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OPTIMUM DESIGN OF FRAME S USING 0

LINEAR PROGRAMMING TECHNIQUES 

by

Walter J. l3riggs1 and Kenneth D. Willmert2 ~~~~~~~~~~~~~~~~~~~~~~~~

INTRODUCT ION

In recent years , great advances have been made in the area of

computerized structural analysis and optimal design. One class of

optimization techniques called mathematical programmincj methods

have been applied extensively to the design of structural systems.

In most cases the resulting problems are nonlinear in the design

var iables and thus nonlinear programming techniques are required

for the solution . The difficulty with these methods is that as

the number of design variables becomes large .. on the order of 50

or more .. problems with computer cos ts (or time) and numerical

accuracy become significant , thus limiting their appli cabili ty.

The goal of the work presented here was to develop an efficient

optimization technique for the design of large structures.

While nonlinear programming methods are impractical for large prob-

lems , linear techniques, if applicable , can still be used . This,

then, was the general approach taken in the current research.

‘Bechtel Power Corp., Gaithersburg,Maryland , formerly Research
Assistant, Department of Civil and Environmental Engineering ,
Clarkson College of Technology, Potsdam , New York.

2Associate Professor , Department of Mechanical and Industrial
Engineering , Clarkson College of Technology , Potsdam , New York .
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The use of linear programming methods in the design of trusses

has been investigated by a number of researchers. Dorn , Gomory , and

Greenberg [5] have shown that the optimum design of a truss, sub-

jected to stress limitations, can be formulated as a linear program-

ming problem. The authors considered the geometry of the structure

to be fixed and took the member areas as design variables. All

trusses obtained from their approach were determinate , since only

conditions of equilibrium were imposed . Farshi and Schmit [6]

developed a technique for the optimization of trusses based on the

force method of analysis. Initially only stress constraints and

the conditions of equili brium were considered, and then in an itera-

tive manner the conditions of compatibility were added until a

suitable design was obtained. In studies by Reinschxnidt,

Norabhoompipat and Russel [12,131, an approach simil ar to that of

[6] was used. One conclusion from their work was that the approx-

irnate solution found by satisfying only the equilibrium conditions

was close to the optimum design obtained by enforcing the condi-

tions of compatibility as well. In an investigation by Schmit and

Farshi [16] an efficient technique for the optimization of trusses

subjected to both stress and displacement constraints was developed .

In order to obtain the optimum design a sequence of linear program-

ming problems were solved . The optimization algorithm was based

on the method of inscribed hyperspheres [1]. High efficiency

was achieved by using several approximation concepts such as

design variable linking, temporary deletion of noncritical con-

straints , and Taylor series expansions for response variables

in terms of the design variables. The authors concluded
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L
from this study that the use of approxin~ation concepts along with

linear programming techniques could lead to a new generation of

efficient and practical optimization procedures.

The design of frames has also been formulated such that

linear programming techniques can be applied. Moses [11] performed

successive Taylor series expansions to obtain linear design con-

straints. An iterative approach , based on the simplex method, was

used in solving for the f inal design. In the work of Rubinstein

and Karagozian [14], plastic hinge theory was used to generate the

equations of constraint on the moment carrying capacity of the

members. The design criteria was safety against collapse and a

limitation on lateral deflections in the elastic range . Romstad

and Wang [15] used another approach to formulate the optimization

of frames as a linear programming problem . Linear behavior con-

straints on stresses and displacements were developed by initiating

local changes in the design parameters and then determining the

resulting stress and di3placement redistributions. A design cycle

in this formulation involved analyzing the structure using assumed

design variables via the displacement method of structural analysis.

These results were then used to generate the linear behavior con—

straints which comprised the linear programming problem. The solu—

tion of this linear programming problem resulted in a lower weight

design with modified design variables, which completed the cycle.

In the work presented here, the optimum frame design problem is

formulated in a new way such that linear programming methods can

more efficiently be applied . Stress constraints , as well as conditions 

I _ . _ 
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of equilibrium and compatibility are considered. The approach

does not require a separate time consuming analysis phase to deter-

mine member stresses or forces (as does the Romstad ’s and Wang ’s

method discussed previously), since these quantities are variables

within the linear formulation, and consequently are determined as

part of the linear programming solution. An additional feature of

the technique presented is that the linear design constraints are

obtained without the use of Taylor series expansions or various

other approximations. In the initial formulation , some of the design

constraints were nonlinear , but by holding a small number of parame-

ters constant all constraints become linear in the design variables. The

solution to the problem is thus obtained in an iterative manner , i.e.,

ini tial values for the parameters are selected and the linear prob lem

solved; then the parameters in the nonlinear constraints are revised

and the process repeated. This procedure continues until the parame-

ters converge to their optimal values. Although the technique is

iterative , no series expansions like those of [11] and [15], which

can be very inaccurate , are required. Also , efficient linear program-

ming methods have been developed in this work so that each iteration

of the technique requires li ttle computational time .

