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ABSTRACT

The gap-coupled acoustoelectric convolver developed at Lincoln
Laboratory is a surface-acoustic-wave (SAW) device consisting
of a LiNbO delay line and a silicon strip supported on a series
of spacer rails (or posts) which have been ion-beam etched into
the LiNbO surface. The silicon/air-.gap/LiNbC4 structure forms
an over-moded acoustic waveguide. A theoretical model has been
developed which analyzes the perturbing effect of rails aad pre-
dicts the mode structure and beating phenomena between modes.
The scattering by support posts is also analyzed. t
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MODAL ANALY SIS OF SAW CONVOLVER

I. INTRO DUCTIO N

In surface-acoustic-wave convolvers~.
1’2 a semiconductor is placed in close proximity to the

piezoelectric medium so that the electric field of the SAW can interact with the semiconductor
to produce the desired nonlinear effect. Two types of supporting structure have been tried in-
cluding3 the random-post-support and the finite-periodic rail-support structure. The post sup-
port4 is unsatisfactory because of the excessive loss and nonuniformity found among the devices 

V

tested. The rail structure 5 is a more recent development which seems to have several advan-
tages over the random—post-support structure. Because it is a simpler and more deterministic
structure , the effec ts of parameter variations are more controflable and suitable for analytical
study.

Indeed , measurements by Reible6 on the prototype rail-support device show some very in-
teresting phenomena such as the laser-probe scan of the acoustic-field profile (Fig. 1) and the
frequency response of the output (Fig. 2). A distinctive feature in these measurements is the
beat characteristic. As evident from Fig. I , the acoustic field repeats spatially in a periodic
fashion. We will refe r to the periodicity as the beat length. Experimentally, the beat length
was measured to be approximately 137 Rayleigh wavelengthsP The output frequency response

V of Fig. 2 shows a frequency ripple in the orde r of 3 dB. The beat is the result of interference
between the acoustic modes of the device which are analogous to the modes of a periodic loaded
transmission line. The discontinuity presented by rail structure causes the incident Rayleigh
wave to be scattered periodically in the transverse direction. This scattering process resem-
bles the reflection of a wave in a transmission line by discrete elements spaced periodically at
fixed intervals along the line.

~ 

~~~ I4s2 o.21

~:::Fig. 1. Laser-probe measurement ~ V V V V
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Fig. 2. Output frequency response.
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In adopting the periodic transmission line model , we have assumed first of all that the finite
array of rails can be approximated by an infinite periodic structure. This seems to be a good
assumption in view of the acoustic-field profile measurement which shows no changes of the en-
velope structure connected with edge effects of the finite transverse dimension. Secondly, the
finite width of the rails is ignored by modeling them as discrete elements in a transmission line.
This approximation is justified because the width is small compared with the transverse Ray-

V 
leigh wavelength.

In Sec. II , we review the scattering matrix of two ports and properties of periodic struc-
tures. Section III gives a preview of the kinds of modes to be expected in the periodic rail
structure by providing a qualitative description of the guided modes and their dependence on the
reflection coefficient. Then in Sec. IV, we give the elastodynamic s of the rail structure. The
analysis of this section enables the characterization of the rail structure in terms of its scat-
tering matrix coefficients. It is shown that the derived scattering matrix obeys the conserva-
tion of energy. Using the model developed in Sec. IV, we next study in Sec. V the reflection co-
efficient s and the modes in the periodic rail structure as a function of the geometry of the device.
Finally, in Sec. VI, the problem of Rayleigh wave scattering by the post structure is solved.

II. REVIEW OF PERIODIC TRANSMISSION LINE 
V

In this section , we will briefly review the scattering matrix description of two-port Junc-
tions and discuss the periodic transmission-line structure made up of a cascade connection of
basic unit cells consisting of a two port and a section of transmission line.

A. Scattering Matrix

In general, the incident- and scattered-wave amplitudes of a two-port junction shown in

* 
Fig. 3(a) are related by7

• 
‘ 

/b 1\ / S11 S12\ /a 1\( 1 = 1  H (1)
\b2/  \S21 S22/ \ a 2 /

where a1 and a2 are the incident waves, b1 and b2 are the reflected waves of por ts I and 2, and

~~~ 
S12. S21, and S22 are the parameters of the scattering matrix S. For our problem, we

will be interested only in a reciprocal and lossless two port connected to transmission lines of
equal characteristic impedance at both terminals. Reciprocity and symmetry require S~2 = S21
and 

~j 1 S22, respectively; losslessriess gives the conservation of energy relationship

1S 111
2 

+ ( S 12 f
2 = I . (2)

I s11 I 2 is the power reflection coefficient and js
~ 

j 2 is the power transmission coeff icient.
Hence , the magnitu de of S12 is uniquely related to the magnitude of S~~. Furthermore, it can

be shown7 the condition

s11s~2 + s12s~2 = 0 (3)

always holds for lossless , reciprocal two ports.

~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~



Equation (3) relates the phase of S22 to the phase of ~~~ In fact , let

je2S11 = 1S 111 e , = 1~ iz I e

then V
then 

V

e2 = e 1 + - ~. W n7r . (4)

To summarize, for the problem we are investigating , the scattering matrix description of
a two-port junction consists of only two independent parameters: namely, the magnitude and
phase of the reflection coefficient S11.

The basic ideas of scattering are illustrated by considering two simple examples. In
Fig. 3(b) , a series reactance (jX) (normalized to the line impedance) is connected in a transmis-
sion line. The incident wave is labeled a1 and the reflected wave as b1 = S (assume a2 = 0).
We can think of the transmitted wave (l,z ) as made up of two parts: a1 which exists in the ab-
sence of scattering by the series element and the scattered wave which arises because of scat-
tering. The scattered waves ( S )  and (S~) can be thought as generated by an equivalent voltage
source (V) induced by the incident wave. To see how the equivalent voltage source is related
to the scattered wave , we write the following equat ions: 

V

a1 + b1 — b2 = (a1 — b1) jX (5a)

or

~~~ ~~ = V = (a 1 — b 1) jX (Sb)

and

a1— b 1 = b 2 (óa)

or

(6b) V

Equation (Sb) indicates that the voltage source is the difference of the scattered wave on
either side of the series element. Furthermore, according to Eq. (6b), the scattered wave on
one side is the negative of the other side. Combining Eqs.(6a) and (5a) results in the familiar ex- V

pression for the reflection coefficient:

s -~. i — j X (7)11 a1 
— 2 + j X

The transmission coefficient is

~ 
_ b2 _ 1 4 5+ _ 2 812 — 

~~~~ Z + j X  ( )

The 1 in the expression for S12 is due to the complete transmission of the incident wave a1 in
the absence of scattering by the series element. Obviously, conservation of energy [Eq. (2) ) is
satisfied.

— ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ —. ~- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A similar analysis for the shunt element with normalized susceptance jB in a transmission
line of Fig. 3(c) gives

S + S ’1’ = — I  (9)
whe re I is the equivalent current source. Note In the shunt connection the current source is the
sum of the scatt ered wave with

- 
S+ = S ~ . (10)

The reflec tion coefficient is

b
s I 

— —)B 
(11)1 1 a 1 2 + j B ~

transmission coefficient is

b2 2
2 +j B  (12)

and conservation of energy is satisfied. We will encounter an analogous problem in the scatter-
ing of a Rayleigh wave by the rail structure.

-~~ — H—c~ c, c:+,

... I ~~~- ~~~~
- 

~~~~~~ —

— 

c n c n c~ +, ~~~

UNI T cELL

Fig. 4. Periodic transmission line.

B. Periodic Structure

Having re viewed the scattering matrix representation of two ports, we next take up trans-
mi ssion line periodically loaded with such two ports as shown in Fig. 4.

The wave ampli tudes (C’ s) are related by

C 
- 

A11 e
jPd A12 C~~ 1

- 

A21 A22 e_Jt Id 
~~ 

(13)

-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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where /3 is the propagation constant and the A matrix is defined by the equation which relates
the wave amplitudes (C’ s):

C A11 A12 C~~ 1
= ( 14)

C~ A21 A22 C~~ 1

and A is related to the scattering matrix ~ by

Aii =~-

A21 = — A 12 =

S z — S 2
A22 = 

12 11 
• ( 15)

According to Floquet’s theorem , the wave amp li tude at the (n + 1) ST terminal can differ from
the wave amplitude at ~th terminal by at most a phase delay. Thus, we assume

~~~

( 16)

where ,cd is the phase delay. Substitute Eq. (16) into (13) gives an eigenvalue equation for ~c .

cos Kd = 
~

- [e~~~ + (Sf2 — Sf1) e’
~~~ ] . ( 17)

The charac teristic modes in a particular unit cell of the periodic structure is g iven by

c n (x) = ~~ [e
3
~~ + (~

1_ e
J n 

— 
~~

-
~

-
~~

- e~~~) e n ]  for 0 < x  <

I F -j 130(x-d) 
,, ~ 

J/3~ d S12 j ’d \  j~ n (X
~~~1 -j Kd=~~~ Ie + ( ~~— e  —~~— — e  j e  i e

L ~~22 22 /

for~~~< x < d  . (18)

Solution of Eq. (17) for a typ ical periodic str ucture gives the familiar dispe rsion diagram
as shown in Fig. 5. It shows “bands ” of alternating even and odd symmetry as exhibited by t he
mode pa ttern at the Brillouin zone center (, = 0) and ed ge (k = ir /d). These two points are of
particular interest to us because we accept as modes only those solutions which have vanishing
group velocity. With a uniform excitation of the periodic rail structure , we expect from syrn-
metry that the acoustic wave is the superposition of standing wave s in the transverse direction,
Fur thermore , beca use of the assumed uniform transducer input , only symmetric modes such
as modes I and 5 could be excited. We will refer to these modes as the fundamental mode and
the higher-order mode. These two modes are most strongl y excited and the beating between
them give s rise to the observed spatial and frequency ripp les.

6
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TRANSVERSE DIRECTION V

III. QUALITATIV E DESCRIPTION OF THE MODES

• Before going into the detailed modeling of the rail structure , we now discuss qualitatively
the behavior of the fundamental and higher-order modes as a function of reflection coefficient.

The fund amental and higher-order mode patterns are shown in Figs. 6(a-d) as the magnitude
and phase of the reflec tion coefficient are varied. The magnitude of S11 is reduced by 50 per-
cent in Fig. 6(b) as compared with that of Fig. £(a). As expected , weaker reflection enables the
wave function ç (x) to spread out from the space between the reflecting elements. The same ef-
fec t can be achieved by retarding the phase of the reflection coefficient as evident in Fig. 6(c)
in which phase is decreased by 40 percent from that of Fig. 6( a). A dramatic spreading effect
results as shown in Fig. 6(d) if both magnitude and phase are decreased.

The spreading effect makes the fundamental mode more uniform and therefore matches
bet ter the uniform input transducer profile. - Since the higher-order mode is orthogonal to the
fundamental , it becomes less excited. Therefore , we can infer immediately a very important
fact: in a rail structure which has a reflection coefficient with small magnitud e and retardation
in phase at the mode angles corresponding to the fu ndamental and higher-order mode, the spa-
tial and frequency ripple size would be small.

Over the range of 50-percent variation in magnitude and 40-percent variation in phase , the
mode patterns basically retain their shapes (i.e., nearly one half-cycle of sinusoid for the fun-
damental and three half-cycles for the higher-order mode). This indicates that the mode

7
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exp j( i .822) .
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pattern is not strongly dependent on the reflection coefficient. Its shape is inherently a charac-
teristic of the perlodicity.

V For the range of variation in reflection coefficient studied , the beat length varies from 80
to 154 A R assuming a periodicity of 9 A R. As the modes spread out more uniformly, the trans-
verse wave vector becomes smaller, forcing the longitudinal wave vectors of the modes to ap-
proach more closely with each other , therefore , the beat length tends to increase. 

V

Now suppose the spacing is reduced , but assume the reflection coefficients remain unchanged
for the fundamental and higher-order mode. Then the transverse wave vectors increase u n -
early , resulting in shorter longitudinal wave vectors; but the length difference is greater , hence ,
a smaller beat length, In reality, reducing the spacing means increasing the mode angle and ,
thus, the reflection coefficients do not remain constant but in fact would decrease causing the
modes to spread more uniformly. It is not clear , without a more detailed model of the ridge
structure , which is the dominant ef~~ct on the beat length. As shown in Sec. V, the dependence
of reflection coefficient on mode angle is not strong enough to overcome the dominant longitu-
dinal wave vector length-difference effect. The net result of decreasing the spacing is to de-
crease the beat length. At the same time, since the modes are more uniformly spread out , the
ripple size would decrease.

IV. SCATTERING MATRIX REPRESENTATION OF THE RAIL STRUCTURE

With the framework of periodically loaded transmission set, we are now ready to study in
more detail the physics of the rail structure. In particular , we are interested in characterizing
the scattering of a Rayleigh wave by ,iie rail structure (Fig. 7) in terms of its scattering matrix.

I 1l —$—141 25 1
SI SUPERSTRATE

I i I~ I i  / I i J,/ ,i,i,/ ,  I, / ~~~~~~‘i I, /

I I t t I i t I t i
— Fig.7. Scattering geometry of a h

point source.

