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ABSTRACT

In connection with efforts to utilize the CRAY-1 com-
puter efficiently, we present some methods of analysis of
rates of convergence for block iterative methods applied to
the model problem. One of the more interesting methods in-

volves relaxing on p X p blocks of points. A Cholesky

decomposition is used for that smaller problem. One of the
basic methods of analysis is a modification of a method dis-
cussed earlier by Parter. This analysis easily extends to
more general second order elliptic problems.
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SIGNIFICANCE AND EXPLANATION

In the solution of very large systems of linear algebraic equations one is
frequently led to consider "iterative methods". In these methods one chooses a
first guess, say Uo, and then successively computes other guesses Ul, Uz.---
The basic questions about such a method are (i) Does the method work? That is,
assuming I can keep up the procedure, does Uk get near to the true answer U?
(1i) How expensive is the method? That is, assuming I can estimate the cost per
iteration, how many iterations are required to decrease the initial error
|U - Uol by some fixed "small" factor, say &. Both of these questions are
answered by obtaining information on a quantity p which is associated with the
iterative method. This report discusses some wavs of obtaining good asymptotic

estimates for p in an important class of problems associated with second order

elliptic partial differential equations.
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ON BLOCK RELAXATION TECHNIOUES*

D. Bo!ey(l), B. L. Buzbee(z)

and S. V. Parter(J)

1. Introduction

Some 15-20 years ago there was a great interest in iterative methods for elliptic

difference equations - see [13], [14], (15]), (71, (9], (10]. More recently
there has been a greater emphasis on direct methods for these sparse matrices - see (S],
(61, (111, [12].

However, with the advent of "vector machines" and "parallel processors"” we have found
it necessary to return to a consideration of certain iterative methods.

The CRAY-1 computer can perform up to 250 million floating point operations per second
[2). Algorithms that execute with high arithmetic efficiency on this computer must "fit the
architecture” of it and be carefully programmed in assembly language. Thus in using this
computer, we seek camputational modules that can be implemented efficiently and that can be
used in solving diverse problems. The solution of banded positive definite linear systems
is such a module, and the Cholesky decomposition algorithm for it can be implemented on the
CRAY-1 such that its execution proceeds at the rate of about 100 million floating point oper=
tions per second. Since the vector registers of the CRAY-1 can hold at most 64 numbers, im-
plementation of banded Cholesky is simplified if vector lengths do not exceed 64. Block
Relaxation techniques for solving elliptic difference approximations require the solution of
banded positive definite linear systems. These facts led us to investigate the convergence
rate of block successive over-relaxation for the model problem using p x p blocks (prefera-

bly p < 64).

*Will also appear as MRC Technical Summary Report #1860

(1) stanford University; Stanford, California.
(2) Los Alamos Scientific Laboratorv; los Alamos, New Mexico.
(3) University of Wisconsin; Madison, tlisconsin.

Sponsored by the United States Army under Contract No. DAAG29~75-C-0024; by the Los Alamos
Scientific Laboratory under Contract No. W-7405-ENG-36; and by the Office of Naval Research
under Contract No. NOOOl14-76-C-0341.




In [ 9) one of us developed a fairly general thecory for obtaining such estimates
on the rates of convergence of iterative methods for elliptic difference equations.
However, partly because of the generality of that work (variable coefficients, general
domains, etc.) it is by no means a transparent discussion. On tho other hand, in the
case of the model problem it is relatively easy to develop this general approach. This
is partly due to the strong estimates of [1] and (8).

In section 2 we describe the model problem and iterative methods for its solution.
In section 3 we develop the general theory (for this special case). In section 4 we
obtain the rates of convergence estimates for the p x p block method mentioned earlier.
In section 5 we apply the theory to the multi-line methods (thesec methods have been
studied earlier (9], (10]).

Finally, because it is worthwhile for the practical worker to have available many
methods for getting information on rates of convergence (some work here - others there),
in section 6 we return tu multi-line methods. Using a completely different technique

we obtain upper bounds (unfortunately: not sharp bounds) on the rates of convergence.
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2. _The Model Problem

2.1) Q= ((x,y): O < x,y <1} .

