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1. Choosing a Regression Model for Forecasting

Let Y be a variable (representing hourly electricity demand, daily
births, weekly money supply, monthly retail sales of department stores,

quarterly nonform inventory investment, annual gross national product, and

so on) whose value denoted Y(t) , at time t one desires to forecast (predict)

or explain. Either aim is accomplished by means of a decomposition of the value

Y(t) into the sum of two components as follows:

Y(t) = Yi(e) + YV(v)
Yu(t) is the explained or predictable part of Y(t)

Yv(t) is the error, or unexplained, or unpredictable part of

Y(t)

The explained part Y“(t) is usually a linear function of "explanatory

variables Xl(t),xz(t),... with coefficients denoted BI’BZ"" ; explicitly,

) = BLX () + .o +B K (E) 4. B X (D) +

We write the sum as possibly infinite series, because in theory there is an
infinite number of possible explanatory variables. However,only a finite
number of explanatory variables xj are expected to have coefficients Bj
which are different enough from zero that the benefit (in mean square error

terms) of estimating Bj is to be preferred to the cost of considering Bj

to be equal to 0 , and thus omitting Xj from the model.




The error temm Yv(t) is best regarded as the residual Y(t) - Y“(t)
after constructing Yu(t) to explain as much as possible of the value of

Y(t) . We call YV(t) the innovation at time ¢t .

We use the Greek letter nu as a superscript to indicate that Yv(t)
represents what's "new" (or "tramsitory") in Y(t) after explaining as much
of its value as possible by the best available explanatory variables
xl(t),...,xk(t) . We use the Greek letter | as a superscript because it
connotes a "mean," and Y“(t) connotes an average or smooth value about which

Y(t) fluctuates.

It is customary to denote the error term by e(t) , and write the

model for Y(t) as a regression model

Y(t) = lel(t) e ﬁkxk(t) +e(t), t=1,2,..,n

The "ordinary" or "naive'" regression model assumes that the
errors e(t) are independent identically distributed random variables, each
with mean zero and variance 02 . The best estimators of 51.....Bk
(according to such criteria as least squares, maximum likelihood, or minimum
variance unbiased), denoted él""ék , in the model (now written in matrix

form)

Y = XB +¢

are the solutions of the normal equations




é = !y

where \
'\
31 x1(1) ---Xk(l) Y(1) €(1)
CEE KB ERE e AR NN Ui o e S e e
Bk Xn(l)... Xn(k) Y(n) ¢(n)

Let Yu and YY now denote the vectors of smoothed and residual

values:
(1) V(1)
™= ... R
(n) YV(n)

Representations of ™ and YV are
™=ay, y=@a-ay
where
A = xx'x)! x!

A 1is called (see Hoaglin and Welch (1976)) the hat matrix; I call I-4A

the whitening matrix. The residual sum of squares can be repregented

ETWROIYS 3.~ a2~




n
T [y |2 = IV = iz - 4) )2
t=1

The sample multiple correlation coefficient Rx of Y given X is defined

by 1-8 = llx-m vi® + jv)® .

Given the regression model Y = XB + ¢ one may distinguish three
problems: estimate

(i) X8 = Y¥ , smoothing or forecasting;

(ii) B , parameter estimation,

(iii) X , model identification.

We have described the solution to the parameter estimation problem
when the model matrix X is fixed, but this solution is regarded as unsatis-
factory on various criteria; Dempster, Schatzoff, and Wermuth (1977) compare
alternative solutions, including subset regression (choose an optimal submatrix

& = [X, :X : ... : X, ] of variables on which to regress Y ) and ridge
P i i, b

regression (estimate B by

~

B = (xx +)Lxwy

for a suitable choose of ridge parameter )\ ). Which procedure to use in

practice is best determined adaptively from the data rather than a priori on

the basis of theoretical considerations. I believe recent research by Wahba (1976)
provides insight into a criterion which can be used to choose the optimal

regression model and parameter estimator. To each model and estimator one




can associate: (1) a hat matrix A [for subset regression it is
-1
A =X x'x) ’
b (p)( (0)*(p) x(p) while for ridge regression it is

A) = X(X'X + u)-l X’ ) and (2) a "cross-validation" criterion

2
CV(A) - llLI -A) Y“ '

{Trace (1 -A)]z

The optimum smoother ™ = Ay corresponds to the hat matrix A , defined as the

matrix minimizing CV(A) over the family of hat matrices A one is considering.

The justification for this assertion is partly its successful applica-
tion in practice and partly a variety of theoretical properties. Its justifica-
tion is not the aim of this paper; rather we seek only to note the existence
of criteria for selecting a regression model in order to motivate our approach

toward finding criteria for selecting a time series model.