_ _ _  
iw i f l h ii I\ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ~~~ \ ‘\‘

UNbO 3 SUBSTRATE

________ 
2 a

The basic idea in solving the scattering problem is to find an equivalent source of scatter-
ing, in our case a stress tensor , in place of the line discontinuity . The stress tensor must sat-
isfy boundary conditions specified by the dynamics of the rail in the presence of the incident
Rayleigh wave. For example , suppose the rail is p inned so that no motion is allowed. This
can be realized by assuming an infinitely massive rail or an infinitely stiff superstrate. The n ,
to satisfy the pinned boundary condition , there must be an equivalent stress at the position of
the rail caus ing a displacement which exactly cancels the displacement of the incident wave and

9
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of the scattered wave as sensed by the source. The effect of the scattered Rayleigh field must
be included in the figuring of equivalent sources because the scattered field reacts back on the
source which produced it in the first place. This feedback phenomenon is encountered in other
scattering problems as well and is very important if conservation of ener gy is to be satisfied.
Notice that we have allowed only the surface wave in this feedback process. The bulk wave is
ignored because it is not found experimentally to be significant.6

To find the source which satisfies the near-field boundary condition , we must know for a
given point stress what is the displacement in the neighborhood of the source. In other word s,
we like to evaluate the dynamic Green’s function near the origin where the source is located.
As it turned out , the dynamic Green ’ s function within a distance from the origin , which is small
compared with the wavelength, is identical to the static Green’s function, An analogous situa-
tion occurs in electromagnetic problems. The near field of an oscillating dipole is equal to the
quasi-static dipole field. We will justify this equivalence in more detail later when we study
the Fourier integral expression of the Green’s function. The asymptotic far-field evaluation of
the Fourier integral at the Rayleigh pole gives the scattered surface wave.

l i ~~-1M~ L

OBSER VER

Fig. 8. Rail-support structure .

7-

A. Green ’s Function of a Point Source

Suppose st ress ~~ with Fourier transform o~~(k) is applied at the origin of the x-y plane as
shown in Fig. 8; we like to find the scattered surface wave on an isotropic medium with Lamé
constant s A , ~~. Assume the potentials p and ~~ , respec tively, for the compressional and shear
waves of the form :

-j(k x+k y)
q ’ = C e  “ y e

_ 1)Z ( 19)

—j (k x+k y)
l = j S e x 

~~ e
_ 5Z (20)

whe re

k~~ + k ~~— p 2 = k ~ (2 1)

k 2 + k 2 — s 2
~ k~ (22)

10 
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k2 = k 2 + k 2 (23)
x y

~~ A 
(24)

and

Ic2 = , ( P ) 1/ 2 (25)

where p is the mass density.
Suppose a surface stress exists, Fourier decomposition gives8

~~ k — 

~~~~~ + s
2) azz (k) + j2k s 

~~~5U’~ 
cosO + ~~~(k) sine] 

26
~D(k)

S(k - 

2
~~~ zz~~ 

+ j ( 1c2 
+ ~2) 

‘~ xz~~ 
cos e + u~5(k) sine] 

(27)- 1iD(k)

where

D(k) = (k 2 
+ 52 )2 

— 4k2ps (28) V

and e is the angle the line of observation (y—azis) makes with the x-axis. The angular depen-
dence comes from the projection of the shear stress components onto the line of observation.
The reason is that only the shear stress pointing along the direction of observation couples with
the Rayleigh wave in that direction. Taking superposition of all spatial harmonics, we have:

00 -j(k x+k37y) 
-

~ (x ,y, z) = .5 dk~~,5’ dk C(k) e X e p (29)

-j(k x+k~Y) _
~~~~

~(x ,y, z) 5’ dk
~~.5 

dk~ jS(k) e x e . (30)

For a point stress with the total applied force components Fx o F~ . and F~ .

= —F ~ 6(x) ô(y) (31)

= — F~ 
6(x) 6(y) (32)

°yz = _ F y 6(x) 6(y) (33)

V the Green ’s function is

G .

~~~ 

— (k 2 
+ ~2) F 5 — 

j2k s(F~ cose + F sine)
~ (x ,y , z ) =  ~

___
~~. 5 d kx .5  dk~ 

~D(k ) 
y

-j(k x+k y)
X e  x ~ e~~~ (34)

c - ,00 _ 2k pF~~— j(k 2 
+ Sa ) (F cos 6 F sine)

p (x ,y, z) = .._.L 2..5 dk~~.5 
dky ~iD(k)

-j(k x+k y)
X e  X 

~
‘ e~~

5 
. (35)

11
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Fig. 9. Geometry of rail scattering: (a) net excitation , (b) antisymmetric ,and (c) symmetric components.
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Now , usi ng Eqs. (34) and (35), we justif y our earlier claim t hat the dynamic Green ’s function
near the source appears quasi-static. Withi n distance of the order of a wavelength , Integration
in k-space does not show any special dependence until k5 and k~ are much greater than Zlr/X R or
larger than either Ic1 or k2. In this range the integrand in Eqs. (34) and (35) is independent of fre-
quency. Therefore , ~G and are identical with the static Green ’s func tion in the neighborhood
of the source.

B. Static Green’s Function of a Point Source

The static Green’s function for the displacement due to a point stress is given by Landau
and LifshitzY

V 

U r  ~~~ ~~~~~~~~~~~~~~~~~~~~~ 
F + 2( 1 — a) F5 + -

~~~~~~ 
(xF 5 + y F ) J  (36)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (37)

U 5 = ~~ [ z u — a) F5 + ( 1— 2a) .
~~ 

(xF + yF~ )J (38)

whe re E is the Young ’s modulus , a is the Poisson rat io, and r is the distance from the source.
Equations (36) to (38) pertain to a point stress and therefore are not directly applicable to our
rail problem which has a line geometry. However, as we will 3ee later , these equations are
di rectly applicable to the post problem. In the next section we will derive the counterparts of
Eqs. (36 ) to (38) for the rail problem.

C. Green ’s Function of a Modulated Line Source

Figu re 9(a) illustrates the geometry of scattering for the rail structure. The rail is as-
sumed to lie along the y-axis with the Rayleigh wave incident at an angle e with respect to the
x-axis and the reflected wave going off also at angle e.

- 
. - We will assume an equivalent modulated line source along the y-axis. The modulation

-jk ,y -jkj
e ~ comes from the fact that the incident Rayleigh wave has e ‘ dependence. Analogous
to Eqs. (34) and (35), we take a Fourier superposition of space harmonics now only in the kx
dimension.

