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Abstract

An approach to empirical time series analysis is described in which the

identification stage is not accomplished chiefly by graphical inspection of

the time series and of computed auxiliary sample functions such as the auto-

correlation function, partial autocorrelation function, and spectrum . Rather

the transfer f unction o~ the whitening filter is directly estimated and

parsimoniousl y paramet rized . p.;., ~~~~~~~~~~~~~~~ i~.
. ) 

~
A criterion for choosing a regression model for forecasting is describe&.

in Section 1 A model identification procedure for a stationary time series

is descr ibed,in Section 2. Model identification for a non-stationary time

ser ies is discussed _ in Section 3
T Our approach is illustrated by an example .

in Section - -4. 
.
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( 1. Choosing a Regression Model for Forecasting

Let Y be a variable (representing hourly electricity demand , daily

bir ths , weekly money supply , monthly retail sales of department stores,

quarterly nonform inventory investment , annual gross national product, and

so on) whose value denoted Y(t) , at t ime t one desires to forecast (predict)

or explain. Either aim is accomplished by means of a decomposition of the value

Y(t) into the sum of two components as follows:

Y( t) = Y~ (t)  + YV(t)

Y~ (t)  is the explained or predictable part of Y( t)

is the error , or unexplained , or unpredictable part of

Y( t)

The explained part Y~ (t)  is usually a linear function of “explanatory”

variables X
1
(t ) , X

2
(t),... with coefficients denoted 

~1’~ 2 ’~~
•
~ 

explicitly,

Y~ (t) = ~1 X1(t) + ... +~~~ X~(t) + ... +~~~x.~(t) +

We write the sum as possibly infinite series , becaut e in theory there is an

infinite number of possible explanatory variables. However,only a f ini te

number of explanatory variables X~ are expected to have coefficients

which are different enough from zero that the benefit (in mean square error

terms ) of estimating is to be preferred to the cost of considering

to be equal to 0 , and thus omitting X~ from the model. 

~~-
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The error term Y’~( t )  is best regarded as the residual Y( t )  - Y~ (t )

a f t e r constructing Y~ ( t )  to explain as much as possible of the value of

Y( t )  . We call Y~’( t )  the innovation at t ime t

We use the Greek letter flu as a superscript to indicate that Y’~( t )

represents what ’s “new” (or “t ransitory ”) in Y( t )  af te r explaining as much

of its value as possible by the best available explanatory variables

Xl(t),...,
X.K

( t) . We use the Creek letter ~ as a superscr ipt because ft

connotes a “mean , ” and Y~ ( t )  connotes an average or smooth value about which
4 ,

Y( t )  f luc tua tes .

It is customary to denote the error term by e( t )  , and write the

model for Y(t) as a regression model

Y( t )  — ~1X1( t )  + .. + 
~kXk (t

~ 
+ c(t) , t — 1,2,..

The “ordinary” or “naive” regress ion model assumes that the

errors €(t) are independent ident ically distributed random variables , each
2with  mean zero and varianc e a . The best estimators of 

~1’~~• • ’~ k
(according to such cri teria as least squares , maximum likelihood , or minimum

va riance unbiased), denoted 6l ’ ’ • ’~ k , in the mode l (n~ i written in matrix

fo rm)

‘1 - + €

are the solutions of the normal equations
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— (X ’X) 4 x’y

where
5•5 -

[
~1 1xi~

) ... X~,~(l)~] [Y11
= I ... X = , I = ... 

‘ I ... ILeki LXn~
) ... X~(k)j L1~i [cnj

Let Y~ and Y’~ now denote the vectors of smoothed and residual

values:

1Y”(1)1 yV(1)

[*~n~J YV(n)

R~presentat ions of Y~ am.d Y’~ are

Y~~~~~ AY , Y’~~~~~(I-A) Y

where

A = X(X ’XY~ x’

A is called (see Hoaglin and Welch (1976)) the ~~~ matrix; I call I 
- A

the whitening matrix. The residual stun of squares can be represented

I

5 -
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~ = = U (I-A) Y112
t—1

The sample multiple correlation coefficient ax of I given X is defined

by l - R ~ = 1(1 -A) 1112 
+ 111112

Given the regression model I = + € one may distinguish three

prob lems : estimate

( i) XR Y~ , smoothing or forecasting ;

(ii) ~ , parameter estimation ,

(iii) X , model identification.

