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INTRODUCTION \/

In recent years, great advances have been made in the area of
computerized structural analysis and optimal design. One class of
optimization techniques called mathematical programming methods
have been applied extensively to the design of structural systems.
In most cases the resulting problems are nonlinear in the design

variables and thus nonlinear programming techniques are required

E for the solution. The difficulty with these methods is that as
ﬁ the number of design variables becomes large .. on the order of 50
Ei or more .. problems with computer costs (or time) and numerical
accuracy become significant, thus limiting their applicability.

The goal of the work presented here was to develop an efficient !

T

optimization technique for the design of large structures.
While nonlinear programming methods are impractical for large prob-
lems, linear techniques, if applicable, can still be used. This,

then, was the general approach taken in the current research.
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The use of linear programming methods in the design of trusses
has been investigated by a number of researchers. Dorn, Gomory, and
Greenberg [5] have shown that the optimum design of a truss, sub-
jected to stress limitations, can be formulated as a linear program-
ming problem. The authors considered the geometry of the structure
to be fixed and took the member areas as design variables. All
trusses obtained from their approach were determinate, since only
conditions of equilibrium were imposed. Farshi and Schmit [6]
developed a technique for the optimization of trusses based on the
force method of analysis. Initially only stress constraints and
the conditions of equilibrium were considered, and then in an itera-
tive manner the conditions of compatibility were added until a
suitable design was obtained. In studies by Reinschmidt,
Norabhoompipat and Russel [12,13], an approach similar to that of
[6] was used. One conclusion from their work was that the approx-
imate solution found by satisfying only the equilibrium conditions
was close to the optimum design obtained by enforcing the condi-
tions of compatibility as well. 1In an investigation by Schmit and
Farshi [16] an efficient technique for the optimization of trusses
subjected to both stress and displacement constraints was developed.
In order to obtain the optimum design a sequence of linear program-
ming problems were solved. The optimization algorithm was based
on the method of inscribed hyperspheres [l1]. High efficiency
was achieved by using several approximation concepts such as
design variable linking, temporary deletion of noncritical con-
straints, and Taylor series expansions for response variables

in terms of the design variables. The authors concluded




from this study that the use of approximation concepts along with
linear programming techniques could lead to a new generation of
efficient and practical optimization procedures.

The design of frames has also been formulated such that
linear programming techniques can be applied. Moses [l11] performed
successive Taylor series expansions to obtain linear design con-
straints. An iterative approach, based on the simplex method, was
used in solving for the final design. In the work of Rubinstein
and Karagozian [14], plastic hinge theory was used to generate the
equations of constraint on the moment carrying capacity of the
members. The design criteria was safety against collapse and a
limitation on lateral deflections in the elastic range. Romstad
and Wang [15] used another approach to formulate the optimization
of frames as a linear programming problem. Linear behavior con-
straints on stresses and displacements were developed by initiating
local changes in the design parameters and then determining the
resulting stress and displacement redistributions. A design cycle
in this formulation involved analyzing the structure using assumed
design variables via the displacement method of structural analysis.
These results were then used to generate the linear behavior con-
straints which comprised the linear programming problem. The solu-
tion of this linear programming problem resulted in a lower weight
design with modified design variables, which completed the cycle.

In the work presented here, the optimum frame design problem is

formulated in a new way such that linear programming methods can

more efficiently be applied. Stress constraints, as well as conditions




of equilibrium and compatibility are considered. The approach

does not require a separate time consuming analysis phase to deter-
mine member stresses or forces (as does the Romstad's and Wang's
method discussed previously), since these quantities are variables
within the linear formulation, and consequently are determined as
part of the linear programming solution. An additional feature of
the technique presented is that the linear design constraints are
obtained without the use of Taylor series expansions or various

other approximations. In the initial formulation, some of the design

constraints were nonlinear, but by holding a small number of parame-

ters constant all constraints become linear in the design variables. The

solution to the problem is thus obtained in an iterative manner, i.e.,
initial values for the parameters are selected and the linear problem
solved; then the parameters in the nonlinear constraints are revised
and the process repeated. This procedure continues until the parame-
ters converge to their optimal values. Although the technique is
iterative, no series expansions like those of [11] and [15], which
can be very inaccurate, are required. Also, efficient linear program-
ming methods have been developed in this work so that each iteration

of the technique requires little computational time.

