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1. Introduction

Parametric statistical inference may be said to be concerned with
statistical inference of idealized parameters from ideal data. Huber (1977),
p. 1, writes: '"The traditional approach to theoretical statistics was and
is to optimize at an idealized parametric model. '

Robust statistical inference may be said to be concerned with
statistical inference of idealized parameters from semi-ideal data (by the
use of methods which are insensitive against small deviations from the
ideal assumptions). Huber (1977), p. 3, writes: the robust approach to
theoretical statistics assumes '""an idealized parametric model, but in
addition one would like to make sure that methods work well not only at the
model itself, but also in a neighborhood of it."

Exploratory data analysis may be said to be concerned with
statistical inference from non-ideal data(often by seeking re-expressions
(transformations) of the data that will make it more ideal). Exploratory
data analysis helps pose the well-posed statistical questions to which

classical parametric statistics provides answers.

*Research supported by the Army Research Office (Grant DA AG29-76-0239).




This paper provides an overview to a new general approach to

statistical data analysis and parameter estimation which could be called

the quantile function approach. The aims of descriptive statistics (to

graphically summarize and display the data) are obtained by Quantile-Box

plots of the sample quantile function. The aims of ''goodness of fit'' are

obtained by fitting smooth quantile functions to the sample quantile function.

The aims of parameter estimation, especially robust estimation of location

and scale parameters, are attained by regression analysis of the sample
quantile function. (The goal of a statistician in analyzing a batch of data
Xl' e s Xn should be both ""estimation of parameters'' and '"goodness of fit''.
By ""goodness of fit'' is meant fitting of the observed sample probabilities by
a smooth probability law.)

Quantile functions are defined in section 2. Window estimators of
location and scale parameters are defined in section 3; their
equivalence to L-estimators is discussed in section 4. A conjectured ex-
pression is given in section 5 for the asymptotic variance of window estimators. ._l
New approaches being developed for non-parametric probability law modeling
are mentioned in section 6; quantile box-plots are introduced in section 7.
Section 8 discusses location and scale parameter estimation using trimmed
samples. Robust regression is the subject of section 9. A new definition
of statistics is proposed in section 10.

To carry out in practice robust estimation of location parameters

this paper proposes computing means which adapt to the ends (by '"ends"
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one means the tail character of the distribution of the data). Three such

methods are given in the paper:

(1) Iteratively reweighted estimators with weight function
1 2.1 ; . :
w(x) = (1 +r-;1 x ) for suitable choices of m (section 3);
(2) Maximum likelihood estimation omitting extreme order statistics
where the percentage of values omitted is determined from the goodness of
fit of the corresponding smooth quantile functions (section 8);

(3) Adaptive L-estimation of location and scale parameters using

autoregressive estimators of density-quantile functions (section 8).

A fourth method of robust location and scale parameter estimation is:

(4) Quantile box-plot diagnostics which indicate that mid-summaries
and mid-scales are equal enough to provide naive estimators of location

and scale (section 7).
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2. Quantile Function

The quantile function Q(u), 0 su<l of arandom variable X is the

inverse of its distribution function F(x) = P(X £x). The precise definition

of Q is:
Q) = F 1 (u) = inf fx: F(x) 2ul .

Given a sample X Gy Xn' we denote the sample distribution

e

function by ";“(x). -» £x < @ ; it is defined by
%(x) = fraction of Xl. o .Xn < % . ‘

The Sample Quantile Function

a(u) - %-l(u) = inf {x: %(x) = u}

can be computed explicitly in terms of the order statistics X“) < X(Z) P

< X (which are the values in the sample arranged in increasing order):

(n)




Q) = X A=l o ycd
n n

G’

The foregoing definition of 6(\1) is a piecewise constant function.

It is more convenient to define Q(u) as a piecewise linear function. Divide

the unit interval into 2n subintervals. For u = (2j - 1)/2n define

Q&= - x

on ‘ - J=lidsieasn=1,

define a(u) by linear interpolation; thus for u in this interval

Sy = b B 1 Stl
Q(u) n(u 3= ) X(j+l) +n( on u) X(j)
In particular
D [de)a i 1
Rigtian’ e
The population median is Q(0.5) . The sample median is 6(0. 5)s & 1

Our definition of Q(u) has the merit that Q(0.5) is the usual definition of

the sample median:

Q(0.5) = x(m+l) if n=2m + 1 is odd,

=-%(x ) if n = 2m is even.