G ,00 — ( k 2 
+ 

2) F 5— j 2ks (F cos e + F sine) -j(k x+k~~ ) 
-

~ (x ,y. z) = 
~~ 5 _ 00 

dk~ (LD(k) e X e p

G ~°o —2k pF 5 — J (k 2 
+ 

2 ) (F 5 cose + F sine) - j (k  x+k 3,y) 
-

V ‘ ~ (x ,y,  z) = 
~~ ,5 dk 5 ~iD(k) e X e (40)

whe re the modulated line source is

-jk y
“ 6(x) (41)

-jk~y
= — F 5 e 6(x )  (42)

-j kj
ayz = _F

y e ‘ 6(x)  - (43)

13
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V The inte ration in Eqs. (39) and (40) can be done easily, by picking up the Rayleigh pole residue
at kx = ~~~~ — k where IcR = 25/A R is the propagation constant of the Rayleigh wave; the inte-
grations are done in Appendix A. The results are repeated here for convenience.

G - 

_ Zk
R s(Fy sine ~ F5 cos e) + j (2k ~ — k )  F

~ 
-jk R r 

~~~~~Q (r , z) - 

~D ’(k R ) cosO e e (44)

G —j(2k — k)~~ (F~ sine  ~ F5 cose) — (Zk R P) F~ ~jk~ r 
e~~~4’ (r , z) = 

~LD T (k B ) cose e - (45)

The Green’s functions for displacement Ur and U~ of the Rayleigh wave on the surface (z = 0)
are then

Oq~ 84 ’U = -

_jk ~ r 
-

cos e [k R (2k
~ — k~ — 2ps) F5 + j k~ s(F~ sine ± Fx cose)] (46)

U z 8z 8r 
V

= 

~~~~~~ 
cose [jk pF5 — kR (2k

~ 
— k — 2ps) (F~ sine ± F

~ cose)] . (47)

To simplif y notation , Eqs. (4 6) and (47) are written in tensor form:

_j k~ r
= E. .F~ e (48)

where

±jk~~s cos e
E11 = ).LD’ (k

R
)

. 2j k2 s sine

~
DT ( kR ) (50)

2 2k R (2k R — 
k2 — 

2ps)
F.13 = 

~
D’(kR) (51)

±j k ~~s sine
F.21 = 

~D ’(k R ) (52)

• + j k s  sin 2 0
F.22 )~D ’(k R ) cose (53)

k (2k 2 — I c 2 — 2 ps) sinO
23 — 32 — JD ’(k~~) cose
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~kR (2k
~ — k — Zps)

E31 = 
~

D’(k R) (55)

- 

jk p
E33 — 

~D ’(k R) cose (5 6)

D. Stiffness Matrix

The near field of a modulated line source approaches that of the quasi-static Green ’s fu nc-
tion. We assume the force is uniformly distributed across the width of the rail (a good assump-

-j k ,y
tion if the width <<~ & 

and sinusoidally modulated with a phase factor e ~ along the length of
the rail. The displacements at the center x = 0 are found by convolutions of Eqs. (36) to (38).
Thi s is done in Appendix B. The result is given in the form

= T~3
F~ (57)

where ~~ 
is a diagonal tensor which measures the stiffness of the medium.

E. Reaction of Scattered Wave on the Source

As in any acoustic scattering process, the scattered wave tends to react bac k on the source
of scattering. The interaction of the scattered wave with the source was illustrated in Sec. II
using the examples of series and shunt elements in a transmission line. Now we want to see
explicitly how this interac tion occ ur s in the case of scattering of a Rayleigh wave by the rail

structure.
A great deal can be deduced from the symmetry of the problem. For example, F5 excites

only a surface wave of odd symmetry with respect to the y-axis, while F5 and F~ excite sur face

waves of even symmetry. Therefore , F5 does not “feel” the scattered wave generated by F~ or
* 

, F~ and vice versa, Stated in another way, F5 does not couple with F5 or Fy ; however , F5 and
do couple with each other. This observation suggests the scattering of a Rayleigh wave can

be viewed as being made up of an antisymmetric scattering in the x-direction and a symmetric
scattering in the y- and s-direction. Indeed , as we shaU see later , this turns out to be the case.

Let <U 1> denote the average of the scattered wave which reacts back on the source. Then
we can relate <U 1> to F~ by the following matrix equation.

<U 5> V11 0 0 F

0 V 22 V23 F~, (58)

<U 5> 0 V32 V33 
F5

where

V 11 = E 11(+)

V22 = E22

V23 = —V32 = E23

V33 = E33

15
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The “ averaging” is taken so that F5 “feels ” the difference of the scattered wave (analogous to
Eq. (Sb ) for scattering by a series element in a transmission linef, while F~ and F5 

I~feelIt the
sum of the scattered wave [analogous to Eq. (9) for scattering by a shunt element in a transmis-
sion line],

F. Dynamic Equa tion of the Rail St ructu re

The boundary condition satisfied by the sources F~ obey the dynamic equations:

U~~ + T~~FJ~ + <Ui> = T~~F
J~ (59)

and

+ F~~) = _ 2ahP 5u 2U~ . (60)

Referring to Fig. 7 , T~~ and T.~ are the stiffness tensors of the upper and lower substrate
U Lwith applied force per unit length F. and F. , respectively, Za is the width, h is the height ,

p is the mass density of the spacer , U. is the incident Rayleigh displacement, and U . is the
net displacement. The displacements U~ at the surface z = 0 are given by

R k~ -j(k 5x+k y)
- 
. 

U,~ jA~ ~~~~
— e y cos e (61)

R k~ -j(k x+k ,y)
U = —jA ~ ~~~~~

— e ~ ~ sine (62)y R

= A~ 
2k~ — — Zsp _ i(k 5x+k~Y) 

, (63)

- 
* Substitution of Eqs. (60) and (58) into Eq. (59 ) yields

(T~~ -f T~~ — 2a ~~ 5w 2T~~(T1~ + V1~) + V.~) F~ = —(â
~ 

— 2 a ~~ c~,
2 T.~ ) u~R (64)

whe re o~. is the Kronecker delta. Let

G13 = T.U 
+ T.L 

— Zahp W ZT.T
j

J (T1
L 

+ V1.) + V.. (65)

and

R t3 = — ( 6 .  — 2ahp c*, Z T.U ) - (66)

EquatIon (64) becomes

0 0 F R 11 U~~

0 G22 G 23 Fy = R 22 IVJ . (67)

0 G 3~ C33 F R 33 ~~~

16
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1.

The form of the matrix equation (67) confirms the fact that antisymmetric scattering in the
s-direction is independent of the symmetric scattering in the z- or y-directions.

