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1 INTRODUCTION

The problem discussed in this Report is the following: 
-

• Given the response F(t) of an aircraft flying at a certain speed to a

unit step gust, predic t the response to a family of ramp gusts and determine the
• critical gust length at which the extreme response occurs.

The investigation was treated, purely as a mathematical and computational

exercise; the soundness and applicability of the physical theory (eg Jones1
) was

taken for granted. Jones recalls in that Report that the earliest airworthiness

requirements were based on response to discrete gusts but that recently more

emphasis has been laid on irregular turbulence, the implication being that

responses can be deduced adequately from stationary random process theory. He

then argues that large aircraft loads cannot be satisfactorily predicted by

spectral analysis and that the consideration of discrete ramp gusts is preferable

if extreme responses are to be reliably estimated. Effectively , the argument is

that the power spectrum (PSD) method estimates the root mean square response

whereas one is really interested in the extreme behaviour and that the non—

Gaussian character of turbulence can be so marked as to undermine the usefulness

of the mis value. In particular, the PSD method is not to be trusted when the

dominant aircraft mode is well damped .

The problem is the familiar one that the weight of interest falls in the

tail of a distribution where probability levels are only poorly defined by

empirical evidence. Any extrapolation from the relatively well defined body of

the distribution is unsafe unless independent information on the shape of the

distribution is available. In addition, Jones points out that dynamic response

is produced by ohangee in wind velocity so that one must determine the probability
distribution of velocity gradiente. Many power spectrum investigations have

only considered the velocity distribution.

To cope with situations in which non—Gaussian velocity gradients are

significant, Jones has developed a statistica l, discrete gust model wherein the

intensity , W
H 

of a ramp gus t is related to its gradient distance (H) by

W
H 

- w
0H~ ( I )  J

where w
0 is der ived directly from measurements and varies with altitude . This

dependence of gust intensity on gradient length is valid over the range of wave—

lengths (A) for which the Kolmogoroff (proportional to A4 ; A ~ 2H) power
spectrum of atmospheric turbulence applies. Fortunately, the Kolmogoroff spectrum

_ A
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appears to be valid far beyond the wavelengths associated with extreme i~ir craft

response.

The ramp (see Fig 1) may be either straight or ‘one—minus—cosine ’ (smooth).

v
1
(x) — W

H(H) 
0 ~ x ~ H (2)

‘TXw2 (x) — 
~
vH(l — con ; 0 ~ x ~ H . (3)

dw dv
• The latter has the advantage that __a — 0 at x — O, H (whereas isdx dx

discontinuous at the end points) and is generally preferred .

In the next section we derive the ramp response from the unit step response

and the gust profile. Later sections explain the computational details and the

determination of that gust length, H which causes the worst response , y

This is extended in section 7 to deduce the most adverse gust pair.

Although the problem appears straightforward at first sight, being basically
one of numerical integration and interpolation there are complicating features.

In add ition, al though the physical model is only approximate, we did not wish to
further degrade it with rough calculations. Our efforts to ensure efficiency,

accuracy and stability in the numerical operations are duly described.

Thus, in section 3 we describe the integration procedure based on cubic

spline f i t t ing  of the step response , exp laining the considerable economies which

are possible with this formulation. The straight ramp generates a discontinuity

in the slope of the ramp response which can be most troublesome (if , for example ,
• the ‘corner ’ is smoothed) if not properly handled as described in section 4.
• Extra trial gust lengths are needed to refine the estimate of the critical gust ,

II , and more especially , the cri tical time , t . These are kept to a minimum by

an efficient interpolation procedure (see section 5).

The end result, we believe , are computer programs which can determ ine the
critical ramp gust and gust pair with errors which are negligible compared to

those arising from the fundamental physical assumptions and idealisations.

2 DERIVIN G THE RAMP RESPONSE FROM THE STEP RE SPONSE

2.1 Assumptions 165

The important assertion which motivated the present work is that the res-

ponse to an isolated ramp gust of a given length and profile shape is a meaning—

ful quantity to calculate. Jones1 
claims that such a representation is usually

/ 
— - ---. ——- - --- •~~— -  
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reasonable at least in the vicinity of the critical gust length (ie that iselated

gust which generates the worst behaviour). In other words , despite turbulence

being comprised of gusts of all lengths , only a limited range is important and

the magnitude of the worst response can be fairly well predicted by identifying

the critical isolated gust (or, more generally, sequence of gusts).

