5	
Dec 14	10	5	65	10	5	3	
28	8	5		6	3	3	
Jan 10	6	3	34	4	2	2	
25	8	3		5	3	2	
Feb 8	10	3	5	20	2	5	
22	28	9	9	6	5	4	
Mar 8 14 21	20 15	8 15 8.5	11 15 10	35 55 11	5 8	6 	
Apr 5	23	23	27	27	15	18	
19	49	22	33	81	19	25	

TURBIDITY N.T.U.

Table 3 (cont'd)

		10. 2 Mar	Coralvil	le Reserv	oir No. 2		
19 19	1976-77	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	University Water Plant ,
20	May 3 17	27 32	28 18	18 23	28 55	15 13	32 27
	Jun 14 21 28	22 38	20 	32 	52 	$\frac{13}{-\frac{1}{8}}$	23
	Jul 7 12 18	40 	 9 	 12 	 30 	 8 	
	Aug 8 23 39	42 70 320	10 40 19	15 40 22	34 60 45	12 30 20	45 60 28
	Sep 6 13 22 27	 44 54 70	26 25 40	 50 31 40	 20 31 68	 24 12 39	 20 21 45
11	722 +- 812	942 	848 	120 	491 	Nor 6 LL 21	
伝見	No sampl	e 808 510	593 540	608 510	80a 878	Apr 5	

AA - Lak adressed

SPECIFIC. CONDUCTANCE µmho/cm

Table 4

		NO.	Coralvil	le Reserv	oir No. 2		
47 bi 149	Date 1976-77	"O" Iowa	Тор	Mid- Depth	Bottom	Iowa River Downstream	University Water Plant
200	Oct 11	599	495	495	495	507	550
	26	530	514	514	506	484	491
212	Nov 9	519	498	498	505	491	498
	22	609	552	552	552	535	535
- 12	Dec 14	913	684	706	730	674	706
	28	589	477	477	530	527	524
24 49 42	Jan 10	896	720	735	735	680	680
	25	707	654	654	654	552	552
	Feb 8	707	788	788	848	678	678
	22	606	672	848	942	858	807
	Mar 8 14 21	491 574	514 448	848 	942 437	722 612	754 540
	Apr 5	608	608	593	608	510	496
	19	593	510	540	612	574	593

LA - Lab accident

SPCIFIC CONDUCTANCE µmho/cm

Table 4 (cont'd)

1	\otimes	r 119. 2	Coralvil	le Reserv	oir No. 2		
r.Hang an	Date 1976-77	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	University Water Plant
525 803	May 3 17	593 595	612 575	612 585	612 585	612 585	612 595
NE CE	Jun 14 21 28	628 536	652 565	640 587	640 622	606 545	585 501
896 297	Jul 7 12 18 25	606 574	538 525	530 540	575 532	565 548	538 574
375 399	Aug 8 23 29	283 374 372	522 216 393	507 219 404	479 219 404	522 283 314	345 296 314
828. 497	Sep 6 13 22 27	673 427 672	543 486 353	543 470 336	 565 470 344	442 564 362	 428 564 382
531 389	434 381	627 271	571 280	306 260	363 	802 8 26 21	
80£	No	sample	88E LE 4	379 492	395 162	Apr. 5 19	

.

TOTAL SOLIDS (mg/l)

less and the second		1.00.00	Coralvil	le Reserv			
Date 1976-77	Highway "O" 7 Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	University Water Plant	
Oct	11	382	336	352	414	315	325
	26	404	372	448	403	358	401
Nov	9	398	351	348	363	330	324
	22	418	351	356	367	334	327
Dec	14	537	390	396	402	372	368
	28	557	362	399	428	367	369
Jan	10	552	401	419	496	376	376
	25	508	478	485	498	411	399
Feb	8	483	549	565	629	453	428
	22	434	449	558	596	548	497
Mar	8 14 21	363 351	306 260	571 280	627 271	454 361	521 389
1.pr	5	396	379	388	407	297	308
	19	581	402	431	597	366	394

TOTAL SOLIDS (mg/l)

Table 5 (cont'd)

		Coralvil	le Reserv			
Date 1976-77	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	University Water Plant
May 3 17	443 463	407 346	380 378	404 478	368 342	421 392
Jun 14 21 28	427 446	404 354	436 416	502 543	364 	383 350
Jul 7 12 18 25	476	322 252	318 234	370 	341 144	341 230
Aug 8 23 29	1,322	390 219	374 235	444 277 .	416 188	752 201
Sep 6 13 22 27	590 484	276 340	299 218	368 212	251 220	253 222
10 14	26 	17 	21 27	00 	. ² . хин - 5. 15	
No samp]	e 878	79	18 88	2.02 246	₹ 198	

TOTAL SUSPENDED SOLIDS (mg/l)

Table 6

	A starter	Coralvi	lle Reserv	oir No. 2			
Date 1976-77	"O" Iowa	Тор	Mid- Depth	Bottom	Iowa River Downstream	University Water Plant	
Oct 11	56	42	30	62	24	34	
26	36	18	20	24	20	26	
Nov 9	32	6	6	6	10	8	
22	26	10	10	10	8	8	
Dec 14	24	4	6	22	12	4	
28	18	16	16	16	6	4	
Jan 10	12	2	14	10	4	2	
25	6	3	3	9	3	1	
Feb 8	24	6	3	44	7	4	
22	102	12	16	8	15	4	
Mar 8 14 21	60 40	21 27	17 28	26 30	10 14	9 13	
Apr 5	102	61	79	80	43	38	
19	240	58	85	178	37	53	

.

TOTAL SUSPENDED SOLIDS (mg/l)

.