G. Scattering Matrix of the Rail Structure 
V

To find the scattering matrix of the rail structure, we consider an incident Rayleigh wave R
with displacements U~~ launched at angle e with respect to the s-axis against the rail (see
Fig. 9(a)] .  The reflected wave S and transmitted wave T have displacements U j

8 and u~T, re-
spectively. Because the displacements of the Rayleigh wave are related to each by defini te ra-
tios [see Eqs. (61) to (63)], we can define a set of unique scattering matrix coefficients from the
ratios of the s-displacements of S and T waves to the z-displacement of the R wave , i.e. ,

U S
S11 4~ 

(68)
U z

and V

u T
S12 = —~~ . (69)

Uz

U~~, U~~, and U~
’ have one-to-one correspondence with voltages a1, b1, and b2, respectively,

of the transmission line model shown in Fig. 3(a). The excitation of Fig. 9(a) can be decomposed
into its antisymmetric part [Fig. 9 (b)] and symmetric part [Fig. 9 (c)] . Indeed , by adding the dis-
placement component s of the antisymmetric excitation to that of the symmetric excitation, we

get exactly the displacements of the original exc itation represented in Fig. 9 (a).
In the ant isymmetric excitation, all the incident Rayleigh displacement components cancel

except the x-component which is equal to the x-displacement component of the El wave. Solving
for Fx in Eq. (67), substituting into Eq. (48), we fi nd the antisymmetric scattered field normal-
ized to the incident field to be

= _______ ( 70)

whe re - - -

2 2 U
a k2 s (1 — Zahp 5w T11 ) cosO

X = 
~D~

(k R ) T~~ (1 + T~~/T~~ — Zahp 5w 2T~~~)

The refore , we find for the antisymmetric excitat ion:

72— 

u 5
R — 2 — 2 1 + j X 5 ( )

and

u ( T )
S - !Da I t _ ~ xa

— - - 2 
~ + j x~ 

‘

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~



The — 1/2 in Eq. (72) is due to the total transmission of the incident wave — R/2 from the bottom
side in the absence of scattering; similar reason explains the 1/2 in Eq. (73).

For symmetric excitation, the x-component of the incident Rayleigh wave displacement can-
cels leaving the y-component and z-component which are equal to the y- and s-displacement
components of the R wave. The symmetric scattered field is found by first solving for F~ and

F5 in Eq. (67) and then substituting into Eq. (48), we find

- 

E32F~ + E33F5
-

= 3B ( 4 )
2 + j B 5

where

Zk~ / i — Z a h p  W Z T U 
-

B = 
~D’(k R ) cos O ~~ T~~ 

33) (1 + T~~/T~~ — 2a~~~ w 2T~~ )

+ s sin z
e(’ 

_ 2 a
~~~w 2T)

~~~ (1 + T ~~/T~~ _ 2 a ~~8w 2 T~~ )J/

(1 + T~~/T~~ — 2a~~ ~0, 2 T 2~ ) (1 + T 3~3/T~~ — 2ahp w 2T~~~) . (75)

-- VV Thus, for the symmetric excitation:
--- -

~~~~~~~~~--- --~~~~~~~~~~~~ -

u (S5)
5 ...~~.__. 1 s _ I 2 — j B 5

r = R =~~~ + D  -
~~~~~ 

(76)
U z 2 + j B

(T 5)
5 Z 1 s 1 2 — j B 8

= R . (77)
U 5 2 + j B

Finally, the scatter ing mat rix coefficients of the original excitation [Fig. 9(a)]  are found by
superposition:

U S
- z

11 V R
IV

Z

~ca~ tcs
U ’  ‘-f U ’

-

z

= Da 
+

- a  - s
= 

jX 
— (78)

1 +~~~a a i- JR 5
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and

S12 —

- 
u~

T) 
+ 

(T 5)

-

= 1_ D a + D s

- a  . 5
= 1 —  _ _ _ _  — _ _ _ _  . (79)

1 + J xa 2 + jB5

H. Conservation of Energy

An important test of the validity of S1~ and S~~ given by Eqs. (78) and (7 9) is to show that the
conservation of energy is satisfied.

+ 1s 12 1 2 
= 

I 
~~~~~ 

a 
— 

JB5 

1

2 
+ 

I~~ 

— 
a 

— 
jB5 s1 2

1+)X Z+jB I+jX 2+JB

= I Q.E.D. (80)

Thi s cond ition becomes obvious by noting r’s and s ’ s of Eqs. (72), (73), (76), and (77) have mag-
nitude of 1/2 implying conservation of energy holds for the antisymmetric part and symmetric

-~~~~~ V . ,

~~~~~~~~~~~~~~~ ~t t~%~~5t.

V. R ESULTS ON THE RAIL ST RUCTURE

In this sect ion , we present calculations of the reflection coefficient and modes of the pen -
odic rail structure using the model described in the previous section.

A. Reflection Coefficient

Figu re 10 plots the fraction of reflected power, 1S 11 1 2 of the ridge vs the angle of inci-
dence 0. As expected , ~~~ 

2 increases with ang le of incidence and approaches unity at grazing

IH1
L1 2
~~:P~AJ

ANGLE OF INCIDENCE 191

Fig. 10. Reflection of Rayleigh wave by the rail structure.
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incidence (0 = s/2). The reason is because the ridge appears to be “ softer ” for a Rayleigh wave
incident at a small angle as evident by looking at the stiffness matrix of Eqs. (B-b ) to (B-Ia).

The mass of the spac-. r makes little difference in the reflection coefficient as shown by the
curve labeled (2 ) corre sponding to the case of LiNbO3, Si1 and zero mass. On the other hand ,

the scattering of the Rayleigh wave is very sensitive to the stiffness of the superstrate. For
examp le, by letting the superstrate become infinitely stiff (curve 1) the reflection increases.
On the other hand , remova l of the superst rate (curve 5) leads to a dramatic decrease in the re-
flectivity. The effect of the superstrate is to deaden the surface vibrati on. This effect is en-
hanced by a wider ridge as evident in curves 2, 3, and 4 where the width is changed from
6 to 4 ~im and then to 2 ~m. Although not shown in Fig. 10 , the phase of the reflection coef-
ficient generally decreases with a decrease in the magnitude except for the case of no

supe rstrate.

B. Modes of the Periodic Rail Structure

Using the scattering matrix coefficients of the ridge , we proceed to find the modes of the
periodic rail structure using Eq. (17). The results are summarized in Table I. We have stud-
ied the behavior of the fundament al mode and the higher-order mode by changing the width and
the spacing of the rail. The resulting mode profiles are given in Figs. ii to 14. Beat length
and frequenc y ripple are also calculated.