A second major assumption is that the system is linear. A corollary is

then that

y(w
0
,H) w

0
y(I ,H)

where y is the (extreme) response.

The linearity assumption also facilitate s consideration of gust pairs

whereb y overswing tuning can result in a greater response than any single gust
would cause. The effect , of course, is unimportant for well damped modes. Gust

pairing is therefore an extension of the basic concept to moderately damped modes

and involves finding the critical gust length, H
0 , 

which results in the worst

overswing as well as that (11) which gives the extreme primary response . The

most adverse situation is when the two gusts occur with opposite sign and appro

priate spacing H (see Fig 2 and section 7) so that the first overswing due to

the first gust coincides with the primary peak due to the second gust. The

spatial extent of the critical gust pattern is therefore

H
2 

— H + H
0
+ H . (4)

More complex sequences of gusts are not considered . However, it is possible to

extend the concept to include very lightly damped modes and a recent paper by

Jones2 envisages the superposition of responses to as many as eight successive
gusts. Of course, the probability of the critical pa ttern occurring decreases
as the number of component gusts is increased.

2.2 Theoretical considerations

Let the step response be F(t) and the ramp response be •(H,t)

Essentially, the calculation of 4’ involves the numerical integration of F(t) .

Note that strictly speaking we should write F(v,t) but it is customary to

regard the aircraft velocity as constant during an encounter with turbulence .

It is not a simple (le linear) matter to determine 4’ (and hence y(Ifl) at

165 ~~fferent speeds 
— F(t) must be recalculated .
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A ramp gust can be thought of as a series of n step gusts (see

Fig 3). Thus we have to combine together up to n step responses , each

scaled and appropriately time shifted. The linearity assumption is essential

if the means of combination is to be simple addition . The response at time

t ’ will be given by

— 6w .F(t’ — i . )  (5)

where nó t — H/v ; t .  — 16t ; j — mm (n ,t’/.St) . Letting 6t -
~~ 0

min ( t’ ,H/v)

•(H,t ’) — J ~~~~F(t’ 
— t)dr . (6)

- $ Or making the transforma tion t — t ’ —

4’(H,t ’) - I ~~ 
F( t)d t . (7)

max(0 ,t ’—H/v)

The limi ts reflect the assumption tha t 0 when t < 0 or t > H/v . Expressed
as functions of time and setting v

0 
— I , equations (2) and (3) become

w
1
(t) — ; w

2
(t) — II1~ (1 

— cos 
%~~

). (8)

