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I. INTRODUCTION

In this paper, the pressure correlation function for a single boun-

dary layer over a flat plate wilL be derived for the subsonic flow regime.

Numerical results will be given based on experimental measurements of

the magnitude of the mean and fluctuation velocities in the boundary layer.

One application for this work is that of the propagation of a laser beam

through a turbulent boundary layer. Another important application is

that of the generation of sound by boundary layers over flat surfaces.

There has been a tremendous amount of work directed toward

questions relating to such boundary layers. This work has in the main

been experimental, because of the complexity of the equations governing

fluid flow. Kraichnan 1-2 has produced theoretical estimates of pres-

sure correlations at the boundary. Other literature can be found in

standard references.

Index of refraction fluctuations, important to optical propagation,

are primarily dependent upon density changes. Density fluctuations can be

caused by pressure and/or by temperature fluctuations. As a result of

recent experimental information and some estimates, it has seemed rea-

sonable to concentrate first upon the effects of pressure fluctuations. For

now we neglect temperature effects and treat these effects in a later paper;

in effect we suppose that the flow is adiabatic. We assume air is an ideal

* gas. A sketch of the boundary layer is shown in Fig. I.

A -3-
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Since we are interested here in subsonic flow regimes, it is possible

to treat the fluid as approximately incompressible. It is true that the mean

flow Mach number approaches unity. Nevertheless, the velocity fluctuations

(determining the pressure fluctuations) are cor.siderably smaller than mean

flow values and their Mach number is small. (The question of whether or not

one can treat a flow as incompressible is governed mainly by the Mach number.)

The incompressible equations of motion, the Navier-Stokes equations, and the

equation of continuity can be written

+ u.Vu =v 1 p + vV2 u (1)
0

and

v. u= 0 (2)

The notation in these equations is standard. The density p0 is assumed con-

stant; the dot over the velocity in Eq. (0 represents the time derivative of

that quantity.

The equations of motion are of course very complicated at this level

of generality. zFor turbulent boundary layers there are some useful and

realistic simplifying assumptions. The boundary layer grows very slowly

in the down-stream direction: the characteristic length in that direction is

much greater than the thickness of the boundary layer. To good approximation

we may assume that the averages of all quantities are functions only of the

direction perpendicular to the wall; the mean flow in particular depends

mainly on that direction. Consequently, the drag on the flow is approximately

•, - 5-
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constant in the down-stream direction; hence the pressure gradient (which

overcomes that drag) is likewise constant. The Poiseuille flow problem

fulfills these approximations exactly and is discussed in this connection in

Appendix A. We assume that the flow is statistically stationary, so that

averages are independent of the time at which they are taken.

The definitions of some quantities to be discussed here are shown

in the figure. The y-direction is perpendicular to the plane of the page.

The components of the position vector and of the velocity in the

three Cartesian directions are

r (x, y, z)= (rI, r 2 , r 3 )

and (3)

u= (u, v, w)= (u 1 , u 2 , u 3 );

the choice of component representation is made as convenient. Other

vectors below have similar representation. We write the velocity and

pressure in terms of mean values and fluctuations

u + u .T (z) I+u
(4)

p= p+ p'

Here u is taken at r__ and (later) u" at r" and similarly for p and p".

The essential method to be employed in this work is the following:

take the divergence of the incompressible Navier-Stokes equation. One

finds a Poisson equation for the pressure where the right Lide (source term)

under our assumptions consists of second-order velocity fluctuations and

terms r-uartic in such fluctuations. The former have mean-velocity gradients

S~- 6-



as coefficients. The Poisson equation is solved for the pressure fluctuations;

the correlations (and variances) of the pressure are constructed from this

solution. The quantities so found are integrated numerically.

In Section II the pressure correlation function will be derived with

contributions retained through the fourth order in velocity fluctuations.

Section III is concerned with evaluation of the fourth-order contribution to the

pressure correlation while Section IV deals with the second order term.

Numerical techniques used in calculating the correlation function are given in

Appendix E. Numerical results and conclusions are presented in

Section V.

II. DERIVATION OF THE PRESSURE CORRELATION

From the above assumptions (see Appendix A)

- ,2(z'
p = -ax- w (z) (5)

where we refer pressures to the pressure at the origin. Now take the

divergence of Eq. (1) using the incompressibility condition given'by Eq. (2)

and find (with 7 2 the Laplacian in r - space)

V 2 p(r_, t) -P -ua(r' t) u0(r' t) (6)

written at the point r . We use the summation convention: a repeated index

in a single term is to be summed from one to three. If now we substitute Eq.

(4) in Eq. (6) and average we obtain an expression for the average pressure,

noting from Eq. (4) that averages of the fluctuations, u' and p', vanish.

S~-7-



Subtract the averaged equation from Eq. (6) to find the following relation
for the pressure fluctuation (the time-dependence is implicit),

- Po 0 3r' 6r' u(Z V u U , u

a2 H (' 
7

WVe use the brackets, ( or the overbar for time averages, as convenient.

The laste (average) term in Eq. (7) is a function of z' alone under our boundarylayer assumptions. The Kronecker delta has values: ij= 1, i= j and equal

zero otherwise.

In order to solve Eq. (7) we need the Green's function for the problem.
It is recalled that the flow is confined to the half-space above the plane (see
Fig. 1). The boundary conditions on the pressure at the plane are not
simple and, in fact, stated exactly would involve fluctuating quantities. An
approach, which in some ways simplifies the treatment, is the following.
First, our problem consists of a plane which exerts drag upon the flow, and
the complicated flow Lbove the plane, confined of course mainly to the boun-
dary layer. This problem can be replaced by an equivalent problem. Suppose
that we construct a flow below the plane which is the mirror image of the actual
one above it, and replace our problem by the original flow plus the imaged
flow plus a force; the boundary-layer plane of course exerts a drag upon the
flow and when we remove that plane we trust insert a force equal to that drag.
Fortunately this force is negligible (see Appendix B). We proceed with the

i-8



situation as described consisting of the actual, physical flow and the mirror-

imaged flow. Then the Green's function needed for the solution of Eq. (7) is

the free space Green's function for the Laplacian operator--essentially ._r

Further, we suppose that all fluctuating quantities, pressure and velocity,

vanish sufficiently far outside the boundary layer regions, whether in tile

physical flow or the mirrored flow. Then all solutions of the homogeneous

equation derived froin Eq. (7) (that is, s-blutions of Eq. (7) with the right
4

side equal to zero) must vanish. The solution of that equation becomes

. .r -r' 1  H (r )dr'-r' BrI 0 -0

with, as above,

Iu' u+ f (8)

The velocity functions, and integrals involving them, extend now over all

space (they are, as stated, primarily confined within the boundary layer

and the mirrored boundary layer).

To find the pressure correlation from this, write Eq. (8) for the

pressure at the point r" and multiply that equation by Eq. (8) at the point r

and average to find

S~-9-



- \Ir - (

p 4 (H (r'r' t (rdr

re4 r 1 6 r'-Y ;5~o (Y r_ V6 ro qt

The question of convergence of these integrals is of primary importance.