FORMULATION

The problem considered can be stated as follows : given a framed

structural system with fixed configuration subject to externally

applied loads , find the design, i.e. the cross-sectional size of the

• members, such that the weight of the system is minimized subject to
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limitations on the stresses within the elements. In this investi-

gation , the loading on the structure was restricted to a single load-

ing condition with all forces and moments concentrated at the nodes.

Several other standard assumptions were made as well. All structural

systems were assumed to b~have in a linear elastic manner (see Ref. [21),

and the stress in the elenients was taken as a linear combination of

both the axial and bending stresses (see the Manual of Steel Construc-

tion 1101 section 1.6). All frame members were assumed to be rolled

wide flange steel shapes , with sec tion properties , i.e. cross—sectional

area , moment of inertia , and section modulus, approx imated as linear

dependent quantities. An approach similar to this was used by Brown

1. and Ang [3].

F The objectiv: function for the general problem is thus :

w = p  E L.A. (1)
j=l ~

which must be minimized , where A. and L~ are the cross-sectional

area and length of the ~th element respectively, p is the weight

H per unit volume , and n is the total number of elements in the system.

The stress constraints can be written in the form :

_ _  

IM . I
cA . ÷ KGA . 1 j=l ,2,...,n (2)

J

where a is the allowable stress, K represents a constant of propor-

tionality between the section modulus and cross—sectional area , F. is

the axial force in the ~th member and M~ is the maximum moment along

the length of the member. Since it was assumed that the external

forces and moments are applied only at the nodes of the structure,
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then the maximum stress will occur at one of its ends. Which end

possesses the maximum stress , however , is unknown, thus constraints

are written for both the i and k ends:

IFH IM .. l
+ < A .a aK — j

j=l,2,... ,n (3)
F~ 

+ 

M
ik < A.a eK — j

The equilibrium equations for the structure can be obtained by

summing forces and moment at the nodes producing:

j=l 
~~~ ~~ 

= i=l,2,. ..,m (4)

where m is the total number of free nodes , R. is a vector of exter-
1

nally applied forces and moments at node i, is a vector of funda-

mental member forces for the ~th member :

R. F.ix

R. S. = M .. (5)
1 1~~ 3 31

M . M .iz

and L
3~ 

is a transformation matrix:

[ —t~1 t~2/L. t.2/L. 1
~~~ = t~~ t~~ /L~ tj1/LJ 

(6)

L 0 1 0 J
where t~1 = (X

k
_X

i)/Lj and t~2 = (Yj-Yk)/Lj. The (x . ,y .)  and (x klY k)

are the coordinates of the end points of the 3
th member.

The compatibili ty conditions can be obtained by considering a

general element j as shown in Figure 1. Position 1-2 corresponds

to the initial position before deformation , while the final position

l’-2” is composed of a combination of a rigid body displacement
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from 1-2 to l’-2’ and a deformation from l’-2’ to 1’-2” . The rela-

tionship between local deformations and fundamental forces is :

- - L. - -
U - U .  —a- 0 0 F.k i. EA. 3

~ L2

vk :~~
— OiL. 

= 

: 
~3EI~ 6EI~ 

M .
~ 

(7)

• 

- 

k i 
- - 

2E1
3 

2EI~ J 
M
ik 

-

Transforminq the local deformations to global coordinates , equation

(7) can written as:

c~~Y . = D~S~ j=l ,2,. .. ,n (8)

where U
3 

is a vector of horizontal and vertical deformations and

rotations at the ends of the member , D. is the matrix defined in

equation (7), and C~ is:rt. -
~~~. .  

-
~~~~. ~~~~.I jl j i  j2 H

C.  = I t .  - t.  t .  — t .  0 -L.  (9 )
1 3 2  j 2 j l  j l  3

L o o o o 1 -l

The relation between deformations and fundamental menther forces for

the entire structure can be obtained by combining the element equa-

tions (8) and applying the boundary conditions producing :

C U = D S  (10)

where U is a vector of global displacements of the free nodes in

the system, C is a matrix of direction cosines, D is a matrix con-

taining the D~ matrices on the diagonal and zeros everywhere else ,

and S is a vector of all the fundamental forces in the structure.