Table 6 (cont'd)

	1 . 5 . 67 . 5	Coralvil	lle Reserv			
Date 1976-77	6-77 Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	University Water Plant
May 3 17	94 136	66 41	40 56	70 162	29 27	79 60
Jun 14 21 28	60 138	39 30	74 74	136 188	30 18	46 45
Jul 7 12 18 25	134 104	22 8	26 16	56 2	20 12	20 32
Aug 8 23 29	1,112 1,880	52 24	64 32	130 86	84 28	532 37
Sep 6 13 22 27	220 168	41 50	50 26	148 36	42 34	37 32
434 347	603 241	888 282	285 885	608 512	Hare S Ea Ea	
No s	ample Sera	209 346	831 245	- 405 144	674 \$ 19	

TOTAL DISSOLVED SOLIDS (mg/l)

	I A colore	Coralvil	le Reserv	oir No. 2		University Water Plant
Date 1976-77	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	
Oct 11	326	294	322	352	291	291
26	368	354	428	379	338	375
Nov 9	366	345	342	357	320	316
22	392	341	346	357	326	319
Dec 14	513	386	390	380	360	364
28	539	346	383	412	361	365
Jan 10	540	399	405	486	372	374
25	502	475	482	489	408	398
Feb 8	459	543	562	585	446	424
22	332	437	542	588	533	493
Mar 8 14 21	303 311	285 233	554 252	601 241	434 347	512 376
Apr 5	294	318	309	327	254	270
19	341	344	346	419	329	341

TOTAL DISSOLVED SOLIDS (mg/l)

Table 7 (cont'd)

	1. 101 1.	Coralvil	le Reserv	oir No. 2		University Water Plant
Date 1976-77		Тор	Mid- Depth	Bottom	Iowa River Downstream	
May 3 17	349 327	341 305	340 322	334 316	329 315	342 332
Jun 14 21 28	367 308	365 324	362 342	366 355	304 336	337 305
Jul 7 12 18 25	342 228	300 244	292 218	314 176	321 132	312 198
Aug 8 23 29	210 123	338 195	310 203	314 191	332 161	220 164
Sep 6 13 22 27	370 316	235 290	249 192	220 176	209 186	216 190
11.0 09 12.3	1:03 1:0 6:01	5 - 0 	15-0 26.6 16.6	X (E3) 0+E3	k taži M IX	
5.14 8.8	12.7 0.4	12.2 4.4	13.1	5	6 <i>pt</i> - 59	

.

DISSOLVED OXYGEN (mg/l)

.

	E cuid al	Coralvil	le Reservo	pir No. 2		University Water Plant
Date 1976-77	llighway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	
Oct 11	9.7	8.8	7.6	6.9	11.0	11.2
26	12.0	11.0	11.0	10.5	11.0	11.3
Nov 9	14.7	12.0	11.9	11.9	12.0	12.1
22	14.6	13.0	12.8	12.5	12.9	13.0
Dec 14	15.7	9.4	9.2	8.7	11.9	13.3
28	12.7	9.4	9.2	9.2	11.6	13.3
Jan 10	7.9	11.8	11.7	11.0	10.3	12.0
25	2.0	9.1	10.2	11.9	9.8	11.6
Feb 8	2.3	4.2	3.6	0.8	9.2	12.0
22	11.3	1.4	0.4	0.3	7.9	11.8
Mar 8 14 21	13.7 13.6	15.0 14.4 16.6	0.7 14.1 16.3	< 0.1 0.1 16.5	11.0 00 12.3	15.3 00 11.6
Apr 5	14.2	13.1	12.7	12.7	11.7	10.9
19	8.1	5.5	4.4	0.4	6.5	6.9

DISSOLVED OXYGEN (mg/l)

Table 8 (cont'd)

			Coralvil	le Reserve	pir No. 2		University Water Plant
	Date 1976-77	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	
May	3 17	7.5 7.0	5.9 4.2	0.6	0.3 0.2	7.6 6.0	7.1 7.9
Jun	14 21 28	9.3 9.1 6.0	5.5 6.5 8.4	4.4 6.0 0.4	4.0 5.4 < 0.1	7.6 9.0 13.5	6.6 11.6 *
Jul	7 12 18 25	8.2 8.0 6.2 7.5	7.9 10.0 4.0 7.5	5.5 5.4 3.8 5.2	0.1 0.3 2.7 1.4	9.9 10.5 6.0 7.8	2.5 8.5 4.3 5.3
Aug	8 23 29	5.6 5.3 5.2	5.8 0.9 3.7	4.9 0.3 3.5	2.6 0.2 2.1	7.5 7.6 8.0	3.4 5.2 6.8
Sep	6 13 22 27	7.5 7.9 3.4 6.0	5.6 4.8 5.2 5.0	2.1 4.3 4.9 5.0	2.4 4.3 4.9 4.9	7.4 7.7 9.5 9.0	6.4 6.3 8.1 8.5
	1 2 2	10 6 6	- 0 d		100	8 250 85 85	
*	Lab	accident	84 27 2 8 01	11 5 6 8 8		84.p 4 15 27 27	

CARBON DIOXIDE as $CaCO_3$ (mg/ ℓ)

			Coralvil	le Reserv	oir No. 2		
Date 1976-77	oso tve	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	
Oct 1	1	0	0	0	0	0	0
	26	0	0	0	0	0	0
	9	0	0	0	0	0	0
	22	0	0	0	0	0	0 2
Dec 1		10	4	4	4	2 4	4
	28	8	4	4			4
Jan 1		20	6	6 4	6	4	4
	25	10 10	4	8	10	6	4
	8 22	10	20	22	24	18	12
	8	6	8	24	28	10	8
	14						
	21	8	0	0	0	6	6
	5	0	0 8	0 8	0 12	0	4
	19	4	8	0	12	0	4
May	3	8	6	10	10	4	6
	17	6	8	10	14	8	4
Jun 3		0	0	10	10	0	0
	21		1. 2.0		1		
	28	4	4	14	18	0	• 4
Jul	7			d.?	1.5	0 10	
	12	-	1 -	4	10	0	0
	18 25	0	0	4	8	2	4
Aug	8	5	4	4	10	3	4
0	23	5 6 6	64	6	6	3 6 4	64
	23 29	6	4	6	6	4	4
Sep	6	12	14	16	18	16	16
	13	8	8	12	18 12	10	10
	13 22 27	12 8 8 12	10	8 10	8	8	12
	27	12	8	10	10	8	10

ALKALINITY as $CaCO_3$ Phenolphtalein (mg/ ℓ)