FORMULATION

The problem considered can be stated as follows: given a framed
structural system with fixed configuration subject to externally
applied loads, find the design, i.e. the cross-sectional size of the

members, such that the weight of the system is minimized subject to
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limitations on the stresses within the elements. 1In this investi-
gation, the loading on the structure was restricted to a single load-
ing condition with all forces and moments concentrated at the nodes.
Several other standard assumptions were made as well. All structural
systems were assumed to bchave in a linear elastic manner (see Ref. [2]),
and the stress in the elements was taken as a linear combiration of
both the axial and bending stresses (see the Manual of Steel Construc-
tion [10] section 1.6). All frame members were assumed to be rolled
wide flange steel shapes, with section properties, i.e. cross-sectional
area, moment of inertia, and section modulus, approximated as linear
dependent quantities. An approach similar tc this was used by Brown
and Ang [3].

The objective function for the general problem is thus:
n
Wwe=g I LA, (1)

which must be minimized, where Aj and Lj are the cross-sectional

area and length of the ek

element respectively, p 1is the weight
per unit volume, and n is the total number of elements in the system.

The stress constraints can be written in the form:

LA |
oAj % KUAj <1 3j=1,2,...yn (2)

where o is the allowable stress, K represents a constant of propor-
tionality between the section modulus and cross-sectional area, Fj is

the axial force in the jth

member and Mj is the maximum moment along
the length of the member. Since it was assumed that the external

forces and moments are applied only at the nodes of the structure,
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then the maximum stress will occur at one of its ends. Which end
possesses the maximum stress, however, is unknown, thus constraints

are written for both the i and k ends:

F. M. .
L
g oK = J

Juliiciion (3)
F. M.
IJI+IJkI s
o oK o j

The equilibrium equations for the structure can be obtained by

summing forces and moment at the nodes producing:

Lji Sj = Ri l=l,2,...,m (4)

acli=)

=1
where m is the total number of free nodes, ﬁi is a vector of exter-
nally applied forces and moments at node i, §j is a vector of funda-

mental member forces for the jth member :

R. F.
ix 3j
Ri = Riy sj = Mji (5)
M;2 Mix

and Lji is a transformation matrix:

-t. = P €. L.
jl 32/ j 32/ J
bz = ) e ) = L. ) L. 6
ji j2 Jl/ 3 Jl/ j (6)
3 0
where tjl = (xeri)/Lj and tj2 = (Yi-yk)/Lj‘ The (Xi'Yi) and (x]dY)J

are the coordinates of the end points of the jth member.

The compatibility conditions can be obtained by considering a
general element j as shown in Figure 1. Position 1-2 corresponds
to the initial position before deformation, while the final position

1'-2" is composed of a combination of a rigid body displacement




from 1-2 to 1'-2' and a deformation from 1'-2' to 1'-2". The rela-

tionship between local deformations and fundamental forces is:

F “ o g i b
Ve ™ Yy Ao g S Fj
SR Ls e
- 3 = S el 48
Vo =0 = Sy 2 3ET, 6ET, Mii (7)
Lj Lj
93 =18, o - M.
k i 2EI. 2EI.

g o R j i 2 B
Transforming the local deformations to global coordinates, equation
(7) can . written as:

E0 =8 L S0 SRS 8
3735 375 =1, ' (8)

where ﬁj is a vector of horizontal and vertical deformations and
rotations at the ends of the member, Dj is the matrix defined in

equation (7), and Cj is:

tjl -tjl -tj2 tjz o)

C: = o -t = -t. (0] -L. 9

3 j2 j2 jl jl J (9)
o) o) o) 1 =i

The relation between deformations and fundamental memher forces for
the entire structure can be obtained by combining the element equa-
tions (8) and applying the boundary conditions producing:

CU=DS (10)
where U is a vector of global displacements of the free nodes in
the system, C is a matrix of direction cosines, D is a matrix con-
taining the Dj matrices on the diagonal and zeros everywhere else,
and S is a vector of all the fundamental forces in the structure.
The size of C is 3n by 3m and D is 3n by 3n, where n is the total

number of elements in the structure and m is the number of free nodes.




The compatibility equations are formed by eliminating the dis-
placements from the last 3n - 3m equations of (10). This is achieved
by performing a Gaussian elimination on the matrix C such that the
upper 3m by 3m matrix becomes upper triangular and the lower 3n - 3m
by 3m submatrix contains all zeros. If these same operations are
performed on the matrix D, then the deformations will be eliminated
from the last 3n - 3m equations in (10). These are the desired
compatibility equations of the form:

HS =0 (11)
The matrix H, however, is a function of the member properties, in
particular, the areas and moments of inertia which are variables
; in the design problem.
‘ The initial formulation is now complete. Taking the fundamental

i member forces and areas as variables the objective function (1) and

equilibrium constraints (4) are ilinear. However, the stress constraints
; (3) are nonlinear because of the absolute values and the compatibility
equations (1l1l) are nonlinear since H is a function of the areas and
moments of inertia. Thus linear programming techniques can not be used

on the problem in its current form.