(m) ¥ Xm+1)




The asymtotic distribution of Q(u) satisfies: ,/n fQ(u) { Q(u) - Q(u)}
is asymptotically normal, with mean 0 and variance u(l -u) ,
where fQ(u) denotes the probability density function f(x) = F’ (x)

evaluated at x = Q(u) ; in symbols,

fQ(u) = £(Q(u))

We call fQ(u) the density-quantile function.

Estimating the fQ-function is of interest for two reasons: as a way
of estimating (1) the true probability density function {(x), and (2) approxi-
mate confidence intervals for Q(u) and especially for the true median

Q(0.5) , since

2(0.5) + ./ £0(0.5)) "}

is an approximate 95% confidence interval for the median Q(0.5) .

We call q(u) = d (u) the quantile-density function. The identity

FQ(u) = u

implies the reciprocal relationship

£Q(u) qu) = 1.




Thus we may write (using = to denote approximate equality) :

e = 9(0.75) - Q(0.25) _ ,
.5 - 0% 0 3e 0.2 — = 21Q(0.75) - Q(0.25)}

We define, for 0<ps<0.5 |,

R(p) = Q(1-p) - (p)

to be the p-range, and

f\(p) = 5(1-9) - 5(9)

to be the sample p-range. When p = 0.25, we call Q(0.75) and Q(0.25) the

quartiles,

R(0.25) = Q(0.75) - Q(0.25)
the quartile-?ange, and

R(0.25) = Q(0. 75) - Q(0. 25)

the sample quartile-range.




One can conclude that the median Q(0.5) has a non-parametric estimater

given by 6(0. 5), and an approximate 95% confidence interval given by

(0. 5) £ 2R(0. 25)//A

A use of a confidence interval of this kind for the median is discussed by
McGill, Tukey, and Larsen (1978).

The aim of the foregoing discussion is to introduce the quantile
function and illustrate how it is traditionally used to provide non-parametric
measures of location (such as the median) and scale (such as the quartile
range). Our aim is to use quantile functions to detect and describe ideal

and non-ideal statistical models for data.

3. Loocation and Scale Estimation by Window Estimators

One of the points which this paper would like to make is that
measures of location and scale of a data sample are interpretable only if

they are probability based, in the sense that they are estimators of char-

acteristics of the true quantile function of the random variable X.

Weuse | and o0 to denote measures of location and scale respective-
ly. When {4 and o© represent median and inter-quartile range, K = Q(0.5)
and o0 = Q(0.75)- Q(0.25). When M and oz represent mean and variance,

they can be expressed in terms of Q by

T J‘; Q(u)du , oz = ‘f; {Qu) - p}zdu .




These formulas follow immediately from the basic fact that X is

identically distributed as Q(U) where U is uniformly distributed on
the interval [ 0,1] .

When u and cz represent mean and variance, fully non-parametric
estimators of [ and az are

5 s J‘g Quda , & = j‘; (QM) - n}% au ,

which are essentially the sample mean and the sample variance.
To efficiently estimate location and scale parameters g and ¢ ,

it is customary to start with a model for the probability density function

f(x) of the form

X -

) (*)

where io(x) is a known probability density function. Define L(u, o) to

be (1/n) times the log - likelihood of the sample Xl' S 'Xn ; it is
given by
1 n Xi - M
L(4,0) = -logo +;El log & =35)

One can express likelihood in terms of quantile functions:

L(4,0) = -log o + j’; log £, (Q(%—'—E ) du .
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The model (*) leads to a very simple formula for the true

quantile function Q(u) of the data:
Qu) = u+toQqyu)

where Qo(u) is a known quantile function corresponding to fo(x) . For

ease of writing we introduce the notation

~

Qu) -

Qo) = o

~ ~

The maximum likelihood estimators U and o satisfy the log

likelihood-derivative equations:

A A A A

) d
S % = 0 , =—L{u, = 0
™ L(u, 0) 36 (M, 0)

