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ABSTRACT

An algorithm that may be used for the classification of periodically
amplitude modulated (PAM) targets is presented. The data base used to
test the algorithm is derived from radar returns from vehicles moving
at various velocities and aspect angles, but the techniques are appli-
cable, as well, to other active wave devices such as sonar and laser.
The received radar signal is considered to be a time series that is a
function of target type, range, velocity, orientation and noise. Class-
ification is implemented in the frequency domain; short-time spectra
are computcd using the Fast Fourier Transform (FFT). Features are
extracted from the information bearing sidebands of the resulting spectra.
The radar signatures are classified using both linecar discriminant and
nearest neighbor classifiers, and performance is presented for two,
three, five, and six class cases using single and sequential looks.
Probabilitics of error of less than ten percent arc achicved for five

or fewer classes
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1 Introduction

The purpose ol this disscertation is to investigate technigues for

B A g Y

the identification of radar targets that possess periodically amplitude

E modulated sipgnatures.  This introductory chapter includes a survey of
; automatic target identification with particular attent ton devoted to

radar. A philosophical discussion of the general pattern recognition

problem is presented followed by a procedure for the design of pattern

recopnition syvstems.  The final section in the introduction is a summary
of the ensuing chapters.

Automat ic Target ldentification

Target identification is the act of assiening a label to the out
put of a specified sensor, or set of sensors, that has sampled an object

of interest. Identification necessarily follows detection: the decision

IR itk e

about the presence of a target must already have been made.  In the fol

lowing discussion and throughout this thesis, it is assumed that a tar

. i >

get of interest is present and has been detected.  Automatic identifica
tion, of course, implies that a machine, vather than a human observer,
assigns the class label to the signal.

A hierarchy of levels of identification exist. 1f the universe of

b }
| targets of interest is the set of all airveraft, the fivst division might
|
be large aiveraft vs. small aivevalt. Among the class of lavge aiveraft, !
| ?
! there exist two natural classes: propeller-driven and jet. The sct of !
! large, jet aiveraft may be further subgrouped into bomber and transport. §
’ The set of aircralt called B-52 belongs to the superset jet bombers,
!
Various B-S2 aivervatt may be identificd by model number, c.g. R-62B, B
' y
520, RS2, ete. The most precise identification might, for example, ‘
assign the tail number to a particular B-S2H observed.  The designer of
b an automatic taveet tdentification svstem must consider the types ot tar
3
| 1 }
b
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pets to be identitied, the level to which they must be classified, and

the types of sensors to be used.

Most target identification schemes described in the open literature

arce basced on sensors that sample cither acoustic or electromagnetic

waves.  The sensors may either be active
device transmits a wave and receives the
The target's electromagnetic or acoustic

identification svstem. A passive device

acoustic emissions from the tarvget and us

the ta rpet.

Acoustic devices are used primarily

or passive devices. An active
target's response to that wave.
response is the input to the
samples celectromagnetic or

¢s these emissions to classif(y

underwater or on the surface of

the carth, Underwater target identitication by acoustic means generally

implics sonar, either active or passive.

Surfjice acoustic target identi

fication includes attempts to classify different types of vehicles by

N

their acoustic emissions, e.g. Nichol (Ref 48) or Thomas (Ref 65). The

identification of surface vehicles by analvsis of their scismic signatures

miay be possible but is limited to a few hundred meters range (Ref 3:8)

due to the rapid attenuation of such signals,

Electromagnetic tarect identification sensors may be classificd by

the portion of the spectram in which thev operate.  In the higher fre
l i !

quencies one finds passive ultraviolet, optical, and infrarved scensors,

The outputs of such Jdevices are typically imaces that may be analveed by
l } 3 A b )

digital picture processing (Ref 59) or Fouricr optics techniques (Ret” 30).

Pau (Ret 51) has described the use of a

laser in a target recognition

application,  Radar operates in the microwave region of the electromagnetic

spectrum,  Radar taveget identification is

Radar Target klentification. Since

the subject of this thesis.

its development, radar has had
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one glaring limitation: the inability to identify specific targets.
Radar operators and engineers have been striving to overcome this con-
straint for vears (Ref 29).  Skilled operators have achiceved limited
success in target identification using conventional radars under certain
conditions. Azimuth resolution has been improved by using synthetic
aperturce techniques where applicable.  Range resolution has been in
creased through pulse compression and wide bandwidth techniques.  But
cven if radar imagery can be made of optical quality, it would still

be desirable to perform target identification automatically in muany
applications. In addition to robotic vision and perception, other
Situations in which automatic identification would be desirable include
those in which the operator is velatively unskilled or must divide his
attention among many tasks,

Even when very high resolution systems are available, it may still
be more convenient to perform automatic identification in the signal
domain rather than the image domain. As will be dewmonstrated, under
certain conditions, features may be found in the signal domain that are
relatively invariant to target parameters such as viewing aspect. The
high resolution image of any interesting object, on the other hand, will
inevitably be aspect dependent.  This parametric dependence means that a
composite hvpothesis testing procedure is reguired for identification,
rather than a simple hvpothesis test that mav be used for parametrically
independent signatures,

Numerous automatic radar tarecet recognition techniques have been
proposed and tested with varving deprees of success.  One of the most

fundamental approaches (Ref 41) attempus to characterize the target's

electromagnetic response by transmitting a sct of harmonically rvelated
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frequencies in the Rayleigh vegion, where the dimensions of the scatterer

are small compared with wavelength.  Rescarchers at Ohio State University

have had success identifying scale model aircraft and other objects using

this approach. The obvious drawvbacks to such a technique are the joint

requirements of numerous, low frequency transmitters.  Other
have selected features from the range trace of the target (Re

cessitating a relatively high bandwidth. Numerous methods of

rescarchers

f© 583,

radar

ne-

tarpet identification currently in usc or under investigation are in

cluded in the survey by Nahin (Ref 47).

This thesis will present a method of classifying a specific set of

radar tarvgets, namcely those that are periodically amplitude modulated.

This class of targets includes many man-made, moving objects,

since they

are usually propelled by rotating structures that frequently have a radarv

cross scction (RCS) that is a function of the rotatiomn.

Radar Signals. An analysis of radar signals provides in

sight

Iinto

what aspects of the signal may be useful for radar target identification.

A monochromatic radar transmits a signal of the form

s(t) = a(t) cos w. t
{ O

where a(t) is a known amplitude modulating function and « is the carrier
{

frequency in radians per second.  1f the radar is of a continuous wave

(1

(CY) type, a(t) is a comstant. If the radar is a simple pulsed type, a(t)

1s a positive constant for fixed intervals separated by longer fixed in

tervals where a(t) is zero.  For stationary radar, target, and clutter,

the received signal is

s(t)=b(t )\'ur'-(m“tw RYen(t)

where 0 is a random variable representing phasce.  Electrical

assumed to be an additive random process represented by n(t).

noise

The

15

(

-

)
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: | amplitude function b(t) is a random process that is a tunction of a(t),

! ,

3 tarpet ranpge, clutter, and target RCS. The target RCS is, in turn, &

s

y | function of target type, radar polarization, and vicewing aspect.

i If the radar remaing stationary, but the target is moving at a
fixed radial velocity, the form of the returned signal, neglecting
clutter, is

s(t)=b{t)cos| (w '-‘“)!'.}'n(() (3)

- 3 o
The doppler shift is given by

w

4 4 Vi

E - 1)

j D ¢

1

whore \‘_ is target radial velocity, and X is the radar wavelength,

N
Neelect ing noise he positive Fregquency halt of ¢ anplitude spectrum
Neglecot ing , Ehe g { frequen halt of th plitud pect

¢ of a particular realization of Eq (3) may be written as

[

| |03 |= |3 a5 (-t - )| 5 0 > o

} |B{a-w -w) | 4w 2o (5)

i where * represents convolution, S(w) and B(w) ave the respective
Fourier transforms of s(t) and b(t), and §({¢) is a Dirac delta. & b{t)
is constant, the spectral representation will be discrete with a single

]

' spike at the trequency of the veturn. 16, on the other hand, the RCS

‘

} is fluctuating, b(t) will be modulated vesulting in a spreading ot the
n|\vclt1'lnn. The amplitude spectra for the three types of tavgets dis
cussed above arve shown in Fig 1.

I

I prior knowladge exists about the toem of b)), it may be used to

aid in identifying the target being illuminated. 1f the doppler spread
is sufficiently great, the nature of B(w) may suggest the tyvpe of tarpet.
This is the essence of the radar taveet identitfication technique proposed

in this thesis,
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Pattern Recognition

For the past half of a centurvy, numeraus rescarchers and designers
have been preoceupied with the idea of building a machine that can re
cognize patterns as humans do. Ullman (Retf o7) describes an optical
character reader designed by Tauschek in 1929 that used a simple optical
mask mate hing technique. Since that time, activity in the pattern
recognition ficld has grown exponentially,

At first glance, there may appear to be little velationship be
tween optical charvacter vecognition and radar tavget identiticationg
however, lm!h endeavors may be pursued within the mathematical frame
work of pattern recognition, Both the tmage of the alphabetical
character and the vetuvned vadar signal may be regarded as mathematical
functions, the former a function of two independent spatial vaviables
and the latter a function of one independent temporal variable.  The
pattern recognition process consists of applying a scrvies of transfor
mitions to the functions of interest. The determination of the best,
or at least near best, transformations 1o apply is the art of pattern
recognition.

Virtually anv generval discussion of pattern recognition contains

\

an obligatory diagram such as Fig (unless the author adopts a
syntactic approach as espoused by Fu (Ret 24)).  This figure, ov some
variant of it, has become the coat of arms of the pattern recognition
rescarcher just as Shannon's (Ret 00) schematic diagram of a gencral
commmication svstem fills that role tor the communications engineeving
community,

The real world, when considered as a vector space of potential

measurements that could be wade upon the universe, s ot infinite

dimensionality.  People ave continually saupling the world with sensors: ?
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cameras, microphones, accelerometers, and radars to name a few.  The

output of the scnsor may be discrete but it is more often analog, as is
the case for the output of a radar receiver. 1In either case the sensor
has reduced the dimensionality of the information at hand. The output
of the sensor, considered as a function, resides in a vector space that
is usually referred to as the measurement space. Physically, the scnsor
is a transduccer that converts the desired physical quantities into a
more convenient form, tvpically an electrical signal. Unfortunately,
the sensor invariably injects into the desived signal some sort of noise.
This noise may be due to any combination of measurcment error, quanti-
zation crror, thermal noise, external electromagnetic interference,
leakage from the power supply or other source, intermodulation harmonics,
or other signal distortion due to system nonlincarities.

The blocks following the sensor in Fig 2 are somewhat.arbitrary,
but they do scem to describe the three primary functions performed in
a typical pattern recognition device. 'The distinctions between pre-
processing, feature selection, and classification may not always be sharp.
In fact, some authors do not honor preprocessing with a major block but
relegate it to a subfunction under featurce extraction.

As the block diagram implies, preprocessing is a transformation
from the measurcment space to the pattern space. ‘Typically, the front
end of the preprocessor consists of an analog-to-digital (A/D) converter,
since the sensor is usually an intrinsically analog device and the remain-
der of the processing is done most conveniently in a digital system
(considering contemporary technology). Another function of the preprocessor
is the application of appropriate windows for data scgmentation or pre-

smoothing, Preprocessing may also include applying linear transforma-

tions to prevhiten or square up (i.e. normalize all measurements by their




respective standard deviations) the pattern space.,  Frequently, one of
the most important functions of the preprocessor is to expand the data
in a more convenient set of basis functions, e.p. via discrete Fourier
trans formation. Finally, the preprocessor may be used to filter out
some of the noise and artitacts introduced by the sensor.

A briet digression in the form of a discussion of terminology
appears necessary at this point. In the pattern recopnition literature,

"feature selection” and "feature extraction' are used synonomously to

refer to four distinct transt tions. Sometimes, the act of expanding
the data in a new set of basis functions is referred to as feature

selection: this transformation s tncluded in preprocessing here NeNt,
in the design proce v number of potential features are selectod based

) ]
on mathematical, physical, or statistical considerations: this process

wesent author., Ihoese

cation [h1s process s termed fTeature selectaon heve. Finally; an the
. Y Ing wattern racoewl t i thres Faatuirew Fhatr 3 T P

Ot~ L e o (g T R O XY ¥FRELONM; TRODSE feature { NANC N S
lected in the design process must be extracted {rom the input data. This

will be ea extraction 1t could cevtainly be avencd that the
terminology selected here is somewhat arvbitirary, but at least it is

fairly descriptive and does draw a distinction between the varvious
feature selection/extraction types of processoes.

In some applications the pattern space will be of adequately low
dimensionality, and the class vepresentations will be sufticiently se
parated that no further feature extraction is required. Such s not the
case, however, for the problem at hand and probably seldow is for in

teresting pattern recognition problems,y  Thus the vequirement tor a

feature extractor s indicated. Frequently, the pattern space will be ']




a Fuclidean space of dimension between 100 and 1000. The feature extrac

tion process is a di

ssionality reducing transformation that should
discard information that is common to the various classes and retain that
information that bears the ¢lass discriminating capability. The feature
space is typically of a dimensional order of ten.

Finally the feature vectors are input to the classifier which
assigns class labels. Thus, the classifier, regardless of its imple
mentation, parses the feature space and assigns labels to the various
regions. Viewed abstractly, the pattern recognition system is a trans
formation from an infinite dimensional space, the space of all possible
measurcments on the wmiverse, to a set, usually finite, of class labels.