TRANSFORMATION TO LINEAR FORM
The absolute values in the stress constraints (3) can easily be
eliminated by replacing each of the inequalities in (3) by four con-

straints of the form:
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and similarly for the k%

(0]

end of the'element.

(12)

The four inequalities

(12) impose the same stress restriction as does the original one in-

volving absolute values, but are now linear in the areas and funda-

mental member forces.

The compatibility constraints (11) cannot easily be converted to

linear form; however, they can be written such that the components of

the H matrix are linear functions of moment of inertia ratios:

B =I_];
j I
! j

which become the only variables in this matrix.

matrix for the three member portal

L2 L2
0 sk Lok
3 6
A iyed _L1L2 Lle
1 2 2
ais e K
I 2 2

=230 Jepn
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where the fundamental member force vector is ordered as:
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For example,

frame shown in Figure 2 is:

2
L3854

(13)

the H

(15)
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The constant K' is the assumed ratio of the moment of inertia
to the cross-sectional area for rolled wide flange steel shapes.

The ratios Bj are, of course, functions of the areas, since:
I K'a A

R (16)
but if these ratios are held fixed, then the compatibility constraints
will be linear in the fundamental member forces. Thus the entire
formulation will be a linear programming problem. This suggests an
iterative approach where the ratios Bj are initially selected, for
example all set to one, and the linear programming problem solved
for the areas and internal forces. Using these areas and equation
(16), the ratios are changed and the linear problem solved again.
The process is repeated until the solution of the linear programming
problem from one iteration to the next is approximately the same.

By solving several examples, it appears that this technique does

converge to the optimal solution, and in relatively few iterations.

SIMPLEX METHOD OF SOLUTION

In order to solve the linear programming problem at each iter-
ation, the revised simplex method was used [4,8]. This technique,
of course, requires all variables to be greater than or equal to
zero, which is not the case for the internal forces in the current
formulation. Thus a transformation of variables was performed using

three of the stress constraints for each member. Equivalent forces

were defined as:
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which must be greater than or equal to zero in order for the stress
constraints to be satisfied. Equations (17) were solved for the inte:
nal forces Fj' Mji’ and Mjk in terms of the equivalent forces Zj‘.
zj2, and Zj3 and substituted into the remaining formulation. This

transformation has the advantage that three of the eight stress
constraints for each member are eliminated, while the number of
variables in the problem remains the same.

Experience has shown that the areas of the members cannci e
permitted to approach zero, since this results in extremely large
moment of inertiz ratios Bj which produces instabilities. Thus a
lower bound Q was placed on the areas, and a transformation performed
so as not to increase the number of constraints. Equivalent areas

A% were defined as:

AL = A, - Q>
3 5

0 JZL725% oe s 10 (18)
Using equation (18) the areas Aj were then replaced with A' in the
formulation, where A% > 0. The result is a linear programming
problem in the equivalent forces Zjl’ ij, Zj3 and equivalent areas
A3 for each member, which can easily be solved using the standard
revised simplex method.

After solving the linear programming problem with an initial
set of moment of inertia ratios, these ratios are changed, as

described previously, and a new linear problem is formed. Instead

of using the standard revised simplex method, with a phase I and

szszea “
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phase II, to solve the new problem, a modified approach was used
which greatly improved efficiency. The technique was to assume that
the same variables which were basic at the'optimum of the old problem
remained basic for the new problem. First it was necessary to calcu-
late the inverse of the basis matrix B for the new problem. But since
only a very few constraints changed from the old problem to the new,

i.e. only the compatibility constraints, and since the inverse was

available from solving the old problem, the new inverse was calculated
from the old one using the product form of the inverse. This is
similar to the procedure used in the revised simplex method itself in

changing the basis. The only difference is that rows of the matrix

are changed rather than columns. If a_ is a vector corresponding to

r
the rth row of the basis matrix which is changed from the old to the

new problem, then:

=g i e S
Br =B 7t (19)
where B-1 is the old inverse, B;l is the new inverse after changing
the rth row alone, and T is the matrix:
- -
by
é-2
i T = %
n
: .
e
L 2’—

where £ is the number of constraints in the linear programming problem.

. The rows Ei are vectors containing all zeros except for a one in the
ki s position. The row n is:
- _ b 1 Ty
A ns= ‘_—I_—- T---+r...—r]
| k k k k

FatllbalatBany: o
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variable is basic in the r

where the kt constraint, and Ty to Ty

are components of the vector T which can be calculated from:
=T -1

T=a_ B
r

Equation (19) is applied successively for each row of the coefficient
matrix corresponding to the compatibility constraints. The result is
the inverse of the basis matrix for the new problem.