11 6:365

		Coralvil	le Reserv	oir No. 2		
Date 1976-77	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	Universit Water Plant
Oct 11	16	4	2	2	2	1
26	8	6	6	6	4	6
Nov 9	10	10	10	10	4 8	6
22 Dec 14	6 0	10 0	10 0	10 0	0	4
28	0	0	o	0	0	0
Jan 10	0	0	0	0	0	0
25	0	0	0	0	0	0
Feb 8	0	0	0	0	0	0
22	0	0	0	0	0.	0
Mar 8	0	0	0	0	0	0
14 21	0	20	20	22	0	0
Apr 5	10	10	10	10	8	0
19	0	0	0	0	Ő	0
May 3	0	0	0	0	0	0
17	0	0	0	0	0	0
Jun 14	2	0	0	0	1	1
21 28	0	0	0	0	10	• • 0
Jul 7					8	10
12 18	8 8 8 8	14	0	0	0	10
25	4	8	0	0	0	0
Aug 8	0	0	0	0	0	0
Aug 8 23 29	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
29	0	0	0	0	0	0
Sep 6	0	0	0	0	0	0
13	0	0	0	0	0 999	0
Sep 6 13 22 27	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0
27	0	0	0	0	0	0

ALKALINITY as CaCO₃ Total (mg/l)

Table 11

		Coralvil	le Reserv	oir No. 2		
Date	Highway "O"			A Company	e ere	
1 2 191		a service and the	Mid-		Iowa	
	Iowa	Тор	Depth	Bottom	River	University
1976-77	River				1978-77	Water
pin 232062	Upstream			- 2091389	Downstream	Plant
Oct 11	216	190	214	200	184	200
26	232	224	228	224	206	216
Nov 9	250	240	236	236	210	210
22	212	226	224	228	230	204
Dec 14	318	228	230	234	224	224
28	314	264	246	256	232	234
Jan 10	356	274	270	264	242	242
25	304	272	292	302	240	230
Feb 8	280	326	330	384	270	260
22	212	290	382	416	348	320
Mar 8	200	206	378	460	308	204
14					and the second	
21	206	170	168	162	236	238
Apr 5	208	206	202	200	158	150
19	228	210	210	212	190	190
May 3	216	216	212	214	208	214
17	214	204	206	224	208	218
Jun 14	256	244	246	250	210	200
21	208	216	244	272	198	172
28	200	216		212	190	1/2
Jul 7					A dist.	
12	246	204	202	228	214	182
18	States and a			1		
25	210	188	194	196	190	198
Aug 8	88	180	180	182	190	96
23	102	100	94	100	114	112
29	128	138	146	152	126	112
		150	150	150	142	152
Sep 6	228	150	156	150 194	142	152
13	250	200	200 160	194	182	164
22 27	124	164 112	114	114	124	134
21	206	112	114	114	124	154

alda?

HARDNESS as Ca CO_3 Calcium (mg/l)

Data			1	1	and the second	
Date 1976-77	Highway "O" Iowa River	Тор	Mid- Depth	Bottom	Iowa River Downstream	University Water Plant
1970-77	Upstream					
Oct 11	192	156	160	160	164	160
26	156	164	164	164	136	136
Nov 9	192	176	176	180	148	156
22	196	172	176	176	160	160
Dec 14	236	208	208	208	144	164
28	320	208	208	212	204	216
Jan 10	356	268	272	272	208	212
25	280	232	232	236	220	220
Feb 8	236	244	260	288	200	180
22	176	240	236	276	240	236
Mar 8	144	140	224	232	188	160
14			- 02.1	1		
21	160	112	116	120	168	168
Apr 5	140	140	148	148	116	116
19	160	140	140	144	128	132
May 3	164	152	168	164	160	152
17	160	164	164	164	168	168
Jun 14 21	184	200	200	200	184	204
28	196	180	200	208	188	152
Jul 7					1 1 1.50	
12 18	208	176	164	168	172	180
25	160	136	136	144	136	160
Aug	112	160	104	156	136	112
Aug 8 23					23	1
29	112	124	120	116	80	84
Sep 6		1/0	100	168	108	120
13 22	208	160	160	108	108	120
27	380	212	184	188	252	256

HARDNESS as $CaCO_3$ Total (mg/ ℓ)

		Sec. 1	Coralvil	le Reserv	oir No. 2		
Date 1976-77	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream		
Oct	11	260	236	248	252	236	236
	26	260	256	256	260	228	240
Nov	9	292	264	268	268	212	248
	22	300	268	268	268	252	252
Dec	14	384	284	288	284	268	272
	28	376	304	300	308	288	284
Jan	10	432	316	320	324	276	288
	25	380	360	364	368	296	296
Feb	8	336	408	432	476	392	344
	22	256	344	392	496	464	408
Mar	8 14	200	212	396	432	304	312
	21	224	168	176	180	260	264
Apr	5	224	224	228	228	164	164
	19	260	232	232	236	208	212
May	3	228	232	228	232	232	244
	17	236	228	232	228	228	263
Jun	14 21	284	276	268	264	240	224
	28	236	252	276	280	244	216
Jul	7 12 18	260	224	216	236	232	244
	25	228	216	208	232	220	224
Aug		136	188	188	200	196	152
	23 29	160	136	148	140	104	112
Sep	13	300	236	224	228	160	176
	22 27	532	252	220	244	260	260

Table 14

	A Second	Coralvi	lle Reserv	oir No. 2		University Water Plant
Date 1976-77	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream 8.3	
Oct 11	8.5	8.3	8.3	8.3	8.3	8.4
26	8.5	8.4	8.4	8.4	8.3	8.4
Nov 9	8.5	8.4	8.4	8.4	8.4	8.4
22	8.4	8.5	8.5	8.5	8.4	8.4
Dec 14	7.6	7.9	7.9	7.9	8.1	8.1
28	7.5	7.8	7.8	7.8	8.0	8.0
Jan 10	7.5	7.8	7.8	7.8	7.9	7.9
25	7.0	7.3	7.2	7.4		7.6
Feb 8	6.9	7.0	7.0	7.0	7.2	7.3
22	7.4	7.0	7.1	7.1	7.2	7.5
Mar 8	7.9	7.6	7.0	7.1	7.3	7.8
14		7.6	7.5	7.1		
21	7.5	8.3	8.4	8.4	7.7	7.7
Apr 5	8.3	8.3	8.3	8.3	8.2	8.0
19	7.8	7.6	7.5	7.3	7.7	u.9
May 3	7.9	8.0	7.8	7.8	8.1	8.0
17	8.0	7.8	7.6	7.4	7.8	8.1
Jun 14	8.2	8.0	7.8	7.8	8.1	8.1
21	8.5	8.1	7.9	7.8	8.2	8.5
28	8.1	8.2	7.6	7.4	8.5	8.1
Jul 7	8.2	8.3	8.0	7.5	8.4	7.6
12	8.4	8.6	8.1	7.6	8.4	8.5
18	7.5		7.7	7.4	7.7	7.7
25	8.2	8.4	7.9	7.6	8.1	7.9
Aug 8	7.5	7.6	7.6	7.4	8.0	7.6
23	7.5	7.0	7.0	7.0	7.3	7.0
29	7.5	7.5	7.4	7.4	7.5	7.4
Sep 6	8.0	7.7	7.3	7.3	7.4	7.4
Sep 0 13	8.0	7.6	7.6	7.6	7.4	7.5
22	7.3	7.6	7.5	7.4	7.8	7.6
27	7.6	7.4	7.4	7.4	7.5	7.4

pH

•

ORTHOPHOSPHATE (mg/l)

