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ABSTRACT

In connection with efforts to utilize the CRAY-i com-

puter efficiently, we present some methods of analysis of
rates of convergence for block iterative methods applied to
the model problem. One of the more interesting methods in-

volves relaxing on p x p blocks of points. A Cholesky

decomposition is used for that smaller problem. One of the

basic methods of analysis is a modification of a method dis-

cussed earlier by Parter. This analysis easily extends to

more general second order elliptic problems.
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SIGNIFICANCE AND EXF1J~NATION

In the solution of very large systems of linear algebraic equations one is

frequently led to consider iterative methods ” . In these methods one chooses a

first guess, say U0, and then successively computes other guesses U1, U2•...

The basic questions about such a method are C i)  Does the method work? That is.

assuming 1 can keep up the procedure, does get near to the true answer U?

(ii) How expensive is the method ? That is, assuming I can estimate the cost per

iteration, how many iterations are required to decrease the initial error

U — U
0
~ by some f ixed “small” factor , say 6. Roth of these questions are

answered by obtaini ng information on a quantity p which is associated with the

iterative method. This report discusses some ways of obtaining good asymptotic

estimates for p in an important class of problems associated with second order

elliptic partial differential equations.
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1. Introduction

Some 15-20 years ago there was a great interest in itera tive methods for e l l ipt ic

difference equations — see (131, 114], (151, (7), (9], (10). More recently

there has been a greater emphasis on direct methods for these sparse matrices — see (SI,

(6], (11], (12).

However , with the advent of “vector mach ines ” and “parallel processors we have found

it necessary to return to a consideration of certain iterative methods .

The CRAY-i computer can perform up to 250 million floating point operations per second

(21 . Algorithms that execute with high arithmetic efficiency on this computer must “fit the

architecture ” of it and be carefully prograusned in assembly language . Thus in using this

computer, we seek computa tional modules that  can be implemented ef f i c ien tly and that can be

used in solving diverse problems . The solution of banded positive definite linear systems

is such a nodule, and the Cholesky decomposition algorithm for it can be imp lemented on the

CRAY-i such that its execution proc—eds at the rate of about 100 million floating point oper-

tions per second. Since the vector registers of the CRAY-l can hold at most 64 numbers , im-

plementation of banded Cholesky is simplified if vector lengths do not exceed 64. Block

Relaxation techniques for solving elliptic difference approximations require the solution of

banded positive definite linear systems. These facts led us to investigate the convergence

rate of block successive over—relaxation for the model problem using p x p blocks (prefera-

bly p < 64).

*Will also appear as MRC Technical Sununary Report #1860
(1) Stanford University; Stanford , California.
(2) Los Alamos Scient i f ic  Laboratory ;  Los Ahimns, New Mexico.
(3) Univers i ty  of Wisconsin; Madison , Uiscon~ in .

Sponsored by the United States Army under Contract No. DkAC7O-75-C-0024 ; by the Los Alamos
Sc ien t i f ic  Laboratory under Contract  No. t ’r -7405-ENC-36; and by the O f f i c e  of Naval Research
unde r Contract No. N00014-76-C-034l. 
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In ( 9) one of us developed a fairly general theory for obtaining such estimates

on th. ra tes of convergence of i te ra t ive  methods for  e l l i p t i c  d i f fer en ce  equations .

However, par t l y  because of the generality of that work ( var i a b l e  c oe f t i ci e nt s , gene ra l

domains, etc.) It  is by no means a transparent  d i scuss ion .  On tho other hand , in the

case of th~ model problem it is relatively easy to develop this general approach. This

is partly due to the strong estimates of 1 1 1 and 1 8 ) .

Zn sec t ion 2 we describe the model problem and iterative methods for its solution.

In section 3 we develop the general theory (for this special case) . In section 4 we

obtain the rates of convergence estimates for the p 
~ p 

block method mentioned ear l ier .