2. Identifying a Stationary Time Series Model

Let Y(t), t =0,%1,... be a normal stationary time series. Then the

explanatory variables to be used to explain or predict Y(t) are past values
Xl(t) = Y(t -1).X2(t) « Y(E=-2)5000 of which in theory there are an
infinite number. In the decomposition Y(t) = Y“(t) + YV(t) 4 Yu(t) is
defined to be the conditional expectation of Y(t) given the infinite past

Y(E=~1),Y(E~2),... ¢

W) = Efy(e)|y(e-1),v(t-2),...1,




e
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called the infinite memory one step ahead predictor. The model identification
problem then corresponds to finding the memory m such that the finite memory

predictor
ole) = ElY()|Y(t-1),...,Y(t - m]

performs as well as the infinite memory predictor, or more precisely Y“(t)

and Yu‘m(t) almost coincide.

In the theory of time series analysis it is useful to define an ideal time
series model by the condition Y“(t) and Yu‘m(t) exactly coincide; we

define the time series Y(:) to be an autoregressive scheme of order m if
M) = ")

or equivalently
YV = v(e) - YW

is white noise in the sense that
E(Yv'm(s) Yv’m(t)) = 0 for s ¥t

The coefficients in the representatica of Y“’m(t) as a linear combination of

Y(t-3), J=1,..,m are denoted by -aj "

Thus we write

, where a symbolizes "autoregressive."




Y = o Je=1) + . +o ¥(t-mw)

1,

Define the backward shift operator 1L by
LY(t) = Y(t-1)

(which means the same as B in the notation of Box and Jenkins). Finally

define the polynomial

gm(:) - 1+ “l,n' * i+ um,mzm

YV = v - Y™

- gm(l.) Y(t)

Similarly we define infinite memory (i) predictions, (ii) autoregressive

transfer function, and (iii) innovations:

(E) = g H(E-1) +.. +q XE-m) + ...

RO * 140 ot e 0" h .

YV(e) = g (L) Y(t)




-

8
For future reference define the mean square prediction errors
2 v, m 2 B \ 2
o, = EBYT(O)|T), of = E[j¥YT()]|7)
i
% E

We call g.(:) the autoregressive transfer function (ARTF) of the

stationary time series Y(+) since one can write symbolically

time series Y(+) — R ¢(+*) white noise .

In words, &n(L) is the whitening filter.

The time series (model identification) problem can be defined to be

the estimation of NE this is equivalent to defining the regression modeling 1]

problem as estimation of the "optimal" hat matrix A,

We will attempt to clarify the role of finite parameter schemes, such

as AR (autoregressive) schemes of order p :

g (1) Y(®) = &(t) §

MA (moving average) schemes of order q : i3

= - qQ . 1
Y(t) hq(L) e(t) hq(.) 1L+Bz+ ..+ Bq: : i

Tt A e,

i‘
i}




ARMA (autoregressive-moving average) schemes of order (p,q)
sp(I-) () = hq(L) e(t) .

To interpret the polynomials gp(z) and hq(z) parametrizing an ARMA scheme,

one uses them to form the ARTF:
g.(z) = h_'(z) g_(2)
L q P

The assumption of a parsimonious ARMA scheme is adopted to provide a
parsimonious finite parametric representation of g_ in order to enable it
to be estimated. However, one can estimate 8, non-parametrically using
approximating AR schemes. It is my view that in modeling stationary time
series only AR schemes are needed. However, it will be shown in the next

section that ARMA schemes are useful for modeling non-stationary time series.

~ ~ ~

To form estimators °m’°'1,m""’°m,m of the parameters of an AR scheme

of order m we use the Yule-Walker equations: for j =1,...,m
p(-v) +a,1 mp(l-v) T +°tn mp(n‘.-v) =0

where

T-v T 2
Z Y(t) Y(t+v)+ T Y (t)
t=1 t=1

p(v) =

is an estimator of p(v) = comr (Y(t),Y(t +v)) .  Further

e ——
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~

- e p(0) +a1‘mp(l) B +%’m£(m)

It seems plausible that there is a value of m , denoted m , such that 1

gm(z) = 1 +;,1’mz $ e +;m,mzm

~

for m =m is an "optimal" estimator of 8, ; in symbols,

8,(z) = sa(z) .