The size of C is 3n by 3m and D is 3n by 3n , where n is the total

number of elements in the structure and m is the number of free nodes.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~--• -~~~~~•~~~~~~~~~ -— — —-—~~~~~~~~
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The compatibility equations are formed by eliminating the dig-

placements from the last 3n - 3m equations of (10). This is achieved

by performing a Gaussian elimination on the matrix C such that the

upper 3m by 3m matrix becomes upper triangular and the lower 3n — 3m

by 3m submatrix contains all zeros. If these same operations are

performed on the matrix D, then the deformations will be eliminated

from the last 3n - 3m equations in (10). These are the desired

compatibility equations of the form:

H S = 0  (11)

The matrix H, however , is a function of the member properties, in

particular , the areas and moments of inertia which are variables

in the design problem.

The ini tial formulation is now complete. Taking the fundamental

member forces and areas as variables the objective function (1) and

equilibrium constraints (4) are linear . However , the stress constraints

(3) are nonlinear because of the absolute values and the compat..bility

equations (11) are nonlinear since H is a fun ction of the areas and

moments of inertia. Thus linear programming techniques can not be used

on the problem in its current form.

TRANSFORMATION TO LINEAR FORM

The absolute values in the stress constraints (3) can easily be

eliminated by replacing each of the inequalities in (3) by four con-

straints of the form:
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A. - + > 0j  a Ko —

F .  M .  . (12)
A. + —

~~
- - —

~~
-
~~~ 

> 0j  G KG —

F .  M . .
A .

3 a Ko —

and similarly for the kth end of the element. The four inequalities

(12) impose the same stress restriction as does the original one in-

volving absolute values , but are now linear in the areas and funda-

- - mental member forces. -

The compatibility constraints (11) cannot easily be converted to

• linear form; however, they can be written such that the components of

the H matrix are linear functions of moment of inertia ratios:
I ].

= ~~
— j = 2 , 3 . . .  ,n (13)
J

• which become the only variables in this matrix. For example , the H

matrix for the three member portal frame shown in Figure 2 is:

L2 L~ L~~ 3 L2~~~
0 ~ --

~~
- L2 K~~3 2 0 0 - 0 ~~

— -___

L L2 L1L L~~~2 L~~~2H = L
1

K ’ — 
1 

2
2 0 — — 

3 6 
—L 3K’~~3 0 0

L L1 L1 0 
L 2~~2 L 2~~2 L3~~3 L 3~~3

- T ~~ 2 2 
- 

2

(14)

where the fundamental member force vector is ordered as:

= [F 1 M11 M12 F 2 M 22 M 23 F 3 M 33 M 34 ] (15)

S
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The constant K’ is the assumed ratio of the moment of inertia

to the cross-sectional area for rolled wide flange steel shapes.

The ratios B.~ are , of course , functions of the areas, since:

I K’A A
~~~~

. = — ~~~~= 
l = _ _ ~ (16)

3 I~ K ’ A
J 

A~

but if these ratios are held fixed , then the compatibility constraints

will be linear in the fundamental member forces. Thus the entire

formulation will be a linear programming problem. This suggests an

iterative approach where the ratios are ini tially selected , for

example all set to one, and the linear programming problem solved

for the areas and internal forces. Using these areas and equation

(16), the ratios are changed and the linear problem solved again.

• The process is repeated until the solution of the linear programming

problem from one iteration to the next is approximately the same.

By solving several examples, it appears that this technique does

converge to the optimal solution, and in relatively few iterations.

SIMPLEX METHOD OF SOLUTION

In order to solve the linear programming problem at each iter-

ation, the revised simplex method was used [4 ,8]. This technique ,

of course , requires all variables to be greater than or equal to

zero, which is not the case for the internal forces in the current

formulation. Thus a transformation of variables was performed using

three of the stress constraints for each member. Equivalent forces

were defined as:
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- -1-ilji j a Ka
F. H.,

Z At . j2 j a Ka 1 ’
F. M.

Z Aj3 j  a

which must be greater than or equal to zero in order for the stres .

constraints to be satisfied . Equations (17) were solved for the ~rt.f

nal forces ~~~ M31, and M
jk 

in terms of the equivalent forces Z)~~
.

and Z
33 

and substituted into the remaining formulation. This

transformation has the advantage that thre€ of the eight stress

constraints for each member are eliminated , while the number ~

variables in the problem remains the same.

