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A NUMERICAL SOLUTION OF
SUPERSONIC AND HYPERSONIC VISCOUS
FLOW FIELDS AROUND THIN

PLANAR DELTA WINGS

by
Guion S. Bluford, Jr., Ph.D.
Major USAF

Major Roger Crawford, Advisor

A numerical technique was used to compute the supersonic and
hypersonic, viscous flow fields around thin planar delta wings.
These solutions were obtained by solving the Navier-Stokes equations
subject to a conical approximation. The integration technique used
was the second-order accurate, finite-difference scheme by MacCormack.
This numerical integration was performed on a constant step size array
generated by a conical coordinate transformation. Solutions were
obtained for the upper-only, lower-only, and total flow fields around
delta wings with supersonic leading edges. These solutions span a
Mach number range of 2.94 to 10.17, a local Reynolds number range of
3.345 x 105 to 5.0 x 106. and various angles of attack from -15° to
+15°.  Numerical oscillations, due to shock capturing, were reduced
by applying normal stress damping and a fourth-order density damping
term to the finfte-ditfference equations. A stability criteria was
developed and used which accounted for both the viscous and inviscid
flow regions. Cood agreement was obtained between the numerical

results and the experimental flow fileld data by Cross, Spurlin, and

xxi




Bannink. The shock-induced vortex within the viscous reglon and the
hypersonic viscous "bubble" on top of the boundary layer were computed,
for the first time. A unique examination was made of the vortical
singularities in the conical cross-flow plane of the delta wing. This
investigation demonstrated the feasibility of applying the conical
approximation to the Navier-Stokes equations in order to solve flow

fields around thin delta wings.
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A NUMERICAL SOLUTION OF
SUPERSONIC AND HYPERSONIC VISCOUS
FLOW FIELDS AROUND THIN

PLANAR DELTA WINGS
5 (2 Introductqﬂl

Aerodynamicists have been investigating the supersonic and hyper-
sonic flow fields around delta wings for a number of years. These flow
fields are essentially conical at high Reynolds numbers and thus are of
great interest both theoretically and experimentally. Initial efforts
at studying this problem were directed towards analyzing the lower sur-
face or compression side flow field. However, from recent experiments,
it was seen that the most striking features of the flow exist in the
upper surface or leeside flow field. At angle of attack, an embedded
shock is formed on the expansion side of the delta wing. The inter-
action of this embedded shock wave with the attached boundary layer at
hypersonic speeds generates two important features of the leeside flow
field. These include embedded streamwise vortices in the boundary layer
at low angles of attack and flow separation at large angles of attack.
Both of these features increase the temperature and pressure gradients
on the upper surface of the wing. The purpose of this investigation is
to develop numerical solutions for this flow field which are valid for
both supersonic and hypersonic speeds. The delta wing which is being
modeled in this study is a thin planar wing with supersonic leading
edges. Solutions to this problem for both the upper and lower surface
flow fields are of great practical importance, since lifting re-entry

vehicles such as the Space Shuttle have delta wing configurations.
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Description of Flow

For a comprehensive understanding of this complex flow, it is neces-
sary to examine the flow fields on both the compression and expansion
sides of a planar delta wing at subsonic, supersonic, and hypersonic
speeds. Particular attention is placed on the leeward side of the wing,
since this flow has a significant effect on the 1lift, drag, stability,

and control effectiveness of the vehicle.

Subsonic Flow Field. Several investigators (Refs 1-4) have examined

the flow characteristics around a slender delta wing. At subsonic speeds,
the flow around a thin delta wing with sharp leading edges changes
significantly with angle of attack. At small angles of attack, the flow
remains attached, but as the angle of attack is increased beyond some
critical value, the flow field becomes dominated by a large region of
separated flow. The principal features of this separated flow are
illustrated in Figure 1. The primary flow separation occurs at the
leading edge where a vortex sheet is formed. This vortex sheet curves
upward and inward and eventually rolls up into conical spirals that

form concentrated vortex cores above the wing surface. The vortex

causes a reattachment of the flow inboard of the leading edges, creating
two flow patterns, a primary vortex flow and a secondary vortex flow.

The primary vortex flow consists of concentric spirals about the core,
the core flow, and the flow over the wing surface. The core flow is a
highly rotational flow field, in which the velocity and pressure fields
are approximately axially symmetric (Refs 5-11). The viscous effects and
compressibility effects are confined to a region near the vortex axis.
The spanwise flow next to the wing surface is initially induced outward

toward the leading edge. Shortly after the fluld passes underneath the
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Fig. 1. Subsonic Flow Ficld Over Leeside of Planar Delta Wing With a
Leading Edge Separation.




vortex core, the adverse pressure gradient causes the boundary layer to
separate and form a secondary vortex just inboard and above the leading
edge. The circulation of this very weak secondary vortex is opposite in
sense to the primary vortex and has a circulation of approximately five

percent of the primary vortex (Ref 6).

Supersonic Flow Field. As the Mach number is increased, the flow

on the leeward side of the delta wing transitions from a separated flow
to one characterized by a Prandtl-Meyer expansion in the cross-flow
plane. The conditions under which this transition occurs depends on a
number of parameters, such as leading edge shape, airfoil profile, and
angle of attack (Ref 12). Intuitively, the range of conditions over
which transition occurs for various wing configurations is approximately
centered around Mn'= 1.0 (where Mn is the Mach number normal to the
leading edge). For thin wings, the transition occurs well before the
leading edge becomes supersonic. On thick wings, at relatively low
angles of attack, a strong detached shock wave forms in front of the
leading edge with a subsonic region behind it. In this case, the wing
leading edge 1s actually subsonic even though Mn = 1.0. Thus, for a
wing of finite thickness, it is possible to have leading edge flow
separation for a supersonic and hypersonic free stream.

In this investigation, we are concerned with the supersonic and
hypersonic flow fields around a delta wing with supersonic leading cdges.
This study will examine both the flow in the boundary layer as well as
the flow in the inviscld regions. The inviscid flow field is approxi-
mately conical (Refs 13-18) on both sides of the delta wing. The

general features of the flow are shown in Figure 2. On the lower sur-

face, the attached shock wave at the leading edge produces a cross-flow P
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away from the plane of symmetry. Inside the Mach cone, the flow ex-
pands and eventually becomes parallel to the plane of symmetry. On the
expansion side, the region between the Mach cone and the leading edge
contains attached isentropic flow. The Prandtl-Meyer expansion of the
free stream velocity component normal to the leading edge causes a de-
flection of the total velocity vector toward the wing root chord. An
internal shock wave along a radfal from the vertex realigns the flow
with the plane of symmetry so that no flow crosses the center plane.
If the internal shock is weak, the deflected flow remains attached.
However, if the shock wave is strong, the boundary layer will separate
resulting in a rolled-up vortex sheet.

Since the inviscid tlow around the delta wing is conical, the flow
field in any plane normal to the wing chord has a similar solution.
Thus, the entire flow field can be represented by selecting a cross-tlow
plane normal to the axis of symmetry. By neglecting the viscous etfects,
a qualitative sketch of this cross-tlow plane {s shown in Figure 3
(Ref 15).

On the expansion side of the wing, the region bounded by ABDG {is
hyperbolic. Elliptical equations describe the tlow in the region OCBDG.
The line BD is the cross-flow sonic line which merges into the internal

oblique shock DEG. The Prandtl-Meyer expansion is contined to the area

ABD where the line AB represents the tirst ray of the expansion fan.
The line BFE is the reflection of this expansfon ray trom the surtace
of the Mach cone BC which emanates from the vertex of the wing. Ex-
pansion waves travel along the strafght characteristics {n the Prandtl-

Meyer expansion and are reflected as compression waves at the cross-

flow sonic line. In the reglon between the cross=flow sonic line and
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BF, the expansion waves are along one family of characteristics and the

compression waves are along the other family. The compression waves
below the characteristic AFD are straight characteristics which are

eventually absorbed by the internal shock wave. The line OGA 1is the
wing surface and the line COK represents the plane of symmetry (Refs
14-15).

For the compression side of the delta wing, the line AHK is a bow
shock wave. The curvature of the shock wave at KH makes the flow rota-
tional in the central region OKHJ. The strength of the shock is reduced
between the point H and the plane of symmetry. The flow in the region
AHJ (within the bow shock wave) is isentropic and uniform with the area
JHKO being subject to the influence of the wing vertex. The Mach cone
or sonic line JH intersects the shock wave AHK at the point H where the
shock begins to bend.

The spherical cross-flow streamline pattern for the inviscid flow
field is shown in Figure 4. Outside the influence of the delta wing,
the velocity and entropy are constant and the cross-flow streamlines
are a family of straight lines that intersect at a point on the plane
of symmetry. However, when the cross-flow streamlines cross a shock
wave, these streamlines become curved lines that terminate at one or more
singularity points called vortical singularities. These points are cross-
flow stagnation points where the entropy is multivalued (Refs 19-21).
Thus, Figures 3 and 4 depict arcas of interest for which the numerical
solution of the problem is desired.

In this description of the supersonic flow f%ﬁl?c the viscous
effects and the shock wave-boundary layer interaction effects were

ignored. The bow shock was depicted on the compression side of the
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delta wing and was attached at the leading edge. The boundary layer was

very thin for high Reynolds number flow and thus the supersonic flow
field could be approximated as an inviscid conical flow field. However,
it was found by experiment (Refs 14-15) that a weak shock wave does
exist on the expansion side of the delta wing near the leading edge.
This very weak shock occurs because the boundary layer as well as a
finite leading edge thickness prevents the compression side shock wave
from attaching itself at the leading edge, thus forcing it to partially
encircle the expansion flow field. A qualitative sketch of this cross-
flow pattern with viscous effects at low Reynolds number is shown in

Figure 5.

Hypersonic Flow Field. As the flow is accelerated to hypersonic

speeds, the shock waves become stronger and the boundary layer becomes
thicker. The interaction of the inner shock with the attached boundary
layer 1is responsible for two of the most important features of the lee-
side flow field. These are the generation of embedded vortices in the
boundary layer at small angles of attack (Ref 22) and the shock induced
flow separation at large angles of attack (Refs 17, 18, 23-24). The
embedded vortices lie fully within the attached boundary layver and are
convected downstream through the boundary layer. The interaction of
these vortices with the upper wing surface results in increased shear
and heat transfer. Experimental measurements (Refs 18 and 20) indicate
that these vortices occur at small values of the viscous interaction
parameter

/ Re (1)

such as i = 0.1.

10
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For shock induced separation, the shear layer rolls up into a pair
of conically growing vortices as seen in Figure 6, These vortices re-
main fully submerged in the boundary layer at low Reynolds number and
form a large viscous bubble inboard of the internal shock. With an
increase in angle of attack, the internal shock and boundary.layer
separation line move outboard until eventually the separation line
reaches the leading edge. The flow pattern in this case resembles the
classical subsonic leading edge separation pattern as shown in Figure 1.
Increased pressure and heat transfer rates are produced on the leeward
side where the vortices impinge on the surface. Under some conditions,
as the embedded shock increases in strength the reattached flow under-~
neath the primary vortex might give rise to a secondary vortex as it
moves outward from the centerline and separates. Experimental measure-

ments made by Cross (Ref 17) and Narayan (Ref 25) at M = 0(1l) exhibit

the characteristics of shock induced separated flow. Further discus-

sions on the flow field details are presented in the following sections.

Experimental Flow Field Studies

Because of the complexity of this problem, particularly at hyper-
sonic speeds, a large amount of experimental data exists on delta
wings. However, most of this information is surface pressure and heat
transfer measurements (Refs 25~55). The majority of the boundary layer

and flow field data comes from shadowgraphs, schlieren photographs, oil

flow pictures, and vapor screen techniques. Only a small amount of
published detailed information has been found for the supersonic and
hypersonic flow over delta wings with supersonic leading edges. Some
of this detailed data consists of pitot pressure measurcments made in

the plane of symmetry (Refs 22 and 26). Most of this informat lonconsists

12
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of impact pressure surveys made in the expansion flow of a delta wing.
These pressure measurements were made by Fowell (Ref 13), Bannink et al
(Refs 14 and 15), Spurlin (Ref 16), Cross (Ref 17) and Monnerie and
Werle (Ref 18). Fowell and Bannink examined the supersonic inviscid flow
field over a delta wing while Spurlin, Cross, Monnerie and Werle in-
vestigated the hypersonic flow regime.

Fowell (Ref 13) used a pressure rake to measure the spanwise pitot
pressure above a flat delta wing. His measurements were made at a Mach
number of 2.5 and at an angle of attack of 10° 5'. He found that an in-
ternal shock does exist on the expansion side of the delta wing and that

it increases in strength as the angle of attack is increased. The

strength of the internal shock was quite small, being of the same order
as the weak bow shock on the expansion side of the wing.

Bannink, Nebbeling, and Reyn (Ref 14) did a more detailed investiga-
tion of the supersonic flow over a delta wing. Spanwise pitot pressure
measurements were made in several planes perpendicular to the wing sur-
face at various distances from the wing vertex. These measurements
focused on determining the location and shape of the internal shock.

It was found that the internal shock was approximately conical and that,
away from the wing surface, it bends towards the plane of symmetry of the
wing.

In 1971, Bannink and Nebbeling (Ref 15) repeated their investigation
of supersonic, inviscid flow field over a flat delta wing. Tests were
conducted at a Mach number of 2.94 and at a Reynolds number of 2.65 x
106. The main purpose of this study was to determine the shape and
location of the internal shock and of the conical-sonic line, the latter

being the locus of points where the conical Mach number is equal to one.

14




A comparison of pressure measurements was made in different planes

normal to the root chord to show that the inviscid flow is approxi-
mately conical. The conical streamlines were traced and were found to
end at the wing root chord. Thus, the conical stagnation point or
vortical singularity is very near the origin. The results of ‘this
investigation suggest that the internal shock wave ends with zero 1
strength at the point where the conical-sonic line begins.

Spurlin, Cross, Monnerie, and Werle examined the expansion flow
over a sharp leading edge delta wing at hypersonic speeds. Monnerie
and Werle (Ref 18) made static and pitot pressure measurements of the

flow field at a Mach number of 7.0 and a Reynolds number of 4.5 x 106.

The angle of attack was varied from 0% to 20° with flow separation
occurring at a = 5°. The impact pressure data was presented as contour
curves on the conical plane. No specific experimental point data was
given in the reference. Spurlin (Ref 16) made impact pressure measure-
ments at a Mach number of 10.13 and a Reynolds number of 4.28 x 105.

This data was used to supplement the experimental data Cross obtained for
the same flow conditions (Ref 17). Qualitative flow information was ob-
tained from shadowgraphs, schlierens, vapor screen, and oil flow pictures.
Surface pressures, surface temperatures, and impact pressures were
measured at various points in the leeside flow field to determine the
magnitude and extent of the flow phenomena. The character of the
hypersonic flow was separated into three different regimes by several
specific and dominant flow properties. The first regime, which occurred

o
for angle of attack in the range a < 77, was dominated by an attached,

quasi-parallel flow across the surface. The second regime was dominated

by a conical, shock-induced separation of the viscous layer for the range




o

<a < 20°. Finally, the third region was identified by a base pres-

7
sure induced separation of the upper surface flow for a > 200, which
eventually resulted in the separation of the entire surface flow.
Because of the conical nature of the second flow regime, most of the
comparison of numerical and experimental hypersonic results was done
for this regime.

For angles of attack from a = 9° to 200, the upper surface flow
field was dominated by a shock-boundary layer interaction that caused
a separation of most of the wing boundary layer. Separation of the
boundary layer was caused by the internal shock which was located near
the Mach cone. A viscous bubble occurred near the plane of symmetry
as a result of this shock-induced g;paratién. The surface’ flow between
the wing leading edge and the separation line was attached and character-
ized by a two~dimensional Prandtl-Meyer expansion. Results of the impact
pressure survey indicated that to a good approximation, the flow was
conical, thus making possible a theoretical or numerical analysis of

the flow in two dimensions.

Theoretical Flow Field Studies

Several analytical techniques have been developed to describe the
supersonic and hypersonic flow around delta wings. Most of these
methods provided satisfactory solutions for a limited number of flow
conditions. Very few techniques have been developed which can solve
the complete supersonic and hypersonic flow field around delta wings

with supersonic leading edges.

Supersonic Flow Field. Initial efforts at solving the supersonic

problem were directed towards using linearized conical flow theory.

16
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Busemann (Ref 56) introduced this procedure and Stewart (Ref 57) and
Lagerstrom (Ref 58) extended it to thin delta wings. This method was
applicable to thin conical delta wings with weak shock waves. Clarke
and Wallace (Ref 59) extended the linear theory to second order in
incidence, still based on potential approximations. However, with
increasing Mach number and angle of attack, nonlinear effects became
important and the results of linearized theory were of little value.
In fact, at high Mach numbers even the second order theory was not
adequate. Therefore, in order to obtain meaningful results, nonlinear
effects were included 1p the theoretical analyses.

One of the first nonlinéar solutibns to the delta wing problem was
obtained by Maslen (Ref 60). In his treatment of the problem, he
assumed that the expansion side had no shocks and thus was irrotational.
Maslen computed the flow field characteristics in the hyperbolic region
by using the Prandtl-Meyer relations and the method of characteristics.
The remaining subsonic domain was solved by using relaxation methods.
On the compression side of the delta wing, the supersonic flow properties
were calculated by using shock tables while the remaining elliptical
region was solved by relaxation techniques. The sonic line location
was determined empirically by using the free stream Mach angle and
the shock wave angle from a wedge. The primary difficulty encountered
in Maslen's technique was that the relaxation procedure did not con-
verge at high supersonic speeds.

Fowell (Ref 13) improved on Maslen's treatment of the problem by
solving the governing equations for steady inviscid supersonic flow over
a plane delta wing with supersonic leading edges. He showed that two

solutions exist for the flows over the expansion surfaces; a continuous




solution for flows below a critfical angle of attack and a discontinuous
solution for flows above this angle of attack. An exact solution was
determined for the flow over the compression surface and for the con-
tinuous flow over the expansion surface. The Prandtl-Meyer equations
were used to calculate the flow properties outside the Mach cone while
the relaxation techniques were used to determine the flow properties
within the vertex domain. An {nteractive procedure was needed to
locate the curved shock on the compressicn side.

For the discontinuous flow over the leeward side of the delta wing,
an approximate solution was developed by Fowell. He assumed the ex-
istence of a planar shock normal to the wing surface and of such strength
to change the direction of the outboard velocity vector to parallel the
wing root chord. Two-dimensional shock relatfons were used to determine
the flow states on.cither side of the shock wave. Fowell verified his
prediction of an internal shock wave by experimental study on the ex-
pansion side of a supersonic delta wing.