Let P Dbe a fixed integer and set

1
KEFea
Consider the set of interior mesh points
2.2) n(h) - ((Xk.YJ) - (kh'jh))r 1 : klj :P
as well as the boundary mesh points
2.3) MN(h) = ((xk,yj); (k =0 or P+1) or (J=0 or P+ 1)}

Let U = (uk } be a vector defined on the set of all grid points: Q(h) U 3R(h) that is,

b)

u is the value of U at (x

' . " v . f \
xj % yj)- We call U a "grid vector In differing

circumstances we will choose different orderings of the components of U.
As usual, we define the discrete Laplace operator by

2u =

- +
s Vel S W 5 U5 R Y101 xi ¥ Uk, 4-1
2 2 E

3 h h

2.40) 80, lekd 2P

Note: While U is defined on the entire mesh region, AhU is defined only on Q(h),

the interior. Also,we define the difference operators

u -\
2.4b) (vxmk 3 - .541_.3_!:1L1 - 1<j<p, Lok <P *l ,
.
Y, " %k,4-1
2.40) R et TR S S P A Y
’

The basic problem is: Given grid vectors F and G, find a grid vector U such

that
2.5a) AhU «F, in Q(h) ,
2.5b) U =G, on AN
After an ordering of the points (xk.yj) is determined we let A Dbe the matrix
representation of -h,dh: symbolically, we write
2.6) N -h’a

.




maps vectors with P2 + 4P components into

As we have already remarked Ah
vectors with l>2 components. The matrix A actually is a square Pz by Pz matrix.
The known boundary values, G, are put on the right-hand-side. In this way the
difference equations (2.5a), (2.5b) take the form
2.7) AV = F
where the ~ over F is meant to indicate both the result of ordering the components

of -h2I‘ and the necessary modifications of F required by the G terms. In any case,

every vector V with l’2 components may be thought of as a grid vector which also

satisfies
2.8) V=0 on 3M() .

An iterative method for the solution of (2.7) is determined by a "splitting"
2.9a) A=M-N.

EqQuation (2.7) is then

2.9b) MV = NV + F .
0 ) - | k
After choosing a first guess V , one obtains Vv ,v°,...,v ,... from
2.10) W F
let
2.11) p = max{|A|; det(AM - N) = 0} .

It is well known that the iterates vk converge to the unique solution V of (2.7)
if and only if (independently of Vo)
2.12) p <1,

The problem studied in this report is: find the asymptotic behaviour of P as h * 0.
Remark: Of course, for every A which is a generalized eigenvalue, (i.e. det(MM - N) = 0)
there is a vector U * 0 such that

2.13) AMU = NU .




3. A General Approach

We make some assumptions about the splitting (2.9a).

A.) M =M and is positive definite
A.2) p = max %3:':;

. L,
where

T- -
(x,y) x'y I xkjykj
L ] - L
Note: Since A=A , M =M then N = N ; and, as is well-known [ 4] the generalized

eigenvalues are all real and

p = max liﬂiifll

x#0 (Mx,x)

Thus, the force of the assumption (A.2) is that max|\| occurs for a positive eigen-
value )\ = p.

A.3) There is a positive constant N independent of h, such that

ol
“““. = No "
Here
IInll_ = sup(l(N‘U)kjl: |ukj| 3.
Finally we come to the main new concept.

A.4) There are positive constants q, K, independent of h, such that: if U is

a grid vector satisfying

(1) U=0 on 3(h)
and
(11) v ul + leuI <B

for some constant B, then

3.1) (NU,U) = q(U,U) + E
where
3.1a) [el < xem .

Remark: As one might imagine, the determination of q and the verification of (A.4)
is the important technical aspect of this analysis when applied to any particular case.

However, as we shall see in sections 4 and 5, it is not too difficult.

-5~
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Lemma 3.1: Suppose the splitting (2.9a) satisfies (A.l) and (A.2). Then the method

is convergent. That is;

3.2) (-t

Proof: Let U be the eigenvector associated with p. Then (NU,U} > O. Since
M=A+N and A 1is positive definite, we have

(~u,u) _ (Nnu,U) %
{Mmu,u)  (AU,U) + (NU,U?

