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1. Introduction

Parametr ic stat ist ical inference may be said to be concerned with

stat ist ical inference of idealized parameters from ideal data. Huber (1977),

p. 1, writes: “The traditional approach to theoretical statistics was and

is to optimize at an idealized parametric model.

Robust statistical inference may be said to be concerned with

statist ical infe rence of idealiz ed pa rameters from semi-ideal data (by the

use of methods which are insensitive against small deviations from the

ideal assumptions). Huber (1977), p. 3, writes: the robust approach to

theoretical statistic s assumes “an idealized paramet ric model, but in

addit ion on e would like to make sure that methods work well not only at the

model itself , but also in a neighborhood of it. ~

Exploratory data analysis may be said to be concerned with

statistical inference fr om non-ideal data(often by seeking re-expression s

(tran sformations) of the data that will make it more ideal) . Exploratory

data analysis helps pose the well-posed statistical question s to which

classical parametric statistics provides answers.

*Research supported by the Army Research Office (Grant DA AG29-76-0Z39) . 
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This paper provides an overview to a new general approach to

• statistical data analysis and parameter estimation which could be called

• the guantile function approach. The aims of descriptive statistics (to

graphically summarize and display the data ) are obtained by Quan tile - Box

plots of the sample quantile function. The aims of “goodness of fit” a re

• obtained by fitting smooth quant ile funct ions to the sample quantile function.

The aims of paramete r estimation, especially robust estimation of location

and scale parameters , are attained by regression analysis of the sample

quantile function. (The goal of a statistician in analyzing a batch of data

X 1
,. .. , X should be both “est imation of parameters ” and “ goodness of fi t” .

By “goodness of fit” is meant fitting of the observed sample probabilities by

a smooth pr obability law. )

• Quantile functions are defined in section 2. Window estimators of

location and scale parameters are defined in section 3; their

equivalence to L-estimators is discussed in section 4. A conjectured ex-

pression is given in section 5 for the asymptotic variance of window estimators.

New approaches being developed fo r non-parametric probability law modeling

are mentioned in section 6; quantile box-plots are introduced in section 7.

Section 8 discusses location and scale parameter estimation using trimmed

samples. Robust regression is the subject of section 9. A new definition

of statistic s is proposed in section 10.

To carry out in practice robust estimation of loc ation parameters

this paper proposes computing means which adapt to the ends (by “ends ”

: ) r ~ •~~~~ 
~~

A
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one means the tail character of the distribution of the data). Three such

methods are given in the paper:

(1) Iteratively reweighted estimators with weight function

1 2 - 1
w(x) = (1 + — x ) for suitable choices of m (section 3);

• (2) Maximum likelihood estimation omitting extreme order statistic s

where the percentage of values omitted is determined from the goodness of

fit of the corresponding smooth quantile functions (section 8);

(3) Adaptive L-estimation of location and scale parameters usin g

autoregressive estimators of density-quantile functions (section 8).

A fourth method of robust location and scale parameter estimation is:

(4) Quantile box-plot diagnostics which indicate that mid-summaries

and mid-scales .xre equal enough to provide naive estimators of location

and scale (section 7).
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• 2. Quantile Function

• The quantile function Q(u), 0 ~ u ‘1 of a random variable X is the

inverse of its distribution function F(x) = P(X dx) .  The precise definition

• of 0 is:

• Q(u) F 1(u) = inf Cx: F(x) u1  .

Given a sample X 1. . . . , X , we denot e the sample distribution

function by F(x) , -~~~ <x < ~ ; it is defined by

• F(x) z fraction of X 1.. .~~X~~� x .

The Sample Quantile Function 
- 

-

Q(u) = F (u) = inf (x; F(x) � u3

can be computed explicitly in terms of the order statistics X (1) < X
(2) 

< ...
< X ( )  

(which are the value s in the sample arranged in increasing order):

_ _ _ _ _ _ _ _ _ _ _ _ _ _— ---~~~~~~~ - -—~~~~~~~ -~~~ —~~~~ ~~~~~~~~~~~~~
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The foregoing definition of Q(u) is a piecewise constant function.

It is more convenient to define Q(u) as a piecewise linear function. Divide

the unit interval into Zn subintervals. For u = (Zj - 1) /Zn de fine

= X
(J)~~ j _ 1 i Z , . . . f l .

2 j - 1  Z j + 1
For u in Zn ~ u � , j 1, 2 , . . .  , n- 1

define Q(u) by linear interpolation; thus for u in this interval

Q(u) = n ( u  - 
Zj- . 1) 

X
(~~1) + n ~~~2n’ 

- u) X(3)

In particular
A. 1 10 ( 2~ ) = ~~~X (~~1) + ~~X (J)

The population median is Q(0. 5) . The sample median is Q(0. 5).