In section 5 we apply the theory to the multi-line methods (these methods have been

studied earlier 1 9 1 ,  (101).

rinally, because it is worthwhile for the practical worker to have available many

Sothods for getting information on rates of convergence (some work her e - others there) ,

in section 6 we return t~ multi-line methods. Using a completely different technique

we obtain upper bounds (unfortunately: not sharp bounds) on the rates of convergence .

-2-
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2. The Mo-del Preb l, -m

Let

2.1) 0 ((x,y); 0 x.y < 1)

— Let I’ he a fixed integer and set

P + 1

Consider the set of interior mesh points

2 . .’) 0(h) — ((x
k.Yj

) — (kh,jh)), 1 ~ k,j ~ P

as we l l  as the boundary mesh points

2.3) aQ(h) I 
~~~~~~~~~ 

1k — 0 or P + 1) or (~ — 0 or p +

I.mt U - fu I be a vector defined on the set of all qi Id points: 1~(h) U h) that i s .

u
ki 

is the value of U at 
~~~~~~~ 

We call U a “grid vec tor ” . In differing

circumstances we will choose different erdetin’i~ ‘f the components of U.

As uau.it, we defin e th. di s cre te Laplace operator by

2 .4 .~) (A
h
U)
k 

— 
U~ _~~_j~ U

k j _ 1 
— 2U

kj 
+ U

k~~~ l 
, I k ,j P

h h

Not.: While U is defined on the entire mesh reg ion, 
~h
0 is defined only on i~~h~

the Interlot . Also,w. def ine the difference operators

u - u
2.4b) (V Ul

k 
- -iPi .~~~~~~1Ij , 1 ‘ j ‘ P , 1 C k < P + 1

2.4c) (V Ul
k i  

- , 1 C j P ‘ 1, 1 k ‘ P .

Th. basic problem is : Given gr id  vector s F and C, find a gr id  vector U such

tha t

2.Sa) &~U F. in 0(h)

2.Sb) U C, on 212(h)