Hence (7) gives, respec tive ly,

- J F( t)d t (9)
max(O,t’—R/v)

- ~~~~~~ J sin (t ’ - t)F(t)dt (10)

max(0,t’ H/v) 6

V •-- V ~~~~~~~~~~~~~ - ~~~~~~~~ ~~
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Thus the s t r a igh t  r amp response at t ime t ’ Is mer~’Lv the .irc.~ under

the step response between t ’ and some earlier t ime , either zero or t ’ — H/v

Furthermore, dit ferentia ting (q) gives

V , ~o
— 

~ I F ( t ’ — HJv)f) 
( I I )

— —
~~

-- (H + F(t ’ — H/v) (I’~)— 
311 4’1 ~ 

H~

• From equation (II) we can envisage three  po ssible s i t u a t i o n s  concerning

the t ime, t , at which the maximum response , y(H) occurs. As depict ed in

Fi g .
~ t ~-~ u he gre .~ er han • less ban , or equa l to H/v . The f i r s t  two

• present no computational  dit ficul ti es because ~4’1
/~ t — 0 but the third case

could be troublesome’ because the disc ontinuit y in ~~/~ t ’ coincides with t

Now , in any numeri al scheme integrals can o n l y  be computed at  d iscre te
(usua l ly  pr e—determined )  po in t s .  If one seeks maxima and minima of a function

defined only as a set of poin ts  then some i n t e rpo l a t i on  is necesb ary . Of

necessity the in te rva l  between adj acent poin ts  w i l l  be represented by a f u l l y

continuous in terpola t ing func t ion and ~ i f f i c ul t ie s  can be expected ii the

origina l function is less well behaved.

Trouble was indeed encountered with the straight ramp when the derivative

discontinuity at t • H/v fell within the same integration interva l as t

The resulting interpolation errors superimposed a ripple on the “~(H) curve

making impossible the accurate determination of H . The pr oblem only ar i ses i f

F(O) ~ 0 but  u n f o r t u n a t e l y  th i s  is eomImV~n because F ( t )  is the response to

a at.’r gust. The counter—measures adopted are described in section 4. The re

was no corresponding d i f f i c u l t y  w i t h  the one—minus-cosine ramp be cause
is everywhere smooth.

It can al so be surmised that t will increase with H until the’ f i r s t

zero, t
0 

, of F is reached. For H > Vt
0 

OflC ?ould expect t — t
0

( :~ ‘ case 2 Ft ~~ 
‘
~ 
‘
~ md H~ t o  d~’ ~‘t  ca st ’ as . Equa i on I. I .~ prov  i tIes the

cond i t i on ‘. o be sat i sf led a t  H . Fir st we observe’ that t tl ’ v is impo ssihl e

i~s For t H/v we have

— -~- H ~F(t 
— f ly)
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But from (U),
V 

F(t) — F(t — f ly ) . (13)

Thus

— 4 H ~F ( t )  . ( 14 )

If t - H/v then neither derivative (II) or (12) is separately zero but we

still have

— 0

giving y — -
~~ H

3F(H/v )

Hence equation (14) remains valid when t • H/v . It is useful for checking

purposes since the computer program does not use it d i r e c t l y  but  instead locates

H by interpolation .

Equation (9) for the straight ramp gust encounter can be solved very

economically because the integrand is independent of H . One merely has to

store once and for all the accumulated area under F(t) at predetermined t ime

points and then use appropriate bandwidths when considering different H

Equat ion ( 10) is far more complicated because the step response is weighted by

an H—dependent factor . Furthermore , practical checking formulae analagous to

(13) and (14) cannot be given.

3 EVALUATION OF iNT EGRALS

The first operation in both the straight ramp and the smooth ramp programs

is to fit a cubic sp line to F(t) . The two spare degrees of freedom are taken

up by third derivative continuity at the second and penultimate points (knots’).

Subroutine TBO4A of the Harwell Subroutine Library is employed for this purpose.

A particular vir tue of the cubic sp l ine is that the area between knots is easily

calculated and will be accurate to third order even when the abscissae are

unequally spaced (c~f  Simpson’s rule).

A. — 4~ (F . 1  + F. )  + .~~~~~
— (F~ 

— F~~ 1
) (15)

a’
where F’ — dF/dt . The integral  in (9) is therefore  readily evaluated while

that in (10) requires further manipulation as follows.



- —-- - ~~~~~- - - V~~~ - - ---~ ’- ~~~~~~~~~~~~~~~~~~~~~~~~~ 

i
Using the cubic splmne ’, the ‘weighted ’ (in the sense of (10)) area between

two adjacent knots is given by

t

J sin a ( t ’ — t)F(t’)dt [!_~-~-) cos a~~~’ — (1 sin a(t’ —

t o
— 

,~__S t1. t’O $ a (t  ‘ — t )
a t

i
F”( t)  1

• — ——--~——- si n a(t ’ — t )j  . tit ’)
a t o

It we now consider th ’ tota l int egra l ove’i- m jut erva Is , the i~ ct that

F,F’ and F” are cot et  i nu o t i s  at the  knots and tha t F’’’ is constant on each

interval causes most terms 0 cance’ I leaving

t

— t)F (t’)dt - {~~J t’O$ a - .. ~~~~~~~~ + ( S l f l  a (t ’ -

— sin a (t ’ — t ’ ) ’i . (17’)

Now, from equation ~ 
101 We’ have’ a — nv/H , t — t ‘ . Hence sin a ‘ — t

m
) ~ 0

cos a(t’ — tm
) I whil e’ at the Lower integr ation limi t ~~~~‘ mus t distinguish the’

two cases (i) t o t ’ — H/v 0 (ii) • 0

In the t i r s t  case we have :

(1) sin att ’ — t0
) — 0 cos a~~ ’ — t v,) 

— I

Therefore the first term on the right hand side of (17’) becomes

F(t ’)_+ F(t ’ — 11 1w) F” t,t ’ ’ ) i  F”t~t ’ 
— H/y~

nv/H 3( sv /H )

Regarding the second term on the r ight  ot t. I 7’) , all intervals except

possibly the first (depend i ng whethe r or not H/v is an integral multiple ot

\t ) will be of  the ’ same size. .\t . Theret ore ,
165

- _ _
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m m , ,,
— F~” (sin ce(t ’ 

— t .~ , 1 ) — sin c ( t ’ — t
i

) )  + F
1 
(sin a(t’ — t

0
)

i—I i—2
V~

j  
— sin a(t’ — t 1

))

where F!” is the third derivative of F(t) in the ith interval following

But t
0 

— t ’ — H/v , t
1 

— t
0 

— ~ t
1 
(say) , t’ — t .  = (m — i)tat and

m — 4- rounded up if necessary .

T h e r e for e  ~~~r’’ 2 cos tt (t ’ — t .  + 
~~~~