0<p=

The basic result of this section is
Theorem 3.1: Suppose the splitting (2.9a) satisfies the conditions (A.l), (A.2),
and (A.4). Then

2
3.3) 9-1-%h2+0(h3) )

Proof: Let U be the grid vector

3.4) u

X3 = (sin krh) (sin jnh) .

Then U satisfies conditions (i), (ii) of (A.4). In particular, because of (i) we

may speak of (NU,U) and (U,U). The constant B of (ii) is 2n. The following

facts are well known (see [13] particularly page 202).

2
2 1 P
3.5) h,u) = 3 [P . 1]
hz(w u) 2.2 1 2 4
3.6) —;——-L—— = 4(1 - costh) = 2n°h" (1 - iz (th)* + oth)] .
h(u,u)

Por all V which are zero on 3Q(h) and V #* 0,

2
a2 v,v 2
ER ) ,A" - L RAYV G 2?n - 3 em? v o)

v vy n? hWiww

Since M = A + N
: .2
> NU,U) - n“{nv,v)
P2 tvu,m) s

n2au,u) + hu,m

Applying (A.4) we have

h"m.u) - q(h’(u.u)l +nle .

o e ———

e? X




—————SA R S

And, using (3.5) we have

nwu,u) = (g + o)) (K2 tu,u)) .

Thus
o > 3 1
h™(aAv,u)
1+ 3
[q + O(h) ] (h"(U,U))
Using (3.6) we obtain
22
3.8) pr1l-= 2"q" + o)

In order to cobtain the reverse inequality we require some basic estimates of [ 1]
and [ 8]. These are

Lemma 3.2: Let V be a grid vector which is zero on 3Q(h). Then

b 3 2 1/2
3.9) L INES /T +n (n a,v.av)} g

3!
Proof: See lemma 8, page 304 of (8].
Lemma 3.3: Let V be a grid vector which is zero on 3Q(h). Then

3.10a) lv,v < max|a v| ,
3.10b) |vyv| f_muIAhVI ’

Proof: This result is contained in Theorem S5, page 488 of [1].
For convenience of notation, for every grid vector V, restricted to the interior
Q(h), we write

3.11) ||v||9 = (n2w,vnl/2 |

Returning to the proof of the theorem, let U be the eigenvector associated
with p and normalized so that

3.12) ||u"‘i =1.

Then
pMU = NU

PAU = p(M -~ NJU = (1 - p)NU .

-7-
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That is
| 3.13a) -8,U = uNv
where
3.13b) W= (1 - 0)/ph .
From lemma 3.1 and (3.8) we see that
3.14a) 0 <y
and
2'2
3.14b) lim sup u < — .
h+0 b !
Moreover, the theorem will be proven if we show that 3
2'2 i
= T + 0(h) .

We write (3.13a) as
3 -A.hU -

where, if h is small enough

2
liolly < 45 g = w

qg - 1 ¥

Applying lemma 3.2 we see that

|A
&
[
+
El
z

2
4 1
l.”l 1% w5 1+ N =N, .

Applying lemma 3.3 we have (ii) of (A.4) with B = 2N2. Hence, using (A.4) we have

n? v, u) - qhw,u)) + v .

Or, making use of (3.12)

3.15) M vu,u) = (Q+ o) ] (W3 du,u)) .

UGS L St A

Prom (3.13a) we have

S ———————— T ———




-hz(Ahu,u) = uhz(uu,u)

= ulq + o(h) 1 th%w,u) .
Hence, from (3.7)
212[1 + o(hzn < ulg + o(h)] .

Thus, combining this result with (3.14b), the theorem is proven.




4. p X p Blocks

Let p be a fixed integer and assume that
4.1) P=pQ.
Of course, as P +® (i.e. h+0) Q + = and vice-versa.