Experience has shown that the areas of the members can7ar; ~.e

permitted to approach zero, since this results in extremely 1ar-~

moment of inertia ratios t3~ which produces instabiliti es. Thus a

lower bound Q was placed on the areas, and a transformation perform~~

so as not to increase the number of constraints. Equivalent areas

A ’ were defined as:

= A
3 

— Q 0 j=l ,2,.. . ,n

Using equation (18) the areas A. were then replaced with A’ in the

formulation, where A > 0. The result is a linear programminq

problem in the equivalent forces Z31, Z32, Z3 3 
and equivalent areas

for each member , which can easily be solved using the standard

revised simplex method.

After solving the linear programming problem with an initial

set of moment of inertia ratios, these ratios are changed, as

described previously , and a new linear problem is formed. Instead

of using the standard revised simplex method , with a phase I and 

— •-- - - - -— ---- - — - --.-—- ----—- - -  -~ —— — --~~--——---~~~__ __,•___t_ —--__ _.,•• __ • ___
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phase II , to solve the new problem, a modified approach was used

which greatly improved efficiency. The technique was to assume that

the same variables which were basic at the optimum of the old problem

remained basic for the new problem. First it was necessary to calcu-

late the inverse of the basis matrix B for the new problem. But since

only a very few constraints changed from the old problem to the new,

i.e. only the compatibility constraints , and since the inverse was

available from solving the old problem, the new inverse was calculated

from the old one using the product form of the inverse. This is

similar to the procedure used in the revised simplex method itself in

changing the basis. The only difference is that rows of the matrix

are changed rather than columns. If is a vector corresponding to

the rth row of the basis matrix which is changed from the old to the

new problem , then:

B 1 
= B~~ T (19)

where B~~ is the old inverse , B;
1 is the new inverse after changing

the rth row alone , and T is the matrix :

e2

T =
II

where £ is the number of constraints in the linear programming problem .