-) sin sf—) — F ” sin

1TV&

— 2 sin ~~~~ ~~~ (F~” cos (m — j  + 3)~ t~— F ” ~~ 
I

H i~~2
(19)

In the second case we have :

(ii) All intervals are of l ength .\t and the integrand does not vanish at rhe

lower limit. The first term on the right of (17) becomes

F(t ’) 
— 
F”(t ’) 

— cos at ’ + 
F” (O) cos at ’ — 

F ’(O) 
sin at ’ (20)ci 3 ci 3 2

a a a

while , followi ng the above analysis, the sum reduces to

2 sin F’” cos (m — i + ~)~~t (2 1 )

i—I

where m — t ’f ~ t

It is therefore necessary to evaluate F” at each knot and F ” on each

interval and to store them. In addition , in order to evaluate efficiently the

integrals for all t’ at given H it is helpful to first store

cos (j — ~) 1~~1~ for j  — ... intege r part of (—h) . 
165
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The only quantities which then have to be recalculated at each time point are

cos at’ and sin at’ (for use in (20)). When t’ > H/v even this becomes
unnecessary although F(t’ — H/v ) and F”(t ’ — H/v) may then have to be

specially interpolated from the cubic approximation over the relevant interval

for use in (18).

Potential trouble spots in the above formulation are the heavy dependence on

third derivatives and the presence of F’(O) and F”(O) in (20) because no

restrictions are placed on the derivatives generated at the end points of the

spline . Tests with analytic step responses have verified that the numerical

scheme can be very accurate but ultimately of course, in any practical case much

will depend on the nature of F(t) and the sampling interval, t~t (see also

section 8). Perhaps the more important feature of the comparison with analytic

expressions was the validation of the programming of equations (18) to (21).

4 OBTAINING y(H)

The previous two sections explained how the ramp response is calculated at

equally spaced time points for each trial gust length, H . We now have to
detect its primary peak and, where applicab le, the maximum overawing. No V

assumptions can be made about the shape of the curve which makes the location of

global extrema all the more difficult. The basic procedure in both programs is

to search the set of •(t) for the largest positive and negative values and to

then interpolate y(H ) and t using d4/dt . The situation depicted in

Fig 5 will therefore be wrongly analysed as shown but it is hoped that tit  can

be specified sufficiently small to render such a shortcoming unimportant.

As noted in section 2 , when using the straight ramp model we have to be
particularly careful to evaluate 4 (H/v) explicit ly because d~ /dt is there

discontinuous. At other absicissae d+/dt can be foun d directly from the tabu-

lated step response using (II). We therefore have to consider the following

possibilities.

(1) 4(H/v) is the largest ordinate found initially,

then either (a) d$/dt changes sign at H/v in which case t
1, 

= H/v , or
(b) d~ /dt does not change sign at H/v , ic t lies between H/v

and one or other of the adj acent abscissae .