Our definit ion of Q(u) has the merit that Q(0. 5) is the usual definition of

the sample median:

Q(O. 5) = X ( + l)  if n = 2m + 1 is odd,

(X + X ) if it = Z rn is even.
2 (in) (m+1) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The asyrritotic distribution of Q(u) satisfies: ,J~~fQ(u) (Q(u) - Q(u))

is asymptotically normal, with mean 0 and variance u(l - u)

where IQ(u) denotes the probability density function f(x) = F’ (x)

evaluated at x = Q(u) ; in symbols,

fQ(u) f(Q(u)) .

We call 10(u) the density-guantile function.

Estimating the fQ-function is of interest for two reasons: as a way

of estimating (1) the true probability dens ity func tion f(x), and (2) app roxi-

mate confidence intervals for Q(u) arid especially for the true median

0(0. 5) , since

Q(0. 5) ±

is an approximate 95% confidence interval for the median Q(0. 5) .

We call q(u) = d (u) the guantile—density function. The identity

FQ(u) = u

implies the recIproc al relationship

fQ(u) q(u) 1
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Thus we may write (using to denote approximate equality)

fQ(O .5) = q(0. 5) ~~~~~~~~~~~~~~~~~ 2(0(0. 75) - 0(0.25))

• We define , for 0 � p ~ 0. 5

R(p) = Q( 1-p) - •tp) •

to be the p-range, and

~ (p) = Q(l—p) - Q(p)

to be the sample p-range. When p 0. 25 , we call Q(0. 75) and Q(0. 25) the

quartiles,

R(0.25) = Q(0 .75) - Q(0.25)

the quartile-range, and

• R(0. 25) = Q(O. 75) - Q(0. 25)

the sample quartile-range. 

• - 
“- _ _ __ .__ __~~~ __~~~~~ _~_ _ ____~_ •_ ____ •:_ •_
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One can conclude that the median 0 (0. 5) has a non-parametric estirnatc r

given by ~ (0. 5), and an appr oximate 95% confidence interval given by

Q(0. 5) t 2R(0. 25)/.J~

A use of a confidenc e interval of this kind for the median is discussed by

McGill, Tukey, and Larsen (1978).

The aim of the foregoing discussion is to introducc the quantile

function and illustrate how it is traditionally used to provide non-parametric

measures of location (such as the median) and sc ile (such as the quartile

range). Our aim is to use quantile functions to detect and describe ideal

and non-ideal statistical models for data.

3. Location and Scale Est imat ion by Window Est imators

One of the points which this paper would like to make is that

measures of location and scale of a data sample are interpretable oni” if

they are probability based, in the sense that they are estimators of char-

acteristics of the true quantile function of the random variable X.

We use ~ and a to denote measures of location and scale respective-

ly. When ~.i and a represent median and inter-quartile ra~ ge , ~ = Q(0. 5) ‘

and a = Q(0. 75)- 0(0.25). When ~i and a2 represent mean and variance ,

they can be expressed in terms of 0 by

= Q(u)du a2 = ~~~~~ (Q(u) - Lj 2du .
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These formulas follow immediately from the basic fact that X is

• identically distributed as Q(U) where U is uniformly distributed on

the interval [ C , 1]

When i~t and a2 
represent mean and variance, fully non—parametric

estimators of ~ and a2 
are

= J’~ Q(u) du , = J~ (Q(u) - I.L)
2 
du

which are essentially the sample mean and the sample variance.

To efficient ly estimate location and scale parameters ~t and q

it is customary to start with a model for the probability density function

• . f(x) of the form

f(x) = 
1 

~ (
X - ~1 

(*)a

where f0(x) is a known probability density function. Define L(I~i, a) to

be (1/n) times the log - likelihood of the sample Xn ; it is

given by ‘

• L(~.t,a)  = -log a + ~ L log I (
~~ 

)

One can express likelihood in terms of quant ile func t ions:

L(~.t, a) = -log a + log I~ ( 0(~1~ - 
~ 

) du .
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• The model (*) leads to a very simple formula for the true

quantlie function Q(u ) of the data:

• Q(u) p + a Q 0(u)

where Q0(u) is a known quantile function corresponding to f
0(x) . For

ease of wri t ing we introduce the notation

= 
Q(u) - p

A A

The maximum likelihood estimators p and a satisf y the log

likelihood- derivative equations:

0 , -~~-- L(i.t ,~~) = 0

To compactly write formulas for these derivatives , define :
-f 0’ (x) •

~(x) = f (x) = -~~
-
~
--

~ log 1
0

(x) .

w(x) !~~x)

_______________________________________________________________ •
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Then fL(P , a) = !~~~ *(Q~ (u))du

= —4 $~ 
(0(u) - p3 w(Q

~
(u)) du

= -~~~j J~ ~~
Q

~
(u)) (Q(u) - p3du

= -1+--~J~ 
w(Q(u)) (0(u) - p) 2 du .