Aft er an order m i  of the p o in t s  i s determ ined we let A be the matrix

repl-e .entation of _h 2
~h

7 symbolically, we write

*



-~~~ • -.- .---.——-- --- 

~~~~~~~~~~~~ 
—--• - -V.- —

As we have alread y remarked 
~h 

maps vectors with P2 + 4P components into

vectors with P2 components. The ma trix A ac tua l ly  is a squa re P
2 by P2 ma trix .

The known boundary values , G, are put on the right-hand-side. In this way the

difference equations (2.Sa) , (2.5b) take the form

2.7) A V - F

where the over F is meant to indicate  both the resul t  of ordering the components

of —h 2
F and the necessary modifications of F required by the C terms . In any case , 

I -

every vector V w i t h  P 2 components may be thought of as a vector which

satisfies

2.8) V • 0 on 30(h)

An iterative method for the solution of (2.7) is determined by a ‘~splitt~ ng”

2.9a) A - N - N .

£qua tion (~~.7) is then

2.9b) NV — N V + F

After choosi ng a f i r st guess V0, one obtains V1,V 2,...,Vk,... from

2.10) ~~k+1 — ~~ k 
+ F

1_at

2.11) — S*X (~~A~~i det ( AM — N) — 0)

It is well known tha t the iterates Vk converg, to the unique solu tion V of ( 2 . 7 )

if and only if (independently of V0)

2.12)

The prob1~~ stud ied in this report is* find the asymptotic behaviour of P as h * 0 .

N ark: Of course for every 7’ which is a generalized eigenv alu e, ( i . e .  det(IM - N) — 0)

there is a vector U ~ 0 such that

2.13) 7’NU • MU

-4-
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3. A General  AN~roach

We make some assumptions  about the s p lit t in g  ( 2 . 9 a ) .

C
A.l) H — N and is positive definite

( N x , x )
A . 2 )  — max

x*0 
< M x , x )

where

(x,y) ~~~ E X
k)Ykj

I I C

Note: Since A — A , M - M then N — N and ,  as is well-known t 4 1 the general ized

sigenvalues are all real and

~( Nx,x>~p max
*00 ~~~

Thus, the force of the assumption (A.2) is that ma x l \ I occurs for a positive eigen-

value A - p.

A.3) There is a positive constant N0
, independent of h, such that

~tt4~~_, < N
0

Here

IINII~ — sUP(I (NU )k j l ; IU k . I  < 1)

Finally we come to the main new concept.

A .4) There are positive constants q, K, independent of h such that: if U is

a grid vector satisfying

(i) u — 0 on 30(h)

and

(ii) IV~UI + ~V u l  ~~s

for some constant 8, then

3. 1) (Nu ,u )  — q (U, U )  + E

where

3.ta) IFI ~~. ~~/)~

Nemark : As on. might  imagine , the determination of q and the ve r i f i ca t ion  of (A .4)

is the important technical aspect of this analysis when applied to any pa r t i cu la r  case .

I~~~ever , as we shall see in sections 4 and 5, i t  is not too difficult.

—5—
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Lemma 3.1: Suppose the splitting (2.9a) satisfies (A.l) and (A.2). Then the method

is convergent. That is;

3.2) 0 ~ 1

Proo f: Let U be the eigenvector associated with p. Then (N U ,U ) > 0. Since

N — A + N and A is positive definite , we have

(Nu .u) ( N U . U )
0 < p —  — -  < 1— (MU ,U) (Au ,u) + ( N U , U )

The basic result of this section is

Theorem 3.1~ Suppose the spli t t ing (2 .9a)  sat isf ies  the conditions (A.l), (A.2), (A.3)

and (A.4). Then

3.3) p . .1 — — h 2
+ O (h3)

Proof: Let U be the grid vector

3.4) u~~ — (sin krh) (sin jnh)

Then U satisfies conditions (i ) , ( i i )  of (A.4). In particular, because of U) we

may speak of (NU ,U) and (U,u). The constant B of (ii) is 2~~. The following

facts are well known (see (13) particularly page 202) .

3.5) h2(U u) — 
~~

- 1~ ~a,
3.6) h ‘.~U,U — 4(1 — coswh) • 2n2

h
2

(l - -i.- (wh )~ + 0(h 4 ) )
a2 u,u 12

For all. V which are zero on 30 (h) and V * 0,

37) ~ 1h2 ~“~1 I 2w 2 (1 - j~ 
(rh)

2 
+ 0(h

4
)) .

a (v ,v) h Lh (V ,V) J

L 

Since N - A + N

> 
( ,iu,u ) ~

2(MU,U)
— ( w i ,u) 

h
2
(*U,U > + h2(NU.U) 

-

Applying (A.4) we have

• ~ flm
2(U,u) + h2E

—6-

_ - .
~~~



V. . ~~~~ _ ~~~~~~~~~~ ~~~~~~~~ -— - - ‘.~ ~~‘s~~ 
_
~
-,

Fl
And, usIng (3 . 5 )  we have

h2(N1J,U) — (q + O ( h ) 1 t h 2 (U .I.J> I

Thus

1
2

- I j  + h (Au .u )
(q + 0 ( h ) 3 ( h

2
( U . U ) J

Using (3.6) we obta in

2 2h 2
3.8) p > 1 — _.i!_ + 0(h3)

In order to ~‘btain the reverse inequality we require some basic estimates of 1]

and ( 8 ) .  These are

Lemma 3 . 2 :  Let V be a grid vector which is zero on 2(2(h). Then

3.9) IV k j I C ~ /1 + w {h 2(A
h
V ,~ h

V))ll2

Proof: See lemma 8, page 304 of ( 8 1.

Lemma 3.3: Let V be a grid vector which is zero on 30(h). Then

3.lOa) IV XVI~~.ma xiA hVt

j 3.lOb) l~ ,vI < max khvl

Proof: This result is contained in Theorem 5, page 488 of ( 1  1.

