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ABSTRACT

an over-moded acoustic waveguide,

The gap-coupled acoustoelectric convolver developed at Lincoln
Laboratory is a surface-acoustic-wave (SAW) device consisting
of a LiNbo; delay line and a silicon strip supported on a series
of spacer rails (or posts) which have been ion-beam etched into
E the LiNbO‘; surface. The silicon/air-gap/ LiNbOﬁ structure forms
A theoretical model has been
developed which analyzes the perturbing effect of rails and pre-
dicts the mode structure and beating phenomena between modes.
The scattering by support posts is also analyzed.
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MODAL ANALYSIS OF SAW CONVOLVER

I. INTRODUCTION

In surface-acoustic-wave convolvers,i'2 a semiconductor is placed in close proximity to the
piezoelectric medium so that the electric field of the SAW can interact with the semiconductor
to produce the desired nonlinear effect. Two types of supporting structure have been tried in~
cluding3 the random-post-support and the finite-periodic rail-support structure. The post sup-
pox't4 is unsatisfactory because of the excessive loss and nonuniformity found among the devices
tested. The rail structure5 is a more recent development which seems to have several advan-
tages over the random-post-support structure. Because it is a simpler and more deterministic
structure, the effects of parameter variations are more controllable and suitable for analytical
study.

Indeed, measurements by Reible6 on the prototype rail-support device show some very in-
teresting phenomena such as the laser-probe scan of the acoustic-field profile (Fig. 1) and the
frequency response of the output (Fig.2). A distinctive feature in these measurements is the
beat characteristic. As evident from Fig. 1, the acoustic field repeats spatially in a periodic
fashion. We will refer to the periodicity as the beat length. Experimentally, the beat length
was measured to be approximately 137 Rayleigh waveleng‘ths.b The output frequency response
of Fig. 2 shows a frequency ripple in the order of 3 dB. The beat is the result of interference
between the acoustic modes of the device which are analogous to the modes of a periodic loaded
transmission line. The discontinuity presented by rail structure causes the incident Rayleigh
wave to be scattered periodically in the transverse direction. This scattering process resem-
bles the reflection of a wave in a transmission line by discrete elements spaced periodically at
fixed intervals along the line.

737
695 P
674~

Fig.1. Laser-probe measurement
of acoustic-field profile (eight sup-
port rails).
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In adopting the periodic transmission line model, we have assumed first of all that the finite
array of rails can be approximated by an infinite periodic structure. This seems to be a good
assumption in view of the acoustic-field profile measurement which shows no changes of the en~
velope structure connected with edge effects of the finite transverse dimension. Secondly, the
finite width of the rails is ignored by modeling them as discrete elements in a transmission line.
This approximation is justified because the width is small compared with the transverse Ray-
leigh wavelength.

In Sec.II, we review the scattering matrix of two ports and properties of periodic struc-
tures. Section III gives a preview of the kinds of modes to be expected in the periodic rail
structure by providing a qualitative description of the guided modes and their dependence on the
reflection coefficient. Then in Sec. IV, we give the elastodynamics of the rail structure. The
analysis of this section enables the characterization of the rail structure in terms of its scat-
tering matrix coefficients. It is shown that the derived scattering matrix obeys the conserva-
tion of energy. Using the model developed in Sec, IV, we next study in Sec. V the reflection co-
efficients and the modes in the periodic rail structure as a function of the geometry of the device.
Finally, in Sec. VI, the problem of Rayleigh wave scattering by the post structure is solved.

II. REVIEW OF PERIODIC TRANSMISSION LINE

In this section, we will briefly review the scattering matrix description of two-port junc-
tions and discuss the periodic transmission-line structure made up of a cascade connection of
basic unit cells consisting of a two port and a section of transmission line.

A. Scattering Matrix

In general, the incident- and scattered-wave amplitudes of a two-port junction shown in
Fig. 3(a) are related by’

= (1)
22/ \%2

where a, and a, are the incident waves, b1 and b2 are the reflected waves of ports 1 and 2, and
S“, 812' 821’ and S22 are the parameters of the scattering matrix S. For our problem, we
will be interested only in a reciprocal and lossless two port connected to transmission lines of
equal characteristic impedance at both terminals. Reciprocity and symmetry require S12 = SZ 1
and S1 1= SZZ' respectively; losslessness gives the conservation of energy relationship

Bl s i85 =1 (2)

2
1l

[S44l 2 is the power reflection coefficient and 15451 2 is the power transmission coefficient.
Hence, the magnitude of S12 is uniquely related to the magnitude of S1 1 Furthermore, it can
be shown7 the condition

S“S?2 +S,,S% 0 (3)

1222 ©

always holds for lossless, reciprocal two ports.
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Equation (3) relates the phase of SZz to the phase of S“. In fact, let

0, i,
Sgq= I8yl e v Sy =18yl e s
then

L

0, =06 +2:;n1r . (4)

2 1

To summarize, for the problem we are investigating, the scattering matrix description of
a two-port junction consists of only two independent parameters: namely, the magnitude and
phase of the reflection coefficient S1 e

The basic ideas of scattering are illustrated by considering two simple examples. In
Fig. 3(b), a series reactance (jX) (normalized to the line impedance) is connected in a transmis-
sion line. The incident wave is labeled a, and the reflected wave as b1 = S (assume a, = 0).
We can think of the transmitted wave (bz) as made up of two parts: a, which exists in the ab-
sence of scattering by the series element and the scattered wave which arises because of scat-
tering. The scattered waves (S™) and (S+) can be thought as generated by an equivalent voltage
source (V) induced by the incident wave. To see how the equivalent voltage source is related
to the scattered wave, we write the following equations:

a, +b, —b, = (a, —b,) jX (5a)

or
s —st=v-= (2, —b,) iX (5b)

and
ai—b1 =b2 (6a)

or
= (6b)

