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1. SUMMARY Efficiency and output power were of
paramount importance for transmitter

A. Millimeter Source Candidates sources. They were less important for
local oscillators.

Millimeter wave sources have been
evaluated as candidates for compon- C. Transmitter Soi,rces
ents of a short range radar system. The
frequency regions considered are (1) Sources for Near Term Sys-
centered near 94 GHz (3.2mm), 140 tems. Consideration of the above
GHz (2.14 mm), 220 GHz (1.36 mm), 350 factors lead to the following:
GHz (.850 mm), and 408 GHz (.735
mm). These regions are especially • Solid State Source - Impatt diode.
promising because of: The Impatt diode is the only device

which currently produces reasonable
• Narrow beams with small antennas. output power (-‘ lw peak at 94 GHz) at

the frequencies of interest. It is
• Some existing component tech- lightweight and rugged, but noisy.

nology.
• Tube Sources. These sources are

• Atmospheric windows at these ranked by their desirability according
frequenci es. to the criteria above.

B. Basis for Source Evaluation — Gyrotron - The gyrotron tube is
not presently available in the US.

Millimeter sources were evaluated as However, the Soviet version produces
candidates for transmitter sources and high power (10 Kw cw, at 1.9 mm and ].
as local oscillators. The performance Kw at .9 mm) is very efficient ( ~ 30% at
parameters considered were: 1.9 mm and 6% at .9 mm). US develop-

ment of these tubes is essential.
• Efficiency.

— Extended Interaction Oscillator
• Output power. (EIO) - The ElO produces good output

power (1 w cw, 20 w pulse) and is
• Volume and weight. capable of coherent operation. Of the

presently available sources it is the
• Availability, most promising.

• Ruggedness. • Travelling Wave Tube (TWT) - While
the TWT is not properly a source, but

• Frequency stability , an ampli fier , it can be driven by a

5
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stable low power source. Hughes has Frequency multiplication may be
developed a very powerful (1 Kw @ 94 required to use this device at higher
GHz with a msec pulse) TWT oper- freq uencies.
ating at 94 GHz. Potential of the TWT
at higher frequencies is doubtful . (b) Tube - The reflex klystron is a

highly developed, stable source but
• Carcinotron This tube produces may also require frequency multi-
reasonable power (— 1 w cw at A 1 plication to reach higher frequencies.
mm). It has a relatively large tuning
range (—20%), accompanied however (2) Local Oscillators for Future
by a wide variation of output power. Systems.
Well designed, highly regulated power
supplies are required for frequency (a) Optical pumped molecular laser
stability. (OPM laser) - The OPM laser is

extremely quiet and stable, and cap-
able of producing large amounts of(2) Transmit te r  Sources for power. Much packagingwork would beFuture Systems. required for it to function in a tactical
system.(a) Cyclotron resonance tubes. -

Numerous tubes under this generic (b) Josephson junction - A dark horse
name, including the above mentioned candidate for use as a local oscillator;gyrotron , as well as relativistic elec- it requires cryogenic temperatures fortron beam (REB) tubes, and the free operation.
electron laser, are under development.

E. Further Recommendations(b) Optically pumped molecular
(OPM) lasers. These lasers, typically Development of InP technologyexcited by CO2 laser are promising as should be supported as well as thedual mode transmitter sources. search for new high mobility solid

state materials. -

D. Loc4 Oscillators

New techniques for producing en-(1) Local Oscillators for Near ergy in this wavelength region shouldTerm Systems. be sought out and supported keeping in
mind that until a source can produce(a) Solid state devices - The Gunn more energy than a black body it isdiode currently operates at frequencies highly speculative.

up to 100 GHz. It is a stable, low noise,
presently low power (—. mw cw) source.

6 
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2. MILLIMETER WAVE thus as the frequency is increased

SOURCES machining problems multiply.

A. Black Body • Heat dissipation becomes more and

more difficult as the frequency in-

The simplest source of 1 mm creases. The thermal limit seems to

radiation is a mercury arc-lamp. follow a tr 2 law; (it depends on the

The effective temperature of the area).
plasma is 4 x 1030K. The radiation
is in the Rayleigh-Jeans limit of the • These devices operate through the

Planck black-body distribution, interaction of a standing or propa-

given by the power radiated from a gating electromagnetic wave with an

1 cm2 source into 2ir steradian (sr) electron beam. The electric field

solid angle is: associated with the wave must be
relatively strong across the diameter

P (9.6 ~ 1O-~ )( ~ 2T ~ ) 
of the electron beam. This requirement
reduces the space for electron beam

where v = frequency , T = tempera- propagation and makes it very diffi-

ture in degrees Kelvin and ~ = cult to avoid unwanted interception of
bandwidth. For a bandwidth of 30 the electron beam by the tube body and
GHz the simple mercury arc can the associated heat dissipation prob-
produce on the order of 1.0 u watts lems. The area over which the electron
at 1 mm. Figure 1 shows the black beam can interact with the electro-
body emission calculated using the magnetic field scales with X2 . If the

full Planck equation rather than area of the beam is decreased to

the Rayleigh-Jeans approximation. prevent interception, the e-beam cur-
rent must increase ‘to return the same
interaction strength.B. Electron Beam Devices