The rows are vectors containing all zeros except for a one in the

1th position. The row ~ is:

~~~
= ~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~ 
• S.—-  — .—-  — 
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L where the kth variable is basic in the rth constraint, and to

- •  are components of the vector ~ which can be calculated from:

Equation (19) i: applied successively for each row of the coefficient

matrix corresponding to the compatibility constraints. The result is

the inverse of the basis matrix for the new problem.

Once B ’ is determined the values of the basic variables can

be calculated. If all of the variables are greater than or equal to

zero , then the standard revised simplex method can be used to obtain
S.

the optimal solution of the new problem. However , if one or more of

these variables is negative then a special pivotal operation is per-

formed. The variable to leave the basis is selected to be the one

which is most negative , i.e.

xBr = max IxBi I

XBi <O 
(20)

The variable to enter the basis is selected corresponding to:

C . — Z . Ic . - z. C . - Z . C - Z
= max ~ i. i i 

< mm k k (21)an ( an an 
— ark

for c1 
- z~ < 0, an < 0, Ck 

- Zk > 0 and ark 0, or if this does not

yield a variable x ., then corresponding to:
• C . — Z. I C . —

3 = max~~ 
2. (22)an an J

for c1 - z1 > 0 and an < 0, or if this does not yield a var iable

x
3
, then finally corresponding to:

C. — z .  ( C .  — z .~______ = min .4 
1 (23)

rj k ri /

_•  -
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• for c~ - z
1 

< 0 and an < 0. The quantities aij are the elements of

the coefficient matrix for the linear programming problem and c~ -

are the coefficients of the objective function as the simplex method

proceeds. If x
3 
can be selected corresponding to the first criterion

(21), then pivoting will result in x . becoming positive, the negative

variable XBr being driven to zero , the objective function decreasing,

and all positive Ck 
— 2

k remaining positive. The second criterion

(22) is the normal approach used for pivoting in the dual simplex

method. It can easily be shown that selecting a variable x
3 
to enter

the basis is always possible using one of the three criteria (21),

(22) or (23).

This pivotal procedure is repeated until all negative variables

have been eliminated , at which point the normal revised simplex

method is used to obtain the optimal solution of the new problem .

Experience has shown that this procedure is very efficient in solving

the new problem, in most cases requiring only a few pivotal operations.

EXAM P LE S

The technique developed in this study is based upon the presump-

tion that the moment of iner tia ratios will eventually converge to

their optimum values. The purpose of the first three examples was to

• show that the linear approach could indeed determine the optimal design.

The results of the linear method were checked by solving the same

problems via a nonlinear programming technique. The nonlinear approach

consisted of the Fiacco and McCormick penalty fun~ tion [7] along with

the Hooke and Jeeves direct search algorithm [91. The penalty function

used was :
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2n
• ~ (x,r) = f(x) + r ~ — (24 )

j=l ~~

where p(~~,r) is the penalty function , f(~ ) is the objective function,

g
~ 

is the ~th inequality constraint , and r is the penalty parameter.

The cross-sectional areas A~ of the members were used as design

variables. The original stress inequalities (3) and lower bounds on

the areas (18) were the only constraints used. At each step, the

• fundamental member forces necessary to evaluate the stress constraints

were calculated using an appropriate analysis technique.

All design examples incorporated the following constants:

Q = 5.0 in2 (32.3 cm2) lower bound on the areas

a = 24 ksi (165,600 kN/m2) allowable stress

K = 9.0 section modulus/area

K’ = 75.0  moment of inertia/area

Also in the linear approach, the optimum design was assumed to have

been obtained when the change in the objective function in two suc-

cessive iterations was less than 0.05 percent.

Shown in Figure 2 is the first design problem considered , which

is a portal frame subjected to a set of nodal loads. The moment of

inertia ratios and were initialized at 1.0 in the linear techni-

que , and the initial member areas for the nonlinear technique were

• taken as 90.0 sq. in. (580.5 cm 2). Table lA and lB show the progres-

sion of the linear and nonlinear techniques , respectively , towards the

optimum design. In the linear approach , we define a cycle as the pro-

cess of obtaining the optimum of the linear programming problem for a

given set of moment of inertia ratios , while the minimization of the

penalty func tion for a particular value of the penalty parameter r is
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considered a cycle in the Fiacco and McCormick routine. For this

example , the number of cycles necessary for convergence was six for

the linear approach as compared to seven for the nonlinear method of

solution. As can be seen from Tables 1A and lB the optimum values of the

cross-sectional areas obtained from both methods were virtually iden-

tical. The objective function, which was taken as the volume of the

structure rather than weight, was 15,525.0 cu. in. (254,610 cm 3) from

the linear approach, and 15,526.0 cu. in. (254,626 cm3) from the non-

H linear solution. The total time of execution was 00:00:36 (hours:

H minutes:seconds) for the linear technique versus 00:00:42 for the

Fiacco and McCormick routine, which indicates only a slight increase

in efficiency for the linear method .

The four member frame shown in Figure 3 was used as the second

example. Again, the starting point for the linear technique consisted

of all the moment of inertia ratios being 1.0, while the initial

areas for the nonlinear approach were taken as 75.0 sq. in. (483.7 cm2)

throughout. Tables 2A and 2B reveal the route both methods followed as

each proceeded towards the optimum design. As in the first example ,

the final design obtained from the linear and nonlinear techniques were

virtually the same with the objective function being 22,871.0 cu. in.

(375,084 cm 3) from the linear solution as compared to 22,892.0 cu. in.
• (375,429 cm3) from the nonlinear approach. For this example the number

of cycles necessary for convergence was eighteen in the linear technique

versus eight in the nonlinear approach. Although the number of cycles

was larger for the linear solution , the total execution time was much