It was argued by Reyn (Refs 61-63) that if an irrotational solution
for the flow on the expansion side of the delta wing did exist, this
wave pattern would lead to limit-line singularfities. This conical limit-
line would consist of the line BFE (Fig 3) extending as a straight line
to the wing surface. Since limit-lines do not exist in real flows,
Bulakh (Ref 64) expected a shock wave to occur in the flow field. Bulakh
introduced & shock wave upstream of BFEG (Fig 3) and indicated that a

shock wave upstream of BC (Fig 3) may also be introduced. The numerical

calculations following such a procedure were made by Babaev (Ref 65)
and the shock wave vanished along BC (Fig 3) and along the characteristic

BFE (Fig 3). A straight shock wave perpendicular to the wing surface




and extending to the characteristic BFE (Fig 3) was found. Babaev showed
that 1t was impossible to have a continuous flow solution over the ex-
pansion side of the delta wing, as described by Fowell (Ref 13).

In his theoretical development, Babaev used the Prandtl-Meyer re-
lations and the method of characteristics to determine the hyperbolic
flow field properties on the expansion side of the delta wing (Ref 65).
He obtained the elliptical flow field properties from the irrotational
potential flow theory by using the method of successive approximations.
On the compression side, Babaev (Ref 66) applied the oblique shock re-
lations to the uniform flow bounded by the plane shock, the Mach cone,
and the wing. The flow properties in the central region OKHJ (Fig 3)
were calculated by the method of successive corrections similar to the
method used for the upper wing surface.

South and Klunker (Ref 67) improved on the conpression side flow
field results of Babaev, by using the method of lines. In their work,
the flow region was transformed into a rectangular domain with an
orthogonal coordinate grid. The shock wave and body surface were
mapped as parallel boundary lines in the transformed plane. On each
grid line, the system of equations was reduced to ordinary differential
equations which were integrated by a fourth-order Runge-Kutta method.
The results of this technique were compared with the numerical results

of Voskresenskii (Ref 88) and were found to be in good agreement.

Hypersonic Flow Field. For hypersonic flow, most of the theoretical
analysis was focused on the compression side flow fiecld. Only two ref-
erences were found which attempted to calculate the leeside hypersonic

flow properties (Refs 17 and 68). In Cross' experimental fnvestigation
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(Ref 17), a simplified analytical model was developed to describe the

significant flow properties over a delta wing. Beeman and Powers (Ref
68) used a three-dimensional method of characteristics to describe both
the expansion and compression side flow fields. Both methods provided
a failr agreement with experimental results, even though neither tech-
nique included viscous and rotational effects. More significant
variations between theoretical and experimental results were noted in
regions of viscous-inviscid interaction. |

For the compression side flow field, several methods were used to
calculate flow field characteristics. Thin shock layer theory was used
by Messiter (Ref 69) and others to determine surface pressure distribu-
tions and shock shapes. This theory assumed that the shock wave lies
very close to the body and that the pressure on the body is determined
primarily by the shock shape. Under these conditions, the flow variables
in the intervening shock layer can be written as a series expansion in
€, where € is the density ratio across a plane shock lying at the same
angle of attack as the wing. The zeroth-order solution of these series
gives the well-known Newtonian results, modified possibly by the Busemann
correction for body curvature. Messiter derived a set of approximate
nonlinear equations for the conical flow and produced limited results
for the lifting flat delta wing with a detached shock. He pointed out
that in the case when the shock wave is attached to leading edges,
difficulties may arise in matching the uniform flow near the leading
edges with the nonuniform flow in the central or wing root region.
This work was expanded by Hida (Ref 70), who made an approximate
allowance for wing thickness. Squire (Refs 71 and 72) and Shanbhag

(Ref 73) obtained the exact numerical solutions to the governing
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equations for the flow, with detached shocks, on the compression surface.
Thelr results showed excellent agreement with experiment, as did also
the work by Hillier (Refs 74 and 75), who extended the analysis to
include the effects of yaw. Squire (Ref 76), Woods (Refs 77 and 78),
Roe (Refs 79 and 80), and GConor (Refs 81 and 82) all considered conical
flows for attached shocks, again showing good agreement with the

limited experimental results and exact solutions available.

For hypersonic flow at low angles of attack on the compression
side, the thin shock layer theory is not valid. In this regime, linear-
ized hypersonic small disturbance theory was used by Malmuth (Ref 83),
Ter-Minasyants (Ref 84), and Hui (Refs 85 and 86) to treat planar delta
wings of moderate aspect ratio. Malmuth calculated the pressures on the
compression side of a planar delta wing at infinite Much_numbcr. He
assumed that the flow inside of the Mach cone differed slightly from the
corresponding two-dimensional flow over a flat plate at the same angle
of attack. Based on this assumption, a linear perturbation method was
used to calculate the nonlinear flow inside the Mach cone. Ter-
Minasyants (Ref 84) and Hui (Refs 85 and 86) calculated the flow fileld
on both sides of the Mach cone at Mach numbers less than infinity.

They used a linearized perturbation technique to calculate the flow
within the Mach cone and then used Lighthill's strained coordinate
technique to match this solution with the exact solutfon of the uniform
flow outside of the Mach cone. When compared with available exact
numerfical solutfons, this method gave almost identical results, except
near the cross-flow sonfc line, where the numerical methods fatiled to
describe the discontinuous flow. At the sonic line, this technique

predicted the discontinuity and showed that the discontinuous pressure
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slope has a square root singularity similar to that described by super-

sonic linear theory.

Numerical Flow Field Studies

Several references (Refs 87-93) were found which used finite-
difference techniques to solve the supersonic flow around delta wings.
Most of these references presented a detailed analysis and description
of this conical flow problem. These references included several papers
by Voskresenskii (Refs 87 and 88), Kutler (Refs 89-91) and Bazzhin (Ref
92).

Voskresenskii used a three—dimensional-implicit finite-difference

scheme to determine the bow shock shape and the pressure distribution
on the lower wing surface. On the leeward side, the Prandtl-Meyer
relations were used to calculate the flow near the leading edge while
the implicit numerical scheme was used to calculate the flow within the
Mach cone. In this well-posed initial value problem, Voskresenskii
approximated the initial shock wave shape and flow conditions near the
wing vertex and then numerically integrated the governing equations
until conical similarity conditions were sufficiently satisfied. This
technique produced a satisfactory solution for both the expansion flow
field (Ref 87) and the compression flow field (Ref 88), even though it
required a large amount of computer storage and time.

Kutler numerically computed the supersonic, inviscid, expansion
side flow over a planar delta wing. He used the MacCormack finite-
difference scheme and a shock capturing technique to calculate this
flow field. The numerical integration was done in the conical co-
ordinate direction, since the governing equations were hyperbolic in

that direction. His numerical results showed excellent agreement with
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the experimental data by Bannink and Nebbeling (Ref 15) as well as with
the method of characteristics results by Beeman and Powers (Ref 68).
Bazzhin (Ref 92) used the MacCormack finite~difference scheme to
solve the time-dependent governing equations for the supersonic flow
around a thin delta wing at low angles of attack. He used a coarse grid
in the computational plane and thus was unable to obtain a true solution
in the vicinity of the leading edge. This loss of accuracy did not
prevent him from obtaining an accurate solution in other areas of the
flow field. His numerical results compared quite favorably with the

analytical solutions by Voskresenskii (Refs 87-88).

Present Approach

Although quite a few solutions were found for the supersonic and
hypersonic flow over delta wings, none of these solutions provided a
complete description of the flow field. A number of exact and approxi-
mate methods were discovered which could accurately calculate the
inviscid flow field around a delta wing. However, no satisfactory theory
was found which could describe the expansion side flow over a delta wing
with shock-induced separation (Ref 3). Thus, the purpose of this re-
search was to develop a numerical solution for the supersonic and hyper-
sonic flow around a thin delta wing which could adequately describe the
viscous interaction phenomena of the flow with shock-induced separation.

In order to solve this problem, it was assumed that the flow was
both conical and laminar. A locally conical approximation, developed
by McRae (Ref 94), was successfully applied to the governing equations
for a compressible, viscous, heat conducting fluid. Both a time-
dependent finite-difference method and a shock-capturing technique were

used to solve these equations. A computer program was written to solve
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the governing equations in a generalized conical coordinate plane. 1In

order to verify the accuracy of this computer code, the supersonic flow |

around a cone was solved and these results were compared with both ’

- e

experimental data and computed numerical results. The conical, viscous

approximation was tested next by computing both the expansion and com- ¢
pression flow fields of a delta wing at supersonic and hypersonic speeds.

The results of these calculations, when compared with experimental data,

verified the applicability of this technique for solving the flow above

and below a planar delta wing. Finally, the total flow field around

a thin delta wing was solved at supersonic and hypersonic speeds to

determine the interaction between the upper and lower surface flow
fields. These numerical calculations were compared with experimental
data. The results of this research demonstrated the feasibility of

obtaining solutiornis to both the supersonic and hypersonic viscous flow

fields over a planar delta wing by solving the conical governing

equations.
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II. Governing Equations

In this chapter, the unsteady governing equations for a viscous,

compressible fluid are defined along with the basic fluid flow

assumptions. The equations are transformed into generalized conical

coordinates by using the relations in Appendix A.

A conical approx-

imation is applied to the resulting equations and then these equations

are put in nondimensionalized conservative form.

Navier-Stokes Equations

The fundamental governing equations for a compressible, viscous,

heat conducting fluid in Cartesian tensor form are given by

Continuity:
% , 3uy) _
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In addition to the above equations which express the conservation
of mass, momentum, and energy, it is necessary to include a state equa-
tion which, for a perfect gas, 1is given-by

P = PRT 9)
The viscosity coefficient y is a function of temperature and is ade-

quatelf approximated by Sutherland's semi-empirical equation

W= (%_) g 1+ Co/Too (10)
© 1+C/T

where the constand Co has been experimentally determined to be 198.6°R
for air. The Sutherland law takes into account the weak attraction
field surrounding the molecule and therefore provides a more rapid

viscosity variation than the rigid sphere result of kinetic theory
which gives the result u = Tk.

Equations 2 through 10 provide seven basic ecquations in the seven
unknowns, u, v, w, p, T, p, and u, 1if the bulk viscosity coefficient
un is set equal to zero. This implies that the second coefficient of

viscosity A is equal to - 2/3 M. For a monatomic gas, this step is

Justified since the bulk viscoslty coefficient vanishes when the
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molecule has no internal degrees of freedom. However, for a poly-

atomic gas, the bulk viscosity effect 1s not always zero and can be of
the same order of magnitude as the molecular viscosity in sound propa-
gation and shock wave structure. A more detailed discussion of the
significance of bulk viscosity is given by Vincenti and Kruger (Ref 95).
In the present investigation it is neglected since the numerical grid
spacing used in the shock transition region is too coarse to allow
resolution of the shock structure. This lack of resolution causes
numerical difficulties which will be discussed in chapter three.

There are several approaches which may be used to derive the
governing equations. However, the most commonly used method is the
continuum approach. In this approach, a volume of arbitrary dimensions
is fixed in space and enclosed by an imaginary surface through which a
fluid is flowing. The continuity equation is derived from the law of
conservation of mass which states that mass can neither be created or
destroyed (Eulerian Method). Therefore, the time rate of change of
mass within the volume must equal the net inward rate at which mass
crosses the surface. The Navier-Stokes or momentum equations are
applications of Newton's law of motion which equates the total force
acting on the mass in the arbitrary volume to the rate of change of
linear momentum. The total force consists of the pressure, the body
force, and the viscous stress which is assumed to be linearly related
to the rate of strain. The energy equation is based on the first law
of thermodynamics which states that the increase in internal energy of
the mass of fluid in the volume is equal to the sum of the heat added
and work done on the fluid mass. In the absence of chemical reaction

and radiation heat flux, the heat added is due to conduction and is
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given by the Fourier law of heat conduction. The work done on the fluid
is that due to the pressure and shear stress acting on the volume sur-
face. A more detailed discussion of this approach of deriving the
governing equations may be found in Schlichting (Ref 96), Yuan (Ref 97),
and Chow (Ref 98).
In this investigation, the following assumptions are applied to
the governing equations:
1. The specific heats, c¢_ and cv’ are both constant and thus the
c
specific heat ratio y = ER is also constant.
v
2. The Prandtl number Pr = y cp/k is constant throughout the

flow at a given value not necessarily unityv.

3. The coefficient of thermal conductivity is computed from

*p
k = Pr (11)

4. Dissociation and ionization effects are not present in the

5. Stokes' relationship between the first and second viscosity
coefficients is valid.

6. There is no external heat addition.

7. The body forces are negligible.

8. There are no chemical reactions and radiation heat flux.

From the above assumptions, it can be scen that the real gas
effects associated with high Mach number and high temperature flows
are neglected. However, for comparison with wind tunnel data, the
calculated impact pressures are corrected for real gas effects by using

the caloric imperfection charts in NACA Report 1135.
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Conservative Form

In order to process the discontinuities in the flow field correctly,
the conservative form of the governing equations is required. This con-
servative form was initially used by Courant and Friedrichs (Ref 99) for
inviscid, compressible flow. Later Lax (Ref 100) applied this form to
a finite-difference scheme. Gary (Ref 101) and Abbett (Ref 102) showed
that using the non-conservative equations produced significant errors
in shock speed and location, while Longley (Ref 103) showed that the
conservative form yielded the correct shock speed for a variety of
finite-difference schemes.

When the governing differential equations are placed in conserva-
tive form, the independent variables become p, pu, Pv, ow, and pe. The
use of these variables in conservative finite-difference schemes
assures the con;ervation of mass, momentum, and energy across a shock
wave. This can be easily demonstrated by considering a stationary
normal shock wave. The truncation error of a finite-difference scheme
depends on the size of the higher derivatives in the Taylor series
expansions for the differentials. In the variables p, u, v, w, and T,
the shock causes discontinuities in the continuum solution, but the
solution is continuous in several of the conservative variables. Since
Rankine-Hugoniot relations for normal shocks are based on global con-
servation of fluid properties, these equations are independent of the
details within the shock structure. As a result, the conservative
finite-difference techniques applied to the governing equations
satisfy the Rankine~Hugoniot relations and thus predict the correct
shock conditions across a shock.

The continuity equation is already in conservative form. The
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conservative form of the momentum equations may be derived by adding

30 3(puy)

the term u, |5~ + to the Navier-Stokes equations. Thus, the
i| ot axi

conservative momentum equations become

d(pu,) :
i 3
i o Al Ul e e

The energy equation can be put in conservative form by adding the

d(pu,)
term e [5% + 5;——3— to the energy equation. Thus the conservative
A

form of the energy equation becomes

3(pe) S o SN
¢ + ij (peuj + puj uiTij + qj) 0 (13)

If we put the conservative equations in matrix form, then the

governing equations become

30 , 9 , OF , 3G _ (14)
i~ dy *92 " g
where
p pu
pu puz- T. ..+ P
XX

U = pv E = puv - Txy
ow puw - sz
pe (pe - Txx+ p) u - Txyv =T ¥

+ qx
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pv
puv - T
F = vi-1 +
B yy P (15)
o - T .

(pe = 1_+p) v - L, Sl

Yy y yz
+ .
qy
ow
puw = T
G = pvw - ryz
ow? - 1+
zz P

(pe = 1 +pw -1 u-1_v
XZ

Conical Coordinates

The general transformatfon from the physical plane (x, y, 2) to

the conical transformed plane (&, n, &) is given by

g L(r)
Y Z

13 n(x,x) (16)
Yy %

£ §(53)

where

r -‘,xz + y? + 2t

Assuming that an foverse exist, then

X x(&,n,8)
y - y(,n,8) Qa7)
z z (6 ,n,¢t)
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Thus, the Jacobian determinant is given by

9 dn 3§
- | %y 39y 3y
%2 9z 3z
9z 9n 3§

It is important that the transformation equations define a mapping
which establishes a one-to-one correspondence between each point in the
physical plane to one and only one point in the transformed plane, and
conversely. This condition is satisfied if (a) the transformation
functions are continuously differentiable and (b) if the Jacobian of the
transformation is nonsingular at each point. When these conditions
occur, there is a sphere N° about the point such that the inverse func-
tion exists for all x, y, z in No. Thus, the transformation is guaran-
teed in a local fashion only, and the functions in Eq 16 must be select-
ed so that they possess desirable characteristics in the region of
interest.

By applying the chain rule of differential calculus, the differen-

tial operators become

8. « O D, . 99 3 o 86 B

ax Ix 9L dx In ox 0of
Y,z

& LB L LBl B

) R~ R T T T T &=
Xy2

> | .2 3 , 3 , % I

9z X,y 9z 93¢ 9z 9N 9z 9

A comprehensive set of transformed derivatives is given in Appendix A.
Once the transformed coordinates arc gencrated for a given physical
domain, the set of partial differential equations and their associated

boundary conditions are transformed utilizing the relations given in
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Appendix A. Substitution of the above differential operators into the
conservative Cartesian equations transforms the governing equations into
the (Z,n,£) coordinate system. The resulting equations in weak conser-

val fon law form (Refs 104-105) are given as follows

%:_+%5[%%§+%3F+g—25] . (20)
+gg[%'§ E + -g% F o+ g-i: c';]+u=0
where
(3] 53] ()
L () 5l -5 (%)s

Conical Approximation

The definition for supersonic conical flow, given by Liepmann and
Roshko (Ref 106), is one in which the fluid properties are invariant
along each ray emanating from a vertex. An essential element which
follows from this definition is that conical flow problems do not in-
volve a characteristic length. A body is called conical if its surface
is made up of rays from a vertex. Boundary conditions are conical if
the boundary values of the fluid properties are constant along rays
from an origin. All natural features of the flow field are conical
such as embedded shocks, bow shocks, and contact surfaces.

The basic theorem of conical flow is "a flow field is conical if
the boundary conditions are conical.'" This fundamental theorem applies
to linearized potential flows as well as compressible, inviscid flows.
It does not hold, however, for viscous flufds. The theorem can be

demonstrated quite easily by applying dimensional analysis. Since a
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conical boundary does not contain a characteristic length, then it can
be shown that no combination of fluid properties given at infinity can
be constructed to give a dimension of length. This is not true, if
viscosity is considered since [v/u] = [ L-]. Thus, the boundary layer
over a delta wing is a function of the distance from the vertex.