For convenience of notation, for every grid vector V , restricted to the inter ior

0(h), we write

3.11) 11v 11 9 {h
2 (V V ) ) 112

Returning to the proof of the theorem, let (3 be the eigenvector associated

with p arid normalized so that

3.12) 11 U 11 9 
— 1 -

Then

p H U — N U

0*13 — p(M - N)U — (1 — p )NU

—7—
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That is

3.13.) 6
h~ 

- UNU

wher e

3.13b) • (1 — o)/~h
2

Fzo. 1esm.~ 3.1 and (3.8) we see that

3.l4a) 0 <

and

2
3.l4b) liii sup i -

h+O q

Moreover, the theorem will be proven if we Show that

— ~L. + 0(h)

We write (3.13.) as

I.,

where, if h is small enough

fI*II g~.~~ N
o 

- N
i
.

Applying lesma 3.2 we see that

IUkj I ~ + N 1 -

Thu.

‘ kj  ~
. ~~~ N0(~ v i  N

1
) — N

2 
. •1

Applying lemma 3.3 we have (ii) of (A.4) with B — 2N
2
. Hence , usirtq ( A . 4 )  we have

h2 (Nu ,u) • q(h 2(U,u> 1 + h~~

~~~~, making use of (3.12)

3.15) h2(NU .U) — (q + 0 ( h ))  (h2(u,U)1

rrem (3.13.) we have

8-

_ _ _ _ _ _ _ _ _ _  - 
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_h 2 (
~ hU . U )  — ~j h 2 (NU ,U >

— p(q + 0(h)](h2(U ,u))

Hence, from (3.7)

+ 0(h2
)) u(q + 0(h))

Thus, combining this result with (3.l4b) , the theorem is proven.

—9—
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4. p~~~p Blocks

Let p be a fixed in teger and assume tha t

4.1) P —p Q .

Of course, as P • (i.e. h -
~ 0) Q -

~ 
• and vice—versa .

The interior grid vector is arranged into sub grid vectors (Urs
} of p2 entrees

as follows

4.2) U — (0 ; 1 < c,~j ‘ p), 1 r,s < Q
rs (r—l)p+a,(s—1)p+p — — — —

Within U, the U are ordered as follows

4.3) U — (U
11
,U21. UQ1.U12.U22~ 

... U~2, U
1~
, ~~.. U~~)T -

That is; we start at the bottom row of p ~ p blocks and count off from left to right;

then to the next (second) row of p x p blocks - again from left to right, etc . Within

each block U
rS 

the subgrid vector is ordered in the same mariner . To be specific,

let G(r.s,ij), p — 1,2,...,p be the p vector of grid values associated with the

thV horizontal line within the (r ,s) block. That is

U(r_l )p.~.l, (s—l)p+p

U (r_l)p+2,(5_1)p+(j

4.4) G(r ,s,p) — 
:

U (r_1)p+g, (s—l)p+p

then

G (r , s , l)

3rs — 
G(r,S,U) 

-

G (r , s ,p)

The discrete Poisson equation (2.Sa), (2.5b) takes the form

4.6) TO - A U  - A U  -a U - 8 1 3  — F
rs — l r—1 ,s 1 r+l, s — 1 r,s—1 1 r,s+1 rs

-10-
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where T, A
~~

, A
l l B_ i , 8i 

are p~ p 2 m a t r i c e s .  Each is block tridiagonal of

“pseudo orde r ” p and •~ ch b l .~~k i s a p • p m at rix . Specifically

— ( — I  ,R ,-t ) “block tr;dtagon .it”
p p  p

N — ( — 1 , 4 , -l i tridiagonal

If E
8 

is the p • p m~.t r i x  w i t h  “1” i n the ( i , 8) p o s it i o n  .irs.) :v- ru  eis,.whe r e ,  then

4.7a) A _ i - dtaqonal(}’
1

.r
1 

4.7b) A~ — di agon . t l f t  ~, .. ., E 11

Notice that

- ~ _~~~ T 
-ip [0 J p1 ip

The ma trix B is the biock” E whale B Is the “block” ~ - That is— l ip 1 p1

1 1 1  r o
4.8) B — ‘ ~~1 , B ——1 Ir~ I t Ii

1’—’ J LP

We rewrite (4 .6 )  as

4.9) MU • NU + F

where N — diagonal(T,T,...,T) and N is made up of A
1.A

1.B _ 1 .B 1
.

We see at a glance that N is positive definite and (A.t) is satisfied . Further’-

mar., we are dealing with a “block” five point star , that is, the equation:; have the

same block structure as the original problem . Therefore, our splitting has “block

property A” . Thus, we have the basic result , if A is an eigenvaiue of

• det (A M — N ) — 0 , so is -A (see’ ( 14 ) .  ( 1 5 ) ) .  Therefore ( A . 2 )  i~ i s~ t i sft ed .

Now , N only includes the co.fti .- i en t s  in which r e l a t e  po i sr s in  the ( r , s)

block w i t h  neighb oring p o i n t s  in the four b l~..- k .  ( r + l,s), Cr — I ,s) , (r , s  + 1), (r , s — 1)

We se. tha t each row of N not ct~rr es~~~n .%i n.j ~o a corner  j s~int of the (r , s) block

has at most one “ 1” and a l l  other cn t r e ,’, arc “0” . The rows correspond ing to corners

lead to exac t ly  two “ 1 ’ s. Thus 
-

4.10) IINU~ 2

and is s at t s f  led with N
0 ” 2.

—1 1—
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Finally we turn our attention to the determination of q and the verification

of (A.4).

Lemma 4.1: Suppose U is a grid vector which satisfies (i). (ii) of (A.4). Then

4.lla) ( N U , U )  • ~~~( U , U )  + E

where

4.llb) 
~~~~ 