We have described the solution to the parameter estimation problem

when the model matrix X is fixed , but this solution is regarded as unsatis-

factory on various criteria; Denipster, Scha tzoff , and Wermuth (1977) compare

alternative solutions, including subset regression (choose an optimal submatrix

~ 
~= Ix , : : ... : x 4 ] of variables on which to regress Y ) and ridge

~~ ~‘l ‘2
regression (estimate ~ by

= (X’X + X1Y’ x’y

for a suitable choose of ridge parameter ),. ). Which procedure to use in

practice is best determined adaptively from the data rather than a priori on

the basis of theoretical considerations. I believe recent research by Wahba (1976)

provides insight into a criterion which can be used to choose the optimal

regression model and parameter estimator. To each model and estimator one

$
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( can associate : (1) a hat matrix A [for subset regression it is

— x(~)(x(~)x(~)) X(~) while for ridge regression it is

H A~ — X(X ’X + XI)
1 
X’ I and (2) a “cross-validation” criterion

CV (A) ( j(I - A) 1fl
2

[Trace (I-A))2

The optimum smoother Y~ AY correspond s to the hat matrix A , def ined as the

matrix minimizing CV(A) over the f amily of hat matrices A one is considering.

The justification for this assertion is partly its successful applica-

tion in practice and partly a variety of theoretical properties. Its justifica-

tion is not the aim of this paper ; rather we seek only to note the existence

of cr iter ia for selec ting a regression model in order to motivate our approac h

toward finding criteria for selecting a time series model.

2. Identifying a Stationary Time Series Model

Let Y( t )  , t = 0,± 1,... be a normal stationary time series . Then the

explanatory variables to be used to explain or predict Y(t) are past values

X
1

( t) = Y( t - l) ,X2(t) = Y(t -2),... of which in theory there are an

infinite number. In the decomposition Y(t) = Y~ ( t )  + Y’~(t) , Y~(t) is

defined to be the conditional expectation of 1(t) given the infinite past

Y(t  - l),Y(t - 2),... :

y~
.t (t) = E(Y(t) IY (t - l) ,Y(t -2),...] ,

0-,

_ _ _ _ _ _ _ _ _  -- ,.- -. fl_ __ .
~~ _~ - -  -
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called the infinite memory one step ahead predictor . The model iden t i f ica t ion

problem then corresponds to f inding the memory m such that the finite memory

predictor

.
~~I

m(~) — E ( Y ( t ) I Y ( t  - 1),... ,Y(t -ml

performs as well as the inf inite memory pred ictor , or more prec isely Y~(t)

and Y~~
W ( t )  almost coincide .

In the theory of t ime series analysis it is useful to detine an ideal time

series model by the condition Y~ ( t )  and Y~~m(~ ) exactly coincide ; we

define the time series I(s) to be an autoregressive scheme of order ,n if

Y~ ( t )  = Y~~’
m ( t )

or equivalently

YvIm(~) - ?(t) - Y~
.m(~)

is whi te  noise in the sense that

E(y
vI m

(S)  YVIm(t)) — o for 8 ~~ t

The coefu icia~ts in the representath.~ of Y~
) m (~~) as a l inear combination of

Y(t  - j) , j — 1,.. ,m are denoted by 
~~j m  where ~ symbolizes “autoregressive . ”

Thus we write

I

_ _ _  - . -
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Y~ .
m
(~) 

~i ,m
t
~~~
) + + 

~~~~~~ 
-m)

Define the backward shift operator L by

LY(t) — Y(t - 1)

(which means the same as B in the notation of Box and Jenkins). Finally

define the polynomial

~~(z) - 1. + a1 ,~z + . - + C\n mE

Then

- ~(t) - Y~
AIm(~ )

— g~ (L) 1(t)

Similarly we define infinite memory (i) predictions, (ii) autoregressive

t ransfer  function , and ( it i ’  innovations :

(i) -Y~(t) — ~i r nY ( t  - 1)  + .. + c,,1~~
t -m) +

( i i~ g ,(z) — I + a
1~~,z + ... + 

m 
+

(iii) Y”(t) — g,,(L) 1(t)