less , with the linear technique taking 00:00:45 while the Fiacco and
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McCormick routine required 00:03:18. Thus, the linear programming

approach exhibited a substantial savings in computational effor t

over the nonlinear routine.

j The last example used for comparing the linear technique against

the nonlinear routine w~is the ten member frame shown in Figure 4. The

moment of inertia ratios for all the member s were again ini tialized

at 1.0 in the linear approach , while the initial member areas for the

nonlinear technique were 125.0 sq. in. (806.3 cm2) throughout. Tables

3A and 3B show the progression of both methods towards the optimum

design. The final structures from the two techniques are similar.

A slightly lower value of the objective function was obtained from

the linear approach, being 65,647.0 Cu. in. (1 , 076 , 611 cm3) as

compared to 66,191.0 (1 ,085,532 cm3) from the Fiacco and McCormick

routine. This difference is due to the fact that the linear techni-

que yielded a design with all members fully stressed , whereas the

nonlinear approach satisfied the convergence criteria before reaching

the fully stressed condition . Computational time of the two methods

varied drastically , with the linear approach taking 00:02:57 versus

01:42:32 for the Fiacco and McCormick routine . This example demon-

strates that the nonlinear approach is very computationaly ineffic-

ient when applied to a problem with large numbers of design variables.

Shown in Figure 5 is a plot of computational time versus the

number of members in the system for both of the methods discussed .

Also included in the plot corresponding to the linear technique is

the computational time for the 15 member frame presented as the next

example. As can be seen , the linear technique, compared to the
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particular nonlinear method used in this work , required much less

computational time for larger structures.

A fourth example was examined to show the effect of the initial

moment of inertia ratios on the final design. Shown in Figure 6 is

a 15 member two bay three story frame subjected to a single nodal

load condition. This frame was designed using three unique starting

points , which will be referred to as Cases I, II, and III. In Case I, all

of the moment of inertia ratios were initalized as 1.0 , while Case 11

started with a value of 5.0 for all of the member ratios , and Case

III, which used a bad start~ng point , was initiated with values of the

ratios which differed greatly from the optimal values obtained in

the first two cases. Table 4 shows the initial and fina l moment of

inertia ratios, final member areas , and the values of the objective

function obtained from the three cases. The final designs are

almost identical with the optimum value of the objective function

being 132 ,805 cu. in. (2,178,002 cm 3), l3: ,843 cu. in. (2,178 ,625 cm3),

and 132 ,846 cu. in. (2,178 ,674 cm3) for Cases I , II , and III respec-

tively. The number of design cycles arid computationa l times were :

7 cycles and 00:08:21 , 13 cycles and 00:11:32 , and 17 cycles and

00:13:31 for the three cases. Thus, as expected , computational times

increased for starting points which were further from the optima l

• design , but the increase is not overwhelming.

The last example considered was the 25 member frame shown in

Figure 7. Again two different starting points were used , with both

converging to approximately the same final design as shown in Table 3. 
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It is interesting to note that eight of the member areas in the

optimal design were at their lower bound of 5 sq. in. (32.3 cm2).

Thus , if some or all of these members were eliminated from the

structure and the optimal design obtained again , it would likely

have a lower weight. The elimination of the members might , how-

ever , be influenced by other considerations , such as stability ,

deflections , etc.

CONCLUSIONS

The linear technique presented in this paper appears to be an

effective method of optimizing a framed structure. Although no

proof of convergence has been developed , the method was able to

determine the optimum design for all examples considered and all

initial starting moment of inertia ratios. It also seems to be a

very efficient method. For larger problems , the computational time

for the linear techniqu •~as much less than for the nonlinear method .

Although other nonlinear programming techniques , or improvements

in the one used , could lead to decreased com~ itational times , it is

felt from previous experience that most nonlinear methods could not

be computationally competitive. Also , nonlinear techniques have

other problems associated with them , such as relative minima , pre-

mature termination , etc. which do not seem to occur for the linear

method .

Although only simple loading conditions and stress constraints

were considered in this work , it should be easy to extend the method

to include multiple loading conditions , and non-nodal loads (as long

_ _ _ _ _ _ _ _ _ _ _ _ _  -~~~~ • - -~~ •• ~~~~~~ - - -
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as finding the maximum stress in the members does not result in

complex nonlinear constraints). Likewise displacement constraints

can easily be added. This can be done by continuing the Gaussian

elimination on the force-deflection equations (10) used to obtain

the compatibility constraints (11). The goal would be to reduce the

upper 3m by 3m matrix of C to the identity matrix , thus producing

an expression for the displacements :

iJ = G~~ (25)

where G is the upper 3m by 3n part of the matrix D of equation (10)

after the Gaussian elimination has been performed on it. Then dis— Li

placements constraints of the form:

G S < U  (26)

could be included on the problem . These can be written such that

the moment of inertia ratios are the only variables multiplying

the fundamental forces S; therefore , the displacement constraints

can be handled in the same way as the compatibili ty conditions were

satisfied in method presented here.

With these extensions , it is believed that the linear program-

ming technique developed in this research can be an effective method

of solving optimal frame design problems.
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APPENDIX II. - NOTATION

The following symbols are used in this paper :

A. = cross-sectional area of the ~th member;

= equivalent area;