Extension of the tube technology • Reduction in skin depth with fre
developed for centimeter wave gener- quency causes the rf circuit loss to
ation has produced millimeter and increase as u 1/2 , This increases the
submillimeter coherent devices. How- minimum beam current needed for
ever, difficulties are met in scaling to oscillation. Combining this u 1/2  de-
shorter and shorter wavelengths. The pendence with the u 2 dependence on
basic problems are outlined below: current associated with a reduction in

beam area (preceding paragraph)
• The dimensions are proportional to results in the minimum current den-
the reciprocal of the frequency, u~~, sity increasing as u 5/2, The resulting

7
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required current density exceeds 100 range of 250-300 kW multiplied by the
amps/cm2. Electrostatic focusing is wavelength (in centimeters) squared.
req uired because a cathode designed to
provide a reasonable lifetime (1000 C. Conventional Tubes
hours) provides about 3 amps/cm2 CW
and 10 amps/cm2 pulsed. Focusing Current conventional tubes appear
increases the transverse componen t of to have a power limitation that follows
velocity in the beam which increases a u ~ much like the limit in
the required size of the magnetic gridded tub€s.* Figure 3 graphically
confining field. displays the frequency dependence of

the output power. Solid state sources
• Higher voltages can be used to are also displayed in this figure. The
increase the output power but only at solid state limit has a strong theoreti-
the expense of efficiency and weight. cal basis while the tube limit is an
The size of the rf structure scales with engineering limit. In summary the
voltage, engineering problems that limit the

ou tput power in millimeter wave
• At lower frequencies , M-type (cros- devices are:
sed field) devices have efficiencies
between 45 and 52%; and 0-type • Power dissipat ion in fragile
devices (linear beam) have efficiencies structures.
less than 40%. At higher frequencies, a
linear beam device is much more • Ability to manufacture small struc-
efficient than the crossed field device tures.
because the spent electron beam in the
linear device can be dumped into a • Control of e-beam to reduce thermal
separate electrode at a depressed dissipation.
potential. Also a longer interaction
path between the electron beam and • Control of e-beam quality from high

• the field is required at higher frequen- convergent guns.
cies for the M-type due to their lower
gain. Figure 2 shows the current limits • High circuit -losses (skin depth is
of an M-type tube (magnetron). It is decreasing).
concluded that the magnetron is best
used as a generator of millimeter *NOTE: The reasons for the gridded tube limit are:

waves under pulsed conditions. When (a) grid dissipation and (b) transmit time effects

driven with pulses of less than several across the grids. These reasons are not the same as

microseconds duration , peak power for the beam tube limit but the end result is a similar

outputs are attainable in the general drop in Output power with frequency.9
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Let us now examine each of the stubs. The beam is magnetically
various types of tubes. focused along a cylindrical channel

(Brillouin flow). The limits on this type
(1) Backward Wave Oscillator are governed by the ability to generate
(BWO): Most are of the type known as and control very dense electron beams
Carcinotron. The field is a slow wave (Figure 4). The current frequency
travelling along a vaned wave-guide, limits are shown in Figure 5 and Table
The vanes are a row of quarter-wave 1.

l b

~~~~~~~~~~~~~~~~
0.6 ~~~~~~~~~~~~~~~~~~~~~ 

/ 1 A cm~

~~~ 0.5

~~~~0.4

‘::_~~~~~~:~t~
m

0.1 _ IIII ~~~E±_
2.5 . 5 10 20 40 80 150 300 600 1,200 2,500

CON VERGENCE

Figure 4. The Limit in Wavelength as a Function of the Gun
Convergence for Different Curren t Densities at the Cathode of a BWO

12

L. - - -



- 

~~~L _ _

~ 00.40

r 00.40
10,000 ~~ 

- , - -
— ‘~~~ 00.2Q

S.
S.

i,ooó _ _ _ _ _ _ _ _ _  

~~~~~~~ 

- _ _ _ _ _ _ _ _ _

— ‘ 1959 ~~ % 1962 ~~~ 1965

4
00.09