Once B-'l is determined the values of the basic variables ;B can
be calculated. If all of the variables are greater than or equal to
zero, then the standard revised simplex method can be used to obtain
the optimal solution of the new problem. However, if one or more of
these variables is negative then a special pivotal operation is per-
formed. The variable to leave the basis is selected to be the one
which is most negative, i.e.

X._ = max | x

Bi |

Br
(20)
e G
The variable Xj to enter the basis is selected corresponding to:
S, ~ B, = N Cp = %
—lg———l = max la 2 1a 2 < min - (21)
rj ri ri rk

z, > O and ax -0, or if this does not

k

c., - 2, C,. = 2,
_1;___1 = max | =—. 3% (22)
rj ari
for ¢; - z; > 0 and a ; < O, or if this does not yield a variable

xj, then finally corresponding to:

. 2z,
i i
— (23)
a g }
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for B, % gy e and a_; < O. The quantities a;; are the elements of

the coefficient matrix for the linear programming problem and By ™ By

are the coefficients of the objective function as the simplex method

proceeds. If xj can be selected corresponding to the first criterion
(21), then pivoting will result in xj becoming positive, the negative
variable Xpy being driven to zero, the objective function decreasing,
and all positive c, - zy remaining positive. The second criterion

k
(22) is the normal approach used for pivoting in the dual simplex

method. It can easily be shown that selecting a variable xj to enter
the basis is always possible using one of the three criteria (21),
E (22) or (23).

This pivotal procedure is repeated until all negative variables
have been eliminated, at which point the normal revised simplex
method is used to obtain the optimal solution of the new problem.
Experience has shown that this procedure is very efficient in solving

E the new problem, in most cases requiring only a few pivotal operations.

EXAMPLES
The technique developed in this study is based upon the presump-
tion that the moment of inertia ratios Bj will eventually converge to
their optimum values. The purpose of the first three examples was to
show that the linear approach could indeed determine the optimal design.
The results of the linear method were checked by solving the same
! problems via a nonlinear programming technique. The nonlinear approach
consisted of the Fiacco and McCormick penalty function [7) along with
" the Hooke and Jeeves direct search algorithm [9]. The penalty function

used was:

-
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2n
y L (24)

pix,r) = £(x) + r
1 gj

3
where p(x,r) is the penalty function, f(x) is the objective function,
gj is the jth inequality constraint, and r is the penalty parameter.
The cross-sectional areas Aj of the members were used as design
variables. The original stress inequalities (3) and lower bounds on
the areas (18) were the only constraints used. At each step, the
fundamental member forces necessary to evaluate the stress constraints
were calculated using an appropriate analysis technique.

All design examples incorporated the following constants:

Q = 5.0 in2(32.3 cmz) lower bound on the areas

o = 24 ksi (165,600 kN/m?) allowable stress

K 9.0 section modulus/area

K' = 75.0 moment of inertia/area

Also in the linear approach, the optimum design was assumed to have
been obtained when the change in the objective function in two suc-
cessive iterations was less than 0.05 percent.

Shown in Figure 2 is the first design problem considered, which
is a portal frame subjected to a set of nodal loads. The moment of
inertia ratios 62 and 83 were initialized at 1.0 in the linear techni-
que, and the initial member areas for the nonlinear technique were
taken as 90.0 sg. in. (580.5 cmz). Table 1A and 1B show the progres-
sion of the linear and nonlinear techniques, respectively, towards the
optimum design. In the linear approach, we define a cycle as the pro-
cess of obtaining the optimum of the linear programming problem for a

aiven set of moment of inertia ratios, while the minimization of the

penalty function for a particular value of the penalty parameter r is
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considered a cycle in the Fiacco and McCormick routine. For this
example, the number of cycles necessary for convergence was six for
the linear approach as compared to seven for the nonlinear method of
solution. As can be seen from Tables 1A and 1B the optimum values of the
cross-sectional areas obtained from both methods were virtually iden-
tical. The objective function, which was taken as the volume of the
structure rather than weight, was 15,525.0 cu. in. (254,610 cm3) from
the linear approach, and 15,526.0 cu. in. (254,626 cm3) from the non-
linear solution. The total time of execution was 00:00:36 (hours:
minutes:seconds) for the linear technique versus 00:00:42 for the
Fiacco and McCormick routine, which indicates only a slight increase
in efficiency for the linear method.