In the following sections the various components of the pattern

recognition system will be examined in greater detail, but the clabora
tion will be }‘1"\‘.‘1\“ "‘:‘\‘\'i e, The reader who desives a more ¢o “".‘1\‘1 &
treatment of the general pattern recognition problem is referved to

the texts by Andrews (Ref 1), Duda and Hart (Ref 18), Fukunaga (Ref 25),
or Meisel (Ref 44). Each of the four have certain strengths and weak
nesses.  Andrews emphasizes feature extraction/selection and devotes
considerable coverage to preprocessing transformations,  Duda and Hart
give good, even treatment to the subject including excellent bibliographies
and historical presentations. Pukunaga is perhaps the most abstract and
rigorous of the four, but he sometimes becomes so immersed in the
formalisms that he loses sight of the goal of pattern recognition.
Meisel is perhaps the most applications-oriented of the four. For a
nore complete critigquc of the texts, Cover's review (Ref 13) may be
consulted.  The reader who is move intevested in a short survey of re
coent (1968-1974) work in pattern recognition will profit from Kmal's

paper (Ref 39,
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a great deal of the prefatory processing or

into feature selecti

The overall des
It may be noted that
shows the canonical
blocks arve rather si
feature extraction,

iterative procedure,

learning or training

deal of data proces

mined, it wvsually wi

The first step
vestigate the under!
Joctonay 1€ vy e N
designer 1S not a

investigation will

views with experts i

recognition designer

loathe to pursue. A

on .

ipn process 1s depicted in
this figure bears some re

form of a pattern recognit

implicttly incorporates 1t

|
!
|
|
|
|

schematic form in Fig 3.

semblance to the one that

ion syvstem. Some of the

ilar, specifically those representing preprocessing,

nd classification. Becau

se¢ it is an sdaptive,
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In this case, the pattern recognition design proccdure may
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but there are so many sources of uncertainty

In other cases the basic physical phenomenon is well understood,

that a pattern recognition
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approach s speci bied,

Atter some understanding o the basic laws of the processes is

gained, one moust select an appropriate sensor, a device that will

¥ act as an antertace hetween the envirvonment and the pattern recopnition
dovice. Frequently, the type of sensor will be piven: such is the case
with the problem in thos thesis,  Numerous questions must be asked of

any proposed sensor, such as does it have sufficient bandwidth and

resolution? Must the sensor be w cohevent device, i.e. must phase in
; i N
_ i

1

formation be available? What sort of contamination of the received

stegnal will the sepsor introduce? These and other questions necessitate

the feedback loop trom block 3§ back to block 2 in the diagram.  Some

ki

of the guestions about the sensor cannot be answered until the performance

of the whole svatem has been evaluated, At that time, the designer may

find that satisfactory performnce simply can't be achieved with the

{

T

specifiice senzor that has been chosen. On the other hand

sipn may indicate that some of the scusor complexity rmay be el iminated

%)

s i i

with a minimal suacrlfice in overall pertormames.  For example, coherence

in a radar implics two video channels vather than one. which in turn

s

means additional hardware and signal processing costs that may not be

b st i fiable,
Folloving the! selection of o candidate sensor, the desipgner must
;
} generate a yepresentative data base. In practical tevms, this neans
] assembling representat ive --.|:".'l." Of the obijects to e wdentitficd, sense
3

them under the varions conditions under which they will most tikely

appear, and record their signatures, The collection of live data can be
|
the most costly slep in the desien process however, in osome cases an
cexvellent data base may alyeady be available.  The pattorn recopnition
practroner will cldom e an expert at taking clect romasnet e, setsmic, [ ]
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or other physical measurements and must leave that work to those that
are competent in the particular field of measurements,  However, it

the desiener has o pood understanding of the processes involved, he will

be in a position to provide input as to the conditions under which the
data mast be taken.  Also, if he has a pood understanding of the measure
ment process, he will certainly have incrcased insipht into the measured
data. The designer's primary responsiblity in this area is to insure
that the data collection is truly representative of the objects to be
identitficd.  For example, it three-dimensional abjects that have aspect
dependent signatures are to be vecognized, observations must bhe taken

at various aspects to insure a representative data base

Under some circumstances, the researcher may not have access to :
actual data, or it may net be feasible to gather it due to lack of the
required resources. At times, such obstacles may be cirvcumvented through
physical or mathematical modeling. lIn his airvcvalt identitication
vresearch, Ksienski (Ref 41) has used scale-wodel airveraft with conductive
coatings and appropriately frequency-scaled cadars,  Lin and Richnond
(Ref 50) have numerically computed the electromagnetic Scattering signa
tures of aiveraft based on wirve grid models, The pattern recognition
rescarcher must insure that such models accurately povtray the processes
of interest.

Preprocessing the data for the design procedure s similar o the
corresponding step in the recopuition system,  Assuming that the classih
cation will be done digitatty, the data must be converted from an analog
Or instrumentat ton format to one that is computer compatible, and then

filtered. Also, an appropriate pattern space must be chosen, one in

which the physical peculiaritices of the vavious ¢lasses are manitest,
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! After the data has been preprocessed, it should be subjected to a !
g | |
i statistical analysis. lnitially, the analysis will consist of the }
i , s
& designer studying various plots ot the data in orvder to covreelate the i
3 )
| , " : . I
: representation of the data in the pattern space to the underlyving |
i |
j physical processes. Then statistics of the process are computed, |
| such as means and variances of potential features, as well as signal {
' i
? 1
* to-noise ratios. Histograms, scatter plots, and cluster analysis

routines may also be of value in this phase, and later when specilie

features are being chosen. One of the goals of the designer in this
i
g phase is to estimate the statistics of the data, It may be possible to
i apply probability density function estimation techniques such as Parvzen
| windows (Rei 18:88-95).
i Mathematical simulation of the measured processes fovces the de

signer o quantify his observations. The modeling process may begin

with block 1 and mav be refined as the designer gains move insight.

P

i

Simulation will alse provide potential features to be usced and may
suggest the form of the classifier. For example, if &ll of the statistics
of the data ave known, a Bayes classifier is appropriate.

At this point, the designer will have in mind numerous featurces
that bear class-discriminating information. General, as well as problem
specific, considerations in design feature extraction and feature se
lection will be discussed in greater detail in a subsequent chapter. The
feedback toop trom block 10 indicates that the dx“‘-ignl‘\' mist have in omind

the type of ¢lassifier to be used when extracting and evaluating features

! After the features to be used are chosen and the form off the classi
fier has been specitiaed, the overall performance of the pattern recognition
system miy be evaluated., ‘The traditional fipgure of merit for a pattern

recopnition system 3s the mean probability of errvorv. Toussaint (Ret oo)
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has provided a definitive treatment of the estimation of the mean
probability of crror as well as an exhaustive bibliography of rescarch
on the subject.  Shrihari (Ref ol) has defined ¢l ssifier bias and
has shown the impor. ¢ of this measure in the multiobscrvation casc.
Relative cconomy of implementation in terms of quantity of hardware re
quired and the time taken to make a decision arce also relevant per
formance indicators., It a system is not feasible at present because
of the quantity of data processing vequired, this may not be a serious
lone term limitation in view of the dynamics of large scale integrated
circuit technology. It has been estimated that by 1985, it will be
possible to build a hand-held calceulator that possesses all ol the
computing power of the largest main frame computers of today (Ref 7).
Performance cevaluation will be considered in pore detail in a subsce
quent chapter.

If the overall syvstem performance is not satisfactory, the de
signer must return to some carlier phase and make appropriate revisions.
The figure shows the feedback loop to the feature extraction stage.

This is the most reasonable place to beging however, the designer may
ultimately be forced to return to any carlicr phase including a re-exani
nation of the basic physics of the processes of intevest.  In point of
fact, although the feodback loops are not explicitly depicted in the dia
gram, the designer should feel free at any phase of the design process
to return to some carlicr stage to make refinements.  There is, of course,
no guarantee that this process will actually produce the desired classifi-
cation performance in any arbitrary problem.
Summary by Chapters

Throughout this discussion the underlying rescarch question s how
to distinguish between different radar targets that have periodically H

|8
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amplitude modulated signatures,

In Chapter 11 the basic physical phenomena are investigated.
The nature of the modulation is discussed, and the representation of
modulated signatures in short-time Fourier space is developed.  The
mani festations of nonstationaritics in the signatures are presented.
The data bases, derived from returns from live radar tarvgets, that are
used to desion and test a tarpet classification algorithm are described.

In. Ghapten LIL, the identification problem is formulated in terms

of optimal classification techniques. Discussions of Bayes classifica

tion, composite hypothesis testing, and sequential hypothesis testing
are included. Tt is shown that, although the optimal techniques give
insight into the nature of potent ial solutions to the problem, computa-
tional difficulties and lack of a complete physical understanding
preclude theirv divect application.

Chapter 1V presents a suboptimal frequency domain glassifier. Bre-
processing, feature extraction, and feature sclect ion as performed on

the design set data base ave discussed.  The sienatures are identilied

using both Tincar discriminant tunceidns and nearest neighbor classifiers.

Chapter Vo sumnarvizes the conclusions to be drawn from this work.
Arcas of future rescarch that pertain to the identification of radar

targets that possess periodically amplitude modulated sipnatures ave in-

dicated.




11 Periodically Amplitude Modutated Targets

This chapter discusses a class of vadar targets that exh

the modulation is presented, and its conscequences in the froeg

are examined. Finally, the data bases consisting of the retu

ments, arve described.,

he Physicatl Phenomenon

The high frequency rvadar echo from moving targets such a
ships, or vehicles s composced of the vector sum of a group o
imposed echo signals from the individual parts of the tavget.
ttonal motion of the target and its associated
varyving fluctuvations in the target RCS, h fluctuations ar
in the target signature in the form of a spectral spreading.

In classical radar detection, these [luctuations are con
target notse (Ret 19).

A moving radar turget that poassesses

modulated signature is sometimes refevved to as a dopplev spr

because of the resultant broadening of the frequency spectrum
get. The optimum detector for a deoppler spread target has pr
been derived (Ref 70:357-375), but classification of differen
moduloted targets is more dafficult.

Dunn and Howard (Ref 19) have chavactervized these target

as amplitude noise and have scgregated them inte two types:

pitch, and voll wmotions of the target. This low-{reguency var
sultine in a broadening of the skin line of the target, was n
tarpet identification tn this rescavche The skhin Line of a v

is detined as that portion of the target's spectral signature

components  Caus

1that

periodically amplitede modulated signatures.  The physics underlying

weney domain

rns from

live radar tarvgets, that ave used in subsequent classification experi
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tains the energy scattered by the skin of the tarpet. Typically this
energy is concentrated at a single frequency or over a very narrow range
of frequencies as indicated in Fig 1 of the preceeding chapter.  The

hiph- frequency modulation consists of both random noise and periodic

modulation.  The random component vesults from skin vibration and i
random motion of target components.  The periodic modulation is attri

butable to vapidly rotating parts of the target such as aivcraft pro

peliers, ship radar antennas, or vehicle running pear.  The periodic

RES of a heavily-lugged, agricultural tractor tive, measured by Frost,

is shown in Fig 4. The tive was mounted on a turntable, and its RCS was

measured as a function of angle of rotation.

I'o understand the effect that a rotating structure has on the radar
signature of a target, it is convenient to first consider a scatterer
that has a simple geometry. Van Bladel (Ref o8) has presented a detailed
exposition of electromagnetic fields in the presceuce of rotating scatter
ers. Chuang (Ret 11) has solved for the mopostatic (i.e. source and
obscrvation points colocated) power spectrum of o rotating, polvgonal
cyvlinder in the high frequency region.

We mav consider an intinttely lony, conducting polveonal cvlinder
that is rotating at an angular veloctty a about its longitudinal axis,
The evlinder is in the far field of a radar of radian frequeancy w e with
boresight normal to the evlinder's axis. Because of the rotation of
the evlinder, the clectromagnetic scattering is a periodic function of

tine with “\‘l'i\‘\l i whore
21

No (€)

for an equilateral, N sided polveonal cvlinder., For 2n/Tew o the
N

maepitude of the backscatterved field may be written as

b0 MO explie t) (N

——







where M(t) is a complex modulating function with period T. Because M(t)

is periodic, it can be represented as a Fourier series

o

M(t)=2 F exp(§2nit/T) (8)
i i

Thus the backscattered ficld is of the form

E_ (D)=} F_exp j(o +#2ni/T)t (9)
S 1 i Q

=-m j
which has a power spectrum

S(w)=21%  |F. %8 (w-w )-2%i/T] (10)

]=- 1 Q
where §(°) represents the Kronecker delta. Thus the power spectrum of the
backscatter from a rotating polygonal cyvlinder is discrete, being nonzero
only at frequencics given by

L."\."*.l.\d . i‘(‘,*_l,*.'f,... GLd)

\ 5
Fig 5 depicts such a spectrum computed by Chuang using the Geometric Theory
ot Diffraction (Ref 71).
Four observations about this type of spoctrum that are useful in a
arget recognition context are:
1. The spectrum is symmetric about the carrier frequency if the poly-
gon is regular; however, it will not generally be symmetvic for objects of .
arbitrary cross section.
2. The component at the carrvier frequency tends to be the maximum
signal, although it is not always.
Fo NS 1'1: increases, the spectrum tends to decrcase monotonically in
magni tude,
4. If we consider the cylinder to“have a translational velocity in
addition to its radial velocity, then the amplitude spectrum drops sharply

when

(t‘n
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where ¢ is the doppler radian frequency, If a is the maximm radius of

)

1
|

the rolling evlinder and ¢ the speed of tight, then

\ 24
\\!‘ Ry ~\ \
Ay
\\.: (13}
\
where v, is tho target radial velocity,

an optimal classifier for simple PAM targets under the

assupption of no unknown pavameters would be rather casy For the type
of situation disct ed, the amplitudes of the various spikes counld be
!"\‘\\‘ ‘\A'\‘\! tat reaquencies ont t & oot 'n }l 11 Y LG .\"n’ 2 U & | "“.\
corvelation procg ¢ could be implenented using the power spectral den
sity ¢f the received signal iY the receaved signal 18 Firvst demodulated
to baseband the power spectrum could be written a
f:{ \ \ \ ‘\l S ‘\ (! Y
1 1 i
where the pitch /T, and the F. vepresent the anplitude of the spike
For the present, receiver noise will be neglected Using observation 4
above, S(w)} may be approximated by retaining the spectrum between 0 and 2w
S(al= EF. 8w~ i) CE5)

where 1 ranges over all integers such that

There are numcrouns tavget parameters that will atfect the power spec
trum of the received signal, four of which ave range, elevation angle,

azimuth angle and velocity. Range changes alter the Fo, but, as long as

the far field a

ption may be maintained, the range variation simply acts

as a meltiplicative factor cqually applicd to all F.. Thus range varvia

tron may be removed by st




For the simple type of scatterver considered thus far, the elevation

since ) is proportional

angle between radar and target affects only @y

to vy which is the vector inner product of radar boresight and target
\
velocity. For more complex targets, however, the F. are a function of
. i
clevation. Consider, for example, that the rotating structuve represents
the partially exposad running gear of a vehicle. At certain elevations
more energy will be scattered by the rotating body than at others.
Both ¥. and are functions of the azimuth angle between the radar
1 ¢
and tavget. The F, will vary with azimuth since the RCS of the scatterer
- 1
and «. will change since the radial velocity is a function

i “

Finally, the whole spectrum will vary in an accordion-like fashion

with the target velocity. 1f the elevation angle ¢ is defined as the
wwle measured from the horizon  to the radar boresight, and the azimut!
angle € is defined as the angle measured ¢ lockwise from the target veloecity

vector to the radar boresight, the radial velocity may be written as:

V.=V sin 8 sin ¢ (17)

Oy v sin 8 sin ¢ (18)

and the pitch is
A= — 19)
For fixed target parvameters, letting r represent represent range, the
< < t -

power Sl‘\‘\"\!"ll“\ can be L‘\}\l'l“'n‘:k‘\‘ as

S(w,r,0,8,v)=8F (r,0,¢)8(w=-4nv sin & sin ¢ 1\\V) (20)
X 0 \ &

where 1 ranges over all integers such that

Sna

5

gi?: N‘\—‘ sin 0 sin ¢ {21)




The discussion

to this point has assumed that all tavget parameters

are constant. 1f any of the target parameters vary, as they invariably
will for any real radar tavget, the received signal can no longer be
assumed stationary, and the formal requirements tor the existence of the

‘ power spectral densi

however, still be

target signature 1f

'

short to assume ¢

Data Bases

in frequency by .
: 1

transmitter mixer.

and off at the PRF t

toward the target.
The received si
then to radio freque

computed

ty arc no longer met. The short-time spectrum can,

and will be a useful vepresentation of the

.

the observation interval is chosen sufficiently

stationarity.

i I'wo separate data bases were available for Both con-
sisted of the time domain signatures of vehicles driven through the
radar beam transmitted from fixed antemnas. The two sets are referred
to as Data Bases A and B Of the two, Data Base A was the most complete
and appeared to be the mest reliable.