To compactly write formulas for these derivatives, define

‘fo' ‘x) N
yi(x) = _?;_(75- g log fo(x)

wix) = T y(x)
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o . e
Then 35 Lno) = o[ wQym) du
1 pl.7 “
= = [p Q) - 1} w(Q(u) du
g
= L(ko) = -§-+o—{,_f; ¥(Qyu) {Q) - uldu
= --“;+:1§J‘g w(Q()) {Q) - p}% du

~ ~

In the normal case, x)=x , w(x)=1 and M and 02 are
equal to the sample mean and variance respectively.
~ ~

To obtain estimators H and o without specifying fo(x) , one

. ; " 2
introduces the concept of iteratively reweighted estimators of 4 and o

* *
Given estimators g and ¢ define

Then as ""approximate'’ solutions of the log-likelihood derivative equations,

one studies the estimators defined by

) i et
Ay Q) wQ) (w)du

1 %
b wQ, () au

Q
|

= [3 Q) - ) wig" () du

_ S—
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-~ ~

These formulas for ¢ and ¢ reduce to the sample mean and variance

when one chooses w(x)E& 1

Since we are concerned with forming estimators of location and
scale which are satisfactory for long-tailed distributions it is natural to i
choose weight functions w(x) corresponding to Students' t-distribution

with m degrees of freedom,

: ré"—}l)< xZ)-(mﬂ)/Z

o = mw Tm, M tm :
I‘(—Z-)
for which
* L - l ! m + l l
w(x) = x(log £, = — 33
1+ —x
m

We call this weight function a window, and we call Y4 and ¢ window
estimators.

To completely specify the window, one must specify a value for m
(which we could call the 'trimming width' of the window). The more normal i
the data is believed to be, the larger should m be chosen (say, m = 25). i

The more Cauchy-distributed the data is believed to be, the closer to 1 .

should m be chosen (say, m = 4) . In practice, one might try both

values of m , and compare the results, The constant m could also be

ORI SV A A 1 N B4 a7 v

estimated adaptively to yield ''self-tuning’’ robust estimators of location

e

and scale.
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A window recommended by Tukey (see Mosteller and Tukey (1977),

p. 205) is the bisquare window:

x 2. 2
wBisquare(x) ot o (c) )+

where ¢ is a suitably chosen constant. Tukey recommends that ¢ be
taken tobe 6 or 4 when x is measured in units of o . It seems likely

that the choice of ¢ should reflect one's beliefs about the long-tailed

character of the data.

4, Weight Functions of L-Estimators
~
An L-estimator u of a location parameter is a linear combination

of order statistics X e = X(n) , which we write in the form

(1)

b= Jo QM) W) da

for suitable weight function W(u) . Asymptotically efficient L-estimators of
M4 and o0 in the model Q(u) = pn+o0 Qo(u) , when fo is a symmetric

density, are given by [see Parzen (1978), and summary in section 8]
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>

1% 1
= fo Q) W () du+ §e W, (u) du

g =
'

Q

| 1
= IO Q(u) W_(u) du + IO W, (u) du

Jo'(u)
foQo(u) JO (u) = B-(;'—(;T and

w
where M(\1)

W () = T+ Qya) W, (u)

foQo(u) is the density-quantile function corresponding to Q. , and Jo(u)

0

is its score function defined by

’

Jow) = ~(£,Q4) (u) = “}'o—é—o—(;)— ¥ (Qqy(w)

An L-estimator forms a weighted average of order statistics in
which the weights depend on the ranks u . It is of interest to express the
weights as a function of Qo(u) » which is the size of the order statistics.
One can derive such formulas starting from the general representation,
given by Parzen (197‘8),

£,Q,0 ~ a-w* . Q) ~a-w @

where @ , called the tail exponent, is assumed to satisfy a > 1 (indicative

of long tailed distributions). We write
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! - 2 1" 1 2
W= T5 Q= -(£,Q,) [(log £,Q()" + {(1og £Q) o

Wa = JO + QOW = -(fOQo)(log foQo)’ + lel .

Therefore

2(""”cn(l- a) ~ _21___ «l - a)

Wu(u) ~ (1 - )
: Qo(u)

1

Qo(u)

wo ~ 0-w ez ~ a2 - @

The main conclusion we desire to point out is that if one expresses

W“(u) as a function w of Qo(u) ;

W @) = wQy)

then for long-tailed distributions, w(x)~ iz . By writing W"1 as a function
of Q0 , to an L-estimator one can form an equivalent iteratively reweighted
estimator.