a



______  - - - -

~~~~

,.-- - - -,-

~~

.-

~~

-—

~~

-

8

For tuture reference define the mean square predict t on  e r rors

~~ FlIY
V1m(~~ l~~I . - EL~Y t ~~l I

0

* We ca l l  g~ (z~ the autoregressive t r ans fe r  [unc t ion  t5ARTF) of  the

s ta t ionary  time series Y ( . )  s ince one can write sy~uh o l i c : t l lr

t ime serios Y ( s ~I ~~~~~~~ white noise

in words , g ( L~ is the whi ten ing  f i l t e r .

The time series (model i d e n t i t & c a t i o n )  problem can be defined to be

the estimation of g,~ this is equivalent to defining the regression modeling

problem as es t imat ion  of  the “opt imal”  ha t m at r ix  A

We w i l l  at tempt to clarify the role of finite parameter schemes , such

as AR ~aut oregr essiv ~’~ scheme s of order p :

g (L~ Y~t~ ~~t’

MA (moving average) schemes of order q

Y ( t ~ — hq (L ’~ c( t )  . h
q

$sz) — I + + + t~q E~

a
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(. ARNA (autoregressive-moving average) schemes of order (p,q)

g~ (L) Y~ t) = h
q(L) €(t)

To interpret the polynomials g~(z) and h
q
(Z) parametrizing an ARMA scheme,

one uses them to form the ARTF :

g0,(z) = h
1(z) g~ (z)

The assumpt ion of a parsimonious ARMA scheme is adopted to provide a

parsimonious finite parametric representation of in order to enable it

to be estimated . However , one can estimate g~, non-parametrically using

approximating AR schemes. It is my view that in modeling stationary time

series only AR schemes are needed . However, it will be shown in the next

section that ARMA schemes are useful for modeling non-stationary time series.

To form estimators Orn ,cx.l m ,... ‘%,m of the parameters of an AR scheme

of order m we use the Yule-Walker equations: for j = 1,... ,m

p (-v) + c t1,mp(l _ v) + .... +~~~~mp(m
~~

V) a 0

where

T-v T 2p(v) = E Y( t )  Y(t + v) + E I ( t )
t=l t—l

is an estimator of p(v) = cotr (Y( t ), Y ( t + v ))  . FurtherII ( 
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— ~~~ ~~~ ,m P~’’ + ... + % m p(m) -

It seems plausible that there is a value of m denoted rn , such tha t

ç~(z) - 1 + cx1 z + .... +~~~~m zm

for m — rn is an “optimal” estimator of g
~, 

; in symbols,

g,,,(z)  = g~.(z)

One can show that approximately the overall mean square percentage

error of any as an est imator of g0, satisfies

2

I I ;_2
~~ ,(e

iW) - ~~ 2 g ( ~ iW)

J a~~~(e~
W)

-IT

1 m 
-2 -2 -2

~~~~~~~~ + a~ - a ~

A

where T is the sample size. Therefore in practice we choose m to minimize

a criterion function CAT(m) , defined as follows:

- 
- 

. CAT(0) - -(1 + ~)

I 
m 

~~2 ~~2CAT(in) - a -
m

- - .5- .~~~~~~~~ -- . -
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2where 0m is an unbiased estimator of defined by

A
2 f mV 1 

A2

Gm 
= 

~
1 T) Gm

When rn — 0 we accept the hypothesis that the observed time series is whi te

noise.

Having determined the maximum order rn of the approximating autoregres-

sive transfer function g~ (z) we next use stepwise regress ion techniques to
m

determine the significant ly non-zero autoregressive coefficients in the

transfer function. As an example , on monthly data if one determined that

m — 13 , it would be of interest to determine whether g13(z)  were approxi-

mately of the form

A 12 - -

~~~~~ 
— (I - 91z ) ( l  - e12z )

Stepwise , or subset , autoregression is discussed by !‘kClave (1975).

3. Identifying a Non-Stationary Time Series Model

For a non-stationary time series , the model ing probl em is not only to

find the whitening filter (which transforms (Y(t)) to (yv(t)) , but

interpret it as several filters in series:

a detrending filter which in the spectra l domain elimtnates the

low frequency components corresponding to trend ,

a de-seasonal filter which in the spectral domain eliminates

the components corresponding to a periodic component with

- A
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period )~, , or to the harmonics with frequencies which are

2rTmultiples of

or II : an innovations filter which transforms to white noise the

series Y (sta t ) ( t) D
o
D
~
Y(t) representing a transformation

of Y( t )  to a stationary series.

The time series modeling prob lem is thus to f ind the f ilter

representation

detrend deseasonal innovations

Y( t) D
0 ... 