In this investigation, a conical approximation is applied to the
governing equations. It is assumed that the viscous region thickness
is much smaller than the length scale L of the wing. The leading edge
of the delta wing is assumed to be sharp and the boundary layer is
laminar and attached at the leading edge (see Fig 7). Since the
viscosity effect in the boundary layer introduces a length scale, which
appears only in the Reynolds number and radial derivatives, then at
large Reynolds numbers, the gradients in the radial direction are much
smaller than those in the cross flow directions (0,¢). Hence,

&
0

9
B <<

"=
@

(22)

L

3

|-

3

This is the mathematical definition of a locally conical flow. Grad-
ients do exist in the radial direction, but they are sufficiently small
to be neglected. When this requirement is imposed on the generalized

transformed coordinates, it becomes

(23)

Thus, the flow properties p, u, v, w, p, and T are approximately invar-
iant along rays of constant ;;(r). However, it should be noted that the

Reynolds number is a function of I and therefore a characteristic
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length must be included in the computation.

Anderson (Ref 107) was the first to introduce this conical approxi-
mation and McRae (Ref 94) later demonstrated it in his calculations of
supersonic, viscous flows over a cone. From experimental data by Cross
(Ref 18) and from discussions with Barber (Ref 31), it was found that
the viscous layer is laminar and approximately conical under certain
hypersonic flow conditions. For high Reynolds number supersonic flow,

the boundary layer is so thin that its effect on the total flow field

is minimal. Thus, a locally conical flow approximation for the viscous-

inviscid flow field over a delta wing is adequate to model the test

cases being considered.

Nondimensionalization

Before numerically solving the resulting governing equations, it
is advantageous to write these equations and other relationships in
nondimensional form. The pressure and density are made dimensionless
with respect to free stream stagnation conditions while velocity and
total energy are nondimensionalized with respect to the maximum adiabatic

velocity

\'/ = 2y RT
MAX §:I o

(24)
The normalizing length scale L is the characteristic length used in
determining the free stream Reynolds number.

The following nondimensional relationships are used in the govern-

ing equations:
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| - _x_ ' = z ! = E
5.y £ 1 il
! = ‘—l- ' = -‘-’- ' = !-
b \'4 by \'/ ¥ Vv
MAX MAX MAX
o ; o (25)
e' = — p' = B p' -
VMAX Py po
t Sy T
t' B e T' = — 1" = ———
L/Vyax L P oVMAX
where
2 Po
0o = (558 26)
Y MAX
and where the subscript "o" refers to free stream isentropic total
conditions.
We also define a reference Reynolds number as
oV L
Re = _O MAX (27)
u
and a Prandtl number as
He
Pr = —kﬂ (28)

If we drop the prime notation with the understanding that all quantities
are nondimensional values unless otherwise indicated, then the final
form of the governing equation is

au oF aG
3t + n + + H 0 (29)

(30)
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5 - 2 [ du , 3 du . dn v
¢ 3Re [ X an 2 ox 93¢ ® y an
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N = 2 Pr Re

The normalized equation of state becomes

i

y - 372 [1+cl]
: T+C

1

The nondimensionalized heat flux and stress terms are

qE

Wl
ool k]

[o%] KeoP)
e

and the nondimensional form of the Sutherland viscosity formula is

e e g - g < o
i Iy

(31)

(32)

(33)

(34)

(35)

(36)

37)

(38)

(39)

(40)

(41)

(42)
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G " % (45)

Coordinate Transformations

Although this problem is developed for generalized coniéal coordin-
ate transformations, only two specific coordinate transformations are
used. These include a cylindrical-type coordinate transformation for
flow over a cone and a conical coordinate transformation for flow over
a delta wing.

For the flow field calculations over a cone, the coordinate trans-

formation is

et v v2 2
z) g =VI T - tan0_ (46)

T =X n = tan (;- = -
The physical and computational planes are shown in Figures 8a and 8b,
respectively. The transformation derivatives, which are used in the
calculations, are developed in Appendix A.

For the flow field around a thin, planar delta wing, a constant
spaced grid is used in the physical plane. The conical coordinate
transformation is

L o= x Gt R )
where the physical and computational domains are depicted in Figures
9a and 9b, respectively. The transformation derivatives are given in
Appendix A.

These coordinate transformations and their derivatives are applied
to the conical governing equations for a compressible, laminar, viscous

flow. The equations are solved by a numerical finite-difference proce-

dure which Is discussed in the next chapter.
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Fig.

8a. Physical Domain of Conme.

Fig. 8b.

-n

Computational Domain of Cone.
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Fig. 9a. Physical Domain of Delta Wing.

3
o e b
e R e SO CSU S S SN S—
SENERR S T —— )
- . 1 T .
el

Fig. 9b. Computational Domain of Delta Wing.
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III. Numerical Methods

In this chapter, several basic concepts of numerical methods are
discussed for solving time-dependent, multi-shock flow field problems.
The MacCormack finite-difference scheme is examined and then applied to
the fundamental governing equations. Several numerical models are used
to represent the initial and boundary conditions. The requirements of
stability, consistency, and convergence are derived and discussed for

solving the resulting numerical equations.

Basic Concepts

For this conical flow problem, the steady state solution is sought i

by numerically solving the unsteady flow equations. This steady state
solution is determined when all the time derivative terms in the govern-
ing equations vanish in the limit of large times. Such a procedure for
obtaining the steady state solution is sometimes referred to as the
"asymptotic'" method (Ref 108). This method was advocated by such early
proponents as J. von Neumann and R. Richtmyer (Ref 109) because it
represents the physical situation more naturally than the method of
solving the steady state governing equations. The successive iterations
needed to determine the "steady'" state solution may be looked upon as
the evolution of the flow field with time.

Under the conical flow approximation, the radial derivatives of the
flow properties can be set equal to zero. This reduces the number of
independent variables in the transformed plane to three, which include

v,2

Y2
time and the two cross-flow spatial coordinates n (; Q) and § (; ;J

This conical flow problem is then solved as an initial value problen.

Initial conditions are specified at t=0 along with appropriate boundary
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conditions, and the solution is numerically integrated in time until
steady state conditions are reached. Elimination of Z(r) as one of
the independent variables in the problem reduces the amount of storage
space, numerical computation, and resulting computer time of the
problem.

By applying finite-difference techniques, the partial differential
operators in the governing equations are replaced by finite-difference
quotients. This allows the governing equations to be approximately
represented by a set of difference equations. Solutions to the dif-
ference equations are obtained at the intersection points of the com-

putational grid lines. These nodal points (ni,i ) mav be specified by

3
a double subscript (i,j) and a superscript n, where n refers to times
t=nAt and where At is the time step that the solution is advanced
during each cycle.  All the dependent variables at the nodal points are
initially prescribed as free stream values and the unknown values at
t>0 are calculated during numerical integration. Figure 10 illustrates
the mesh of nodal points in the transformed plane.

There are several types of finite-difference quotients which may
be used to represent the partial derivatives. An implicit difference
quotient approximates the partial derivative at an advanced point in
time and is written so that the dependent variable is expressed in
terms of its neighboring values and known previous values. This

et of simultaneous

%

implicit representation requires the solution of a
equations in order to calculate the dependent unknown as each time step
is taken. The implicit form has the advantage of universal stability
for t>0, however the method requires a more complicated computational

procedure.
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Fig. 10 System of Nodal Points Used in the

Finite-Difference Method.
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A

The explicit differential quotient represents a partial differential
operator with only one unknown. The explicit form is solved directly
(explicitly) in terms of known previous values and boundary conditions.
As each step in time is taken, the unknown quantities are calculated one
at a time. The explicit difference quotient has the advantage of pro-
gramming simplicity, although there are stability restrictions on its
use. Because of its successful application to compressible, viscous
multiple shock flows, only the explicit finite-difference quotients are
used in this investigation.

Two distinct approaches are used to compute multishock flow fields.
One is referred to as a shock-fitted technique and the other as a shock-
capturing method. For shock~fitting, the shock is transformed onto a
coordinate surface and treated as a discontinuity. The values at the
shock surface are determined by explicitly solving the Rankine-Hugoniot
relations. Although it is conceptually possible to treat all shocks as
discontinuities, this method involves complex logic to fit all the In-
ternal and bow shocks.

The shock-capturing technique is a method by which multiple shocks
can be accurately determined numerically without knowing initially where
the shocks will form. Shock waves are automatically allowed to form and
decay without employing any speclal shock-fitting procedures which in-
volve explicit use of the Rankine-Hugoniot equations. The shock-
capturing technique requires that the governing equations be differenced
in weak conservative form. Shocks which exist or do form are generally
spread over 3 or 4 mesh intervals. Thus, a finer mesh interval is re-
quired in order to specify the shock locatfon. This method also has a

tendency to give spurious fluctuations of flow field quantities in the
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vicinity of the shock. These fluctuations can be dampened by use of an
artificial viscosity term. Unfortunately, additional shock smearing
occurs. However, tha results obtained by using this method have been
shown to be quite accurate when compared to shock-fitting methods
outside of the immediate shock location. Therefore, in this investiga-
tion shock-capturing techniques are used to compute the conical flow

field around a delta wing.

Finite-Difference Scheme

The selection of the numerical shock-capturing algorithm involves
considering such factors as accuracy, computational speed, storage re-
quirements, and programming complexity. Unfortunately, there is no
generally accepted optimal scheme, even when the order of the numerical
approximation is specified. A survey of various first and second-order
schemes by Kutler (Ref 110) shows that the highly dissipative nature of
the first order accurate methods makes them generally unsuitable for
shock-capturing calculations. Among the second-order schemes, the
predictor-corrector combination by MacCormack was found to be the best.
Anderson (Ref 111) compared the second-order MacCormack method with both
the third-order Rusanov and Kutler-Lomax-Warming methods. He applied

these numerical methods to a set of one-dimensional hyperbolic equa-

tions
oE JF _
3c tox =0 il

where E and F are n-component vectors and x is an arbitrary direction.
By utilizing von Neumann's stability analysis, the stability criterion

for these equations was found to be
IAl<1 (49)
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where A is the Courant number given by

Ax
and 0 represents the maximum eigenvalue of the Jacobian matrix %% >

Anderson discovered that the second-order MacCormack method gave
acceptable results for most cases. For a Courant number of approxi-
mately one, the second-order MacCormack scheme provides the best re-
sults from among the examples tested. However, when the Courant
number varies appreciably, third-order schemes provide better results.
In certain critical flow regions, such as multiple shock flows in which
shock waves of various strengths are located close together, the third-
order schemes are capable of obtaining results where second-order
methods would fail (Ref 112). Since these critical flow regions re-
quiring third—ordér methods are not expected to be encountered in this
study, MacCormack's method was selected for the numerical integration of
he flow field.

The second-order MacCormack scheme is a non-centered, preferen-
tial, predictor-corrector algorithm (Ref 113) which has been used for
a wide variety of flow calculations. The method is a variant of the
two-step Lax-Wendroff method (Ref 114), but because of its non-centered
nature, the dependent variables need not be evaluated at half-mesh in-
tervals. When the MacCormack two-step explicit method is applied to

the normalized conservative equations

2, 9,26, g (o)

the following predictor-corrector equations result:
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Predictor
n+l n At n n
U =0 - — l-e ) F - (1-2 F
1,3 - 1,3 An{ Ol Fong g = o8y By
n At n
~g M, ] = OeaE (52)
n n n
- (1-2¢,) G - G. . - At H
Crasel Sy = % 1.3-1] 1,1
Corrector
ntl _ 1 n n+l At[ n+1
== + - = it
U, 72 1Y, % Y%,57 & L &0 Titn,g
iy ey ]
+ (1-2 F + -1) F 2
P2ed Fig * G P
(53)
At n+l n+1
= s G + (1-2¢ G, .
BE L% Cgm T %00 & 4
n+1 n+l
+ (e,.-1) G ] - At H,
T 1,3
where
n=1An £ = jJAE t = nAt (54)
and
n n n+1l n+l
F = F(U, . Fy 5 = F(U." , t 55
i,] ( 193) i,j ( i’J)’ e L
This scheme permits four possible variations for replacing the time
derivatives in the predictor and corrector steps:
I: €. =0 €,=0
n (2
IX: €. =1 €. =]
n 3 (56)
III: € =0 €, =1
n €
IV: e . =1 €. =0
n £




Each version yilelds a slightly different result. For this reason, it
is termed a preferential scheme. MacCormack (Ref 113) suggested that
the four combinations be cyclically permuted in order to obtain the
most unbiased result. However, it has been shown that for shocks which
propagate away from a body surface in the computational plane, method I
tends to yield the best results (Refs 110 and 115). Since the shocks
in this flow field problem originate at the body surface, method I was
used for the numerical integrations. Thus, the following predictor-

corrector equations were used.

Predictor
ntl _ n At n n
Y41~ YT By { Fier,3 = F1,3 }
| (57)
At n n n
8 e
Corrector
n+l 1 n n+l At n+1 n+l
U - = U + U, - P, .= E
i)j 2 i,j lvj 4n [ 1,] i—]-’j]

(58)

At o+l n+l n+l
AE [Gi,j = B4,3-1 ] N3 ]

In this version, forward differences are used in the predictor step to

oF 3G
approximate n and 3¢

used for these terms in the corrector step. This method minimizes the

derivatives while backward differences are

post and precursor oscillations near the shock.

In order to evaluate the shear stress and heat flux terms appearing
in the F and G matrices, backward differences are used in the predictor
step and forward differences in the corrector step. A central dif-
gy and &J in the H matrix. This dif-

ferencing procedure results in a central difference approximation with

ference operator is used for T
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second-order accuracy for all shear stress and heat flux terms (Ref 116).

For example, if we consider the F matrix containing the velocity

gradient %ﬁ » then the predictor term is

At n n
An [ Fra,y ~Ta ] : (39)
and the velocity gradient terms can be written as

n n

n |
u1+1,j ui,j for the Fi+1,j term (60) |
An {
1
and |
| o -t for the F t (61) &
L 1.1 Mg 20 0 SR
1 An @
f For the corrector term, we have |
%
| At n+l n+1
i at =
i in [Fi,j Fi-1,3 Ve
i
§ where the velocity gradient terms are
nt+l n+l n+1
ui+1,j ui,j for the Fi,j term (63) .
An
and
n+l n+l n+1
uy i u ] i for the Fi-l,j term (64)
An

This results in a finite-difference quotient of second-order accuracy

2
for the %ﬁ% derivative centered at (i,j).

When the cross derivative is calculated 1i.e., g% inside the F

matrix, then the velocity gradient terms for the predictor are
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n n n
Yol 4hl " Vi1 4.1 FOr the F,., , tem (65)
20¢
and
n n n
uilj+1 - ui,j-l for the Fi,j term (66)
208
and for the corrector
nt+l n+l n+l
?1lj+l - ui,j-l for the Fi,j term (67)
208
and
n+l n+l ntl .
Uy 3 441 " %141 for the Fi—l,j term (68)
208

" This approximation results in a finite-difference quotient of second-

2
order accuracy for the derivative %H%E centered at (i,j).

By using these finite~difference equations, the calculations are
advanced in time from the initial conditions until the steady state
solutions are achieved. At each time step of the integration process,
it is necessary to calculate the vectors F, G, and H, which are func-
tions of the dependent and independent flow variables. The dependent
normalized flow variables are obtained at each interior grid point by

decoding the U vector

Uy p
U2 Pu
U= U3 = pv (69)

U4 Pw
U5 pe

¢
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In this decoding procedure, the primitive flow variables are solved for

in the following manner

L)
L}
[=]
~
(=]

t
]

U4/U1 (70)

(]
]

' ! 1 2 2 2
2vo ( u® + ; + w°)
P

o}

L)
L}

After the decoding, the boundary conditions are determined on the body
surface and at the plane of symmetry. Thus, with the free stream and
boundary conditions as the‘initial starting solution, Eq 51 is integra-
ted with respect to time and the flow variables are advanced from t=¢"
to t=t™ + At. If the flow variables in the t=t" plane and the t=t” + At
plane do not satisfy the convergence criteria, then the computed flow
variables at t=t" + At are transferred to the t=t" plane and become the
new starting solution. This iteration process is continued until there
is little change between the flow variables at t=t" + At for two sub-
sequent cycles. At this point, the solution is assumed to have con-

verged. The following inequality is used as the termination criteria

n+l

n —
|¢1 g = 8| <E (71)
2
n
<
for Liiiimax and 1<j<j — where ¢1.J represents each primitive

n -
variable at t=t , ¢r is a constant, and € is the convergence criteria

(typically 10-5). Further discussions on the concept of iterative
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convergence and the determination of iteration errors can be found in

Appendix B.

Boundary Conditions

An important aspect in the successful application of the MacCormack
finite-difference method is the proper treatment of the boundary con-
ditions. There are numerous schemes available for simulating the various
types of physical boundaries encountered in a fluid flow problem (Refs
102, 117, 118). However, there is no rigorous mathematical theory con-
cerning which numerical boundary conditions to select in order to get a
unique solution. Thus, one must examine the physical flow field
situation and take into account the mathematical nature of the governing
equations in order to select which numerical boundary conditiomns to
apply.

In this investigation, there are four types of boundary conditions
which require numerical modeling. These are:

1. Body Surface
2, Symmetry Plane
3. Free Stream Boundaries
4. Singularity Points
The finite-difference equations used to describe these boundary con-

ditions are developed in the following subsections.

Body Surface Boundary Conditions. On the surface of the delta wing

and the cone, the boundary conditions are

u=v=we=0 (72)
and
T
T-twall or 5 = 0 (73)
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Equation 72 guarantees that the velocity component tangent to the sur-
face satisfies the viscous no-slip conditions and that the velocity
component normal to the body surface is zero. The thermal conditions
on the surface are either isothermal or adiabatic, as indicated by Eq
73. The isothermal boundary condition requires that a temperature be
specified at the surface nodal points. The adiabatic boundary con-
dition requires that a first or second-order, one-sided, finite-dif-
ference term bexﬁsed to model the zero temperature derivative, In this
investigation, all surfaces are isothermal.

The surface pressure or density cannot be obtained from the boundary
conditions, and thus must be calculated. There are several methods for
calculating the surface pressure or density; however, only two methods
seem preferable. Either the continuity equation must be satisfied, for
which an iteration for the density at the body surface is accomplished,
or the normal momentum equation must be satisfied for the component of
the pressure gradient normal to the surface.