Y %
Given preliminary estimators WM and ¢ , form

~

- *
Qo*(u) = _g_‘l)__*'_ﬁ_ and define
)

Jy wig, ) Q) du

B s
L w(Q, (u) du
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This estimator is a weighted average of (Q with weights a function only

*
of the size of the standardized residuals QO ()

For Student's t-distribution with m degrees of freedom,

m+ 1 QO(“)

m

J(u) = § (Q,() =
g " 1+ rlr.x Qoz(u)

Consequently
wu‘“) = Wp(Qo(u)) ’ Wc(u) = w(Qy(u)
+ 1 1 z/ +1 2
with w (x) = mm - (; %L , oW (x) = xz
¥ [1+ (x"/m) Mo+ (x°/m)]

These windows deserve further investigation. However they appear to

support the recommendation that robust estimators of location and scale
* *

may be obtained from preliminary estimators 4 and o0 by the

formulas (for a suitably chosen value of m ) ;

fo Q(u) {1+= (—le—l)———) } ‘ {

g

o
"

j‘o 1+ 2 (9121——)] :

: - onl {a(u)-u}z i1 -ri(@.%lf_ﬁ.)Z}-ldu<m+1)
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L Variance and Influence Functions of Window Estimators

This section presents a conjectured formula for the asymptotic

variance of a window estimator which is derived by representing it as an

L-estimator
1 -
a0 w(Q,(u) Qu) du
. 0 0
L 1
Jo w(Qy(u) du
1 _2.-1 : i 5
where w(x) = (1 + m X ) The question of deriving the theory of | as

~

an M-estimator is open for research; M is an M-estimator if it satisfies

flw(Q—-(—l——“ “Hyau = 0
0 o)
for a suitable (| function, here chosen to be

¥(x) = xz
1+ (x /m)

Under the assumption that the true quantile function is of the form
Qu) = u+ cQo(u) , and that Qo(l -u) = -Qo(u) , signifying a symmetric

distribution, we seek to find the variance V of the asymptotic distribution

of ./x-;(u - 1) , which is normal with zero mean and asymptotic variance V .

From the asymptotic distribution theory of L-estimators

j; |v(a)|? du

{fy wap(w du)®
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where
Vi) = w(Qy(u) q) = o w(Q,(u)) g,(u)
V(u) = Ov(Qo(u)) ,

defining
vix) = [Fwiy)dy = Jm tan" (x/ym)

Further v(x) is the influence function of the estimator (Huber (1977), p. 17).

Note that for fixed x, v(x)2x as m= « ., The formula for

the variance of the robust estimator | may be written explicitly

" o2 j‘; {J/m tan (Qo(u)/Jm)}zdu
Var(y = - 5

Uy a+LqPwn! au?

and can clearly be regarded as a generalization of the traditional formula for
the variance of the sample mean. It is derived under the assumption of a

symmetric but possibly long-tailed distribution.

To estimate Var(Md) in practice, one might replace ¢ by ¢ and

~ ~ ~

Qo(u) by (Qu) - p)/o if a Quantile-Box plot of Q(u) - 4 indicates that
it is symmetrically distributed about 0

It should be noted that under the model Q(u) = u + cQo(u) , with
Qo(l -u) = -Qo(u) , M estimates Iol W(Qo(u)) Q(u) du + j\g W(Qo(u))du = U

~

2 - 2 ol 2 2l 2 1 .. @ 2
while ¢ estimates o© IO w(()o(u))Q0 (u)ydu = ¢ IO Q0 (n) (1 + 500 (u)) du

e —— e —— —— g
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6. Non-parametric Probability Law Modeling

To interpret (as well as to form) location and scale parameters
estimators from a data batch Xl. siaials Xn one must model its probability
law. This section briefly mentions some new approaches which are
currently being developed for non-parametric probability law modeling
(see Parzen (1978)). They all involve both graphical and numerical analysis

of the sample quantile function Q to find smoothing functions Q .

Quantile Box-Plots are introduced in the next section.