(2) •(H/v) is not the largest ordinate found in i t ial ly  but j~~t is. Then
lies somewhere be tween ( j  — I )~ t and (j + i)~ t . Again , if H/v lies wi thin

165 this interval, care must be taken to locate the nearest point to jAt  which 

-
~~

-
~

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V
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bracke ts the peak so tha t t and y(H) can be accurately interpolated ,

ic t lies In one of the intervals ( ( j  — I)At ,jAt). (jAt , ( . j + I ) V \ I ) , ( H / v , j A t ) ,

(jM ,H/v) .

• The process of interpolating the peak is merely that of tVindfng a stationary

point of a cubic given the function value and first derivative at two bracketing

abs cia sac .

The smooth ramp model differs in that t • H/v does not present any special

difficulties but on the other hand , obtaining d$/dt is not SO straightforward .

In fact differentiating (10) gives

2 2• — f ccc (t ’ — t)F(t)de . (1.’)

max(0 , t’—H/v)

instead of evaluating the above integral we have elected to f i t a cubic spline

through •2~~~ 
and to interpolate the required extrema from it having located

the maximum and minimum tabulated points by inspection as in the straight ramp

model.

S FINDING H, ~~H) AND t~(i)~
Both the primary peak of $(t) and the largest overawing are det e r m i ned to t

each trial value of H supplied by the user. Actually, We seek the extreme

positive and negative responses y~
(H), y JH) . it was originally suggested that

we call the larger (in absolute value), and the smaller , y hut this

cesmed to be more con fus ing  and could (IL t +(H) and ‘) (H)I , as we have

defined them , Intersect) complicate the shape of y(H) causing discontinuities

in dy/dH and corresponding difficulty in locating H (see Fig t’). Using the

revised conven t ion , ~(H) I s im~rc likely to be unimodal and only after and

y have been estimated do we decide which is the primary peak and wh i ch is  t he’

overawing . It is not neceasarily the case that the sign ol the’ primary is t hi’

same as that of the first peak in the ramp response nor that the Worst ovei swing

occurs after the primary .

In order to find H it is essential that the usel- supplies tr ia l value s ot

H which bracket H , or more precisely, that (hi’ extreme ‘)(H1 1 1
’) ~~~~~~~~~~~~~~

neither at the smallest nor the largest gust length supplied. In pr inciple the

V •• • - V  
_ _-~~ — — _ _ _
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pr ogram could select its own trial values of H , choosing gust lengths anywhere

between vAt and vt (where t is the last point of the given step
flax max

response). In practice it was felt that the response to specific gusts could be

of interest so the programs expect a minimum of three trial gust lengths. The

user should avoid H < vAt or It > Vt and should be careful to supply enough

time history , F(t) . Strictly speaking, sufficient step response should be input

to enable y(2H) to be calculated but this may not always be possible (see

section 6). V

Assuming these conditions have been f u l f i l l e d  we wi l l  get a best estimate of

H and lower and upper bounds and H
~ 

. We then use a safeguarded quadratic

interpolation scheme out l ined below to successively improve Ii until

max (H
~ 

— ii , H — UL) is s u f f i c i e n t l y  small .  Several fu r the r  ramp responses will

have to be calculated but we feel that the labour is justified. It may be

thought possible to economise calculation by only evaluating ~ in the vicinity

of t but unfortunately t can change discontinuously (and hence t cannot

safely be interpolated) as the following example shows.

V Consider the step response shown in Fig 7a in conjunction with the straight

ramp mode l and let area A3 exceed area Al and t03 
— t02 > t01 . Then (see

Fig 7b) t • H/v until H — vt~ 1 
is reached after which t~ — t

01 
until H is

sufficiently large that A3b Al when it switche s discontinuously t o  t
1 1

increasing to t03 when H v ( t
03 

— t
02
) . Eventually t,

~ 
will revert to

at

where f F( t )d t Al
— H/v

This is a powerful argument in favour of computing extra ramp responses rather

than attempting to interpolate t directly from the responses at the given values

of H . Al though y and H may perhaps be sat isfa ctor i ly  derived f r om the
initial set it is apparent that t could be grossly in error and hence the most

adverse gust pair predicted (see section 7) would be totally misleading .