~~~~~ 
~~~

=

where we admit the possibility of several different periods X~
,... )Xk 

(f or

example in monthly data X values are often 12 and 3 , in daily data X

values are often 7 and 365 , in hourly data ). values are often 24 and 168).

Given the above decomposition , one can form various derived series:

Y~
0
~ ( t )  D

0
Y(t )  the detrended ser ies ,

Y~~~ ( t )  = D~Y(t) the seasonally adjusted series,

— Y(st at )
(~) — DoD

~
Y( t )  — D

x
D0Y ( t )  , the detrended

seasonally adjusted series ,

Y’~( t )  — Y~~~~
t
~~ (t) — ~,,D0D~Y( t )  the innovations series.

Such decompositions seem to be crucial to the study of the relations

between time series 
~~~~~ 

and Y
2

(s )  . To study their relations it seems
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clear that if one relates Y
1
(-.) and Y

2(•) without filtering one will often

f ind “spurious ” relationships. It has been suggested therefore that one

attempt to relate Y~(.) and Y~~(’) , the individual innovations of each

series. What remains to be examined is the insight to be derived from

relating Y~~’~(t ) and Y~
>
~ (t) , the seasonally-adjusted series, or Y~

8t5t)(t)
- 

. 
and Y(stat)(~) , the detrended and seasonally adjusted series.

The quest ion remains of how to find in practice the detrending and

deseasonal f i l ters .  To seasonally adjust for a period X in data, several

possibilities are available which may be interpreted as seasonal adjustment

f i l te rs .

A filter with the same ze~-e s in the frequency domain as some usual

procedures , which is recursive (acts only on past values), and yields a

variety of f i l te r  shapes (in the frequency domain) between a square wave and

a sinusoid is the one-parameter family of filters

I I)’D~ (e) — 
—

where the parameter B is chosen (usually by an estimation procedure) between

0 and 1 . When 
~ 

— 0 the filter is denoted and called X-th difference.

To understand the role of the filter D
x
(O) , denote it for brevity by

D and rewrite it as follows; writing I - LX = I - eL
X _ (1 - e) LX we obtain

D - 1 
(l~~e)L

X 
= I~~ [1~~Q)(L

X + 9 L 2X +e
2
L3X + ...)) .

I -

_________________________ ___________ _ _ _ _ _
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Then the output y~~~ (~ ) — DY(t) of a f i l ter  D with input 1(t) can be

written

y(D)(t) — 1(t) - (1- e)tY t - 2X) + ... 3

In words , Y~~~(t) is the result of subtracting from 1(t) the exponentially

weighted average of Y( t - )~J,Y(t - 2 X ) , . . .  .

It seems to me open to investigation whether the filter D (of mixed

autoregressive-moving average type) is superior to the approximately equivalent

autoregressive f i l ter

- (I - LX)(I + BLX) = I - (1- 0) LA~ BL
2X

whose output Y~~~~(t) — D’Y(t) can be written

(D’)Y ( t )  — Y( t )  — (1 - 0) Y(t  - X) - BY(t - 2X)

It appears to me that the role of moving average s in Box-Jenkins ARINA

models is to build f i l ters  of the type D
x
(9) . Thus the ARIMA model

(I - L)(I - L’2) Y (t )  - (I - 81L)(I - e12L
12) €

~

should be viewed as the whitening f i l te r

D1(01) D12(e12) Y(t) 
- 

(I~ L)(1 8  12) 
1(t) -

-

~ 

- --~~~~ - - - - -
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I should like to emphasize that the output of the filter D
1(81) D12(Ø 12)

is often not white noise but is only a stationary time series. For purposes

of one-step ahead prediction , it is often not important to differentiate

between the case tha t D12D1Y(t) is white noise or not , since most of the

predictability is obtained by finding a suitable transformation to stationarity

of the form D1D12 (below we discuss naive prediction as a transformation to

stationarity).

The moral to be drawn from the foregoing considerations is as follows.

To find a transformation of a non-stationary time series to stationarity it

may suffice to apply pure differencing operators such as I - L and I - L~2

However , the transformation of the residuals to the innovations series should

be expressed if possible in terms of factors corresponding to the filters

I - 91L and I - 812L
’2 since such fac tors enable us to interpret the overall

whitening f i l ter

Whitening
1(t) 

Filter ] Ct

as a series of filters

Detrend Deseasonal Innovat ions
1(t) Filter Filter Filter Ct

which can be interpreted as helping to provide solutions to the seasonal

adjustment problem.