The first technique consists of .calculating the density at the
surface from the continuity equation

9& du 98 dv  JE dw
"'3 3E 03 5 AR

3o - .pdh Su _
9x 98 "9 z 9§

ot Iwall

where the velocity and the gradients parallel to the surface are zero.
This method has the advantage of being simple and convenient when using
suitable second-order one-sided difference quotients for the spatial
derivatives and a first-order forward time difference quotient for

%% . However, this technique may lead to divergence of the numerical

results for t+», This 1is particularly true for separated flows and

flows near a leading edge.
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The second method, which is used in this study, consists of evalu-

ating the pressure gradients normal to the surface by applying the

E-momentum equation at the surface. The equation for pE is

&-WHAJ_(A)Péa ]
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This equation is numerically modeled by using a one-sided, second-order
accurate finite-difference algorithm to calculate the surface points of

interest. The surface pressure is calculated by

n 4 d et
=2 e s ,v,w) A
Pi,j 3 Jj¥l1 3 Pi,j 2 WEHTaY e
with j = j ing and 1<1<iw1ng. The numerical representation, Q, of
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the stress terms in Eq 75 uses second-order central difference terms
for those graidents not on the surface.

For the total delta wing, the same wing grid points model both
the upper and lower transformed wing surfaces. When the MacCormack
predictor and corrector terms are applied to the computational plane
below the wing, the wing nodal points model the lower surface. When
the integration is occurring above the wing, the wing mcdal points
model the upper surface values. The leading edge is treated as a
singularity point and is discussed in a later subsection.

For the cone, a simplier boundary condition is used to calculate
the surface pressure. From boundary layer theory, we know that
Q = 0, thus the pressure gradient normal to the surface is zero

and the pressure g¢an be calculated by the finite-difference equation

4 1
% P 3~P -3 P (77)

n n
i,j+1 I,3t2

For both bodies, the density at the surface is determined by apply-

ing the surface pressure and temperature in the equation of state.

Symmetry Boundary Conditions. A symmetry boundary condition

exists in the transformed plane for both the delta wing and the cone,

where
Bt end Hup (78)
an on
dp _ 3T
N 0 n 0
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The "reflection" method is used to calculate the primitive variables on
the plane of symmetry. The finite-difference equations used for this

reflection technique are

Vi=1,§ = Vi+l,j (79)

vi,j =0

and

%-1,5 = P14, tap)

where 1 = 2 and ¢ = u, w, p, p, and e. The i - 1 column represents an
additional column of grid points placed next to the plane of symmetry.
This column of grid points causes the integration along the line of
symmetry to perceive that a mirror image solution is evolving from the
opposite side of the symmetry plane. This technique provides an accurate
solution for the flow field qualities on the plane of symmetry with a

minimal amount of computation.

Free Stream Boundary Conditions. The free stream boundary con-

ditions are applied on the extremities of the computational domain.
These conditions are applied under the assumption that the free stream
or infinity boundaries completely encompass the disturbed flow region

of the body. The flow through these boundaries must be supersonic with
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respect to the transformed coordinates. When this condition 1s |
satisfied, the variables at the exterior grid points can be set equal

to the free stream conditions and held fixed during the entire in-

tegration process. These free stream conditions for uniform flow at

an angle of attack are

ﬂnz % ;
V, cos a 2 o
u=-8"—— = ey | o8 O (81)
vmax 1+ lzl Mm
v=_0
LI.MZ ;i
2 ©
w = !3_515_2 = Y-1 12 sin a (83)
max 1] + —
2
e
e =
p.!;m.[1+Y—21Mi] (84)
o
e
x Y-1
p:—gm= [1+%1Mi] (85)
o
e=§%+%(u2+v2+wz) (86)

where o 1is the angle of attack, M is the free stream Mach number,

and V is the characteristic reference velocity.

Leading Edge Singularity. The leading edge singularity point re-

quires special attention. The boundary conditions at this point are
identical to the surface toundary conditions. However, numerical con-
siderations require (Ref 119) that the properties at this singularity

point be triple valued in the numerical computation.

58

e i et s s i o el i ;




The no-slip conditions and the {sothermal conditions are applied
at the leading edge. The pressure and dcnsitf are triple valued at
the point. The three values of pressure are denoted as upper, side,
and lower values (Pu. Ps. and PL) and are assumed to exist simultane-
ously at the leading edge. These values nré calculated from the { and

n momentum equations. The three values of density are determined from

the cquation of state.

Initial Condittons

To {nitiate the numerical {ntegration, the flow field quantities
at each grid point {n the computational plane must be specified. It
has been numerfcally shown that two-step finfte-difference schemes may
be unstable {f these {nftial conditions differ greatly from the steady
state solution (Refs 120 and 121). Since the stability of linear
systems {s not affected by the chofce of {nftfal conditions, then this
phenomenon represents a nonlinear {nstability in the governing equations.
As a result of this nonlincar instability, the MacCormack fi{nfte-
difference scheme {s not absolutely convergent.  This means that for an

x((‘)

arbitrary inftial vector , where X Is an n-component vector, the

(k)

vector sequence ) may not always converge. In fact, theorems which
prescribe the sufficient condftions for convergence of nonlincar
fterative methods (Ref 122) generally require that the fnftial vector
(o) - :
X closely approximate the presumed final solution, A, of the con-

verged flow fleld. This "nearness'" is usvally expressed in terms of
® }

)
the vector norm |'x(‘) - All.

In tihfs favestigation, the (nfttal stavting conditions are speci-

fled at cach taterfor grid point on the computational plane. These grid
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points are assigned values of the free stream condftfons given by Eqs
81-86. The {utegratfon time step {8 determined from the von Neumann
stabf{lfty criterfa as discussed {n Appendix C.

' 'start (n

The numerical {ntegration is {nitfated by an "tmpulsive'
which the body is tastantancously :lcm\lvr.ﬂ‘ml from rest to free stream
conditions. The no=-slip boundary condittions on the body mn‘f‘:n‘v
creates efther a compression or expansion wave that propapates {nto the
flow fleld and eventually settles down as the sotlut fon converges. It
the compression or expansfon wave {8 strong, then numerical oscillations
are created which may lead to program tallure. However, by applving
numerfcal damping through the additfon ot an arti{tficial viscosity, these
nonlinear {nstabilitfes can be suttfictently dampened so that a steady
state solution can be achieved.

An altermatfve method was used when a serfes ot angles of attack
for the same flow condit{ons were tnvestigated. The previous con-
verged solutfon was used as the (nftial condit{on tor the next angle

of attack case. Convergence time was reduced by 100 using this method.

Stabilfity Analysis

The numerical solutfon ot the governfuy equat fons approximates the
exact solutfon, {f the finfte-ditterence cquat fons and thefr solutfons
satisfy the requirements of stabil{ty, consfstency, and converpence.
In this fovestipattion, stabflfty (s divectly assocfated with the sfze
of the time step fu the marchtag divectton.  The maximum time {ncrement
by which the numerical solutfon may be advanced at any time step is
dependent on the spatial coordinate grid size, the location ot the

nodal grid potnts, and the solutfon {tself. [n ovder to examtue the
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stability requirements of this finfte-difference technique, a definition
for stability is needed. Let U(n,£,t) be the exact solution of the
governing equations and let ﬁ(iAn,jAE.uAt) represent the fi ite-differ-
ence solution of the same equations. The error, E, of the finite-differ-
ence approximation is defined as ﬁ(iAn,jAE.nAt) - U(n,c,t)l; The
finite-difference equations are stable if the following two conditions
are satisfied: (1) E remains bounded as n*» for a fixed An, AL, and At
and (2) E remains bounded as the mesh is refined (i.e., as At, An, and
AE+0) for a fixed value of nAt. Thus, any finite-difference scheme which
allows the growth of the numerical error E with time, eventually "de-
stroys" the true solution of the equations and thus becomes unstable.

In this study, the maximum time step for numerical stability is
determined by the Courant-Friedrichs-Lewy (CFL), the diffusion, and the
mixed-derivative stability requirements. By applying a von Neumann
stability analysis separately to the linearized inviscid, diffusion,
and mixed derivative parts of the governing equations, a maximum time

step is developed (Ref 123). This time step is

At = 1 1 1 (87)
T T
INV DF MXD
where ¢ is an adjustable constant and AthV' AtDF‘ and AtMXh are detined

in Appendix C. A complete development of this stability criteria is
given in Appendices C and D.

Several investigators (Refs 122-123), using the shock capturing
method, have encountered numerical oscillations in the vicinity of
strong shock waves. These nonlinear instabilities can be overcome by

adding an artiflclal viscoslty. In this study, two types of artiticlal
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viscosity terms are used to dampen oscillations. A normal stress damp-
ing term by McRae (Ref 94) is used for initial transients and a fourth-
order damping term by MacCormack is used for shocks.

During program startup, large impulsive oscillations are developed

near the body surface. These initial transients can be large enough to
cause numerical instability. By applying a multiplier to the second
coefficient of viscosity, these oscillations are effectively reduced.
As the solution progresses in time, this multiplier is gradually re-
duced to its minimum value of one. This numerical damping technique
adversely affects the maximum time step that can be used, as seen in
Appendix C.

For numerical oscillations in the vicinity of strong pressure
gradients, a fourth-order damping term, suggested by Tannehill et al
(Ref 133), is adopted with modifications. Instead of using a rigorous
transformation of the second-order derivatives of density into the
transformed space, the second-order derivatives are approximated by
the derivatives with respect to the transformed independent variables

(n,£). The net results are two artificial viscosity-like terms of the

form
n n 3 n
04,3 Z e (KHISQU = Ryl ) (3%
2=1,]
n+l _ ,nt+1 n+1 ,;IT ntl )
Di’j Z cg(l\Q GQU - I\R_IAQU (89)
2=1,]
where the U's are defined by Eq 30, the summations on ¢ indicate one
term for each of the two spatial directions (i,)), the c¢'s are constant

coefficients, the K's are variable coefficlents defined by
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n n
(°1+1.J * g T °1—1.J)
n n n i
P =20 + p

n n n
+
(°1,3+1 * 2043 p1,3-1)

and the 61( ) and AR( ) operators are forward and backward dif-

ferences, respectively, defined by

n n n

s,u" = Uirr,y ~ Ui,y (92)
n n n
AU Usy ~ Vi, g (93)
When smoothing is desired DY j is added to Eq 57 on the predictor step
and Di j is added inside the outer brackets of Eq 58 on the corrector
]
step.

The variable Ki coefficients are composed of a normalized second-
order difference of flow field density. The KQ subscript indicates
which direction the difference is in (i or j) and also the center of
the difference. The Kg superscript indicates the time level used for
the values of density. This variable coefficient is essentially zero
in smooth regions of the flow field and approaches a maximum value of
one in regions of large point-wise oscillations. The theoretical

maximum value of the coefficient product cQK is less than or equal to

L

0.5 to prevent this term from causing an instability itself. The KQ

coefficients can theoretically reach a value of one, causing ¢, co-

L

efficients to be restricted to a vailue of one-half or less. However,
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since K2 coefficients are usually much smaller than one, the <o co-
efficients can be larger than one-half. Smaller amounts of damping or
damping in only one of the two spatial directions can also be used.

This is achieved by independently setting the constant coefficients in

each of the two directions equal to the appropriate values.

Consistency and Order of Accuracy

In order to examine the consistency and order of accuracy of a
finite-difference scheme, it is necessary to understand what partial
differential equation is, in fact, being solved by the finite-difference
algorithm. This differential equation is called the modified equation
and aside from the round-off error, actually represents the original
partial differential equation when a numerical solution is computed.

The modified equation is derived by first expanding each term of the
finite-difference equation in a Taylor series and then eliminating

time derivatives of higher than first-order (including mixed time and
space derivatives) by the algebraic manipulétions described by Warming
and Hyett (Ref 124). The terms appearing in the modified equation which
are not in the original partial differential equation represent a form
of truncation error introduced by the finite-difference scheme. These
error terms allow one to determine the order of accuracy and consistency
of the finite-difference approximation.

If we examine the linearized form of the governing equation, we

find that the modified equation is
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where the matrices A,B,C,D,E, and F are defined in Appendix C. The
order of accuracy of the finite-difference scheme is defined by the
lowest-order powers of the increments At, An, and Af appearing in the
] error terms. Thus, according to the modified equation, the MacCormack

scheme is a second-order accurate algorithm for the linear governing

e et

equations. This definition of order of accuracy is consistent with that

used by Richtmyer and Morton (Ref 109) in which truncation error is

et e et

normally examined.

A finite-difference scheme is defined as consistent if the dif-
ference between the partial differential equation (with the initial
and boundary conditions) and the finite-difference equation tends to
zero as At, An, and Af approach zero in some arbitrarily stable manner.

This implies that the error terms in the modified equation approach

zero in the limit as At, An, and A£>0. By examining Eq 94, it is
obvious that for the MacCormack scheme, the finite-difference equation

is consistent with the original partial differential equation. If by

some special relationship the error terms did not tend to zero as the
increments vanish, then the finite-difference scheme 1s said to be in-

consistent. In this situation, the modified equation yields directly

E
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the differential equation with which the finite-difference scheme 1is

consistent.

Convergence

In order to show equivalance between the finite-difference equations
and the partial differential equations, it is necessary to demonstrate
that the MacCormack scheme is convergent. Richtmyer and Morton (Ref
109) define a convergent finite-difference scheme as one in which the
numerical solution approaches the solution of the partial differential
equation as the step size approaches zero. The proof of convergence is
particularly complex for the finite-difference scheme associated with
the governing equations. This is especially true when boundary con-
ditions are included in the analysis. Thus, irn this investigation, oniy
the linearized form of the governing ecuations is examined.

According to Lax's Equivalence Theorem for an initial value problem, 3
a finite-difference solution converges to the.exact solution if and only
if 1) the differential problem is properly posed and therefore possesses
a genuine solution, 2) the finite-difference equations are consistent,
and 3) the numerical computation is stable. In this analysis, it is
assumed that the initial value problem is properly posed. This implies
that a solution of the governing equations exists, 1s unique, and depends
continuously on the initial data. Therefore, by satisfying the criteria
of Lax's Equivalence Theorem, it is assumed that the MacCormack second-
order finite-difference algorithm is convergent for the governing
equations.

The numerical analysis of the MacCormack method has been based on

the mathematical theory of linear partial differential equations. By
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examining the linearized form of the governing equations, a heuristic

assessment has been made of the MacCormack algorithm as applied to the
governing equations. Although there 1s no guarantee that the linear
and nonlinear characteristics of the finite-difference scheme are
similar, there is ample evidence which tends to support this assumption.
Thus, in the absence of a systematic analysis the numerical schemes
associated with the governing equétions, it is assumed that the above
analysis will pr;vide a practical insight into the characteristics of

the MacCormack finite-difference scheme.
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IV. Numerical Computation

In order to obtain a numerical solution for the supersonic and

hypersonic flow around a delta wing, it is necessary to translate the
finite-difference equations and the initial and boundary conditions

into a computer code. The purpose of this chapter is to describe, in
general terms, the basic structure and operation of the computer codes

used in this investigation. These computer codes use the MacCormack

finite-difference scheme to solve the conical, viscous governing

equations. The input data, sequence of operations, and the calculated

results of these codes are discussed in this chapter. A brief descrip-
tion of each subroutine used in the computer programs is given in

Appendix E.

Computer Codes

Three basic computer codes are used in this study. These codes

are the CONE, DELTAl, and DELTA computer programs. They are used to

solve the flows over a circular cone, flat delta wing, and around a
thin planar delta wing, respectively. The basic structure and opera-
tion of each of these programs are the same. The differences in these '
codes occur in how the boundary conditions are modeled and in what

coordinate transformations are used. Because of the close similarity

among the programs, only one code is described in this chapter. This

is the DELTA computer program. Differences between the basic computer

programs used in this study are highlighted {n the description of the

DELTA program.

DELTA

The computer code, DELTA, was written to solve the generalized .'
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conical governing equations numerically and to validate the conical
approximation technique. With only minor changes in the input data and
internal code structure, the code is designed to solve any problem which
satisfies the conical flow approximation. The program is structured in
a modular or subprogram form so that each module or subprogr;m can be
coded and debugged separately. This procedure adds to the total com-
putation time of the program but it minimizes the number of changes
needed to solve various conical flow problems and it reduces the time
required to debug the program. No major effort was made to reduce the
running time or storage requirements of the computer program. The
primary emphasis, in developing this code, was to keep the program as
flexible and generalized as possible so that various changes in boundary
conditions and coordinate transformations could be easily made. This
code represents the first step towards development of a user-oriented
code which can be used to solve a variety of conical, viscous flow field
problems.

The DELTA program begins its calculation by initializing the grid
points in the computational plane with free stream and boundary con-
dition values. A constant time step is specified at the beginning of
each run and a maximum number of iterations is given as part of the
input data. The computer program is run until it reaches the maximum
number of iterations or satisfies the convergence criteria. When
either of these two conditions are reached, the calculations are
terminated and the results are printed out and stored on magnetic tape.
If an interim solution {s stored on magnetic tape, then this solution
is used as the initializing data for the next computer run and the

calculations are continued. When the convergence criteria is finally
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satisfied, the numerical integration is terminated and the final results
are printed out and stored on magnetic tape. These final results in-
clude:

1. The nondimensional scalar velocity components in the x, y, and
z directions.

2. The normalized pressure, density and internal energy as defined
in chapter 2.

3. The cr;ss-flow Mach number, Mc’ and the slope of the conical

streamlines, Yo» with respect to the n axis as given by

" [y& - M0 ] % o, - £ ]2+ [#n - My ]2 % (95)

(4

¢ 102 + ED
B L e (96)
X Y, = tan ——
Mxn - My

These quantities are calculated for each point in the computational
plane.

No capability for interpolating between the computational grid
nodes is provided in the program. Therefore, it is necessary to insure
that a spatial grid point is specified at each location for which flow

field data is required.

Sequence of Calculations

In order to initiate the numerical integration, the DELTA program
is required to receive:
1. The free stream Mach number and angle of attack. The angle of

attack is measured relative to the body coordinate system as shown in
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Figures Ba; and 9a.

2. The sweep angle for the DELTA and DELTAl programs and the cone
half angle for the CONE program.

3. The free stream isentropic total temperature and the isothermal
surface temperature, in degrees Rankine.

4. The free stream Reynolds number and a reference length. This
reference length is defined as the distance from the vertex to the
desired y-z plane.

5. The time step size and the maximum number of time step itera-
tions.

6. The number of grid points on the body surface and in the com-
putational plane. The location of these grid points is determined by
inputing A£ and by calculating An.

7. The appropriate coordinate transformation, as defined in
Appendix A, and the grid location of the n-axis for the DELTA program.

8. The normal stress damping coefficients and the pressure damping
coefficients.

Once the above input data is supplied, the DELTA program begins its
calculations in the following order:

1. The computational grid points are initialized with free stream
and boundary condition values or with an interim flow solution, which-
ever is appropriate.

2. The coordinate transformation derivatives are calculated next
in the COORD subroutine.

3. At this point, the main program DO loop is entered for the
repetitive calculation of all the flow field quantities at each time

step until convergence or the maximum number of time step iterations is
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reached.