The four member frame shown in Figure 3 was used as the second
example. Again, the starting point for the linear technique consisted
of all the moment of inertia ratios being 1.0, while the initial
areas for the nonlinear approach were taken as 75.0 sg. in. (483.7 cmz)
throughout. Tables 2A and 2B reveal the route both methods followed as
each proceeded towards the optimum design. As in the first example,
the final design obtained from the linear and nonlinear techniques were
virtually the same with the objective function being 22,871.0 cu. in.
(375,084 cm3) from the linear solution as compared to 22,892.0 cu. in.
(375,429 cm3) from the nonlinear approach. For this example the number
of cycles necessary for convergence was eighteen in the linear technique
versus eight in the nonlinear approach. Although the number of cycles
was larger for the linear solution, the total execution time was much

less, with the linear technique taking 00:00:45 while the Fiacco and
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McCormick routine required 00:03:18. Thus, the linear programming
approach exhibited a substantial savings in computational effort
over the nonlinear routine.

The last example used for comparing the linear technique against
the nonlinear routine was the ten member frame shown in Figure 4. The
moment of inertia ratios for all the members were again initialized
at 1.0 in the linear approach, while the initial member areas for the
nonlinear technique were 125.0 sg. in. (806.3 cm2) throughout. Tables
3A and 3B show the progression of both methods towards the optimum
design. The final structures from the two techniques are similar.

A slightly lower value of the objective function was obtained from
the linear‘approach, being 65,647.0 cu. in. (1,076,611 cm3) as
compared to 66,191.0 (1,085,532 cm3) from the Fiacco and McCormick
routine. This difference is due to the fact that the linear techni-
que yielded a design with all members fully stressed, whereas the
nonlinear approach satisfied the convergence criteria before reaching
the fully stressed condition. Computational time of the two methods
varied drastically, with the linear approach taking 00:02:57 versus
01:42:32 for the Fiacco and McCormick routine. This example demon-
strates that the nonlinear approach is very computationaly ineffic-
ient when applied to a problem with large numbers of design variables.

Shown in Figure 5 is a plot of computational time versus the
number of members in the system for both of the methods discussed.
Also included in the plot corresponding to the linear technique is
the computational time for the 15 member frame presented as the next

example. As can be seen, the linear technique, compared to the




particular nonlinear method used in this work, required much less
computational time for larger structures.
A fourth example was examined to show the effect of the initial

moment of inertia ratios on the final design. Shown in Figure 6 is

a 15 member two bay three story frame subjected to a single nodal
load condition. This frame was designed using three unique starting
points, which will be referred to as Cases I, II, and III. In Case I, all
of the moment of inertia ratios were initalized as 1.0, while Case II
started with a value of 5.0 for all of the member ratios, and Case
II1I, which used a bad start.ng point, was initiated with values of the
ratios which differed greatly from the optimal values obtained in
the first two cases. Table 4 shows the initial and final moment of
inertia ratios, final member areas, and the values of the objective
function obtained from the three cases. The final designs are
almost identical with the optimum value of the objective function
being 132,805 cu. in. (2;178,;002 cm3), 137,843 en. in. (2,178,625 cm3),
and 132,846 cu. in. (2,178,674 cm3) for Cases I, II, and III respec-
tively. The number of design cycles and computational times were:
7 cycles and 00:08:21, 13 cycles and 00:11:32, and 17 cycles and
00:13:31 for the three cases. Thus, as expected, computational times
increased for starting points which were further from the optimal
design, but the increase is not overwhelming.

The last example considered was the 25 member frame shown in
Figure 7. Again two different starting points were used, with both

converging to approximately the same final design as shown in Table 5.




It is interesting to note that eight of the member areas in the

optimal design were at their lower bound of 5 sg. in. (32.3 cm2).
Thus, if some or all of these members were eliminated from the
structure and the optimal design obtained again, it would likely
have a lower weight. The elimination of the members might, how-
ever, be influenced by other considerations, such as stability,

deflections, etc.

CONCLUSIONS

The linear technique presented in this paper appears to be an
effective method of optimizing a framed structure. Although no
proof of convergence has been developed, the method was able to
determine the optimum design for all examples considered and all
initial starting moment of inertia ratios. It also seems to be a
very efficient method. For larger problems, the computational time
for the linear techniquc was much less than for the nonlinear method.
Although other nonlinear programming techniques, or improvements
in the one used, could lead to decreased computational times, it is
felt from previous experience that most nonlinear methods could not
be computationally competitive. Also, nonlinear techniques have
other problems associated with them, such as relative minima, pre-
mature termination, etc. which do not seem to occur for the linear
method.

Although only simple loading conditions and stress constraints
were considered in this work, it should be easy to extend the method

to include multiple loading conditions, and non-nodal loads (as long
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as finding the maximum stress in the members does not result in
complex nonlinear constraints). Likewise displacement constraints
can easily be added. This can be done by continuing the Gaussian
elimination on the force-deflection equations (10) used to obtain
the compatibility constraints (11). The goal would be to reduce the
upper 3m by 3m matrix of C to the identity matrix, thus producing
an expression for the displacements:

U=GS (25)
where G 1is the upper 3m by 3n part of the matrix D of equation (10)
after the Gaussian elimination has been performed on it. Then dis-

placements constraints of the form:

¢S < Unax (26)

could be included on the problem. These can be written such that
the moment of inertia ratios Bj are the only variables multiplying
the fundamental forces S; therefore, the displacement constraints
can be handled in the same way as the compatibility conditions were
satisfied in method presented here.