Quantile Residual Brownian Bridge Test. To say that the true

quantile function Q(u) obeys the hypothesis HO: Qu) = u+oQo(u) is

~ ~ ~ ~

to say that one can find values K and ¢ suchthat Q(u) = p+ cQo(u)

fits Q. Thefitof Q to Q can be judged by displaying the guantile

residuals
R@) = £,Q) (QM) - Q)] , 0susl

where foQo(u) = fo(Qo(u)) is the density-quantile function corresponding

to F Under the null hypothesis (/n/o) R(u) , 0su<1 is

0"
asymptotically distributed as a stochastic process B(u) ,

0 £us<] whichis a modified Brownian Bridge process in the sense that
its covariance kernel E(B(ul)B(uz)) is not min (ul,uz) - uu, but is
modified due to the estimation of the parameters 4 and ¢ . To test

whether the sample path R(u) looks like a sample path from a modified

Brownian Bridge process one could use various functionals

e Al e A it T
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whose asymptotic distribution is known from their role in the conventional
theory of Goodness of Fit Tests. The sample process traditionally con-
sidered for goodness of fit tests is

Do) = Fouay) - w/o)

~

To estimate ¢ (needed in the asymptotic distribution of R(u)) one

could use a non-parametric estimator such as

~ 1 " o
S = J 1oQdQu) = f§ 7, (w) Q(u) du

~ ~ ~
To estimate M and ¢ needed to form Q(u) , one could use quick
~ % ~ %
and dirty estimators M and o formed from Quantile Box-Plots, or

one could use asymptotically efficient estimators formed from regression

analysis of the continuous process Qu) (see section 8).

Cumulative Weighted Spacings Brownian Bridge Tests . To test

whether the true quantile function Q(u) is of the form Q(u) =u + cQo(u) 3
one need not first estimate W and ¢ . Instead, following Parzen (1978),

form

D) = - [o f,QdQM, O0sus1,

0

QQ |~

which is an estimator of

1
D(u) = o [o £5Qp®) dQ () 0 Sus 1 defining

Oy = J'; foQo(u)dQ(u) . Under the null hypothesis, D(u) = u , and it is

L T o 3 vy

P
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conjectured that Jo {D(u) -u} , O0sus 1 isasymptotically distributed
as a Brownian Bridge Stochastic process.
By suitably choosing the null hypothesis HO and the standard

density-quantile function fOQO , one can test the goodness of fit of any

specified probability law (normal, exponential, Weibull, Cauchy, etc.) to

the data.

Density-Quantile Function Autoregressive Estimation. Parzen (1978)

~

discusses autoregressive estimators d(u) of

£ Q ()
dw) = D (u) = 3‘; e

which can be used to form estimatcrs of fQ(u)

The density quantile function fQ can be estimated also by forming
~

autoregressive smoothers Do(u) of

Byw) = Fy((Qu) - /o).

with density
d) = £ (@) - o) qu/o .

The autoregressive density do(u) = Dé (u) is an estimator of
4™ = "Iom) o
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7. Quantile Box-Plots Diagnostic Measures

Given a data batch Xl' e ,Xn , a successful approach to '"display"
of the data has been the box plot introduced by Tukey (1977). Five values
from a set of data are conventionally used: the extremes, the upper and lower
H-values (H is an abbreviation for hinges or quartiles), and the M-value
(median). The basic configuration of the box-plot display is a vertical box
of arbitrary width and length equal to the distance HH (defined as upper
H-value minus lower H-value and called the H-spread). A solid line (called
the M-line) is marked within the box at a distance MH above the lower end
of the box (MH equals M minus lower H). Dashed lines are extended from
the lower and upper ends of the box a distance equal to the distance of the
extremes from the hinges. If one wants to indicate a confidence interval
for the median, one might add a line perpendicular to the M-line at its
midpoint, and of length * HH/J/n . The box-plot described should be called
an H-Box Plot, because by replacing H-values by other types of values
(called E-values and D-values) one can consider E-Box Plots and D-Box
Plots.

The H-values are most conviently defined as E)(O. 25) and 6(0. 5} .
the 1/4 percentiles., The E-values are the 1/8 percentiles 6(0. 125) and
6(0. 875) . The D-values are the 1/16 percentiles 6(0. 0625) and 6(0. 9375)

The mid-summaries of a data batch are

Wp) = 2(00-p+Qm)} . ospso.s .
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Of particular interest are

H(0.5) , M, = H(0.25) , Mo = M (0.125) ,

e
"

d (0. 0625) .

e
"

When Hy: Qu) =1 +0 Qy(u) holds, and Qg(1 - u) = -Qo(u) .

is an approximately unbiased estimator of | .

