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1 INTRODUCTION

The problem discussed in this Report is the following:

Given the response F(t) of an aircraft flying at a certain speed to a
unit step gust, predict the response to a family of ramp gusts and determine the

critical gust length at which the extreme response occurs.

The investigation was treated, purely as a mathematical and computational
exercise; the soundness and applicability of the physical theory (eg Jonesl) was
taken for granted. Jones recalls in that Report that the earliest airworthiness
requirements were based on response to discrete gusts but that recently more
emphasis has been laid on irregular turbulence, the implication being that
responses can be deduced adequately from stationary random process theory. He
then argues that large aircraft loads cannot be satisfactorily predicted by
spectral analysis and that the consideration of discrete ramp gusts is preferable
if extreme responses are to be reliably estimated. Effectively, the argument is
that the power spectrum (PSD) method estimates the root mean square response
whereas one is really interested in the extreme behaviour and that the non-
Gaussian character of turbulence can be so marked as to undermine the usefulness
of the rms value. In particular, the PSD method is not to be trusted when the

dominant aircraft mode is well damped.

The problem is the familiar one that the weight of interest falls in the
tail of a distribution where probability levels are only poorly defined by
empirical evidence. Any extrapolation from the relatively well defined body of
the distribution is unsafe unless independent information on the shape of the
distribution is available. In addition, Jones points out that dynamic response
is produced by changes in wind velocity so that one must determine the probability
distribution of velocity gradients. Many power spectrum investigations have

only considered the velocity distribution.

To cope with situations in which non-Gaussian velocity gradients are
significant, Jones has developed a statistical discrete gust model wherein the
intensity, Vo of a ramp gust is related to its gradient distance (H) by

4
WH wOH (1
where Yo is derived directly from measurements and varies with altitude. This
dependence of gust intensity on gradient length is valid over the range of wave-
lengths ()) for which the Kolmogoroff (proportional to X§ 3 A = 2H) power

spectrum of atmospheric turbulence applies. Fortunately, the Kolmogoroff spectrum




appears to be valid far beyond the wavelengths associated with extreme aircraft

response.

The ramp (see Fig 1) may be either straight or 'one-minus-cosine' (smooth).

X
v, (x) wH(H) 0sxsH (2)
™\ .
wz(x) }wu(l cos — ) 3 0« x<H. (3)
dw, dwl
The latter has the advantage that o 0 at x = 0,H (whereas v is

discontinuous at the end points) and is generally preferred.

In the next section we derive the ramp response from the unit step response
and the gust profile. Later sections explain the computational details and the
determination of that gust length, H which causes the worst response, ; .

This is extended in section 7 to deduce the most adverse gust pair.

Although the problem appears straightforward at first sight, being basically
one of numerical integration and interpolation there are complicating features.
In addition, although the physical model is only approximate, we did not wish to
further degrade it with rough calculations. Our efforts to ensure efficiency,

accuracy and stability in the numerical operations are duly described.

Thus, in section 3 we describe the integration procedure based on cubic
spline fitting of the step response, explaining the considerable economies which
are possible with this formulation. The straight ramp generates a discontinuity
in the slope of the ramp response which can be most troublesome (if, for example,
the 'corner' is smoothed) if not properly handled as described in section 4.
Extra trial gust lengths are needed to refine the estimate of the critical gust,

H , and more especially, the critical time, t . These are kept to a minimum by

an efficient interpolation procedure (see section 5).

The end result, we believe, are computer programs which can determine the
critical ramp gust and gust pair with errors which are negligible compared to

those arising from the fundamental physical assumptions and idealisations.

2 DERIVING THE RAMP RESPONSE FROM THE STEP RESPONSE

2.1 Assumptions

The important assertion which motivated the present work is that the res-
ponse to an isolated ramp gust of a given length and profile shape is a meaning-

ful quantity to calculate. Jonesl claims that such a representation is usually
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reasonable at least in the vicinity of the critical gust length (Ze that isclated
gust which generates the worst behaviour). In other words, despite turbulence
being comprised of gusts of all lengths, only a limited range is important and
the magnitude of the worst response can be fairly well predicted by identifying

the critical isolated gust (or, more generally, sequence of gusts).

A second major assumption is that the system is linear. A corollary is
then that
Y(w,H) = wov(l.H)

where y is the (extreme) response.