		Coralvil	le Reserve	oir No. 2		
Date	Highway "O" Iowa	Тор	Mid- Depth	Bottom	Iowa River	University
	River			Long B	976-77	
1976-77						Water
Advight Park	Upstream			in the second	Downstream	Plant
0ct 11	0.07	0.03	0.05	0.05	0.04	0.03
26	0.02	0.02	0.02	0.02	0.04	0.03
Nov 9	0.03	0.01	0.02	0.02	0.02	0.02
22	0.08	0.03	0.02	0.01	0.02	0.03
Dec 14	0.10	0.01	0.02	0.02	0.02	0.02
28	0.20	0.02	0.01	0.01	0.02	0.03
Jan 10	0.14	< 0.01	< 0.01	< 0.01	0.01	0.01
25	0.07	0.02	0.06	0.02	0.03	0.03
Feb 8	0.09	0.01	0.02	0.04	0.03	0.02
22	0.18	0.06	0.10	0.06	0.05	0.06
Mar 8	0.24	0.09	0.07	0.79	0.05	0.06
14					1.1.1.1.1.1.1.1	
21	0.11	0.04	0.05	0.04	0.03	0.02
Apr 5	0.05	0.03	0.03	0.03	0.03	0.03
19	0.07	0.04	0.04	0.09	0.03	0.03
May 3	0.12	0.09	0.11	0.11	0.07	0.09
17	0.10	0.07	0.06	0.10	0.06	0.06
Jun 14	0.06	0.08	0.08	0.10	0.03	0.06
21	0.10	0.00	0.12	0.22	0.06	0.06
25	0.18	0.09	0.13	0.22	0.08	0.08
Jul 7	1.1.1	1.00	1.5	S. S. S. S.	t tus	
12	0.09	0.03	0.07	0.11	0.03	0.03
18						
25	0.11	0.13	0.06	0.07	0.03	0.04
Aug 8	0.15	0.18	0.13	0.14	0.14	0.04
23	0.16	0.17	0.23	0.24	0.17	0.17
29	0.28	0.13	0.13	0.18	0.17	0.18
Sep 6						
13	0.05	0.12	0.4	0.16	0.03	0.13
22	0.32	0.24	0.27	0.24	0.18	0.21
27	0.30	0.28	0.27	0.27	0.25	0.24

NITROGEN AMMONIA as N (mg/l)

•

		Coralvil	le Reserv	oir No. 2		
Date	Highway "O" Iowa River	Тор	Mid- Depth	Bottom	Iowa River	University Water Plant
1976-77	Upstream				Downstream	
Oct 11	0.14	0.20	0.22	0.18	0.56	0.10
26	0.18	0.30	0.20	0.27	0.17	0.20
Nov 9	0.08	0.09	0.09	0.11	0.21	0.10
22	0.09	0.07	0.09	0.08	0.10	0.08
Dec 14	0.08	0.14	0.15	0.17	0.13	0.13
28	1.43	0.15	0.15	0.14	0.20	0.17
Jan 10	1.46	0.24	0.23	0.24	0.30	0.28
25	1.58	0.30	0.30	0.32	0.32	0.32
Feb 8	2.01	0.47	0.95	1.44	0.53	0.53
22	1.42	1.75	1.80	1.70	0.75	0.50
Mar 8	1.42	0.87	2.56	6.40	0.37	0.39
14		0.85	0.85	3.91	0.57	0.55
21	0.80	0.40	0.37	0.48	0.92	0.62
Apr 5	0.20	0.33	0.28	0.19	0.19	0.19
19	0.16	0.57	0.72	1.18	0.49	0.21
May 3	0.08	0.21	0.35	0.40	0.34	0.25
17	0.16	0.76	0.96	1.15	0.30	0.09
Jun 14	0.17	0.84	1.40	1.46	0.38	0.25
21	0.10	0.43	0.41	0.58	0.22	0.12
28	0.13	0.14	0.42	1.00	0.22	0.22
Jul 7	0.16	0.04	0.11	0.37	0.09	0.11
12	0.12	0.19	0.33	0.89	0.27	0.22
18	0.60	0.68	0.43	1.06	0.64	0.34
25	0.06	0.09	0.23	0.40	0.06	0.18
Aug 8	0.43	0.34	0.36	0.42	0.21	0.35
23	0.15	0.22	0.30	0.30	0.37	0.33
29	0.20	0.35	0.31	0.33	0.39	0.19
Sep 6	0.73	0.74	0.91	0.90	0.01	0.73
13 Sep 6	0.73		0.81	0.80	0.81	0.73
22	0.49	0.50	0.50	0.49	0.49	0.49
27	0.22	0.23	0.23	0.24	0.21	0.21
21	0.00	0.23	0.21	0.17	0.20	0.02

NITROGEN NITRATE as N (mg/l)