Equation (5b) indicates that the voltage source is the difference of the scattered wave on
either side of the series element. Furthermore, according to Eq. (6b), the scattered wave on
one side is the negative of the other side. Combining Eqs.(6a) and (5a) results in the familiar ex-
pression for the reflection coefficient:

b 4
P s X
ST IR @

b
e ST - N -
SiZ"a1'1+a1'2+]X E ®)

The 1 in the expression for S12 is due to the complete transmission of the incident wave a, in
the absence of scattering by the series element. Obviously, conservation of energy [Eq. (2)] is
satisfied.

g




A similar analysis for the shunt element with normalized susceptance jB in a transmission
line of Fig.3(c) gives

G e ©9)

where I is the equivalent current source. Note in the shunt connection the current source is the
sum of the scattered wave with

st=5" . (10)

By o
=3, “T¥E - (i
transmission coefficient is
b s
2 ol 2
MgE T Vi, YEEm {4z

and conservation of energy is satisfied. We will encounter an analogous problem in the scatter-
ing of a Rayleigh wave by the rail structure.
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Fig.4. Periodic transmission line.

B. Periodic Structure

Having reviewed the scattering matrix representation of two ports, we next take up trans-
mission line periodically loaded with such two ports as shown in Fig. 4.
The wave amplitudes (C's) are related by

b
54 JBd A4

Cn Aqq e 442 Chst

A= -jpd A= (13)

Ca A2 A€ Chsi




where B is the propagation constant and the A matrix is defined by the equation which relates

the wave amplitudes (C's):

+ +
€a Agp A | 1%
= (14)
< 8214 A22] |Cnu
and A is related to the scattering matrix 5 by
1
A, = 5—
11 S“_
S
11
¢ A — —A = —
21 12 S12
22 = S 3

According 10 Floquet's theorem, the wave amplitude at the (n + 1) ST terminal can differ from
the wave araplitude at nth terminal by at most a phase delay. Thus, we assume

A+ _ _=jcd A+
Cnﬂ_e Cn

A= _ _=jxd A -
Cn+1 = Cn (16)

where kd is the phase delay. Substitute Eq. (16) into (13) gives an eigenvalue equation for «.

O iBd 2 2y -ipd
cos kd = 2512 [e + (85 - S“) e I (17)

The characteristic modes in a particular unit cell of the periodic structure is given by

3 -iB_x B d s : iB_x
(ﬂn(x)=%[e H +(S—1—e n—-s—“—ejxd)e n] for0<x<(—2:l
22 22
_a [ B =d) y Bpd Spp kg Ba®d] g
= ‘2‘ e ok S—- - ‘S—- e (= e
22 22
for $<x<d . (18)

Solution of Eq. (17) for a typical periodic structure gives the familiar dispersion diagram
as shown in Fig. 5. It shows "bands" of alternating even and odd symmetry as exhibited by the
mode pattern at the Brillouin zone center (x = 0) and edge (x = n/d). These two points are of
particular interest to us because we accept as modes only those solutions which have vanishing

group velocity. With a uniform excitation of the periodic rail structure, we expect from sym-
metry that the acoustic wave is the superposition of standing waves in the transverse direction.
Furthermore, because of the assumed uniform transducer input, only symmetric modes such
as modes 1 and 5 could be excited. We will refer to these modes as the fundamental mode and
the higher-order mode. These two modes are most strongly excited and the beating between

them gives rise to the observed spatial and frequency ripples.
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Fig. 5. Dispersion diagram and modes
of periodic structure.
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IIl. QUALITATIVE DESCRIPTION OF THE MODES

Before going into the detailed modeling of the rail structure, we now discuss qualitatively
the behavior of the fundamental and higher-order modes as a function of reflection coefficient.

The fundamental and higher-order mode patterns are shown in Figs. 6(a-d) as the magnitude
and phase of the reflection coefficient are varied. The magnitude of S11 is reduced by 50 per-
cent in Fig. 6(b) as compared with that of Fig. 6(a). As expected, weaker reflection enables the
wave function ¢ (x) to spread out from the space between the reflecting elements. The same ef-
fect can be achieved by retarding the phase of the reflection coefficient as evident in Fig. 6(c)
in which phase is decreased by 40 percent from that of Fig.6(a). A dramatic spreading effect
results as shown in Fig. 6(d) if both magnitude and phase are decreased.

The spreading effect makes the fundamental mode more uniform and therefore matches
better the uniform input transducer profile. . Since the higher-order mode is orthogonal to the
fundamental, it becomes less excited. Therefore, we can infer immediately a very important
fact: in a rail structure which has a reflection coefficient with small magnitude and retardation
in phase at the mode angles corresponding to the fundamental and higher-order mode, the spa-
tial and frequency ripple size would be small.

Over the range of 50-percent variation in magnitude and 40-percent variation in phase, the

mode patterns basically retain their shapes (i.e., nearly one half-cycle of sinusoid for the fun-
damental and three half-cycles for the higher-order mode). This indicates that the mode
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pattern is not strongly dependent on the reflection coefficient. Its shape is inherently a charac-
teristic of the periodicity.

For the range of variation in reflection coefficient studied, the beat length varies from 80
to 154 Ap assuming a periodicity of 9 AR' As the modes spread out more uniformly, the trans-
verse wave vector becomes smaller, forcing the longitudinal wave vectors of the modes to ap-
proach more closely with each other, therefore, the beat length tends to increase.