~~~ 100 
~~~~~~~~~

-

‘C % 00.07

00.30 00.08\— — 00.05\
10.

t
1 _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _

- ..I.. 00 06
I
.i~. 00.035

150 300 600 1,2000.1 - r
4 2 1 0.5 0.25

FREQUEN CY (GHz)
WAVELENGTH (mm)

Figure 5. Maximum Powers Produced by Type 0 Carcinotrons at
Different Wavelengths.

TABLE 1. CHARACTRISTICS OF AVAILABLE CARCINOTRONS

WAVELENGTH CURRENT VOLTAGE POWER EFFICIENCY
(mm) (mA) (k V ) (W) (%)

4 65 6 38 11
2 45 6 8 4
1 30 10 1.4 0.5

0.5 35 10 15x10 3 4x10 3
0.4 35 10 9x10” 2x10 3
0.35 45 10 0.25x10 3 6x10-’
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Advantage: • Can use periodic permanent mag-
netics.

• Can be rapidly electronically tuned
over at least a 10% tuning range. Disadvantage:

Disadvantages: • The bandwidth of the coupled cavity
devices can be as high as 10% but

• Output power varies with the fre- normally high power amplifiers
quency (see Figure 6). have a bandwidth of 2 to 4%. The

helix devices can have as much as an
• The output frequency is very sensi- octave bandwidth.

tive to the beam voltage (as high as
30 MHz/volt ). (3) Conventional Klystron s. The

conventional klystron amplifier con-
• Ti ‘equired precision in machining sists of two or more re-entrant cavities.

and alignment and the large values The first cavity modulates the beam
of beam voltage and magnetic field and the final cavity extracts energy by
make the tubes large and expensive, demodulating the beam. If feedback is

provided between the two cavities the
(2) Travelling-Wave Amplifiers: device can operate as an oscillator. The
Below 100 GHz a coupled cavity design electron beam forming and focusing
can be used. (Helix designs are limited subsystems are of the same type as
to a maximum frequency of about 35 used in the TWT and BWO. Recent
GHz due to thermal dissipation prob- research devices of this type have been
lems.) Above 100 GHz a slow wave used for harmonic generation. The
structure is preferred. The same beam energy extraction cavity couples out
focusing method as use in the BWO is harmonics of the fundamental fre-
used for the TWT. quericy. Figure 7 shows theoretical

limits on this type of tube.
Advantages:

Advantage:
• Up to three orders of magnitude

more power is expected from a TWT • Stable single frequency source.
than a BWO at a given operating
voltage. 1-5 kW has been produced at Disadvantages:
94 GHz.

• Cavity losses at higher frequencies
• High efficiency is obtained by the make it increasingly difficult to

use of depressed collector voltage, approach ideal efficiencies .

L ~~~~~~~•
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Figure 6. Frequency and power as a function of tube vo ltag, for two typical
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• The tuning range and instantaneous modes of thi8 device are very similar to
bandwidth is limited, typically less those of a reflex klystron, which leads
than 2%. to the possibility of “double moding”.

• Limited lifetime on the order of 100
hours where high powers are re- Advantages:
quired.

• Higher power than the reflex kly-
(4) Extended Interaction Osci- stron(1 wattCW and 20watts pulsed
ilators. These devices are klystrons at 280 GHz). Power is limited by e-
with a single cavity formed from a beam current densities obtainable.
section of slow wave structure short-
circuited at each end (see Figure 8). The • Lifetime on the order of 1000 hours.
interaction between the beam and the
field occurs in the same way as it does • Good output power and frequency
for a TWT or a klystron. The power stability.

PROJECTION ~~~~ ~~~~

L~~~~
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~~~~~~~~~~~~J 
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T INLET

COOLANT~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~
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~~~~~~~~~~~~
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________________ _-  -— •1
239.~~

FIgure 8. Configuration of Vari an
Extended Inter~c~ ,n Oscillators operating
in the 140-230 GHz range.
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• Length of the slow wave structure is Disadvantages:
only a fraction of that of a BWO
resulting in a smaller tube and • Starting currents are high.
focusing magnet.

• Magnetic fields on the order of
Disadvantages: several kilogauss are required.

• Tuning range is not as broad as it is The tubes described above require
for a BWO. ultra-high precision manufacturing

techniques to obtain a periodic struc-
• Cannot be used as an amplifier. ture that generates a varying electro-

magnetic field. An alternative ap-
(5) Ledatron. This device has two proach is to propagate the electron
modes of operation. In the first mode, beam along a magnetic field in a
the electron beam interacts with a field smooth cylindrical wave guide (see
in a Fabry Perot cavity whose axis is Figure 9) and produce the required
transverse to the beam current. The periodicity by causing the e-beam to
Fabry Perot cavity is constructed with “bunch”.
a grating mirror whose spacing is less
than the operating wavelength and a The following devices use a periodic
smooth mirror. The second mode density variation of thee-beam in their
results from an interaction of the beam operation.
with a field propagating as a surface
wave on the grating. (6) Cyclotron Resonance (Gyro-

tron). In this device an electron beam
Advantages: is propagated through a smooth

cylindrical waveguide. A periodicity in
• The Fabry Perot resonator can be a the e-beam is produced by the cyclo-

large device. The frequency is de- tron frequency of the electrons,
termined almost completely by the
grating period, thus construction v = eH
problems are reduced to the fabrica- n 2 m C
tion of the grating mirror.

where n is the harmonic number.
• Reduced heat dissipation problems

because it is easier to avoid intercep- To obtain 300 GHz a field of 100 k
tion of the e-beam by the tube body. gauss is required which means a

superconducting magnetic is required.
• 40% tuning range It is possible, however , to obtain a

harmonic of the cyclotron frequency
• Output coupling is easy. reducing the required magnetic field.

18
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Figure 9. Gyrotron Characteritics

Advantages: e High power: at 1.9 mm, 10 kW at~
30% efficiency;

• High efficiency — 43% has been at 0.9 mm, 1 kW at 6%
obtained, efficiency.

• In principle a wide tuning range
should be possible, but multiple Disadvantages:
modes of the overmoded wave guide
used in the gyrotron limit the tuning • Large, spatially uniform magnetic
range substantially. fields are required.
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• To obtain efficient opert~tâon, the tant in the cyclotron resonance de-
wide tuning range of the cyclotron vices, but relativistic electron beams
must be sacrificed to obtain resonant are not required. A new method of
enhancement by coupling to the producing millimeter and submilli-
wave guide modes. meter radiation does require relativistic

electron beams illuminated by electro-
• Requires an e-beam with a very magnetic radiation (Figure 10). The

uniform velocity, output frequency is on the order of 75
times greater than the beam’s cyclotron

(7) Relativistic e-beams. Relativ- frequency. The origin of the radiation is
istic effects (mass increase) are impor- thought to be due to a Doppler shift

VARIABL E
CURRENT
SOURCE

L~~J I I

DRIFT TUBE

1FHGH
vOLTAG

