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I, INTRODUCTION

In this paper, the pressure correlation function for a single boun-
dary layer over a flat plate will be derived for the subsonic flow regime,
Numerical results will be given based on experimental measurements of
the magnitude of the mean and fluctuation velocities in the boundary layer.
One application for this work is that of the propagation of a laser beam
through a turbulent boundary layer. Another important application is
that of the generation of sound by boundary layers over flat surfaces.

There has been a tremendous amount of work directed toward
questions relating to such boundary layers. This work has in the main
been experimental, because of the complexity of the equations governing
1-2

fluid flow. Kraichnan has produced theoretical estimates of pres-

sure correlations at the boundary. Other literature can be found in

standard references.

Index of refraction fluctuations, important to optical propagation,
are primarily dependent upon density changes. Density fluctuations can be
caused by pressure and/or by temperature fluctuations. As a result of
recent experimental information and some estimates, it has seemed rea-
sonable to concentrate first upon the effects of pressure fluctuations. For
now we neglect temperature effects and treat these effects in a later paper;
in effect we suppose that the flow is adiabatic., We assume air is an ideal

gas. A sketch of the boundary layer is shown in Fig. 1.

-3.
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Fig. 1. Sketch of Turbulent Boundary Layer
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Since we are interested here in subsonic flow regimes, it is possible
to treat the fluid as avproximately incompressible. It is true that the mean
flow Mach number approaches unity. Nevertheless, the velocity fluctuations
(determining the pressure fluctuations) are considerably smaller than mean
flow values and their Mach number is small., (The question of whether or not
one can treat a flow as incompressible is governed mainly by the Mach number,)
The incompressible equations of moution, the Navier-Stokes equations, and the

equation of continuity can be written

e

+u-Vu=--—1— Vp+vv2u (1)

and

V.u=0 (2)
The notation in these equations is standard. The density Po is assumed con-
stant; the dot over the velocity in Eq. (1) represents the time derivative of
that quantity,

The equations of motion are of course very complicated at this level
of generality., i’or turbulent boundary layers there are some useful and
rcalistic simplifying assumptions. The boundary layer grows very slowly
in the down-stream direction: the characteristic length in that direction is
much greater than the thickness of the boundary layer. To good approximation
we may assume that the averages of all quantities are functions only of the
direction perpendicular to the wall; the mean flow in particular depends

mainly on that direction, Consequently, the drag on the flow is approximately

R TR - vy e
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constant ih the down-stream direction; hence the pressure gradient (which
overcomes that drag) is likewise constant. The Poiseuille flow problem
fulfills these approximations exactly and is discussed in this connection in
Appendix A. We assume that the flow is statistically stationary, so that
averages are independent of the time at which they are taken.

The definitions of some qQuantities to be discussed here are shown
in the figure. The y-direction is perpendicular to the plane of the page.

The components of the position vector and of the velocity in the

three Cartesian directions are

r=(x, y. z)=(r), r, r3

(3)

and
u=(u, v, w)=(u;, u,, uz);

the choice of component representation is made as convenient. Other
vectors below have similar representation. We write the velocity and

pressure in terms of mean values and fluctuations

u E+5’="J (z)i+ v

(4)
P=Pp+p
Here u’ is taken at r’ and (later) u” at r” and similarly for p’ and p*.

The essential method to be employed in this work is the following:
take the divergence of the incompressible Navier-Stokes equation. One
finds a Poisson equation for the pressure where the right cide (source term)
under our assumptions consists of second-order velocity fluctuations and

terms ~uartic in such fluctuations. The former have mean-velocity gradients

-6-
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as coefficients, The Poisson equation is solved for the pressure fluctuations;

the correlations (and variances) of the pressure are constructed from this
solution. The quantities so found are integrated numerically.
In Section II the pressure correlation function will be derived with

contributions retained through the fourth order in velocity fluctuations,
Section IIl is concerned with evaluation of the fourth-order contribution to the
pressure correlation while Section IV deals with the second order term,
Numerical techniques used in calculating the correlation function are given in

Appendix E. Numerical results and conclusions are presented in

Section V.

II. DERIVATION OF THE PRESSURE CORRELATION

From the above assumptions (see Appendix A)

p=-ax- w' 4(z') (5)

where we refer pressures to the pressure at the origin. Now take the

divergence of EFq. (1) using the incompressibility condition given’by Eq. (2)

and find (with v’ 2 the Laplacian in L' - space)
52 ’ ’
- ua(r , t) ue(_r_ y t)

(6)

vl Zp(-{l’ t)= -po-—- .
araarB

written at the point 5_’ . We use the summation convention: a repeated index

in a single term is to be summed from one to three., If now we substitute Egq.

(4) in Eq. (6) and average we obtain an expression for the average pressure,

noting from Eq. (4) that averages of the fluctuations, g’ and p’, vanish.
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Subtract the averaged equation from Eq. (6) to find the following relation

for the pressure fluctuation (the time-dependence is implicit),

2
/2 ‘ a _— / 4 ’ ’ ’, }
V%p = - Po —5 [2u(z)5dlu8+uaue—(uqu6>
arq,arB

(7

4
arqa; B

We use the brackets, ( ), or the overbar for time averages, as convenient.

The last (average) term in Eq. (7) is a function of z’ alone under our boundary

layer assumptions. The Kronecker delta has values: éij =1, i=j and equal
zero otherwise,

In order to solve Eq. (7) we need the Green's function for the problem.