The interior grid vector is arranged into sub grid vectors (Urs) of p2 entrees
as follows

. . ’ }0 . -
4.2) U e {u(:-l)p+o,(s-1)p+u' 1 <o, <p 1< r,8<0

Within U, the Uzs are ordered as follows

 sie 1

ceew et u )T

4.3) u={u 02" 10 00

3y T ettt
That is; we start at the bottom row of p x p blocks and count off from left to right;
then to the next (second) row of p x p blocks - again from left to right, etc. Within
each block (Urs) the subgrid vector is ordered in the same manner. To be specific,
let G(r,s,u), u =1,2,...,p be the p vector of grid values associated with the

uth horizontal line within the (r,s) block. That is
ﬁl -
(r=1)p+l, (s-1) p+u

u(r-l)p+2.(s-1)p¢u

4.4) G(r,s,u) = v
U (r-1)p+o, (s=1)p+u

“rp, (s-1)pu

then
'G(rlsll)q
- |G(x,s.H)
4.5) U:‘ 5 S
_G(ros'p)_

The discrete Poisson equation (2.5a), (2.S5b) takes the form

i TU:. S A-1“!-1,! g Alutﬂ,s % a-lur.s-l g Blur.s#l e rrs

-10-
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where T, ‘-l' Al, ‘-1' al are pz x 92 matrices. Each is block tridiagonal of

“pseudo order" p and each block is a p ¥ p matrix. Specifically

Te (-1 ,R ,-T ] "block tridiagonal"
P P P

lp - (-1,4,-1) tridiagonal

If BGB is the p *x p mutrix with “1" in the (a,B8) position and zero elsewhere, then |
7 di TR IE y 5
4.7a) A~l = diagonal | 1p }lp tlp, |
4.7b) Al - diaqonal(hpl,ipl....,Epll s i

Notice that

1
T L
zlp- O ' Epl Elp'

The matrix B is the “"block" E while B is the "block" E .. That is
-1 1p 1 pl

X
4.8) B, = ",a-xo

L c) 1 P

We rewrite (4.6) as

4.9) MU = NU + F

where M = diagonal(T,T,...,T] and N is made up of A-l'Ax’B-l’Bx'

We see at a glance that M is positive definite and (A.l) is satisfied. Further-

more, we are dealing with a "block" five point star, that is, the equations have the i
same block structure as the original problem. Therefore, our splitting has "block

property A". Thus, we have the basic result, if A {s an eigenvalue of

det{\M - N} = 0, so is -\ (see [14), [15)). Therefore (A.2) {s satisfied.

Row, N only includes the coefficients in Ah which relate points in the (r,s) ﬂ
block with neighboring points in the four blocks (r+1,s), (r-1,s), (r,s+1), (r,s-1).
We see that each row of N not corresponding to a corner point of the (r,s) block
has at most one "1" and all other entrecs are "0". The rows corresponding to corners

lead to exactly two “1"'s. Thus

4.10) lInll, =2, 7

and (A.)) is satisfied with Ny = 2.




Finally we turn our attention to the determination of q and the verification
of (A.4).

Lemma 4.1: Suppose U is agrid vector which satisfies (i), (ii) of (A.4). Then

4.11a) (30,U) = sw,u) +E
where

2
4.11b) e < 282 .

That is, (A.4) is satisfied with

4
4.12a) LA
g P
and
2
4.12b) K = 16B .
Proof: We have
T
4.13) (w,u) = U ()
r,s
Consider a term
T T T T T
.14 = .
Sias) Urs(NU)rs UrsA-lut~1,s A UrsAlur+1,s b Ursa-lur,~-l g Ursalur,s+1

It is easy to see that

4.15) uTa U « §

re-lr-1,s T L Y(r-Dp, (s-Dpw Y (e-l)pel, (s-lpu

Fix 0, 1 <0 < p. We use (ii) to write

Ty ® Yre1)p, (s-1)pty * V(r=1)ptl, (s-1)ptu
® Miypra, (a=1)pen ¥ DB N 1) pro, (8= pen ¢ D82
where
lsj| < B, j=1,2.
Thus
2 2
’u (“(r-l)p*a.(s-l)p+u] g 2t1h i c2h
where

legl < e»?,  je1,2.

-12-

Sk

ol




Therefore, we may replace Fu by the averageover o0, 1 < 0 < p. Thus

vTA v s e 1% e
rs -1 r-1,s Lisk '] P U=l osi (r-1)p+0, (s-1) p+y 1

where

le,| < 2(pB) %h(1 + h) .