Suppose the integral over r' is performed first; we can expect that the cor-
U I

relation in the integrand will vanish for r0 sufficiently different from r.

so that the integral will be convergent at infinity. Furthermore there is a

question of convergence when r - - vanishes. The differential

element of volume dr 0 will take care of this apparent singularity. There is

however, more difficullty with the outer integral over L4, in particular at

infinity for that integral. This is a familiar problem if one attempts to

deal Eeriously with a pressure representation as given in Eq. (8). The fact is

that there is a considerable amount of cancellation in that integration process

which results from the fact that the integrand of Eq. (8) is a quadrupoLe source

for the pressure field. The proper way to deal with this difficulty is to inte-

grate Eq. (9) by parts using the derivatives with respect tc r. This is

what will be done below. When that manipulation is carried out we have

#3
the factor I- r' replaced, for - large,by something like r'" 3

which will give a convergent result at infinity. Then one might expect

difficulties at the singular point I1 - = 0. Fortunately, the integral

is also convergent there, because of angular cancellations. The difficulties,

which arise at the singular point when we integrate by parts, are discussed

in Appendix D.

-t0-



Consider the correlation in the integral (9). It consists of second-

order, third-order and fourth-order velocity correlations, the second- and

third-order with coefficients involving the mean flow. To begin, we note

that third-order velocity correlations are usually very small compared with

even order correlations. Indeed, for a velocity field with Gaussian statistics,

odd moments would vanish. In actual flows the odd moments of fluctuating

quantities are typically very small. We neglect them.

There have been many measurements made of second-order velocity

correlations but rather few of fourth-order correlations. We make the

reasonable assumption that the velocity field is not too far from Gaussian;

then the fourth-order velocity correlation can be written as follows

(u'uu, "u' (r =, r"Q (o', -o)

# #
(10

4. Q O0(tE)QY6 (L4. zo)

the result of this Gaussianity assumption is that the fourth-order velocity

correlation can be written in terms of quadratic expressions involving the

K second-order correlation. We have defined the second-order velocity

correlation:
#

Q. (11)O)=

We let the pressure correlation be represented by

c (C(1) + )
PP Pp pp

-

A 11
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where

pp~~~ r~WjI-±o no0 ) ~ ~ r~
TTOy 06C( (1)p1 JffP°I , -1 • - -1 # rpprbr - roo B''ro • r B~ro8r0

(13)
X -Uz )U(" 6 Q , (,, d ,4

. C ( 2 ) P o • 2 ' # - - a 4
-p •-/ Ir -L o! Ei-ji a " Ob, b,

SPP b~~ro ro, 06~ eo

(14)

X 2 C 6 to, ro) Q6 (rLo ' ) d4.• dr0

In this last equation the symmetry under index interchange has been

utilized. Further, the last term in the fourth-order correlation given in

Eq. (10) (that last term representing simple averages) is cancelled by the
1-2

last term in the function HOLO given in Eq. (8). Kraichnan has con-

sidered the problem of the pressure correlation at the boundary-layer wall.

He made some progress in the estimation of the size of the correlation co-

efficients. One of his conclusions was that the first integral, C (1), was

more important than the second discussed here, the reason being that the

first involves the mean-flow velocity whereas the second involves only the

(smaller) velocity fluctuations. We carry both of the contributions to the

pressure correlation and will determine through computation whether the

assertion is justified or not. There is some reason to question it, despite

its apparent reasonableness. Measurements of rms pressure fluctuations
at the wall give values which appear to be - Po 1

r.p rather than y. p0 u u,

as would be the case if the mean flow term dominated the result. To proceed,

further (reasonable) simplifying assumptions are required. First, for the

; -12-



integral c we suppose that the second-order velocity correlation can be

written,

Q z U, Z# u
Q6 (trO'-O) = u'(zO) u0 ) 0

with ro = 1-0 0

I/Z (15)

(/Z

and #(z0) = (• Z ()

where Q () is the normalized second-order velocity correlation for homo-

geneous and isotropic turbulence (normalized by the rms values of the velocity

fluctuation in one direction). Here we have used a normalization involving the

velocity fluctuations at the two points - and ". The normalized second-order

velocity correlation has an outer scale which is approximately the distance

from the wall; for that scale we choose M. The scale M is defined as

M-1 = [(z 0 ) -I + T -1] where T is the thickness of the fluctuating boundary

layer, defined as the distance from the wall where U attains 0. 9 of its

maximum value. This T is greater than 6 (the displacement thickness defined/?-
by 6 = [ - ulZ)±]dz ). It was felt that this value T was appropriate here,UO

rather than the smaller 6. The substance of this assumed form is that we

propose that the second-order velocity correlation is locally isotropic, but

corrected for the variation in strength of the velocity fluctuation over the dis-

placement vector i.. The nature of the second-order velocity correlation for

homogeneous and isotropic turbulence is well known through wind tunnel

1 -13- 7TiL



measurements. Later we shall take numerical values from standard

5literature references . In fact, for our incompressible flow problem,

the correlation function becomes, for large Reynold's numbers, essen-

tially independent of the Reynold's number: a universal function. Con-

sequently, for different boundary layer measurements it will not be

necessary to change these functions. The normalized velocity correlations

for homogeneous and isotropic turbulence can be written

*(r' -f(r/M) - g(r/M) r.r. + g(r/M)6.(
Q..(r)= 2 r . ~rM6i (16)

r

The f and g and i (r) are simply behaved functions of r/M where M, the

"distance" from the wall is the outer scale for the velocity correlation as

proposed above.

For the second-order velocity correlation (dropping the scaling

factor for now) it will be convenient sometimes to use the notation

Qi* (r) = Ql(r r + Q(r6 (17)

with the functions QI, Qa f and g related as shown. Finally for

incompressible flow one can write the function g in terms of the function
5

f as follows

g(r)= f+ 1/2rf' (18)

and of course there is a corresponding relation between Q and Q The
1 2-
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relation Eq. (18) follows, as indicated, directly from incompressibility.

That condition can be written

Q.. =-rQ.=O0 (19)
1 1 r

The relation, Eq. (18) is obtained from this by differentiating Eq. (16).

If we substitute from Eq. (15) to Eq. (19)into Eq. (13) we find

a2
- -n- QG3 (ro -- r)I

L 0

In order to proceed further with this term, simplifying assumptions

must be made. For now we will consider the more complicated fourth-order

contribution and return to the evaluation of Eq. (20) in Section IV.

III. DETERMINATION OF THE FOURTH-ORDER CONTRIBUTION

TO THE PRESSURE CORRELATION

Continue now with a discussion of the term C(2) given in Eq. (14). For
pp

the term C (2) we take for the second-order velocity correlation the following
pp

Qij(• " u2 *

15



where our boundary layer assumptions mean that ul 2 is a function of only

z0. Substitute this relation for the velocity correlation into Eq. (14). Then

integrate by parts and use Gauss' theorem to obtain the result (see below for

I),

(P fr' ar" --r "r. j 0 I B(•r g (22)

From Gauss' theorem one also obtains integrals over the surfaces bounding

the region of turbulence. Those surfaces are taken outside the physical flow

and the image flow; on those surfaces all the fluctuations vanish so the sur-

face integrals vanish. There is also the question of the singular points which

arise when the denominators of Eq. (10) vanish. It is shown in Appendix D

that these singularities in fact cause no difficulty. We have used new variables

in Eq. (22) (as above and as follows),

--" -r- (23)

and

# I,• •=r "-O

"and defined the integral

I•.;y(_) f/0 I 1 .(., 1 Q(y.) Q*6(4). (24)