	1	Coralvii	le Reserv	oir No. 2		
Date	Highway "O"			n ang taga ang taga	i inte	
		1. 1958.0	Mid-		Iowa	
	Iowa	Тор	Depth	Bottom	River	University
1976-77	River			「「「「「「」」		
	Ileature	1			Deserve	Water
	Upstream			in annachad	Downstream	Plant
Oct 11	0.08	0.06	0.06	0.12	0.13	0.07
26	0.13	0.10	< 0.10	< 0.10	0.11	0.11
Nov 9	0.13	< 0.10	\$0.10	< 0.10	< 0.10	< 0.10
22	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dec 14	1.16	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
28	1.58	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Jan 10	1.50	0.10	0.13	0.11	0.14	0.13
25	0.25	0.11	0.21	0.29	< 0.10	< 0.10
Feb 8	0.26	0.40	0.63	0.72	0.14	0.16
22	0.83	< 0.10	< 0.10	< 0.10	0.13	0.52
Mar 8	1.20	0.65	0.28	0.38	0.65	1.30
14		State State		1918 1917		
21	1.00	0.68	0.68	0.68	0.28	0.46
Apr 5	0.28	1.06	1.04	1.00	0.92	1.04
19	0.24	0.16	0.19	0.42	0.13	0.27
May 3	0.33	0.27	0.13	0.29	0.23	0.75
17	0.38	0.54	0.46	0.54	0.10	0.26
Jun 14	0.26	0.28	0.43	0.52	0.31	0.14
21	11 20 No. 1	1.1.1	1 24.0	and the second		
28	0.16	< 0.10	0.13	0.39	< 0.10	0.13
Jul 7						
12	0.21	< 0.10	0.10	0.17	0.11	0.21
18						
25	0.39	< 0.10	< 0.10	0.17	0.26	0.29
Aug 8	0.70	0.14	0.26	< 0.10	0.26	0.48
23	2.60	0.32	0.28	0.34	0.44	1.10
29	3.50	0.48	0.54	0.57	0.44	0.80
Sep 6						
13	5.40	3.30	3.40	3.30	2.20	2.80
22	A A A A A A A A A A A A A A A A A A A	a de la compañía de	1000	Constant State		
27	4.80	2.00	1.70	1.80	1.60	1.80

5-DAY, 20⁰C BIOCHEMICAL OXYGEN DEMAND (mg/l)

4

.

	多。第 diad	Coralvil	Le Reserv	oir No. 2		
Date 1976-77	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	Universit Water Plant
Oct 11 26 Nov 9 22 Dec 14 28	7.2 10.8 12.0 5.4 4.0 3.9	3.6 3.5 5.9 5.4 2.0 4.7	3.1 4.9 5.4 3.9 2.0 4.4	3.2 4.6 5.9 4.5 3.0 5.0	2.2 3.1 4.3 3.9 1.0 3.0	2.0 3.3 3.7 3.6 1.0 3.1
Jan 10 25 Feb 8 22	1.9 0.9 2.6	2.8 3.5 3.7	1.9 2.5 3.7	2.6 1.9 3.4	1.2 0.7 3.1	1.2 0.8 2.1
Mar 8 14 21 Apr 5 19	4.9 8.7 7.4 8.2	9.1 7.7 6.5 8.4	5.3 7.5 7.3 7.2	6.7 7.4 6.7 11.8	7.0 5.1 5.2 5.4	5.2 4.8 4.7 5.2
May 3 17 Jun 14 21 28	7.2 2.4 6.0 7.5	8.0 2.4 7.3 8.2	7.0 2.8 6.2 6.5	7.4 5.8 7.2 14.8	5.8 2.2 5.4 7.9	8.2 2.4 7.1 4.5
Jul 7 12 18 25	7.1	6.1	4.3	7.6	5.0	4.0 4.2
Aug 8 23 29	9.6 7.6 12.6	5.2 3.3 4.5	2.8 3.6 4.1	6.6 3.9 4.5	5.4 4.6 3.7	7.2 5.8 5.0
Sep 6 13 22 27	3.2 2.6	2.5	2.7	4.2	2.6	3.6 1.2

THRESHOLD ODOR NUMBER

Table 19

.

2

.

.

	19. 108 x 104	Coralvil	le Reserve	oir No. 2		
Date 1976-77	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	Universit Water Plant
Oct 11	24	18	18	18	18	18
26 Nov 9 22 Dec 14 28	18 18 18 13 32	18 18 18 13 32	13 24 24 5.6 18	13 18 24 18 13	18 18 18 18 18	18 18 18 7.5 18
Jan 10 25 Feb 8 22	24 13 18 24	7.5 13 18 24	10 13 13 32	5.6 10 24 32	1.8 7.5 5.6 10	1.8 7.5 4.2 10
Mar 8 14	24	32 32 18	130 32 18	>250 >250	24 10	24 18
21 Apr 5 19	18 18 18	18 18 18	13 24	18 18 18	13 18	13 18
May 3 17 Jun 14 21 28	7.5 5.6 5.6 5.6	7.5 7.5 5.6 4.2	10.0 7.5 7.6 4.2	10.0 42.0 5.6 32.0	5.6 7.5 5.6 5.6	15.0 10.0 15.0 4.2
Jul 7 12 18 25	4.2	5.6	7.6	7.5 24.0	5.6 10.0	7.5 56.0
Aug 8 23 29	13.0 18.0	18.0 10.0	3.2 3.2	4.2	4.2 3.2	13.0 7.5
Sep 6 13 22	42	42	42	75	42	24
27	56	56	32	24	32	32

TOTAL COLIFORM BACTERIA (Number of coliform bacteria per 100 ml) Table 20

.

.

		Coralvi	lle Reserv	oir No. 2		
Date 1976-77	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	University Water Plant
Oct 11	600	< 100	100 .	100	1,900	1,300
26	< 100	< 100	< 100	< 100	< 100	300
Nov 9	1,700	< 100	< 100	< 100	300	200
22	< 100	< 100	< 100	< 100	< 100	< 100
Dec 14	1,700	150	230	100	60	10
28	440	10	20	10	10	10
Jan 10	3,900	< 100	< 100	< 100	100	< 100
25	580	30	30	40	20	< 10
Feb 8	1,160	< 10	10	30	640	80
22	150	70	40	210	30	<10
Mar 8 14	1,100	100	200	200	200	100
21	1,800	100	< 100	200	1,000	< 100
Apr 5	1,500	500	300	1,300	200	1,500
19	100	< 100	200	600	< 100	< 100
May 3	400	100	100	200	200	2,200
17	2,100	2,200	1,300	1,700	800	900
Jun 14 21	3,000	700	900	2,100	500	200
28	2,400	2,600	100	600	1,200	800
Jul 7 12 18	2,400	400	800	700	200	1,800
25	6,000	300	800	1,200	2,600	1,900
Aug 8 23	190,000	< 10	3,200	4,100	15,000	130,000
29	300,000	2,100	2,000	5,200	5,900	4,600
Sept 6 13	2,400	700	400	100	1,200	1,800
22 27	7,100	600	1,300	800	1,400	1,400