Now suppose the spacing is reduced, but assume the reflection coefficients remain unchanged
for the fundamental and higher-order mode. Then the transverse wave vectors increase lin-
early, resulting in shorter longitudinal wave vectors; but the length difference is greater, hence,
a smaller beat length. In reality, reducing the spacing means increasing the mode angle and,
thus, the reflection coefficients do not remain constant but in fact would decrease causing the
modes to spread more uniformly. It is not clear, without a more detailed model of the ridge
structure, which is the dominant effect on the beat length. As shown in Sec. V, the dependence
of reflection coefficient on mode angle is not strong enough to overcome the dominant longitu~
dinal wave vector length-difference effect. The net result of decreasing the spacing is to de-
crease the beat length. At the same time, since the modes are more uniformly spread out, the
ripple size would decrease.

IV. SCATTERING MATRIX REPRESENTATION OF THE RAIL STRUCTURE

With the framework of periodically loaded transmission set, we are now ready to study in
more detail the physics of the rail structure. In particular, we are interested in characterizing
the scattering of a Rayleigh wave by ilie rail structure (Fig. 7) in terms of its scattering matrix.
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The basic idea in solving the scattering problem is to find an equivalent source of scatter-
ing, in our case a stress tensor, in place of the line discontinuity. The stress tensor must sat-
isfy boundary conditions specified by the dynamics of the rail in the presence of the incident
Rayleigh wave. For example, suppose the rail is pinned so that no motion is allowed. This
can be realized by assuming an infinitely massive rail or an infinitely stiff superstrate. Then,
to satisfy the pinned boundary condition, there must be an equivalent stress at the position of
the rail causing a displacement which exactly cancels the displacement of the incident wave and
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of the scattered wave as sensed by the source. The effect of the scattered Rayleigh field must
be included in the figuring of equivalent sources because the scattered field reacts back on the
source which produced it in the first place. This feedback phenomenon is encountered in other
scattering problems as well and is very important if conservation of energy is to be satisfied.
Notice that we have allowed only the surface wave in this feedback process. The bulk wave is
ignored because it is not found experimentally to be significant.6

To find the source which satisfies the near-field boundary condition, we must know for a
given point stress what is the displacement in the neighborhood of the source. In other wofds.
we like to evaluate the dynamic Green's function near the origin where the source is located.
As it turned out, the dynamic Green's function within a distance from the origin, which is small
compared with the wavelength, is identical to the static Green's function. An analogous situa-
tion occurs in electromagnetic problems. The near field of an oscillating dipole is equal to the
quasi-static dipole field. We will justify this equivalence in more detail later when we study
the Fourier integral expression of the Green's function. The asymptotic far-field evaluation of
the Fourier integral at the Rayleigh pole gives the scattered surface wave.

x
y,, OBSERVER
CJ
Fig.8. Rail-support structure.
—(]
\rl y

%y

A. Green's Function of a Point Source

Suppose stress oij with Fourier transform oij(k) is applied at the origin of the x-y plane as
shown in Fig.8; we like to find the scattered surface wave on an isotropic medium with Lamé
constants A, p. Assume the potentials ¢ and ¢, respectively, for the compressional and shear

waves of the form:

¢ =C e-j(kxx+kyy) e P% (19)

4= jS e-j(k"x+kyy) Cis (20)
where

kf+k;—p2=kf (21)

kf+k;—szr ks (22)

10




2 2 2
k™ =k + ky
. 1/2
ky = oy i)
and
_ o (Py1/2
kz— u,(;)

where p is the mass density.

8

Suppose a surface stress exists, Fourier decomposition gives

2 2z s .
(k™ + 87) azz(k) + j2ks [axz(k) cosO + oyz(k) smﬂ

£} = wD(K)

Rl 2 .
kaozz(k) + j(k™ + s7) [(Ixz(k) cos®O + oyz(k) sino]
pD(k)

S(k) =
where

D(k) = (kz + sZ)z - 4k2ps

(23)

(24)

(25)

(26)

(27)

(28)

and © is the angle the line of observation (y-axis) makes with the x~axis. The angular depen-

dence comes from the projection of the shear stress components onto the line of observation.

The reason is that only the shear stress pointing along the direction of observation couples with

the Rayleigh wave in that direction. Taking superposition of all spatial harmonics, we have:

oo © -jk_xtk_y) _
w(x,y,z):j dka dk Cy e Y o -pz

. - -jlk_x+k y) _
¢(x.y,z)=§_w dkxj-w dky jS(k) e * Y o-sz

For a point stress with the total applied force components Fx, Fy' and Fz.
On = ~F, 6(x) 6(y)
Oyy = —Fy 0(x) 6(y)
Uyz = —Fy 6(x) 6(y)

the Green's function is

G 1
b ¢ (xy,2) = —>
: (27)

s ik x4k y)
xe Xy gope

b5 veo —-(kz + sz) F_ - j2ks(F_ cos® + F_ sin®)
5 dk S dk z x y
s Tl pD(k)

2 2 &
: N V0 —2kpF_ — j(k“ + s“) (F_ cos6 + F_ sin®)
G » Pt , =] X y

O %y, 2) = 75357 § 5_,0 dky me(3)

-j(k_x+k y) _
g % y'yesz

X

(29)

(30)

(31)
(32)

(33)

(34)

(35)
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Now, using Egs. (34) and (35), we justify our earlier claim that the dynamic Green's function
near the source appears quasi-static. Within distance of the order of a wavelength, integration
in k-space does not show any special dependence until kx and ky are much greater than Z1r/7\R or
larger than either k1 or kZ' In this range the integrand in Egs. (34) and (35) is independent of fre-

G

quency. Therefore, ¢~ and ipG are identical with the static Green's function in the neighborhood

of the source.
B. Static Green's Function of a Point Source

The static Green's function for the displacement due to a point stress is given by Landau
and Lifshitz.