-

That is, (A . 4 ) is satisfi ed wi th

• 44.12.) q —

and

4 .l2b) • l6B
2 

-

Proof: We have

4.13) (NU,U) • ~ U~ (NU )
r,s 

rs rs

Consider a term

4.14) 13T~~~~~ .13’r~ ~ +~~
T
8 ~ +U T B Urs rs rs —l r 1.,s rs 1 r+l, s rs — l r , s-l rs 1 r , s+l

It is easy to see that

4.15) DrsA _lUr l . s — 

u—I 
u (r_l)p,(s l)p+u U(r_1 )p+l,(s_l)p+u

Fix 8, 1 < a < p. We use (ii) to write

P~ • U~~_1~p (s l)p+p

— (U (r_l)p +a (s l)p+p + OhB l l ( U ( T_ l ) p + a , ( $_ l )p + U  + ohB 2 i

Where

<B ,  ~ — 1,2 .

- Thus

V 
tU (r_ l) p+ a , (s_ l)p+ l)

2 
+ 2c

1
h + 52h 2

where

I(~I 1 (PB)2. ~~— l,2 .

—12—
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V 
Therefore, we may replace F by the average over o , 1 < a < p. Thus

U
T

A
1
U

1 — F — ~ il a~ l 
(U ( r_ l) p + o  (s-1)p+u 1 +

where

E11 2(p B) 2h ( 1  + h )

Each of the other terms in the right-hand-side of (4.14) may be treated in a similar

manner . We obtain

uT wtn •~~~~~T + Ere rs p rs rs 2

where

1E21 I 16(pB)
2

h -

Finally, using (4.13) we see that

(U , t1u ) — ~- ( U , U )  + E

• where

JEI < 16(pB)2Q
2h < (l6B

2) ~ -

Corollary : If one considers the p X p block .3acobi iterative method described by - 
-

(4.6)- (4.9) then

• - (
~-~

)
~ 

+ O(h~)

Proof: Apply Theorem 3.1.

We close this section with a consideration of the successive over-relaxation

iterative method based on this splitting.

Let a parameter w be chosen. Then the successive over relaxation method based

on (4.6) is given by

— ~ 0
k+l + B + ~ 0k + B + (1 - l )U k 

+
C r s  —1 r—1 ,s —1 r,s—l 1 r+l,s 1 r ,s+l w rs rs

Because the basic splitting satisfies block property A the number p (w) which is

the related spectral radius satisfies the equation (see LlSI )

(0 ( w) + w — 1) 2 
— w

2
p

2
p ( w~

Thus, having determined p . we know p (w) .