We now describe the quadra t i c  approximation procedure used to improve H

The simp lest algorithm would be one which always maintained Y~ree points bracket—

ing the peak so that interpolation was always possible . However , if the curve

was very asyninetric such a process would be inefficient. For example , in Fig 8,

165 point 3 would always be retained and slow convergence would be experienced because

V ~~~~~~~~ 
~~~~~~~~~~~~~ •~~ • I L . ~~~~
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of its remoteness from H . A preferable scheme is to maintain wherever possible

the three highest points even if it means extrapolating H . An artificial bound

would then be needed to safeguard the extrapolation . Such algorithms are coimi~on-

place in one—dimensional search routines appearing in optimisation programs and

are discussed by Brent3 and Gi l l  and Murray4. If H is the highest point so far

found and and H.
~ 

are the current bounds on H then the artificial bound

is defined by
H
A 

— H + 8 ( H L
_ H )

(23)

— H + B ( H — H) H < ~~ J

where 
~
i
~~~~

(IL
L
+ H

U
) ;

If the extrapolation predicts a point outside (lLL~
H
u
) then HA is used instead .

This strategy becomes comparable with the usual bracketing technique as the

skewness of the curve decreases. In f a c t ,  the programs work with the curve

y (log H) ,  making the determination of H even easier. t is not interpolated

but is obtained directly from •(H,t) as of course is y

A further refinement prevents the evaluation of + at values of H which are

too close together. The user supplies a parameter specifying the relative

accuracy, AR/il , required and the program locates H such that

max( log (H/ H~)~ log (H~ /H) ) All/H (24)

while keeping the minimum separation between any pair of (logarithmic) trial
MI

gust lengths )

6 SEN S IT IV ITi FACTOR

Jones ’ def ines  A , the gust length sensitivity, a measure of the sharpness

of the peak in y (H ) by

1 (2y( H)  — ~r(2 H) — ylH/2J 2log 2 I. 2~rv(R) 
. ( 5)

An al terna tive expression which ignores gus ts longer than H is

— 
1 (i(il) — 

~(HJ2) )
~ 

(26)
w log~~ I iry( )

These quan tities are evalua ted for both ‘
~ 
(H) and y_ (H)

• 
+
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Note that  the calculat ion of y (2H )  may require the provision of an uneconomic

amount of step response . Likewise, the user should beware of suggesting too short

a trial gust length or of occasions where H is so short that H < 2vAt . The

programs will ignore trial gust lengths < vAt but will attempt to determine

y(H/2) in similar circumstances so that A may be evaluated . Note that for

ramp gusts of very short gradient distance (straight or smooth) we have the

asymptotic result

•(H,t) B*F(t) as H -
~ 0 . (27)

Thus a unit step gust can effectively be regarded as being equivalent to a ramp

gust of length 1 ft. However, the programs do not exploit this feature ,

ie the maximum and minimum of F(t) are not determined .

7 GUST PAIRS

Having calculated ç t~ , H , y , t and H , we identify the

primary peak with the larger of and ~‘y )  , the smaller becoming the worst

overswing. We then deduce the most adverse gust pair Situation as follows.

The maximum possible response is (‘y, + )y_~) occurring at t~ or

whichever is the later. Let us assume for clarity that t > t~ . Then, as

noted in section 2 , the worst gust pair is a ramp gust of length H followed

by one of opposite sign of length H~ , separated by H9 where (see Fig 2)

H = v( t_ — t ) — H . (28)

It is conceivable that H < 0 will result but again we leave aside the inter-

pretation of such a situation .