_1+to01[-(1-20)x » 20x

u - 4121 1 F,+2(1—-0) F_+ 25 oy s yFy)l (36)
_1+01-(1-20)y ) 20

Uy =S5 3 ‘—F— F, +2(1-0) Fy + —rg (xF_ + yFy)] (37)
_1+0 1 i

U,= 5o 5 [2(1 =g} F_ + (= 20] & (xF, + yFy)l (38)

where E is the Young's modulus, o is the Poisson ratio, and r is the distance from the source.
Equations (36) to (38) pertain to a point stress and therefore are not directly applicable to our
rail problem which has a line geometry. However, as we will see later, these equations are
directly applicable to the post problem. In the next section we will derive the counterparts of
Egs. (36) to (38) for the rail problem.

C. Green's Function of a Modulated Line Source

Figure 9(a) illustrates the geometry of scattering for the rail structure. The rail is as~
sumed to lie along the y-axis with the Rayleigh wave incident at an angle © with respect to the
x-axis and the reflected wave going off also at angle ©.

We will assume an equivalent modulated line source along the y-axis. The modulation

-jk -jk
e yy comes from the fact that the incident Rayleigh wave has e yy dependence. Analogous
to Egs. (34) and (35), we take a Fourier superposition of space harmonics now only in the Ky

dimension.
S p o=~ +s°) F ~ j2ks(F, coso + F sine) “jlkxky) o
¢ (x,y,2) = 37 ‘S_” dk 2D e e (39)
G N —2kpF  — j(kZ + sZ) (K, cos® + F  sin®) —j(kxx+kyy) -
¥Uix,y,2) = S j dk. BT Y e e (40)
- 00
where the modulated line source is
-jkyy
L e 6(x) (41)
'jkyy
O *~Fy @ 6(x) (42)
oyz = —Fy e 6(x) . (43)

13




The integration in Egs. (39) and (40) can be done easily, by picking up the Rayleigh pole residue
at kx = ijZ - ky2 where kR = Zw/AR is the propagation constant of the Rayleigh wave; the inte-
grations are done in Appendix A. The results are repeated here for convenience.

. 3 2 2 :
G(r 2ite _ZkRS(FX sin® £ ', cos o) + _](ZkR = kz) F, e-Jer Pz
¢ ’ p.D’(kR) cos© (44)

B B : :
~i(2kg —k;) (F, sin6 £ F cos®) - (2kgP) F, 7 jkgr

~S2Z
uD'(kR) cos© 2

48, 2) = . (45)

The Green's functions for displacement U, and Uz of the Rayleigh wave on the surface (z = 0)

are then
- % _ %
Up= 3% ~ 3z
'ijr >
= = [ko(2k - kZ - 2ps) F_ + jk2s(F. sine + F_ cos6) (46)
"pD‘(kR)cose r(2kg 2 ps) F, +jk,’s ysm x €08 ]
=% L%
Uz’ 0z or
-ijr
= —€& — [jk2pF, —k,(2kZ - kZ — 2ps) (F. sin0 * F_ coso)] (47)
sl ) comer [Py — SRIGER 7Kg =P y X -

To simplify notation, Egs. (46) and (47) are written in tensor form:
—ijr
Ui = EIJFJ e (48)

where

tjké"s cos©

E11 = ——__—PD' (kR) (49)
jk;s sin®
Btz = WDy {2
kg @k — k2 — 2ps)
E = (51)
13 WD (k)
tjk;s sin©
Bag * WD (k) (52)
+jkzzs sinze
22 7 WD'(k) coso {53
2 .32
ko (2ky — Kk, —2ps) sin©
Eyy = <E,, = S—R__2 : (54)

32 p.D'(kR) cos O




2 2
’FkR(ZkR - kz — 2ps)

34" WD (k) (55)

E

L2
ik, p
33 = WD'(kp) cose (56)

D, Stiffness Matrix

The near field of a modulated line source approaches that of the quasi-static Green's func-

tion. We assume the force is uniformly distributed across the width of the rail (a good assump-

-jk
tion if the width <<>\R) and sinusoidally modulated with a phase factor e yy along the length of
the rail. The displacements at the center x = 0 are found by convolutions of Egs. (36) to (38).
This is done in Appendix B. The result is given in the form
(57)

Ui = Tiij

where Tij is a diagonal tensor which measures the stiffness of the medium,

E. Reaction of Scattered Wave on the Source

As in any acoustic scattering process, the scattered wave tends to react back on the source
4 of scattering. The interaction of the scattered wave with the source was illustrated in Sec. II
using the examples of series and shunt elements in a transmission line. Now we want to see
explicitly how this interaction occurs in the case of scattering of a Rayleigh wave by the rail
structure.

A great deal can be deduced from the symmetry of the problem. For example, Fx excites
only a surface wave of odd symmetry with respect to the y-axis, while Fz and F_ excite surface
waves of even symmetry. Therefore, I3 does not "feel" the scattered wave generated by F, or
F_ and vice versa., Stated in another way, Fx does not couple with F, orF; however, 12 and
F_ do couple with each other. This observation suggests the scattering of a Rayleigh wave can
be viewed as being made up of an antisymmetric scattering in the x-direction and a symmetric
scattering in the y- and z-direction. Indeed, as we shall see later, this turns out to be the case.

Let <Ui> denote the average of the scattered wave which reacts back on the source. Then
we can relate <Ui> to F i by the following matrix equation.

U Vi4 0 0 Fg
<Uy> = 0 sz V23 Fy (58)
<Uz> © V3Z V33 Fz
where

Vir= Byt

N3 533 -

YtV *Byn

Vay = E

33 33 °




The "averaging" is taken so that Fy "feels" the difference of the scattered wave [analogous to
Eq. (5b) for scattering by a series element in a transmission line], while Fy and F, "feel" the
sum of the scattered wave [analogous to Eq. (9) for scattering by a shunt element in a transmis-

sion line].