A A

In the normal case, ~(x) = x , w(x)  = 1 and p and a are

equal to the sample mean and varianc e respectively.

To obtain estimators p and ~ without specif yin g f 0
(x) , one

introduces the concept of iteratively reweighted estimators of p and

Given estimators and define

• Q~* ( )  = 
0(u) -

Then as “approximate” solutions of the log -likelihood derivative equations,

one studie s the e stimators defined by

A ~~ Q(u) w(Q
~ 

(u))du

~

l w(Q~*(u)) du

= J’~ (Q(u) - 3
2 

w(Q0
’(u)) du
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A A

These formulas for p and a reduce to the sample mean and variance

when one chooses w(x) E 1

Since we are concerned with forming estimators of location and

scale which are satisfactory fo r long-tailed distributions it is natural to

choose weight functions w(x) corresponding to Students ’ t-distribution

with m degrees of f r eedom,

~ ~~~~~~~~~ ( ~
2
~~~(m+ 1)/2

~r r ( rn.)
2

for which

1 , m + l  Iw(x) = - — (log f
0(x)) = 

m 1 2l + — x
in

We call this weight function a window, and we call p and ~ window

estimators.

To completely specify the window, one must specif y a value fo r in

(which we could call the “trimming width” of the window). The more normal

the data is believed to be , the larger should m be chosen (say, in 25)

The more Cauchy-distributed the data is believed to be , the closer to I

should in be chosen (say, m 4) . In practice , one might try both

values of in , and compare the results. The constant in could also be

estimated adaptively to yield “self-tuning” robust estimators of location

• and scale.

4
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A window recommended by Tukey (see Mosteller and Tukey (1977),

p. 205) is the bisguar e window:

x 2 2
• w . (x) = (l—(—) )

Bisquare c +

• where c is a suitably chosen constant. Tukey recommends that c be

taken to be 6 or 4 when x is measured in units of a . It seems likely

that the choice of c should reflect one ’s bel iefs about the long-tailed

character of the data.

4 . Weig ht Functions of L-Estirnators
A

An L-estimator p of a location parameter is a linear combination

of order statistics X < ... < X , which we write in the form
( I )  (n)

p = J~ 
Q(u) W(u)du

for suitable weight function W(u) . Asymptotically eff icient  L-est imators of

p and a in the model 0(u) = p + a Q0(u) , when f 0 is a symmetr ic

density, are given by (see Parzen (1978), and summary in section 8]

-~~~ 
_ 

-- - - - ~~~~~-~~~~~~~~ J
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=

A l A .a = 

~~~~~ 

Q (u)~~~(u)du ±$0 W (u)du

J0
’(u)

where W~ (u) f0
Q0

(u) J0
1 (u) = and

W (u) = J 0(u) + Q
0

(u) W~ (u)

• f
0
Q0(u) is the density-quantile function corresponding to Q

0 , and 3
0(u)

is its score function defined by

-f 0
1 Q0(u)

J0(u) = -(f0Q0)
’ (u) - 

f0
Q

0(u) = ~i (Q~(u)) .

An L-estimator forms a weighted average of orde r statistics in

which the weights depend on the ranks u . it is of interest to express the

weights as a function of Q
0(u) , which is the size of the order statistics.

One can derive such formulas starting from the gene ral representat ion ,

given by Parzen (1978),

f0Q0(u) A. (1 - U)
a 

, Q
0

(u) (1 - )~(a~ l)

where ~ , called the tail exponent, is assumed to sa t isf y a>  1 (indicative

of long tailed distributions). We writ e 

• •
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W~ = J~ 10Q0 = -(f 0
Q

0)2[(log f 0
Q

0)” + ((log f 0
Q

0) ’)2]