FECAL COLIFORM BACTERIA (Number of coliform bacteria per 100 ml) Table 21

		Coralvil	le Reserv	oir No. 2		
Date 1976-77	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River Downstream	Universit Water Plant
Oct 11	10	20	< 10	10	1,300	30
26	< 10	< 10	< 10	< 10	< 10	10
Nov 9	< 10	< 10	< 10	< 10	< 10	< 10
22	20	< 10	< 10	< 10	50	20
Dec 14 28	500 270	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10
Jan 10	320	< 10	< 10	< 10	< 10	< 10
25	210	< 10	< 10	< 10	< 10	< 10
Feb 8	260	< 10	< 10	< 10	< 10	10
22	10	< 10	< 10	< 10	10	< 10
Mar 8	60	< 10	10	< 10	< 10	< 10
14 21	190	< 10	< 10	< 10	< 10	< 10
Apr 5	40	< 10	< 10	20	< 10	240
19	70	< 10	10	< 10	< 10	30
May 3	80	< 10	10	< 10	10	490
17	210	< 10	10	< 10	< 10	50
Jun 14	280	40	10	20	30	20
21 28	300	10	10	10	10	110
Jul 7 12	500	40	80	240	110	100
18	500	40		1 -40		100
25	4,800	20	150	310	1,610	70
Aug 8	105,000	< 10	840	1,660	320	9,000
23 29	31,000	10	10	40	50	560
Sep 6	ont di	053	and I	0.02	Strengt in	
13	410	10	20	10	< 10	50
22	1 1 200	100	10	100	280	390
27	4,300	100	40	100	200	390

FECAL STREPTOCOCCI (Number of organisms per 100 ml) Table 22

			Coralvil	le Reserv	oir No. 2		
Dat 1976-		Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Iowa River	Universit: Water
		opscream				Downstream	Plant
Oct	11	60	< 10	< 10	<10	60	1,300
	26	10	< 10	< 10	< 10	< 10	20
	9	10	< 10	< 10	< 10	< 10	10
	22	30	10	< 10	< 10	< 10	30
Dec		100	< 10	< 10	< 10	< 10	< 10
	28	20	< 10	< 10	10	< 10	< 10
Jan	10	140	30	< 10	< 10	< 10	10
	25	50	< 10	< 10	< 10	< 10	< 10
Feb	8	140	< 10	< 10	< 10	10	< 10
	22	10	20	< 10	10	10	< 10
Mar	8 14	40	10	10	< 10	30	30
	21	400	< 10	< 10	< 10	< 10	10
Apr	5	200	< 10	60	10	< 10	150
	19	30	10	< 10	50	10	50
May	3	50	< 10	< 10	30	< 10	50
	17	260	10	< 10	190	20	90
Jun	14 21	180	20	< 10	10	10	10
	28	770	30	10	160	50	• . 280
Jul	7	RV2.1263 193	.095	121 412	and parag	91 S.C. See	
	12 18	190	100	240	190	110	80
	25	950	110	220	620	820	380
Aug	8	73,000	20	620	470	310	70,000
	23 29	9,400	40	50	170	40	540
Sep	13	220	30	< 10	30	40	70
	22 27	2,300	170	210	220	280	250

TOTAL PLANKTON ORGANISMS (Organisms per ml)

		Coralvil	le Reserv	oir No. 2			
Date 1976- 1977	Highway "O" Iowa River Upstream	Тор	Mid- Depth	Bottom	Mean	High- way 218	University Water Plant
Oct 26	157,172	77,869	42,055	45,795	55,240	41,518	54,705
Nov 22	80,545	15,057	14,969	11,761	13,929	48,827	20,048
Dec 14	43,302	7,573	5,880	4,810	6,088	2,316	2,049
Jan 10	13,633	12,384	12,385	11,849	12,206	6,503	6,509
Feb 8	15,145	6,256	20,939	78,406	34,867	14,967	15,234
Mar 8	38,847	100,682	29,135	9,623	46,480	28,869	15,502
Apr 19	328,354	104,069	134,374	138,651	125,698	78,047	59,517
May 3	214,731	294,993	173,781	240,630	236,468	197,805	86,427
June 28	558,626	267,300	133,674	187,170	196,048	214,743	178,200
Jul 12	397,422	146,124	137,214	200,478	161,272	206,751	143,451
Aug 8 29	31,185 Too dirty	169,398 47,283	40,986 46,344	142,692 48,138	117,692 47,255	97,119 49,956	
Sep 13 27	162,640 50,015	15,195 20,493	40,998 19,626	16,953 18,711	24,382 19,610	23,190 34,749	

Pesticide Residues in Fish Above, In and Below the Coralville Reservoir (Collected September 2, 1976)

Species	Location	Length (mm)	Weight (gms.)	P,P'DDE	Dieldrin (ppb)	P,P'DDD	QQ	DDD P,P'DDT
Carp	Below Reservoir	54	955	104.0	0		96.0	96.0 27
Channel Catfish	Below Reservoir	390	415	80.0	13.0 .		64.5	64.5
Carp	In Reservoir	550	1026	86.0	8 5 1		81.0	81.0
Channel Catfish	In Reservoir	410	452		1			
Black Bullhead	Above Reservoir	95	34	17.5	7.5			
Channel Catfish	Above Reservoir	370	412	34.5	52.0			P

Pesticide Residues in Fish Above, In and Below the Coralville Reservoir (Collected October 7 & October 23, 1976)

Species	Location	Length (mm)	Weight (gms.)	P, P'DDE	Dieldrin (ppb)	P. P. DDD	P,P'DDT	Heptachlor Epoxide	Heptachlor
Walleye	Below Reservoir	435	602.7	21.0	6.0	25.0	1	14.0	
Buffalo	Below Reservoir	430	1356.7	54.8	76.0	52.5	ł	52.0	
Buffalo	In Reservoir	450	1473.4		1	45.5	١	17.5	
Walleye	In Reservoir	355	513.9	30.0	114.0	21.5	1	32.5	1.0
Bluegill	In Reservoir	130	49.8	15.5	53.0	A	1	16.5	
Carp	Above Reservoir	710	2247.7	96.5	78.0	50.0	1	57.0	1
Black Bullhead	Above Reservoir	210	109.4	60.5	2.5		1	· vultaria	

Pesticide Residue in Fish Above, In and Below the Coralville Reservoir (Collected January 31, 1977)