4. Within this DO loop, the local Reynolds number is calculated for
each grid point.

5. The predictor term of the MacCormack finite-difference scheme
is calculated next by calling the subroutine PREDICT. In this sub-
routine, the surface boundary conditions are computed first by calling
subroutine BOUND. After that, a double DO loop is entered wherein the
following calculations are made for each grid point (i,j):

(a) The pressure damping terms (Di?j) and (Di§§T) are deter-
mined by calling the subroutines DAMPF and DAMPG.

(b) The subroutine VECTOR is called next to solve for the
stress and heat conducting terms as well as determine the values of the
F, G, and H vectors.

(c) The predicted value of the Ui,j vector at the new time
level is computed by calling subroutine DECODE.

(d) The subroutine SOLVE is used next to solve for the flow
quantities from the calculated Ui,j vector at the new time level.

6. The flow quc.tities on the opposite side of the symmetry plane
are determined by calling subroutine SYM.

7. The local Reynolds number is recalculated with the flow
quantities from the U, ., vector at the new time level.

i,]

8. The corrector term of the MacCormack finite-difference scheme

is calculated next by calling subroutine CORRECT. This subroutine

! duplicates the predictor subroutine (5) except for some changes in
the finite-difference representatives and flow quantity levels. The
same subroutines and sequence of events are followed.

9. After the corrector step, the SYM subroutine is called to
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recalculate the flow quantities on the opposite side of the symmetry |

plane.

10. The final step in the main DO loop is to test the new solu-
tion for convergence. If the new solution_is not converged, the
numerical integration process is begun again at step (4) unti]l the con-
vergence criteria is met or the maximum number of time steps is reached.

11. At the end of the numerical integration cycle, the flow field
results are printed out and the interim or final solution is stored on
magnetic tape.

The computational sequence of this code is shown in Figures 11 and

12. This program is repetitively run until a converged solution is

obtained.




CALCULATE
REYNOLDS NUMEER

1

CALL PREDICT

1

CALL SYM

CALCULATE
REYNOLDS NUMBER

| t=t+1 l CALL CORRECT

CALL SYM
'
TEST FOR yen
ONVERGENCE
PRINT OUT
no RESULTS
no < yes
t = thax

Fig. 11. Schematic Diagram of DELTA Program.
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; }

CALL BOUND

CALL DAMPF

CALL DAMPG

4wt CALL VECTOR §=gh

CALL DECODE

CALL SOLVE

Fig. 12. Schematic Diagram of PREDICT and CORRECT
Subroutines.
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V. Numerical Results

In this chapter, the numerical solutions for both the supersonic
flow around a cone and the supersonic/hypersonic flow around a thin
planar delta wing are discussed. In each of these cases, the conical,
viscous approximation is applied to the governing equations to determine
the laminar flow field characteristics. The numerical results of these
calculations are compared with various analytical solutions and ex-

perimental data.

Cone Flow Analysis

In order to verify the accuracy of the computer codes; the super-
sonic flow around a cone at zero angle of attack was computed and com-
pared with previous analytical and experimental results. The coordinate
transformation used in this calculation is discussed in Appendix A and
the physical and transformed planes are shown in Figures 8a and 8b. The

free stream and surface boundary conditions chosen for this calculation

are
M_ = 7.95 T, = 1360°R
Re. = 4.2 x 10° P = 259.3 psia
X (o]
0, = 10° T,
T = 0.41
(o]
Pr = 0.72 y = 1.4

where the Reynolds number is based on a reference length of x=4.0 inches.
These flow conditions are identical to those used by Tracy (Ref 127) in

his experimental studies of hypersonic flow over a yawed circular cone.
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In this investigation, two different rectangular grid systems were

used to calculate the flow field. These included a coarse mesh with a

radial step size of AE=0.0079 and a fine mesh with a step size of
AE=0.00395. A circumferential grid size of An-3° was used in both
systems. The computational domains contained 63 equally spaced n grid
points ranging from -3°§n§183°. and 30 constantly spaced { grid points
from ec-10° to the free stream boundary surface. The free stream
boundaries were located at £=tan(16.21°) (fine mesh) and at E-tan(22.06°)
(coarse mesh). Both of these boundary locations were far enough from
the cone surface and bow shock so as not to affect the numerical solu-
tion.

Figures 13-16 illustrate a comparison of the numerical results of
this technique with the solutions obtained by McRae. The squares and

triangles, in these figures, represent the numerical results for

AE=0.00395 and A£=0.0079, respectively. The solid curve depicts the

numerical solution obtained by McRae. 1In all of these solutions, no

numerical damping was used. The undamped solutions were obtained in
order to compare the results more easily and to assess the accuracy of
the computer code.

The static pressure distribution in the 0 direction above the cone
surface is shown in Figure 13. The normal pressure gradient in the
boundary layer is zero and the numerical solutions near the cone surface
are within one percent of each other. If we assume that the attached
bow shock location coincides with the static pressure transition
centerpoint (a definition used by Tracy), then the experimental shock
location is at 9-9c-3.56o (Ref 127). The numerical shock locations for

AE=0.00395 and A£=0.0079 are at 0-9c=3.57° and o—ac-3.52°. respectively.
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3.0 {— ™" " Shock Location
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o
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e
)
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ray
A
s Lo e Lt e IR
0.0 Ie (R | |
0.0 1.0 2.0 3.0 4.0 5.0

Numerical Results
AL Grid Size
0O 0.00395
o 0.0079

McRae's Solution

O_BC (Deprees)

Fig. 13. Comparison of Statfc Pressure vs. 0 Above the Cone Surtace
for Different Crid Stzes with MeRae's Solution.

78




. o
McRae's solution shows the shock at 3.48° above the cone surface. These

results {ndicate that the fine mesh solutfon agrees slightly better with
experimental data than does the coarser mesh solution. However, both
numerical results yleld excellent agreement with both McRae's solution
and Tracy's experimental data.

The surface pressure on the cone {s determined trom Eq 77, where
the normal pressure gradient {8 zero. The nondimensfonalized surtace

2

" - : -y

pressures for both the tlne and coarse grid syvstems are 4.50x10 and
-4

4.54x10 7, respectively. The surtace pressure calculated by McRae is
A

4.53x10 . Experimental results by Tracy show the normalized surtace
pressure to be é.hlxlo-a. This discrepancy between calculated and
measured results can be attributed to experimental error, {nstrumenta-
tion error, and numerical wodeling errvor. It can be seen that the
simplified model of the surface boundary conditions provides excellent
agreement with McRae's solution and good agreement with Tracy's ex-
perimental data.

In Figure 14, the total velocity distribution in the 0 dirvection
i{s presented for x=4.0 {nches. The numerical resotution ot the boundary
layer and bow shock is marginal for the tine grid svstem and is poor for
the coarser grid syvstem. However, the apreement between McRae's cal-
culat{ons and the numerical results {8 remarkable. ln geuneral, therve
is l{ttle dlfterence between the fine and coarse mesh systems, except
that the fine mesh solution provides a much better detinition ot the
flow field. Both numerfcal results vield nearly {dentical behavior as
that noted in similar experimental observations by Tracv.

The statf{c temperature dlstribution in the 0 direction above the

J

cone surface {s shown in Flgure 15, 1t can be seen that WU\ 0 and
.
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Numerical Results
AE Grid Size
0O 0.00395
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McRae's Solution
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Re = 4.2 x 10°
X

Comparison of Total Velocity vs. 0 Above the Cone

Surface for Different Grid Sizes with McRae's Solution.
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c
(Degrees)

Numerical Results

A Grid Size
0O 0.00395
A 0.0079
McRae's Solution
M_ = 7.95
Re_ = 4.2 x 10°
x
o = 10°
c
a = 0.0°
T I
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Fig. 15. Comparison of Static Temperature Vvs. 0 Above the Cone
Surface for Different Grid Sizes with McRae's Solution.




T
—~5> 0 at 0= , thus indicating that heat is being transferred to the
N

a9

cone surface. This {s occurring because of the large amount of friction-
al heat dbeing generated {n the boundary layer, even though THFTO.
Because of the limited number of grid points in the viscous region, a
verification of this result was made with a zero-pressure gradient
similarity solution of the boundary laver equation. In order to convert
the simflar solution results given by Low (Ref 136) from the non-
dimensional Blasius variables to the present nondimensional variables,
it was necessary to specify V, p, and T at the boundary laver odge as
well as at the cone surface. Rather than choose free stream conditions
for the outer edge conditions as would be consistent with classical
boundary laver theory, the viscous edge conditions were chosen from the
fine mesh solution. A survev of calculated impact pressures in the 0
direction, as showh in Figure 1lb, was used to determine the boundary
layer edge (ee-oc-o.o:°\. The normalized surface pressure p = 4,50 X
10"S was assumed to be constant throughout the viscous region. This pres-
sure coupled with the edge temperature T“/T0 = 0.117 gave the edge
density ue/o“- 3.84 x 10-}. From Figures 14 and 16, the edge velocity
was found to be Ve/Vm&x- 0.94. By applving these edge conditions to the
boundary laver equations, a similar temperature profile was obtained,
thus confirming the correctness of the numerical results.

The effect of grid refinement in the & divection is most signiti-
cant in the vicinity of the shock wave, as shown in Figures 13 and lo.
For AL=0.00395 and A0=0.2300 (McRae's step size), the numerical oscilla-

tions are moderate on both sides of the shock. Nowever, when A{=0.0079,

the oscillations on the upwind side of the shock become larger. This
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causes the numerical instabilities (Gibbs phenomenon) to be spread over
a larger distance before they are completely damped out.

In conclusion, it can be seen that this computer code accurately
calculates the supersonic, viscous flow field around a cone. The
velocity, temperature, and pressure results compare quite favorably with
both McRae's solution and Tracy's experimental data. The fine mesh
solution provides just enough flow field definition in order to deter-
mine the flow characteristics adequately in the boundary layer and near

the bow shock.

Delta Wing Expansion Side Flow Analysis

The next phase in this investigation is to examine both the super-
sonic and hypersonic flows over the leeside of a planar delta wing. The
purpose of this analysis is to verify the applicability of the conical,
viscous approximation in solving the expansion side flow field. In
order to do this, two simplifications were made in modeling the flow.
These were (1) to assume the flows above and below the wing surface are
independent of each other and (2) to neglect some of the details of the
complex flow in the immediate vicinity of the delta wing vertex and
leading edge.

In the first assumption, the upper and lower wing flows are in-
dependent of each other because the leading edge flow is supersonic.
This follows from the fact that in supersonic linear theory, disturbances
are propagated downstream in a Mach cone which has its axis aligned with
the free stream and which has a semi-angle equal to the free stream Mach
angle. Thus, any disturbance generated by either wing surface is con-

fined to a Mach cone which does not intersect the leading edge, since
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the edge is less swept than the Mach cone. However, in a real flow,
this does not hold since the regions of influence are determined by
local, rather than free stream conditions (Ref 128). For delta wings,
the two surfaces are independent if the bow shock is attached at the
lgading edge. Wing thickness and viscous development effects can
detach the shock wave and thus cause a strong overflow from the com-
pression side of the wing. This overflow influences the supersonic

and hypersonic flow on the expansion side of é delta wing, as described
in Chapter 1. However, in this numerical model the bow shock is attach-
ed to the leading edge and thus the compression side flow does not in-
fluence the upper surface flow field characteristics.

The second simplification, which is used throughout this study, is
to neglect the three-dimensional flow field effects near the wing vertex
and around the leading edges. The flow over the wing vertex, at angle
of attack, is characterized by a bow shock, a leading edge Prandtl-Meyer
expansion, a pair of internal shock waves, and a developing boundary
layer. These flow properties are highly dependent on a number of param-
eters, such as (1) leading edge geometry, (2) angle of attack, (3) Mach
number, (4) Reynolds number, and (5) hypersonic similarity parameter.
This complex flow induces vortex generation downstream of the apex
region, and the development of a three-dimensional boundary layer.

Vortex generation in the boundary layer depends critically on the
cross-flow and viscous-inviscid interaction in the apex region, where
the spanwise pressure gradients are strongest (Ref 2). This has been
demonstrated by Whitehead and Bertram (Ref 129) and by Rao (Ref 130).
The former reduced the cross-flow in the apex region by rounding off

the sharp apex, thus, locally "unsweeping' the leading edge. The
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latter drooped the portion of the wing near the apex in order to align
it with the free stream at angie of attack, thus making the local angle
of attack in the apex region zero. In both cases, the critical cross-
flow development in the apex reglon was reduced which effectively sup-
pressed embedded vortex generation. In addition, experimental measure-
ments have shown that embedded vortices occur when §=0(0.l) (Refs 18
and 131), but not at large values of i, such as X21.0 (Refs 17 and 25).
The reduced spanwise pressure gradient (due to diminished expansfon at
the leading edge) has the effect of retarding vortex generation. These
embedded vortices are different from those formed by shock-induced
boundary layer separation at higher angles of attack (d>qu). as seen

in Cross' study.

Rao and Whitehead (Ref 131) examined the hypersonic boundary layer
along the contcrlinp of a 75° delta wing at a=5" in ﬂy=b.8 flow (Re/ft =
1.2 % 106). It was found that the boundary layer thickness, §, ini-
tially develops as a two-dimensional boundary layer; however, a maximum
§ is reached and gi becomes negative. This decrease in boundary layer
thickness is due to the entrainment of low momentum fluid by the presence
of vortices in the boundary layer. Further downstream, this "trough" or
decrease in § begins to fill in between the vortices as these vortices
move apart. An increase in unit Reynolds number (to 2.0 million per

foot and to 3.5 million per foot) moves the Gn upstream.

iin
In conclusion, this investigation assumes that the eftfects ot the

viscous interaction around the leading edge and near the wing vertex can

be neglected because these flows have only a small effect on the total

flow fleld. McRae (Ref 94) and Hankey (Ref 132) showed that the conlcal,

viscous approximation provides good agreement with experimental results,
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when viscous interactions are weak (igp(l)). Thus, the primary area of

interest in this research program is to calculate the conical flow in

the weak-interaction region.

Supersonic Flow. In this analysis, only one supersonic case is com-

puted for the expansion side flow field. The free stream conditions

chosen for this calculation are

(o]
M, = 2.94 T, = 544°R
Re. = 2.64 x 106 P = 96 psia
X (o]
Pr = 0.72 Yy = 1.4
a = 12.0° T = 199.5R
w
X = 0.02

where the Reynolds number is based on a root chord length of 0.173 ft.
These flow conditions correspond identically to those used by Bannink
and Nebbeling (Ref 15) in their experimental investigation. As part
of their study, they used a delta wing model with a flat upper surface
and a semi apex angle of 45.3°. The wedge shaped cross-section per-
pendicular to the leading edge has an apex angle of 7.5°. A conical
head probe was used to measure pitot pressure and flow angularity.

The delta wing coordinate transformation, as described in Appendix
A, was used in these numerical calculations as well as all other delta
wing calculatfons. The computational domain, on which these calcula-
tions were made, consisted of a 26(n)x30(£) grid array, similar to the
uéper half of the grid system shown in Figure 9b. For the sweep angle

of b5.3°, the n step size was 0.063158 with 14 grid points on the wing
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surface. In the £ direction, a constant, but different, step size was
used for each measurement height (pitot pressure measurements by
Bannink, Ref 15) so that experimental and numerical results could be
compared without interpolation. These constant step sizes ranged from
0.02393 to 0.02775 for different calculations. The results of these
calculations are shown in Figures 17-24.

In Figures 17 and 18, several spanwise pitot pressure distributions
are shown for various heights above the delta wing. The conical, viscous
results of this technique are compared with the Inviscid calculations by
Kutler (Ref 89) and the experimental measurements by Bannink and Nebbel-
ing (Ref 15). For £=0.0718 (Fig 17), the experimental pitot pressure
profile across the inboard shock 1is clearly affected by the interference
with the wing boundary layer. At this height, the measured shock
strength is slightly less than that measured at higher values of §. This
numerical technique accurately predicts the shock wave-boundary layer
interaction, which is not accounted for in Kutler's solution. Both
theoretical methods provide good agreement with experimental data,
except in the vicinity of the bow shock. 1In this region, the current
nﬁmerical model does not account for the influence of the compression
side bow shock near the leading edge. By neglecting the lower surtace
flow influence, a much weaker leading edge compression wave is computed
due to displacement effects of the boundary layer. This very weak shock
wave is clearly depicted in the contour plots shown later in Figures 22
and 24.

Since the inviscid flow field and shock wave structure are nearly
conical, the velocity components in a spherical coordinate system are

used to delineate the three=dimensional flow fleld. The velocity vectors
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Fig. 18. Pitot Pressure Distribution in Spanwise Direction
for Supersonic Flow Above a Planar Delta Wing.




normal to the rays through the vertex of the delta wing are projected
on the £-n plane as shown in Figure 19. The relative magnitude of
these vectors 1is illustrated for all but the lowest momentum region.

The direction of these vectors 1s given by

o uE-w
tan Yc un-v (97)

where ;A is the angle with the positive n axis (see Appendix F). The
locus of these velocity vectors trace out '"pseudo" streamlines which
converge at a vortical singularity point (cross-flow stagnation point)
near the origin. In the unperturbed flow region (upper and right
portions of Fig 19), the conical cross-flow velocity vectors point to
the origin of the coordinate system. Figure 20 illustrates some of the
cross~flow conical streamlines (780 points). A linear interpolation
technique, described in Appendix F, is used to determine these steady
state path lines. Figure 20 shows more clearly how most of these
conical streamlines converge at the vortical singularity point, even
though the numerical resolution is marginal. This result is consistent
with the experimental observations by Bannink and Nebbeling.

In Figure 21, the calculated position of the internal shock wave
and conical sonic line (Mc=l.0) is shown in the computational plane.
Superimposed on this plot are the experimental results obtained by
Bannink and Nebbeling (Ref 15). The measurement of the pressure rise
across a shock wave is dependent on the shock strength and dimensions
of the probe. Bannink and Nebbeling (Ref 133) found that for cylindri-
cal pitot probes Tracy's centerpoint criteria was satisfactory, pro-
vided that a suitable ratio exists between the inner and outer diameters

of the probe. Since Bannink and Nebbeling used a conical shaped probe
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in their experimental measurements, the shock location is presented as a
band having the width of the observed pressure jump. No attempt is made
to define the exact location of the shock wave within this band. 1In
Figure 21, it can be seen that a close correlation exists between the
calculated and experimental locations of the inner shock and sonic line
below £=0.35. The small discrepancy between the measured ana the cal-
culated conical sonic line in the upper region of the flow field

(£>0.35) 1is due to the small gradients of MC in the n direction, since

a small inaccuracy in the measurements results in a large n variation.
This discrepancy is indicated by the region of uncertainty shown in
Figure 21.