W~ = + Q0W = -(f 0
Q0)(log 

~~~~~~~ 
+ QW~

• Therefore

W~ (u) -. (1 - u)2~~~’~ a(1 - a) 2
1 

~~l - a)

W (u) (1 - U)
a a(� - a) Q

0(u) 
a(2 - a)

The main conclusion we desire to point out is that if one expresses

W (u) as a function w of Q
0

(u)

W~ (u) w(Q 0(u))

then for long-tailed distributions , w(x) ~-2 . By writ ing W~ as a function

~f 
~~ 

, to an L-estimator one can form an equivalent iteratively rewei ghted

estimator.

* *Given preliminary estimators p and ~ , form

• ç4~*( )  = qu ) -  p 
and define 

*
A ~ 

w(Q0 (u)) Q(u) du
p = 

~~ w(Q0 (u)) du
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This estimator is a weighted average of Q with weight s a function only

of the size of the standardized residuals Q0
*(u)

For Student’s t-di stribution with in degrees of freedom ,

____  

Q
0(u)

J0(u) ~ (Q0(u)) 
m l  

1 21 + — (u)

Consequently

Wj u) = w~ (Q0(u)) , W (u) = w(Q0(u))

2m + 1 1 - (x /m)  in + 1 2xwith w (x) = , w (x) =
p m ( 1 + (x2

/nfl
2 a m [1 + (x2 /rn)]

These windows deserve further investigation. However they appear to

support the recommendation that robust estimators of location and scale

may be obtained from preliminary estimators and a* by the •

formu las (for a suitably chosen value of in )

= 

J,~ 
0(u) (1 ~~1 ( Qcu) - P )Z )~1 du :

+ ~~ ~~~~~~~ 
~~~~~~~~ 

du

= J~ 
[0(u) - 

2 
~ 

~~~~~~~~~~~~~~~~~~~~ 

P *)2 3~~l d u(m +i)
a



~~~~~~
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-_ - -~~~-—~~~~ —-—-_—--•--- -- .- - • - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

L

17

5. Variance and Influence Functions of Window Estimators

This section present s a conjectured formula for the asympt otic

var iance of a window estimator which is derived b y representing it as an

L-estimator

0(u) du

~~ 
w(Q0(u)) du

where w(x) = (1 + ~ x2 ) ’ The question of deriving the theory of p as

an M-estimator is open for research ; p is an M-estimator if it satisfies

~ (
0(U) - ) du = 0

for a suitable ~ fun ction , he r e chosen to be

•(x)  = 
X

1+ ( x /m)

• Under the assumption that the true quantile function is of the form

Q(u) = p + aQ0(u) , and that Q~ (l - u) = -Q0(u) , signif ying a symmetric

distribution, we seek to find the varianc e V of the asymptotic distribution

of ~J ( p  - p) , which is normal with zero mean and asymptot ic var iance V

From the asymptotic distribution theory of L-estimators

1 2
~~ 

IV(u ) I  du
v = [J~ wQ0(u)d

u)2
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where

V’ (u) = w(Q~ (u)) q(u) = a w(Q o(u)) q0(u)

V(u) a v(Q0(u ))

defining

x -1v(x) = 5 w(y) dy = .,,/m tan (x/,,,/m)

Further v(x) is the influence function of the estimator (Huber (1977), p. 17).

Note that for fixed x , v( x) -4 x as in -, ~ . The formula for

• the variance of the robust estimator ~.L may be written explicitly

A a2 
~~ 

[~Jm tan ’ (Q
0(u)/ ~~n)) 2 du

Var(p) = — _____________________________

(1 +- 1 Q
0

2 (u)) 1 du) 2

and can clearly be regarded as a generalization of the traditional formula for

the var iance of the sample mean. It is derived under the assumption of a

symmetric but possibly long-tailed distribution.
A A

To estimate Var(p) in practice , one might replace a by a and

Q0(u) by (c~u) - p)/ ; if a Quantile-Box plot of Q(u) - p indicates that

it is symmetrically dist ributed about 0

It should be noted that under the model Q(u ) U + a0 0(u) , with

Q~(1 - U)  = -Q0(u) , 
p estimates J~~w(Q

0(u)) Q(u) du -~-j ~ W(Q
0(u))du  = p

while estimates c2 J’~~w(Q0(u) )Q ~~(u) du a2
J~~Q ( u ) ( l  + ~- Q (u)) 2

du
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6. Non-parametric Prob ability Law Modeling

To interpret (as well as to form) location and scale parameters

estimators from a data batch X
1
,. . . , X one must model its probability

law. This section briefly mention s some new approaches which are

currently bein g developed for non-parametric probability law modeling

(see Parzen (1978)). They all involve both graphical and numerical analysis
— A

of the sample quantile function Q to find smoothing functions Q

Quantile Box-Plots are introduced in the next section.