The linearity assumption also facilitates consideration of gust pairs
whereby overswing tuning can result in a greater response than any single gust
would cause. The effect, of course, is unimportant for well damped modes. Gust
pairing is therefore an extension of the basic concept to moderately damped modes
and involves finding the critical gust length, EO » which results in the worst
overswing as well as that (ﬁ) which gives the extreme primary response. The
most adverse situation is when the two gusts occur with opposite sign and appro-
priate spacing Hs (see Fig 2 and section 7) so that the first overswing due to
the first gust coincides with the primary peak due to the second gust. The

spatial extent of the critical gust pattern is therefore

B, = B+l +B . (4)

More complex sequences of gusts are not considered. However, it is possible to
extend the concept to include very lightly damped modes and a recent paper by
Jone32 envisages the superposition of responses to as many as eight successive
gusts., Of course, the probability of the critical pattern occurring decreases

as the number of component gusts is increased.

' P Theoretical considerations

Let the step response be F(t) and the ramp response be ¢(H,t)
Essentially, the calculation of ¢ involves the numerical integration of F(t) .
Note that strictly speaking we should write F(v,t) but it is customary to
regard the aircraft velocity as constant during an encounter with turbulence.

It is not a simple (7e linear) matter to determine ¢ (and hence Y(H)) at

Jifferent speeds - F(t) must be recalculated.




A ramp gust can be thought of as a series of n step gusts (see
Fig 3). Thus we have to combine together up to n step responses, each
scaled and appropriately time shifted. The linearity assumption is essential
if the means of combination is to be simple addition. The response at time

t' will be given by

¢(H,t") = GViF(t' - ri) (5)

1=]
where nét = H/v ; "™ it ; j = min (n,t"'/8t) . Letting 6t +- 0 ,

min(t',H/v)
dw

¢(H,t') = cltTl-‘(t' - 1)dTt . (6)
Or, making the transformation t =t' - 1,
t'
¢(H,t') = [ %%' : F(t)dt . )
i max(0,t'-H/v) o ni !

The limits reflect the assumption that %% =0 when t <0 ort > H/v . Expressed

as functions of time and setting w,. = 1 , equations (2) and (3) become

0
w. (t) = 3w (t) = lﬂ*(l - cos TLE), (8) :
1 3’ e H |
g
Hence (7) gives, respectively,
t'
¢,(H,t") = 3 F(t)dt ©
max(0,t"'-H/v)
t'
¢, (H,e") = 1;-;"; f sin T (t' = £)F(t)dt (10)
max(0,t'-H/v) 165
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Thus the straight ramp response at time t' 1is merely the area under
the step response between t' and some earlier time, either zero or t' - H/v .

Furthermore, differentiating (9) gives
¢
 RECOIREE, Y RO }
s {ree - ww ki3

0
3@ ) o L}
o (G R ' PO = Hiv
M 3N "1("" ) +;—-——7——1H‘ § (12)

From equation (11) we can envisage three possible situations concerning
the time, tY , at which the maximum response, Yy(H) occurs. As depicted in
Fig 4 tY can be greater than, less than, or equal to H/v . The first two
present no computational difficulties because 3@,/3( = 0 but the third case

could be troublesome because the discontinuity in Oq/at' coincides with tY

Now, in any numerical scheme integrals can only be computed at discrete
(usually pre-determined) points. If one seeks maxima and minima of a function
defined only as a set of points then some interpolation is necessary. Of
necessity the interval between adjacent points will be represented by a fully
continuous interpolating function and difficulties can be expected if the

original function is less well behaved.

Trouble was indeed encountered with the straight ramp when the derivative
discontinuity at t = H/v fell within the same integration interval as (Y %
The resulting interpolation errors superimposed a ripple on the Y(H) curve
making impossible the accurate determination of H . The problem only arises if
F(0) # 0 but unfortunately this is common because F(t) 1is the response to
a gtep gust. The counter-measures adopted are described in section 4. There
was no corresponding difficulty with the one-minus-cosine ramp because

3¢,/3t  is everywhere smooth.

It can also be surmised that t} will increase with H until the first

~ ~

zero, tO y of F 1is reached. For H > vto one would expect tY = tO

(fe case 2 of Fig &) and y(H) to decrease as H 7. Equation (12) provides the

condition to be satisfied at H . First we observe that t < H/v is impossible.

For t > H/v we have

o= ditei - i .