~

M

The average of the extreme-values of the sample will be denoted

H(O) . The closeness of G(O) to the other :x values may indicate whether

the data batch has a short tailed symmetric distribution such as the uniform.

The mid-spreads of a data batch are

S(p) = Ql-p)-Qp) , 0s=ps0.5 .

Given a specified standardized quantile function QO’ the mid-scales

are defined by
o(p) = S(p)+Sy(p) :

where So(p) = Qo(l-p) - Qo(p) is the mid-spread of Q0 . When Ho

holds, o (p) is an approximately unbiased estimator of ¢ . Of particular

interest are

0. = 0(0.25) , @&, = 9(0.125) , SD = 5(0. 0625)
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Quick and dirty estimators of U and o0 are given by

~ l ~ ~ ~ ~
x = —
M 4{uM+uH+uE+uD}
o = 200 +20_+25.)
5 ““H E D

Diagnostic tests for the validity of H_ are obtained by testing for

0

the equality of the various | and o values. More quantitative diagnostic

measures could be defined as follows:

SKEW() = {{,, - ii(p)} +S(p)

TAIL(p) log {S(p) = S(0.25)}

TAIL,(p) = log {so(p)+ 30(0.25)}

TAIL3(p) = log {é'l(p)+¢'1(o.25)]

When SKEW(p) is not significantly different from zero, we consider
the data batch to have a symmetric distribution.

When‘the data msses a SKEW test for symmetry, it is v:hecked for
normality by comparing TAIL (p) with TAIL%(p): TAIL(p)
significantly larger than TAIL&(p) indicates a long-tail distribution, and !
TAIL(p) significantly shorter than TAIL%(p) indicates either a short-

tailed distribution (especially a uniform) or possibly a bimodal distribution.
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A seven-number summary of a data batch is provided by its M, H,
E and D values, which suffice to compute mid-summaries, mid-scales,
SKEW, and TAIL measures. To find re-expressions (transformations) of
the data which make it more normal, one needs only the seven-number summary
of the re-expressed data batch which are easily found as re-expressions of
the seven-number summary of the original data batch.

In addition to the analytical measures of the data, one should
form a graphical display of the quantile function 5(11) as a function on the
unit interval 0 .Su <1 ; the H, E, and D boxes are drawn superimposed.

Quantile- Box Plots enable the investigator to detect ''non-ideal"
aspects of data batches by testing the data for normality by tests which
determine the directions in which data fails to be normal, such as (1) long-
tailed distribution, (2) outliers, (3) bimodal distribution, (4) non-symmetric

distribution,

To check for symmetry, inspect the shape of Qu) within the boxes, as well
as compare mid-summaries and examine the SKEW diagnostic measures.
When the data passes the test for symmetry the question of whether

it has a normal or long-tailed distribution is decided using the TAIL diag-

nostic measures. Small TAIL values may indicate bimodal distributions.
Data sets with outliers may also yield small TAIL values.

If the graph x = Q(u) has points with sharp rises ("infinite' slopes),

then the probability density has a zero and will therefore have two (or more)
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modes. If the points of sharp riselie inside the H-Box we suspect the

presence of several distinct populations generating the single data batch. If
points of sharp rise lie outside the E-Box, we suspect outliers (values to be

discarded for robust estimation).

A mode in the probability density function is indicated in the graph

X = 6(\1) by a point of inflection (with ''finite'’ slope). A horizontal segment

in the graph is interpreted to mean a very large probability density there.