Quantile Residual Browriian Bridge Test. To say that the true

quantile function Q(u) obeys the hypoth:sis H 0 : Q(u) p + aQ0(u) is

to say that one can find values 
- 

p and a such that 0(u) = p + aQ0
(u)

fits Q . The fit of Q to Q can be judged by di splay ing the q~ ar.ti1c

residuals

A

R(u) = f0
Q0(u) [ Q(u) - 0(u)) , O � u ~~l

where f
0
Q
0

(u) = f 0(Q0(u)) is the density-guantile function corresponding

to F0 
. Under the null hypothesis (1Jn/a) R(u) , 0 ~ u � 1 is

• asymptotically distributed as a stochastic process B(u) ,

o � u � 1 which is a modified Br ownian Br idge pr ocess in the sense that

• Its covariance kernel E(B( u1)B(u 2 )) i s not mm (u 1, u2 ) - n
1
u
2 

but is

modified due to the estimation of the parameters p and a . To test

whether the sample path R(u) looks like a sample path from a modified

Brownian Bridge process one could use various functionals
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~those asymptotic distribution is known from their role in the conventional

theory of Goodness of Fit Tests . The sample process traditionally con-

sidered for goodness of fit test s is

a S

F0((~~u) -

A

To estimate c (needed in the asymptotic distribution of R(u)) one

could use a non-parametric estimator such as

= j
”f

0
Q
0

(u)d~~u) j~~J0
(u) Q(u) du

A A A

To estimate P and a needed to form Q(u) , one could use quick

and dir ty estimators P and ~ fo rmed from Quantile Box- Plots , or

one could use asymptotically efficient estimators formed from regression

analysis of the continuous process ~~u) (see section 8).

Cumulative Weighted Spacings Brownian Bridge Tests . To test

whether the true quantile function Q(u) is of the form Q(u) = p + aQ
0

(u) ,

one need not first estimate p and ~ . Instead, following Parzen (1978),

form

— 1 uD(u ) = •; J~ f 0
Q0(t) d 0 (t) , 0 ~ u ~ 1

a0

which is an est ima t or of

D(u) = J~ f 0
Q

0
(t) dO (t) 0 ~ u~~ 1 def ining

a0 = ,f~ 
f0Q0(u) dQ( u) . Under the null hypothesis. D(u) = u , and it is

I- S
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conjectured that ./~ (D(u) - u) , 0 ~ u � 1 is asymptotically distributed

as a Brownian Bridge Stochastic process.

By suitably choosing the null hypothesis H 0 
and the standard

density -quantile function f0
Q0 , one can test the goodness of fit of any

specified probability law (no rmal, exponential , Weibull, Cauchy, etc. ) to

the data.

Density-Quantile Function Autoregressive Estimation. Parzen (1978)

A

discusses autoregressive estimators d(u) of

~ 
f0
Q
0
(u)

d(u) = D’ (u) = IQ(u)

which can be used to form estimators of fQ(u) .

The density quantile function fQ can be estimated also by forming

autoregressive smoothers D0
(u) of

A A

• ‘
~~(u) = F0( (cXu) - p ) / a )

with density

a A A

= f
0

((Q(u) - p )/ a ) c~u) / C

The autoregressive density d0
(u) = D~ (u) is an est imator of

f~((Q(u) -
d0(u) 

= fQ(u) a
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7. Quantile Box-Plots Diagnostic Measures

Given a data batch X
1
1... ,X , a successful approach to “display”

of the data has been the box plot introduced by Tukey (1977). Five values

from a set of data are conventionally used: the extremes, the upper and lower

H-values (H is an abbreviation for hinges or quartiles),  and the M-value

(median). The basic configuration of the box-plot display is a vertical box

of arbitrary width and length equal to the distance HH (defined as upper

H-value minus lower H-value and called the H-spread). A solid line (called

the M-line ) is marked within the box at a distanc e MH above the lower end

of the box ( MI-I equals M minus lower H). Dashed line s are extended from

the lower and upper ends of the box a distance equal to the distance of the

extremes from the hinges. If one wants to indicate a confidence interval

for the median , one might add a line perpendicular to the M-lin e at its

midpoint , and of length ± HH/ .J~ . The box-plot described should be called

an H-Box Plot, because by replacing H-values by other types of values

(called E-values and D-values) one can consider E-Box Plots and D-Box

Plots.

The H-values are most conviently defined as Q(0. 25) and Q(0. 75) ,

the 1/4 percentiles. The E-values are the 1/8 percentiles Q(0.125) and

0(0.875) . The D-values are the 1/16 percentiles 0(0.0625) and Q(0.9375)

The mid-summaries of a data batch are

= f (Q(1-p) + Q(p)) , 0~~ p~~ O. S  .