With these extensions, it is believed that the linear program-
ming technique developed in this research can be an effective method

of solving optimal frame design problems.
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APPENDIX II. - NOTATION

i
e

The following symbols are used in this paper: ?
h

Aj = cross-sectional area of the jt member ;
; Aa = equivalent area;
i aij = elements of the coefficient matrix;
@ B = basis matrix;
ﬁ C = matrix of direction cosines;
%§ cj - zj = objective function coefficients;
| D = force matrix;
25 Ei = unit vectors;
‘ Fj = axial force in jth member;
gj = inequality constraint;
H = compatibility matrix;
Ij = moment of inertia in jth member ;
K = section modulus/area;
K’ = moment of inertia/area;
Lj = length of jth member ;
Lji = force transformation matrix;
Mj = moment in the jth member;
m = number of joints in the structure;
b n = number of members in the structure;
P = penalty function;
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lower bounds on the areas;
vector of external loads at ith joint;
penalty function parameter;

vector of internal loads;

matrix used to calculate B inverse;
direction cosines of jth member ;
vector of nodal displacements;

weight of structure;

vector of variables;

equivalent forces in jth member ;
moment of inertia ratio for jth member ;
vector used to calculate B inverse;
weight per unit volume;

allowable stress;

vector used to calculate B inverse.
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Figure 1: Relative Displacements of a Frame Element




s e i S e M

A\ Y
A 200X A 150X
25000 N @
(0,100) (100,100)] 20000%"'N

|
1.

(0,0)

Figure 2: Three Member Frame (1 kip
1l in = 25.4 mm; 1 kip-in

(100,0)

= 4.45 kN;

= 113 Nsm)

|
|
|




T TT—————

| 4 e

(100, 150)

,0) (100,0)

4.45 kN;

Figure 3: Four Member Frame (1 kip
113 N-m)

1 in = 25.4 mm; 1 kip-in




i 1000% 2000%
K-IN
s TP @ Y )lsooo"""
oo\ S\oaz200 A 2ol 2
=)
®
1500%
|5(mK‘IN Y @ 10 )3cmo K-IN f
K E (zo.loo) (loo,locg @ (200,!0:) 1
O) ® ©
&w———”? @m &E@

(0,0 (100,0) (200,0)

Figure 4: Ten Member Frame (1 kip = 4.45 kN;
1 in = 25.4 mm; 1 kip-in = 113 N-m)




boh g it athd il chie Lttt e e L S R s e st b e B AL e ce i M bl Sl ol

120 < l
?/
ol | |
Time / |
(min) [ i
/ Linear |
60— — / — ——Fiacco and McCormick
/ J
/ y'
/
el /

]
4 8 IL 16
Number of Members

Figure 5: Computational Time versus Number of Members




o

1000K 2000X 1000K
K-IN
35000
\ Y Y
200K 4 15 [
30000 N
3 5 14 100"
30000"'}
y
100K \ £ 13
25000K"IN
2 & 12 100"
28000K "N pldss
o Y
100 \ 8 10 > \
40000% N
| 9 " 100"
M BB TR
& l00" 5 100"
Figure 6: 15 Member Frame (1 kip = 4.45 kN;
l in = 25.4 mm; 1 kip-in = 113 N-m)




2000K 3000K 3000K 2000K
20000% ™ { {
100 - 15 16 ) Jﬁ
25 30000
14 IJJ 100"
20000K-IN 24
il ) \
100X X 13 18 "
2 7 12 19 100"
y
loo® 8 10 20 ?
| 9 " 21 100"
ﬁ&\ 1
7R R TR
L¢— e g o =~ P — 3
100" 100 100"
Figure 7: 25 Member Frame (1 kip = 4.45 kN;
1l in = 25.4 mm; 1 kip-in = 113 N-'m)