~~~~~ 

ECTR ON BEAM ~~~ROWME

FIELD EMIS SION
CATHODE SOLENOI D WAVEGUIDE

MICROWAVE

Ftgure 10. Cutaway View of a Reia!iv lst lc E-Beam Subm iHimete r generator
(Reference 4)

The output is obtained through a windo w that passes only the reflected signal.
The dotted sections indicated an input scheme necessary to operate the device as
an amplifier.
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when the radiation is scattered by the Advantages:
electron beam. Two different types of
scattering occur. Scattering from the • Does not require a high magnetic
beam-vacuum interface produces short field.
pulses. Scattering due to the production • A very high power device by virtue of
of plasma oscillations in the e-beam by the use of hollow beam magnetron
the electromagnetic wave produces guns to obtain high beam currents.
pulses whose duration is hmited by the
e-beam current pulse. • Wide bandwidth.

Disadvantages:
Advantages:

• Requires high operating voltages.
• High power upconverter .

• Periodic H-field is needed. .
• Requires magnetic fields on the

order of 1 k gauss. 0. Solid State Devices

Disadvantages: All solid state oscillators which
depend on transport of charge carriers

• High currents (5 x - 106 amps) are suffer the power output limitation
required. These currents are present- known as the John son DeLoach
ly produced only in short pulses. relationship. This relationship states

that the power output of the device
• Accelerating voltages of 2 M V are multiplied by its reactance is inversely

needed to obtain relativistic veloc- proportional to the frequency squared.
ities (Figure 11). Because reactance is also dependent

on impedence matching requirements,
(8) Ubitron. (Figure 12) A smooth the relationship reduces to the power
wave guide is used in this device as in depending upon u 2 , (Figures 3 and 13).
the gyrotron and the beam propaga. Arrays of coupled solid state oscil- —

ting through the wave guide is given a lators could be used at a penalty of
periodic disturbance by using a spat- increased complexity.
ially periodic magnetic field. The beam
is bunched longitudinally in the (1) Tunnel Diodes. This was the
Ubitron and transversely in the first active two terminal semicon-
Gyrotron. Efficiencies between 3 and ductor device to generate coherent
6% have been obtained without a radiation in the millimeter region. The
depressed collector. maximum frequency of this device is

21
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determined by its junction diameter. configuration is such that above some
At high frequencies the lifetimes are minimum applied field a negative
short and the output powers are on the resistivity is observed. This is due to a
order of what can be obtained from a change in mobility (increase in effect-
Hg arc source. ive mass) of the electrons. The nega-

tive resistance can be used to produce
(2) Gunn Diode. In materials such oscillation in a tuned rf circuit. The
as GaAs and InP the electronic maximum obtainable frequency is

1. MARX CAPACITOR BANK
2. OIL-WATER INTERFACE
3. INTERMEDIATE STORAGE CAPACITOR
4. PULSE-FORMING COAXIAL LINE
5. TRA NSFORMER

- 6. ELECTRON BEAM
1=I

- - -

I-

Figure 11. Typical Relativistic e-Beam Device

The Naval Research Laboratory ’s Gamble II, a typical relativis tic e-beam device
(REB). Most of the components illustrated are common to all REB’s. The size of the
device is determined by energy requirements .
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given by the relaxation of the mobility ials with much shorter relaxation
states. GaAs and InP will not be useful times (and preferably higher mobilit-
at frequencies higher than 300 GHz. ies) must be found. Gunn diodes are
InP is a more promising material for available that operate up to 100 GHz
high frequency operation by virtue of with powers on the order of 10 mW.
its higher mobility. More effort needs They are of interest as local oscillators
to be spent ~n its development. Mater- due to their low noise.