_________ —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Of particular interest are

M M 
= ~.L (0.5) M~ = p ( 0 .25)  

‘ 
= p (0 . l2 5)

= M (0. 0625)

When H0: Q(u) = p + a Q0(u) holds , and Q0(l - u) -Q0(u) ,

is an approximately unbiased e stimator of p

The average of the extreme-values of the sample will be denoted

The closeness of p (0) to the other ~ values may indicate whether

the data batch has a short tailed symmetric di stribution such as the uniform.

The mid-spreads of a data batch are

S (p) = Q(l -p)  - 0(p) , O~~ p �0.5 .

Given a specified standardi zed quantile function the mid-scales

are defined by

a ( p) = S (p) -~-S 0(p)

where S0(p) = Q0(1-p) - Q0(p) is the mid-spread of . When H 0
A.

holds , a (p) is an approximately unbiased estimator of a . Of particular

interest are

CH c (0. 25) c E = c (O. 125) CD = o(0. 0625)
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Quick and dirty estimators of p and a are given by

— 1 Pd Pa V AS

= 

~~~~~~~~~~~~~~~~~~~~~~~

=

Diagnostic test s for the validity of H0 ar e obtained by t est ing for

the equality of the various p and ~ values. More quantitative diagnostic

measures could be defined as follows:

SKEW(p) = t
~ M 

- ~~S(p )

TAIL(p) = log [S(p) ÷S(0.25))

TAI L0(p) log (S0(p) ± S0(0.25))

TL4IL~(p) = log

• When SKEW(p) is not significantly different from zero, we consider

the data batch to have a symmetric distribution.

When the data ~~sses a SKEW test for symmetry, it is i~.hecked for

normality by comparing TAI L (p) with TAIL~ (p) ; TAIL(p)

significantly larger than TAIL~ (p) indicates a long-tail distribution , and

TAIL(p) significantly shorter than TA1L~ (p) indicate s either a short-

• tailed distribution (especially a uniform) or possibly a bimodal distribution. 

- ——- • •
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A seven-number summary of a data batch is provided by its M, H.

E and D value s, which suffice to compute mid-summaries, mid-scales,

• SKEW, and TAIL measures. To find re-expressions (transformations) of

the data which make it more normal, one needs only the seven-number summary

of the re-expressed data batch which are easily found as re-expressions of

the seven-number summary of the original data batch.

In addition to the analytical measures of the data , one should

form a graphical disp lay of the quantile function Q (u) as a function on the

unit interval 0 �u � I ; the H , E, and D boxe s are drawn superimposed.

Quantile-Box Plots enable the investigator to detect “non-ideal”

aspects of data bat . hes by testing the data for normali ty by tests which

determine the direction s in which data fails to be normal, such as (1) long-

tailed distribution, (2) outliers, (3) bimodal distribution, (4) non- symmetric

distribution.

To check for  symmetry,  inspect the shape of c~ u) within the boxes , as well

as compare mid-summaries and examine the SKEW diagnostic measures.

When the data passes the test for symmetry the question of whether

it has a normal or long-tailed distribution is decided using the TAIL diag-

nostic measures. Small TAIL values may indicate bimodal dis t r ibut ions.

Data sets with outliers may also yield small TAIL values.

If the graph x = 0(u) has point s with sharp rises (“infinit e” slopes),

then the probability density has a zero and will therefore have two (or more )

• L......~ __. _.~_~~~~~ -~~~~~~~~~__ ~~~~~~_. •________ - -
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modes. If the points of sharp rise lie inside the H-Box we suspect the

presence of several distinct populations generating the sing le data batch. U

points of sharp rise he outside the E-Box, we suspect outl iers (values to be

discarded for robust estimation).

A mode in the probability density function is indicated in the graph

x = Q(u) b y a point of inflection (with “finite ” slope). A horizontal segment

in the graph is interpreted to mean a very large probability density there.

I
8. Location and Scale Parameter Estimation as Regression Analysis

of Sample Quantile Process

One can consider estimators, denoted p and a , which
- 

p ,q p,q

use the sample quantile function 0(u ) , p � u ~ q ; this is equivalent to

using a restricted set of order statistic s X , . .  . , X or a t r i m m e d(np) (nq)

sample. A compact derivation of such formulas is given by Parzen ( 1978) who

gives the representation

[
~
, 
q] 

= [i

~~ 

ij  

-1 
T~ 

~~~
, q

ep,q 
T
0 p q

- • 5— — - -  •~~~~~~~~~- —-5-- • •-•_~~S—— —— - - - — —~~~~~~~~~~~~- - -_ _— .—
.
- •_ — • _ ~~~~-5S - - • -
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where