The pressure, temperature, and density contours in the n-£ plane
are shown in Figures 22-24, respectively. These contour plots were
developed by using a General Purpose Contouring Program (Ref 134) on
the CDC 6600 computer. A total of 780 data points were evaluated to
produce these figures. The internal shock wave and leading edge ex-
pansion fan are clearly depicted in all three figures as highly con-
centrated contour lines. In Figure 22, the isobars indicate that the
inboard shock wave, starting perpendicularly from the wing surface,
extends into the central region where the expanded flow is dominant.

In this region, the internal shock weakens and eventually becomes a
conical sonic line. Along the wing surface, the boundary layer is very
thin and the pressure gradient normal to the surface is zero. Beyond
the leading edge, a relatively weak bow shock is formed which diminishes
very rapidly as it overflows the upper surface of the wing. A strong
temperature gradient is formed in the boundary layer, as seen in

Figure 23. This gradient is slightly stronger in the region between
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the internal shock wave and the leading edge expansion fan. In Figure
24, it can be seen that the shock wave-boundary layer interaction is
very weak and no flow separation occurs at the base of the internal
shock.

In summary, this numerical tcchnique.accurately predicts the basic
elements of the supersonic flow over the upper surface of a élanar delta
wing. The numerical results compare quite favorably with Bannink's ex-
perimental data, except in the vicinity of the bow shock. These cal-
culations show that a three-dimensional, supersonic viscous flow over
the expansion surface of a planar delta wing can be accurately approxi-

mated by using a two-dimensional conical flow field model.

Hypersonic Flow. Cross (Ref 17) conducted a series of experimental

studies of the expansion side flow field over a flat delta wing at hyper-
sonic speeds. Several models were used in this investigation. All of
these models were geometrically similar flat plate delta wings with
sharp leading edges (diameter approximately 0.003 inch). The sweep
angles on these models were 75° and the central wing chords varied from
3 to 7 inches with plate thicknesses of up to 0.5 inches. Impact pres-
sures were measured at numerous points in the leeside flow field from
a=0° through a=197 in 2° increments. A 0.040 inch outside diameter
pitot probe, mounted parallel to the upper wing surface, was used to
make these pressure measurements.

In order to simulate Cross' experimental investigation, the fol-

lowing free stream conditions were chosen for this calculation
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M, = 10.17

Re = 3.345 x 10°
x

Pr = 0.72

A constant step size array, identical to the upper half of the grid

system in Figure 9b, was used with grid increments as shown in Table 1.

. llo. and 150

T = 1780°R
o

Po = 596 psia

Yy = 1.4

T = 1259.7°R
w

Table I

Grid Increments for Hypersonic Flow Field

a An

0° 0.019139
5° 0.019139
9°¢ 0.019139
11° 0.019139
15° 0.019139

Calculations

I3

0.00568
0.01136
0.01136
0.00568
0.00568

crid

26nx45¢&
26nx30¢,
20nx30¢
26nx76¢
26Nx76¢,

The free stream boundaries (upper and right) were located far enough

from the upper wing surface as not to affect the numerical solutions.

The incremental step slzes were selected so that no interpolation was

required In order to compare experimental and numerfcal results.,

results of these calculatfions are shown in Figures 25-35.

The

In Figure 25, a comparison {s miade between the experimental and

calculated edge of the viscous reglon.
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Fig. 25 Hypersonic Viscous Layer Development Above . Delta Wing as
Determined by Impact Pressure Measuremonts

101




determined by evaluating the impact pressures in the E-direction,
similar to what is shown in Figure 16. It can be clearly seen (Fig 25)
that there is a progressive increase in the extent of the viscous re-
glon as the angle of attack is increased. At low angles of attack
(q§5°). the calculated profile can be apéroximated by 6~n5.. This result
is similar to the qualitative flow behavior noted by Rao and Whitehead
(Ref 131) in their vapor screen studies. However, from Cross' data,
the experimental profile is very nearly linear. The largest differ-
ences between experimental and calculated results occur at the plane

of symmetry, where three-dimensional effects are dominant. For a290, a
centerline "trough'" appears in the calculated viscous profile. This
trough is generated by shock-induced vortices in the viscous region.
Cross' data, for azSo, shows a large region of low impact pressure de-
veloping along the centerline of the wing. This region is located at
the projection point of the free stream velocity vector (through the
wing vertex) on the £-n plane.

The impact pressure distribution for various angles of attack and
E-position are shown in Figures 26 through 29. Figure 26 depicts a
comparison between experimental and calculated impact pressure results
for a=0°. The calculated values are in good agreement with the measured
quantities except at one point on the upwind side of the bow shock at
£=0.0682. 1In this region, the calculated bow shock position is slightly
inboard of the actual shock wave. Figures 27a and 27b illustrate the
impact pressure results for a=50. In these figures, good agreement is
agaln shown between theory and experiment, except in the vicinity of the
bow shock and along the centerline of the wing at £=0.0682. This dis-

crepancy on the symmetry plane occurs because the calculated boundary i
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Fig. 26. Impact Pressure Survey on Leeside of Delta Wing, a = 0°
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layer thickness 1s slightly less than the measured value. The same type

of pressure results are also seen for a=9° (Figs 28a and 28b), except
that at £=0.11505 the impact pressure disparities are much larger near
the centerline. These large disparities are a result of the differences
between the calculated boundary layer trough and the measured enlarged
low pressure region. Similar discrepancies are seen for a=15° (Figs

29a and 29b) at £=0.15904 and £=0.20454.

The conical cross-flow streamlines for a=0°, 90, and 15° are shown
in Figures 30 through 32. At zero angle of attack (Fig 30), a vortical
singularity exists near the upper edge of the viscous region. No flow
separation is seen along the wing surface and no vortex is formed in
the boundary layer. As the angle of attack is increased (as determined
in this study), the vortical singularity is forced downward toward the
wing surface under-the developing influence of a vortex in the viscous
region. At a=5°, the vortical singularity is located at the origin of
the coordinate system. All conical streamlines converge toward this
cross-flow stagnation point in the n-£ plane.

At a=9° (Fig 31), a small vortex is formed in the boundary layer.
This vortex is initially very close to the wing surface and is formed
as a result of shock-induced boundary layer separation. Because of the
limited number of grid points in the viscous region, only a coarse out-
line can be seen of this developing vortex. As the angle of attack is
increased, the vortex strength is increased and the core of the vortex
moves further above the wing. At a=11° and a=15° (Fig 32), the vortex
is well developed in the viscous region and its behavior is very similar
to the experimental observations of Cross.

The density, pressure, and temperature contours in the cross-flow
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Fig. 29a Impact Pressure Survey on Leeside of Delta Wing, a = 15
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physical domain are shown in Figures 33 through 38. These contour plots
depict the intricate flow field characteristics for a=0° to a=15°.
Numerical results from this study show that several significant changes
occur in the flow as the angle of attack.is increased. At a=0°, the
cross-flow is dominated by a strong lecading edge shock wave due to
boundary layer displacement thickness (Fig 33). There {s no internal
shock and thus the boundary layer remains attached on the wing surface.
The spanwise temperature distribution, as illustrated in Figure 34, in-
dicates that the heat transfer is a minimum at the centerline and it
increases rather sharply at the leading edge. As the angle of attack
is increased, the bow shock is gradually weakened by a developing
Prandtl-Meyer expansion fan over the leading edge. At a=90, an internal
shock is formed in the inviscid flow region. This internal shock is
nearly normal to the wing surface, and at its lowest edge, 1s incident
upon the upper surface of the viscous region (Fig 35). At a=150, the
internal shock wave and leading edge expansion fan are very stroung, as
seen by the highly concentrated density contour lines in Figure 36. The
bow shock is weak and the pressure gradient normal to the wing surface
in the viscous region is zero (Fig 37). Figure 38 shows a change in the
temperature profile from that shown {n Figure 34 for attached flow at
a-0°. For separated flows, the temperature gradient (nor@nl to the wing
surface) decrecases from a peak at the cvntvr]{né, reaches a minimum and
then increases to a maximum at the leading edge. This spanwise tempera-
ture behavior is similar to the experimental observations by Narayan
(Ref 25) at a=15°.

In conclusfon, it can be seen that the numerical method accurately

predicts the basic elements of leeside hypersonic flow over a planar
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delta wing. For the first time in any calculation, the vortex develop-
ment in the boundary layer of a delta wing is computed based on a strong
shock wave-boundary layer interaction. The numerical results compare
quite favorably with Cross' data as well as with the qualitative ob-
servations by Rao and Whitehead (Ref 131) and by Narayan (Ref 25). The
discrepancies between the calculated and experimental results are due

to not modeling the compression side flow field and not compensating for

the three-dimensional effects around the wing vertex.

Delta Wing Compression Side Flow Analysis

The next phase in this investigation is to apply the conical,
viscous flow approximation to a supersonic flow over the windward side
of a planar delta wing. The purpose of this effort is to verify the
applicability of this method in solving compression side flow fields.
The same simplifying assumptions, which were used in the expansion side
flow calculations, are applied in this calculation.

For this analysis, only one compression side tlow field case is

computed. The free stream conditions chosen for this calculation are

| O

‘ M = 4.0 A = 50

? Re « 5.0 x 10° T = 530°%
| X w

|

|

| Pr = 0.72 ¥ = 1.4

‘ a=15° X = 0.028

where Tw is equal to the free stream stagnation temperature. These flow
conditions are fdentfcal to those used by Babaev (Ref 66), Voskresenskii

(Ref 88), Beeman and Powers (Ref 68), and South and Klunker (Ref 67) in
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their inviscid analyses.

A 26(n)x45(&)array was used in this numerical calculation. This
constant step size array was identical to the lower half of the grid
system shown in Figure 9b. The n step size was 0.059936 with 14 grid
points on the wing surface. The § step size was 0.00568. The free
stream boundary locations were positioned far enough from the wing
surface and bow shock so as not to affect the numerical solution. The
results of this calculation are shown in Figures 39-45.

In Figure 39, the coefficient of pressure on the lower surface of
a flat delta wing is plotted for various spanwise locations. The pri-
mary area of interest, in this figure, is the subsonic cross-flow
region, where a variation in surface pressure occurs. The cross-flow
sonic line (as seen in Fig 40) serves as a dividing line between the
rotational and irrotational portions of the flow. Close agreement is
seen between the subsonic numerical calculations and all of the analyti-
cal solutions, except Babaev's solution. In Babaev's method, an attempt
is made to account for the singularity which occurs at the cross-flow
sonic point (on the wing surface). The analytical surface pressure

distribution should exhibit a "corner" or slope discontinuity at the
cross-flow sonic point. However, Babaev's solution as well as all the
other analytical solutions, show a very smooth pressure distribution at
this point. Most of the other analytical techniques ignored this weak
singularity.

Figures 40 through 43 illustrate the cross-flow Mach number, pres-
sure, temperature, and density contours in the physical cross-flow plane,

respectively. In Figure 40, the cross-flow Mach number contours based

on the magnitude of the conical cross-flow veloclty components are shown.
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This figure defines the cross-flow subsonic and supersonic regions and

the sonic line that separates these reglons. The sonic point is lo-
cated at the base of the sonic line in the boundary layer or on the
wing surface (inviscid solution only). The shock wave from the leading
edge to the sonic line is approximately planar, as seen in Figure 41.
The inviscid, analytical shock angle, relative to the leading edge, is
21.3° compared with approximately 18.5° numerically. There is no
normal pressure gradient in the boundary layer and the shock weakens
slightly as it curves toward the wing surface and approaches the plane
of symmetry. In Figures 42 and 43, strong density and temperature
gradients exist {n the thin boundary region.

The cross-flow velocity vectors and resulting conical streamlines
are shown in Figures 44 and 45, respectively. The significant change
in magnitude and direction of the cross-flow velocity vectors near the
shock wave indicate that the compression side bow shock is very strong.
The streamline contours show that a vortical singularity exists near the
wing surface on the plane of symmetry. This {s consistent with the
analytical results by Voskresenskii (Ref 88) and Melnik (Ref 19).

In conclusion, it can be seen that this numerical technique
accurately predicts the basic characteristics of a compression side
flow field. The supersonic numerical results compare quite tavorably
with several fnviscid analyvtical solutions. These calculations show
that this conical, viscous approximation technique can be accurately

applied to high Revnolds number, viscous compression side flow ticlds.

Total Delta Wing Flow Analysis

The final phase i{n this i{nvestigation (s to examine and calculate

the total supersonic and hypersonic tflow field around a thin planar
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delta wing. Previous calculations {n this study have demonstrated the
applicability of the conical, viscous approximation in separately sol-
ving flows over either the leeside and or the compression side of flat
delta wings. However, {t {s still necessary to verify this concept in
solving the total flow field around a thin planar delta wing. Thus,

the purpose of this analysis {s to examine and evaluate the use of the
conical, viscous approximation in solving the total delta wing flow

field. 1In this calculation, the upper and lower surface tlow ticlds

are allowed to interact with cach other in reaching a steady state solu-

tion. However, the three-=dimensfonal effects penerated by the wing

vertex are still neglected in solving this tlow problem.

Supersonic Flow. For the supersonic flow analvsis, the experimen-
tal test conditions used by Bannink and Nebbeling (Ret 15) are applied

in this calculation. These flow conditions are

M= 2.94 T = 544°R
o O
e 6

Re. = 2.064 x 10 P = 96 psia

X Q
Pr = 0.72 Yy = 1.4
a=12° T = 199.5%

w

X = 0.02

where the Reynolds number {s based on a root chord leagth of 00173 tt.
This {s the same case examined for the leesfde-only solution.
The computatfonal domain, as shown {n Figure 9b, consisted ot a

26(N)xS9(L) prid avray with 29 vows of § prid pofnts above and below
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the wing surface. The n step size was 0.063158 with 14 grid points used
to model the wing. A constant, but different, § step size was used for
each measurement hefght (pitot pressure measurements by Bannink, Ref 15)
so that experimental and numerical results could be compared without
interpolation. The free stream boundaries were located far enough from
the wing surface so as nouv to affect the numerical solution. The re-
sults of these calculations are shown in Figures 46-52.

In Figures 46 and 47, several spanwise pitot pressure measurements
are shown for various heights above the delta wing. The numerical re-
sults are compared with the inviscid solutions by Kutler (Ref 89) and
with the experimental data by Bannink and Nebbeling (Ref 15). It can
be seen that the total numerical flow field solution is similar to that
of the expansion-side-only supersonic solution. The only signiticant
difference is that the bow shock in the leeside flow field is slightly
stronger for & < 0.3626. This is due to the influence of the lower
surface shock wave as it encircles the leading edge of the wing. The
coarse grid spacing and the use of the numerical shock capturing tech-
nique results in smearing the shock over several grid points. This
causes the leeside shock to be displaced slightly upstream of the meas-
ured bow shock location. A similar error was noted by Bazzhin (Ref 92)
in his delta wing calculations.

Figure 48 depicts the conical cross-flow velocity components pro-
jected on the n-f plane. On the compression side, the bow shock fis
clearly delineated by an abrupt change in strength and direction of the
velocity vectors. The locus of the velocity vectors trace out "pscudo"
streamlines which converge at two vortical singularity points. These

vortical singularity points are located above and below the wing
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Numerical Result

—o——o—o—a- Experimental Data (Ref 15)

— — — — Kutler's Solution

Fig. 46. Pitot Pressure Distribution in Spanwise Direction for
Supersonic Flow Above a Planar Delta Wing, § = 0.0718.
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Numerical Result
—+—o——= Experimental Data (Ref 15)

————— Kutler's Solution
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Fig. 47. Pitot Pressure Distribution in Spanwise Direction
for Supersonic Flow Above a Planar Delta Wing.
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surface near the origin of the coordinate system. Figure 49 illustrates
some of the conical cross-flow streamlines (1550 points) and how these
steady state path lines converge toward the two vortical singularity
points. These streamline results are consistent with the inviscid,
analytical solutions by Melnik (Ref 19) and with the experimental ob-
servations by Bannink and Nebbeling (Ref 15).

The pressure, temperature, and density contour plots for the physi-
cal cross-flow plane are shown in Figures 50-52. The wing thickness is
exaggerated in these figures in order to clearly depict its location. A
total of 1550 data points were used to produce these contours including
a set of double-values grid points representing the wing surface. 1In
Figure 50, the isobars indicate that a strong shock wave is formed below
the delta wing. This shock wave weakens slightly as it bends toward the
wing surface and approaches the plane of symmetry. The influence of this
compression wave is felt above the delta wing, as seen by the contour
lines encircling the leading edge of the wing. A large leading edge ex-
pansion fan is formed above the wing surface and inboard of the bow shock.
This expansion fan weakens the leeside internal shock wave and eventually
transforms it into a conical sonic line. Along the wing surfaces, the
boundary layers are very thin and the pressure gradients normal to these
surfaces (in the § direction) are zero.

: As seen in Figure 51, a strong temperature gradient exists in both
boundary layers. This temperature gradieunt (normal to the wing surface)
is particularly strong near the leading edge. 1In Figure 52, it can be
seen that the leeside internal shock wave-boundary layer interaction is
very weak and that no flow separation occurs at the base of the shock

wave.
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In summary, the numerical solution of the supersonic flow around a

thin, planar delta wing provides a more accurate and complete solution
of the delta wing flow field than does the leeside-only solution. This
total flow field solution contains all the basic elements of the flow
and these results compare quite favorably with Bannink's experimental
data. The discrepancies noted in comparing numerical and experimental
results are due to three-dimensional effects in the viscous region, use
of a coarse grid in the computational plane, and not properly modeling
the delta wing thickness. However, the results indicate that the three-
dimensional flow field can be approximated by using a two-dimensional
conical, viscous flow field model which would be useful in design

applications.

Hypersonic Flow. For the hypersonic flow field analysis, the free

stream and surface boundary conditions chosen for this calculation are

M_ = 10.17 T = 1780°R
[o]
Re_ = 3.345 x 10° P = 596 psia
X o
Pr = 0.72 Y = 1.4
- o
X =1.8 T, = 1259.7°R

(o] o (o] o

a=0° 5% 9° 11° and 15° A =75

where the Reynolds number is based on a reference length of x = 5.5 sec a
inches. These flow conditions are the same as those used by Cross

(Ref 17) in his experimental studies of the hypersonic flow over the
leeside of a flat delta wing.