8 ACCURACY

As stated at the beginning of this paper , we have tackled a specific mathemati-

cal problem leaving it to others to assess the results and the validity of the

models used. The interaction with our computer programs really only occurs

through the specification of All/H . The fixing of this parameter depends

primarily on one’s assessment of the accuracy of the discrete ramp model. Having

made such an appraisal it is then up to the user to ensure that the step response

is sufficiently well represented for the desired accuracy to be attained for it

must be remembered that the numerical scheme has a finite accuracy and spline
165 fitting , integrating and interpolating are all sources of error . The question

then is — how close is the problem which the program has accurately solved to

V ~~~~
-
~~~~~
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that which one has tried to specify? In a practical situation the only insight

available is by rerunning the program with fewer points defining the step response

and comparing results. If they are too different then a finer tabulation of

• F(t) is probably necessary.

Both the straight ramp and smooth ramp programs have been tested on a two

parameter family of analytic step responses suggested by Jones and which may be
wri tten as

F( t) — e F
~
t
(cos ~~ + sin (29)

where p2 ,, ,~~~~2 
~ 

a~~ I ;  0<  ~~~~ < I

With At — 0.5 and v — 100 , H and t were, with the smooth ramp program

always obtained to within 5Z while y was even better (<IX) . However, the

dominant factor affecting numerical accuracy is the density of tabulated points

relative to the scale on which F varies. The period of the above function
V exceeds 2ir by definition of ~2 . At • 0.5 is thus not a large spacing by any

means. Tests have suggested that the straight ramp program is relatively more

V accurate probably because of the need to spline fit +(t) in the smooth ramp

program.

Normally, F(t) would be obtained by solving a set of differential equations

in which case At would automatically reflect the variability of F so that

hopefully no appreciable loss of detail need occur in feeding F(t) to the r...mp

gust programs. A possible snag is that differential equation solvers tend to

vary the step size thereby tabulating F(t) in a manner unacceptable to the

smooth ramp program which requires equally spaced points.

In sumeary , we are confident that <IX error in H, t and y is attainable

on an ICL 1900 series computer for arbitrary F(t) , providing F(t) is well

tabulated (io we expect the numerical methods to be able to handle many more

than the 200 data points currently allowed by the dimensions of arrays).

Obviously, precision will suffer when the programs are run on a machine possessing

lower floating point accuracy and double precision working may then become

compulsory .

9 USING THE PROGRANS
165

There should be little difficulty implementing the programs because they

have been written in standard FORTRAN and the data required is minimal. The

following quantities need to be input on channel 3.

V • V_V_ V• 
~~~

_ _ •  V ~~~~~~~~~~~~ V ~~~~~~~~~~~~~~ V_ ~~_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • • - -

- • • -——



(a) TMAX the time of the last point in the step response. Set negative if 
V

analytic F(t) (prograssned in FUNCTION FUNC(T)) is to be used.

(b) TINT the time interval at which F(t) is to be calculated or supplied on

• channel I. In the smooth ramp program, TINT is necessarily also the
interval at which the ramp response is evaluated. If F(t) is supplied

in tabular form to the straight ramp program then TINT is not read and

the time points are expected on channel I and can be arbitrarily

spaced. This facility will probably be little used (but see section 8)

because the smooth ramp model is preferred and the same step response

data cannot be used ininediately.

(c) VELY the speed of the aircraft in ft/s.

(d) DT the time interval at which the straight ramp response is to be cal-

culated. Not read in the smooth ramp program because DT — TINT

necessarily.

(e) NH the number of trial values of H supplied (NH ~ 3)