Each of the other terms in the right-hand-side of (4.14) may be treated in a similar

manner. We obtain

E,| < 16(em)%n .
Finally, using (4.13) we see that

(o,NU) = %(U,U) + E

where

le] < 168 %% < qesd) T .

Corollary: If one considers the p X p block Jacobi iterative method described by
(4.6)-(4.9) then
2
p=1- [%‘p]hz +om) .

Proof: Apply Theorem 3.1.

We close this section with a consideration of the successive over-relaxation
iterative method based on this splitting.

Let a parameter ®w be chosen. Then the successive over relaxation method based
on (2.6) is given by

1 Tuk*l k+1 k+1 k k 1 k
= + + (= -1U +F .
® " r,s i -1r-1,s -1 r,s-1 A1ux+1.s b Bl“t,:#l (u - rs rs

Because the basic splitting satisfies block property A the number p(w) which is
the related spectral radius satisfies the equation (see [15]))
b +w - n? - uzozo(w) .

Thus, having determined p, we know p(w).

13-




S. p Line Method: I

Again, let p be a fixed integer and assume that (4.1) holds.
The interior grid vector is arranged into subgrid vectors (Uj} of pP entrees

as follows

S. - ; 1l<g<P, 1l<yc<p).
1) Uj ‘“o,(j-l)p+u <o <P, fusp
That is, Uj consists of the values associated with the jth block of p 1lines.
We now have
5.2) U= {u,,U u )T
5 1092000 :

Within each Uj the ordering is the same. That is, let G(j,u) be the P vector
associated with the uth horizontal line within the jth block of p horizontal
lines, i.e.

-il -
1, (j‘l)p+u
Y2, (3-1)p*u
G‘j:ll) - . '

Y, (3-1)p+u

%P, (3-1) p+y)
then
(3,1
G(3,2)

Uj- . .

[G(5.p)

The discrete Poisson equation (2.5a), (2.5b) now takes the form

T -
3 a3 e S0y

where T and R are pP by pP matrices. In fact, T is block tridiagonal with

5.3) TU

5.4a) Te= [-IP'TP'-IPIP TP - l'lv‘u‘llP

and

-14-




5.4b) = o o
This decomposition is used to make the splitting

5.5) A=M-=-N

where

S.6a) M = diagonal (T)

5.6b) N = [R,0,R"]

It is immediately clear that M = M. and is positive definite since each T is
positive definite. Once more, this splitting satisfies block property A (see (9],
{10)). Thus (A.l) and (A.2) are satisfied. From the structure of N we see that
(A.3) is satisfied with Ny = 2.

Once more we seek to determine an appropriate q and verify (A.4).

Lemma 5.1: Suppose U 1is a grid vector which satisfies (i) and (ii) of (A.4). Then

5.7a) (nU,U) = %(u,u) +E
where
5.7b) le| < es?p .

That is, (A.4) is satisfied with

5.8a) q=2/p

and

5.8b 2
.8b) K=8B'p .

Proof: We have
5.9) (NnU,Uu) = f uT (vu)

Consider a term

T T nT
. NU = U, RU + URU .
o o bl T B
Now
P
T
uﬁnui'l i ozl “o.(j~l)p*1 i “c.(j-l)p §

-15-
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Fix y, l_f_u:p. Then

[“o.(j-x)pﬂ”"o.(j-l)p’ g (“o,(j-l)pw " ‘1”

where
l‘j' < Bph .

Therefore, averaging once more, we have

T
UjRU, ) -

0 |-

P
2 )
ugx on [u°: (P-l)j*ul e B]

Thus, as in section 4
2
(u,Nu) -;(U,U) + E

wvhere

|| < 88%p .

Corollary: If we consider the P line iterative method described by (5.3)-(5.6b),

then

p =] - ptzh2 + o(hs) .

Proof: Apply theorem 3.1.

Remark: A careful look at this section shows that K = Sazph and hence we easily

obtain

2

o=1-prn?somd) .

-16-
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6. p-line Method II

In this section we approach the p-line method of section 5 with another method of
analysis. The results obtained are weaker, but the approach may well have applications
in cases where the analysis of section 3 does not apply.