The mode expansion of the uniform input is given by

~, a~N~q~ (x) = 1 (81)

i= I

where q,~(x) is the mode profile given by Eq. (18) with unity peak amplitude , N~ is the normaliza-

tion constant such that

,~ N~~q,.2 (x) dx = 1 (82)

T ~~~ 
+ sin/ 3jd ) 1_ h /

~
2 (83)

whe re i3~d is the normalized transverse wave number , and

d 2N.  j3 .d
at = N tQt (x) dx = sin —

~~
— . (84)

The modes of a 6.5-i-em-wide periodic rail s t ructure with IOO-i-im spacing are shown in

Fig. 11. Superposition of the fundamental and higher-order mode according to Eq. (81) gives

the field profiles of Fig. 12 depending on the relative phase of the modes , given by the longitu-
-Jf ~~’dinal propagation phase factor e where

= Jk~ — , (85)
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• Fig. II. Mode profiles of 6.5-iim rail Fig. 12. Superposition of mode profiles.structure with IO0-~m spacing.

l_5 - i. _________

4’ I.) 118 V 8 V 1 4 6 3 1 I 4, 1 1 ___________

Fig. 13. Mode profiles of 2-sm rail Fig. 14. Mode profiles of 2-~ m rail
structure with IO0-~j m spacing. structure with 3O-~ m spacing.
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we can get either the sum or the difference of the two modes resulting in a beat pattern. Spa-

tially, at a fixed frequency, the superposed field profile repeats within a distance Lb. the beat

length , such that

Lb U I — ~5) = Zir . (86)

The beat pattern also occurs at the output transducer as the frequency is swept. The frequency

interval ~ f is related to Lb by

Lb
f L 

( 7 )

whe re L is the distance between the input and output transducer. The depth of ripple as de-

tected in the received power as a function of frequency is V

2 2
/a 1 — a 5\

M = 20 log ( 2 2 ) (88)

\a 1 + a 5 1

Table I shows that for the 6.5-sm device , the beat length is 86 A R as compared with 137 AR
V measured experimentally 6 (Fig. 1). The ripple frequency depth is — 1.9 dB, somewhat less than

the —3 dB observed in the output frequency response (Fig. 2). The discrepancy is probably

caused by groove scattering not included in our present model.

Figure 13 shows the modes in the rail structure with narrower width but with the same

spacing. Because the reflectivity is reduced and phase retarded, the modes become more spread

out resulting in longer beat length and smaller ripple (see Table I) as explained in Sec. Ill. To

take advantage of the mode-spreading effect with weaker reflectivity, the width is made narrower

and the spacing is reduced. The latter allows the mode angles to be smaller (i.e., closer to

normal incidence), therefore achieving a weaker reflection coefficient. The spacing is decreased

for another important reason. By increasing the number of supports, the load supported by

each rail is decreased; as a result, the deformation is kept small, minimizing groove scatter-

V 
ing. The combined effect is seen by the mode profiles shown in Fig. 14 for a structure with

2-iim width and 30-sm spacing. It is clear tha t the modes have indeed spread out significantly

as compared with those of Fig. I I .  Consequently, as shown in Table I, the depth of ripple has

reduced to —0.73 dB. However, Lb has shortened to 11 A R.
A word of caution , by continuing the reduction of the rail width, eventually groove scatter-

ing caused by larger deformation near the rail becomes important. The effect of groove scat-

tering is certainly to increase the magnitude of reflection coefficient. However , it is not clear

without further study which way the phase will change. If the phase is retarded, then the modes

tend to be spread out offsetting the effect of the increased reflectivity. In addition, bulk scat-

terin g may now play an important role as the groove is steepened and more rails are in place

as a result of reducing the spacing. A definitive judgment cannot be made until we study more

closely the coherent bulk scattering by an array of rails.

V VI. POST SCATTERING

In this section , we take up the post scattering problem. It is solved in a similar fa shion

as the rail scattering problem. We first of all evaluate asymptotically the far field from the

V 23 
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integral expression of the Green ’ s function of a point source derived in Sec. IV. Then, the stiff-
ness matrix and the dynamic equation are derived. Finally, we present the radiation patterns
of post scattering.

A. Green’s Function

Integral expressions of the Green’s function are given in Eqs. (34) and (35). In Appendix C,
the scattered Rayleigh wave is evaluated. The results are

G (r z) - (~~~) i/2 I _ Zk
R 5(Fy sine + F

~ 
cos e) + j(2k ~ — k)~~ F~- 2~ ,J’j ~ i

x e
_Jk

~~ e~~
5 

(89 )

G 
— 3 1/2 1 —j(2k ~ — k~~) (F

y sin e + F
~ 

case) — Zk
R pF Z~P (r . z ) -  -~~- ) ,j]~

—
~ 

IW’(k R )/k R

x e
_J

~~~
r 

e 55 
. (90)

The displacements of the Rayleigh wave at z = 0 are then

_ _ r
. 

U = ~~~~- -~~~r 8r 8z
V 

2 2 2 2
I I k R (Zk R — k2 — Zsp)] . I k RkZ s

~I~~R” I ~.D’(k~ ) 
F~ exp [

~~3(k R
r_  

~~~ 
— 

J27r k~ r ~
D’(k R )

X [F~ sine + F case] exp [._j (k ~~r + 
~ )J (91)

- 
. - z as

2 2 2 2
I [~~ 

kRkZ ~ I . 1 k~~(2k~ — k2 — Zsp)
= 

JZlrk Rr [ FAD’(kR)J F~ exp [_ )(k Rr + — 

Jzir~~~r

X [F
y sine + F cose] exp (

~
_ J (k R

r _  -~ ) 1 (92)

B. Stiffness Matrix

Assuming that the forces are uniformly distributed over a disk of radius (b), the displace-
ments at the center are found by convolution. The result is given in terms of the stiffness
matrix ~~ (see Appendix D) relating displacements to the forces in Eq. (57).

C. Radiation Patterns of the Post Structure

The dynamic equation for the post structure is Identical in form to the rail problem
[Eq. (59)) except that we Ignore the reaction of the scattered wave back on the source. The dif-
ficulty in treating the reaction of the scattered wave back on the source is caused by the fact
that a detailed energy balance as we have in the rail problem is not as easily carried out. First
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of all , the incident wave is a uniform plane wave of infinite extent , while the wave scattered by
the point source is more or less radial. Such scattering geometry presents difficulty in the
normalization of energy which is not the case in the rail scattering problem. In addition, the
effect of the scattered wave on the point source is not as easily treated analytically as f or  a
line source because of the nature of the point singularity. - Therefore, it must be kept in mind
that our result is an approximation which provides only a qualitative picture of the scattering
process.