One can show that approximately the overall mean square percentage

error of any g, Aas an estimator of By satisfies

T 2
g P -2 i
3 g &) - g g (e 8 :
2m e i 4
1 R T
i “n
- 1 "2 -2 ‘2
£ " = ¥ o + -
E el

~

where T 1is the sample size. Therefore in practice we choose m to minimize

a criterion function CAT(m) , defined as follows:
CAT(0) = -(1 +%)

m a R
b5 2 2

CAT(m) = -
i=1

=

Oj Om

T
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where Si is an unbiased estimator of oi defined by

When m = 0 we accept the hypothesis that the observed time series is white

noise.

~

Having determined the maximum order m of the approximating autoregres-
sive transfer function ;,(z) we next use stepwise regression techniques to
determine the signiflcant?y non-zero autoregressive coefficients in the
transfer function. As an example, on monthly data if one determined that

m =13 , it would be of interest to determine whether 313(1) were approxi-

mately of the form

12

813(2) = (1 - 82)(1-0,,8 )

Stepwise, or subset, autoregression is discussed by McClave (1975).

3. Identifying a Non-Stationary Time Series Model

For a non-stationary time series, the modeling problem is not only to
find the whitening filter (which transforms {¥(t)} to {YV(t)} , but

interpret it as several filters in series:

D0 g a detrending filter which in the spectral domain eliminates the
low frequency components corresponding to trend,
DX $ a de-seasonal filter which in the spectral domain eliminates

the components corresponding to a periodic component with




period ) , or to the harmonics with frequencies which are

multiples of %F 5

8, or Il : an innovations filter which transforms to white noise the

series Y(atat)(t) = DOD Y(t) representing a transformation

A

. of Y(t) to a stationary series.

The time series modeling problem is thus to find the filter

representation

detrend deseasonal innovations

———q re—— = \)
Y(t) Do 1))\1 D 8 €. = Y (t)

where we admit the possibility of several different periods Xl""’xk (for
example in monthly data ) values are often 12 and 3, in daily data )

values are often 7 and 365, in hourly data ) values are often 24 and 168).

Given the above decomposition, one can form various derived series:

Y(o)(t) = DOY(t) the detrended series,

Y(k)(t) = DXY(t) the seasonally adjusted series,

Y(O'X)(t) - Y(stat)(t) =D Y(t) , the detrended

Y(t) = DXDO

0Py

seasonally adjusted series,

Wit) = Y(white)(t) = ngODAY(t) the innovations series.

Such decompositions seem to be crucial to the study of the relations

between time series Yl(-) and Yz(-) . To study their relations it seems
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clear that if one relates Y1(~) and Y2(~) without filtering one will often
find "spurious" relationships. It has been suggested therefore that one
attempt to relate YY(-) and Y;(-) , the individual innovations of each
series. What remains to be examined is the insight to be derived from

relating Yik)(t) and YEX)(t) , the seasonally-adjusted series, or Y{Stat)(t)

(stat)

and Y2

(t) , the detrended and seasonally adjusted series.

The question remains of how to find in practice the detrending and
deseasonal filters. To seasonally adjust for a period ) in data, several
possibilities are available which may be interpreted as seasonal adjustment

filters.

A filter with the same zerwes in the frequency domain as some usual
procedures, which is recursive (acts only on past values), and yields a
variety of filter shapes (in the frequency domain) between a square wave and

a sinusoid is the one-parameter family of filters

k= Lx
I~ eLk

Dk(e) -

where the parameter @ 1is chosen (usually by an estimation procedure) between

0 and 1 . When § =0 the filter is denoted Vx

To understand the role of the filter DX(G) , denote it for brevity by

D and rewrite it as follows; writing 1I - Lk =1- eLx- (1-9) Lk we obtain

A
» I_.Q_:_ﬂ% = 1-{1-aM+ a2t + o234+ . 01 .
1-0L

and called )-th difference.

ey




Then the output Y(D)(t) = DY(t) of a filter D with input Y(t) can be

written

Y ) = ve) - (1-0){y(t-20 +...)

In words, Y(D)(t) is the result of subtracting from Y(t) the exponentially

weighted average of Y(t - )),Y(t-2)\),... .

It seems to me open to investigation whether the filter D (of mixed
autoregressive-moving average type) is superior to the approximately equivalent

autoregressive filter

‘= (@-LMa +od) =1-(1-9) Lr-oL?

4
whose output Y(D )(t) = D’Y(t) can be written
y(®

?
Y(£) = ¥(t)- (1-8) Y(t- ) -0Y(E-2)) .