-13- 
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S. p _Line Method: I

Again, let p be a fixed integer and assume that (4.1) holds.

The interior grid vector is arranged into subgrid vectors (u
i

) of pP entrees
as follows

5.1) U
j~~~

{u
0 (~~1)~ +~

; 1 ’ a < P , l~~~ p < p )  -

That is , U~ consists of the values associated with the 
th block oi p lines.

We now have

5.2) U — (13
1
,13

2
, .. . ,U

Q
)
T

Within each U~ the ordering is the same. That is, let G(j,p) be the P vector

associated with the th horizontal line within the ~th block of p horizontal

- lines, i.e.

U
1, (j — l ) p+ p

U
21 ( j— l)p-i- p

G(j,u) -

Up, (j— l)p+ u

then

G(j , l)

G(~ .2)

G(j,p)

The discrete Poisson equation (2.5a), (2.5b) now takes the form

- 

5.3) TU~ — RU~.1 + k rU~~ 1 
+

where T and R are pP by pP matrices. Zn fact, T is block tridiagonal with

::

a) — t
~
1
P’
T
P’~

T
P p  

T~ . C 1’4
~~

1j
~

—14—
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r ~~
S.4b) R (.o j -

This decomposition is used to make the splitt ing

5.5) A — N - N

where

5.6a) N — diagonal CT)

S.6b) N — (R ,0, RT
I

S
It is immediately clear that N — K and is positive def in i te  since each T is

positive definite. Once more, this splitting satisfies block property A (see (9).

(103). Thus (A.1) and (A.2) are satisfied . From the structure of N we see that

(A.3) is satisfied with N
0 

— 2.

Once more we seek to determine an appropriate q and verify (A.4).

Lemma 5.1: Suppose U is a grid vector which satisfies (ii and (ii)  of (A.4) . Then

5.7a) (N U , U )  _ a ( U ,U)  + E

where

5.7b) JE J < 8B2p

That is, (A.4) is satisfied with

5.Ba) q — 2/p

and

S.8b) K — 8B
2
p -

Proof: We have

5.9) (NU ,U) • ~~ U~~(NU)~ -

j—l

Consider a term

5.10) U~ (N U )~ — U~~RU~~..1 + U~
’
R

T
U~~~

1

Now

o~1 
U01(j 1)~~~1 Uq (j j)p

—15—
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Fix ~~. 1 ~ I p. Then

— (U
a ,~~~_ 1)p+u + c

1UuO ,(j_ l)p+u + 
~2
’

where

Ic
~

J < Bph .

Therefore , averagi ng once more , we have

U~RU~_1 — 
P a—i 

(Ua,(p_1)j+u 1
2 

+ 4hP
2
82j

Thus, as in sect ion 4

(u ,Nu ) — ~- ( u , u ) + Ep

where

lEl I 8B2p -

Corol~~ !y: If we consider the p line iterative method described by (5.3)—(5.6b) .

then

p — 1 - p52h2 + 0(h 3) -

Proof: Apply theorem 3.1.

R *rk : A careful look at this section shows that IC • 882ph and hence we easily

Obt.*in

p • 1 — pir2h
2 

+ 0(h 4 ) -

—14-
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6. p-line Method II

In this section we approach the p-line me thod of section 5 wi th another method of

analysis. The results obtained are weaker, but the approach may well have applications

in cases where the analysis of section 3 does not apply.

Lesmia 6.1: Let u (x) denote the Chebychev polynomial of the second kind of order n,

i.e., u Cx) — 1, u (x) — 2x and u Cx) — 2xu (x) - u (x) .0 1. n+1 n n-l

I f x ’ l ,  then

6.la) u (x) > u~_1 (x) + 1, n > 1

6.lb) u (x) > n + 1, n > 1

6.1c) ~-u(x) >~~~~u 1
(x) + 2n .

Proof: Apply induction.