Substituting from Eq. (18)into Eq. (24) we identify the following different types

of terms for that integral:

i -16-



1(a) +(bl) +(b2) +I (c) (25)
av58 + ;'v68 +Y88 +'Y 6

(a) drL8 - Q 1 2 (ro) c r 0 8 rOB r 0 6  (26)

=AI(t) F 8kts 5+ ±A(t) tY 6 V8+ + . ] (2 6 a)

+ A (3) -Y 68 + V, %s +6 6~y J,

where the coefficient of A (2) has the six permutations of the indices, two-

by - two
I(bl)68( )

fdr0 I. - r~oIl Ql(r 0 ) Q2 (re) r 0 c roy (27)

.[Bl() t, + B 2 (,) 6 B 68 ; (27a)

S(b2) (b1) (8
:'I = ; (28)

I (c) f d4 £ Q (r- ) 9 6 (29)

=C(')6 6 . (Z9a)

We know the integrals must be of the forms of Eqs. (26a), (27a) and (29a)

bt~cause of their vector (transformation) properties. One must now find the

functions AI, A 2 , A 3 , B 1 , B 2 and C. These functions are evaluated in

Appendix C. For substitution in the integrand of Eq. (22) we must evaluate

the second-order derivatives of the integrals given in Eqs. (25) - (29a).

Again, by the vector properties of the expression we know

-17-
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S d§ O6(_- D, to, t + Dz(• 6O (30)

Substituting the results given in Appendix C into Eq. (30) and adding the

coefficients of corresponding terms, we find for the functions D1 and D2

z 5 39
DI() 4 - E + 9" E 6 + +3" G2

z1 (31)

S4z 2 2 •-3

D2 (t) 4 E + I E - TS" E + ± F
+T 1- 5 1 3E 5 6 +3 1 (32)

z -3 _ -3 G4F - F4 G 2

These expressions may be simplified by the use of Eqs. (16) - (18)

yie Iding

D,• 4f 12, E •+ 7g-5 E (g) (31a)

D 2lt) =15 12 E 1(9)+ 79- 5 E 6Mg+ 10- 2E 3 (t)+ I 0g' 2f 2lt)l

(3 Za)

Equation (31a) unlike Eq. (31) is easy to evaluate at • = 0 and differentiation

w. r. t. 9 is more easily accomplished.

Here E (x), F (x) and G (x) are defined by the expressions
n n n

j -18-



f rn q(r) dr, n odd

x
and (33)

Srn q(r) dr, n even

0

with q(r) = Q 1 (r) for En; q(r) = Ql(r) Q 2 (r) for Fn; q(r) = Q (r) for Gn.

Substitute Eq. (30) into Eq. (22), use the known relation

VE I L2 1- 11I -41(r_' -(), (34)

define

C(2)= c(2a) + c(2b) + C(2c) (35)

PP pp pp pp

and find for the term involving D2 ,

C(2a) = -41T 2 Eu' (z') ] (3 5a)pp

with r = r" - r'. The other contribution, from Dl, [C(2b) and C(2c)] is; ---- - " kPP t pp

more complicated. To simplify, use the definition of [Eq. (23)] to write
2 -1 2

r - r - and noting thatn -Ir- - Ir- I find

r _ (- (36)

Using •. r = - +, r - r - 2 we have for the right hand side of Eq. (36),

-19-



3 2(24 + 1(7

1 13-7I-

Substitute Eq. (37) and the first term of Eq. (30) into Eq. (22) to find (aside

from the delta function contribution at the singular point r - ", given below)!10

C ( 2 b ) 2z2 1 / 2 , P O 2 d0 3 Up4 Zd-t 3c D311 2PPZb (z' ,(x
2 + Y2)1~ z) = 4'" (IM zM~ )fPPD~ 2  21

_ d)2 2(r2 2) + 1 1 - (38a)

f_ Ir-gI' 1I j I r -tj

where . + 3 and M = (T-I + Iz' - 3 1- 1)-l. Note the scaling factor used

in Eq. (16) has been used explicitly in Eq. (38). This scaling also applies to

Eq. (35a) and Eq. (38b) though it is not shown there. The apparent singularity

in the neighborhood of r = .1 in the .2 and ý3 integration is in fact in integrable.

This is most easily shown by using spherical coordinates about the origin;

convergence results from the angular integrations.

The last contribution comes from the delta-functionat r = 9; care must

be exercised in order not to lose this portion--as cautioned at the end of

Appendix D. It can be found by taking the integral of the term involving DI(9)

in the volume Ir' . e I €, c very small. We have for it from Eq. (22)

and the first term of Eq. (30),
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/p f20 0 r 20

Following the result given in (D-7) this is

C(cp Pb?° 4 , 2
S=6- u (z )r D l(r). (38c)

In Appendix F, the techniques used in the calculation of Eq.

(38) will be discussed. Consider now the second order contribution.

IV. DETERMINATION OF THE SECOND-ORDER

VELOCITY CONTRIBUTION TO THE PRESSURE CORRELATION

It is plausible to expect that the second-order velocity fluctuation

terms will dominate the fourth-order; this has often been suggested in

the literature (see e.g. Ref. 1). We shall see from our computations that

this is usually- -though not always--the case.

In the determination of the second-order contribution several different

assumptions were considered. The assumption finally chosen as the most

tractable was that the prime location replaces the double prime location except ir

o0I303"* 
0Z # u2 Q33 # -I

az 0  J3 0

U o u'(z') (---E E) (39)
(z? )0 0 a ,2 33I
0 ~ 0

I .I



This is reasonable for Q -40 as - becomes large; it is consistant
33 L0 O

with the approximation made for the fourth order contribution in Eq. (21).

Inserting Eqs. (39), (23) into Eq. (20) yields

( o2 f )]2 -i 2 fdroQ3( to)
pp _T .0  Z0/ 0 .. 1 72 J r

Analogous to treatment of the fourth order contribution, define

I f~) df.0 KO•. * (E_0) = Al,) g B+ A (6a + B ~g6
a a8 2 a

(41)

where A2 is determined first by, using the double cross-product with the

vector _ and then A is determined by taking the inner product (summing

on the indices). Using results from Appendix C.

Bz 2 () 4• "r 2 Y

AB(C) 4W- T g +'• +

where r, Fare defined as in Eq. (33) except that here q(r) = Ql(r) for Yn and

• -2Z-



q(r) Q 2 (r) forFn. Using these expressions and Eqs. (16) - (18) we

have the scalar function

'--z I3() 4i
22

S~Dl(C) = 3(C) = 41T t23 [7C-7't (g - l7) - C'N ()
331 t36t l() 6

[f( - -(-56 (9)]/) (421

Substituting Eq. (4Z) into Eq. (40) and taking into account scaling results in

PP = P f d 3[ (1 '(z 31) u'(I z 1-3I )]2 f pdp D1(Ir)- d•
PP 27 0 0

(43)

where ¢ is the angle between the projections of _ and r in the x-y plane.

Noting that 21 2= p2Cos2(C- 2 ) with c~is the angle between the projection

of r in the x-y plane and the x axis unit vector allows Eq. (43) to be written

as

C(l) (x,p y. z, z') = C(M)(1, 0, z, z') cosr2 + CMpl(0, n, z, z')sinz a (44)
pp pp pp

where i Vx+ yand g1 is replaced by p cosr O for the argument y = 0
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and p sin 2 for x = 0. The cross term vanishes for integration over 0.