-
]
|




But from (11),
F(t) = F(t - H/V) . (13)

Thus

- % e . (14)

If t= ﬁ/v then neither derivative (11) or (12) is separately zero but we
still have
¢ 30,

1
' TV 0

e
HF(H/V) .

rjw

giving ; =
Hence equation (14) remains valid when t =~ H/v . It is useful for checking

purposes since the computer program does not use it directly but instead locates

H by interpolation.

Equation (9) for the straight ramp gust encounter can be solved very
economically because the integrand is independent of H . One merely has to
store once and for all the accumulated area under F(t) at predetermined time
points and then use appropriate bandwidths when considering different H .
Equation (10) is far more complicated because the step response is weighted by
an H-dependent factor. Furthermore, practical checking formulae analagous to

(13) and (14) cannot be given.

3 EVALUATION OF INTEGRALS

The first operation in both the straight ramp and the smooth ramp programs
is to fit a cubic spline to F(t) . The two spare degrees of freedom are taken
up by third derivative continuity at the second and penultimate points (knots).
Subroutine TBO4A of the Harwell Subroutine Library is employed for this purpose.
A particular virtue of the cubic spline is that the area between knots is easily
calculated and will be accurate to third order even when the abscissae are

unequally spaced (¢f Simpson's rule).

2
At ' - B
+ Fi) b e (Fi i) (15)

i 2 i+l 12 i+l

where F' = dF/dt . The integral in (9) is therefore readily evaluated while

that in (10) requires further manipulation as fcllows,

S91
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Using the cubic spline, the 'weighted' (in the sense of (10)) area between

two adjacent knots is given by

t
1
.1
[ sin a(t' = )F()de = [Eé£l cos a(t' = t) + £~&}1 sin a(t' = v) 3
a® i
l0 g

- E:jgl-cus a(t' - t)

4

t
i
SALAJ
- £-%Flsin ale' - t)] . (16)
a (0

If we now consider the total integral over m intervals, the fact that
F.,F' and F" are continuous at the knots and that F''' is constant on each

interval causes most terms to cancel leaving

tm Cm m
j sin a(t' - OF(t)dt = [LS‘L)— eos o (' = €. + -—lz Z l-"i" (sina(t'= ¢, )
\
t a
to Q 1=
- sin a(t' - t)). Qan

Now, from equation (10) we have « = nv/H , tm = t' . Hence sin a(t' - tm)f~0.
cos a(t' - tm) = | while at the lower integraticon limit we must distinguish the

two cases (1) to = t' - H/v >0 (1) tO =0 .

In the first case we have:

(1) sin a(t' - to) =0, cos a(t' - to) o i

Therefore the first term on the right hand side of (17) becomes

F(t') + F(t' = R/v) _ F"(e') « F"(¢' = W/v) (18)
v /H (nv/H)3

Regarding the second term on the right of (17), all intervals except
possibly the first (depending whether or not H/v is an integral multiple of

At) Qill be of the same size, At . Theretore,
165
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m m
z = Z I-‘i" (sin a(t' - ti-l) - sin a(t' - ti)) + F;"(sin a(t' - to)

i=] 1=2
- sin a(t' - tl))

where Fi" is the third derivative of F(t) in the ith interval following ty -

= LI - = L = -1
But to t H/v , tl to At] (say) , t ti (m i)At and

H :
——— f c
m = e rounded up 1if necessary

m m
Therefore Z = Z(F"' 2 cos a(t' - ti + Az—t-) sin 0_123__‘)_ F'l" sin QAtI

1=] 1=2

t "ne " ]
R T, XV = - : .
2 sin R (F‘: cos 4 (m R Q)At) Fl sin H

i=2

In the second case we have:

(ii) All intervals are of length At and the integrand does not vanish at the

lower limit. The first term on the right of (17) becomes

' " (] * 3
Bel ECE) _ FQ) cos at' + £ cos at' = FQO) sin at' (20)
a o a o g

while, following the above analysis, the sum reduces to

m
“VAt Z !" cos -1-T— (m = 1 + })At 21
1‘
where m = t'/At .
It is therefore necessary to evaluate F" at each knot and F'" on each

interval and to store them. In addition, in order to evaluate efficiently the

integrals for all t' at given H it is helpful to first store

ﬂvAt: hes

cos (j = 1) -

for j = 1,2 ... integer part of (L

"
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The only quantities which then have to be recalculated at each time point are
cos at' and sin at' (for use in (20)). When t' > H/v even this becomes
unnecessary although F(t' - H/v) and F"(t' - H/v) may then have to be
specially interpolated from the cubic approximation over the relevant interval

for use in (18).