Data Base A. The radar used to collect the data for Data Base A
Wi t high pulse rvepetitic f‘T"L‘\"H‘\‘l[\‘\. (PRF) coherent systen Fhe
Icy ti ted was sufficiently high to be in the optical region
(where the scatterer's dimensions ave large with respect to wavelength)
of the targets used. A block diagram of the radar is shown in Fig 6.

| The stable local oscillator (stalo), shown at the upper left side

{

! of the figure, provides the stable reference frequency used for both

! the trvansmitter and receiver. The transmitter signal is shifted upward

|

1

|

|

the intermediate frequency (1K) of the clock, in the

This signal is filtered, amplified, and gated on

o form the transmitted signal which is radiated

gnal passes through the antenna to a cirvculator and

nev (rf) amplificrs and the first mixer. The
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reference frequency to the first mixer is the stalo ountput, ('u. The out
put of this mixer is the IF sipgnal at £y The output signal of the mixer
for the oftsct video channel is on a low {requency carvrvier.  After
amplitication, the offset video signal is passed through boxcar civenits,
the timing of which determine the vange pate.  Following more amplifica
tion, the of fact video sipnal is recorded and its spectrum s displaved
on the spectrum analvzer.  The spectrum being, shifted avay from zero
doppler permits its being observed without folding.

To prescrve the phase nformation in the sipnal, in-phase (1) and
quadrature (Q) video channels are required; hence, the TF signal passes
through two additional wmixcers., The references for these mixers  are at
fi bhut ave 90 degrvees out of phase with ene another.  The outputs
of these channels ave auplificd, passed through the boxcar cirenits, and
recorded.  The ! and Q video channels ore matched in amplitude.

The tape recorder used was an analoy Ampex FR-1300 which has soven
data channels plus a voice channel.  With the tape speed used, oft inches
per sceond, the recorded band is 0 to 20 Ko on the BM chamels with a
signal-to-noise ratio of 44 dB and a harmonic distortion of two percent
or less. Although the M channels were the primarvy doata channels,
the 1 oand Q video were sometimes recorded on the preater bhandwidth AN
channels as well,  This was done o insure that no high trequency antor
mation was lost,

Signatures were recorded of three separate tarpet vehicles under a
variety of conditions. The target vehicles will be referved to as Target
1, Tareet 2, and Tarvget 3. Target 1 had running gear that was quite
dissimilar to that of Targcets 2 and 5, while the latter two wore quite
simitar in that respect.  Approximately 200 runs cach were recorded for

Targets 1 oamd 2, while 35 were made for Tavpget 5.
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Signatures were recorded for Tavgets | and 2 positioned on a rotary
platform. The vehicles weve placed on jacks so that “the running gear
could turn trecly without the vehicle moving of £ of the plattform,
Antenna depression angles and target slant ranges used were 4.5 at
7.6 m and 26,37 at 41.5 m. The rvotary platform data was not used
in the pattern vecognition analysis rveported hereo Tt was used to gatn
some insight into the nature of the signal modulation produced by the
vehicles. This part of the Hata is free of one sourece off noise,
specifically that caused by the vehicle traversing rough terrain,

The data that was used in the pattern wecognition analysis was
taken with cach of the three targets moving through the radar beam in
the center of a grassy field. This field data was taken with an
antenna depression angle of 3.5° and a slant. range of 325 m, where
lant vange is defined as the distance from the raddar antenna to the
targct .

Roth rotary platform and ficld runs were taken at 22.5° degree azi
muth angle intervals beginning with the vehicle headed toward the radar.

1
.

The returns were monostatic, The antennas used were linearly polarized
and both horizontal and vertical samples were taken. The horizontally
polarized returns were used in this malysis Since no vertieali
polarized returns from Target 3 were recorded., U should be noted,
however, that the level of sideband modulation compared to skin line
amplitude appearved to be slightly hicher for vertical polarization.
PDuring the field runs, the vehicles weve sometimes at relatively constant
velocity, and at other time they were accelevating.

Data Base B, The eaperimental set up for the sccond set of data
was similar to that for Data Base A except that the radar used was CW

tnstead of pulsed,  Also, the runs were only taken at every 45% ol




azimuth, and there were no platform runs.  Since the radar was not

£

{ coherent and no offscet was used, there may have been some frequency
| foldover in the spectra, but it was neglible.  Observation 4 of the
3|

previous scction indicates that the target spectrum should drop
sharply at zero Hz, and this was confirmed by examining the spectra
of live data. Thus any foldover of significant amplitude will be

caused by negative doppler clutter which will be concentrated at

i very low frequencies.  This low frequency foldover is of no concern
t since the clutter so thoroughly dominates the signal at these fre-
i gl
i quencies that this band is useless anyway.
1 Data Base B consisted of returns from five different vehicles,
: Targets 1, 2, 4, 5, and 6. Targets 1 and 4 had similar running gear
]
3
and produced comparable signal modulation, while Targets 2, 5, and 6
1
i were from the same genceral category. The Targets 1 and 2 vehicles used
{
in the Data Base B measurements were not the exact same ones used for
?i Data Base A, but they were of the same respective model .
]
4]
i
| .
1
|
|
|
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11T The Optimal Classiticr

This chapter presents optimal classification techniques, including
Bayes classification, composite hypothesis testing, and sequential
classification. It is concluded that such techniques, althoupgh conceptu-
ally straightforward, are not dirvectly applicable to the problem at
hand because of the lack of a complete physical model and complexities
in the data and required implementation.
Bayes Classifier

Automatic tarvget identification may be considered to be an applica-
tion of statistical hypothesis testing. 1n such a context, it is well
known that the Baves classifier is optimal in the sense that it minimizes
the expected risk or probability of error (REf 25:89). This optimality
is duc to the fact that the Baves ¢ lassifier uses all of the statistical
information from the problem as efficiently as possible. A Baves formu-
lation implies that the identification problem may be cast strictly in
statistical terms and that all statistical information about the problem
is known. Neither of these conditions may be strictly true, but as in
any complex physical problem certain simplifying assumptions may be made
that will allow us to proceed. For example, the class conditional
densities are generally unknown but may be approximated by one of two
different ways or by a combination of the two. One method is to attempt
to deduce the relevant statistics from a carceful study of the underlying
physics of the process. The second method is to ignore the physics and
simply use the statistics of the training sct in an attempt to estimate
the class conditional densities using some method such as Parzen windows
(Ref 18:88-95).

In its most abstract sctting any target identification schome is a
rule for assigning any observed target signature to a class: !

A > Q (22)

A
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where A is the identification rule, B is the observation space, and
§ Q={wy,wp,...,0 } is the finite set of target classes. (It is possible
i 4 m

that onc of the o, may represent a rejection class, i.e. no decision

2 )

§ is made.)  Thus, Crom a geometric point of view, the decision rule |

i partitions the obscrvation space and assigns class labels to the various !

' reglons:

!

NoBl sy el =20 s (23)

’ i

|

| where BOYK A Vit (24)

| 1 9 : _
4 mn

and R-L)J) B (25)

{ i1 'i
| :
In the general Bayesian formulation, a cost is assigned to cach type

» of decision:

§

: c. .=cost of deciding w., when w., 1s true (2l0) ]
2 1] i i

i If a symmetric cost assignment is made, i.c.

|

| o

1 ISR (27

! C el

| 115 4 [ :
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: then the Bayes decision rule is to select o, for which

: ' )

% -

: ‘ o TR 3

i l‘[“\i 1X) =1 (w4 | Xy, Vifj (28)

§ {

] where X represents an observation. In this discussion () is usad to 3

|

% S g o < . |

§ designate a probability and p(+) represents a probability density func- !

i tion., In words, the rule simply savs to take an observation and assign

it to the class for which the posterior probability is the greatest;

o v

therefore, this special case is frequently called the maximum a poste-

riori (MAP) classificr. By applving Baves' theorem, the posterior

1
| probabilities may be calceulated from the priov probabilitics I‘(.ui\ and
the ¢lass conditional densitics p(\ f.sl\:
i V(o x|
FAMZIPRR s, ) (29)
(o, [\
1 PN [ ]
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where

The decision rule then becomes to choose w, such that

For

1t

choose W, such that

153

densities ave of an exponential form, then the lop likelihood ratio test

Rayes risk may be written (Ref 69:47) as

It

mized by selecting the li.l such that

see, for example, Fukunaga (Ref 36:74-75) or Van Trees (Ref 62:46-52).

parameters, and it could be assumed that the only sourvce of uncertainty

i

m
pX)-r Ple)pXfe,) 3 (30)
i=1 :

Pa P (X, ""““.“‘N“’i’ LV ifi (31

this multihypothesis problem, when the prior probabilitics are equal,

is frequently conventent to use the Tikelihood ratio test:

}‘(\!:‘i\
BX) —- 1, Vit (32)

p(\fu.l)

in aldition to equal prior probabilities, the class conditional

normally used: cheoose w. such that
‘ .

In £(X) = In p(¥| 1) -1n l\(\!.\i\ 0, Vi#i (33)

For gencral cost functions, the expected value of the cost or

m n
R X } Cs ]'( .‘!‘(\!k‘\"\\‘il\“ l true)
: i i b iy
=1 j=1 4 #
m mn
T % c.. Plu )L lw.) d
. ! ‘ii‘(|'l‘»-N\l1‘\\ (34)
Y= nie] : s 1 :

is well known that the Baves risk for this general casce may be mini

m m
¥ s P YPUN o, < 3 S oy PCove JEX L ) £ 35)
H\Ut_,\ul_l\ i,“‘\(v‘”\‘.l VR (

TE the PAM tarvgets were alwavs to be identificd with Cixed, piven

the sienatures was additive white Ganssian noise, the form of the
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well kn

lassiticr would be casy to specify.  Under these conditions, it is

own (Ret 25:90-91) that the Baves classiCicr may be implemented

using matched filters. Such a classificr consists of a bank of matched

filtors,

to choo

one for cach tyvpe of tarpet, tfollowed by a comparator network
|

se¢ the largest output. ‘the target would be assipned to the c¢lass

1 D)

whose matched filter pave the lavgest output.

Lt

added
a real
\‘h.l:l}\“-
tude an
cation

observa

varving

Composi

not onl
range,
tormaed
signal
specity

of the

oxample

a fint

tosti ney,

sources of uncertainty that are present in the actual data arve
this simple matched filter realization is no longer optimal. As

target traverses the terrain, irregularities in the surface cause

in the tavget pavamcters resulting in modulation in both ampli
d position of the sideband spi ke Furthermore, if the classifi
is done digitally, distortions due to discretization amd fintte
tion periods occur. Such digitally induced dastortion will be

d in greatev detail in the following chapter. Finally, it is

ry to be able to perforw the identification proce with gencvally

, unknown tavget parameters.

enature of o PAM tavget depends

z
—

y upon thoe type of target but alse uwpon the parameters,
velocity, and aspect angles. These target parameters are trans
by the clectromagnetic seattering to signal parameters. The

paramct crs, conditioned on the tyvpe of tarpet being il luminated,
the magnitudes and locations of the discrete Fourier components
spectral signature of a simple PAM target. For this smmplitied
o the received signal for cach class would be known except tor

¢ set of parameters and noise. This is the composite hypothesis

formulat ion (Retf 09:80-90),. In the foilowing discussion the set

of unknown sicpal paramcters arve rvepresented v the vector




I 4)1 of the probability densities can be specified, the problem may be
reduced to a simple hypothesis testing one by integrating over the para
meter space

pXfug) L P e pGe)d (30) .

where o represents the paramcter space.  Then Equation (31) may be used

to make an optimal Jdecision. When it is desired to estimate i, this

problem is veferred to as simultancous detection and estimation in the
comnunications theory literature. Entire dissertations have been devoted to
the solution of this problem, e.g. Gobien (Ref 28).

Under certain civcumstances, it may be assumed that the radar pro
cessor maintains a track file on the target, and good estimates of all
the parameters ave available. The decision vule for the multiclass
problem with a symmetric cost function then becomes to choose the w, for
which

]"\Ji)p(\:.‘i,:) "‘L“'i”‘i\f'\i'."\ LV ifi (37)

The additional knowledee about the random parameters is simply incorpo-
rated in the class conditional densities.
Robinson and DeNuzzo (Ref 57) argue persuasively that it may not be
possible to evaluate class conditional densities as in Hqs (36) or (37). .

They sugeest instead that the prior probabilities be modified.  The

prior probability would be multiplicd by a fuzzy set membership {function
(Ref 71) for each known parametev. For example, if the target velocity
is known to be in the middle of the operating range for class 1 and
toward the high end for class 2, the fuzsy set membership function for
that velocity might be unity for elass 1 and 0.5 for class 2,

Another practical alternative would be to normalize the signature
with vespect to cortain paramcters.  For example, target range mav not

provide any uscful discriminating information.  As long as  the tarpet

RIS




is in the far field, range only aftfects the signal amplitude and, con

sequent 1y the signal to noise ratio.  Then the signal could be enerpy
normalized without losing any information, assuming the signal to noisc
ratio is acceptable, and  tarvget range would be removed as a paramceter.
i3

Another practical approach would be to incvease the number of
classes. A signature from Target 1 at zero degree azimuth may not
resemble a signature from Tavget 1 at 135 degrees azimuth.  Thus Tavgpet
1 may be decomposed into several subelasses depending on the Known
azimath anple.  The most useful approach is to consider the eftect of
cach paramcter sepavately and apply whichever technique s most appro
priate.