V. NUMERICAL RESULTS AND CONCLUSIONS

This section contains numerical results and conclusions based

on calculating the pressure variance and correlation function from Eq.

(38) and Eq. (44). For the interested reader the details of the calcula-

tion may be found in Appendix E and supplemental numerical

results may be found in Appendix F. In order tc present re-

suits which are cohesive a brief step-by-step procedure for obtaining

the numerical results is presented with equation and figure numbers

prefixed by letters referring to the corresponding appendix. Some of the

results presented here should more reasonably have been presented in

Appendix F; however, they are presented here to show the reader how to

calculate the pressure variance for his own boundary layer data without

referring to the cited appendices.

In order to obtain numerical results, all intermediate functions

were calculated and stored in the computer in tabular form. Numerical

integrations were preformed by Gaussian Quadrature integration techniques

with the interval step size determined by an accuracy criteria of one part3
in 10 . Values of the functions not in the table were obtained by linear

interpolation of the log of the function for positive functions. Ciose to the

origin or for negative functions second to fourth-order Lagrange inter-

polation techniques were used. The calculation starts with the definition

of the longitudinal, f(r), and transverse, g(r), velocity correlations (16).

These may be taken from experiments. In our calculations we must

i-.,24- L,



differentiate these functions: a smooth representation is needed. Thus we

use the calculation which has been made using the Weiner Hermite
6

expansion . Those results fitted large Reynolds' number experiments

very well and were differentiable. The second step in the calculation

is the definition of QI(r) Eqs. (16)-(17). Using f, g, and Q the functions

DI(r) Eq. (31a) and D 2 (r) Eq. (32a) are determined by numerical integration

Figure 2 shows the results for D 1 (r). After the angular integration in Eq.

(38a) has been performed analytically and the results expressed in terms

of the complete elliptic integrals, a change of variables and an integration

by parts is made on the p coordinate. This technique removes a numerical

convergence problem but requires the evaluation of the first derivation of

Dl(r) which can be obtained from Eq. (31a). Once the flow field turbulent

velocity, u' (z), is determined, the fourth-order contribution to the

pressure correlation and variance can be obtained directly (see

Appendix F,). Results for this calculation are presented later in this

sec.ticn. As an aside the fourth-order contribution to the pressure vari-

ance can be written as

2

(2pp (z', o0) =- L-[u'(z')I Dz(O) + d 'z + 3 (xx)MI (E33)
2f 2 1d 3 [u (z+'I ~xM

where

M(xx) d9 Dl(0)
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10

r D1 (rW

0.0 21.33
0.04 18.92
0.08 14.25
0.12 10.52
0.16 8.408
0.2 7.038
0.4 2.797
0.6 1.441

D1 r .P.8 0.8224
.1 1.0 0.497

1.4 02014
1.8 8.994E-2
2.2 4.331E-2
2.6 2.220E-2
3.0 1.199E-2
4.0 3.140E.-3

.01 5.0 1.050E-3
6.0 4.233E-4
7.0 1.958E-4
8.0 1.005E-4
9.0 5.575E-5

10.0 3.292E-5

S~r
! ~.01 .

SFig. 2. D1 (r) var
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xx 3M (E4)

M (T- + I z' + %3 -I))I

D 2 (0)= -0.54154

and T is the thickness of the boundary layer. The function M is plotted

in Fig. 3; the reader may obtain the iourth-order variance for other,

particular, experimental values of uz)

We now consider the second-order contribution to the pressure vari-

ance and cor-relation functions. From Eqs. (43)-(44) it is seen that D(t)

is required. This scalar function is obtained using Eq. (42) and the defini-

-7-
tion of § Z 6 o() defined after Eq. (41)]. The interested reader may then

obtain the second-order pressure variance directly from Eq. (43). First it

is noted that r = 0 implies that the angular integradion can be performed

2analytically yielding a factor Tr for terms not including t and TT/2 for

terms with -. The integral over p is then calculated as a function of 3

and normalized by 4TMIM This function is tabulated in the computer and

used in Eq. (43) to obtain the variance for any boundary layer. This func-

tion is plotted in Fig. 4. In order to obtain the second-order correlation

the angular integrations for Eqs. (43)-(44) are also performed analytically

and lead to the tabular function B(x) Eq. (El0). The calculation of CM
pp

then proceeds via a double numerical, integration (E12), given the flow

S_27.t



1.0

xx M (xx)

0.0 4.519
.1 0.1 2.770

0.2 1.859
0.3 1.329

-' 0.4 0.9894
0.5 0.755
0.6 0.5864
0.8 0.3673

.01 1.0 0.2386
1.4 C.109
1.8 5.411E-2
2.2 2.877E-2
2.6 1.617E-2
3.0 9.569E-3
4.0 3.1 08E-3

.001 5.0 1.233E-3
6.0 5.528E-3
8.0 1.186E-4

10.0 0.0

.00011 1S101

Fig. 3. Function M (xx)
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-101

C3DBO

0.0000 -1.8856E-1
5.0119E-3 -1.8658E-1

.10-2 1.4962E-2 -1.8275E-1
2.5119E-2 -17903E-1
3.5481E-2 -1.7541E-1
5,0119E-2 -1.7049E-1
70795E-2 -1.6400E-1
8.9125E-2 -1.5862E-1
0.1496 -1.4277E-1
0.2512 -1.2120E-1

10 0.3548 -1.0363E-1
0.50119 -8.4260E-2
0.7080 -6.4120E-2
0.8913 -5.1030E-2
1.4962 -2.5620E-2
2.5119 -9.3220E-3
3.5481 -3.8030E-3

-10" 4  5.011" -1.2790E-3
7.0795 -3.5060E-4
8.9125 -1.3840E-4

.01 .1 1 !0

Fig. 4. Normalized Integrated Value of D1 (,) as a Function cf
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field data u 3 U . Graphical results for f(r), g(r), Ql(r), D 2 (r), Dl(r),

-7-31 
2

and g E 6 (t) are found in Appendix F.

In order to obtain specific numerical results, flow field quanti-

ties must be given.

The flow field quantities necessary to perform the calculations

are the normalized mean turbulent velocity used for the calculation of the

Cý? term and the burbulent fluctuation velocity in the z direction multi-

plied by the derivative of the flow velocity in the x-direction, which is

used in the calculation of the C (I) term.
pp

Our calculations were carried out for two separate boundary

layer flows: first, for a thickened turbulent boundary layer relating to

experiments carried out at NASA-Ames. 7  The thickened

layer was generated by a flow of approximately Mach 0. 9 and a Reynolds

number of 3 x 10 6/ft. The thickening came as a result of upstream pins

and spoilers projecting from the wall over which the boundary layer

formed. The second boundary layer for which calculations were made

was an idealized one (called here the canonical boundary layer). Data

were taken from earlier experimental work with such boundary layers

(Hinze, Ref. 8, Figs. 7-4 and 7-10). The flow field quat-tities neces-

sary for the calculation are presented in Figs. 5-8 vs. the normalized

distance from the wall. The normalizing factor for all distance measure-

F ments is the displacement thickness 6 defined previously. Figures 5-6 are

for the experimental case while Figs. 7-8 are for the canonical case. For

these two flow fields the normalized (normalization factor P Zu4 /4)

_30-
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variance and correlation functions are calculated. In Figure 9, the

normalized pressure variance for the thickened (experimental) boun-

dary layer is shown. The variance at the wall and at the peak (which

here occurs at the distance of about 2.25 displacement boundary layer

thicknessies) are larger than the corresponding values (see below)

relating to the canonical boundary layer, probably because of the greater

value of the turbulent fluctuations farther from the wall. The position

of the peak of the variance is considerably farther from the wall for

this thickened experimental boundary layer than is the case for the

canonical layer. This is probably again a result of the fact that the

thickened layer shows greater turbulent fluctuations farther from the

wall. It is noted in Fig. 9 that the fourth-order velocity-fluctuation

contribution to the pressure variance is slight, amounting to at most but

a fraction when compared with the second-order contribution. In Fig. 10

we show the corresponding variance for the canonical layer. The variance

is essentially the same as the measured values given in Ref. 7. Here the

fourth-order contribution is a considerably larger portion of the total

pressure variance than was the case with the thickened boundary layer.