Tp p q  
= f~

q 
W~~(u) 0(u) dii + Q(p) W

PL(P) + 0(q) W~~~(~ )

Ta p q  
= f~

q 
Wa

(u) Q(u) dii + 0 (p) WaL(P) + 0(q) W~~~(q)

I~~ = 1q W~(u) du + W L
(p) + W~~~(q)

= 1q W (u) du + W (p) + WaR (q)

1ao 
= J ’’ W~(U) Q0(u) dii + WaL(P) Q

0(p) + WQ~~(~~) Q0(q)

The weight functions are expressed in terms of the densi ty-guant ile

function f0
Q

0(u) = f 0(Q
0

(u)) and the score function

-f ‘(F ~~ (u) )
30

(u) = - ( f
0
Q
0

) (u) = 
0 

~~~~ 

— = ‘~r (Q
0(u)) .

f0(F0 ( i i )

5. —5 5— 5 --5— - —-—
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W~ (u) = J~ (u) f
0
Q0(u)

W (u) = J0(u) + Q0(u) W~
(u)

WPL(P) = f0Q0(p) [~ 10
Q

0(p) + J0(p)]

W~~ (q) = f 0
Q

0(q) 
[i ~ q 

f 0
Q

0(p) - Jo(P~j

WaL(P) 
= Q0(p) WPL(P) - f

0
Q

0(p)

W~~(q) = Q0(q) WPR (P) + f 0Q0(q)

For normally distributed data ,

I

f0(x) = 0 (x) = ,4~ 
e h/2~~

2
, F0

(x) = ~ (x) ~
‘
~~~(y) dy

f0
Q
0(u) 0~~~~u ~~~ exp -~~1~~’(u)~~

J0
(u) = ~~

‘(u) , J~~(u) = (0~~~(u)i’

Wju) = 1 , W (u) = 2 ~~(u)

W~~(p) = Ø~~
’(p) (-

~
- 0~~

t (p) +
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W~~(p) = 4~
1 (p) WPL(P) - 0~~~(p) . 

-

When q = 1 - p  
~ 

I~~~~0

• 1
14L 

= - ZP +

= 2 1q (c’(u)~
2 
du + 2~~~ (p) W

aL(P)

• The estimator

AS A.

- J’ 0(u) du + WPL (P) CQ(P) + 0(1 - pfl

p,q 1 - Z p + ZW pL(P)

is similar to the Winsorized mean (with tr imming proportion p ).

Robust Maximum Likelihood Estimation of Mean and Variance of a

• Normal Distribution. We may be willing to assume that our data is more

normal than longtailed, but the shape of the true distributions is deviating

slightly from the assumed normal model due to “wrong” values in the data

set. We propose the following exploratory data analysis for robust estimation

of p and a from normal data with possible “outliers.” We suggest the

name “robust maximum likelihood estimators ” for these estimators.

For selected value s of p (at least p 0. 05 , 0. 25, and 0. 45)
A A

(1) compute the estimators p and a , and (2) plot the residuals.
p.1-p p, -p
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A A A
A. Pd -1
0(u) - Q(u) = Q(u) - ~~~~~~ 

- ap 1-p
t (u)

multiplied by Øc’(u) . . Their values over the interval p ~u ~ 1 - p can

be used to test the hypothesis 1-la . The residuals over the tail intervals

ii ~ p and u � 1 - p can be used to test for the presence of “wrong values.”

One estimates p and a by those estimators corresponding to the lowest

value of p for which one finds no “wrong values” over the tail intervals.

9. Robust Regression

Formulating the estimation of location and scale parameters as a

problem of weighted regression of the sample quantile function , with weights

a function of Q0(u) , leads to the amazing conclusion that asymptotically ef-

ficient estimators of p and a are obtainable numerically by i terat ing

ordinary regression ca1culations~
A A

The iteratively reweighted estimators p and a are also the

solutions to the problem of estimating p and a in the following weighted

least squares linear regression problem:

= p + c .
j 3

where e . are independent normal with mean 0 and variance satisfying

*
2 1  * * 

X - M
Var(e .) = a — 

, w . = w(e . ) , ~~~ =

_ 
S_ 5 . _ __~~~~~_._ __ __~~~~~~~~_ •_ •_ _
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A regression model can be written

=

where (e .) are independent random variables with quantile function known

up to a parameter a

0 ( u) = aQ0
(u)

To robustly estimate the coefficients  
~ l ’~ ~~~~ 

, a assume f i rs t

Q
0(u) = ~~

1(u) , corresponding to normality,  and by ordinary least squares

linear regression obtain preliminary est imators  ~~ ‘~ k 
; then

form residuals

= (Y. - ~~~~ X1j + + 
~k Xkj ) ÷ a;

The next stage of estimators • , 
~2 are taken to be the least

squares linear regression estimators under the assumption that e. have

variances defined by (*) . This process is iterated to yield robust

estimators (compare Huber (1977), p. 38, Algorithm W).