Potential trouble spots in the above formulation are the heavy dependence on
third derivatives and the presence of F'(0) and F"(0) in (20) because no
restrictions are placed on the derivatives generated at the end points of the
spline. Tests with analytic step responses have verified that the numerical
scheme can be very accurate but ultimately of course, in any practical case much
will depend on the nature of F(t) and the sampling interval, At (see also
section 8). Perhaps the more important feature of the comparison with analytic

expressions was the validation of the programming of equations (18) to (21).

4  OBTAINING y(H)

The previous two sections explained how the ramp response is calculated at
equally spaced time points for each trial gust length, H . We now have to
detect its primary peak and, where applicable, the maximum overswing. No
assumptions can be made about the shape of the curve which makes the location of
global extrema all the more difficult. The basic procedure in both programs is
to search the set of ¢(t) for the largest positive and negative values and to
then interpolate y(H) and tY using d¢/dt . The situation depicted in
Fig 5 will therefore be wrongly analysed as shown but it is hoped that At can

be specified sufficiently small to render such a shortcoming unimportant.

As noted in section 2, when using the straight ramp model we have to be
particularly careful to evaluate ¢(H/v) explicitlybecause d¢/dt is there
discontinuous. At other absicissae d¢/dt can be found directly from the tabu-
lated step response using (11). We therefore have to consider the following

possibilities.

(1) ¢(H/v) 1is the largest ordinate found initially,
then either (a) d¢/dt changes sign at H/v in which case tY = H/v , or
(b) d¢/dt does not change sign at H/v , Ze tY lies between H/v

and one or other of the adjacent abscissae.

(2) ¢(H/v) 1is not the largest ordinate found initially but jAt is. Then t,

lies somewhere between (j - 1)At and (j + 1)At . Again, if H/v lies within

this interval, care must be taken to locate the nearest point te jAt which
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brackets the peak so that tY and Yy(H) can be accurately interpolated,
te tY lies in one of the intervals ((j = 1)At,jat), (AL, () + 1)AL), (H/v,jAn),
(jAt,H/v).

The process of interpolating the peak is merely that of finding a stationary
point of a cubic given the function value and first derivative at two bracketing

abscissae.
The smooth ramp model differs in that t = H/v does not present any special

difficulties but on the other hand, obtaining d¢/dt is not so straightforward.
In fact differentiating (10) gives

L
802 n2 2 1 nv
e ¥ cos = (t' = )F(e)de . (22)

max(0,t'=H/v)

“

Instead of evaluating the above integral we have elected to fit a cubic spline
through oz(t) and to interpolate the required extrema from it having located
the maximum and minimum tabulated points by inspection as in the straight ramp
model.

5  FINDING H, y(H) AND cY(ﬁ)

Both the primary peak of ¢(t) and the largest overswing are determined for
each trial value of H supplied by the user. Actually, we seek the extreme
positive and negative responses y+(H). y_(H) . It was originally suggested that
we call the larger (in absolute value), Y, and the smaller, y_ but this
seemed to be more confusing and could (if Yo () and |Y_(H)| , as we have
defined them, intersect) complicate the shape of yY(H) causing discontinuities
in dy/dH and corresponding difficulty in locating 0 (see Fig 6). Using the
revised convention, y(H) is more likely to be unimodal and only after ;’ and
Y_ have been estimated do we decide which is the primary peak and which is the
overswing. It is not necessarily the case that the sign of the primary is the
same as that of the first peak in the ramp response nor that the worst overswing

occurs after the primary.

In order to find H it is essential that the user supplies trial values of
H which bracket N , Or more precisely, that the extreme ‘(“trial‘ occurs
neither at the smallest nor the largest gust length supplied. 1In principle the

165
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program could select its own trial values of H , choosing gust lengths anywhere
between vAt and vt (where t is the last point of the given step

max max
response). In practice it was felt that the response to specific gusts could be
of interest so the programs expect a minimum of three trial gust lengths. The
user should avoid H < vAt or H > vtmax and should be careful to supply enough
time history, F(t) . Strictly speaking, sufficient step response should be input
to enable y(2H) to be calculated but this may not always be possible (see

section 6).