If the problem were to identify long, volling polygoens as deseribed
in Chapter 11, a theoretically optimal classitier could be designed.
Unfortunately the rolling polveonal scatterer only qualitatively sim
ulates the rumning gear of an actual vehicle. Several sources of

uncertainty arise in the actual data that do not exist in the simplitfied

wodel. At certain aspects the rotating structures will cause specular

1

flashes. Rapid changes in pitch, yaw, voll, and linecar velocity due to
interactions between the vehicle, tervain, and the human operator cause

complicated modulations of the signal. Also, vandom modulation due to

vibrations is unaccounted for in the PAM model. Since the state of the

art of numerical methods as applied to electromagnetic scattering problems

is not sufficiently advanced to account for such complexities, no complete,

quantitative model will be forthconing in the near future.
The only practicable method of estimating the class conditional
probability densitics that ave vequived for optimal classitication would

be through an extensive measurenent program.  The available data bases

are not eoxtensive cnouch to provide good estinates, and a sutticiently
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comprchensive measurement program could be exorbitantly expensive.

Because of these practical difficulties, the approach taken in the sub

sequent chapter is to extract features that ave relutively invariant

A

with respect to target parameters.

. . . . - . ‘

Sequential Classification :
When attempting teo identify a moving radar target, it is possible

to take multiple observations to inerease the reliability of the E

estimate of the tarpget class. The Wald scquential probability ratio
test (Ret 25:77-84) may be used to reduce the probability of error to
zero if enough observations are available. The Wald test has only been

applied to a two-class problem and, as with all optimal procedures,

assumes all of the underlvine statistics are known.

The sequential obscorvation classificatior technique adopted in the
sequel ; 1s a simple plurality-vote scheme. Since no eftort was made to
{ !
estimate the reliability of the decistion made after a number of obser

vations were taken, the technique might be wmore aptiy termed a

miltiple observation classification scheme. The number of observations
assigned to each class is remembered, amd t
the target to the class with the largest number of votes. Shriharvi
(Ret 61:151-179) has comsidered the theoretical properties of such a
voter in the context of a radav identification of aircraft preblem.

It must be assumed that the radar is maintaining track on a given target,

in order to make the voter decision valid.
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IV A Suboptimal Freguency Pomain Classifier i

¥ ' ’ }

This chapter presents the design of a subopt imal classification |

!

scheme.  The classifier is suboptimal in the sense that the erroy rYates l
i

achieved may be preater than the irreducible error rate. The short time i
spectra of the target signatures are computed via the FFI. Features

arce then extracted that are relatively invariant to targcet paramceters.

Tarset identitication is performed using lincar discriminant analysis

sification on the extracted features.

imd nearcest neighbor ¢l
In the pattern vecognition problem, preprocessing of the data
S + Wi

cnjovs an eminent position. Since the preprocessing is the first opera-

tion perforned on the sensed data, and since it includes potent ially

noninvertible transformations (specifically ones that are not mono
morphic) any losses of information or distortions will be propagated
through the entire classification process. Preprocessing may be formally
defined as the transformation from the measurement space to the pattern
space.

The input to the preprocessor is typically a noisy analog signal,
the output of the sensor., The totality of all possible output signals

from the scensor, the measurement space, may be characterized as a finite
sower space or a finite encrev space, as appropriate.  Since the sub
o 1 1

sequent operations ave usually done digitally, the first preprocessing

transformations usually consist of prefilterving and sampling the time

domain data. The prefiltering is performed, of course, to prevent

aliasing and to reduce out of band noisc, and the Nyquist critarion

must be observed when selecting the sampling rate.

The data used in this experiment were all recorded on analog tape

s ing Frequency modolation with o 'O K bandwidth. o dotermine an

e e e e

s




appropriate sampling rate, selected data runs were digitized at 40

"
Hig

and transtformed using an FFT.  The rvesulting frequency domain signa

were plotted and examined. By visual inspection, it was determined

that one Kz of bandwidth would be sufficient to capture the inform
of interest.

The data was put through an analog, two pole filter which is
down about 3 dB at one KHz. The antialiasing-filter frequency resp
is depicted in Fig 7 Fhe prefiltered signal was sampled at two KU
On data base A, where both the in-phase and the quadrature signals
were recorded, both channels were pled at two Kz resulting in a
unfolded spectrum two Kilz wide centered at zero H For the actual
inplementation of a classifier of the type being discussed, in orde
to m 11 requirements, a phase locked loop could b
used to tra the skin ltine (domut ¢ pale] of the signal)l. Ihe
sampling rate could be set to four times the skin line froquency

If the features are to be extracted from the time
no further preprocessi may be regquired. It is fregquently true, h
that the sampled time domain is not an appropriate pattern space.
Then some further preprocessing transformation is required As Pan
(Ref §3:2-3) has ol . 1f the information pertinent to the clas
ification task tends to be time-limited, for example isolated time

Mo
uit

domain pulses such as electrocar then the 1 domain

. N
diceraph data,

{ o +)

IS an appropria attern space. 1f, on the other hand, the essent

.

1
(1Y

information tends to be spread out in the time domain, it will be b

limited in the frequency domain.  Thus the discrete Fourter transfo

{(DFT) may be a candidate for the tinal trons format ion

Preprocessing

Other ovthogonal transforms that have found usce atteen

recognition context are t and

NI |
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taar transtforms.  Andrews (Ret 1:2120-215) provides a pood comparison

i of the varvious transforms. Kabrishy and Carl have used a family of
3 Lincar transtorms in brologicatly motivated optical recognit ion

i schemes (Ref 537).

o

!

i For the present application, the space of short-time Fourvicer

spectra wis chosen as the pattern space for several reasons. Fivst,
and most important ly, the Fourvier spectrum of a wmoving, periodically
3 anplitude modulated target is interpretable in terms of the physics

of the targol as wus discussed in Chapter IL. Second, with the

| advent of the FET (Ref 12); the discrele Fourier spectrum can be
conputed efficiently with N log N computer operations wheve N is the 4
| ovder of the FIFU. Finatly, 1t can be shown that the Foucter (rans. )
3
] ) :
| form coverges nearvly as vapidly as does the kavhunen lLooeve
)

trans{form (Ref 31) which is an optimum rvepresentation in a minimum

—

Wean squared crror scensc.

b i

Tt the wvsumal communication-theory type assumption of stationary,

white, Gaussian random processes could be wade, conventional techni

.

ques (Refs 4 and H:5382-071) for power spectral density estination

could be applicd Then & simple mateched Filter type of classifier

( could be designed in the frequency domain.,  Since the vadar veturns

from moving, amplitude modulated targets arve certainly not stationary,

such technigques ave not divectly applicable.  In the previous chapter,

a Bavesian classifior was Jdiscussed, tnder the assunption that it

cortain parametervs were Pixed, the time servies was stationarvy.,  For

o e b e 3

now, however, the point ol view assumed is that cach contipuons <hort
' time spectrun in sinply an o independent observation of the tarvpet,

‘ The duration of the time record to be transformed via the PP s ot

eritienl tmportance, since its roeiprecnl &% tho lower bound on the ?
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Targets 1oand 2, while 35 were made for Tarpet §.
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achicvable frequency resolution,  Thus, an increase in che tength of the
time record considered results an finer Crequency resolution; however,
the longer the time record is, the nove apt arve the nonstatiomiritics
in the data to cause smeaving in the short-time spectrum,  Another
obvious drawback to processing long time vecords is the increase in
memory and computational pover required,  Since a resolution of about
two Hz was deemed desirable, a time record of one half second was
initially used,

An acceleration in the targetts vadial velocity during the inte-
gration time of the FET r»esults in a distortion of the spectrul lines
that characterize the target. Nichel (Ref 48) has descvibed this
citect in the analysis ol spectropgrams of the acoust 1C Cmmlssions
of rotating machinery. As described in Chapter 11, the time domain
signature of an anplitude modulated, woving tarvget tends to be of
the form:

l\

s(t)=¥% ¥ (t)expjw, (t)t+n(t) (38)

i=1 i l
where the frequencies involved arve explicit functions of time to account
for the effect of the target accelerations. Adopting the terminelopy
commonly used in speech analysis, each "swearved" sinusoid in Hq (38)
represents a formant, To simplify the (ollowing discussion, considoer
the normalized, noiseless, instantancously monochromatic signal:

:-n(l) enp jm“ (G (39)

Eq (39), representing a single formant, vesults fron discarding the

noise and other frequency components in Fqo (S8) and novwat czong the
sinusoidal amplitude to wnity, tacitly assuwing that this anplituade

vemains constant on the interval [O.T], the FFE intepration period,  Fom

sufficiently small 1, taveet acceleration nay be considered to be Tinem




and thus

w () i it (40)

wvhere We represents the initial formant frequency and T represents the
total shitt in Ffrequency durving the acquisition period,
The continuous, short-time spectrum of Eq (39) at t B £

Bl . ]
< W / \ U ¢ Yer \ W ( 4
”l\ .U\\]‘ll(l'\( exp(-jwt) dt (41)

By completing the square in the exponent and changing the variable of

Illlx‘}‘.l'\lli\‘l\. f\( (41) becomes

Al
) expl{-3 yd#) [ expll-=x ). (GRS
g \/ d A-B
whore
A\I.
d 3 (-‘nl)
a0\
2y felet) (43
o
\ /23 (24+T) (43¢)
V

B £y (1ad)

The tntegral in Eg (42) 18 the well Known Fresnel integral that must be
eviluated mumerically or graphically using the Cornu spival. Gersch and
Kennedy (Ret 27) have evaluated this integral for various frequency shifts
to deseribe the spectrum of sliding tones.

Fig 8 illustrates the distortion that results to the formants for
six different shitts,  This result, for both the continuous and discrete
Fourier transtorms of harmonically velated Cormants, i1s due to Nichot
(Ref 48). In this figure, the magnitude of the shift is propertional to
the initial frequency of the formant and increases with the order of the

harmonic, It ¢can be scen that the heioht of the formant decreases with
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increasang initial frequency, while the width increases, hence con
serving cenergy.  Columns B and C illustrate the result for the DET, where
the output is a function of the relationship between W and T.  Column B
represents the result when

n2n

We TS (44)

for n an integer, Column € illustrates the output when

.? n

W, (ntl //:’) (45)

The frequency spreading of the formants described above is frequently
obscrved in the spectral plots of the experimental data.  Fig 9 depicts
the short-time spectrum of an accelerating target. Notice that the skin
lLine at about 200 Iz exhibits the dual-peaking phenomena shown in Fig 8.

-

Also, the two lower cnergy formants at about 375 and 400 Hz show the
same tvpe of trequency splitting,

The above discussion should illustrate the type of problem that is
encounterad in using short-time spectra of nonstationary time servies for
target identification. It becomes apparent that one should use as short
a time record as possible to minimize distortions due to nonstationavities.
1f one were to consider the selection of the ideal time window length as
an optimization problem, the cost function to be minimized could be written
as

J(T) = G(TY + U + 1(1D) (40)
where the term G(T) is a positive, increasing function of T that repre-
sents costs due to nonstationarvy distortions.  The function H(T) is also
positive and increasing and typifies the computational costs involved.
The final tevm 1(T) is a positive decreasing function of T vepresenting
the frequency resolution costs,  Because of the empirical nature and

interdependence of the various parameters of Eq (160), the explicit forms

40
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ot the functions involved would be arbitrary and relating them to

performance coutd be controversial, although the optimization theoreti
cally could casily be performed once the functions were formally
defined. Therefore the selection of T requires a certain amount of
engincering judeement and a "cut and try" attitude.

Windowing. 1t is well known that the Fouricer transform of the pro
duct of two functions is the convolution of the two individual Fouricer
transforms:

Fls(nmw(n)| Els(n)] » Flw(n)] (47
where the signals, convolution, and Fourier transform may be either
continuous or discrete. This theorem has an impovtant application in the
computation of short-time spectra of amplitude modulated radar targets.
Since only a finite record of the signal of interest will be transformed,
the signal s(m) is in effect being multiplied by a weighting function
w{n) which is nonzero on a finite interval.

1f one sinply truncates the time series at the end of the time
record, by default, a rectangular weighting function has been applied:

wn) I 0-n<N-1 (48)

where n is the index, and the time record consists of N points.  The

rectangular weighting function has the advantage of cheapness of imple
mentation, and it has the narrowest attainable main lobe as illustrated
in Fig 11, The achicevable resolution of the FEL s determined by the
width of the main lobe.  On the debit side, the rectangular window has
relatively high sidelobes, the fivst sidelobe being only 13 dB below the
maintobe in the power spectrum.  As is apparent from Eq (47) and Fig 11,
the convolution of the window spectral sidelobes with any spectral poaks

from the signal wiltl result in vingine or Gibbs phenomena.