8. Location and Scale Parameter Estimation as Regression Analysis

of Sample Quantile Process

One can consider estimators, denoted up and © , which
’ ’

use the sample quantile function Q(u) , psu=sq ; this is equivalent to

using a restricted set of order statistics X 5w or a trimmed
(np) (nq) S S

sample. A compact derivation of such formulas is given by Parzen (1978) who

gives the representation

—~ ~
Mo RS
Mp, q qu Lo i P, j
ep. q L Iuo Ioo T, P, q
- -/ __J ke _)

Sl A Al )




where

i q ~ ~ ot
MR j‘P W, (@) Q(u) du + Q(p) W, (p) + Qq) W g (a)
« [ 3 © fo
Topq = dp Vo) Q) du+Q(p) Wy, (p) + Qla) Wyp ()
I = [TW (wau+W (p)+ W _(q)
b P M uL MR
1 = [IW (du+W _(p)+W . (q
(V1o P C oL oR
L
Lo = Jp Wolw) Qplu) du+ Wo, (p) Qu(p) + W g (a) Qylq)

The weight functions are expressed in terms of the density-quantile

function foQo(u) = fo(Qo(u)) and the score function

(P ()
Tgm) = ~(f,Qp) ') = ——1— = ¥(Q ) .
£(F, (@)
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W) = Jh0w) £5Q,(w)

Wg(u)

Jo(\x) + Qo(u) W“(u)

: 1 ]

1
qu(q) = £,Q4() [T-_E f0Qp(P) - Jo(p)]
WoL(p) = Q,(p) WHL(p) - £,Q,(P)

W@ = Qy@) W g (P)+1,Q4(q)

For normally distributed data,

1 e-u/?.)x2

fotx) = ex) = 5o » Folx) = ¥(x) = f: ¢(y) dy

<1 1 Foab, L8
£5Qq(u) = 9% "(u) =z exp > 18 (w)]

U B R N N R U ) S
{ 3 -1

W“(u) = 1 , Wa(u) s 28 “(u) .

w.om = ot \e (Lot i+ a7 )

WL p

F



29

W) = 2T W, () - 0¥ () .

When q=1-p , I =0,

uo

I“u =1-2p+ ZWHL(p)
& q .1 2 -1
Ip = 2 [, 1€ @l"au+26"" () W, (p)
The estimator
2P By au + W, () {Qp) + 201 - 1)
0 _2p uL
P-q l1-2p+ ZWHL(p)

is similar to the Winsorized mean (with trimming proportion p ).

Robust Maximum Likelihood Estimation of Mean and Variance of a

Normal Distribution. We may be willing to assume that our data is more

normal than longtailed, but the shape of the true distributions is deviating
slightly from the assumed normal model due to "wrong" values in the data
set. We propose the following exploratory data analysis for robust estimation
of W and ¢ from normal data with possible '"outliers.' We suggest the
name ''robust maximum likelihood estimators' for these estimators.

For selected values of p (at least p=0.05, 0.25, and 0.45),

~ ~

(1) compute the estimators and ap 1-p

’ d (2) plot th i 1s.
e 1-p and (2) plo e residuals
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~ ~ —l

Q) - Q) = Q) - 1, (w)

- %a1-p’ ’

multiplied by ¢§.l(u) .. Their values over the interval psu<1 -p can
be used to test the hypothesis HO . The residuals over the tail intervals
us<p and uz21-p canbe usedto test for the presence of "wrong values. "
One estimates p and 0 by those estimators corresponding to the lowest

value of p for which one finds no "'wrong values'' over the tail intervals.

9. Robust Regression

Formulating the estimation of location and scale parameters as a

problem of weighted regression of the sample quantile function, with weights

a function of Qo(u) , leads to the amazing conclusion that asymptotically ef-
ficient estimators of B and O are obtainable numerically by iterating
ordinary regression calculations:

The iteratively rewecighted estimators ; and ; are also the

solutions to the problem of estimating W and o in the following weighted

least squares linear regression problem:
X, = M+€,
J J

where ¢, are independent normal with mean 0 and variance satisfying

Var(e,) = 02_1_ 5 W w(e.*) . e.* s (*)
J wj J J
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A regression model can be written

Yj = ﬂl X1j+... +kakj+s:j 3

where [ej] are independent random variables with quantile function known

up to a parameter O

Q () = oQgm) _%

To robustly estimate the coefficients Sl. b 'Bk , © assume first

Qo(u) = Q—l(u) , corresponding to normality, and by ordinary least squares

£\
linear regression obtain preliminary estimators bl Ssia 'Sk ; then

form residuals

%

« {Y G TG T T N
Cj —(j-pl 1 v K kj)Tc.