Assuming these conditions have been fulfilled we will get a best estimate of

H and lower and upper bounds HL and H . We then use a safeguarded quadratic

U
interpolation scheme outlined below to successively improve H until

-

max(Hu -H, H- HL) is sufficiently small. Several further ramp responses will
have to be calculated but we feel that the labour is justified. It may be
thought possible to economise calculation by only evaluating ¢ in the vicinity
of tY but unfortunately tY can change discontinuously (and hence t cannot

safely be interpolated) as the following example shows.

Consider the step response shown in Fig 7a in conjunction with the straight
ramp model and let area A3 exceed area Al and Then (see

Fig 7b) tY = H/v until H =v

t i > ¢
03 02 01
tol is reached after which tY = tOl

sufficiently large that A3b = Al when it switches discontinuously to

until H is

t
13

increasing to t03 when H = v(t03 - LOZ) . Eventually CY will revertto
Yor ™ %
t14
where F(t)dt = Al .
! Sk

This is a powerful argument in favour of computing extra ramp responses rather
than attempting to interpolate t directly from the responses at the given values
of H . Although Y and H may perhaps be satisfactorily derived from the
initial set it is apparent that t could be grossly in error and henee the most

adverse gust pair predicted (see section 7) would be totally misleading.

We now describe the quadratic approximation procedure used to improve H .
The simplest algorithm would be one which always maintained three points bracket-
ing the peak so that interpolation was always possible. However, if the curve
was very asymmetric such a process would be inefficient. For example, in Fig 8,

point 3 would always be retained and slow convergence would be experienced because

e et e g e s e e e e

e

A
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of its remoteness from H . A preferable scheme is to maintain wherever possible

the three highest points even if it means extrapolating H . An artificial bound

would then be needed to safeguard the extrapolation. Such algorithms are common-

place in one-dimensional search routines appearing in optimisation programs and

are discussed by Brent3 and Gill and Murraya. If ﬁ is the highest point so far

found and HL and HU are the current bounds on H then the artificial bound

is defined by

H, = H+ 8 - B H > u
(23)
= H+B(H, - H) X <8

where u = !(HL+HU) ;i B=143 -5 .

1f the extrapolation predicts a point outside (HL'HU) then HA is used instead.
This strategy becomes comparable with the usual bracketing technique as the
skewness of the curve decreases. In fact, the programs work with the curve

y(log H), making the determination of H even easier. t is not interpolated

but is obtained directly from ¢(§,t) as of course is ; .

A further refinement prevents the evaluation of ¢ at values of H which are
too close together. The user supplies a parameter specifying the relative

accuracy, AH/H , required and the program locates H such that
max(loge(H/HL). 1oge(HU/H)) < AH/H (24)

while keeping the minimum separation between any pair of (logarithmic) trial

gust lengths » %% .

6  SENSITIVITY FACTOR

Jonesl defines A , the gust length sensitivity, a measure of the sharpness

of the peak in Yy(H) by

_ o (2@ - YOl - ygﬁ/z))‘
1oge2 ( 2wy (H) y (25)

An alternative expression which ignores gusts longer than H is

B . itiee o
G s 10;02 (Y(“)"Y(E)“le ) . (26)

These quantities are evaluated for both y+(H) and y_(H) .
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Note that the calculation of Y(Zﬁ) may require the provision of an uneconomic

amount of step response. Likewise, the user should beware of suggesting too short
a trial gust length or of occasions where H is so short that H < 2vAt . The
programs will ignore trial gust lengths < vAt but will attempt to determine

y(ﬁ/2) in similar circumstances so that A may be evaluated. Note that for

ramp gusts of very short gradient distance (straight or smooth) we have the

asymptotic result

¢(H,t) ~ H*F(t) as H~> 0. (27)

Thus a unit step gust can effectively be regarded as being equivalent to a ramp
gust of length ] ft. However, the programs do not exploit this feature,

7e the maximum and minimum of F(t) are not determined.

7  GUST PAIRS

Having calculated ;+ - E+ 3 ﬁ+ ’ ;_ » E_ and ﬁ_ , we identify the
primary peak with the larger of ;+ and |;_[ , the smaller becoming the worst

overswing. We then deduce the most adverse gust pair situation as follows.