In this investigation, a constant-step size array (Fig 9b) was used
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to calculate the flow field. This computational domain consisted of a

26(n)x120(&) grid array with 75 rows of § grid points above the wing and
44 rows below the wing. The n step size was 0.019139 with 14 grid points
on the wing surface. The £ step size, for all the hypersonic cases, was
0.00568. The exterior or free stream boundaries were located far enough
from the wing surface so as not to affect the numerical solution. The
results of these calculations are shown in Figures 53-73.

In Figure 53, a comparison is made between the measured and cal-
culated edge of the viscous region. This boundary layer profile is de-
termined by evaluating the impact pressure distribution in the &-
direction similar to what is done in Ref 17. For a 5.50, the edge of
the calculated viscous region is very similar to that predicted by two-
dimensional laminar boundary layer theory. The computed boundary layer
thickness, §, for a = 00, is identical to that calculated for the ex-
pansion-side-only solution; however, for a = 50, § is greater and more
accurate than the leeside-only result. At a = 90, a centerline trough
is computed in the cross-flow viscous profile. This trough is generated
by a developing shock-induced vortex in the boundary layer. For a 2_110,
a large viscous bubble or "hump" appears in the plane of symmetry of the
boundary layer edge. This viscous bubble occurs as a result of shock-
induced separation behind a strong leeside bow shock. This strong bow
shock 1s clearly depicted in the contour plots shown later in Figures
71 and 72. Good qualitative agreement is seen between the experimental
and calculated results even though the computed boundary layer thick-
ness is slightly greater than the measured value.

In Figure 54, the bow shock location on the expansion side of the

delta wing is shown for various angles of attack. For n > 0.1, the
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calculated shock profile {s slightly less than the measured shock loca-

tion. This discrepancy occurs because the displacement thickness of the
thin, planar delta wing is smaller than that of the actual wind tunnel
model. Along the plane of symmetry, good agreement is seen between the
calculated and measured shock shape for a < 50. However, for a > llo.
the numerical shock profile is slightly greater than the experimental
value. This error is due to the displacement effects of the cal-
culated boundary layer in the symmetry plane.

The impact pressure distribution for various angles of attack and
E-positions is shown in Figures 55 through 58. Figure 55 illustrates
the comparison between experimental and calculated impact pressure. re-
sults for a = 0°. These results are similar, but more accurate than the
leeside-only results, particularly at £=0.1136. Along the plane of
symmetry, the calculated boundary layer thickness {s slightly less than
the measured value. This discrepancy is very apparent at {=0.0682,
where a large difference exlsts between the measured and calculated
impact pressures. Figures 56a and 56b depict the impact pressure re-
sults for a = 5°. In these figures, a closer agreement {is again seen
between theory and experiment. The calculated pressure ratio across the i
bow shock 1s stronger than that of the leeside-only solution, but weaker
than the experimental results. The flow resolution around the shock
wave 1s poor due to shock smearing in the coarse computational grid.
Similar results are seen for a = 9° (Figs 57a and 57b) and for a = 15°
(Figs 58a and 58b). However, for o = 150. the three-dimensional
effects near the centerline are more dominant, as seen at £=0.15904 and
£=0.20454,

The conical cross-flow veloclity vectors and streamline plots for
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Q= 0°, 9°, 110, and 15° are shown in Figures 59 through 65. At zero

angle of attack (Figs 59-60), vortical singularities occur near the
edges of the upper and lower viscous reglons. No flow separation is
seen along the wing surface and no vortex is formed in the boundary
layer. At a = 32 (as determined in this study), these vortical singular-
ities are forced toward the wing surface on both sides of the wing. A
further increase in angle of attack to a = 90, results in a detached
vortical singul;rity below the wing surface (Fig 61). The flow, on
both sides of the wing, remains attached although there is an increase
in circulation (the beginnings of a vortex) on the leeside near the
origin at a = 9°.

At a = llo, (Figs 62-63), a large reversed flow region or vortex is ’
formed in the boundary layer. This vortex is clearly depicted in the

conical streamline plot in Figure 63. Above this vortex near the edge

of the leeside boundary layer is a vortical singularity point. Another

vortical singularity point is formed below the wing surface near the edge

9f the viscous region. The leeside cross~flow separation point is at

nN=0.1206 with the experimental point at n=0.1166. As the angle of attack

is increased, the vortex strength is also increased and the core of the '
vortex moves further above the wing. At a = 15° (Fig 64) the cross-flow

separation point is at n=0.1301 while the experimental separation point ’
is at n=0.1432. The leeside vortical singularity moves further from the
wing surface as the boundary layer thickness increases (Fig 65). This l
behavior of the vortical singularity points is similar to that seen in

Tracy's experimental studies on a cone.

The pressure, density, and temperature contours in the cross-flow

physical plane are shown in Figures 66 through 73. These figures
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11lustrate ‘the characteristics of the total flow field for a = 0° to

a = 15°. At zero angle of attack, the crosé—flow is dominated by a
strong leading edge shock wave (Fig 66). This shock wave is formed
because of the displacement effects of the boundary layer. The spanwise
temperature distribution (Fig 67) in the £oundary layer indicates that
the heat transfer rate gradually increases from a minimum at the center-
line to a maximum at the leading edge of the wing. There is no internal
shock wave and thus the boundary layer remains attached to the wing sur-
face. As the angle of attack is increased, the pressure ratio across
the compression-side shock wave also increases. This shock wave has a
strong influence on the leeside bow shock, as seen in Figures 68-69.

At a = 90, an internal shock is formed on the leeside of the delta wing.
This internal shock is normal to the wing surface and, at its lowest
point, is incident upon the upper edge of the viscous region (Fig 70).
At o = 11° (Fig 71), the interaction of the internal shock wave and the
boundary layer is so strong that a vortex is formed in the viscous re-
gion. The leeside bow shock and Prandtl-Meyer expansion fan are much
stronger than those calculated in the leeside-only solution. At o = 150,
the bow shock and expansion fan are the dominant features of the upper
surface flow field (Fig 72). Although an internal shock wave does exist,
this shock is much weaker than the internal shock calculated for the
leeside-only solution. The pressure gradient (normal to the wing sur-
face) in the boundary layer is zero, except in the separated flow re-
gions. The spanwise temperature distribution (Fig 73), for the separa-
ted flow, is similar to that computed for the expansion-side-only
solution. The only major difference is that the heat transfer rate for

the total flow field is slightly less near the leading edge.
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In conclusion, it can be seen that the total flow field solution is
more accurate and complete than the leeside-only solution. These
numerical results irdicate that the compression side flow field has a
significant effect on the flow characteristics on the leeside of the
wing. The pressure ratio across the upper surface bow shock is stronger
than that found in the leeside-only solution. This results in a larger
region of reversed flow, a more accurate prediction of the cross-flow
separation point, and the calculation of a viscous bubble. The hyper-
sonic numerical results compare quite favorably with Cross' data as well
as with the qualitative observations by Rao and Whitehead (Ref 131) and
by Narayan (Ref 25). The discrepancies between the calculated and meas-
ured results are due to three-dimensional effects in the viscous region
and not properly modeling the delta wing thickness. However, these re-
sults indicate that the conical viscous approximation technique can be
used to adequately predict the three-dimensional flow around a thin delta

wing.

Computational Statistics

The two most important statistics for any computer program are the
execution time per point and per time step and the storage requirements.
These statistics are used to measure the efficiency of the numerical
codes and the size of computer needed to run these programs. In this
investigation, the computer programs were run on the Control Data
Corporation 6600 computer. The execution time for the various numerical

- to 3.73 x 10-.3 sec/grid point/time

solutions ranged from 3.07 x 10
step. The computer storage requirements and the numerical damping

constants varied for each case. These values are shown in Table II.
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Table II

E Computer Storage Requirements and |

Numerical Damping Constants

Storage Damping
Case Crid (K words) Constants
Cone 63nx30& 167.3K No Damping
Supersonic
Upper, Delta 26nx30¢ g 101K No Damping
Wing
Hypersonic 26nx45E (a=02) 5 125.2K g=1.0
Upper, Delta 26nx308 (=5 3 9 )o 102.2K c4=0.06
Wing 26nx76¢ (=11, 15) 174.4K cj=0.0
Supersonic
Lower, Delta 26nx45¢ 125.1K g=1.0
Wing c4=0.12
Cj=0.12 :
f Supersonic
! Total, Delta 26Nx59¢ 151.5K B=1.0
{ c34=0.06
] Cj=0.0
) Hypersonic
| Total, Delta 26nx120§ 167.3K 8,=B,=1.0 i
Wing B3= -20.0
: : c4=0.40
Cj“O. 10

The total execution time for each case varied from 3 to 12 hours,

T ——r

depending on how the stability criteria (At) was used, the use and ]
magnitude of the numerical damping terms, the size of the computational

mesh, the convergence criteria, and the characteristics of the physical

T —

flow field.
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VI. Conclusions and Recommendations

A numerical method was used to compute the supersonic and hyper-
sonic, viscous flow fields around a thin, planar delta wing. These
solutions were obtained by solving the unsteady governing equations
subject to a conical approximation. The integration technique used was
the second-order accurate MacCormack finite-difference scheme. This
integration was performed on a constant step size array generated by a
conical coordinate transformation. The solutions obtained were for a
Mach number range of 2.94 to 10.17, a local Reynolds number range of
3.345 x 105 to 5.0 x 106, and angles of attack from -15° to + 15°.
Numerical oscillations in these solutions (as a result of shock
capturing) were reduced by applying normal stress damping and a fourth-
order density damping term to the finite-difference equations. A
stability criteria (maximum At) was computed and used based on an
analysis of the linearized governing equations. The numerical results
were compared with experimental data (Ref 15-17), various analytical
solutions (Ref 66~68, 88, and 89), and several qualitative observations,
such as vapor screen and oil flow techniques (Refs 25 and 131). From
these results, the following significant conclusions were drawn based
on the present investigation:

(1) This numerical technique accurately predicts the supersonic
flow around a thin, planar delta wing, with supersonic leading edges.
Good agreement was obtained between calculated results and the ex-
perimental data by Bannink (Ref 15). All the basic elements of the
flow field (i.e. shock waves, boundary layers, and sonic lines) were

calculated and were found to be essentially correct in magnitude and
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location. For the first time in any reference, the shock wave~boundary

layer interaction was computed and its effects seen in the impact pres-
sure profile for § = 0.0718 (Figures 17 and 46). The numerical solutions
for the leeside-only and the total flow fields were found to be almost
identical, except near the bow shock. In this region, the difference in
calculated results was due to not modeling the compression side flow
field for the upper-surface-only solution. The largest discrepancies
between calculated and measured impact pressures also occurred near the
leeside bow shock. The maximum impact pressure error for the leeside-
only solution was 12.0% while that for the total flow field was 4.0%.
These discrepancies were attributed to use of a coarse grid in the com-
putational domain, improper modeling of the delta wing thickness, and
neglecting the lower surface flow field influence (leeside-only solu-
tion). From these numerical results, it can be seen that the three-
dimensional supersonic flow field can be accurately approximated by
using a conical, viscous flow field model.

(2) This numerical method adequately modeled the inviscid and
viscous hypersonic flow around a thin delta wing. Solutions were ob-
tained for both the upper and total flow fields. These solutions com-
pared quite favorably with Cross' data as well as with the qualitative
observations by Rao and Whitehead (Ref 131) and by Narayan (Ref 25).
The shock wave-boundary layer interaction was accurately approximated
and, for the first time, an embedded vortex was computed in the viscous

region. A significant difference was seen between the calculated

{ leeside-only and total flow field solutions (see Figs 32 and 65). This

difference was due to the strong interaction which occurs between the

upper and lower flow fields. In the total flow field solution, the
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detached bow shock and leading edge expansion fan were found to be the

dominant features in the upper surface flow field. These flow character-
istics caused a weak internal shock wave and a large reversed flow re-
gion to form above the wing at a > 11°. For the first time in any cal-
culation, the cross-flow separation point ;ns accurately pchictcd
(within 3.0%) and the viscous "bubble'" in the symmetry plane was com-
puted. The total flow field solution provided an improved insight into
the behavior of the cross-flow vortical singularities and a more accurate
description of the flow field than the leeside-only solution.

(3) A very effective technique was used to calculate the surface
conditions at the leading edge of the total delta wing. This method
permitted the flow properties to be triple valued at the singularity
point. The standard boundary conditions of non-slip at the surface and
an isothermal surface were used. The normal momentum equations in the
£ and n directions were used to calculate the upper, side, and lower
values of pressure. The three values of density were determined from
the equation of state. This numerical modeling of the leading edge or
singularity point produced a stable and accurate solution of the flow
field in the vicinity of this nodal point.

(4) A satisfactory stability criteria analysis was performed on
the finite-difference form of the linearized governing equations. This
analysis accounted for both the inviscid and viscous dominant regions
in the flow field. A maximum allowable time step was determined and

used in the numerical integration of the governing equations.

(5) A normal stress damping term and a fourth-order density damp-
ing term were successfully incorporated into the numerical integration

procedure. The normal stress damping was used to control the inftial
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transients due to ill-suited initial conditions. The density damping
term was used to reduce numerical oscillations around shock waves and
expansion fans. The magnitude of both damping terms was set so as to
be effective in the inviscid flow regfon but not to change the viscous
region behavior or modify the etfective Reynolds number, appreciably.

Thus, it can be seen that this numerical technique accurately pre-
dicts the supersonic and hypersonic flow fields around a thin planar
delta wing. These numerfcal results compare quite favorably with ex-
perimental data, various analytical solutlions, and several qualitative
observations. This investigation has demonstrated the feasibility of
using the conical flow approximation in calculating the viscous-
inviscid flow fields around thin delta wings for } < 0(1).

Further resecarch in this area is still needed {n order to examine
the total spectrum of supersonic and hypersonic flows around a thin
delta wing. Several recommendations, by the author, are proposed for
future work. These include the following:

(1) A faster and more efficient numerical algorithm should be used
to solve this flow tield problem. Shang (Ret 136) has developed a time-
dependent implicit-explicit hybrid scheme which is 8.6 times faster than
the current explicit method. This hybrid scheme could be {ncorporated
into the current computer codes in order to produce a faster, but
equivalent (accuracy within 4%), result,

(2) A confcal, body-fitted, curvilinear coordinate system (Ref
137) should be used to solve flows around thin delta wings of various
confcal cross-sections. 1In this coordinate syvstem, the pgrid system s
generated by solving a set of elliptical partial ditferential equations,

with one coordinate belng cofncfdent with cach boundary contour {n the
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physical domain. Use of this type of coordinate transformation would

result {n solutions about delta wings of various cross-sections with

the same degree of ease as for planar delta wings.

(3) As a first attempt at calculating the turbulent flow around

a planar delta wing, an eddy viscosity model should be incorporated

into the governing equations. Several algebraic turbulent models could

be used in this study, provided the rate of strain is fairly small

the deviation of the principal axes between the Reynolds stress tensor

and the strain-rate tensor i{s small (Ref 138). This effort should

attempted only whei. an adequate turbulent experimental data base exists.

(4) Finally, additional experimental data is needed on supersonic

and

be

and hypersonic flow fields around delta wings. A more detailed ex-

amination is required of the viscous region at various angles of

attack, and Reynolds numbers. An experimental study should be pursued

to investigate the limits of the conical flow approximation in evalua-

ting flows around delta wings. More experimental measurcments are
needed in order to examine the behavior of vortical singularities

the cross-flow of a low Reynolds number, hypersonic tlow field.
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APPENDIX A

Transformation Derivatives

This appendix contains a comprehensive set of transformation
derivatives used in the numerical integration of the governing equationmns.
Since the intent here 1s to provide a quick reference only, most of the

algebraic development 1is omitted.

Transformation Derivatives for the Cone

For the flow field calculations over a cone, the coordinate trans-

formation is

X

\’ 2 2
L =x n= tan-'(§> E % y° + z° —tan 6c

The transformation derivatives are

X1 %-o E .o

%2 = ( %3 - E% sin n %2 EE cos N
%& - :%_ %5 = E-cos n %5 - % sin n
2 (%) o )0 (B)-
& ()0 2 (B)-0 & (R

3_ /). 2% 3_(3g).1 3 1) -1
3 \o'§> 2 13 (a_v) il S - (Bz Lt
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Transformation Derivatives for the Delta Wing

For the flow around a delta wing, the coordinate transformation

T =x n-% €.£

L L oL

Pl 3y 0 vl

9x L Jy ¢ oz

g = :5. .aj = 0 -g::- _1..

Ix [ dy oz T

J T, 3_ (3% d  [3g

% (é‘x) ¢ 3T (av) ° o (az) 0
3_(93)-2112 ?__(9_'1,1 é.(?ﬂ)w
¢ | 3x o L, \ dy g L, dz

3 (a:)= 2§ 3 () " R ( s:)n =1
L | x z? T, 3C | 3z Z
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APPENDIX B

Convergence of Iterative Methods

and Determination of Tteration

Errors

All {terative techniques generate a sequence of numbers or vectors.
These iterative methods are convergent if their sequences converge to
the numbers or vectors which satisfy the given problem. Therefore,

Lo
given an initial vector X\‘). where X =[}1. X e xn],an iterative

.)'

<

k)

technique generates a sequence of vectors X( which, hopefully, con~
verges to a limit vector, A.
A fundamental theorem of numerical analysis asserts that a sequence

. " k
converges if and only if it is a Cauchy sequence. A sequence X( )

is
a Cauchy sequence.if for every € >0 there exists a positive number N
such that for all integers n, m >N we have

'lx(“)' x(m)l" = (81)
where || || i{s some vector norm. The choice of the particular
norm is not important since it can be shown that all vector norms are
equivalent (Ref 143).

The importance of the Cauchy property is that the convergence of a
sequence can be ascertained without knowledge of the limit vector, A.
The significance of this concept with regards to numerical methods in
which A is not known is readily apparent.

In this investigation, the numerical convergence method is derived
from the definftion of a Cauchy sequence and is referred to as the

Cauchy method. Numerical iterations are carried out until a condition

of the form
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||®(k)_ ¢(k—l)‘|i

..... ,-JJ,:_E (B2)
0l’
is met where & = u, v, w, P, p, ¢ and ¢ {s chosen positive number. or
k) - 2
is defined as &i j for all the primitive variables, except for the
velocity terms where V is used. The local error, E(x,, X,» . . .X k),
- max 1 2 s
at {teration k is defined as the vector norm X(k)- X(k_l‘ll while
. 1,1
the true error at cach iteration k is
\
e(k x:": ik (83)

The number © appearing in Eq B2 {s called the convergence criteria.
The condition specified by Eq B2 is that tor the iterative convergence
of the finite-ditterence technique. The value of the convergence

criteria for this fovestigation is 10°°.