This spectral distortion mav be rveduced by intrvoducine a window




functien that is smoothly tapeved to zero.  The tapering causes an increase
in the width of the spectral main lebe and a vesulting loss in resolu

tion, but, at the same time, it increcases frequency sclectivity, i.e.

the ability to resolve simultancously signals of different amplitudes
which are scparvated in frequency.  Some commonly used windows are given
below (Ref 4) and are shown in Fig 10, with the power spectra of cach

shown in Fig I1:

2 N
Bartlett: \'”"l‘ » 0<n ,»l
(Triangular) wn)=¢ ” \ l
I_ e & « l_ 4 \’
Zad i i T n S N=1 (49a)
3 . ] Al \ 1
Nanning: wn)=—-[1~cos(2mn) ], O<ns<N-1 (40
¥ N--1
Hamming: w(n)=0.54-0.40cos(2m), Os<n<N-1 (49¢)
N-1
Blackman:
w(n)=0.42-0.5cos (21n)+0.08cos(4in), O<n<N-1 (e
N-1 N-1

The Raiser window (Ref 38) as delined by
1 / . :
w(n) = olafn--(n-m} ], Osn<N-1 (50
'10|.1'.:1]
has been shown to be optimum in the sense of maximm main lobe cnerpy
for a given peak side lobe amplitude. In Eq (50), lnp) is the modified
zero order Bessel function of the first Kind and m equals (N<1)/2. The
paramcter a may be adjusted to trade off resolution for solectivity.
The o i\‘ll';-l‘i‘~~l\l\§|1\t§‘§:(' of the Kaiser window is its computational comp
lexity., For an exhaustive treatment of the various windows that have
been vsed, the reader is referred to the recent paper by Harris (Ret 32).
Selection of an optimum window for a given application would entail
minimizing a cost functional of the form

(W) Giw) el (w) e 1 (w) (511
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where G(w) is the resolution cost, [{(w) is the selectivity cost, and 1(w)
is the computational cost.  Rather than atteampt to quantitatively define
these costs and solve the optimization problem, an empirvical approach
was taken.  Since the bascband representation of an amplitude modulated
tarecet was know a priort to be of the form

K

sSte = 0 a exp (_i.:.ll) a2)

: i

1=]
it was possible to multiply this signal by various windows and numeri
cally compute the rvesulting power spectra. The idealized log power
spectrnm

(53)

Fig 13 shows the vesults of plotting
0l S (w) | 20 : Y102 ) '
& LOS . o o) 201o0¢ \ Fi l‘ (n)+1( !\\'{!‘. k."}
YA : 2 1\

: S v -0 e

for each of the commonly used windows., The constant 10 was added to

cach term of the time series to scale the plot, thus -120d8 corresponds

to zero. 1t 1S 1ly apparent that the rectangular, Bartlett, and

Hamming windows do not allow the spectrum to go to zero as rapidly as de-
sired. Furthermore, the Bartlett window exhibits high quefrency ringing.
(Queqrency is a measure of time associated with the Fourier transform of
the log power spectrum of a signal). Since the vinging due to the side
lobes of the other windows is at too high a quefrency for the sampling
rate, the Gibbs phenomena is not apparent in the other plots.  The Hanning
window was sclected since its performance is satistactory, and i1t 15 less
than half as expensive to compute as the Blackman window. Since this
'

simple window performed so well, no experiments were attempted with the

more complex Kaiser window family.
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Preprocessing the Data Base. As previously described, the data base

used in this experiment consisted of the radar returns from various types
of vehicles being driven through the beams of two types of radars at
different azimuth angles. Both the in-phase and quadrature components
of the reccived signal were recorded on analog tape for the first data
base and only one component for the other.

Initially, the signatures were sampled at twice the bandwidth of
the tape and resulting spectra were analyzed. It soon became apparent,
consistent with observation 4 about PAM targets, that the doppler spread

was essentially confined to the band between 0 and 2w Accordingly,

D
the data was sampled at a rate compatible with the highest target radial
velocity.

Because of the physical considerations previously detailed, the
pattern space chosen was the space of short-time discrete Fourier
amplitude spectra. An FFT integration period (corresponding to a 1024
point FFT) was selected that was short enough to approximate quasi-
stationarity of the time series and long enough to ensure sufficient
spectral resolution. As discussed in the previous section, several
time windows were considered for spectral smoothing, and it was con-
cluded that the Hanning window provided adequate performance at accept-
able computational cost.

A FORTRAN computer program called WRENCH was written to perform the
required preprocessing on the Wright-Patterson AFB CDC CYBER-74 computer.
A flow chart of the program is shown in Fig 14. First the program reads
a time record from the input, digital, time domain tape. If the input
tape has been completely processed, the program stops. Otherwise, the
time data is multiplied by a lanning window and FFTed. The FFT is, of

course, an efficient implementation of the DFT:
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N-1
S(K)= Es(m)exp(-j2ukn/N),k=1,2,...N (5%)
n-o

The particular FFU alporithm used here is VFT2 from the International
Mathematical and Statistical Library (Retf 35).  FEFT2 utilizes a modifi-
cation of the Singleton (Ref 02) version of the Coolev-Tukey FET al-
gorithm. It requires the standard N log N basic sets of operations.
After the complex spectrum has been computed, only the amplitude spectrum
is retained.

-~

[SY [={[Re S(K) ] +[Inm S(H]Q}]/W ) 5

yk=1,2,...N (50)

At this point the skin line of the signature is found. A very
simple approach was taken; the peak signal other than ground clutter was
called the skin line. This procedure found the actual skin line in over
ninety nine percent of the sample spectra; however, for a few samples
of Tarpet 4, at zero degree azimuth, one of the sideband spikes was of
greater magnitude than the sKkin line. Such a sample spectrum is de
picted in Fig 15, when the skin Tine is at 350 Hz and the peak signal
is at 500 Hz. Since this type of phenomenon was so rare, and because
the feature extraction procedure adopted did not use the {ine structure
of the individual spectra, it was concluded that no rvefinement of the
skin line extraction procedure was required.

Subsequent to the skin line identification, three thresholding
operations were applied to the skin line magnitude and frequency.  Firvst
the skin line magnitude was compared against an empivically determined
threshold. If the magnitude was less than the threshold, the target was
considered not to be in the ranpge or azimuth gate ot the radar, and that
sample was rejected.  T€ the sample spectrum passed the first threshold
test, the skin line doppler was checked for p;\';iti\'vnv-m. I it was

negative, the spectrum was reversed [ ]

SR“\)'S(N‘I-R) A A (S SR (g';)
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to insure that the skin line doppler was positive for all spectra. After
this operation, the negative half of the amplitude spectrum was discarded.
Then the skin line frequency was compared to a frequency threshold that
corresponded to a radial velocity of about two miles per hour. If the
skin line frequency was below that threshold, there was not enough doppler
spread to extract useful features, and the sample was rejected. If the
sample spectrum passed this final test, the positive half of the ampli-
tude spectrum was written on the output tape.

In summary, the actual preprocessing consisted of a series of trans-
formations and tests applied to the data. First, the data was prefiltered
and digitized. Then it was windowed and transformed via FFT, and only the
amplitude spectrum was saved. The skin line was extracted and threshold
in frequency and magnitude. The resulting output was the positive half,
amplitude spectrum of the selected samples.

The resulting baseband amplitude spectrogram for Target 1 at zero de-
gree azimuth is shown in Fig 16. The series of high amplitude spikes at
about 300 Hz is the skin line of the vehicle. The lower amplitude,
periodic spikes are due to running gear modulation. There is no signifi-
cant signal beyond the second harmonic of the skin line. It is apparent
that the amplitude of any particular spike varies with time in a random
fashion. There is some time corrclation, however, and a certain degree of
frequency correlation exists among neighboring spikes. Both the time and
frequency correlation are due to the scattering geometry and how fast it is
changing. The geometry, in turn, depends on the terrain and the steering
of the vehicle,

Fig 17 depicts the spectrogram of the same vehicle at 135 degrees
azimuth aspect. As scems to be true in general, the time coherrence of

the sideband spikes for this target is not as great as azimuths other than
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zero or 180 degrecs, This is probably due to the fact that at those two
agles the running pear rotation produces specular flashes.  During the
period of this spectrogram, the vcehicle is accelerating into the range

gate and then decelerating out of it.

The spectrogram signature of Target 2 is shown in Fig 18,with the
vehicle traveling through the range gate at 315 deprees aspect. The
tendency is for this tvpe of tavget to have a lower level of side band
modulation than that of Target 1. These three dimensional spectrograms
with hidden lines were made with the Display Integrated Software Systenm
and Plotting Language (DISSPLA) (Ret 34).

Eeature Extraction

Feature Extraction may be formally defined as a transtormation {rom

the pattern space to the feature space

A 2 G = H (58)
where A is the feature extraction transformation, G i1s the pattern space,
andt H 1s the feature space. Typically G and } are both Fuclidean spaces
with G being of higher dimensionality than . In any case, Il is alway
a finite dimensional space with cach coordinate representing a diftferent
feuture.

The feature extraction transformation should be considered to bhe a
filter that removes irrvelevant information and retains information that is
pertinent to the classification problem. In an experimental context,
where the engineer is given a data base upon which to design a classifier,
feature extraction implics that arvtifacts in the data must be ignored.
Several such artifacts were observed in the data used in this researvch,
As an example of one such artitfact consider a radar, with an automatic
gain control (AGC), having leakage from the power supplyv, 1€ the pattern

¥ \

space 1s the short<time Fourier spectrom of the radar siegnal, the leakave :
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will be manifest as a spike at the frequency of the power supply. The

AGC will cause the amplitude of the power supply =pike to be inversely re-
lated to the target strength. Thus the amplitude of the leakage Fourier
cocfficient might be a useful indication of input signal strenpth, but
it would not be reliable as a feature for distinguishing between diffe-
rent tvpes of targets, since signal strenpgth varies with many more
parameters than just target type.

Similarly, if the radar does not have an AGC, strong signals may
cause nonlinear distortion in the mixers, resulting in targets with
strong harmonics of the skin line. If, as is the case with the targets
considered in this research, certain targets tend to possess strong
second harmonics, and the data is conteminated by intermodulation har-
monics, this second harmonic may be a  useful *feature, but perhaps, it
must be weighted rather lightly.

S : : ; y : 512

Because of the high dimensionality of the pattern spuce (B 7
initially), and the paramctric nonstationarity of the signaturc, class-
ification in the space of amplitude spectra is not feasible. There-
fore, it is desirable to extract features which are somewhat invariant
with target parameters.

Some featurces that could he mest usceful for discrimination between
specific types of vehicles arve suggested by the fine structure of the
short-time spectra. For example, if the spacing between the sideband
spikes could be determined, the period of the amplitude modulating func-
tion could be extracted. Then, if the vehicle true velocity could be
accurately estimated, the ratio of amplitude modulation period to vehicle
velocity could be a retiable feature. Unfortunately, as indicated in

the spectrograms, the sideband spikes ave not distinct at other than zero

or 180 deerces azimath,

e ———




An attempt was made to highlight the formants by integrating over
several spectral observations. The procedure consisted of considering
several time-consecutive spectral signatures at the same azimuth angle.
Each observation was radial velocity normalized, since the skin line
frequency may change considerably from one integration period to the next.
Then, the normalized signatures were simply summed, with the hope that
the coherent signal would be emphasized, while any noise, being inco-
herent, would not.

This procedure worked failrly well at zero and 180 degrees azimuth,
as shown by Fig 19, where the formants were alrcady rather apparent.

In Fig 19, it may be noted that the lower side band spikes, between zero
and 500 Hz, are quite distinct. Unfortunately, the technique did not
emphasize the formants at other azimuths, as in apparent from Fig 20.
This is probably due to the lack of specular flashes from the rotating
running gear at headines other than zero or 180 degrees. Because of
these poor results, this scheme was abandoned; however, it could possibly
be made workable by a more refined normalization and interpolation

scheme than was used here. A better physical model that more closely
simulates the scattering characteristics at other than cardinal headings
would provide greater insight and might indicate what modifications might
make an integration scheme practicable.

The cepstral signature of the targets scemed an obvious choice for
extracting the period of the amplitude modulation, since a series of
evenly spaced spectral spikes will integrate into a single large spike
in the cepstrum at the period of the spacing. The cepstrum, first
described by Bogert and Tukey (Ref 5), is formally defined as the power
spectrum of the log power spectrum.

2 ")
C(t) = [F{lop|S(w)|“}~ (59)
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A recent tutorial paper on the subject was published by Childers i

’ - |
j- (Ref 10), or for an introduction to homomorphic signal processing, a |
1 C
3 f
: generalization of cepstral techniques, the reader may wish to consult i
f i
i '
i Oppenheim and Schafer (Ref 51). !
i '
The cepstra for a number of observations were computed and the |

corresponding plots were examined. The results of this experiment

were not unlike those of the previous one. The amplitude modulation

g i i

period could easily be extracted for Target 1 at zero and 180 degrees

azimuth angles but could not generally be determined at other azimuths.

Lo

In Fig 21, the modulation period is represented by the distinct line

at about 0.03 seconds, while tn Fig 22 no distinct modulation spike is

in evidence. The failure of the cepstrum to extract the modulation

period at the other azimuths is again due to the lack of distinct

formants. Because of these results, the cepstrum was abandoned as a

% potential source of reliable, aspect invariant features.

3

# e " - Dl

| Since the attempts to use the fine structure of the individual

} stgnatures met with so little success, it was decided to extract features
that represented gross characteristics of the signatures. In some
ways, this rejection of the fine structure in favor of more gross

characteristics is reminiscent of other resecarchers' attempts to find
For example, Radoy (Ref 55)

the Gestalt of processes to be recognived.

s of alphanumeric

used the low spatial frequency compouents of the imay

characters, with some success, as features in an optical character re-

cognition scheme. Also, rescavchers at Ohio State University (Ref 41)
! in their aiveraft identitfication studies have enjoyed greater success
utilizing low vadar frequencies rvather than higher ones.  In both cases,

the low freguency (gross) information is being retained, and the high

.

Feequency (Fine detail) information is being discavded. 1n the optical

(U
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character recognition rescarch, it was found that retention of the high

frequency components tended to confuse the issue.  Too much information

1

was available, and the hieh frequency information only revealed the fine

detail of the structure, while the low frequency components contained the

gross form information. The

The low rl'(‘\ll‘\'!\\‘ components

aircraft identification problem is analgous.

are relatively aspect invariant and contain

information about the gross shape of the airvcraft while the high fre

quency informaticon reveals the finer detail such as t

engine nacelles, etc.
The first step in the ad
here is to parse the input sp

Since the radar antenna is st

he tail structure,

aptive feature extraction alporithm used

cetrum into six bands as depicted in Fip 23,

itionary during the data acquisition period,

the ground clutter is concentrated near the carvier frequency. Band B

includes all of the very low

this repgion is discarded, since the clutter dominates the signal here.

frequency components. The information in |

Next, the skin line is found, amd a narrew freaguency region, B,, is de |
! 3 |
fined centeved at the skin line frequency. Band B_, of the same width
Gni

M .- vl N \ ]
as, B., 1s centered around the

line. The lower side band, B,

between B and 6.,  ‘The uppm
%y

between B, and B_.  Then the

second harmonic of the skin
:

consists of all frequency components

side band, H,, is defined as all frequencies

noite band, B., consisting of all freguencies
6 ! {

higher than those in B, is ignoved.