It appears to me that the role of moving averages in Box-Jenkins ARIMA

models is to build filters of the type Dl(e) . Thus the ARIMA model

12 12
(I-L)(I-L"7) Y(t) = (I-BIL)(I-BIZL )et

should be viewed as the whitening filter

. LlZ

(8 Dy, ¥ = (g Oivery le) e caditiat,
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I should like to emphasize that the output of the filter °1‘°1) D12(912)
is often not white noise but is only a stationary time series. For purposes

of one-step ahead prediction, it is often not important to differentiate
between the case that DIZDIY(t) is white noise or not, since most of the
predictability is obtained by finding a suitable transformation to stationarity
of the form D1D12 (below we discuss naive prediction as a transformation to

stationarity).

e e S EEEN

The moral to be drawn from the foregoing considerations is as follows.
To find a transformation of a non-stationary time series to stationarity it
may suffice to apply pure differencing operators such as I-L and 1I- L12 =

However, the transformation of the residuals to the innovations series should

be expressed if possible in terms of factors corresponding to the filters

I- 91L and I - 912L12 since such factors enable us to interpret the overall

whitening filter 1
Whitening i
¥(t) Filter €¢ |
|
|
as a series of filters
Detrend Deseasonal Innovations
Y(t) ' Filter Filter Filter ‘ €

which can be interpreted as helping to provide solutions to the seasonal

adjustment problem,




16

Naive Prediction and Transformations to Stationarity: To predict a time

series Y(t) one can often suggest a "naive" predictor of the form

naive

Y (£) = Y(t=-2) +Y(E-),) - Y(E-\ - )) .

The prediction error of this predictor is given by

" A
Y(t) = Y(t) _Ynaive 1 x2

In words, taking xl-th and Xz'th differences is equivalent to forming the

naive prediction errors.

A criterion that Y(t) be non-stationary is that it be predictable (in
the sense that the ratio of the average square of Y(t) to the average square
of Y(t) 1is of the order of 1/T ). When Y(t) 1is stationary (non-predictable)

one models it by an approximate autoregressive scheme,
g.(L) Y(t) = €
m

which can be used to form Ykﬁt) , the best one-step ahead predictor of Y(t) .

The best one-atep ahead predictor of Y(t) is given by
™) = Y™V 4 yHe)

to prove this, note the identity

(£) = ¥(E) = ¥(E = A) = ¥(E = R) +¥(E =2y = A) = (1=L H(I-L ) ¥(e) .

i




: v(e) = Y"Ve(e) 4 y(e)

and form the conditional expectation of both sides of this identity with
’ respect to Y(t-1),Y(t-2),... . i3
A remarkable fact is the equality of the prediction errors of Y(t) and {

; Y(t) : ;I

V() = Y(t) - YH(e) = v(e) - YH@) = ¥ V) .

It follows that to find the whitening filter

b

Y(t) €,

for a non-stationary time series Y(t) (which includes almost all time series
with seasonal components) it suffices to apply any one-sided filter (in prac-
tice either suggested by an ad hoc deseasonalizing procedure or found by
applying the CAT method and discovering that ;E is less than 8/T ) whose

m

output Y(t) is stationary, The series filter

Y(t) Yo — =1V =¢

then yields the whitening filter. While the filter leading to Y(t) is not

unique, the overall filter leading to €, is unique.

The final seasonal-adjustment procedure is a filter D,  which comes

A

from interpreting tihe overall whitening filter as a series of filters in

series which can be interpreted as detrending and deseasonalizing filters.

W— S RS S
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4. Illustrative Example: International Airline Passengers

To illustrate our approach to time series modeling of seasonal data,
let us consider a series (used as an illustrative example by Box and Jenkins
(1970), p. 305): monthly passenger totals (measured in thousands) in inter-
national air travel 1949-1960 which we denote by Y(t) and its logarithms H

which we denote by Z(t) . The series length is 144 .

The model fitted by Box and Jenkins to the airline data is

12 ;
V1o ¥p 2(0) (1=, L) -8 ,L7) e(t) 3
in words, take first and twelfth differences to transform to a stationary
time series which is modeled as a multiplicative moving average. The param-
eters of this model are estimated by Box and Jenkins to be Bl = 4,

2

8., = .6, g, " .0013 . The model fitted to the airline data by Box and

12

Jenkins can be written in our notation
D,(.4) D, (.6) Z(t) = e(t) , o> = .0013

In our approach, one has a choice of first steps.

Choice 1: Take first and twelfth differences as obvious "naive" pre-

diction errors; then analyze

Z(t) = 2(t)

Pra®y

which is a time series of length 131 .
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Choice II: To determine suitable transformations to transform from

~

a non-stationary time series Z to a stationary time series Z , examine a
best approximating autoregressive scheme whose order ; is determined by

CAT and whose parsimonious form is determined by subset autoregression. In
this way one might be led (without directly examining sample autocorrelations)
to try

E(t) = V1 Z(t) , first differences,
or
E(t) = V122(t), twelfth differences

as possible transformations to stationarity.