(a)
CYLINDRICAL

SOLENOID
S WINDOW

MI CROW AVE HORN

FOILLESS •ALUMINUM MAGN ETIC AN D DISP ERSIV E LIN E

DIOD E RING -FIELD LINE
El IR ON RING -. 15 METERS ~~~~~ -0—- 25 MET ERS —*.

4 I METER

(b)
IRON HELIX CYLIN DRICAL

GLASS W IN DOW
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

AND DI SPERSIVE LINE
MIC ROWAVE HORN

-o-— 25 METERS—...
FIELD LINE

-o- 15 METER S ~
1 METER

Figure 12. Ubltron

Two methods of spatial modulation are shown: a) a rippled magnetic field
produced by inserting aluminum and iron inside the solenoid, and b) a helically
perturbed field produced by an iron helix inside the solenoid.
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Figure 13. Output power versus frequency for some avalanche and transferred
electron dIodes. -

Advantages: reverse biased p-n junction are injected
into an intrinsic drift region. The field

• Low noise — Low noise is exhibited across the drift region is high enough
over a wide tuning range. so that the velocity of the electrons is

constant and independent of the
• Easy to manufacture. electric field. When an alternating

field is superimposed, a phase lag
Disadvantages: occurs between the char ge carriers and

the field. Th±s results in a negative
• High power at the desired frequen- resistance that can be used to produce

cies is not available due to material oscillation. The maximum frequency
limitations, is dependent on the thickness of the

drift layer and the thickness of the
(3) IMPATT Diode (Impact Ava- depletion layer at the avalanche
lanche and Transit Time). (Figure junction. It is difficult to fabricate and
14) In this device (constructed in cool very thin drift layers. Very thin
Silicon or GaAs), carriers from a depletion layers can lead to breakdown
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Figure 14. 94 0Hz lmpatt Diode

or tunneling. These limitations lead to Advantage:

r a rapid fall-off of efficiency above
about 100 GHz. New high-mobility • Higher output power than a Gunn
materials are needed to obtain high oscillator.
efficiencies above 100 GHz.

Disadvanta ges:
Hughes Electron Dynamics Division

has obtained 520 mW over a chirp e Low efficiency in the region of
frequency range of 211 to 215 GHz at a interest.
2.6% efficiency. To reduce the react- • Noisy and the noise varies over the
ance of the device to reach this high tuning range.
operating frequency, it was necessary
to eliminate the Impatt package and • When operated as a pulsed source at
make the diode an integral part of the high power, frequency stability is
waveguide circuit. lost due to heating during a pulse.

25
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E. Josephson Junctions F. Lasers

When two superconductors sepa- (1) Electric Discharge Lasers.
rated by a thin (10-15°A) insulating 

- 
Lasers using collisional excitation

layer have a voltage imposed across mechanisms in a discharge have been
the insulating layer , then an alter- operated at wavelengths as long as 337
nating field is generated at a frequency urn (HCN) but none has operated near
given by 1 mm. Decomposition of the lasing

medium has been a problem in this
v = 2 eV/h type of long wavelength laser.

if V = 1 millivolt then v = 483.6 GHz. (2) Optically Pumped Lasers.
The powers obtained to date have been (Figure 15) This type of laser uses
on the order of 10~ watts. It might be radiation from a CO2 laser to excite a
possible to use arrays, but the advan- vibrational transition in a symmetric
tage of broadband tuning would be top molecule such as CH3F. A rota-
lost. The reasons for the low output tional transition in the excited vibra-
powers are: (a) very little power in the tional state produces the millimeter or
a.c. current in the junction due to the submillimeter radiation (Figure 16).
low impedance of the junction, and (b) Over 500 transitions using this tech-
it is difficult to match the low imped- nique have been observed. This tech-
ance source to free space or to a nique is still in the research stage.
waveguide.

Advantages:

• Very sta ble frequency source.
Advantages:

• No known power limitations but
• Broadband tuning is possible but it efficiencies are limited.

is difficult to design a junction to
realize this advantage. • Can operate either pulsed of CW.

Disadvantages: Disadvanta ges:

• Low output power. • Not continuously tunable; in fact ,
several different gases would be

• Must be operated below 23°K. required to change frequencies over
an atmospheric window. It should be

• Difficult to couple energy out of the pointed out that changing gases is a
junction. very easy operation.
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Figure 15. Submi li imete r waveguide laser
The CO2 pump laser is on the left. The sub- equipment shown is being used for
millim eter laser is on the right. The propagation measurements .