The long-tailed character of the residuals should also be

examined, using Quantile-Box plots.

One might consider non-parametric non-linear regression of

Y on Xl
....Xk . A density- quantile approach to non-linear non-

- • ~~~~~-~~~~~~~~
•-
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‘ I

parametric regression has been described by Parzen (1977), and is

currently being investigated by Prof. J. P. Carmichael. It has been

applied to time series analysis by Prof. M. Pagano. It provides means

of checking whether robust estimation of variances and correlations is

• provided by robust estimation of linear regression coefficients.

10. Do we need a new definition of Statistic s?

• Can statistic s be made a subject that provide s intellectually

exciting pastimes (for the young and the mature), is regarded as rel evant

by the creative scientist , and is appealing as a career to the mathematically

talented?

• An important step in achieving these desirable (and I believe

attainable) goals is to alter the perception of the sample mean and the sample

variance in elementary statistical instruction. Introductory Statistics

Is regarded by almost all college students (even by mathematically talented

students) as a very dull subject. Perhaps one reason is that students enter

the course knowing about a mean and a variance and leave the course

r knowin g only about a mean and a variance. That statistics is in fact a

live and vibrant disciplin e can be communicated to the student by emphasizing

that there are many ways to estimate mean and variance, and more generally

location and scale parameters.
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I believe that the discipline of stat ist ic s can be made more “glamorous”

if intellectually sound and demonstratively useful concepts of statistical

data analysis and robust statistical inference are incorporated in introductory

statistical instruction. The perspective which this paper proposes for

Interpreting robust statistical inference is equivalent to a proposal for the

definition of statistics:

“Statistics is arithmetic done by the method of Lebesgue

integration. ”

I realize this definition sounds unbelievable and may never sell

to the introductory student. But at least statisticians should understand

to what extent it is true. Perhaps it provides a basis for a new sect of

statisticians.

Can we all agree that a basic problem of statist ics is an ar i thmet ical

one: find the average X of a set of numbers X
1
, . .. , X ? Even

grade school students (in the U. S. A.) nowadays know the answer:

X = ‘(X + X  + . .  + X  ) .n 1 2 n

In words: list the numbers, add them up, and divide by n . What should

be realized is that the foregoing algorithm is the method of Riemann

integration.

The method of Lebesgue integration finds X by f i rs t  f inding

the distribution function F(x) of the data , defined by F(x) fraction

o f X 1
, . .., X � x  , -~~< x < ~~ . Then X is found as the mean of

distribution function , defined by the integral
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-
X = I x dF(x )

I, —

• To use an analogy to count a sack of c oins, first  arrange the coins in piles

according to their value (pennies, nickels, dimes, quarters, and half-

dollars), then count the number of coins in each pile, determine the value

of each pile , and finall y obtain X as the sum of the values of the piles,

divided by n . The role of statistics is to find more accurate estimators
A

of the true mean by fitting a smooth distribution function F(x) to F(x)

Still more insight (and fidelity to the truth ) is obtained by disp lay ing

• the sample cp~ianti1e function Q(u) = F ’(u) = inf Cx : F(x) � u) , and

fitting smooth quantile functions Q(u) to Q(u) . Then one computes

• the “sample average” by

p = J~ Q(u) du = ~ ‘ W~ (u) Q(u ) du ÷ J’1~ W~~(u) du

In words, the “averaget’ of a sample is a weighted average of the numbers

in the sample arranged in increasing order, with the weight of a number

depending on its rank. This is the essence of robust statistical data analysis;

all the rest is commentary.

L 
•

-5 5- -- ~~~ -—-~~~~~~~~
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Appendix

EXAMPLES OF QUANTILE- BOX PLOTS

TIPPETT’S WAR P BREAK DATA (Compare

box plots in McGill , Tukey, Larsen [1978]).

Fossil data from yellow Limestone formation of north-

western Jamaica (from Chernoff, H. (1973), “The Use of

Faces to Represent Point s in k-Dimensional Space Graphically, ”

Journal of the American Statistical Associatian, 68, 361-368).

Variables 2 and 6 have zerces in fQ (rises in Q ).

Variables 3 and 4 have proability masses (flat stetches in Q ).

Variables I and 5 are candidates for re-expression (logarithm

for 1, square root for 5). Variables 2 and S suffice to classify

the observations.

4
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