(f)  H ( I ) ,  I — I ,NH trial gust lengths. H to be bracketed ;

~~~~ ~ H/v 
1. At preferably (see section 5).

(g) HLTOL accuracy required , All/H

(h) IPR print control parameter giving different levels of output on channel 2

as follows 
-

IPR — — I data sununary; y and t..~ for trial H(l) and H ; A ; Aw ; worst
gust pair:

— 0 as IPR — I plus •y and t.~, for all extra gust Lengths investi-
gated including ~H and 2H - Also the integrals in (~ ) or (I0) ar

output at intervals of At for H — and ~H

• — I as IPR • 0 plus the tabulated spline fit to the step response.

• 2 as IPR • 0 plus ramp responses for each H(I) supplied by the user.

The multiplying factor ~R
2”
~ or ~ vH 2”3 is also output for con-

verting the integrals to •(H , t)

• 3 as IPR - I and IPR • 2 combined.

(i) LANAL Set to zero if subroutine ANALYTiC to evaluate •(H,t) analytically is

either not provided or not being used . Otherwise, input any non—zero

integer value.

This completes the channel 3 data. If ThAX > 0 then the step response must

be tabulated on channel I. Both programs currently include coding for F(t) given
165 by (29) and the straigh t ramp version can determine •(H,t ) by in tegra t ing

IV -~~~ •~~~~ ~- - •
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analytically. They expect a and ~ to be input immediately after TMAX (‘~ 0).

Figs 9 to 12 typify the computer output (IPR — 3). The straight ramp program pro-

duces similar output except that the columns of the spline fit headed D2F/DT2 and

D3F/DT3 are absent because they are not needed.

10 CONCLUSIONS

At the request of J.G. Jones of Flight Systems Depar tment, RAE , Bedford ,
two FORTRAN programs have been written to facilitate the identification of the

discrete gusts which produce the greatest aircraft response. The input to the

programs is the calculated response as a function of time to a unit step gust.

From this one can determine the behaviour on encountering a gust whose intensity

profile is of r amp form. The process is in principle quite straightforward but

converting the theory into an algorithm suitable for a computer required consider-

able care. Our declared aim was to reduce to negligible proportions the numeri-

cal errors accompanying the imp lementation so that consistent results can be

obtained. This has been achieved at very moderate extra expense in terms of

computational effort and thus seems well worthwhile.

The programs are very easy to use and have been applied at RAE, Bedf ord. to

realistic step response profiles with satisfactory results although double

precision working was needed because of the shorter wordlength of the SIGMA

computer.

165
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Fig 1 Model gust intensity profiles

The extreme response will be

Fig 2 CritIcal gust pair
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Fi g 3a&b

a Replacing a smooth ramp by a series of steps

b Scaling and shifting the response to a unit step gust

Fig 3&b NumerIcal approximation of a (smooth) ramp gust. The curves 1 , 2 • 3
are then added together to get Ø(H,t) . These diagrams are schematic; the
actual computation Is considerably more sophisticated (see text)
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Fig 4

— 0 because Fh y ) — F (t y H / V )ô t  *~, 
V

— 0 becau se i ~ H/V and F (i v ) — 0
t.v V

• 
_ ___  changes sign discontinuousl y at because
ôt

Fig 4 The time at which the extreme response to a straight ramp gust
occurs (see equation (11) et seq)



Fig 5&6

0 ( t)

I \ ~~£t 3 O t  L At t

Fig 5 The danger of sampling the step response (and hence of generating the ramp
response) at too few points. The primary peak and overiwing will both be
missed because the programs search only the neighbourhood of the extreme
tabulated points

V ( H)

IV_ l

Fig 6 Variation of extreme response with length of gust. Defining ~ to be the
envelope of the above curves could cause trouble, eg the worst gust pair
would be wrongly predicted because the peak at 1L would be ignored .
Alternatively, because ~y becomes double humped . R might be missed

p..
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Fi g 7o&b

F It )

~~~~~~~I
A 2 1 o 2 t 13 t i3 t o3 ’ t

a Step response having the properties
( i) t0~~ t~2 >t ~~
( i i )  area A3 > area Al (A3b — A l )

t V (H)

I

Vt 0, V ( t 03 — t 02 1 H

b t V ( H) for the above step response using the
straight ramp model

Fig 7&b Showing possible discontinuous behaviour of t,AH)
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FIg 8 QuadratIc interpolation of a skew function. Points 1, 2, 3 are the starting
values. Points 4, 5, 6 are obtained by fitting a parabola through (1 , 2, 3).
(2, 4, 3), (4, 6, 3) respectIvely always retainin g two points bracketi ng the
best (highest). This process Is inefficIent compared to that described In
section 5
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Fig 9

) IIR C RA F T RESPONSE TO SM OU IH RA M P 6U STS (A . G . PUR C ELL A P R I L  1976)
Se — — 5s • 
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A I R C R A F T  V E L O C I T Y  • 100. F T I S~ e

RAM P RE S PON SE C A L C U L A T E D  AT U.~~O SEC IN TE K V A L S  UP TO T • 10 .00 SE CS

GU STS OF LF N G T H H ~U ,U FT A W E  ~F F E C T ! V E L Y  STE PS
SUCH N C !) IN T HE DA T A  A R~ 

)
~.INOR ED

I

FIg 9 Title page of output from the smooth ramp response program
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Fig 10
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