The suggestion is that for well developed idealized boundary layers it may

not be valid to assume that the fourth-order contributions may be neglected.

It is further noted that in this, canonical, case shown in Fig. 10, the peak

of the pressure variance occurs extremely close to the wall (0. 04 6),

essentially in the vicinity of the laminar sub-layer. This comes about

because the velocity..fluctuations tend to peak sharply within that layer.8
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SFig. 9. Normalized Pressure Variance -Experimental Boundary Layer
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The normalized correlation functions are shown in Figs.

11-13 for the experimental, thickened boundary layer. In Fig. 11, the

correlation in the z-direction normal to the wall is shown for a base

position located at the wall and in Fig. 12 the corresponding correlation

is shown for a base p3sition located at the position of the peak variance

for that boundary layer. In both cases the fourth-order velocity contribu-

tion to the pressure correlation is slight. It is noted that the correlations

nave a long tail, retaini-ag 10% of thcir value, even out to 9 boundary layer

thicknesses. In Fig. 13 the x- &nd y-correlation functions, that is in the

streamwise and transverse (or spanwise) directions are shown for the

experimental, thickened boundary layer. It is interesting to note that

the x-correlation shows a marked negative lobe; the other correlations

remain positive. The scale !or the three correlations is essentially the

same. In Figs. 14-16 the normalized correlation functions are shown

for the canonical layer. It is seen in those figures that (again) the fourth-

order velocity-fluctuation contribution to the pressure correlation, though

smaller than the second order, is in some ranges appreciable. Scales of

the correlation functions in the three directions are essentially the same,

the displacement thickness. The x-correlation (in the streamwise direc-

tion) shows a slight tendency to go negative, but this is not viewed as relia-

ble. It is interesting that the measured pressure correlations at the wall

likewise show no negative lobe (as is found experimentally, see Willmarth

and Woolridge, Ref. 9).

To sum up, the fourth-order contribution to the variances and

corrolations appears to be negligible for the thickened experimental

-38-
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turbulent boundary layer, though in certain regions it would be necessary

to include it for the canonical boundary layer (where the velocity fluctua-

* tions are confined for the most part to regions very close to the wall).
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Appendix A

POISEUILLE FLOW PROBLEM

ft4 - There is a problem which exactly satisfies the assumptions made

for the single boundary layer problem. It is the flow between parallel

plates -- called Polseuille flow. Consider the turbulent flow between such

plates, where the Reynolds' number is large enough to generate two (tur-

bulent) boundary layers, one associated with each of the plates, and a

central region of lesser fluctuation intensity between the plates. It is

plausible to suppose that each one of the boundary layers is related to a

single boundary layer over a single flat plate. There are some differences

between the two fluid flow problems; e. g., in the flow between flat plates

the central region shows a residual level of turbulent activity which exceeds

that observed outside a single boundary layer. Further, we know that

a single layer increases (slowly) in thickness downstream; this doesn't

occur for the Poiseuille problem, in equilibrium.

In our application we can, as stated, treat the fluid flow as one

which is statistically stationary, that is, a flow in which all of the (time)

averages are independent of the time at which the average is taken.

Furthermore, for the parallel plate problem after the flow has developed,

the flow may be assumed to be statistically homogeneous in planes parallel

to one of the plates. All averages depend only on z, see Fig. A-1. (It is

not assumed that the flow is statistically isotropic.) It will be seen that

these conditions permit considerable simplification in the statistical

quantities which we need. The geometry of the flow problem Is sknown in

the sketch.

-49-iOda



I2h
Fig. A-I. Sketch of Turbulent Poiseuille Flow; the y-axis is

i 

perpendicular 
to the page.
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We use the notation given in Section I. It is easily shown from Eq. (2)

that ._ u u'= 0. If we substitute Eq. (4)into Eqs. (1)and(2)anduse statistical

homogeneity (in planes) and statistical stationarity we find after averaging

1t 1.2
(Z) J u'v'(z') dz'+ - (za- h) (A-1)

0 (A-i)

U' W' =v' wt 0

P_ =ax - w (z) (A-Z)

recalling that averages of terms in Eq. (1) depend at most on z. Here a is

the pressure gradient in the downstream direction; it overcomes the viscous

-drag of the plates upon the flow.

To relate these results for the parallel plate problem to the single

* •boundary layer problem, we replace the parameters a and h by the gradients

of the pressure and velocity at the z = 0 plane. Eqs. (A-i) and (A-2) be-

come

a= -p/P (A-3)

* iand

h a u (0) -Vpu (0) (0) (A-4)

where the argument equal zero represents the value of the function at the

plane z = 0, and the subscripts x and z indicate the derivatives with respect

to those coordinates. We can substitute Eqs. (A-3) and (A-4) into Eqs. (A-i)

and (A-2) to obtain averages for the related, simple boundary layer.

- 5i
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Appendix B

EVALUATION OF SURFACE FORCES

We begin with the stress on the boundary layer, exerted by the

wall on the fluid. The general stress is

li3i + 3) V., (B-i1)5ý3 =P~i3 Va-z +

with the boundary condition

u = 0, on the wall,

so

au _- v = 0, on the wall.
8x ay

Thus the continuity equation gives

_w = u , on the wallaz 2x X ay

From these relations the force per area exerted by the wall on the fluid is

AC v

zu z. jv + (B-Z)

where i, j and k are unit vectors in the x, y and z directions.

In the body of the report the image flow is discussed; it is remarked

that a force must be added when the wall is removed in the imaging process.

Thus a force term must be added to Eq. (1), to represent the drag of the

wall; the pr - tire force is correctly given, by the pressure of the imaged

flow. The equation for the imaged flow problem, which replaces Eq. (1) is

from Eq. (B-2)

+p+ u- u Vu + V7u) 8(z).

4u -- 53-



with 6(z) the Dirac delta function. To obtain Eq. (8) we took the divergence

of the equation now replaced by Eq. (B-3). Thus the wall stress gives an

added term to Eq. (8) which is

a (z6)d (B)-T1-70 fx0 -E• 41V :04

Suppose we integrate over z0' and compare estimates of the integrals of

(B-4) andof Eq. (8). Near the wall the scale in the x and y directions is of

order 8, the thickness of the boundary layer. For (B-4) the scale in the

z- direction is the thickness of the laminar sublayer whizh is of order

v ) 1/2
)(8-5)

Then, for example, the first term in the integrand of (B-4) is of order,

after z0 integration

2Z,
u Vu (B-6)

Tne corresponding quantity in Eq. (8), after integration in the z0I direction, is

of order

u (B-7)

or bigger. The ratio of (B-6) to (B-7) is (Re

where

Re' IV (B-8)

If we suppose in an application thaL 8 = 15 cm, u' = 0. 1 Co, with co the speed

2of sound (the mean flow, tht a, near Mach 1) and use v 0.2 cm sec, the

~-~tcm•/sec+



ratio of the terms is 0. 6 X 10- The corntribution of the wall drag is less

than 1% of other forces in the flow.