Al

Two types of features were extracted from the data, the first kKind

being termed a spectral ratio
form of the spectral ratio fo
Banach spaces (Ref 42).  Extr

corresponds to the norm on t

feature and the second a shape factor. The

atures was suppested by the novrms on various
acting the peak signal from a frequency band

he space of continuous signals Cla, b}

maN !.‘:\\\\E (o0}
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Another quantity of interest, the signal voltape integrated over a
given band is derived Crom the norm on the space of absolutely inte-

grable functions l.l [a,b]):

b
sl = f | S(w)|dw (61
l,l[:l,h] a

The sipnal encereyv in a specified band coincides with the norm on the
space of square-integrable functions L [a,b]:

) ’

1 1/2

=[5 S| dw]™° (62)

[a,b] a

l

SOR!
L

The final quantity of interest is the total variation (T.V.) within a
given band, which is a part of the norm on the space of functions of
bounded variation BV[a,b]:

“q

TV [S(@]=f |dS(e) ; (63)

Although the operations listed above are to be perfovmed on continuous
signals, the spectral signatures have been discretized, and thus discrete
versions of the operations were performed. Also, the actual features

are further normalized and averaged as described below.

The fivrst 34 featuves could be termed spectral ratio features, since
they consist of the ratios of charactervistics {romn Jdiftferent bands. The
use of these specific features was wotivated by both the PAM model and an
examination of the spectra of the actual data, Several mathematical
qQqumtities that must be calculated to evaluate these features ave pre-

sented heve., One of the fivst quantities of intevest is the peak signal

in a given band:

Pli)= Max[S(n)] (6)

nel,
1




where S(n) represcnts the discrete short-time amplitude (voltage)
spectrum. The peak signal in the side bands and the second harmonic
band appeared to contain class discriminating information. Another at-

tribute of importance is touval signal in each band:

T(i) = ¥ S(n) (65)
nij

The total signal and the mean signal in the various sidebands were used
as features. The width of each band is calculated according to

W(i)= Max (n) - Min (n) + 1 (66)
naBi Dt“i

-3
=
~
S
=
C.
~
=
e
—

gy is described by

B(i} = © (8] (67}

nel. <
1

Finally, the total variation in each band is caleculated by

V() = ¥ [S(m+]) - S(n) ] (68)
ned

Total variation in the upper and lower sideband was used as a feature to

distinguish between the case when the energy is smeared throughout the

sidebands and the case when the sideband energy is concentrated in dis- f
tinct formants. If one of the quantities is to be computed over multiple

bands, it is represented, for example, as

T, = & S(m) (69)
ne HiL} Rj

The actual spectral ratio features used are shown in Table 1. 1t may be
noted that in each case the features have been normalized by skin line
voltage or energy to reduce signal strength variation due to target range

or aspect chanpes or different receiver attenuation setiings. L]
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Six additional features are computed that could be termed shape
factors, since they are functions of mowents of the spectrum. These
shape factors contain information about the gross, plobal structure
of each spectrum.  The motivation for using these features stems
from the well known fact that any probability density function is comp-
letely specified if all of its moments ave known. Furthermore, the
greatest amount of information is typically found in the lower order
poments.  Four mathematical functions are defined that ave used in the
computation of these shape factors. :The tirst function is the frequency
component nupber of the peak signal in a band:

R(i) = n such that S(m)=P(i) (70)

The mean for a band is defined as

M) = [ & n SMm)I/T() (71)

i
The variance for a band is
AiY = [ & n” SWTEI-IMGEY] (72)
m B,
1
and the skoewness s
Ci) = [ ¥ n° SMT/THY-3M(E) A(RY+SM(DT (73)

ne B,
1

The shape factor features are the last six defined in Table 1. The shape

factors have all been normalized by the

sk

in line frequency to remove

shape differences due to changes in radial velocity,

Feature Selection
After the destgner has extracted a set of potentially useful fea

f is frequently faced

tures from the preprocessed signals of intevest, he

tonality reducing transformation,

with the specification of a further dimen
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F(4)

F(5)
F(6)
F(7)
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F(10)
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F(12)

F(13)
F(14)
BEES)
F(l1o)
F(17)
E(18)
F(19)
F(20)
F(21)
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1 (10)

Name

Peak 2
Total 2

Mean 2

Pcak encrey

Total cnergy 2
Mcan cnergy 2
Total variation ?
Mean variation 2

Peak 4
Total 4
Mean 4

Peak energy

Total ene
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Mean energy
Total variation
Mean variation 4

Peak 2,4
Tatal 2,4
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Peak 2,4,5

Tatal 2,4

Mcan 2,4 ¢
Peak ener

Total ence

Mean cner

-

)

a

Y

5

4

1

Total varviation

Mean vari

&k

on <

Table 1.

5

4
"1

rey 2,4

v 2

ration 2.4
» .
&g 't

oy 5

(‘

!'I;

S

oy 2,4,5

Ley 2,415

oy 2,4.,5
.‘.-5

1

Features

,.)

Mcan diftference 2 i, 4

Standard deviation

> 3 4

Skoewness

245
y

Mean difference

il

Standard deviation

Skewness

2.4

5

Ly )

2,4

Definition

P(2) /PL3)
T(2)/P(3)
F(2)/W(2)

)
fRLi1]
B(2)/ [PE3Y]
F(5)/W(2)
V(2)/P(3)
F(7)/W(2)
PLAY/P(5)
T4 /R (3)
F(10) /(1)
(ren’
E(4)/[P(3)]
F(13)/W(4)
V(4)/P(3)
F(15) /W(2)
M;x.\'[l'(l),l’('/\l
4R (10)
15\/1f(:)|n@4)]
fax[F64)  BCL2) )
)m 13)

1% l’l\& Y+ () ]
A ul
(4‘1 [N "W(4)|
> ,)/I“Lg)

[\"{.‘.f\\1
‘.‘hA[l’(lT}.l’(.’.’\H

F TS50 78 (3]
F(28)/ [IW(2 \»[ﬂi\\(‘ﬁj
Max |1 (20), l (20) ]

E21)=E(S) 1P (3)]°
F32) /W (2N ()W (D))
PR3 )(S] / (5

E{33) /[W( ‘)4..\110\\( )

I.\I(.’,,S,‘HW\ JhER(ES)

IA(2; 1)] 'R(")

(G EZS 1)( ’!\ &)
N2, 1) R(3)/R(:

)
[A(R.J)]"‘/k(s)

(D g R
[CC,24)] " /R(3)




; i —
k
| |
{
|
: f
5 1
| !
i.ec. feature seclection. Typically, more features are extracted than
i can be conveniently used in the classification process. The primary
b
d limitation on the number of features that may be used results from the ]
|
i finite sample size of the training set. i
4 If an excessive number of featurcs is used for a given sct of
|
| observations, overtraining on the design set will occur. The relation-
|
% ship between the number of sample observations available and the optimal
§ number of features to be used is not well understecod, even though there
|
i is an extensive literaturc available on the subject. The overtraining
|
! will be manifest in one of two ways: either an excessively optimistic
evaluation of the selected features' usefulness or an actual de  ine in

performance over that achieved with a smaller number of features.
Foley (Ref 23) has reported the results «of an experiment in which
he arbi®rarily separated samples arising from an artifically generated,

single, multivariate uaniform density into two classes. By sclecting
o 3 ‘ . <y

a large number n of features in relation to the number k of samples per

class, he could obtain good separation of the data using the Fisher

linear discriminant, even though all of the data was generated from the

same probability density function. For a ratio of k/n=0.36, he obtained

Bl g AN VA e s A AR 5 D

perfect separation. Foley concluded that, on the basis of his experi-
ments, the ratio k/n should be greater than or equal to three to avoid this
f type of anomaly.

The sccond type of manifestation of overtraining, and the one that is
frequently reported in experimental pattern recognition exercises, is an 1

increase in classifier performance as a function of n out to a certain

number followed by a decrecase as more features are added. The number of

i features at which peak performance occurs is referred to as the optimal

computational complexity by Chandrasckaran (Ref §). This phenomenon does LB




not occur for Baves classification with known densities.
In order to avoid overtraining and to keep on-line feature extraction
and classification costs at a minimum, the destgner is faced with the
problem of how to select the best m features out of the n that were
extracted from the design set data. It would be easy enoungh to estimate
the performance of each feature individually (given the form of the
ciassifier to be used) and rank order the feutures based on their
performance. However, if the n extracted features were so ordered,
the m individually highest performing features would not necessarily
comprise the sct of m optimal features (Ref 14). Cover and Van Campen-
hout (Ref 16) have shown, further, that there exist jointly Gaussian
probability density functions on which 2ll possible probability of error
orderings can occur among subsets of several measurements subject to a
monotonicity constraint. They conclude that "ne known nonexhaustive
sequential m-measurement procedure is eoptimal.'" Exhaustive scarch is
generally out of the question because of the astronomical number of

combinations that must be evaluated. 1If n features have been extractec

1

and it is desired that m of these be selected for classification purposes,

then the number of combinations that must be evaluated is equal to

ny . 3y 1
(m)- me (n-m)* (74)

As Stearns (Ref 64) hos noted, typically n is of the order 100 and m is

£ ~der N 4 { )
of order 10, thxn(IgJ) 17 X lnlh.

Fukunaga and Narendra (Ref 26) have advanced a branch and bound
aleorithm for feature subset sclection that restricts the domain of the
exhaustive search. The technique consists of the search of a tree whose

nodes represent the sets of features included in the evaluation. The root

v
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of the tree represents the set of all features, and each of its n

successors represent the exhaustive set with a different feature removed.
Each succeeding set of nodes represent sets reduced by one feature

over their predecessor. The nodes with no successors represent the sets
of m features. The savings in the top-down search procedure arise
because no successors must be evaluated, if performance falls below

an alrcady established lower bound. As Fukunaga notes, the scheme

only works if the performance criterion is monotonic on the number of
features used. Performance improvement of a subset of features over

the superset from which they are drawn cannot be allowed. Thus, this fea-
ture selection technique will work well when performance measures

that presuppose exact knowledge of the statistics of the processes, such
as Battacharvya distance or divergence, are used. However, its optima-
lity will not be retained for practical problems where probability of
error is the performance criterion, and an optimal computational
complexity exists.

Since the only optimal feature selection technique for a practical
pattern recognition problem is exhaustive search which is computationally
exorbitant, heuristic search procedures are required. Mucciardi and
Gose (Ref 46) have provided a comparison of seven heuristic feature
selection techniques. Stearns (Ref 64) has proposed a '"plus m ,
take away n'" search algorithm that is intuitively appealing. Others, e.g.
Chang (Ref 9), have applied dynamic programming to the feature selection
problem. Stepwise discriminant analysis, as described in the next section,
was chosen as the feature selection technique to be used for the present
problem, because it results in a simple classification rule. Also it

is relatively robust as long as the data is unimodal by classes.
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Stepwise Discriminant Analysis

Stepwise discriminant analysis (SDA) is a technique of feature

selection and evaluation. From a training set of extracted features,

SDA will select the most useful (in a specified sense) features and
evaluate the discriminating power of those features using linear dis-
criminant functions. There is no reason to believe that SDA is an
optimum procedure, in any analytical sense, for the problem at hand,

nor is it optimum for almost any problem to which it is applied.
Although SDA is generally suboptimal for selecting features, the optimum
technique is too expensive in terms of computation to consider. The use
of SDA has been widely reported in the literature with good results,
for example, by Mohn (Ref 45).

Besides performing feature selection, SDA effects classification
using linear discriminant functions. Nilsson, in his classic book
{(Ref 49), details the theory of linear discriminant functions for pattern
recognition. It is well known that linear discriminant functions are
not optimal for classification except for certain types of class con-
ditional probability density functions, including jointly Gaussian
with equal covariance matrices (Ref 18:29). Use of linear discriminant
functions may be justified on the basis that if acceptable performance
results, then such discriminants are useful, though suboptimal.

The goal of SDA is to find a linear discriminant function that
maximizes the ratio of between-class scatter to within-class scatter.
Since it is an iterative process, adding or deleting a feature on each
pass, it is referred to as stepwise. The motivation for the procedure
is based on the classical work of Fisher (Ref 21).

The input to the SDA algorithm is a set of n-dimensional feature

vectors Xl.X,....Xk assigned to two or more classes: ml.m,,...,wm. The
<« - |
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technique is a supervised learning method since the class labels are known
for each feature vector; however, it is nonparametric, since the class
conditional probability density functions are not known. The outrput of
SDA is a set of linear discriminant functions that optimizes a separa-
bility criterion.

The data are real and threc types of statistics are computed:

1. The overall sarnle mean vector
X (75)

2. The class sample mean vectors

- 1 : : e
Sy e \5 X AR (76)
. At .
i i
where k]. equals the number of samples assigned to ws -

3. The unbiased estimates of ‘the class variances for each feature

\' . = X S
l-\:-l kxt\.') '\]])V 2

where i refers to class number and j to the feature number.

~

At each step of the analysis, two types of overall scatter matrices

are computed. First, the individual class scatter matrices are evaluated

S = ok
1 Xew

(\'-ii)(x-f\jf 1R, i (78

from which the (pooled) within-class scatter natrix is formed

§, =L 8§ (79

The within-class scatter matrix, as its name inplies, gives some measure

of the total within-class scatter. The total scatter matrix

e

e,
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indicates the total scatter of all of the samples. For the scalar case,
it may be noted that the within-class scatter is the sum of the normalized
class variances, and the total scatter is the overall normalized variance.

It may also be observed that
m
Y

p 3By gk, (KX X (X-R 4K, -K)

m T W - B
R RO T T L E (KX (R, <R
s xgwi et PR ) w by chi(xi K (A =K)

m

A o
) - o P g »
Syt ks (X, -%) (X;-%) (81)

The second term in Eq (81) is frequently termed the between-class scatter
matrix SB (Ref 18:119), and thus total scatter in the sum of the within-

class scatter and the between-class scatter

S.=S,+S (82)

The method of selecting those features to be added or deleted at each
step of the analysis is based on the ratio of within-class scatter to
total scatter. This quantity, which is the ratio of the determinants of
the within-class and total scatter matrices, is referred to as Wilks'
A-criterion (Ref 36:77)

det S (Y)
W

A(Y) = mm— (83)

where Y is the vector of features that have been selected and det re-
presents determinant. Wilks' A-criterion has values between zero and
unity, with larger values indicatinp poor separation, while smaller ones
indicate good separation. At each step, the features are divided into
two disjoint groups, those that have been selected at some previous step

and those that have not. A partial A-statistic is defined
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A(Y,u))
e LD 84
A(u \) l‘\ (\) ( )
where u is a feature that has not been selected as yet. This quantity

pives a measure of improvement of the expanded feature set over

the original set. A corresponding F-statistic is computed

F oo Komep 1-A(u.Y) (85)

m-1 X Au.Y)
where p is the number of feuatures included in the analysis. The F-
statistic is used to control the addition of new features or the
deletion of already selected features. The F-statistic is czlled either
the F-to-enter statistic for the entry of u into the sct Ya(yl,y

2 ...yp)

or the F-to-remove statistic for the deletion of u from the set (yl,yz,
...,yp,u). A new feature will not be added if its F-statistic is below
a specified threshold, or an old one will not be deleted if its F-
statistic is above a specificd threshold. Both thresholds are input
parameters in the computer program.