J

~ ~

The next stage of estimators Bl, Sy Bk ’ 02 are taken to be the least

S i Sk b bt

squares linear regression estimators under the assumption that ej have :

variances defined by (*) . This process is iterated to yield robust

estimators (compare Huber (1977), p. 38, Algorithm W).
s
The long-tailed character of the residuals €j should also be

examined, using Quantile-Box plots.

One might consider non-parametric non-linear regression of ‘

Y on Xl. ‘v Xk . A density- quantile approach to non-linear non-
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parametric regression has been described by Parzen (1977), and is
currently being investigated by Prof. J. P. Carmichael. It has been
applied to time series analysis by Prof. M. Pagano. It provides means
of checking whether robust estimation of variances and correlations is

provided by robust estimation of linear regression coefficients.

10. Do we need a new definition of Statistics?

Can statistics be made a subject that provides intellectually

exciting pastimes (for the young and the mature), is regarded as relevant

by the creative scientist, and is appealing as a career to the mathematically
talented?

An important step in achieving these desirable (and I believe
attainable) goals is to alter the perception of the sample mean and the sample
variance in elementary statistical instruction. Introductory Statistics
is regarded by almost all college students (even by mathematically talented
students) as a very dull subject. Perhaps one reason is that students enter
the course knowing about a mean and a variance and leave the course
knowing only about a mean and a variance. That statistics is in fact a
live and vibrant discipline can be communicated to the student by emphasizing
that there are many ways to estimate mean and variance, and more generally

location and scale parameters.

S ——
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I believe that the discipline of statistics can be made more ''glamorous" '
if intellectually sound and demonstratively useful concepts of statistical
data analysis and robust statistical inference are incorporated in introductory
statistical instruction. The perspective which this paper proposes for
interpreting robust statistical inference is equivalent to a proposal for the
definition of statistics:
"'Statistics is arithmetic done by the method of Lebesgue
integration. " ;

I realize this definition sounds unbelievable and may never sell 3

to the introductory student. But at least statisticians should understand
to what extent it is true. Perhaps it provides a basis for a new sect of

statisticians.

Can we all agree that a basic problem of statistics is an arithmetical
one: find the average )—E of a set of numbers Xl' TR Xn ? Even
grade school students (in the U. S. A.) nowadays know the answer:

X=3x +x +..4%) .
- g | 2 n
In words: list the numbers, add them up, and divide by n . What should
be realized is that the foregoing algorithm is the method of Riemann
integration,

The method of Lebesgue integration finds X by first finding

the distribution function ;‘(x) of the data, defined by %(x) = fraction

ofxl,...,xnsx , =o<x<® , Then )? is found as the mean of

this distribution function, defined by the integral
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To use an analogy to count a sack of coins, first arrange the coins in piles
according to their value (pennies, nickels, dimes, quarters, and half-

dollars), then count the number of coins in each pile, determine the value

of each pile, and finally obtain )_(. as the sum of the values of the piles,
divided by n . The role of statistics is to find more accurate estimators
of the true mean by fitting a smooth distribution function ;(x) to ~F(x)

Still more insight (and fidelity to the truth) is obtained by displaying
the sample quantile function (5(\1) = ;‘-l(u) = inf {x: l;(x) 2 u} , and

fitting smooth quantile functions Q(u) to Qu) . Then one computes

the ""sample average'' by

= I; Q(u)du = _Bl wu(u) E)(u) du + 'rol Wu(u) du

In words, the "average'' of a sample is a weighted average of the numbers

in the sample arranged in increasing order, with the weight of a number

depending on its rank. This is the essence of robust statistical data analysis;

all the rest is commentary.
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Appendix

EXAMPLES OF QUANTILE-BOX PLOTS

TIPPETT'S WARP BREAK DATA (Compare

box plots in McGill, Tukey, Larsen [1978]).

Fossil data from yellow Limestone formation of north-
western Jamaica (from Chernoff, H. (1973), ""The Use of
Faces to Represent Points in k-Dimensional Space Graphically, "

Journal of the American Statistical Association, 68, 361-368).

Variables 2 and 6 have zerces in fQ (risesin Q ).
Variables 3 and 4 have proability masses (flat stetches in Q).
Variables 1 and 5 are candidates for re-expression (logarithm
for 1, square root for 5). Variables 2 and 5 suffice to classify

the observations.
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