• One photon at 10.6 um is expended This beam will amplify radiation
for each photon at 1 mm. moving with the beam through the

field. Radiation is also absorbed by the
• The technology is in its infancy, electrons. The wavelength for absorp-

tion is shorter than the wavelength for
(3) Rydberg States. It has been stimulated emission (amplification) by
postulated that a laser could be made the fraction
by optically pumping Rydberg states.
It has yet to be proven. 2 hv/T mc2

(4) Free Electron Laser. A relativ- The relationship between the line-
istic e-beam is passed through a shapes for emission and absorption
periodic magnetic field (Figure 17). are illustrated schematically in Figure
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Figure 16. Rotational transitions suitable
for lasing In a symmetric top molecule.

18. The output frequency increases as Advantages:
the square of the electron beam energy.
This type of laser is still in its infancy. • Tunable source.
0.36 watts average power and 7 kW
peak power has been produced at 3.9 • Potential for high power.
g’m using a 34 M eV e-beam and a 2.4 k
Gauss magnetic field. Work has also Disadvantages:
been done at 10.6 ~m Longer wave-
lengths would require lower e-beam • Present effi ciencies are quite low.
energies. Improved efficiencies should be ob-
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Figure 17. TypIcal free electron laser Reference: (D.A.G. Deacon , et al)

tam able with a storage ring but it Metal-Plasma. This junction is —

has not yet been demonstrated. virtually indestructible. The output
power and efficiency should be higher

G. Frequency Converters than in a semiconductor junction;
however the intense heat generated by

(1) Diodes. Ideally, a non-linear the plasma and the plasma’s stability
contact would produce harmonic are problems.
power proportional to 1/n 2 where n is
the harmonic number. Non-linear
jun ctions can be formed between (2) Difference Frequency Gene-
metal-semiconductor , phosphorous ration. (Figure 22) Two frequencies
and carbon-ion bombarded silicon, are input to an optical material with a
and GaAs. To get to high frequencies non-linear index of refraction at the
requires very small contact areas two frequencies . The output frequency
reducing the allowable pump power is equal to the difference between the
(Figures 19-21). two input frequencies. An additional

requirement is “phase-matching”.
This requirement is imposed because

Metal-Oxide-Metal (and Joseph- mixing must take place over distances
son junctions) require very thin oxide much greater than a wavelength and
layers. This makes it very difficult to is equivalent to requiring conservation
couple energy out of the junction. of momentum. To maintain phase
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matching over the full tuning range of
the generator normally requires
changes of the temperature, the mag-
netic field , or the orientation of the

TRANSITION crystal with respect to the input
“ cbs - ~em I 2h~ \ beams. The efficiency of power conver-RATE 

~~~ em t~ sion is specified by the Manley-Row

,,I\ STIMULATED 
limit. This limit says that the total

EMI SSION number of photons at the difference
- - ABSORPT ION frequency must be less than or equal to

the number of photons in either of the
two input beams, i.e., no more than one
photon is produced by the interaction.

FREQUEN CY The result is that the limiting effic-
GAIN PER iency for production of millimeter/
UNIT submillimeter radiation with visible or

Typical materials are InSb, ZnGePa,
GaAs, LiNbO2, and ZnO.

LENGTH

J

/

/
#\

\
\

~~~

,
,
,

,, FREOU~~ CY 

near infrared radiation is about i0~~.

Advantages:

• The CW device is very coherent.

• Can be tuned over a wide frequencyUNIT
LENGTH range; the actual range is material

dependent.

GAIN PER 

herent and there is a large variation

ELECTRON Disadvantages:
ENER GY

• The pulsed device is not very co-

in the pulse to pulse output power.
FIgure 18. RelationshIp between lIne
shapes for emission and absorption • Extremely limited in output power.

Crystal heating is one limitation but
another is material properties.

• Two pump frequencies are required.
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Figure 19. Second harmonic conversion
loss ve rsus fundamental frequency for point
contact dIodes (Reference 1)

(3) Parametric Oscillators. This • A simpler system than the difference
device requires a material with a large frequency genei ator. Only one
quadratic non-linearity. Crystals pumping frequency is required.
without a center of inversion sym-
metry meet this requirement. Ex- Disadvantages:
amples are LiNbO3, and LiIO3. Both
the idler (the 2nd pump frequency) and • Power density requirements rule out
output frequency are produced by the CW operation. Pump power den-
pump field in this device. Very high sities are as high as 50 MW/cm 2.
pump power densities are required~
The Manley-Rowe limit applies to this • Difficult to achieve high coherence.
device.