Lemma 6.1: Let un(x) denote the Chebychev polynomial of the second kind of order n,
i.e., uo(x) =1, ul(x)'zx and unﬂ(x) = 2xun(x) = un_l(x).

If x >1, then

6.1a) un(x) :un_l(x) +1, n>1
6.1b) u (x) 2 n+1, n>1
and

4 d
6.1c) ax un(x) Lderall _l(x) + 2n .

Proof: Apply induction.

Corollary: u;‘(x) 22, n>1 and x 2> 1.

Lemma 6.2: Let B = [-I,Zs,-I]n where S and I are n X n. Let
U,(S) = u,(S) ,
j( ) uj( )
that is, Uj(S) is an n x n matrix obtained by evaluating uj. the Chebychev
polynomial, at s. 1f u-(S) is nonsingular, then
vsio,_(s1u__(s) Jxd,
-1 m =1 m=-i -
6.2) ’U - -1
U- (S)Uj'.‘].(s)um_:j (s), i<j.
Proof: See Theorem 1 of [3).
The quantity of interest, 0, is the spectral radius of H-IN. Since 3
My = (v71R,0,77RTy
(see section S) we may apply Lemma 6.2 to obtain ‘I'.l and hence M-IN. We find that

M = [D,0,E)
where

-17-




T

6.3a)

6.3b)

and

6.3c)

-1
U v
P p-l
-1
U v
P p-2
D= . .
-1
v
L p% ]
=1 T
octo,
-1
upul
Ew . »
-1
U
L P P-1 A

1
Uj Uj(2 Tp)

If Q denotes the unitary matrix which diagonalizes T, (and hence % Tp),

6.4a)

and

6.4b)

wvhere

6.4c)

P

a4 ¥ =3
Q 1"3‘3 10 = U G 07 0)

= diag{u (xr)}, rsl1,2,...,°,

3

-1 -11 -11 -1
Q 1up (3 TP = UG 0 T

- diag{u;l(xt)}. rw ). .aiaP i

X: = 2 - cos(rrvh) > 1

is the r'th eigenvalue of %»T;.

Let

we see that

Q = diaglo,Q,...,0}

76 = 107%00,0.07 Eq) -

Thus, applying the Gershgorin circle theorem

-18-
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z "1 A A
6.6) 2 v (up LR IO LR +uj_1(r)l) .
1532

6.7) u (x) + “p-l(") 2u ., + “p-j("” j=1,2,....p -

j-
Proof: For x >1 and a1 > 2, from the basic recursion formula and (6.1b) we have
ui(x) -u

l(x) 2ui ,(x) -u, o (x) .

i- i-1
Thus, if n > m > 0 we have

u () - un_l(x) 2u (x) -u ),

6.8) u (x) + uu_ltx) 2 u )+ un_l(x)

Of course (6.7) is true for j =1 and j = p. Assume that (6.7) is true for a
value of j =0, 1 <0 < p - 2. Then

6.9) uo(x) + up-l(") 21 ua_l(x) + up_o(x)

We may assume O < p -~ 0. Then applying (6.8) with n=p -0 and m =0 we find

u (x) + u (x)

po g-1 Z Yp-(0+1) S

That is

u___(x) + “a-l(x) _>_uj(x) +u M

p-o p-(3+1) &
Substitution of this result into (6.9) gives (6.7) for the larger value of j and the
lesma is proven.

Theorem 6.1: With Bp defined by (6.6) we have
6.10) sy <5 =1-58 w2 + o)

Proof: From Lemma 6.3 we see that

max
P A up(At)

where the x‘ are given by (6.4c). It is not difficult to see that

1eu )

B_(A) =
P up(l)
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is a monotone non-decreasing function of A for A > 1. Thus

L 1+ np_l(z - cosrh) -
P up(2 - cosnh)

Expansion of Sp(n about \ = 1 yields (6.10).

Final Remark: Since it is better to slightly overestimate the relaxation parameter in

successive overrelaxation than to underestimate it, it might appear that the estimate

of this section is preferable to that of section 5 for coarse meshs. However, numerical

experiments contradict this idea.
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