Assume a uniform Rayleigh wave incident on the post in the x-direction. The induced forces
which satisfy the dynamic equation are given by

- 

— 7rb 2 (I —p 5hw 2 T) ~~~ IiF~~
_ 

L U ,  L 2 U ~ 
(93)

T11(b + T 11iT 11 — p h ~e T11)

- 

—7rb 2 ( i — p h w 2T) ~~~ RF~~
_ 

L U ,  L 2 U ~ 
(94)

T33(1 + T 331T 33 — p 5h~ T33)

Fy = O  (9 5)

Substitution into Eqs. (91) and (92) gives the scattered Rayleigh wave.
Note the scattered field decreases as i/~fF from the source a~ expected for two-dimensional

scattering. Furthe rmore , the radiation pattern of the vertical source component F5 is isotropic
while it has a cosine dependence for the horizontal source component F

~. The displacement ra-
diation patterns are shown separately in Fig. 15 for a post with a silicon superstrate. It is inter-
esting to note that the scattering in the forward direction is stronger than that in the backward
direc t~~n beca use of the constructive interference of the scattered wave components. Further-
more , we observe that the vertically scattered component is larger than the horizontal compo-
nent. This is because , at the surface , the Rayleigh wave displacement in LiNbO 3 is 1.5 times

1’
U COMPONENT

~~~ ~~~~~~~~~ 
scattered ~~~~~~~~~~~~~~~~~~~ , cOMP ONEN T

IN C ID EN T SNW
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Si SUPERSTRATE

Fig. 16. Radiation pattern of scattered
SAW by the post structure.

NO SUPERSIRATE

INCIDEN T SAW

larger in the vertical direction than in the horizontal direction , inducing a larger F5 than F~.
The diff erence is further enhanced in the excitation of the scattered Rayleigh wave.

The power radiat ion patterns for a post , with and without superstrate , are shown in Fig. 16.
We note that the scattering is dramatically increased by the p inning effect of the superstrates ,
a phenomenon also observed in the rail scattering.

VII. SU MMARY
V We have presented a model for the scattering of the Rayleigh wave by the rail- and post-

• 

, 

support structure. Using the scattering matrix coefficients predicted by our model , we have
analyzed the modes in the SAW convolver with a periodic rail structure. The theoretical results
obtained are in reasonable agreement with the experimental measurements.1’

Our study provides insight into the optimal design of the rail support in orde r to minimize
the rnoding problem. We recommend that the rails be made thinner and placed closer together
so as to decrease the r ipple size in the output frequency response.

Finally, we recommend furthe r study into the scattering of the Rayleigh wave by rail- and
post-support structure by taking the finite dimension of the support structure into account. This
would involve a more detailed study of the groove scattering as well as the bulk wave scattering
proble m.

The groove scattering may ve ry well account for the discrepancy between the theoretically
predicted frequency ripple using our present model and the experimental measurement.6 Fur-
the rmore , in order to optimize the rail-structure design and to get a handle on the pressure
dependence of the mode pattern, the groove scattering problem must be studied carefully.

Our study has not included loss due to the bul k scattering which is expected to be significant
when the deformation caused by the rail loading becomes larger. Furthermore, m r - f e  conver-
sion as a result of scattering by nonuniform loading along the rail and scattering by boundary
roughness can also contribute to loss. We believe our model is still incomplete without proper
account for these loss mechanisms which are important in understandi ng the limitations on the
convolver.
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APPENDIX A

GREEN’S FUNCTION OF A MODULATED LINE SOURCE

G I — (k 2 + gZ ) F5 _j 2ks (F~ cos e + F sin e)
~ (x ,y . z) = dk~ 1~D(k)

-j(k~x+k ,y) 
-X e  ‘ e~~ (A-I )

G j ~~~~ ‘~!‘~~5 
j(k 2 

+ ~2 ) (F
~ cos e + F sine)

V 
zP (x , y. z) = 

~~ ) 
dk ,~ ~D(k)

-j(k x+k y)
X e  ~

‘ e 55 (A-2)

where

D(k) = (k 2 
+ 52)2 —4k 2ps (A-3)

We want to evaluate integrals in Eqs.(B-I) and (B-2) Im k 5
by contour integration in the k

~ complex plane . The only

pole singularity occurs at k~ = ±Jk~ — k~~. Letting k R be
slight ly imaginary displaces the poles off the real axis as
shown.

For x > 0 , we choose to close the contour in the lower Re ~
half-plane. To find the residue, we need the derivative of

D(k) evaluated at k = JVj
~~~~ 

— k .  This is done by expand - X > O

ing D(k) In the neighborhood of

2 2 2  2D(k) = (k + s ) — 4k ps

= (k 2 — k ~ ) R( k)

= (k — kR ) (k + kR ) R(kl

= (J k ,~ + k — kR)( j c
~ + k~ + kR)  R(k)

where ,,[k,~ + k + kR and R(k ) are functions with weak dependence on k~ as k5 -.Jk~ — k ;  so
we can replace the two functions by Zk R and R(k R). respectively, continue,

D(k) � (J k ~~ + k — kR) ZkRR k R

= IJ(.i~~ 
— k~ + o)2 + k — k R~ 

2k R R(k R )

+ 26 ,jk~ — k ~ _ k R ) Z k RR(k R)

8Jk ~ — k ~ 2k R(k- kR R R
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but D ’(k) Ik k = Zk R R(k R) ; therefore ,

D ’(k )
D’ 

‘ 
= — 

R R y D’(k 0) cos e . (A-4)
k = 1 k  -k R -x~~~~R y

Finally, for x > 0. let r Jx2 
+ y2 to be the distance measured along the y-axis (see Fi g.8) .

G - _~ ~~~~~ + s~ ) F 5 — j Z k Rs(F cos e + F s ine)  -jk~~
r 

e~~
5q (r . z) - 

~
JD ’(k R ) cos e e

For x < 0, we close the contour in the upper half-plane, the result is a change of sign of
the term. A similar contour integration is carried out for ‘P

G . In su mmary,

G(r - ~
2k R S(F y sinO* F~ 

cose) +j ( 2 k ~ — k ~~) F
~ e

_
~

k
~~~ e~~

5 A- 5)z)  - 

~iD’(k R ) cose

G ( - 

—j(2k ~ — k ~~) (F~ sin e ±  F
~ 

cose) — (Zk R p) F5 e~~~~~
r 

e~~
5 A-b)‘P ‘ 

- 

~
D ’(k R ) cose

where the plus sign is used for x >  0 and the minus sign for x < 0.
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APPENDIX B
STIFFNESS TENSOR FOR THE RAIL STR UCTURE

Convolutions are of the form:

U .(x , y) = 5’ dy’ 5 dx’ ~~ U~~(x — x’ , y — y’) ~~~~~~ (B - i)

where U~~ are Green’s functions for a point source given by Eqs. (36) to (38) and 2a is the width
of the rail. We are only interested in the displacement at the center , i.e., x = 0. Integrations
of terms with Ui? odd in x’ vanish, For the remaining terms we need the following integrals:

~ 
-jk y’

II = 5’ ~ e y dy’ (B-2)

I -jk y’ -12 = 3  — s e  -~ dy’ (B-3)
-