If we adopt Choice I, we note first that E(*) has variance
R_(0) = .002 which is about 1% of the variance of Z(+) which is .194 .
Z

This indicates that Z(°*) 1is non-stationary. Fitting E(-) by a suitably

~

long autoregressive scheme with order m determined by CAT, one finds

~

m = 12 with autoregressive coefficients

o = .36 o, = .01
a, = .05 a8 = -,03
Qy = .15 a9 = -.16
g @, = .11 @9 = =03
as =-,05 a1 = .08
Qg =-,09 ’ °12 = .34

L | —
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and residual variance of: = ,0014 . The best stepwise AR scheme fitted

to E(t) is found to have only lags 1 and 12 :
E(t) + .32 E(t -1) + .37 E(t -12) = e(t) , ci = ,0015

The residual variance 02 of a model is actually computed in our program

as a proportion (here .75) of R_(0) .
Z

Next one might examine the form of ARMA and MA schemes that fit

Z(*) . A best fitting ARMA scheme is
Z(t) + .34Z(t-1) = e(t) - .39 e(t - 12)

with residual variance of: = .73 R_(0) = .0015 . We would regard the ARMA
Z
scheme as identical to the AR scheme. If one forces the model for Z(t)

to be of the MA form
Z(t) = e(t) + B E(t - 1) + B, €(t -12) + B qe(t - 13)

one finds that (using for computational speed a statistically ineffi-
cient linear algorithm) 51 = -,27, 312 = -.38, 813 = .13 with residual
variance oz = ,76 R_(0) = .0015 . Note that 81512 = ,10 which is close

Z
enough to .13 that one could conclude a multiplicative model

Z(t) = (1-.3L)(1-.4L) e(t) ;

S e




this multiplicative model for E(t) enables one to write, in agreement

with Box-Jenkins, that

Dl('3) Dlz(.l&) Z(t) = e(t) .

If we adopt Choice II, we find that the best approximating auto-

A

regressive scheme to Z(t) with order m determined by CAT has m = 13 ,

with coefficients

a = -1.00 a, = 02
a, = .09 g = 08
0y = -.03 0y = - 11
S 5 Sl
ag = -.02 Q5 = .07
ag = 1.00 0'12 = -.45

Q5 = .48

-'l‘he residual variance is .06 (of the original variance .1935); it just
about equals the threshold 8/T (here T = 131 for the residual series,
and 8/T = .06) below which we consider a residual variance indicates pre-
dictability and non-stationarity. Having determined ; one then uses
stepwise autoregression to determine a more parsimonious AR scheme of
order ; which includes only autoregressive coefficients significantly

dif ferent from zero. In the present case, one would find only lag 1 signi-
ficant with coefficient .95 ; therefore as a Z sedes representing a
transformation of Z from non-stationarity to stationarity we might choose

first differences: 'i(t) = Z(t) -2(t -1) , which has residual variance .01 .
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However, it seems intuitively more meaningful to take twelfth
differences: E(t) = Z(t) -Z(t -12) which has residual variance .0038 .
The innovation series Zv(t) of Z(*) 1is found by finding the innovation
series Ev(.) of E(-) by fitting to E(-) an autoregressive scheme
whose order we now denote by & . One obtains é = 13 (using CAT) with
residual variance .00127 (comparable to .00134 obtained by Box and
Jenkins). Using stepwise autoregression on 7 one discovers lags 1, 12,

13 have significant coefficients; we therefore form the residuals (with

residual variance .0015)

ZV(t) = Z(t) - .74 Z(t-1) + .38 Z(t-12) - .31 Z(t - 13)

& (1-.761)@1 + .38L%) Z(t)

The model we obtain by fitting a parsimonious autoregressive scheme

to twelfth differences is
(1-.761) (1 + .38 LYy (1 - .}?) z(t) = e(t)

It can be written approximately

I1-L 1 -L12

T-.26L 1-.381 2(t) = e(t)

which is similar to the model found by Box and Jenkins. We prefer to write

our model

Dl('26) D12(’38) Z(t) = e(t) . i3
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We have asserted in Section 3 a theorem that the ideal whitening

filter transforming a non-stationary time series Y(*) to its innovations

Yv(°) is unique but its decompositions for purposes of interpretation are

not unique. In practice, one may appear to be able to identify several
"different" approximate whitening filters; additional experience in case
studies is required to determine how to measure differences and equivalences

of whitening filters.
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