The maximum possible response is (y+ + ];_]) occurring at £, or ot
whichever is the later. Let us assume for clarity that E_ > E+ . Then, as
noted in section 2, the worst gust pair is a ramp gust of length ﬁ_ followed

by one of opposite sign of length ﬁ+ » Separated by HS where (see Fig 2)
Hs = v(t_ - t+) LR (28)

It is conceivable that Hs < 0 will result but again we leave aside the inter-

pretation of such a situation.
8 ACCURACY

As stated at the beginning of this paper, we have tackled a specific mathemati-
cal problem leaving it to others to assess the results and the validity of the
models used. The interaction with our computer programs really only occurs
through the specification of AH/H . The fixing of this parameter depends
primarily on one's assessment of the accuracy of the discrete ramp model. Having
made such an appraisal it is then up to the user to ensure that the step response
is sufficiently well represented for the desired accuracy to be attained for it
must be remembered that the numerical scheme has a finite accuracy and spline
fitting, integrating and interpolating are all sources of error. The question

then is - how close is the problem which the program has accurately solved to

Clite 0 el (o
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that which one has tried to specify? In a practical situation the only insight
available is by rerunning the program with fewer points defining the step response

and comparing results. If they are too different then a finer tabulation of

F(t) is probably necessary.

Both the straight ramp and smooth ramp programs have been tested on a two

parameter family of analytic step responses suggested by Jones and which may be

written as

F(t) = e-gt(cos Qt + SELi%-llé sin Qt) (29)

where nz = ] - 62 stz O E<])

With At = 0.5 and v =100 , H and t were, with the smooth ramp program
always obtained to within 5% while ; was even better (<1Z). However, the
dominant factor affecting numerical accuracy is the density of tabulated points
relative to the scale on which F varies. The period of the above function
exceeds 2w by definition of @ . At = 0.5 1is thus not a large spacing by any
means. Tests have suggested that the straight ramp program is relatively more

accurate probably because of the need to spline fit ¢(t) in the smooth ramp

program.

Normally, F(t) would be obtained by solving a set of differential equations
in which case At would automatically reflect the variability of F so that
hopefully no appreciable loss of detail need occur in feeding F(t) to the ramp
gust programs. A possible snag is that differential equation solvers tend to
vary the step size thereby tabulating F(t) in a manner unacceptable to the

smooth ramp program which requires equally spaced points.

In summary, we are confident that <I% error in H, t and ; is attainable

on an ICL 1900 series computer for arbitrary F(t) , providing F(t) is well
tabulated (Ze we expect the numerical methods to be able to handle many more

than the 200 data points currently allowed by the dimensions of arrays).
Obviously, precision will suffer when the programs are run on a machine possessing

lower floating point accuracy and double precision working may then become
compulsory.
9 USING THE PROGRAMS

165

There should be little difficulty implementing the programs because they

have been written in standard FORTRAN and the data required is minimal. The

following quantities need to be input on channel 3.
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(a) TMAX

(b) TINT

(c) VELY

(d) DT

(e) NH

(f) H(I),

(g) HLTOL

(h) IPR

IPR =

(i) IANAL

This completes the channel 3 data. If TMAX > 0 then the step response must
be tabulated on channel 1. Both programs currently include coding for F(t) given

by (29) and the straight ramp version can determine ¢(H,t) by integrating

the time of the last point in the step response. Set negative if
analytic F(t) (programmed in FUNCTION FUNC(T)) is to be used.

the time interval at which F(t) is to be calculated or supplied on
channel |I. In the smooth ramp program, TINT is necessarily also the
interval at which the ramp response is evaluated. If F(t) 1is supplied
in tabular form to the straight ramp program then TINT is not read and
the time points are expected on channel | and can be arbitrarily
spaced. This facility will probably be little used (but see section 8)
because the smooth ramp model is preferred and the same step response

data cannot be used immediately.
the speed of the aircraft in ft/s.

the time interval at which the straight ramp response is to be cal-
culated. Not read in the smooth ramp program because DT = TINT

necessarily.
the number of trial values of H supplied (NH 3> 3)

I =1,NH trial gust lengths. H to be bracketed;
B H/v » At preferably (see section 5).

accuracy required, AH/H .

print control parameter giving different levels of output on channel 2

as follows _
- 1 data summary; Yy and ty for trial H(I) and H ; X ; Ay ; worst

gust pair:

0 as IPR= -1 plus Yy and ty for all extra gust lengths investi-
gated including 4H and 2H . Also the integrals in (9) or(10) are
output at intervals of At for H=H and §H .