(4) Stimulated Raman Scatter-
Advantages: ing. A cubic non-linearity is important

here as well as a resonant scattering
• Tunable. process. An interaction between the
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pump photon and the electrons in the tam ed directly is about 100 urn in InSb.
medium results in a vibrational or Another method of obtaining longer
electronic excitation in the medium wavelengths is to mix the output of
and a photon of lower energy (lower one spin flip laser with the pump
frequency). An example is the “spin frequency in another spin flip laser.
flip laser” using InSb where the (Hg, Cd) Te is a more efficientmaterial
excitation in the medium (InSb) is a than InSb but direct conversion has
spin reversal of conduction electrons. not been demonstrated to date.
To date the longest wavelength ob-

PHOSPI-~ORUS-
BOMBARDED
SILICON

30

\. GaA~o \ POINT
CONTACT

~~20 -10 0 10 20 30

68 GHz INPU T POWER IN dBm

FIgure 20. Second harmonIc conversion
efficiency versus input power of P-Si and
GaAs (Reference 1)
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3. COMPARISON OF can envision operation of radar sys- -
CANDIDATE SOURCES tems of moderate range (1-6 km) at

FOR A MILLIMETER these frequencies. Beamwidths at
WAVE RADAR SYSTEM. these frequencies can be made rather -

narrow with an a’~tenna of moderatE -
Three freq uency regions are present- size (Figure 23). The diffraction limite~

ly of particular interest for the opera- beamwidths ( 0 3w, = .A_ ) for a one 
-

tion of near future millimeter wave meter antenna at 94, 140, and 220 GHz
systems. The atmospheric windows are then 32, 21, and 13 rnilliradians
centered at 94, 140, and 220 GHz, respectively and can be obtained from
possess transmissivities such that one the nomograph in Figure 23. At these

40
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Figure 21. Third harmonic conversion
efficiency of P-SI and GaAs (Reference 1)
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FIgure 22. Noncoilinear dIfference frequency generation
(Reference 5)

beamwidths, a practical radar system loped despIte the obvious payoff of
can engage targets in a surface to much improved tracking capability at
surface mode at moderate range this frequency. The 140 GHz techno-
without undue difficulties due to target logy is, as might be expected, less deve-
to background signal ratio or multi- loped than that of 94 GHz and more
path. Finally, a technology exists at all developed than that of 220 GHz.
three frequencies. The component
technology is fairly well developed at Table 2 illustrates the present
94 GHz. At 220 GHz, the component performance capabilities of sources
technology is considerably less deve- which show promise for implemen-
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Figure 23. Subm illimeter Radar Resolution Nomograph

tation in millimeter wave systems generic name of gyrotrons) which
either immediately or in the near show promise of being reduced to
future. practical size and weight for tactical

systems, as well as being very effic-
ient. This fact, coupled with the rapid

Present US cyclotron resonance advance of US technology in the
devices are both too bulky and too development of these devices sugges-
inefficient to be considered for impl e- ted the inclusion of such devices in
mentation in a tactical mm radar Table 3, which predicts the near term
system. The Soviets are developing growth of the technology for these
cyclotron resonance devices (under the devices.
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Table 3. Projected , Cyclotron-Maser , Millimeter -Wave Sources

DEVICE 1 2 3 4

De~eiopment Time 2 years 3 years 4 years 4 years

Wave length 8 mm 8 mm 3.4 mm 0.8 mm

Peak Power 100 kW 10 MW 10 MW 2 MW

Power Variability full full full none

Average Power 25 kW 10 kW 10 kW 1 W

Pulse Length 100 sec 1 sec 1 sec 50 ns

Rep. Rate 2500 ppS 1000 ppS 1000 ppS 10 ~)~S

Waveguide Mode TE°°1 TE°°1

Amplifier/Osci llato r ampif. ampif. ampif. osc.

Gain 20dB 20dB 20dB N.A.

Bandwidth 1% 10% 10% 10%

Tunabil i ty  5% 30% 30% 30%

Dev ice Efficienc y 40% 25% 25%

Phase/0.1% Voltage Change 4 deg. 4 deg. 6 deg. N.A.

Cyclotron Harm onic fundamental 2nd fundamental

Magnetic Field 15 kG 12 kG 48-64 kG

Noise Figu re 30dB 30dB 30 dB NA .

Dev ice Weight 120 lbs. 100 lbs. 100 lbs.
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The optically pumped molecular developments above 94 GHz are yet to
lasers are presently limited to use as come, the feeling in the industry being
laboratory tools. There are, however, that seed money would be needed to
several reasons “or closely monitoring work  at h ighe r  f requenc ies .
the state of Ui ’ ort of these devices.
There is no funuamental upper limit on Progress in the technology of solidthe power of these devices, and they state devices has been quite rapid,are inherently very coherent. The particularly with regard to IMPATTOPM laser is quite obviously a good diodes, thanks to the Hughes efforts incandidate for inclusion in a dual mode general, and especially at high fre-system , since it is inherently dual quency . The 140 and 220 GHz IMPAIT
mode, the pumping device typically transmitters were developed bybeing a medium power CO2 laser,
operating around 10.6 ,~m, coaxial Hughes as part of ERL’s systems
with the millimeter wave lasing efforts at these frequencies. The
cavity, situation at present is such that