F. Dynamic Equation of the Rail Structure

The boundary condition satisfied by the sources Fj obey the dynamic equations:

R . oLl )
U+ TE up = T3 Fj (59)
and
B S 2
—(Fy" + Fy) = —2ahp Uy . (60)

Referring to Fig. 7, Ti[.] and TiI?‘ are the stiffness tensors of the upper and lower substrate

with applied force per unit length FJ-U and FJ.L, respectively, 2a is the width, h is the height,
Py is the mass density of the spacer, UiR is the incident Rayleigh displacement, and Uj is the
net displacement. The displacements UiR at the surface z = 0 are given by8

2 :
U)? = jA+ Zk—kz— e_J(kxx+kyy) cos© (61)
R
R kzz -j(kxx+kyy)
Uy =S E e sin® (62)
R Zké— kz2 -~ 2sp -j(kxx+kyy)
U, =4, S e . (63)

Substitution of Egs. (60) and (58) into Eq. (59) yields

U, L 2 Uy L - lE 2,.U, R
(Tij + Tij Zahpsw Til(le + VIJ.) + Vijl Fj (Gij ahpsw Tij) UJ. (64)
where 6ij is the Kronecker delta. Let
L 5 P 2 U s
Gyj = Ty; + Tjj - 2ahp 0 Ty (Ty] + iy * Vi (65)
and
oy _ 2 U
Rij = (dij Zahpsw Tij) ‘ (66)
Equation (64) becomes
R
G“ 0 0 Fx R“ Ux
0o G G F.| = |Rr i (67)
22 23 y 22 y
0o G G F R p R
3% 33 z 33 z




The form of the matrix equation (67) confirms the fact that antisymmetric scattering in the
x-direction is independent of the symmetric scattering in the z- or y-directions.

G. Scattering Matrix of the Rail Structure

To find the scattering matrix of the rail structure, we consider an incident Rayleigh wave R
with displacements U.R launched at angle © with respect to the x-axis against the rail [see
Fig.9(a)]. The reflected wave S and transmitted wave T have displacements U.S and U.T, re-
spectively. Because the displacements of the Rayleigh wave are related to each by definite ra-
tios [see Egs. (61) to (63)], we can define a set of unique scattering matrix coefficients from the
ratios of the z-displacements of S and T waves to the z-displacement of the R wave, i.e.,

| Uy
511 R (58)
Z
and
Uz
Sy2 = ) (69)
Z
R S T : 2
Uz, UZ’ and U, have one-to-one correspondence with voltages ay, bi' and bZ’ respectively,

of the transmission line model shown in Fig.3(a). The excitation of Fig.9(a) can be decomposed
into its antisymmetric part [Fig.9(b)] and symmetric part [Fig.9(c)]. Indeed, by adding the dis-
placement components of the antisymmetric excitation to that of the symmetric excitation, we
get exactly the displacements of the original excitation represented in Fig. 9(a).

In the antisymmetric excitation, all the incident Rayleigh displacement components cancel
except the x-component which is equal to the x-displacement component of the R wave. Solving
for FX in Eq. (67), substituting into Eq. (48), we find the antisymmetric scattered field normal-
ized to the incident field to be

Da = E(—) Fx
31 UR
%
3
= _ﬁ_a_ (70)
1+ X
where
2 kzzs 1 - ZahpSwZTH) cos©
x2 - (71)
pD'(k ) L Ul 2t
R T, +T“/T“ 2ahp (w™T,7)
Therefore, we find for the antisymmetric excitation:
(s%)
U 2
rd: 2o - 14pf- X (72)
U, 1+3X

and

Balot

p|
:
l




The —1/2 in Eq. (72) is due to the total transmission of the incident wave —R/2 from the bottom
side in the absence of scattering; similar reason explains the 1/2 in Eq. (73).

For symmetric excitation, the x-component of the incident Rayleigh wave displacement can-

cels leaving the y-component and z-component which are equal to the y- and z-displacement

components of the R wave. The symmetric scattered field is found by first solving for F_ and

F, in Eq. (67) and then substituting into Eq. (48), we find
E,,F_+E_F
DS B3 2 337z

U,

Rt = (74)
2 + jBS

where

B 2..U
=8 o, 0 |l T el o 2o
wD'(ky;) c0s6 = 22/ T2 ¢ "33
33

3.0
1 —2ahp w™T %
+s sinze<—E—J3> (4 +TQ/Th, —2ahpsw2'r3"3)]/
T
22

Uyl 2 U U,.L 2 U
(1 +T22/T22 2ahp (w"T,,) (1 + T,3/T3; —2ahp w"T,3) (75)

.. ___ Thus, for the symmetric excitation:

S
r —UZ(S)~1+
. =3

R
Uz

& . 42=48
s el (76)
Z2+i8°

o]

(T®)
UZ

RS
- +D%= 2 2B (17)
Us 2 +jB

s‘

n

r
[\

Finally, the scattering matrix coefficients of the original excitation [Fig.9(a)] are found by
superposition:

v
™ LR
VA

(8" _ .. 18")
Uz + Uz

v




and

12 R

a S
(T7) (T™)
AIREY
. A
UZ

1-D?+ DS

T e (19)
1+jx® 2 +iB°

H. Conservation of Energy

An important test of the validity of S“ and S12 given by Eqgs. (78) and (79) is to show that the
conservation of energy is satisfied.

3 i 8 2 sl s S 2
ol el B B B B
1+jX* 2+jB 1+3§X% 2+3B
=1 Q.E.D. (80)

This condition becomes obvious by noting I''s and 7's of Egs. (72), (73), (76), and (77) have mag-
nitude of 1/2 implying conservation of energy holds for the antisymmetric part and symmetric

" o 3 2
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V. RESULTS ON THE RAIL STRUCTURE

In this section, we present calculations of the reflection coefficient and modes of the peri-
odic rail structure using the model described in the previous section.