Eusentially the contribution of the wall is a viscous force, usuially

(as here) of less importance than that of inertial forces.

-
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Appendix C

EVALUATION OF AV, B1 AND C

These functions are needed for the evaluation of the integrale given in

Eq. (24). Begin with the functions Ai, and refer to Eqs. (26)and (26a). A simple

way to find the functions is the following. Take the cross product of Eqs. (26)

and (26a) four times, using the F, and contract indices. Then the only term in

Eq. (26a) which doesn't vanish is the third on the right side, thus giving a

single equation for A3 . Now continue by taking a cross product of Eqs. (26)and

(26a) twice with ., summing on the other two indices. This gives a single

equation involving A2 and A3 ; substitute the value for A3 just found, and

determine A2 . To determine Al, sum on the four indices in pairs in Eqs. (26)

and (26a), use the values of A2 and A3 already found and determine AV

From these manipulations, one obtains the following results ior these

functions.

A4fdr r 6 Q 2 (r)[3 0(r)-15 r)+

0

A fdrr6 Q (r) K<0 + K2 -T K4] (C-)
0

A3 ~ dr:6Q (r) [K 0 - K 2 + K 4 ]

0

with (see below)

Kn(ý,r)= 2r x (C-2)-f /a +b x

and

2 2
a = + r , b = -2'r

-57-
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To find the functions B1 and B2 refer to Eqs. (27)and (27a), removing the

factor 6 6. Using those equations take the cross product of both twice with

the vector t, yielding a single equation for B 2 . Then sum on the two In-

dices giving a single equation for B1 and B2 from which B1 can be found.

The result is

i4

B1 t= 2 dr r~ Q1 (r) Q2(r) K,(9, r) - ~t r)]

(C -3)

B 2 = dr r4 Q,(r) 0 2 (r) [~K 0 -. K]

0

Finally to determine the function C refer to equation (29a). One

simply carries out the integral involved there and obtains the result

C=f dr r- Q 2(r) K 0 ( r) (C-4)02
0

The integrals in (C-2) can be found in terms of elementary functions:

4 T

rb

-r J
K 2(g, r) = 5r +

K 4 ( ,r) 4 Y-T-[ 63 + 36 t + 8 t4 < r

and are symmetric in • and r, as must be so from their definition, (C-2).

The functions have discontinuous derivatives, which lead (under two differ-

entiations) to Dirac delta functions in the work.

i
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Appendix D

INTEGRATION BY PARTS, AT A SINGULAR POINT

It will be convenient to integrate Eq. (8) by parts (i. e., use Gauss'

theorem). In the process, the singular point at r - 1 = 0 must be treated

carefully; we present the reasoning in detail. First note that as it stands,

the integrandis integrable at that point. Thus we may set up a small sphere

of radius e about the point and delete the integral over sphere- e from the

rest of the volume of integration (all space) without changing the result. Let

the remaining volume be V-, whereas all space we let be V. Thus we have

for Eq. (8)

p'(r') - H (r (D- )

ff :r "BR -- 0 _-! _V_ Oc 0 0

r'1 ' rro H (r dr

(D-Z)
PO I -O HL d4

Use Gauss' theorem on the first; we have two surface integrals, one at

infinity (i. e., large distance) which vanishes because all fluctuations vanish

there, and the other on the e-sphere; that one vanishes as well because the
2

element ol surface area is of order £ , giving an integrand of order g. Thus

the first term on the right side of (D-Z) vanishes. Consider the second:
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--- I- r')-r--Ir'-O"['- d'

IsP- ,- - o (D- 3)

V- 0o •ro,

+' Off H e 0 (-1r -1 ad4
L ,•V - 0rc• ar0B

Use Gauss' theorem on the first term on the right side; it is equal to (recalling

that surface integrals at infinity vanish)

iPO
-i,~M "H ') (-)"-•I-o"rl- dS( )(D)-4)

0p0

Let En fr0 - r' and recall that ý is directed into the surface of the sphere

and find for (D-4) for e very small:

Po C_€\/ ) P :
-- T ay8P7 rP r (D- 5)

p=e

with dO the element of solid angle. This is easily seen to give

Po 4Tr (r'). Combining these results we find
4"

p'(r') 4- 55 Haor, ) 'r o -:r' 1 d
V- r r08

(D-6)
PO
- H (r')

Consider now the value of the integral in Eq. (D-6), if carried out

within C. We see
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:Po

I

f5H() r 'j dr'0
Sff 8 1,6 r 820 L -0C OCY 08

2-- H PP do (D-7)

='- 2 H (r') 6 - Po H (r')

using the vector properties of the integral, Evidently if we (incorrectly)

drop the surface integral which gave the added term to Eq. (D-6)and

(incorrectly) extend the volume integral in Eq. (D-6) throughout C, we have

cancelling errors and the correct result

Sp (r) 0 f H r r'Ir_ dr' (D-8)
4r(.O ff CVr' 2r' -- D-

all Oa 08
space

Some care must be exercised to be sure that the delta-function contribution

at r' : r is not lost.

I "I
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Appendix E

TECHNIQUES USED IN EVALUATION

OF THE PRESSURE CORRELATION

In order to numerically evaluate the pressure correlations

Eqs. (38) and (44) the angular integration is first performed analytically

in terms of Hypergeometric functions. From Eq. (38)r i2 2 2
/d013 L "- + 2 - +

4 I _3

-.5 .2)2b-2 rgI 2b-
a 75 I(e-r2 bA(x) + 2(92- )b"I B(x) + C(x)] -' Bl(x) (E-l)

where
Sx = Afl.2, a =(p+ l) 2 + (z- 2 b = )+ (z- 2

~3) , 3)

and

C(x) = 2 (1-y 2 ) '5 (l-xy 2 ) 5 dy = 2 K(x)

B~x) = 2 {l(-y 2 ) 5 (l-xy2 " 5 dy = 2E(x)

A(x) = 2 [(2-x)B(x) -. 5(l-x)C(x)]/3 (E-2)

Note that 92 = P2+ 2 and r2 2 2Notehat =p+~ 3 ndr=rl +z .