189




APPENDIX C

Stability Analysis

The theoretical investigation of stability is particularly complex
for the difference schemes assoclated with the governing equations.
Approaches to studyving this phenomenon are reported in Roache (Ret 117)
and Richtmyer and Morton (Ref 109). An approximate method which tends
to yield the best results tor a set of general nonlinear equations is
the amplification matrix theory by von Neumann. This method consists
of examining the linearized difference equations for the amplification
of short wavelength oscillations superimposed on an exact solution.

The growth and decay of these oscillations can be predicted by applying
the harmonic analysis of von Neumann. In his analysis, the boundary
conditions have no gffect on the stability result and the exact solu-
tion of the governing equations is smooth. This latter assumption
allows the coefficfents of the partial differential equations to be
treated as constants (locally). The stability conditions predicted by
this theory result in a local stability condition which places a bound
on the time increment used in the numerical integration.

Richtmyer and Morton (Ref 109) showed that the von Neumann stabil-
ity conditions for the nonconservative form of the governing equations
i{s the same as that for the conservative torm. Since the analysis is

easfer for the nonconservative form, the following nondimensionalized

governing equations, as suggested by MacCormack and Baldwin (Ret 123),

were consldered:
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U U AU 32U d%u
— +A—+8B — — + D —
TR R R~ Rl
3 (av 5 (au
sr k(D r )
where
p A A
11 12
u (0] A
22
U = v A = 0 0
w 0 0
P 0 A
52
B B B
11 12 13
0 B 0
22
B = 0 0 B
33
0 0 0
0 B B
52 $3
0 0 0
0 c c
22 23
c = 0 c c
32 33
0 c c
b2 L3
c 0 0
51
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The elements of these matrices can be found in Appendix E.

In the above equations, the Prandtl number, the Reynolds number,
and the nodal point locations are assumed to be constant. In addition,
the dissipation terms of the energy equation which contain quadratics
in first-order derivatives have been deleted based on an analysis by
Kentzer (Ref 124).

The stability criteria for the governing equations are determined
by examining three distinct parts of these equations: the inviscid,

diffusion, and mixed-derivative parts. The magnitude of the eigenvalues
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of the amplification matrices associated with each of the three parts

must be less than or equal to one in order for the numerical equations

to be stable.

Inviscid Part

The inviscid part of the governing equations can be written as

R}
LN S

at an aE "0

The amplification matrix of this equation, as given by MacCormack

(Ref 125), is

A - B ~
= - bl S + =S
G I iAt [An sina AT binb‘

a2l A 18y B 1B | A 0y B 1B
Z(At) Aﬂ(le )+Ag’\lt )}{‘\“(lt )+A£(1t)

where a = klAn, B = szE, and T is the unit matrix. The von Neumann

stability condition for this equation is

‘ G | <1

1f we look at large values of G, then the G matrix can be approximated

as
' L 12 2
G=1-~- 1A' - 2 (A’ + B'Y)
where
¥ - & N B e R
A At [Aﬂ sinx + A sint ]
and
- . e =
o (A k]
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If a' 1s the eigenvalue of A' and b' is the eigenvalue of B', then the

stability condition 1is satisfied 1if

1 ga" +b'?Y) °
3 bt =1

Hence, the maximum eigenvalue of the matrix A' helps determine the
maximum allowable time increment At. Thus, we shall let sina = sinf = 1
and A' = B'.

Richtmyer and Morton (Ref 109) introduced a technique by which the
eigenvalues of A' and B' may be found. If we consider an axis inclined

at an angle 8 with respect to the n-axis where 6 is given by

1

cosf = o]
s R .
(An> *(Ae)

A

sinf = a8

e

and where the velocity component along this axis is

u' = A cosb +B sinb
11 11

then the A' and B' matrices can be written as

I i N
A' = B' = ( = ) + ( A ) Acos0 + Bsin0d

The eigenvalues for this matrix, in tensor form, are
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J J 3 RN Qf .
A = At u' + a (‘2 )( ‘3 ) costg o+ (‘{ )( )< ) afn
(Y O { W) { N { . {
J KR ( / 2
+ 2 (‘: )( ‘\_' ) sind cost | ( \'l] ) + ( \l )
X, Iy | \ /
[ a 8 ; [ ¢ f a "
A = At u' a ( )2 ) ( )'l ) cosT o 4 ( § : ) ( - ) sin O
s IxX, ! \‘ R \l ‘ \l
4 8 RIN RIS y l ‘

J

By fnserting the largest efgenvalue of both the A'

IX R

|
( An

and B!

) sl cost
{ ,,\

matvices

Into the stability equation, the maxfmum allowable At becomes

an

s\t
X
\\i

N u
INV I .

an

s ( )(ml) 1 (\)(\) 1 .‘(\m)'.n‘,) |
o \ s o T F
RE JIN an) e RE R A%) RE ( RE Anad
X Xy (\n N N (A& N N NAE
This result (ndicates that the maximum allowable At decreases as o and
{ Increase.

Dif fusion Part

The dittusion part of the Navier Stokes cquat tons can be written
as
au AR\ 2y
+ O ) “ ()
at Ty v
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By applying the MacCormack scheme to the linearized form of this

equation, the finite-difference equation becomes

n+l n CAt n

- - == - +
Yo " Yy “ane | %o ~ "% T Bea
DAt n n
- ok 2 +
@62 V1,541 Peg T Y
2~
1 CAC ,I_lu_ L n- n n
ot Pz T Y,y YUy T Wyt ”1—2,1]
2 =
1 DAt n n n n
TFi 0 ! Mope ~ Y ga ™ - Wyy Ui,j-Z]

1 Jcp(Ar)? n e n
*2 ' Gem? o)z [2U1+1,j+1 Wty ™ My g

- 4U au‘i‘ e + 2U 4U + 20

n + n " n n
i,3+1 .3 1,3-1 i-1,3§+1 i-1,j i-1,j-1

Substitution of one Fourier component of the solution
u(n,g, t) = Uy(t) exp [1(k1 n + k2 F,):I

into the finite-difference equation gives the amplification matrix,

which is defined as

Un+1
= _i;!-l - = 2CAt == i 2DAt =
T TS Ryt GRS 0= gys WO0E = 80
1,3
2—
1] CAt 2= _ 2= -
* 2] @Gwe? 2cos”a 2sin‘a - 8cosa + 6 ]
2
1 { DAt 23 n
v e (AE)? 2cos’B - 2s1in’B - 8cosB + 6 ]
1 jepan? = » . s
+ 2 (An)z (Af;) o [8COS(!CO.‘-B 8cosq SCOSB + 8 ] l
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where a = klAn. B = szE, and I 1s the unit matrix. If we let ¢ and d
be the eigenvalues of the C and D matrices respectively, then the

von Neumann stability criterion becomes

The maximum eigenvalue for the C matrix is the larger of the two terms:

e o |2l [fony (o A
PN Sxi Bxi (An)?

280 - 6
I N I At
€ 3pRe (Bxi ) ( in ) (An) ¢

where 8l is the maximum local value of the normal stress damping

function in the x and y directions. For the D matrix, the maximum

eigenvalue is the larger of the two quantities:

4 = =2y 14 LI e
ON dx, x, (AE) 2

o TR (L) (L) _Ac
Sxi 3xt (A%) ©

" 3pRe
where B is the maximum local normal stress damping in the x and =z
2

&

directions. Thus, the maximum allowable time increment for the dif-

fusion part of the governing equations is the smaller of the following

two terms:
PrRke ot oF 1 on on 1
< Prrie S i L Kl or gLt
AtDF-~ Y (Dxi) (Dxi) (A&fT e (3x1) (Sxt (Anfy

__3pRe 3L, A o an on | __1_
pp < | 28 - 6 ( I\xl) ( ax, eyt L axg ) | ax ) @
3




where 8s is the maximum local normal stress damping value in the three

Cartesian coordinate directions.

Mixed Derivative Part

The mixed-derivative part of the governing equations is

U 3 au ] U
a:*"an(ae:)*p’?i(an) :
By applying the MacCormack scheme to this equation results in the

following finite-difference equation:

n+l n HAt [ n n n n
Ui ™ Pig - Bk | Ysaaw T Na g T P Ut—l.j—l]

-

2 r
1 _HAt n e n _ 0
*+3 [éAnAE, ] | Use2,502 7 a2,y T Vi 52 T Uy e
B gl o0 _ sl n
A W et Vs e T Mg P Yen g
where
H=E+F

and where the coefficient matrices E and F are assumed constant.

If we substitute the Fourier term

u(n,&,t) = Uo(t) exp [i(kln + klﬁ) ]

into the finite-difference equation, the amplification matrix becomes

HAE e
G 1+ m’é [ 4 Sin(‘lhillﬁ]

2

[de] Lot - o]

2
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where Q = k An, B = k A%, and I is the unit matrix. The stability
1 2

condition for this equation {is

where h is the eigenvalue of the H matrix. The maximum eigenvalue for

the H matrix is found to be

gl (7B E (gn ) (_g_u ) (3 ) (; ) S
3pRe ax, Ix, Ixy Xy ‘xj .xJ AnAg,

By inserting this eigenvalue into the stability equation results in the

following At restriction:

120ReAnAS

an an RIS ( RIS )
Ax Ix Ox X
X ( X, ( X X

From this analysis, it is estimated that the stability criterion

for the full governing equations is

"
e e e
Atpwy ¥ Mg Ay

where ¢ is an adjustable constant less than or equal to one. The
magnitude of all the damping term constants are set so as to make

the damping effective in the fnviscid tlow region but not to
appreciably change the boundary layer behavior or modify the Reynolds
number. This linearized stability criterion may not insure numerical
stability in all cases (Ref 126), but {t should be valid for the

experimental cases considered.
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APPENDIX D

Elements of the Linearized

Matrix Equations

This appendix contains a list of matrix elements used in the

linearized governing equations.

to determine the

Ay = Ayp =
A2
LVE
Ay
Azs
Aa;
Ays
As2
Asj
Asy

By, = B2z =

B2s

These
stability criteria of
an

A3z = Ayy = Ass = usy

ch %] %]
y oy o

W)
N

S ¢ 92

oim ©lm ©lM

= (1+2ye) p+ic-
= (142y€) psi—
= (14+2Y€) p+i—

Bij = Byy =

o
Pax
3
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matrix elements were used

the numerical integration.
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C22

C2u
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APPENDIX E

Subroutines of the DELTA Code

This appendix provides a description of the important operations
performed by each subroutine of the numerical code DELTA. These sub-
routines are also used in the DELTAl and CONE programs. The order ot
the subroutine descriptions follows the same order used to call them

in the DELTA program.

COORD
Subroutine COORD calculates the first-order derivatives of the
coordinate transformations (as defined in Appendix A). The analytical
values of these derivatives are computed for every grid point in the
computational domain. These values are stored in common block arrays

for easy access during the numerical integration.

PREDICT

The next subroutine used in the DELTA program is PREDICT. This
subroutine calculates the predictor term of the MacCormack finite-
difference scheme. Tt uses the BOUND subroutine to compute the
boundary conditions on the surface ot the bodv and at the leading edge
n+1
i,]

vector is calculated for all computational grid points except the free

of the delta wing. A double DO loop is entered wherein the U

stream boundary points, the surface grid points, and the grid points
opposite the plane of symmetry. Within this DO loop, the subroutines
DAMPF, DAMPG, VECTOR, DECODE, and SOLVE are called in sequential order
to perform the numerical integration. As a result of this partial

integration, the flow quantities are computed for an {ntermediate time
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step t )

BOUND

Subroutine BOUND calculates the pressure and density on the surtace
of the body and at the leading edge. The velocity at these surtace grid
points is zero and the surface temperature is provided as part ot the
fnput data. The normal momentum equation is used to calculate the
surface pressure and then the equation of state is used to determine
the density. In the DELTA program, the pressure and density are com-
puted for both the upper and lower wing surfaces, as described in

Chapter 3. Second-order accurate, one-sided torward ditterences are

used to model the flow gradients normal to the body surtace, while
second-order central differences are used for all other gradieants.

At th> leading edge, the pressure and density are triple valued.
The pressure is determined tor the upper, side, and lower surfaces of

the wing by using the appropriate normal momentum equation. The three

values of densityv are computed trom the equation ot state. When the
numerical integration is applied below the wing, the leading edpge is
represented by lower surtace values of pressure and density.  Similarly,
when the numerical integration occurs above the wing, the upper surtace 7
values model the leading edge on the n-axis. 1o the DELTAL propram,

the leading edge is represented by upper surtace values only.

DAMPE _and_ DAMPG
DAMPF and DAMPC subrout ines caleulate the density damping terms
for the n and { directions respectivelyv.,  These terms are added together
o " n
in the DECODE subroutine to form the tourth-order damping torvms D( |

+1 "
(predictor step only) and DT ! (corrector step only).  The damping 's
J
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coefficients,c, and c,, are read into the program as part of the input

i J

data. The damping terms normal to the free stream boundary surfaces
and symmetry plane and within two grid points of these surfaces are

zero. The damping at the surface grid points is also zero. All the
damping term values are stored in common block arrays for use in the

DECODE subroutine.

VECTOR

The next subroutine used in the DELTA program is VECTOR. This sub-
routine computes the values of the F,G and H matrices as well as the
heat flux and shear stress terms in these matrices. The finite-differ-
ence quotients used to model rij and a are described in Chapter 3. The
second-order derivatives of the coordinate transformations (used in the
H matrix) are calculated by calling subroutine COORDX. The values of
these matrices are stored in common block arrays for use in the DECODE
subroutine.

Subroutine VECTOR is used in both the predictor and corrector

steps. By changing the input parameters when this subroutine is called,
the finite-difference quotients can be easily converted for use in

either the predictor or corrector step. These input parameters are also

used in the DECODE subroutine.

SOLVE

Subroutine SOLVE is used to solve for the flow quantities in the
ntl

e (predictor step only) and Ui j (corrector step only) vectors.
’

i3

The primitive variables u,v,w,p, and e are determined by solving the
relationships in Eq 70. The flow quantities are then stored in two-

dimensional arrays for use in the next integration step.
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= oo

Subroutine SYM uses a DO loop to calculate the primitive flow vari-
ables on the opposite side of the plane of symmetry. By applying Eqs
79 and 80, the surface boundary conditions and the flow field conditions
are determined for the mirror image plane. These flow quantities are

then stored in common block arrays for use in the next integration step.

CORRECT

The next subroutine used in the DELTA program is CORRECT. This
subroutine calculates the corrector term of the MacCormack finite-
difference scheme. It uses the same subroutines as are used in the
PREDICT subroutine in the same sequential order. By applving different
input parameters, this subroutine is able to calculate the final flow

: n+1 g

quantities at the new time step t . These newly calculated flow

parameters are then stored in the same two-dimensional arrays as the

old quantities.




APPENDIX ¥

Conical Velocity Components
and Streamline Plots

This appendix presents a detailed discussion on the conical cross-
flow velocity vectors and on the method, used by Ghia (Ref 139) to
determine the conical streamline contours in the £{-n plane. The com-
puter software for the streamline plots was developed by Cooper (Ref

140) .

Conical Velocity Vectors

Experimental evidence has shown that the supersonic and hypersonic
flow around thin delta wings is nearly conical in the weak interaction
region. In delineating the conical aspects of this flow field, the
velocity components in the spherical coordinate system are used for
flow analysis. ' The magnitude of the spherical cross-flow velocity

vectors is

V = u? + d? (F1)

while the angle of the flow in the &-n plane, as determined by Cooper

and Hankey (Ref 142), is

- d& :
tan Yc tan (w-¢) = an (r2)
where
u
SO u cgs 0
()

When these values are transformed into the conical coordinate system

(delta wing), the magnitude and direction of the velocity vectors

become
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2 ey & 2 Y
§ e -ut) o+ -
: P [(vg w) 2 (u-ui)? + (un-v) ] P
! . 1+n?+82
tan y_ = ( Lo ) (FS) |
c un-v e
» 1
ii The steady state velocity components in the n and £ directions are
: Vn ot PR (F6)
Vg = Ve M0, (F7)
i Conical Streamline Plot
The cross-flow velocity vectors projected on the &-n plane trace
out "pseudo" confcal streamlines. These streamlines represent steady
state path lines of incoming fluid particles. These path lines are
determined by solving the differential equations
§ dn - r
i ® " Y n,%) (¥8)
| R
}
1 dg -
! - - ¢ F
| ac =~ Ve (n,&) (F9)
% The modified Euler-Cauchy method (Ref 141) is used to solve Equations
i' F8 and ¥9 in the form
|
3 t+At
i )
, on=n-n = v, (n,8)de (¥10)
) t
} t+At
N
, AE = & -8y = Ve (n,8)de (F11)
i /
A * *
8 where n and & are the projected locatfons of the next point on the
¥
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streamline curve. Prior to integrating Equatfons F10 and F11, an in-
cremental time step, At, is defined and the initial position of the
fluid particles is established at each nodal point on the boundary of

the £-n plane.

The numerical integration is begun, by initially assuming that Vn

. p constq > x ‘v < <
and VE at (i,J) are constant over the interval n1 <n n1+1 and
* %
SJ <€ < £j+l' This results in a preliminary estimate of n and &
of
4 + VA F12
n ny ot (F12)
E* §, * Vit (F13)
=
3 &

*x %
The velocity components at (1 ,] ) are determined by linear inter-

polation as illustrated in Figure F1.

i,j+1 l i+1, j+1
I
Az | As ”/’/;:ronmllno
Curve
s 1;7}* WO (e
|
T
1 l Y
|
1,4 | 1%E,d

Figure F1
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where

. 1
v «= (v A +V A +V A (F14)
N ( Yy ¥ “wag ? N41,4+1 1
+V A
Ny,341 ")
v*-l(v 4 A +V A (F15)
EANE 4y By 2 Syngn it
+V A
&4,501 “)
and where
* *
A‘ = (& -EJ) (n '”1)
3 *
Az - (Ejﬂ—i ) (n ‘“1) (F16)
e %
A, = (€ ymE) (=)
* *
A, = (5D (nyyyn)

A=A +A +A +A
1 2 3 b

Y
By averaging the appropriate velocity components at (i ,] ) with
* *
those at (i,j), an improved estimate of n and §{ 1is obtained. This

improved estimate is

fen ek +v N2 F17
L Wy X3 ny n : (F17)
* 1 *

; 5+2<VQJ+VE)“ (F18)

* %
The velocities at the new (1 ,J ) are recomputed, by linear inter-

polatfon, and then the new location and velocity vector are used as

{nitial conditions for calculating the next point. This integration

process is repeated until the maximum number of time steps is reached.
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