IMPATT’s are the only solid state
It is seen from Table 2 that reflex devices which produce enough power

klystron power output at the freciuen- to operate as transmitters at the
cies of interest is extremely low. Reflex frequencies of interest. IMPATT powerklystrons are, however, very stable output may be increased beyond the
sources, especially when controlled by levels shown by operation of several ofa crystal oscillator , so the reflex the devices in parallel (power combi-
klystron is a good candidate for a combination). The chief problem withstable local oscillator in a mixer, or IMPATT’s is freq uency stability. Theperhaps for frequency stabilization of devices are not presently coherent
some more powerful source, such as a enough to permit doppler detection,
backward wave oscillator. The 94 GHz unless, as in the magnetron case,
magnetron listed in Table 2 is a noncoherent MTI techniques can be
reasonably powerful source. Magne- utilized. Gunn diodes, which presently
trons are, of course, generally far less have very low power outputs, are
amenable to freq uency stabilization potentially very useful sources, since
than klystrons, so use of a magnetron they are quite stable and capable of
to obtain doppler information from the CW operation. They are presently used
target might require a noncoherent as local oscillators in millimeter wave
MTI technique. The powerful travel- mixer circuits.
ling wave tube mentioned in Table 2 is
a Hughes development. This tube is Generally then , the solid state
phase locked to a Gunn diode and is devices are lightweight, rugged, and
obviously an excellent candidate for a potentially inexpensive. They present-
coherent, CW source at 94 GHz. TWT ly suffer from low power outputs and,
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in the case of the IMPATJ.’ diodes, current experimental work with Im-
frequency stabilization needs much patts, pioneered by BRL, should be
improvement, expanded, and a parallel development

effort should be put into the tube source
development. Seed money expended on

The most notable BWO’s are the frequency stabilization for tubes and
CSF (France) carcinotrons. Carcino- power supply development, in addition
trons produce sufficient power at 94 to tube development, should provide
and 140 GHz. Frequency stabilization considerable improvement in tube
may be achievable by a phase locking performance in a short time.
technique, utilizing a cascaded phase
locked system. It is seen that output Current efforts on REB’s and cyclo-
efficiencies are rather low, and that the tron maser type devices, as well as the
carcinotron BWO is rather heavy (40 free electron laser, should be mom-
ib). A further disadvantage is the high tored closely, and application of funds
voltage power supply required to drive should be made in areas which would
this tube. Present power supplies for enhance the potential of these devices
these tubes weigh several hundred for short range radar systems. Relativ-
pounds. (The extended interaction istic electron beam devices (this does
oscillator of Varian (Canada) is not include the gyrotron), however,
somewhat more efficient as well as may not be expected to provide an
being considerably lighter in weight.) immediate payoff for a short range

radar. Efforts in laser development
4. RECOMMENDATIONS should be considered in the same light

as REB’s and cyclotron masers. The
The current situation is, that Impatt millimeter laser systems presently in

diodes can be implemented in near existence are labo~atory devices, and
term systems, and are lightweight and as such are large and delicate com-
rugged, but are presently too noisy for pared to the desired end source. The
coherent operation, as well as rather inherent frequency stability of lasei s
low in power~ Tube sources, especially and their promise as dual mode
the CSF carcinotron , the Varian JR/mm sources does make laser deve-
Extended Interaction Oscillator, and lopment work attractive. The magne-
the Hughes TWT , are capable of tron tube is probably not a promising
coherent , CW operation , and are candidate for a millimeter source.
capable of producing sufficient power Ref lex kiystrons and Gunn diodes are
for the mm radar application. Near both too low in power to be effective
term systems should undoubtedly mm wave transmitter sources, but
utilize the Impatt or some variant of both may function well as local
the tube sources just mentioned. The oscillators, both in receivers, and for
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phase control of the more powerful • Development of small rugged power
tubes. InP technology needs support to supplies for mm tube sources.
allow it to develop to level comparable
to GaAs in technology. • Development of improved InP

devices.

In sum, then, near term (next seven Current development of mm systems
years) systems must use either the at 94 GHz is especially promising,
Impatt diode (if size and weight are the since the component technology is
dominant factor) or one of three tube mature at that frequency. Operation at
sources, TWT, BWO, or ElO, if coher- 220 GHz (and higher) is especially
ent operation and power output are the desirable in some applications since
most important factors. The relativ- the narrow beam capability would give
istic electron beam devices, cyclotron such a system many of the advantages
resonance tubes and OPM lasers are of a laser system. The beginning of a
promising sources for future systems. component technology exists at 220
Careful consideration should be given GHz, while there is none at shorter
to funding development on these wavelengths. Therefore , the most
devices and work for future (fifteen promising frequencies for current
years) systems. Critical areas which development from a source viewpoint
should be addressed immediately for are 94 GHz, 140 GHz, and 220 GHz,
near term systems include: and the most promising devices for

near term systems are Impatts, TWT’s
• Doppler potential of Impatts. (94 GHz), ElO’s, BWO’s and gyrotrons

(at 220 GHz).
• Phase noise control of BWO’s and

EIO’s.
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