Simple polynomial expressions accurate to two parts in 10 exist for the

complete elliptic integrals 10 K and E. Note that for x - 0 (for example)
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calculation of the variance or the correlation for z separation only),

2
A - B C = rr. For r equal to 0 (i. e. the variance) Eq. (E-l) becomes

simply 2rT/•. This implies that the fourth-order variance is given

simply by

Spp ZT2d U(Z+ 1 ~xm

where

M xx) f dtDl(•) (E-4)
xx

and

3

M (T, + I + 31-1)-

The function M(xx) is a universal curve independent of the velocity field and

should not be confused with the scale factor M. Continue with the calcu-

lation of the correlation C (2b) by substitution of (E-l) into Eq. (38). Direct
pp

numerical integration at this point leads to significant error and large

computation times due to the apparent singularity near = r. Instead

change integration variables letting

=+A

3
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Expressicn (E-1) becomes

[(1 2 -z 2 )(A2 . 2 )-4nzAwB(x) + 2(fl 2 A2 -2lzAw+w2 z2  [B(x)-. 5C(x)]
i b2 ab

+ (flA- Wz) [3A(x) + B(x)] + [.75A(x) + . 5 B(x) + . 75 CW) (E-5)b

Substitute (E-5) into Eq. (38) and integrate the first term in (E-5)

by parts w. r. t.A. This gives

2 COdUwu'(Iz1)]4

c bp , f, z) f M 2  dA P(Tl, z, z0, A, W) (E-6)
4TT -

where

I[(f2 ._z 2 )A 2 nzW~ 5P(, zz0'A, w) = (2 )BD] + 2a1. 5 Prx '1(l-2p(pP+Tl)a-I)

× (B-C)D. + P I1-'a- aBD' -. 5Bfa• - BD

+ [(•A..j) (3A+B) + 2(72A 2" zAb °w z (B-. 5C)bi ab

+ (.75A + .5B +. 75C) (a PD) (E-7)

and

i
II
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b = (2 + W2

2 2 5=(P +9 )*3

x= 4 + A)a 1

I I

z =z +W0

The argument of the functions A, B, and C is x while the argument

of D and the derivative of D1 "D'"1 is ýM 1 . To complete the numerical

evaluation of Eq. (E-6) the integral over A was first broken with two

terms, one from -T to Ti and the other from ?I to -. Then the integral

over L from -?I to 11 was rewritten in terms of a single integral from 0 to

1i. Finally the integral over u from -0 to c was rewritten as a single

integral, from 0 to -. Note that [u' (Iz'1)] 4 M- 2 was brought inside the

A integral in the final expression. The final results do not give numerical

difficulty at A = w = 0 and typical evaluation times for 71, z not too large are

of the order of 10 seconds on a CDC 7600. Note that the integral over

A is a universal function of (T/M, z/M, w/M). If one kzew this function,

it would be very easy to evaluate C(2) for any velocity field. Unfortunately
pp

this function is too complicated to compute and store for all parameter

values. Instead one may consider the special cases when either T1 or

z are equal to zero. This results in a two parameter function which can be

tabulated and stored. If there are many different boundary layer cases to

be considered, there may be a significant advantage of tabulating these
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functions. However, even on a CDC 7600, the calculation time required

to determine these functions for C 2 and C terms will take approximately
pp pp

one hour. Proceeding now with the case when Ti = 0 the fourth-order

correlation becomes

(•2) PO. o2 -CO dw[u 'J, 01z; 14 "

C (Z' 0 .Z) =. iM• , 0) (E-8a)
pp M'

where from Eq. (E-7)

M(A, B, 0) M-f dP(0,z, zl A, ,w); (E -8b)

f'/ AdL[(Z_4A- 1 )Dlg) - A~b-lg-lD,1)]b-

0

and a change of variables was made within Eq. (E-8b) so that

b = + A2

S=i + (E-K)z

A= wU/M

B= z/M

In obtaining Eq. (E-8) the partial integration proceeded in a slightly

different way than discussed after Eq. (E-7) since a = b. Depending on
the accuracy required, this function MI can be stored in tabular form
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or the complete double integral Eq. (E-8a) can be calculated. If the

first method is used an interpolation is performed for intermediate

values of Aand B. In a similar manner, for z = 0

2 4
C(2) '", 0) M(L 0, (E-9a)

pp(z 0)(fM M Mj

where

•(A, 0, ) M" 1 f dAP (r, 0, Iz0A, LO W)=

f~('e*2b.4- fB(x)Dl(C)+2a .lx**lpC[l-2p(p+CE)a -1 IB(x)-C(x)]Dl(g)

+ 2+ p9- 1B(x)D'(g) - p(p + Z)a B(x)D I +

ZCAb'I[3A(x) + B(x)] + 2c 2A 2b-la [B(x) - . 5C(x)] +

75A(x) + 5B(x) + 75C(x)]10a"SD"(•)) dA ,E-9b)

and
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:: • = /M

?

C = /M

b = A + X 2

*p = A+

PP +A

a = (p + Z)2 + A+2

x = 4pCa

Again the integration over A should be broken into two parts, one from 0

to Cand the other from Z to - for use of numerical integration.

The calculation of C(l) proceeds in a similar way though it is
Pp

much easier. First the integration is performed over angle. The

required scalar integrals are [the underbars do not represent vectors

on A (x) and B (x)J

S irTT

a c(x) f i-I f dO
0I: /

4a-/2 B(x) = 8a" 1/2 y2 (l-y 2 )l/ 2 (l -xy)' 1 / 2 dy =

T / sin Z 0 E-I r -_. 1 do ( - 10)

TTT

a-1/1/2 2 I-il~dO
Of

a/ZA(x) = "/[C(x)-4B(x)] =
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Now _.B(x) is not easily expressed in terms of the elliptic integrals;

therefore, B(x) is calculated as a function of x for 0 : x : 1 and stored

for later use. A polynomial fit could also be made. Substituting Eqs.

(E-1O) into Eqns. (42)-(44) yields

Zp2 O CO

C(')(1,O,.z~z -=d u'i •ldc~II2ppN(p,U.),r,z,zI)..pp f)rr . dwv[u-'(I Zo )u'(I[zo1)]2/ dNPL)T~pl

(E-If)

where

N(p, uj,fzz' TI aP z (a2 [7DB(') -QQ~ A x)-

.•.. and :t is recalled tha~t

252

I I

z0 = z ±W•

Sx = 4'rp/a

+ [f22

a (+p )2 + Wu5

zM = (T'+ W I )?0
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Replace A(x) by _B(x) in C1) (0, TI, z, z ). Direct numerical integration• _ , pp

of Eq. (E-11) may follow though there may be a time advantage by repla-

cing the integral over w from -c to by one from 0 to •. When either z,
1

or 71 is zero, then C can be determined in terms of a two parameter
pp

scalar function N which is equal to

M, C f= •-f dp N(p, w, n, z, z'0 )i

0

2

S~~~M IJdP((-•,)2 f [7DB(g) -QI(•lJ p 2'g-A(I) -

DB(g)C(x) + if-(g) _ 2( DB(l)J P 2 ' 2 A (x)

[2Lf() g Q(x)/
!' g2~DB(9S•- Lzfcg) - ~ D()] Clx)/' a "

/(E-13)

where

= /M
" B z/M

C = TiM

a = (P+) +A

p + (B-)

x = 4 a- 1

and A (x) and B (x) are interchangeable depending on whether the x or y

correlation function is desired. The variance is casy to determine since

I then Nreduces to a one parameter function.
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Appendix F

GRAPHICAL REPRESENTATIONS OF VARIOUS FUNCTIONS

USED TO CALCULATE THE PRESSURE CORRELATION

Figure F-I is the plot of the longitudinal velocity coefficient

f(r) vs r on a log-log scale. Figure F-2 is the plot of g(r) vs r on a

linear scale. A plot of Q 1 (r) vs r is shown on a log-log scale in figure

F-3. D 2 (r) and -D' (r) vs r are shown in figs. F-4 and F-5 using log-

log scaling. The quantity '7E 6 (•) vs • is shown in figure F-6 on a

log-log scale. The function B (x) vs x is shown in figure F-7 on a linear

scale. Note that tabular data is included in figures F-i through F-7.