A. Reflection Coefficient

Figure 10 plots the fraction of reflected power, |S“l2, of the ridge vs the angle of inci-
dence ©. As expected, IS“ | 4 increases with angle of incidence and approaches unity at grazing
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Fig. 10. Reflection of Rayleigh wave by the rail structure.
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incidence (6 = 7/2). The reason is because the ridge appears to be "softer" for a Rayleigh wave
incident at a small angle as evident by looking at the stiffness matrix Tij of Egs. (B-10) to (B-12).
The mass of the spaccr makes little difference in the reflection coefficient as shown by the
curve labeled (2) corresponding to the case of LiNbO3, Si, and zero mass. On the other hand,
the scattering of the Rayleigh wave is very sensitive to the stiffness of the superstrate. For

example, by letting the superstrate become infinitely stiff (curve 1) the reflection increases.
On the other hand, removal of the superstrate (curve 5) leads to a dramatic decrease in the re~
flectivity. The effect of the superstrate is to deaden the surface vibration. This effect is en-
hanced by a wider ridge as evident in curves 2, 3, and 4 where the width is changed from

6 to 4 um and then to 2 um. Although not shown in Fig.10, the phase of the reflection coef-
ficient generally decreases with a decrease in the magnitude except for the case of no

superstrate.

B. Modes of the Periodic Rail Structure

Using the scattering matrix coefficients of the ridge, we proceed to find the modes of the
periodic rail structure using Eq. (17). The results are summarized in Table . We have stud-
ied the behavior of the fundamental mode and the higher-order mode by changing the width and
the spacing of the rail. The resulting mode profiles are given in Figs. 11 to 14. Beat length
and frequency ripple are also calculated.

The mode expansion of the uniform input is given by

o0

b =

LoaNje(x) = 1 (81)
i=4

where wi(x) is the mode profile given by Eq. (18) with unity peak amplitude, Ni is the normaliza-

tion constant such that

d
S NZoZ(x) dx = 1 (82)
[o]

N, = lzg—l (B;d + sinp,d) -1/2 (83)

where Bid is the normalized transverse wave number, and

d ZNi Bid
a; = S‘o Nicpi(x) dx = -‘GT sin — . (84)

The modes of a 6.5-um-wide periodic rail structure with 100-um spacing are shown in
Fig. 11. Superposition of the fundamental and higher-order mode according to Eq. (81) gives
the field profiles of Fig. 12 depending on the relative phase of the modes, given by the longitu-

- :

18y
dinal propagation phase factor e Y where
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we can get either the sum or the difference of the two modes resulting in a beat pattern. Spa-
tially, at a fixed frequency, the superposed field profile repeats within a distance L, , the beat
length, such that

The beat pattern also occurs at the output transducer as the frequency is swept. The frequency
interval Af is related to L.b by

ar_ Do 7
f L
where L is the distance between the input and output transducer. The depth of ripple as de-

tected in the received power as a function of frequency is

2

2

a, —a

M = 20 log -—12———%) . (88)
ai +a5

Table I shows that for the 6.5-pm device, the beat length is 86 }‘R as compared with 137 }‘R
measured experimentally6 (Fig.1). The ripple frequency depth is —1.9 dB, somewhat less than
the —3 dB observed in the output frequency response (Fig.2). The discrepancy is probably
caused by groove scattering not included in our present model.

Figure 13 shows the modes in the rail structure with narrower width but with the same
spacing. Because the reflectivity is reduced and phase retarded, the modes become more spread
out resulting in longer beat length and smaller ripple (see Table I) as explained in Sec.Ill. To
take advantage of the mode-spreading effect with weaker reflectivity, the width is made narrower
and the spacing is reduced. The latter allows the mode angles to be smaller (i.e., closer to
normal incidence), therefore achieving a weaker reflection coefficient. The spacing is decreased
for another important reason. By increasing the number of supports, the load supported by
each rail is decreased; as a result, the deformation is kept small, minimizing groove scatter-
ing. The combined effect is seen by the mode profiles shown in Fig.14 for a structure with
2-pm width and 30-pm spacing. It is clear that the modes have indeed spread out significantly
as compared with those of Fig.11. Consequently, as shown in Table I, the depth of ripple has
reduced to —0.73 dB. However, Lb has shortened to 11 AR:

A word of caution, by continuing the reduction of the rail width, eventually groove scatter-
ing caused by larger deformation near the rail becomes important. The effect of groove scat-
tering is certainly to increase the magnitude of reflection coefficient. However, it is not clear
without further study which way the phase will change. If the phase is retarded, then the modes
tend to be spread out offsetting the effect of the increased reflectivity. In addition, bulk scat-
tering may now play an important role as the groove is steepened and more rails are in place
as a result of reducing the spacing. A definitive judgment cannot be made until we study more
closely the coherent bulk scattering by an array of rails.

VIi. POST SCATTERING

In this section, we take up the post scattering problem. It is solved in a similar fashion
as the rail scattering problem. We first of all evaluate asymptotically the far field from the

o~
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integral expression of the Green's function of a point source derived in Sec. IV. Then, the stiff-
ness matrix and the dynamic equation are derived. Finally, we present the radiation patterns
of post scattering.

A. Green's Function
Integral expressions of the Green's function are given in Eqgs. (34) and (35). In Appendix C,

the scattered Rayleigh wave is evaluated. The results are

. 2 2
. —2kns(F _sin® + F_ cos®) + j(2ky — k) F
25,50 = ¢ 1")1/2 1 Rilsy X R _"2'7z

ﬁ—r rDTkp)/kp

sikopis ©
xe BN g7PZ (89)

: 2 2 .
1 —](ZkR - k2 ) (Fy sin© + Fx cos0) — ZkRsz

4Cir,2) = ()12

T
Kr HTRIEST
jkor
SR (90)
The displacements of the Rayleigh wave at z = 0 are then
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ko k)'s
: 1 R:2
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W uD! (kR) z R 4 A/HRT uD'(kR)
X [Fy sin@ + F, cos®] exp(-j(kgr - %)1 . 92)

B. Stiffness Matrix

Assuming that the forces are uniformly distributed over a disk of radius (b), the displace-
ments at the center are found by convolution. The result is given in terms of tihe stiffness
matrix Tij (see Appendix D) relating displacements to the forces in Eq. (57).