~~~ 
= elements of the coefficient matrix ;

B = basis matrix ;

• C = matrix of direction cosines;

c
3 

- z~ = objective function coefficients ;

D = force matrix ;

= unit vectors;

F~ = axial force in jth member ;

gj = inequality constraint;

H = compatibili ty matrix ;

th
I
i 

= moment of inertia in j member;

K = section modulus/area ;

K’ = moment of iner tia/area ;

= length of 3
th member;

L.. = force transformation matrix ;
3].

M~ = moment in the jth member ;

m = number of joints in the structure ;

n = number of members in the structure;

p = penalty function;

i i
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Q = lower bounds on the areas;
— . t h . .R. = vector of external loads at i. joint;

r = penalty function parameter ;

= vector of internal loads ;

T = matrix used to calculate B inverse ;

t. = direction cosines of ~th member;

5 = vector of nodal displacements;

w = weight of structure ;

= vector of variables;

Z~ = equivalent forces in 1
th member ;

• 
.. 

~~~~

. = moment of inertia ratio for j member ;

r
~ 

= vector used to calculate B inverse;

p = weight per unit volume ;

a = allowable stress ;

= vector used to calculate B inverse

.S
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Starting Point Cycle 3 Cycle 6

Member A .  ~~~~. A .  ~~~~- A. 
—

3 3 3 3 3 3
(Sq. In.) (Sq. In.) (Sq. I n . )

1 —— —— —— 128.48 —— 129.71

2 1.0 —— 13.728 9.36 15.977 8.12

3 1.0 —— 3 . 3 2 4  38.66 3.084 42.06

4 1.0 —— 4 . 3 5 9  2 9 . 4 9  3.795 34.18

5 1.0 —— 0 . 9 9 4  1 2 9 . 2 0  0 . 9 5 9  1 3 5. 1 9

6 1.0 —— 0.830 154.72 0.867 149.59

7 1.0 —— 4 . 0 2 8  31.90 7.608 17.05

8 1.0 —— 1.271 101.11 1 .080 1 2 0. 1 4

9 1.0 —— 7.182 17.89 13.723 9.45

10 1.0 I —— 25.696 5.00 25.941 5 0 0

Objective 3 3
Function — — — — — 65527.0 in 65647.0 in

Computational Time (Hr:Min:Sec ) = 00:02:57)

Note : 1 sq in 6.45 cm2; 1 cu in = 16.4 cm 3

Table 3A; Results for Ten Member Frame Using
Linear Programming Technique



Starting Point Cycle 3 Cycle 7
• Member

8. A .  8. A .  8. A .
(Sq. 3 1n . )  (Sq .31n . )  (Sq .3 1n . )

1 —— 125.00 —— 130.28 —— 129 .48

2 1.0 125.00 13.226 9 .85  15.676 8 . 2 6

3 1.0 125.00 3.083 42.26 3.100 41.77

4 1.0 125.00 3.382 38.52 3.456 37.46

5 1.0 125.00 0.965 135.01 0.966 134.04

6 1.0 125.00 0.877 148.63 0.878 147.43

7 1.0 125.00 6.933 18.79 7.758 16.69

8 1.0 125.00 1.077 121.00 1.076 120.31

9 1.0 125.00 9.953 13.09 9.437 13.72 -
10 1.0 125.00 21.933 5.94 25.896 5.00

Obj ective 3 3Function — — — 67127 .0  in 66191.0 in

Computational Time (Hr:Min:Sec ) = 01:42:32)

- 2 . 3Note: 1 sq in = 6.45 cm ; 1 Cu lfl = 16.4 cm

Table 3B: Resu lts for Ten Member Frame Using
Fiacco and McCormick Routine

.1
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CAS E I CASE II

8-  8 .  A .  8 .  8-  A .Me mber j  3 3 3 3
In i t ia l  Final Final  Initial Final Final

Sq.In.) (Sq.In.)

1 —— —— 134.43 —— —— 138.00

2 1.0 0.907 148.24 5.0 0.929 148.58

3 1.0 0.869 154.64 4.0 0.896 154.08

4 1.0 4.836 27.80 1.0 4.869 28.34

5 1.0 1.045 128.63 6.0 1.070 128.93

6 1.0 26.887 5.00 0.5 27.601 5.00

7 1.0 1.037 129.59 5.0 1.061 130.10

8 1.0 7•242 18.56 1.0 8.782 15.72

9 1.0 0.814 165.17 4.0 0.847 162.97

10 1.0 26.887 5.00 1.0 27.601 5.00

11 1.0 1.114 120.73 0.5 1.141 120.97

12 1.0 1.210 111.11 5.0 1.243 111.06

13 1.0 26.887 5.00 1.0 27.601 5.00
• 14 1.0 1.095 122.72 6.0 1.131 122.00

15 1.0 26.887 5.00 1.0 27.601 5.00

• 16 1.0 2.512 53.52 0.5 2.606 52.96

17 1.0 0.705 190.72 3.0 0.720 191.76

18 1.0 26.887 5.00 1.0 27.601 5.00

19 1.0 1.117 120.34 6.0 1.153 119.70

20 1.0 26.887 5.00 1.0 27.601 5.00

21 1.0 1.093 122.94 7.0 1.115 123.74

22 1.0 15.314 8.78 0.5 16.035 8.61

23 1.0 26.887 5.00 1.0 27.601 5.00

24 1.0 26.887 5.00 1.0 27.601 5.00

25 1.0 2.838 47.37 0.5 2.829 48.78

• Objective 3 3Function 187275.0  in 187421.0  in

Note: 1 sq in = 6 . 4 5  cm 2 ; 1 cu in = 16.4 cm 3

Table 5: Results for 25 Member Frame Using
Linear Programming Technique

- - - —~~~~~~~
.- - - -~~~~~ • ~~~~~~~~ • • ~~~~~~~~ ~~~—- -~~~~~~- --~~~~~~~ -~~~~~~~ • - - , -—--~~~-~~~~ “ -



F

Unc lassified
S E C U R I T y  C. &S S I F I CA ION 3~ THIS  PAG E (WN.n Oat . Enter. !)

REPORT DOCUMENTATION PAGE 
- 

BEF OR E COM PLETING FOR M
I. R EPORT NUMEEF Z GC~’1 A CCESSI O ’  NO. 3 R E C I P I E N T E  C A T A L O )  p-,UM~~EP

MIE—026/ 
___________ ______________________________

4. T ITLE  (and SubtitI.) S TY PE OF REPORT & PERIOD COVERt )

• Technical
Optimum Design of Frames Using Lineai October 1977 - June 1978
Programming Techniques 6. PERFORMING ORG. REPORT NUMBER

7 . AL) Tp4 OR(a)  B C O N T R A C T  OR G R A N T  NUM B E R .)

Walter J. Briggs
Kenneth D. Willmert N0001 4— 76—C— 0064

B PERFORMING O R G A N I Z A T I O N  NAu~~~~ ND A D D R E SS 10. PROGRAM Ei.EMENT , PR OJ E C T . T A S K
AR EA 6 WO R K UNIT NUMBERS

Clarkson College of Technology
Potsdam, New York 13676 NR 064-548

I I. C O N T R O L L I N G  O F F I C E  N AM E AND A D D R E S S I? R E PO R T  DA T E

Office of Naval Research June 1978
Room 303 Federal Building 13. N U M B E R  CF P AGES
Rochester , New York 14614 

___________ 
38 

_______

4 M O N IT O R I N G  AGENCY NAME 6 AOD RESS(,(  different Iron, Controlling Ollice) IS. S E C U R ITY  C L A S S .  (ol tAle ,.p n?i

Office of Naval Research Unclassified
Structural Mechanics _____________________
Department of the Navy ISI. 