Species	Location	Length (mm)	Weight (grams)	p,p'DDE	Dieldrin	p,p'DDD	o,pDDT	Heptachlor Epoxide	Heptachlor
Buffalo	Below Reservoir	525	2171.6	43.8	22.7			6.7	
Carp	Below Reservoir	570	2771.0	28.9	41.8	23.8			
Crappie	Below Reservoir	200	83.0	18.7	30.3				
Buffalo	In Reservoir	455	1026.4	98.6	223.9	53.3	21.0	77.0	
Carp	In Reservoir	465	1256.8	133.2	406.6	89.1	9-65- 6-	97.6	
Crappie	In Reservoir	260	307.1	22.2	127.1		0.52	30.6	
Carp	Above Reservoir	395	886.0	140.4	137.8	78.7	77.4	120.9	
Buffalo	Above Reservoir	435	1267.4	35.3	153.1	37.1		47.3	. 1

PESTICIDE RESIDUES IN FISH ABOVE, IN AND BELOW THE CORALVILLE RESERVOIR (ppb) Collected February 24, 1977

Species	Species Location Length (mm)	Length (mm)	Weight (gm)	Dieldrin	P,P'DDE	p,p'DDD	o,p'DDT	P,P'DDT	Weight Dieldrin p,p'DDE p,p'DDD o,p'DDT p,p'DDT Heptachlor Heptachlor (gm) Epoxide	Heptachlor
Buffalo Below Res.	Below Res.	540	2331.1	68.0	53.0	31.0	13.0	1	7.0	1
Buffalo Below Res.	Below Res.	540	2282.4	60.0	80.0	42.0	15.0	7.0	1	1
Buffalo In Ref	In Res.	530	2417.4	2417.4 169.0	77.0	69.0	19.5	1	12.0	1
Channel Catfish	In Res.	420	818.5	338.0	71.0			14.0	70.0	1
Carp	In Res.	500	1347.2	195.0	87.0	7.0	20.0		22.0	23.0
Channel Above Catfish Res.	Above Res.	170	33.0	18.0	11.0	4.0				1

Table 27

.

.

PESTICIDE RESIDUES IN FISH ABOVE, IN AND BELOW THE CORALVILLE RESERVOIR (ppb) Collected March 25 and 29, 1977

Species	Species Location Length (mm)	Length (mm)	Weight (gm)	Dieldrin	p,p'DDE	p,p'DDD 0,p'DDT	o,p'DDT	p,p'DDT	Heptachlor Epoxide	Heptachlor
Carp	Below Res.	725	6167	213.0	106.0	56.0			33.0	
Buffalo	19 10 B 200	580	2451.6	53.0	88.0	54.0		0.6		
Channel Catfish	In Res.	420	648	260.0		23.0		-		
Crappie	In Res.	290	351	204.5	25.0	17.0	13.0		17.5	
White Bass	In Res.	270	369.5	204.0	50.0	33.0			42.0	
Wall- eye	Above Res.	491	1291.5	417.0	59.0	42.0	37.0	18.0	81.0	1
Carp	Above Res.	410	671.2	47.5	114.0	68.0	26.0	3.0	18.0	1
Buffalo	Above Res.	505	1488.3	65.0	38.0	19.0	12.0		5.0	

PESTICIDE RESIDUES IN FISH ABOVE, IN AND BELOW THE CORALVILLE RESERVOIR (ppb) Collected April 13, 1977

Species	Species Location Length	Length (mm)	Weight (gm)	Dieldrin	P,P'DDE	p,p'DDD	o,p'DDT	P,P'DDT	Weight Dieldrin p,p'DDE p,p'DDD o,p'DDT p,p'DDT Heptachlor Heptachlor (2m)	Heptachlor
White Base	In Res.	185	90.5	146.0 31.5		17.5			17.5	1
Crappie In Rec	In Rec	255	340.1	255.0 36.0	36.0		6.32	8.0	75.0	1
Channel In Catfish Res.	In Res.	077	590.3	100.5	100.5 47.0	34.0	18.0		11.5	1

PESTICIDE RESIDUES IN FISH ABOVE, IN AND BELOW THE CORALVILLE RESERVOIR (ppb) Collected May 3 and 5, 1977

Species	Species Location Length Weight (mm) (gm)	Length (mm)	Weight (gm)	Dieldrin	P,P'DDE	Dieldrin p,p'DDE p,p'DDD b,p'DDT	b,p'DDT	P,P'DDT	Heptachlor Epoxide	Hepta- Aldrin chlor	-
Buffalo	Below Res.	460	1325.4	52.7	22.0	16.0	1	1	1	1	
Buffalo	Below Res.	480	1546.0	298	42.0	25.0	1	14	66	1	
Carp	Below Res.	410	524.8	32.0	19.0	1	1	1	1		
Buffalo	In Res.	440	1198.4	134	17.0	11.0	1	1	1	6 8 1	
High Fin Carp- sucker	I In Res.	350	483.7	225.6	32.0	22.0	1	1	1	1	
Buffalo	Above Res.	503	1981.8	261.1	45.7	32.0	1	18.3	1	1	

PESTICIDE RESIDUES IN FISH ABOVE, IN AND BELOW THE CORALVILLE RESERVOIR (ppb) Collected June 13, 14, & 22, 1977

0

Species	Location	Length (mm)	Weight (gm)	Dieldrin	p,p'DDE	P.P.DDD 0.P.DDT	o,p'DDT	p,p'DDT	p,p'DDT Heptachlor	Heptachlor Epoxide
White Bass	Below Res.	235	170.4	13.0	11.0	5.0		1	1	I
Buffalo	:	310	539.7	15.5	27.5	1	1	- 1	1	1
Channel Cat	=	220	77.0	19.0	26.5	8.0	1	1	I	I
Channel Cat	In Res.	267	138.2	259.0	97.5	50.0	1	1	1	1
Large Mouth Bass	1	262	227.9	90.0	17.5	8.0	1	1	1	1.0
Crappie		311	332.5	113.0	38.0	18.6	1	1	1	1
Carp	Above Res.	420	763	496.0	113	66.0	1	16.0	1	94.0
Buffalo	=	445	1270	156.0	33.0	1	1	1	4.5	0.6
Quillback	-	450	1044	176.0	47.9	1	1	-	11.0	-