o

S vasapaas

anbtuyos] butuweiboid IesutT]
pursn sweaj Ia2qual 93IYyJ I0J S3[NsSay

YT @T19BlL

gUWD §°9T = UT Nd T {pwd Gp°9 =

ut bs T :230N

9€:00:00 = (°"O9S:UTW:aIH) LwT] Teuorjeindwo)d
0°G62GST €T°0€ 8€°GO0T | #L 61 S69°0 LBT"0 9
0°626ST 8T°0¢€ L2°SO0T | ¥8°6T LS9°0 881°0 S
0°2ZvSST Ze"o¢e S6°V0T | ST°0¢ 599 °0 ¢6T1°0 14
0°68SST ¢8°0¢€ 96 “CO | IT Tc 589°0 €0C°0 €
0°6GLST L9°C¢ 08°00T | 80°%C LEL"O 6€C°0 4
0°p€EE9T 9G6°6¢ ZC°06 S5 ee gv¥8°0 cLE" D T
i —— - S 0°T 0°T 3xe3s
Amwnwwwawwnzov m< Cy Hm g Cy
uotjoung (sayouI aaenbs)
aaT309([qo Seaay TBUOTIODS SSOI) SOT3ey BIJIDBUI IO JUSWON saT24&)D




2UTINOY HOTWIODOW pue OddeTd
putsn swexj IdquON I9IYJL I03J s3[nsay €] STdel

WO $°97 = UT NO T {_wO Gy°9 =

bs 1 :930N

£ . z
Z:00:00 = ( O9S:UTW:aH) dwrl [euoT3zeiznduo)d
0°925ST 21°0€ | €v°S0T | 89°6T £59°0 L8T"0 L
0°2ZESST ST°0€ | SP°SOT | €L°6T 590 L8T°0 9
0°€S55T 2z°0€ | 05°50T | 18°6T 55970 8870 S
0°2295T 8v°0€ | S9°S0T | 0T" 02 65970 06T°0 v
0°TS8ST te* 1€ | 217001 | €012 0L9°0 867°0 £
0°0T99T ppovE | €9°L0T | £0° ¥z 8690 €220 z
0°0SVLT 0006 | 00706 |0S°¥6 50° T 0" T T
w 00°06 | 00°06 | 00°06 0T 0°1 31038
(seyour otqnd)| Fy y Ty tg g
sumToA
uoT3oung (sayour axenbg)
aAT309(qo Se9Iy TRUOT3IOSS SSOI) SOT3eY BTIISUI JO JUSUOK sa124)

.or




anbtuyos] butwweiboig aeaur]

putsn Lwery ISquON INOJ I03J SITNSAY

*¥Z @19®BL

WO pT9T = UT md T { wWd Gp'9 = UT bs T :230N
GP:00:00 = (°O9S:UTW:IH) BwT] TeuoTieandwo)d
r 0°TL8CC SL*SE 8C°T¢ T 00T | 6Lk STOE Bils T €ELY"0 8T
0°968¢¢ Z8°ST 9g  [g LO°00T | 89°LY PT0°€ fes i 9LV "0 9y
| 0°6€62¢ 61°9T LY TE G666 S6°LY €96 °C £oS S8%°0 A
0°v662C GL 9 99 =i E 9L" 86 SE°"8Y L8B"C Les o 06¥°0 A
0°L80€EC €9 LI S6°T€ 8G°L6 Z6°8Y vLll ¢ TES T0S°0 0T
0°6€C¢tC LO°6T cv-ce 9L°S6 L6V 809°¢ Boos 6TS°0 8
0°S05¢EC ps°1C 8C°tE T16°¢C6 6L°0S 85E "¢ 9¢S [ LYS°0 9
o-cLzove 9L 19e 60°G€E PT°88 ¢l ¢S c66°T S8V° 1 ¢6S°0 14
0°TLEST §6°G¢€ TC°0¥% Lo"6L 9T° %S 0 S LVvE"T $89°0 [4
— St i == = 0°T 0°T 0°T 3xe3s
| Amwnwﬂwawwn«_& by €y ly Ty vy Eg ¢y
uoTt3oung (seyoul axenbs)
aat309(qo Seaay TRUOTIOAS SSOID SOT3eY ©T3IISUI JO IJUSWONW sa124k)




et

R e £ ity ek an at o SRR sy

putsn swelg ISqWAN INOJ IOJ SITNSA

2UT3INOY 3JOTWIODOW Ppue 00JeTq

:dZ 919el

wo p 9T = UT MO T ! WO GpT9 = UT bs T :230N
8T:€0:00 = (°09S:UTW:IH) awT] Teuorieznduo)d
0°¢68¢C¢ 89°GT LE"TE LO°00T | C¢8°LY 0S0° € A4 T | 8LV°0 8
0°v¥s0¢€e 86°GT SL°TE 8C°00T | 0Z"8%F 9T0° ¢ 81S°1 8%°0 9
0°SLSPC £€9°6T1 €T°6¢ 9C¢° 10T | 60°CS PG9°¢C €8V°1 PTIS°0 14
0°LT98¢C 6S°6¢C LZ €Y 89°90T | €T°09 ct0°C ! 0O6L°T ?95°0 4
s 00°SL 00°SL 00°SL 00°SL 0°T 0°T 0°T 3xe3ls
?mnucH Oﬁnsé Yy 2 Cy Ty vy tg g