~~~5~~~I~~
I
E
F IC A T I O N  DOW NG R A DING

Arlington, Virginia 22217 ______ ________________ ______ — —
16 DISTRIBUTIO N STATEMENT (of this Report ,

This document has been approved for public release and sale ; distribution
unlimited.

17. D ISTRIBUTION S T A T E M E N T  (of the .bsl rect entered Sn Block 20. ii differe nt from Report)

t~~. SUPP .. E M E N T A RY  N O T E S

I S K  E w ORDS (Continue on te . . rse aide if n.c..eaz>- and Identify b> block number)

Optimization, Frames, Linear Programming, Structural Design

~~~~~~~~ T R A C T  (Continue on rer.r.. •id. If n .cee•a ~ and i d e n u l y  Er b l oc k  numL.r)

• Presented is an optimization technique , using linear programming methods,
which can effectively be u sed to design structural frames. Stress con-
straints as well as conditions of equilibrium and compatibility are
considered. The approach is demonstrated to be more efficient than
presently available nonlinear techniques on large problems. Although
the method is iterative, a modification of the standard simplex method ~~~~~~~~~~~~~~~~ !

DD. J L . .73 ~473 ED ITION O F I NO V 65 IS O B S O L E T E  Unclassified
S ~. a 1 O 2 - L F .c l a . i ~~~~1 SE CURITy  C LA S S I F I C A T I C ~ QF THI S PL~~E ( e r : . . - .  •1-

- •------•-• - -~~ • •  —



~~~~~

.- -

~~~~~~~~~

-•• 

~~~~~~~~~~~~~~~~~~~~~ 

.• -:-,--,r—C—•-~-—-•— —~~-. .  . —•-.~ — - .  •-. • 
~~ ~~~~~~~~~~~~~ ~~~~~~~~

Unclassified
SECURITY CLASSI FICAT ION OF TI4IS PAGE (Wham D.t. £ni. r.d)

‘
~~is used which considerably decreases computational time. A discussion

• ~• 
is presented outlining how the technique can be extended to handle
additional requirements such multiple loading conditions , non-nodal

- 
loads and displacement constraints.

P t

.

I I~ 0 ) 0 2 .  LF- C 1 4 -  660 1
Unclassified

P4 )E:~~R y  !~ _ ,s s , c . ;,~~~oN - - - • •~~ - •- : - .  :- 

. - -.,
~~~

.- ., ~~~~:~~~~~~~• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~- -  - - - - J



I