At each step of the analysis, one feature is added or deleted accord-
ing to the following three rules:

1. Remove the feature with the smallest I'~to-remove value unless
this value is greater than or equny to the F-to-remove threshold.

2. If it is not possible to remove a feature, add the feature with
the highest F-to-enter statistic that is greater than or equal to the F-
to cater threshold.

3. 1f it is not possible to delete or add a feature, the stepping
procedure is complete.

After the iterations have ceased, a linear discriminant function

is computed for cach class:




ni(x) = (X 1/:‘.'\‘i).‘ ‘X:H'(“.i), =2, . s 86)

where X is an arbitary feature vector composed of the featurces selected
by SDA, and Xi , is the saupnle mean vector tfor those features.  The pooled

within-class sample covariance matrix in Eq (86) is

——
-
=

—_

~d
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for the selected features. The lincar discriminant functions detfined by
Eq (86) are optimal for Gaussian class conditional densitics with equal
covariance matrices (Ref 18:29).

For a more rigorous and complete presentation of SDA, as well as
a flow chart, the reader is referred to Jenrich (Ref 36). The actual
corputer program used is BMDOM which is contained in the BMD Biomedical
Computer Programs Series (Ref 17:214a-21d4t).

Resides the linear discriminant functions, other outputs f{rom
BMDO7M include a classification matrix, and posterior probabilities and
Mahalanobis distances for each sample and class. Also, a scatter plot
of the data is made usine the two best variables produced by a Karhunen
Loe ve expansion (Ref 25: 226-233) on the pooled covariance matirix.

The primary disadvantage of using SDA for feature selection and
estimation of the performance of the features thus selected is that
it only uses second ovder statistics. As long as the experimental
data is uninodal for each class, this i1s not a Serious drawback. FEre
quently, estimates of higher order statistics are rather unreliable for
experimental data in any case. Application of SDA to a wide varviety of
feature selection problems has demonstrated it's robustness., Also, the

Lineor diseri nt classifier is simple and cheap, in terms of memory and

computation time, to implement,




Nearest .\'c'iyr'hl\n)‘ Classification Rule

The concept of geometric nearness as g mea

implicit in all statistical pattern recopnition

neighbor (NN) classification rule,

sure of similarity 1s

formulations. The nearest

First proposced by Fix and Hodges

Ref 22), elepantly captures this concept. The NN training set consists
§ | §
of a number of d-dimensional feature vectors {Xl.\ Gy eespX ) that are specid
y n
fied to belonp to two or nore classes, Wy aWoaonasltd o A suitable metric
. m
d(‘.‘) is defined on the space to which the feature vectors l‘(‘l\'l\\“. A
test vector Y of unknown class label is assigned to the class o such
s
that
,\‘,r W vhere d(Y,X,) min \‘(\ ) (88)
3 € i 1sisn 1
The vector of unknown classification is assigned to the class to which
its nearest neichbor belongs.

The NN rule has been applied to very diverse classilication problens,
probably because of its intuitive appeal, its case of implementation, and
its vobustness with respect to the wnderiving statistics of the data. The {
NN classification rule will vield acceptable performance when other
classifiers fail, e.g. when applicd te data having multimodal probabality

density functions. Use of the NN rule rvequires
lying statistics of the data, and thus it 1s te

Because of its

no l‘lh‘\\l\“.:«' of the under

nonparametric tech

nique. structure, the rule can provide clustering infor

mation about the data,

Cover and Hart (Ref 15) have shown that the NN rule asymptotic

probability of ervvor, I' is bounded above by twice the Baves probability

of errvor, M. 1If P (¢) is the NN classification averape probability of
n

error for a desiegn set containing n samples, then the asyvuptotic ervvor

rate is

.
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P lim l‘"(v) (89)

n
Cover and Hart then demonstrate that

R o M) (90)

‘m-1
where m is the number of classes. The lower bound on I' is obviously the
Bayes ervor rate. This near optimality of the NN rule for larpge training
sets, then, provides further justification for its wide use for classi
fication and feature evaluation.

The expected probability of error for the NN rule is ecasy to compute
and is reliable (assuming the desipgn set is 1‘;'}\1'('3(~||t;1ti\'v) since each
training set sample may be considered individually as a test set of one
observation. This method of estimating the expected probability of error
is a generalization of the U method described by Toussaint (Ref 66), who
compares its statistical properties to those of other methods.

The procedure is to determince the number of samples in each class that
have nearest neighbors .nutsid(- of the class, divide by the number of
samples in the class, multiply by the class prior probability, and sum
over all the classes. To express this formally, it is first convenient
to define a set membership function for the nearest neighbor of a

given feature vector X FU.

5(X.,X!) = if X! 0
S(X;.X3) Lif X o (01)

0, if X! to
il ¢
where X'i is the nearest neighbor of .\'i. L€
d(X.,X"'") = min Jd(X.,X. 92
(XJ J) Hfi‘ «(\‘, ) (R

Then the expected probability of error is
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m Po)
Ple) = I — ! 60X, ,X1) (93)

¢=1 n Xitw 1)
¢ ¢

where P(“‘c) is the prior probability of class ¢ and n. is the mumber of
samples assipgned to w. - It should be noted that the metric most fre
quently used with the NN rule, and the one used in this work, is
Euclidean distance:

. dEGY) = XY o= [ T x-v)] - (94)

The greatest drawback to using a NN classifier for on-line pattern

recognition is the lavge amount of computational resources required.
Fach of the design set vectors must be stored, and all of the distances
must be computed for cach test vector. To alleviate this computational
requirement somewhat, Hart (Ref 33) has introduced the condensed nearest
neighbor (CNN) rule. The CNN rule uses an iterative procedure to find
only those samples that are near the class boundaries. By retaining only
those samples, the ONN classification procedure has the possibility of
reducing the on-line computational requirements considerably, without
effecting performance significantly.

The K nearest neighbor (KNN) rule is an obvious extension of the NN
classification rule. As the name implies, this rule simply assigns a
test vector to the class which is most frequently yepresented amony its k
nearest neighbors. A simple vote is taken to determine the class label
for the test vector. The asymptotic upper bound for the KNN probability
of error may not be expressed simply; however, the asymptotic pertformance
is monotonic on k. Duda and Hart (Ref 18:105) provide a chart depicting
asymptotic KNN performance as a function of BRayes error for various values
of k.

Results

To test the efficacy of the extracted features, several classification




experiments worve oo

the experiments desc:

the feature vectors

extracted from a §12

was comprised of 6

Target 3. Doata Base

3

of Tarpet plus 83

O, Fable XV in Cht

In the first s

2 and 3 unitex

for this two ¢las 1

767 in t Co Exporiment 1 consisted of the application of SPA to
this data buse with equal pricr class probabilities assigned. Table 11
shows which features were selected or removed at each steps  The |
statistic, as defined in the section on SHA, controls the entrv or e
noval of features. The feature ire as detined in Table T in the section
on feature extraction. As can he seen from this table, F(28), the total

signal in the sidebw

feature. Feature F(21) is the total energy in the lower and upper side

bamds, while F(23)

F(36) and F(38) are

included at selected steps, ranked in order of F-statistic, 1i.e., the

pest! feature is f

usefulness, It is

when few featuresare utilized, but it is of less use when a lavger number

18 selected. The n

than forty, because

too hivhly covrelate

0 samples of Tarpet ), 206 of Target 2, and 471 of

aximum nuaber of tfeaturves selected is thirty six vather

N

NN ¢lassification. In all of

wucted asing SDA amd
ibed in this section, unless otherwise indicated,
consisted of the forty features, previously deseribed,
point, positive, amplitude spectrum. Data Base A
B had an additional 131 samples of Target 1 and 53

samples of Target 4, 18 of Target §5 and 65 of Tarpet

=

marizes the various experiments comducted.
't of experiments, Data Base A was used with Targets
@ single class, since they are of similar type. Thus

roblent there were 620 samples in the first class and

mds including the second harmonic, is the best single

\

is the total variation in those two bands. Features

both shape factors. Table Il shows the features

irst followed by the remainder in descending ovder of

intevesting to note that F(28) is a 1reliable feature :

the SDA alporithm vejected the remaining four as being

d with those alveady ineluded. fhe averapre probabil ity




—————- e —— o —————_——r i e ——— e e —

Table. V1, Summary of SDA for Lxperiment |

STEP FEATURY o VALUE TO NUMBER OF
NUMBER ENTERED  REMOVED ENTER OR REMOV] VARTABLES INCLUDED

1 28 174, 58 |
2 21 242.98 2
S 23 15810 S
4 S0 264,41 B}
L 38 100,70 5
Q 29 98, 18 O
7 37 35.84
S 34 18.52 8
Q 12,44 0
10 20 1800 10
11 O 252 il
12 8 Il 12
15 A FGLO2 15
14 10 Q.43 14
S (BY 8.79 15
16 3] 10,80 1o
1 ! 900 ) !
30 WS 18
10 Y 14.0 19
2t A i \
i 21 i 7 .26 21
2 10 1,24 ’
g ¥ ) -\\\; ) N
24 ! .51 24
y lo %07 25
20 38 0. 01 2
37 4 1.0 25
8 18 1.18 O
4 L 1 e )
M) 3 14.68 8
N ‘A 0.01 2’
5 52 S.67 '8
3N 14 3.51 29
A 28 0. 01 28
35 AN 3. 30 2€)
N 1.84 S0
3 Q g 3
AN 12 .19 32
39 20 Q.20 J3
40 17 0.63 ad
41 15 0,00 a5
42 28 0. 01 a0
SR MO L S S L S T S BRI FOe L PEIS! L P D S A o SR
a0
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Table

STLP NUMBER

IT1.

Features Included for Selected Steps

in Experiment 1

FEATURES INCLUDED, ORDERED ON F

28

. ] 9%
28, &9
28,25,36, 21

) y >
28,36 ,25,38.21 .29
56,28, 25, 21,38, 29, 87

56938, 2552925 63U TO 27, 57,4059 26,31 , 8,53
F, 21,354,235
36,28,29,6,30,37,19,25,27,31,40,10,35,39, 21,
8,526, 28 34, L6, 5%, 1,25, 58

,16,37,25 5.32,14,

Sl A0SO

1S 2% 3%

4, 20,17,81,
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of error as a function of the nunber of tfeatures selected 1s shown in

Fig 24. The averape probability of ervor decreases monotonically from
.211 for a single feature to .061 for thirty six features. The mono
tonic decrease in probability of error demonstrates that the compu

tational complexity of this experiment is greater than thirty six

]
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o

Fig 24, Probability of Errvor as a Function of the

Number of Veatures Used €or Uxperiment 1

features,vhich might be expected because of the large size of the design
set classes. This figure also shows the diminishing utility ot each
additional feature. The use of five features reduces the probability of
error to less than ten percent.  The addition of thirty one more features
only lowers the error by a few percentage points.

The thirty six feature SDA classification matrix for Experiment 1
is shown in Table IV, The error bias toward class 1 is caused by several

phenomena.  Qualitatively speaking, the ditfference between the sample

m

'
i
i
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Table 1V, Confusion Matrix for Experiment 1

CLASSTIELED AN

(AR AL N R AT SO S} L TN S SR .

spectra of the two classes is that those from class 1 tend to have more

sideband modulation than those of class 2. When conditions cause class

1 signatures to have less sideband modulation, they ave misclassitied.

As previously noted, the Target 1 modulation spectra at ero and 180
degrees azimuth angles appear different from those at other aspects.
This difference is reflected by the fact that twenty seven out of €ifety
eight samples at those two cardinal aspect angles were misclassified.
Another cighteen of the errvors occurred with the tavget backing up. 0Ot

the vemaining twenty misclassified samples, 2 large percentage occurrved

either early or late in the run, indicating the tarvget wmay have been

..

only marginally within the radar gate. Fine tuning the skin line
amplitude threshold could possibly eliminate some of these ervors.
The performance cited in this experiment and in subsequent SDA ex
periments could be criticized as being optimistic due to testing on the
training set. However, because of the larpe size of the training set
classes, performance would not be stgnificantly diftferent it a small

number of samples weve withheld for testing purposes.  Furthermove, the

nearest neighbor classification experiments did not test on the training

set, and the performince was not much ditfevent from the SDA results,
A scatter plot tor Experiment 1 is depicted in Fig 25, The data is

projected onto the best two coordinates arvising from the SDA canonteal

analvsis, The asterisks indicate the class means, and the dollar signs ]
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represent two-class overlap. This plot indicates that these two classes
: are both essentially unimodal. ]
In a target identification application, a pattern recognition system
may be desiegrad to withhold its decision until several observations are
! made. Consequently, a sequential analysis was performed on the results
from Experiment l. Because of the nonstationary nature of the signa
y tures, a decision was made on each sample, and then a sinple majority
vote was taken to dete ine the final decision. The results of this
3 : :
i - sequential analysis are shown in Fig 26, compared against single and
&
! > ; s
: three nearest neighbor performance ] bility of erroy decreased

o \ g
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monotonically from 061 for one observation to 026 {or seven for SHA.

i When the classification decision was based on seven obhservations, theve yere
2
‘ no ¢lass 2 samples misclassified, and all of the srrors on class 1 were
at zero or 180 degrces. Since the vesults for these two cardinal headings
seem to be somnewhat exceptional, the performance estimates may actually be
. what 1t wimistic as theose h ) , v be overly " onted v othe
' Wy
|
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training set. Almost ten percent of the samples were at these two

vehicle aspects. The runs with aspects necarest these were 22.5 degrees
off, and no problem was encountered with those runs. If the exceptional
behavior is assumed to extend for only five degrees either side of the
cardinal headings, and all aspects are assumed equally likely, then

the cardinal heading runs should only account for about five percent of
the total samples. Thus the error rate would only be about half the
indicated one.