C. Radiation Patterns of the Post Structure

The dynamic equation for the post structure is identical in form to the rail problem
[Eq. (59)] except that we ignore the reaction of the scattered wave back on the source. The dif-
ficulty in treating the reaction of the scattered wave back on the source is caused by the fact
that a detailed energy balance as we have in the rail problem is not as easily carried out. First




of all, the incident wave is a uniform plane wave of infinite extent, while the wave scattered by
the point source is more or less radial. Such scattering geometry presents difficulty in the
normalization of energy which is not the case in the rail scattering problem. In addition, the
effect of the scattered wave on the point source is not as easily treated analytically as for a
line source because of the nature of the point singularity. ' Therefore, it must be kept in mind
that our result is an approximation which provides only a qualitative picture of the scattering
process.

Assume a uniform Rayleigh wave incident on the post in the x-direction. The induced forces
which satisfy the dynamic equation are given by

~mb2(1 — p_hw?T ) i

F_= U

(93)

Mok v i o
Ty + Ty /Ty —pho T )
—1b%(1 - p_hw?TY)
Fy== T - UzR ©4)
T33(1 + Ty3/Ta3 - o o Ty5)
F. =0 . (95)

¥

Substitution into Egs. (91) and (92) gives the scattered Rayleigh wave.

Note the scattered field decreases as 1/Nr from the source az expected for two-dimensional
scattering. Furthermore, the radiation pattern of the vertical source component Fz is isotropic
while it has a cosine dependence for the horizontal source component Fx' The displacement ra-
diation patterns are shown separately in Fig. 15 for a post with a silicon superstrate. It is inter-
esting to note that the scattering in the forward direction is stronger than that in the backward
directizn because of the constructive interference of the scattered wave components. Further-
more, we observe that the vertically scattered component is larger than the horizontal compo-
nent. This is because, at the surface, the Rayleigh wave displacement in LiNbO3 is 1.5 times

x

2z COMPONENT

Fig. 15. Displacements of scattered x2 COMPONENT
SAW by the post structure.

INCIDENT SAW
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larger in the vertical direction than in the horizontal direction, inducing a larger Fz than F <
The difference is further enhanced in the excitation of the scattered Rayleigh wave.

The power radiation patterns for a post, with and without superstrate, are shown in Fig. 16.
We note that the scattering is dramatically increased by the pinning effect of the superstrates,
a phenomenon also observed in the rail scattering.

VII. SUMMARY

We have presented a model for the scattering of the Rayleigh wave by the rail- and post-
support structure. Using the scattering matrix coefficients predicted by our model, we have
analyzed the modes in the SAW convolver with a periodic rail structure. The theoretical results
obtained are in reasonable agreement with the experimental measurements.’

Our study provides insight into the optimal design of the rail support in order to minimize
the moding problem. We recommend that the rails be made thinner and placed closer together
so as to decrease the ripple size in the output frequency response.

Finally, we recommend further study into the scattering of the Rayleigh wave by rail- and
post-support structure by taking the finite dimension of the support structure into account. This
would involve a more detailed study of the groove scattering as well as the bulk wave scattering
problem.

The groove scattering may very well account for the discrepancy between the theoretically
predicted frequency ripple using our present model and the experimental measurement.6 Fur-
thermore, in order to optimize the rail-structure design and to get a handle on the pressure
dependence of the mode pattern, the groove scattering probiem must be studied carefully.

Our study has not included loss due to the bulk scattering which is expected to be significant
when the deformation caused by the rail loading becomes larger. Furthermore, mede conver-
sion as a result of scattering by nonuniform loading along the rail and scattering by boundary
roughness can also contribute to loss. We believe our model is still incomplete without proper
account for these loss mechanisms which are important in understanding the limitations on the

convolver.
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APPENDIX A
1 GREEN'S FUNCTION OF A MODULATED LINE SOURCE

Ky M1y

& - -0 + s%) F, ~j2ks(F, cos @ + F_ sin®)
(7 (x,y,z):zﬂg d Y

=ik x4k y) P2

by contour integration in the kx complex plane. The only

: pole singularity occurs at kx = % , k}i = k; . Letting kR be
slightly imaginary displaces the poles off the real axis as

shown.

X e
2 L2 2 5
G j - kaz—](k +s7) (Fx cos 6 +F‘y sin ©)
p(x,y,2) = 5= B dk mi)
E =ik x+k_y) _
Yo X" Ty’ sz
where
Dk = (k% + s5)% — 4k%ps
We want to evaluate integrals in Egs.(B-1) and (B-2) Im ky

gas

(A-1)

(A-2)

(A-3)

For x >0, we choose to close the contour in the lower
half-plane. To find the residue, we need the derivative of

D(k) evaluated at k,= kfz‘ - k; . This is done by expand-

ing D(k) in the neighborhood of Ky
; D(k) = (k% + %)% — 1ps
e 2
= (k” —kp) R(k)

=(k—~k k + kR) R(k)

MAET .2 _ 2,52 )
-( ky + kg kR)( ky + kg +kg ) Rik)

we can replace the two functions by ZRR and R(kR), respectively, continue,

D(k) = ( kR) 2k R(k

| =IJ<fr-T+a>2+k o e

«( f + 28 fu - )ZkRR(kR)
* L8k -

ZkRR(kR)

where /kxz + kyz e kR and R(k) are functions with weak dependence on kx as kx -

Re ky
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but D'(k)lk:kR = 2kpR(kg); therefore,

k, —k
= ¥ ~
D'I sz 5 = % D'(kR} cos® (A-4)

Finally, for x> 0, letr = »sz + y2 to be the distance measured along the y-axis (see Fig.8).