Corollary: u’(x) > 2. n > 1 and x ~ 1. 
V

n — — —

Lemma 6 .2 :  Let B — (
~~
I
~~
2Sl _ IJ

m 
where S and I are n ~ n. Let

U
i
(S) — u

i
(S)

that is, U
i
(S) is an n x n matrix obtained by evaluating u~ , the Chebychev

polynomial, at S. If U
i(S) is nonsingular, then

6.2) — 
Ua

l (S) Uj..l
( S) U m..i

(S) e i I i

U (S)U~~1
(S)U~~~ (S). i I ~

Proof: See Theorem 1 of 13) .

The quantity of interest1 P. is the spectral radius of M 1N . Since

— (T~~R,O,T~~R
T
)

(see section 5) we may apply Lemma 6.2 to obtain T i and hence M ’N. We f ind tha t

N 1N — (D ,O,EJ

where

—17—
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U-lu
p p-i

6.3a) — 
~~~~~~~~

u-lup 0
—1u
p 
U
1

6.3b) E

u-lu
~ p-l

H
6.3c) — U~~(~~ T~~)

If Q denotes the unitary matrix which diagonalizes T~ (and hence ~~
- T

i
) ,  then

Q~~U (1 T )Q - U (
~ Q

1
T Q)

6.4*) j 2  P p

— diag(u~ (l) }, r • 1,2,. ..,P .

and , •

Q &u l (l T )Q — U 1
(A Q

1
T Q)

6.4b) P 2 P p 2 p

— dia9{u
~
1(A

~
)}. r — 1.2 , .. .,P  •

where

6.4c) 1
r — 2 — cos(rwh) > 1

is the r’ th •igenvalue of ~~ ~~~~~

Let

Q diag (Q,Q,...,Q)

vs see that

6.5) — tQ~~DQ,o,Q 1
~EQ)

Tba s, applyi ng the Gers hqorin circle theorem

-18-
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6.6) P ~ B ~ max (u~~ (A )(u (
~ 

) + u (A ~j)— 
r p r p—j r j—i

Lemma 6.3: If x > 1, then

6.7) u
0
(x) + u~~..1 (x )  ~~ uj ..1

(x) + U~~_~~(x ) .  ~ —

Proof : For x > 1 and ~ > 2, from the basic recursion formula and (6.lb) we have

u~~(x) — u~ _ 1 (x) > u~~~1
(x) — u~~ 2

(x)

Thus, if n ~ > 0 we have

u Cx) - u (x) > u (x) - u (x)
ii n-i — ui-i

or

6.8) u (x) + u C x) > u Cx) + u C x)
it m-l — ci n-i

Of course (6.7) is true for j — 1 and j — p. Assume that (6.7) is true for a

value of J — 0, 1 ~ a < p - 2. Then

6.9) u
0
Cx) + u~ _1 ( x) > u~ _ 1 (x) + u~ _0 (x)

We may assume a < p - a. Then applying (6.8) wi th  n - p - a and m - a we find

Up_a
(X) + u0_ 1 (x) > U

p ( 0~~1) Cx) + u (x) -

That is

+ u0.1 (x) 1u~~
(x ) + u~_ (J+1) (x)

Substitution of this result into (6.9) gives (6.7) for the larger value of j and the

1~~~a is proven .

Th.or.m 6.1: With B~, defined by (6.6) we have

6.10) p( N~~N) < B — - 
~~ 

~~~~ + 0(h 4)

Proof: From Lemma 6.3 we see that

1 + u  (A )
p-i r

N —maxP 
‘~r 

Up
(A

r
)

C
where the A

~ 
ar e given by (6.4c) . It is not difficult to see that

• l + u  (A)
p—i

p u~,(A)

— 19-



is a emnotone non-decreasing function of A (or A ) 1. Thus

1 + u  (2 — cossh)p-i
p u~ (2 - cossh)

!*pansion of B~ (A) about A — 1 yields (6.10) .

Fimal Remark: Since it is better to slightly over estimate the relaxation parameter in

successive overrelaxation than to underestimate it, i t  migh t  appear tha t the est imate

of this section is preferable to that of section 5 for coarse mcshs . However , numerical

ezperiments con tradict this idea.

—20--
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