Experiment 2 was the same as the first except that the Target 1
samples at zero and 180 degrees were included in a separate class. The
SDA iterations stopped again after thirty six features had been
selected with an overall probability of error of .053 for a single
observation. The confusion matrix is shown in Table V, where A repre-

sents the Target 1 samples at zero and 180 degrees. The probability

Table V. Confusion Matrix for Experiment 2
CLASSIFIED AS

A 1 2

TRUE A 32 2 23

CLASS 1 10 508 44

2 0 7 760

of error given above did not include class 1/class A errors. It is
interesting to note that less than one percent of the class 2 targets
were misclassified. Also, the vast majority of class A targets that were
missidentified were called class 2. The scatterplot for this experiment,
shown in Fig 27, provides more insight into the structure of the data.
Experiment 3 consisted of applying the NN classification rule to

the data as described in Experiment 1. The average probability of error

96
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vs the number of observations is shown in Fig 20, The probability of
error decreased from (097 for one look to 029 for seven. The NN per
formance was inferior to that of SDA for one and three looks but was about
the same for tive and seven. The confusion matrix is presented in

Table VI with the first number representing one-look performance, and

the second, seven-look. Again, the Target 1 runs at zero and 180 degrees

Table V1. Experiment 3 Confusion Matrix
CLASSTFIED AS
1 2
TRUL 1 529/588 91/32
CLASS 2 30/5 741/762

proved troublesome, causing twenty four percent of the single look ervors,
The runs where Target 1 was in reverse caused a significant portion of
the remaining errors, twenty nine percent of the single look and thirty
one percent of the seven look errors.

Experiment 4 was identical to Experiment 3 except a 3NN rule was used
for classification. The performance of the 3NN rule was not signiticantly
different from that of the single NN rule, as demonstrated in Fig 26. The
3NN rule did, however, require twenty cight percent more computer resources
to run.

Experiment § was an application of SDA to the same data base used in
Experiment 1 except that only the upper sideband and second harmonic fea-
tures were used. This included features F(9) through F(10) and F(25) and
F(20). The motivation for this experiment was to determine how the
performance might be degraded by distributed clutter in the lower sideband

that could be experienced by an airvborne radar. 1f the sipgnal to clutter

08

i
|



—_—

S Ry i i -~ p—

——

T

e

0L i

g

;
.
|

ratio was poor, the lover sideband spectral vatio features and the shape
factors would be uscless.  The performance for this experiment increased
from a probability of error of .18 for a single observation to 067 for
Seven.

Experinent 6 was an application of SPA to Data Base A with ecach of
the three targets considered as a separate class. Thus class 1 had 620
samples; class 2 had 296; and class 3 had 471. Each class was considered
to have ecqual prior probability. Table VI1 shows a summary of the SDA
itevations. ‘The SDA perlormance for this three class problem is shown in

»Q

Fig 28. The relatively poor performance in this experiment is due to

AL %
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Fig 28. Three Class Performance, Experiments 6, 7, and 8

the similarity between the modulation spectra of Tarpets 2 and 3 as re
flected in the confusion matvix, Table VIIl, for a single observation. It
class 2/class 3 errvors are not counted, the performance is about the same
as tor the previously described two class problem. The scatter plot for

Experiment 6 is shown in Vipg 29, Table IX reflects the features, ranked
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X Table VI, Summary of SDA ITterations for bxperiment 6 %
i
STER FEATURE I VALULE NUMBER OF PROBABLITY
NUMBER ENTERED TQ | \ I'ER VAR | \l'-vl.l'.". INCLUDED  OF ERROR
| 1 36 520,94 1 0.351
& 37 98,08 2
3 4 8 .65 5
4 8 16.91 4
5 22 59, 2% 5 0.303
O K33 26,92 O
7 12 4103 7
1 s 14 o 8
) 6 20.69 5}
10 L 24.20 10 (0.205
11 15 22.09 11
12 21 9.10 12
£S5 1 S L0 1843
e 14 10 47.17 14
15 35 76.31 15
16 38 il o o 1o 1
L7 20 Hdel| 17
I8 17 4,04 18
19 40 Qs 19
"0 o] 79,98 20
2 : O dd |
22 'O 1.81 22
N "_\ s).‘_ l \. ) i)
4 lo U2 S 24
25 52 3.01 25
O 28 0. 435 'O
) 9 ¥ 00 )
'8 33 6.00 '8 {
19 5l 3.82 )
.‘ W I8 5.5 S0
31 13 6.0 51
{ 52 51 0.45 L)
55 11 L I 53
{ 54 29 12.89 34 :
{ 35 30 0.45 35 0.219
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Experiment o Confusion Matrix

CLASSTETLD

5 21 54
2 202 92
8 95 308

In descending order of F-statistic, selected by SDA at various steps.

Feature F(36), the "standard deviation" of the lower and upper side-

bands plus the skinline band, was consistently the top feature for

this experiment.

Experiments

NN classification applied to the same data basc

The results

6. In general the NN

data base.

Table 1X. Feature

STEP NUMBER

10

are summari zed

in Fi

results

Selected

we

£

Gl
Jo

along with those fror

and 8 consisted of, respectively, single and three

used in I'\l\cl'i}.l(“( (> 18

1 Experiment

re slightly better than SDHA on this

at Various Steps for Experiment 6

FEATURES INCLUDED, ORDEREI
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In the remaining series of experiments the training set consisted
of Data Base A and Data Base B, This expanded data base consisted of
751 samples of Target 1, 349 of Tarpet 2, 471 of Target 3, 83 of Target
4, 18 of Target 5, and 65 of Target 6. Tarpgets 1 and 4 are of similar
tvpe with rvespect te the structures that cause the modulation, while
the remaintng four are somewhat similiav,

Experinent 9 consisted of SPA of a two class problem with class 1

comprised of Targets 1 and 4 and class 2 containing the samples from

the remaining four ta

pets. A summary of the features selected and the
probability of error at certain steps 18 given in Table X. The table
reveals that feature F(36) was once again the best single feature. Table

X1 shows the features included at selected steps ordered on the F

O

statistic. A scatter plot fer experiment is depicted in Fig 30, The

final confusion matrix for this experiment using 34 variables is shown

in Table XI1 for a single look andd for seven looks. ‘The probability of 1
error 18 shown in Fig 31 compared against succeeding experiments.

In 10 the SiN targets Were ecach consadered as Separate
classes with prior probabilities equal to the ratio of class samples
to total samples. The features selected by SUA are shown in Table XUiI.

The confesion matrix for a single observation and thirty five features is

shown in Table XIV, It is apparent from the confusion matrix that the
classifier performance on Target & is very poor. As with all Data Base B
targets, signatures from this target weére only available at fourty five
degree increments. At zero and 180 degrees, the Tavget ¢ spectrum had

extremely Jow levels of sidebmud modulation while at the aspects fouvty

five deorees of U the cardinal headings, the sideband modulation levels
were moderately high,  Thus the features for Tavget ¢ arise from a

himodal distribution with the cardinal heading signatures being ovev ]
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Table XI. Features Selected at Various Steps for
Experiment 9
i STEP NUMBER FEATURES: INCLUDED | ORDERED ON F

1 S(\

5 36,25,39,.357.8

10 6. 25, 5. 39 .37 .26, 2. 7,8, 5

20 LS TROR AR TSR I B G A TR A T T T, Y. 5T
4.7, 14 .24 .30.12

30 86,39 A5 SO BT 8T, 20,0, 13305
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Fable X11. Confusion Matrix for Experiment 9
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number of observations

in Fig
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eXper

Target 2 and

of error for seven

shown in Fig 32,
Table

1

TRU! 2

CLASS 3

4

S

O

In the l

Experiment 10 was

on the classifier

the data was
performance over
The scatter plots

in Fig 33 and Fig

in Fig 31,
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XIV.
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The probability of error for Lxperiment
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1¢ 81X
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31, aleong with the results considering

¢las

is plotted vs

s probability

was .164. The Experiment 10 scatter plot is
4l T e e e
Experiment 10 Confusion Matrix
CLASSTF1ED AS
1 2 3 4 5 Q
1
10 31 S0 35 18 15
11 228 107 2 1 0
13 79 378 0 0 1 !
11 1.5 $ S 135 0
S 0 2 Q 15 0
12 18 32 1 0 21
iment, m 1. the data base 8§ 1in
In this expe 11 e structure was imposed
sted by M ! (I 13 and §53) First
into the two major grx in Experiment 9 and
on was made Since no significant difterence in
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: V. Conclusion ;
i This concluding chapter presents a summary of the work performed, l
.
conclusions to be drawn, and recommendations for further related resecarch.
‘ |
; Summary
This dissertation has presented a method of performing automatic
1 recopnition for the class of radar targets that possess periodically
; amplitude modulated signatures. The field of antomatic tarpet identi-
3 fication was surveved, with particular attention given to radar. A
J philosophical discussion of pattern recognition followed by a proce-
{ Jure for designine pattern recognition systems was prescnted.  The nature
¥ of the periodically amplitude modulated phenomenon was investigated, and
the dato bases used for experimentation were described.  The form of the
i optimal classifier for this type of problem was examined, but it was
i
| concluded that such a classificr was not realizable due to inadequacies
H in the phvaical model and lack of adequate statistical information.
3
\‘ e . ~ . o g . . ¥
Thus, a suboptinal frequencys domain classification alporithn was de
signed.  Features that were rvelatively invariant with respect to tarpet
paravcters vere heuristically extracted from the shori-time amplitude
spectra of target signatures. TPerformance was presented for both linear
'
discriminant and neavest neipghbor classifliers.
Conclusions
The periodically amplitude modulated signature model of vehicular
radar targets intvoduced herve appears to qualitatively account for the
ohserved doppler spread.  The model fits best at azimath aspects of zero
|
i and 180 deerees, where the specular scattering from the modulat iy
‘
structure is preatest,  The modulation ic essentially frequency band-
limited to the bund between the cavvier frequency and twice the tarvpet
doppler (requency. - The tmplication ts that information only out to the {
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sceond harmonic of the skin line need

be retained for classification
purposes.

tased on both physical considerations and empirical obscrvations,
the obvious choice for the pattern space is the space of short-time
Fourier amplitude spectra. The effceets of the amplitude modulation are
mich more manifest in the frequency domain than in the time domain.
Also, since the sipnal is essentially band-limited, it tends not to be
time-limited. With the advent of FET precessors on an IC chip,
the required preprocessing can be done quickly and cheaply. For the
type of featuwres used in this work, the 1024 point FIFT with Hanning
window provided sufficient resolution and stability.

Probabilities of error of under ten percent were achieved on five
and fewer class problems by taking more than one observations. Table
XV summarizes the classification veosults obtained for M‘]k‘\."l\'\f experi
ments. The most reliable overall feature is F(36) which is a measure of
the spread of the spectrum about the skin line. Except for Experiment 5,
typically about 35 features were used for estimating performance in
Table XV, but performance should not be significently affected by using
only ten. Since there isnoe significant difference in performance between
NN and SDA classificrs, the data for cach class is essentially unimodal

in the feature space. The very slight edpe in performance of the 3NN over

the NN classifier does not justify the incrcased computational expensc.
Although the cepstrum was not judged usceful at all aspect angles, it could
he used at zero and 180 degree aspect angles when the spectral features
are less reliable. In all experiments, perfornance improved considerably

as increased mmber of observations were considered.  The decrease in

probability of ¢rror tended to flatten ont at about seven looks,




Table XV. Summary of Classification Results
Data No. ' Best Mean P(e)
Exp. Base (' ses Classifier Feature Best 10 Features 1 Look 7 Looks
1 A 2 SDA 28 36,25,38,26,21,29, .061 L0206
28,34,37,23
3 A s NN .097 .029
4 A 2 3NN .089 .021
5 A 2 SDA 10 128 L0067
6 A 3 ShA 36 36,37 ,8,4,39,9,6, <219 L1860
12,14,22
7 A 3 NN .208 126
8 A 3 3NN .203 A3
9 A&B 2 SDA 36 36,25,5,89,357,26,2, 118 062
78510
10 AGB S SDA ll5S .077
10 A&B 6 SDA 15 36,5,39,3,37,12,28, .263 164
2,15,18
— 4

Experiment 5 indicated that the techniques outlined here could possibly
be extended to airborne radar with some success.

The results of this research indicate that it would be feasible
to identify PAM tavgets by major type using the techniques applied.
Classification of many types of targets into specific classes would re-
quire the use of more of the fine structure of the spectral signatures.
Such an effort would require a more careful study of the sources of the
periodic modulation and the noise sources.
Recommendations for Further Research

No claims of optimality are made tor the techniques proposed in
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this thesis. Because of the nonstationarity of the random processes
of interest and the lack of a complete physical model, an optimal
solution does not appear likely in the near future., Since heuristic
procedures ave called for, there may well be approaches to the problem
that will vield better results, It is obvious that further physical
investipations into the nature of the amplitude modulation and the
sources of noise would produce a more complete model.

An extension of the technigues proposed here, would be a sensitivity
analysis to determine the optimal order of FFT to be used. The 1024
point FFT used in this work yields a theoretical frequency resolution
of about two Iz and an actual resolution nearer four Hz when the finite
window effect i1s considered. A lower ovder FIT would sacrifice some
resolution but would produce a smoother spectrum. Also, the shorter
the FET integration period, the more nearly stetionary the process would

be during the period, resulting in less smearing of the short-tiwe

spectrum. Two other sic nefits of a lower order FFI would be reduced

computational requirement for preprocessing and feature extraction, and
a larvger desi ot If an experiment was conducted to calculate per

formance in tern of aver: 2L m'\\lm‘ni'. ity of error as a function of EFT
order, performance might improve as FFT order was reduced from 1024

to a certain order, and then it would begin to deteviorate as the fre
quency resolution becomes too poor.

Another experviment that would be of interest would be to estimate
the short-time spectra of the processces using the autoregressive spectral
estimator rather than the FET. Kaveh (Ref 40) has used this technique
for high resolution velocity estimation of radar tavpets in the presence

of extended clutter. Autoregressive (lineav predictive) spectral
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estimation is also widely used in speech analysis (Ref 43). The
periodically amplitude modulated radar waveform bears-a striking similarity
to the speech signal. The order of the autoregressive estimator to be
used could be determined by considering the maximun number of spikes
that would be expected in the spectrum.  The resulting spectrum would
be a smoothed version, and no computational effort would be wasted, as
for the FET, in computing the amplitude values of frequeacy components
that are not of interest.

The final rcecommendation for Curther research is to determine how

significantly the identificetion performance would be degraded by dis-

tributed ground clutter as encountered in an airborne radar. This
could be done by either gathering airborne data or by develeping a suit

able ground clutter model that could be added to the existing data., A

model for distributed clutter that m usce has been proposed by

Ringel (Ref 56). If the identification procedure can be extended to
the airborne problem, further work wonld be requived to relate prob-

ability of error to aspect angle. Such a study mipht suggest optimum

flight paths for airvcraft engaged in an identification task.
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