— - p -— - .5 ~~~~~~ -~~ ~~~~
- - - -rr U ~~~~~~~~ . - .
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Naive Prediction and Transformations to Stationarity: To predict a time

series 1(t) one can often suggest a “naive” predictor of the form

Ynatve(~) — Y(t - x1
) + Y(t  - )

~.,) - Y(t - - X2
)

a

The prediction error of this predictor is given by

- X1 ½y(t) _ y (t)_Y VS(t) _ y(t)_ y (t_x
1
)_ y (t_ x

2
)+y (t_x

1
_ x

2
)_ (I_ L )(I-L )Y(t).

In words , taking X1-th and X2-th differences is equivalent to forming the

naive prediction errors.

A criterion that 1(t) be non-stat ionary is that it be predictable (in

the sense that the ratio of the average square of 1(t) to the average square

of 1(t) is of the order of l/T ). When 1(t) is stationary (non-predictable)

one models it by an approximate autoregressive scheme ,

A

SA (L)  1(t) —

in

which can be used to form Y~
’(t) , the best one-step ahead predictor of Y ( t )

Th. best on.-step ahead predictor of 1(t) is given by

Y~(t) — Ynaive(~) + Y~~(t)  ;

to prove this , note the identi ty

_ _ _  - . —. — - - - - -~- -
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1(t) — Ynaive(~) + Y( t )

and form the conditional expectation of both sides of this identity with

respec t to Y( t  - l ) , Y(t -2) 

A remarkable fact is the equality of the prediction errors of 1(t) and

Y( t )

YV( t )  - 1(t) - Y~ (t)  - Y( t )  - Y~~(t )  - Y V( t )

It follows that to f ind the whitening filter

Y(t)
~~~~~~~~~~~~~~ ct

for a non-stationary time series 1(t) (which includes almost all time series

with seasonal components) it suff ices  to apply any one-sided filter (in prac-

tice either suggested by an ad hoc deseasonal izing procedure or found by

applying
_
the CAT method and discovering that is less than 8/T ) whose

output Y ( t )  is stationary. The series filter

Y ( t )  —[]----- Y(t )  —r~j ---- Y V(t )  -

then yields the whitening filter. While the filter leading to Y ( t )  is not

unique, the overall filter leading to is unique.

The final seasonal-adjustment procedure is a filter D
~ 

which comes

from interpreting tue overall whitening filter as a ser ies of f ilters in

series which can be interpreted as detrending and deseasonalizing filters.

I
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4. Illustrative I~xampI e: internat ional A i r l i n e  Passengers

To i l lus t r a t e  our approach to t ime ser ies model ing of seasonal data,

let us consider a serit’s (used as an illustrative example by Bo~c and Jenkins

(1970), p. 305): monthly passenger totals (measured in thousands) in inter-

national air trave l 1949-1960 which we denote by 1(t) and its logarithms

which we denote by 2(t) . The series length is 144 .
The model fitted by Box and Jenkins to the air l ine data is

Z( t ) - ( 1-  01L)U 
- 012L )  e(t) ;

in words , take first and twelfth differences to transform to a stationary

time series which is modeled as a multiplicative moving average . The parmn-

eters of this model are estimated by Box and Jenk ins to be — .4

— .6 , — .0013 . The model fitted to the airline data by Box and

Jenkins can be w r i t t e n  in our notat ion

D 1( .4 )  D 1.~( .6)  Z ( t )  — c(t) , — .0013
.5 C

In our approac h , one has a choice of first steps .

Choice I :  Take f i r s t  and twelfth differences as obvious “na ive” pro-

diction errors; then analyze

Z(t) — D 11 D 1 Z ( t )  J
which Is a time series of length 131 .

5- --5 5-—s.-—- -—
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Choice II: To determine suitable transformations to transform from

a non-stationary time series 2 to a stationary time series Z , examine a
A

best approximating autoregressive scheme whose order in is determined by

CAT and whose parsimonious form is determined by subset autoregression. In

this way one might be led (without directly examining sample autocorrelations)

to try

Z( t) — V
1 

Z( t )  , f irst differences ,

or

Z( t )  V12 2(t) , twelf th differences

as possible transformations to stationarity.

If we adopt Choice I , we note first that Z(.) has variance

R (0) — .002 which is about 1% of the variance of Z( .)  which is .194
z

This indicates that Z( .)  is non-stationary . Fitting Z(.) by a suitably
A

long autoregressive scheme with order in determined by CAT , one finds

in — 12 with autoregressive coefficients I 
-

a7 = .01

a2
= .05 a8 — - .03

a3 .15 a
9 

— - .16

a
4 

— .11 a10 — -.03

a5 -.05 a11 = .08

a6 — - .09 a12 — .34

_~~~~~~~~~~~ ,, -555.55-s_S ~ -5 -5_.55~ ~~~n.uL
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and residual var iance — .0014 . The best atepwise AR scheme fitted

to Z(t) is found to have only lags I and 12 :

Z( t ) + . 3 2 Z (t - l) + .37 Z(t - l2) = c(t) , = 0015

The residual variance a~ of a model is actually computed in our program

as a proportion (here .75) of R~ (0)
z

Next one might examine the form of ARMA and MA schemes that f i t

2 (s )  . A best f i t t ing  ARMA scheme is

Z(t )  + .34 Z(t  - 1) = e( t) - .39 €(t - 12)

with residual variance a~ — .73 R (O) = .0015 . We would regard the ARNA

scheme as identical to the AR scheme. If one forces the model for Z( t )

to be of the MA form

Z( t )  = C ( t )  + ~1
e(t - 1) + ~12 e(t 

- 12) + ~13c(t - 13)

one finds that (using for computational speed a statistically ineffi-

cient linear algor ithm) 
~~ 

— -.27 — - .38 
~l3 — .13 with residual

variance — .76 R~ (0) — .0015 . Note that .10 which is close

enough to .13 that one could conclude a multiplicative model

Z(t) — (I- .3L)(l - .4L) e(t) ;

hA5