PESTICIDE RESIDUES IN FISH ABOVE, IN AND BELOW THE CORALVILLE RESERVOIR (ppb) Collected July 15 & 29, 1977

Species	Species Location	Length (mm)	Weight (gm)	Dieldrin p,p'DDE p,p'DDD p,p'DDT	p,p'DDE	p,p'DDD	p,p'DDT	Hep	tachlor	Heptachlor Heptachlor Epoxide
Buffalo	Below Res.	710	3344.7	434.0	221.5	105.0	1		1	93.0
Buffalo	-	515	2423.2	30.5	31.0	1	1		1	1
Flathead Catfish	:	655	2569.1	166.5	68.0	15.5	1		1	1
Channel Catfish	In Res.	355	371.7	238.0	1	1	1		1	1
White Bass	=	270	242.0	23.0	15.5	8.5	1		I	0.6 .
Crappie	=	240	233.6	108.0	14.5	1	1		!	1
Carp	Above Res.	530	1956.1	200.0	0.99	trace	I		13.0	13.0
Carp	=	009	1947.8	414.0	28.0	11.0	1		0.6	9.0
Crappie	=	205	154.5	127.5	52.5	19.0	1			

PESTICIDE RESIDUES IN FISH ABOVE, IN AND BELOW THE CORALVILLE RESERVOIR (ppb) Collected August 10 & 30, 1977

Species	Species Location Length (mm)	Length (mm)	Weight (gm)	Dieldrin	p,p'DDE	p,p'DDE p,p'DDD	o,p'DDT p,p'DDT	P,P'DDT	Heptachlor	Heptachlor Epoxide
Buffalo	Below Res.	1020.3	410	89.0	107.0	70.5	1	1	1	6.0
Highfin Carp- sucker	2	336.1	305	5.0	10.5	1	1	1	1	1
Carp	=	824.5	319	42.0	84.0	49	1	1	1	1
Carp	In Res.	850.7	320	331.5	90.0	36.0	I	1	1	16.0
Quill- back Carp- sucker	=	533.2	309	91.0	19.5	11.0	1	1	1	1
White Bass	=	219.6	245	136.0	12.0	8.0	1	1	1	6.0
Buffalo	Above Res.	3312.8	610	118.5	13.0	26.0	1	17.0	. i	1
Buffalo	:	2612.4	560	122	13.0	15.0	1	1	1	1
Carp	:	1614.0	590	137.0	53.5	27.5	1		1	-

Table 33

MONTHLY MEAN FLOWS (in cfs) FOR IOWA RIVER AT MARENGO OCTOBER 1964 - SEPTEMBER 1977 1

1

Oct. Nov. I	120 124	245 308 4	734 1884 1538	1966 1177 1396	2468 3878 1868	165 365 5	2222 1648 11	587 660 3:	631 479 5.	203 286 20	193 175 14	4133 1738 176	338 230 18	208 206 12	1010 936 72
Dec. Jan.	65 31	400 184	38 1475	96 1913	68 4194	515 279	195 636	336 257	516 837	205 214	44 267	60 1577	86 745	28 116	27 892
Feb.	62	632	760	3118	4363	361	3214	685	648	252	343	1836	1935	195	1297
Mar.	329	2097	5403	3523	6269	2183	5493	2438	5217	358	525	1987	3681	256	2826
Apr.	259	4572	4231	2957	8197	1196	2314	1552	4643	920	537	2155	10,850	829	3226
May	179	2489	2662	8220	5835	2225	1446	3508	2725	588	354	3298	2052	1324	2624
June	114	2193	4530	7635	4968	4984	1389	1567	4469	460	3137	4961	2579	1434	1217
July	116	632	1684	2153	1843	2160	1422	562	11340	1286	1046	1479	1785	967	2034
Aug.	1776	278	583	3574	834	3768	375	1135	2453	859	523	589	523	456	1266
Sep.	2196	133	447	767	701	1439	204	1031	783	295	230	255	4098	729	951
Mean for Water Year	675	1181	2164	3201	3773	1640	1792	1201	2917	495	621	2145	2399	570	1753

LAULE J4

COMPARISON OF AVERAGE MONTHLY CHEMICAL & BIOLOGICAL PARAMETERS	in the Iowa River Above (A) & Below (B) the Coralville Reservoir
BIOLOGICAL	he Coralvil
3	Ŧ
AL	(B)
CHEMIC	Below
Z	3
IHTNC	(¥)
RAGE M	Above
AVE	iver
OF	R
ISON	Iowa
TPAR	the
COL	In

Dates	Orthophos mg/1	Orthophosphate mg/1	5-Day BOD mg/l	BOD /1	Coliforms per 100 m	rms) ml	Total Pla per ml	Plankton r ml	Threshold Odor	hold or	Turbidity NTU	lty	Ammonia mg/l	11a 1
1976-1977	A	В	A	B	A	В	A	В	A	B	A	B	A	B
October	.05	.04	9.0	2.7	350	1000	157,172	55,240	21	18	15	12.5	.16	.37
November	.06	.02	8.7	4.1	006	200	80,545	13,929	18	18	10	5	60.	.16
December	.15	.02	4.0	2.0	1070	35	43,302	6,088	23	18	6	4	.76	.17
January	11.	.02	1.4	1.0	2240	60	13,633	12,206	19	4.7	7	Э	1.52	.31
February	.14	.04	2.6	3.1	655	335	15,145	34,867	21	7.8	19	4	1.72	.64
March	.18	.04	6.8	6.1	1450	600	38,847	46,480	21	17	17.5	7	1.11	.65
April	90.	.03	7.8	5.3	800	150	328,243	125,698	18	15.5	36	17	.18	.34
May	п.	.07	4.8	4.0	1250	500	214,731	236,468	6.6	6.6	29.5	14	.12	.32
June	.12	čů.	6.8	6.7	2700	850	558,626	196,048	5.6	5.6	30	11	.13	.27
July	.10	.03	6.1	4.6	4200	1400	397,422	161,272	4.9	7.8	39.5	17	.24	.27
August	.20	.16	6.9	4.6	245000	10450	31,185	82,474	15.5	3.7	144	21	.26	.32
September	.22	.15	2.9	2.7	4750	1300	106,328	22,001	49	37	56	25	.38	.43
Average of all samples * August del	.12 Ited	.07	5.9	3.9	22114 1851 *	585*	165,432	82,729	18.6	13.3	34	12	.56	Table 3 ກ