awnToA
uot3oung (ssyour axenbs)

aa1309(q0 SealIy TRUOTIOaS SS01) soT3ey eT3IIDUI JO JUSWOR sa124)




|

b P

Starting Point Cycle 3 Cycle 6
Member Bj I Aj Bj A. Bj A.
(Sq. In.) (Sg. In (Sg. In
1 = e == 128.48 e 129,71
2 1810, - 11352728 9.36 15 907 812
3 1.0 -~ 3.324 38.66 3.084 42.06
4 1.0 == 4.359 29.49 3795 34.18
5 1.0 = 0.994 129.20 0. 959 135.19
6 1.0 = 0.830 154.72 0.867 149.59
7 1.0 - 4.028 31.90 7.608 17.05
8 1.0 —= 12 A1 10311 1.680 120.14
9 L0 -- 7.182 17389 13.723 9.45
10 1.0 == 25.696 5.00 25.941 5.00
J
Objec;ive -~ 3
Function | — — — — — 65527.0 in 65647.0 in

Computational Time (Hr:Min:Sec) = 00:02:57)

Note:

Table 3A;

1 sq in = 6.45 cm2; l cu in = 16.4 cm

3

Results for Ten Member Frame Using

Linear Programming Technique




e

Starting Point Cycle 3 Cycle 7
Member
ej (Sq?jIn.) Bj (Sq?jln.) Bj (Sqéjln.
1 - 125.00 == 130.28 - 129.48
2 1.0 125.00 13.226 9.85 15.676 8.26
3 1.0 125.00 3.083 42.26 3.100 41.77
4 1.0 125.00 3.382 38.52 3.456 37.46
5 1.0 125.00 0.965 135.01 0.966 134.04
6 1.0 125.00 0.877 148.63 0.878 147.43
7 1.0 125.00 6.933 18.79 7.758 16.69
8 1.0 125.00 1.077 121.00 1.076 12 0.3
9 1.0 125.00 9.953 13.09 9.437 1372
10 1.0 125.00 215933 5.94 25.896 5.00
Objec?ive B 3 3
Function e e 67127.0 in 66191.0 in

Computational Time (Hr:Min:Sec) = 01:42:32)

Note: 1 sq in = 6.45 cmz; l cu in = 16.4 cm3

Table 3B: Results for Ten Member Frame Using
Fiacco and McCormick Routine
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{ CASE I CASE II
. Membez | - -4 £ A; By & %
§ Initial Final Final Initial Final Final
(Sq.In.) (Sq.In.)
i
; 1 - - 134.43 - - 138.00
; 2 1.0 0.907 |148.24 5.0 0.929 | 148.58
: 3 1.0 0.869 |154.64 4.0 0.896 | 154.08
i 4 1.0 4.836 | 27.80 1:0 4.869 28.34
H 5 1.0 1.045 [128.63 6.0 1.070 | 128.93
6 1.0 26.887 5.00 0.5 27.601 5.00
7 1.6 1.037 |129.59 5.0 1.061 | 130.10
| 8 1.0 7.242 | 18.56 1.0 8.782 15.72
; 9 1.0 0.814 |165.17 4.0 0.847 | 162.97
10 1.0 26.887 5.00 1.0 27.601 5.00
11 1.0 1.114 [120.73 0.5 1.141 | 120.97
| 12 1.0 1.210 [111.11 5.0 1.243 | 111.06
| 13 1.0 | 26.887 5.00 1.0 27.601 5.00
14 1.0 1.095 [122.72 6.0 1131 7 123.00
15 1.0 26.887 5.00 1.0 27.601 5.00
16 1.0 2.502 | 53.52 0.5 2.606 52.96
17 1.0 0.705 |190.72 3.0 0.720 | 191.76
18 1.0 26.887 5.00 1.0 27.601 5.00
19 3.0 1.117 [120.34 6.0 1.153 | 119.70
20 1.0 26.887 5.00 1.0 27.601 5.00
21 1.% 1.093 [122.94 7.8 31351 123.74
22 1.0 15.314 8.78 0.5 16.035 8.61
23 1.0 26.887 5.00 16 27.601 5.00
24 1.0 26.887 5.00 1.8 27.601 5.00
25 1.0 2.838 | 47.37 0.5 2.829 48.78
Objec;ive lin S
Function 187275.0 in 187421.0 in

Note: 1 sg in = 6.45 cmz; 1l cu in = 16.4 cm3

Table 5: Results for 25 Member Frame Using
Linear Programming Technique
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