~~~~~~
—

~~~
— -

~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ .~~ S~~~ 5S55s.55-5-5s._~5.5.5S.~5 - .

21

this multiplicative model for Z(t) enables one to write , in agreement

with Box-Jenkins , that

D1( .3) D12 ( .4)  Z(t )  = € ( t )

If we adopt Choice II , we find that the beat approximating auto-

regressive scheme to Z( t) with order in determined by CAT has in = 13

with coeff icients

F a1 -1.00 a7 = .02

a2 = .09 a8 = .08

a3 
— - .03 a9 = - .ll

a4 
= .03 a10 = .02

a
5 

= -.02 a11 = .07

a6 = 1.00 a12 = -.45

.48

The residual variance is .06 (of the original variance .1935); it just

about equals the threshold 8/T (here T = 131 for the residual series ,

and 8/T .06) below which we consider a residual variance indicates pre-

dictability and non-stationarity . Having determined in one then uses

stepwise autoregression to determine a more parsimon ious AR scheme of

order in which includes only autoregressive coefficients significantly

different from zero. In the present case, one would find only lag 1 signi-

ficant with coefficient .95 ; therefore as a Z sed es representing a

transformation of Z from non-stationarity to stationarity we might choose

first differences: Z(t) — Z(t)  - Z(t - 1) , which has residual variance .01 .

_ 5 5~~~~~~~~5
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However , it seems int uitively more meaningful  to take twelfth

differences : Z(t) — Z(t) - Z(t - 12) which has residual variance .0038

The innovation series Z’V(t) of Z(’) is found by finding the innovation

ser ies ~
‘(.) of Z(.) by f i t t ing  to Z ( )  an autoregressive scheme

whose order we now denote by iii’ - One obtains ~ = 13 (using CAT) with

residual variance .00127 (comparable to .00134 obtained by Box and

Jenkins). Using stepwise autoregression on 2 one discovers lags 1 , 12

13 have significant coefficients; we therefore form the residuals (with

residual variance .0015)

= Z( t) - .74 Z(t - I) + .38 Z(t - 12) - .31 Z(t - 13)

~ (I - .74L)(I + .38L12) Z( t)

The model we obtain by f i t t ing  a parsimonious autoregressive scheme

to twelfth differences is

(I- .74L)(I + .38 L
12)(I-L12) Z(t) = c(t) .

It can be written approximately

12

I- .26 L I- .38L 
—

which is similar to the model found by Box and Jenkins. We pret~ r to write

our model

D
1
(.26) D12(.38) Z(t) — c(t) .

. - .
~~~~~~~~ __ ~~~~~ 

. 
~~~~~~ _ _  .
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We have asserted in Section 3 a theorem that the ideal whitening

filter transforming a non-stationary time series Y(.) to its innovations

is unique but its decompositions for purposes of interpretation are

not unique. In practice , one may appear to be able to identify several

“different” ~pproximata whitening filters; additional experience in case

studies is required to determine how to measure differences and equivalences

of whitening filters.

(

- - -  —--,S-”~~~
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