* !As mentioned in Appendix E, it is possible to obtain two para-

meter functions Mand N, when either Tj or z is equal to zero, from

which the correlation functions could be calculated. For a large number

of correlation calculations for differing flow field conditions this technique

would have a significant computer time advantage over performing a

double integral for each desired point. For 1 = 0 the function I ( 0)

is calculated and shown in perspective in figure F-8. The parameters

w/M(x axis) and = z/M (y axis) with M = (T" +I z' + wVl)" with

ranges of -100 :r- i and 0 1 B ' 100 were used to calculate KI. The

parameter interval was varied logarithmicly. Figure F-8 views the function

from a location of x = 10, y 100, z = 100. The plot shown is for the range

of values -5 ':r A 1 and 0 •B £ 5. The scaling is reduced by a factor of 5

in the y direction and a factor of 10 in the z direction. Note that there are

two sheets to the function - one for positive A and the other for negative •.
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Fig. F-1. Longitudinal Velocity Coefficient
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Fig. F-2. Transverse Velocity Coefficient
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Fig. F-3. Q1 vs r
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Fig. F-4. Dz (r) vs r
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The values for = 0 have been removed to show a clean figure. If IT is

used to calculate C(2b) the two sheets are calculated separately and then
pp

added together during the computation. Figure F-9 is the positive sheet

of X , N , 0) alone from the vantage point of x = 10, y = 10, z-= 10.

The z scale has been reduced by a factor of 10 and Wf is only plotted for

0 'r- X 1 and 0 f' s; 1. Figure F-10 contains both positive and negative

sheets of ST (A B, 0) plotted separately from the vantage point x = -10,

y = 10, z = 100 and a z scaling reduced by a factor of 10. From figures

F-8, F-9, and F-10 it is seen that the A positive sheet is maximum at the

origin and falls rapidly for increasing values of X" or B. The X negative

sheet on the other hand increases with increasing B, reaching a maximum

value near B . I then falls rapidly to zero. The other available fourth-

order contribution is for z = 0. Then'T (, 0, •) is required where =

r/M. The function was calculated over the range 0 :!C AX! 10 and 0 S Z - 10.

Figure F-1 I is a perspective plot of this function observed from a position of

x = 100, y = 100, z = 100. Figure F-12 is the same function observed from

x = 100, y = 100, but z = 10. It is seen that the function is highly peaked at

A•= ?= 0 falling rapidly as both Xand Cincrease. The function falls a bit

faster in the y(C) direction becoming negative then approaching z 0 from

the negative values. In the special case that n or z equals zero N (Eq. E-13)

can be determined. Figure F-13 is a perspective plot.of(A, B, 0) ('1 = 0)

viewed from from a location of x = -20, y= 10., z= .3 with the z scaling

increased by a factor of 100. The range of values are for -10 <x(X) !9 I and

0 £ y(B) '10. The same function ii viewed from a location x = -20, y = -20,
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Fig. F-1l. Perspective Plot of M(A, 0, C)from
a Location of 100, 100, 100
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Fig. F-12. Perspective Plot of =l(X, 0, J') Observed from
X=1iO, Y= 100, z=10
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!I

Fig. F-13. Perspective of R(A, 1', 0) Viewed from a
Location of (-20, 10, .3). The z scaling
has been increased by a factor of 100.
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z 0 and x= 0, y = 20, z = .3 in figures F-14 and F-15 respectively.

Perspective views of N (•, 0, C) are given for the x correlation function in

figures F-16 and F-17 where the viewing locations are x = 20, y = -20, z =

.3 and x = -20, y= -20, z = .3 respectively. The z scaling has been

increased by a factor of 50. The perspective views of N(A, 0, ") for the

y correlation function are giver. in figures F-18 and F-19. In figures F-16 -

F-19 the figures are plotted for 0 r x(X) : 10 and 0 : y(M) ' 10.
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Fig. F-15. Pertpective of Y(, 0) Viewed from
a Location of 0, 20., and 0. 3.
z scaling ha. been increased by a factor
of 100.
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I
Fig. F-16. Perspective of 0!(X, 0D •) for x Correlation

Viewed from a Location of x = 20, y = -20,
z = 0.03. x scaling increased by P. factor
of 5 0.



•I>L

Fig. F-i7. Perspective Plot of !W(', O, ')
(x correlation) Viewed from a
Location of x = -20, y = a(t.
z = 0. 3. z scaling increased
by a factoor of 50.

I -92-

- -'----- -----



I " 'I • •• ~.

Fig. F-18. Perspective View of 3(A 0, ) for the
y Correlation View'ed from the Location
x = 10, y = -Z0, z = 0.3. The z scaling
is increased by a factor of 50,
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Fig. F -19. Perspective View of N(,0, ~)for
the y Correlation Viewed from a
Location of x= 40O, y -ZO, z =0. 3.
The r, scaling is increased by a fac-
tor of 50.
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THE IVAN A. GETTING LABORATORIEB

The Laboratory Operations of The Aerospace Corporation is conducting

.enderimsntal and theoretical Investigations necessary for the evaluation and

application of scientific advances to new military concepts ad systems. Ver-

safility and flezibility have been developed to a high degree by the laboratory

personnel I& dealing with the many problems encountered In the nation's rapidly

developing space and missile systems. Expertise in the latest scientific devel-

opmento is vital to the accomplishment of tasks re*ated to these problems. The

laboratories that contribute to this research are:

!Aerc hysise L ~akatory Launch and reentry aerodynamics. heat trans-
r '. r y ca, chemical kinetics, structural mechanics, flight dynamics,

a sepheric pollution, and high-power gas lasers.

"1heLmstry and Physics Loratory: Atmospheric reactions and atmnos-

pheric optics, chemical reactiMns in polluted atmospheres, chemical reactions
of excited species in rocket plumres, chemical thermodynamics, plasma and
laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena, photo-
sensitive materials and sensors, high precision laser ranging, and the appli-
cation of physics and chemistry to problems of law enforcement &nd biomedicine.

Iectr~onis ResearchL�aboratoryl Electromagnetic theory, devices, and
Spropagtion phenome.na, includinJ plasma electroanglnetics; qupAtum electrounics.
lers, ad electro-optics; commmnicatlon sciences. applied electronics, semi-
conducting. superconducting, and crystal device physics, optical and acoustical
imagiag; atmoe•pheric pollution. millimeter wave and far-Infrared technology.

y: Development of new materials; metal
martiz? ites andiform8 o carbon; test and evaluation of graphite
and ceramics in reentry; spacecraft materials and electronic components in
nuclear weapons environmont; application of fracture mechanics to stream cor-
rosion and fatigue.taduced fractures in structural metals,

f c ra Atmospheric and iowspheric p&ysics, radie-
tdo from iWO.p as ty and composition of the ammosphere, aurorae
and airglow; magnatospherm phyfics, cosmic rars, "nretorn and propagation
of plasma waves in the magnrt'siphere; solar physics, studies of solar magne•t
"rfieds; apsce astronomy, x-ray mstronomy; the effects or nuclear elplonicas,
rmagetic storms, and solar activity an the earth's atmosphere. ionoaspher. and
magnet"ephire; the effects of optical, el*ctromap€ec, and particulate rndia-
ti.e in space on space systems.

THE AEROBPACE COAPGRATION
ZEl Segau"t California
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