~~~ 
p

13 = 5’~ 
b’7’) e~

’
~3’~

” 
dy’ (B-4)

, 2 —jk
14 = 5 ’  

~~~~~~~~~~~~ e dy’

where

1 2  2p = . ..’x ’ + ( y — y ’)

Let ~ = y’ — y

-jk ,y (..o 
1 -jk ~~I1 = e  ~ _ _ _ _ _  

e ~
‘ d~

— ‘-‘—‘° 1 ,2 2‘I x -l-~.L

-jkj  ~.-, °o cos k ~L

‘ 2 3  “ d~ .

o .j~’
2 

+

Let A = -~~~

-j k~,y f 1’ cos (k Ix ’ I A )
11 = e  -‘ 2 3  dA

o

V -jk y
= e ~

‘ ZK (k t x ’ I )  (K 0 is the modified Bessel function)

F o r k x ’<< I ,

k ~x’~— 2  ( ln “2 + e [ Eq. (B —2 ) ]

where ~ = 0. 57721.
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Note

I al l 2 jk y

~~~~~ 

=— ~~ e y [E q.( B-3)]

-jk),y .~~~ — 
-3k~~

13 = e  5 ~~ ~~2 e ~
‘ d~i

~~ x +~~

-k lx i  -jk~y
= e e [E q. (B-4) 1

2
I - e  ~ e- 

~~~~~~ (x ’2 
+ 

2) 3/2

-jk~,y r~ 1 i x’~ 1 -jk~~t
= e 

~_~~l(x I 2 
+ 

2) 1/2 — 
(x’ 2 

+ 
2 )3/2 1 

e d~

2— x ’ 12]

k ix ’ l  -jk~,y
= _ 2 ( ln  

~
‘
2 + ~ + e . [E q. (B—5 ) ]

Let x’ — 0, we note 13 is well behaved while all other integrals become singular, there-
fore 13 can be ignored. Next , the x’ -integrations are done :

a k j x ’i -jk ~,y
dx’ = (_ 2 

5’-a 
In dx ’ — 4~ a) e

k a  -j k37y= 4a(I _
~ _ ln~.f~.) e (B—6)

2 -jk ,y

3 x’ 12 dx ’ = 4a e -‘

S 14 dx ’ = —4a + in 

~
) e~ k

~~ (B 8)

Now , Eq. (B-I) can be put in the form

U~ = ~~~~~ 
(B—9 )

where the stiffness matr ix T1~ is diagonal with

= 
2(i + a) (. i  (1 — ~~ (~ 

+ In 

~
-
~
) J (B — ID )

T22 = 
2 (i + a) ( 1 _ a _ ~~ _ ln~~~.~) ( B — l i )

T33 = 
Z( i + a) ( 1 — u) (i — ~ —l n 

~ 
(B—12 )
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APPENDIX C
GREEN ’ S FUNCTION OF A POINT SOU RC E

G I -
~~~ ~~ — ( k 2 

+ ~2) Fz — j 2ks(F cos~~ + F~ sine)
q~ (x ,y. z) = —

~~ 5 dk~,5 dk
~ D(k)

-j(k x+k ,y) -X e  x ~ e~~ (C-I)

i ‘
~~~ ~~~~~ 

— 2k pF~ — j (k 2 
+ ~2 ) (Fx cos e + F~ sine)

(x ,y, z) = —~~ 5 dk~,j  dk 
~ D(k)

-j(k x+k~~ )
X e  X y e 55 

. (C-2)

Evaluating the k
~ integration as done in Appendix A gives

G ~~R~~~
’y sine -1- F

~ cos e) +j ( 2 k ~ — k ~~) F
~q (x , y . z) = 

~~~ \ dk~, ~~~-
1k 2 — k 2

fl’(I, I ‘V H y
H kR

X exp [_j (k ~y + Jk~ — k
~ x)I e~~~ (C-3)

‘P 
G ( x y  z) = 5 dk 

—j( 2k~ — k )  (F~ sin e :~~~ 

::~
°
~ 

— Zk R pFz

D”k ’ R y
R kR

)< exp [_j (k3,y + Jk~ — k~ x)J e sz 
. (C-4)

Integrations in k~ are done by the steepest descent method. Evaluate ~G first :

~,r ’ z) = 5 dkyF(k
y) expi_ i(k 3,y + ~Jk~ — k~~x)J e 1

~
5

Let the saddle point be (k r,. ky i ) then

~~~~
- 

(~~~~~~ 
+ Jk~ - k x )  

~~ 
= 0 - 

Jk~~- k~ 

= 0

4 ~~~ +Jk~ -k
~~x)J k , = -x

G -j(k ,y-f k~ , x) f ~ 
k~~ 2 1q (x .y. z) = 2~ 

F(kyi) e S~.0, d~~k~ exp x —s- (~~k3,) j . C-5)
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Steepest decent path (S.D.) is

~ k~~=

dt~.k=

5S. D. i 5 d

whe re

a
2 

=
xk~~

~ G (x y z) = ~~ F(k~,,) 
_ i( kyiY+ kxi x) i/z ~~~~~~

Thus ,

coG (r z) ( 3 ) 1/2 1 ~~
2k R s(F y sin e + F~ 

cos O) + j(2k ~~ — k )  F5

-3k r
• X e  R e_P S

- - 
(C— 6 )

Similarly .

z) = (+)
i/2 I — ( 2k~ — k )  ( Fy sin e + F~ 

cose) — 2k R PFZ

~D’(k R )/k R

-jk r
X e  R e 5Z

whe re 

(C- ?)

r = ~~~x2 + y 2
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APPENDIX D
STIFFNESS TENSOR FOR THE POST STRUCTU RE

Convolutions are of the form:

~b
= 3 ~ 2 27r r’ dr’ . (D-1)

o vb

Note

.2ir b 2 V

= 5~ 5~ 
r ’ dr ’ de = ,rb (D-2)

then (D-i) can be put in the form:

= T~~F~ (D —3)

where the stiffness matrix Tt3 is diagonal with

2
= T22 = 

(~ + a —  a ) b (D-4)

T33 = 
2( 1 

H 
b 

(D-5)
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