1 as IPR = 0 plus the tabulated spline fit to the step response.

2 as IPR = 0 plus ramp responses for each H(I) supplied by the user.

The multiplying factor vH—2/3 or % vH-Z/3 is also output for con-
verting the integrals to ¢(H,t) .

3 as IPR =1 and IPR = 2 combined.

Set to zero if subroutine ANALYTIC to evaluate ¢(H,t) analytically is
either not provided or not being used. Otherwise, input any non-zero

integer value. :




analytically. They expect a and £ to be input immediately after TMAX (< 0).
Figs 9 to 12 typify the computer output (IPR = 3). The straight ramp program pro-
duces similar output except that the columns of the spline fit headed D2F/DT2 and

D3F/DT3 are absent because they are not needed.

10 CONCLUSIONS

At the request of J.G. Jones of Flight Systems Department, RAE, Bedford,
two FORTRAN programs have been written to facilitate the identification of the
discrete gusts which produce the greatest aircraft response. The input to the
programs is the calculated response as a function of time to a unit step gust.
From this one can determine the behaviour on encountering a gust whose intensity
profile is of ramp form. The process is in principle quite straightforward but
converting the theory into an algorithm suitable for a computer required consider-
able care. Our declared aim was to reduce to negligible proportions the numeri-
cal errors accompanying the implementation so that consistent results can be
obtained. This has been achieved at very moderate extra expense in terms of

computational effort and thus seems well worthwhile.

The programs are very easy to use and have been applied at RAE, Bedford, to
realistic step response profiles with satisfactory results although double
precision working was needed because of the shorter wordlength of the SIGMA

computer.

165
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Fig 1&2
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Straight ramp Smooth ramp
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Fig 1 Model gust intensity profiles
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The extreme response will be (7++|7_|)

Fig2 Critical gust pair
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Fig 3a&b
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a Replacing a smooth ramp by a series of steps

b Scaling and shifting the response to a unit step gust

Fig 3a&b Numerical approximation of a (smooth) ramp gust. Thecurves 1, 2 , 3
are then added together to get ¢(H,t). These diagrams are schematic; the
actual computation is considerably more sophisticated (see text)
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‘y (< H/V) -To

Q—'J = 0 because ly < H/V and FHY) =0

o
Q

changes sign discontinuously at ly because
F(o)>F(tv)>0

o

Fig4 The time at which the extreme response to a straight ramp gust
occurs (see equation (11) et seq)




Fig 586

@ ()

ot

A »

2 4
At 2AtV3At LAt i T t

Fig5 The danger of sampling the step response (and hence of generating the ramp
response) at too few points. The primary peak and overswing will both be
missed because the programs search only the neighbourhood of the extreme
tabulated points

1 A L

He Hq H-

Fig6 Variation of extreme response with length of gust. Defining to be the

envelope of the above curves could cause trouble, eg the worst gust pair
would be wrongly predicted because the peak at H_ would be ignored.
Alternatively, because y  becomes double humped, ﬂ+ might be missed
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a Step response having the properties
(i) to3— to2 >to1
(ii) area A3 > area Al (A3b = A1)

Vig Vitg3—to2! H

b ty(H) for the above step response using the
straight ramp model

Fig 7a&b Showing possible discontinuous behaviour of t.,(H)




Fig 8

Fig8 Quadratic interpolation of a skaw function. Points 1, 2, 3 are the starting
values. Points 4, 5, 6 are obtained by fitting a parabola through (1, 2, 3),
(2, 4, 3), (4, 5, 3) respectively always retaining two points bracketing the
best (highest). This process is inefficient compared to that described in
section 6
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AIRCRAFT RESPONSE TO SMOUTN RAMP GUSTS (A.G, PURCELL APRIL 197¢)