2 2 . 2 )
C'(r st —-(kR +s87) Fz JZkRS(Fx cos O + Fy sin©) e-Jer P2
¢ i e ,uD'(kR) cos ©

| For x < 0, we close the contour in the upper half-plane, the result is a change of sign of
the Fx term. A similar contour integration is carried out for sz. In summary,

o : 2 2 .
G(r o ZkRs(liy sin® + F_ cosO) + J(ZkR k) F, o Jer P2 i
¢ ’ pD'ikR) cos O
: 2 2 . ;
=i(2kg —k,’) (F_ sin® = F_ cos®) — (2k,p) F ~jkor
G _ kg R NIE, x RP) ¥, “ikpt _g, )
P (r,z) = HD'(kR) 550 e e (A-6)

where the plus sign is used for x > 0 and the minus sign for x < 0.
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APPENDIX B
STIFFNESS TENSOR FOR THE RAIL STRUCTURE

Convolutions are of the form:
V0O a -ik !
- : R TR P o S
Ui(xa y) = S-w dy 5-3 dx Za Ul] (X X s y y ) e (B 1)

where US are Green's functions for a point source given by Eqs. (36) to (38) and 2a is the width

of the rail. We are only interested in the displacement at the center, i.e., x = 0. Integrations

of terms with Uic; odd in x' vanish. For the remaining terms we need the following integrals:

2 =ik y'
Iy= f % e 7 dy' (B-2)
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-jk v cos (k_|x'|r)
I =e sz‘s L AR
o]

NEED)

-jk
- e yy ZKo(kny’l) (K, is the modified Bessel function)

For k_x' << 1,
b .

L =:—2(1n w " g) g o [Eq. (B-2)]

where ¢ = 0.57721.
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Note

ol -k y
e L2 y
Le~w o "2 e it o
=y o Tk op
13 e ny e Y dp
=0 X + u
-k |x| -jk
=jre e yy [Eq. (B-4)]
-]kyy © 2 ik _p
Witee Jur R,
4 ey (X,Z - P12)3/2

_jky_y S.ao [ 1 x,z ] -jk_m
e = e Y di
o (X,Z + “2)1/2 (x,z +'12)3/2

1, - x'%1,]

1 =ik
—Z(lnlilii—l+§+1) e] yy . [Eq. (B-5)]

Let x' — 0, we note 13 is well behaved while all other integrals become singular, there-

fore I can be ignored. Next, the x'-integrations are done:

\a a k_|x'| -jk
5 I, dx' = (—25 In —yz__ dx! —4§a) e -l
=-a ~-a
k_ay, -jk
= 4a(1 —t-In —Z_) e y (B-6)
_J'k
S‘a x‘ZI2 dx' = 4a e ¥ (B-7)
-a
a k a, -jky
S 1, dx’ =—4a<L+1n —%’—)e y (B-8)
-a

Now, Eg. (B-1) can be put in the form

where the stiffness matrix T ij is diagonal with

k

Ty ® 2‘_;&3_’ [1- (1-a) (.g +1n -5’3)] (B-10)
k

T,, = 2149) (1-a—g-1n-§f) (B-11)

Tyy = “—;El’ (1 - o) (1-; —1n ‘-(gf) (B-12)
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APPENDIX C
GREEN'S FUNCTION OF A POINT SOURCE

2 A o ~?+HF, - j2ks(F, coso + F sino)
= k
L e 5_@ dky‘s_wd ¢ 05
-j +k
X e Wt yy) e PZ
e :
G 1 N L) —kaFz— (k™ +s7) (Fx cosO + F_ sin@)
Uixy,z) = — \ dk dk B y
@e)* Yoo T X wD(k]
X e-J(kxx+kyy) e-sz .

Evaluating the kx integration as done in Appendix A gives

‘. : 2 2
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w(.(x v,2) = 1 9 R "y X R 2 Z
3 27 % BT R 2 2
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Xexp[ ky_y ’ —kx epz

: 2 2 .
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wD'(kg) R—kL
R

X expl-j(kyy + ,kR: - kyx)] T

L4
Integrations in ky are done by the steepest descent method. Evaluate (pG first:

G s T o 2R pz
oCrya) = gz | dFk) expl-ifk,y + [kf - kZx)] e

Let the saddle point be (kx,, ky,) then
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Steepest decent path (S.D.) is

1/2
Ak =
y ] P
dak = §1/2 4
. 4o 2
S __].1/25 du ZE =j1/2 /Zmz
S. D. - g8
where
3
2 kx‘
0= —5
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=jlk Ytk %)
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o { afz 4 ~2kgsF sino +F, cos0) + j(2kp —kZ) F
0, 2) = (5%) y P TR 4
(er ES U RVER
sk r o
we & oPE
Similarly,
G s Af2 A ~j(2k§—k22) (F, sin® + F_cos@) — 2kppF,
WU, 2) = (k) o Te
-jkor
X e R e~S2
where
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APPENDIX D
STIFFNESS TENSOR FOR THE POST STRUCTURE

Convolutions are of the form:

Sb UiG.(F - )

i = 2rr'dr' . (D-1)
o b
Note
2T ~b 2
L =5 %3 rtdr' do = mb (D-2)
o Yor
1 then (D-1) can be put in the form:
U, = TijFJ. (D-3)

where the stiffness matrix Tij is diagonal with

A 2
Tyq = zz=—E“—(¢+a—o)b (D-4)
2
! Tag= = —EG_) . (D-5)
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