ANALYTIC STEP RESPONSE DEFINEL BY ALPHNA = S,U0 AND X! = 0,5V

AIRCRAFT VELOCITY = 100, FT/SEC
RAMP RESPONSE CALCULATED AT 0.20 SEC INTERVALS uP YO0 T = 10,00 SECS

GUSTS OF LENGTH W < €dU,0 FT ARE EFFECTIVELY STEPS
SUCH HC(I) IN THE DATA ARE IGNURED

Fig9® Title page of output from the smooth ramp response program




Fig 10

CUBIC SPLINE FIT TO STEP

T

0,.0000E 00
2.0000E=01
4.0000E=01
6.0000E=01
8.0000E~01
1.0000€E 00
1.2000E 00
1.4000E 00
1.6000E 00
1.8000E 00
2.0000€ 00
2.2000E 00
2.4000€ 00
2.6000E 00
2.8000E 00
3.0000E 00
3.2000€ 00
3.4000€ 00
3.6000E€ 00
3.8000€ 00
4.0000€ 00
4.2000E 00
4&,4000&8 00
4«.6000E 00
4&.8000E 0O
5.0000€ 00
5.2000€ 00
5S.4000& 00
§.6000E 00
5§.8000€ 00
6.V000E 00
6.2000€ 00
6.4000E 00
6.6000€E 00
6.8000E 00
7.0000€ 00
7.2000€ 00
7.64000€ 00
7.6000E 00
7.8000€ 00
8.0000€E 00
8.2000E 00
8.4000E 00
8,.6000E 00
8.8000E€ 00
9.0000E 00
9.2000€ 00
9.4000E 00
9.6000€ 00
9,.8000€ 00
1.0000€ 01

RESPUNSE
FCT) DF/DT
1.V0VVE vwU 1.5J1SE 00
1.¢514E v0 1.u¢15E 00
1.0121E vV 5.9355€E-01
1.49¢6E (U 2.€122€=01
1.5065E vV -9,16469E=02
1.4600E 0V =3, 44C1E=0
1.3707E Vv =5.3869E=01
1.4481E uV -6 .(845E=01
1.10472E LV -72.6837E=01
9.6372-01 -8 .14¢2E=01
7.794YE=01 =8.£4¢34E=01
6.1607E=v1 -?.9947E=01
4, 6143E=01 -?2.2151E=01
3.1750E=01 -6,8525E=01
1.8818E=01 -6.,0624E=01

7.,550%Y€e=0d
-1,946YE=0¢
9 65¢rE=02
-1,9613E=01
-1,99¢8E=01
-l CT4LE=UT
-, 42Z3E=01
=, 4561E=01
“l, 5950E=01
-, ¢SE5E=01
«l U650E=V1
«1,.8321€E=01
«1.5751€E=01
«1,50(YE=01
=-1.04618E=01
-7  86LBE=VE
«5,4809E=0¢
=3 .3434E=0¢
1 ,46(0E=02
1.211%E=03
1,6175%E=0¢
2, b2/1E=0E
3. 1671€~0¢
3.658V0E~Ve
$.927rE~VE
4,0066E~0¢
3.9204E=0¢
$,7189E~0¢
3,6140E=0¢
5,062¢CE=0¢
¢,6273E=0¢
2.19¢7E~0¢
1.0576E=0¢
1.83/9E~0¢
9,.4591€E=~03
5,9081€E~03

-5 1964E=01
=4 . CY9PE=01
-3,.4102E=01
“2.5586E=01
«1.7690E=01
=-1,.0586E=01
-4 ,3874k=02
8.40¢3E"03
5.1006E=02
8.3995E=02
1.07297E=01
1.¢370€E=01
1.3410E=01
1.9421E=01
1.3109E=01
1.<¢380E=01
1.1335€E=01
1.0071€E=01
8.6/13E=02
7.¢1¢3E=02
S.7571E=02
4. 85578E=02
3.05%46L-02
1.8773E=02
8.4554LE=03
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=2.1888k=02
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=2.0379E=02
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=1.,6692E=02

D2F/DT2

"-550‘5 vl
=< ,2699E uO
=<, 0093 (U
«1,7140€ VU
«1,4129E v(
=1,11646E v
~8,30¢3FE=01
-y, 8§741E=UT
«3,3173%E=01
«1.2679E=01
4,5588E=v¢
1.8507€=01
2.9258E=01
35,7003¢=01
4,2007€=01
4,4L586E~v1
4L .5087E-01
4,3867€-01
4.1284E=-01
3.767/7E=01
3.3363€-01
2.86¢5E=01
2.37126=01
1.R8352€=01
1.6157€-01
9. 8173E=V2
5.9097¢€=02
2.4L969E-v2
«S5 . 8745E=03
«2,7350E=0¢
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9.2184E=VS
1.1333¢e~02

Fig 10 Spline fitto F(t) . Outputonly if IPR=10r 3

D3F/DT3

1.3048E 00
1.30Z8E 00
1.4763E 00
1.5059€ 00
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