It is recalled that the flow is confined to the ha f-space above the plane (see

Fig. 1). The boundary conditions on the pressure at the plane are not

simple and, in fact, stated exactly would involve fluctuating quantities. An

approach, which in some ways simplifies the treatment, is the following,

First, our problem consists of a plane which exerts drag upon the flow, and
the compiicated flow bove the plane, confined of course mainly to the boun-~
dary layer, This problern can be replaced by an equivalent problem. Suppose
that we construct a flow be low the plane which is the mirror image of the actual
one above it, and replace our problem by the original flow plus the imaged

flow plus a force; the boundary-layer plane of course exerts a drag upon the
flow and when we remove that plane we must insert a force equal to that drag,

Fortunately this force is negligible (see Appendix B). We proceed with the

-8.
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situation as described consisting of the actual, physical flow and the mirror-

imaged flow. Then the Green's function needed for the solution of Eq., (7) is

the free space Green's function for the Laplacian operator--essentially ‘:‘-;
Further, we suppose that all fluctuating quantities, pressure and velocity,
vanish sufficiently far outside the boundary layer regions, whether in the

physical flow or the mirrored flow. Then all solutions of the homogeneous

equation derived from Eq. (7) (that is,\s\olutions of Eq. (7) with the right

side equal to zero) must vanish., The solution of that equation becomes

2
P -
P g I f T g B ) 4x
2oy %08

with, as above,

’ 4 4

_ - ¢ [
Hrye-- 2u(z)6alu8+uau8- (uauR> (8)

The velocity functions, and integrals involving them, extend now over all

space (they are, as stated, primarily confined within the boundary layer

and the mirrored boundary layer).

To find the pressure correlation from this, write Eq. (8) for the

pressure at the point 5” and multiply that equation by Eq. (8) at the point 5’

and aveirage to find

9.
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2
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X (H,g(xg) H g (xg)) drgdry .
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The question of convergence of these integrals is of primary importance.
Suppose the integral over _r_'o is performed first; we can expect that the cor-
relation in the integrand will vanish for i) sufficiently different from 3'_:),
so that the integral will be convergent at infinity. Furthermore there is a
question of convergence when _r_' - ;_-'6 vanishes. The differential
element of volume dfo will take care of this apparent singularity, There is
however, more difficnlty with the outer integral over 56, in particular at s
infinity for that integral. This is a familiar problem if one attempts to
deal geriously with a pressure representation as given in Eq. (8). The fact is
that there is a considerable amount of cancellation in that integration process
which results from the fact that the integrand of Eq. (8) is a quadrupole source
for the pressure field. The proper way to deal with this difficulty is to inte-
grate Eq.(9) by parts using the derivatives with respect tc 51) . This is
what will be done below. When that manipulation is carried out we have
the factor |r’ - 3’_6[ -1 replaced, for 12) large,by something like |£(')|-3
which will give a convergent result at infinity., Then one might expect
difficulties at the singular point |_r_6 - 51)' = 0. Fortunately, the integral
is also convergent there, because of angular cancellations. The difficulties,
which arise at the singular point when we integrate by parts, are discussed
in Appendix D.

-10-
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Consider the correlation in the integral (9). It consists of second-
order, third-order and fourth-order velocity correlations, the second- and
third-order with coefficients involving the mean flow, To begin, we note
that third-order velocity correlations are usually very small compared with

. even order correlations, Indeed, for a velocity field with Gaussian statistics,

odd moments would vanish, In actual flows the odd moments of fluctuatirg

quantities are typically very small, We neglect them.

There have been many measurements made of second-order velocity
correlations but rather few of fourth-order correlations, We make the
reasonable assumption that the velocity field is not too far from Gaussian;

then the fourth-order velocity correlation can be written as follows

v 4 & - r u ’ ”
) (uausuy\16> =Q,. (£ Ig) Qgg (£ )

’ " ¢ »
+Q, 5o 50)()BV (£gr Xo) (10)
4 ! # L4

the result of this Gaussianity assumption is that the fourth-order velocity
correlation can be written in terms of quadratic expressions involving the
' second-order correlation., We have defined the second-order velocity
correlation:

Q; (£ge Xp) = Cugul) . (11)

We let the pressure correlation be represented by

c_=cl)yct® (12)
PP PP PP

-11.
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where
64

C(l)( ) r-r'\ r—r
fl =0 'Ol ar’ broaar“ Br06

(13)

m— 1, - » ’ L4 ’ L4
x [4u(zo) T (£) 8, byy Qgy (2h ro)] drf dry
2
P -1, » o -1
c(2’=(..._°_) f'f "oy -
pp - Ldn |2 - |z - x oy

’ » ' 4 ! 4
[2q,, w5, ) Qgetxp . Ko ey oy

a4

v
09 Br Ov 51‘06
(14)

In this last equation the symmetry under index interchange has been

utilized. Further, the last term in the fourth-order correlation given in

Eq. (10) (that last term representing simple averages) is cancelled by the
last term in the function HaB given in Eq. (8). Kraichnan * “ has con-
sidered the problem of the pressure correlation at the boundary-layer wall,
He made some progress in the estimation of the size of the correlation co-
(1)

efficients. One of his conclusions was that the first integral, Cpp , was

more important than the second discussed here, the reason being that the

first involves the mean-flow velocity whereas the second involves only the

(smaller) velocity fluctuations, We carry both of the contributions to the

pressure correlation and will determine through computation whether the

assertion is justified or not. There is some reason to question it, despite

its apparent reasonableness. Measurements of rms pressure fluctuations
1

at the wall give values which appear to be u'2 rather than ] p.u'u,
PP Z Po Z Po

as would be the case if the mean flow term dominated the result. To proceed,

further (reasonable) simplifying assumptions are required. First, for the

-12.
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integral cp(pl) we suppose that the second-order velocity correlation can be

written,
b
Qg (xg,Ip) = Wizg) v’ () Qg (x,),
With -1:_0 = LB = 5_2) »
(15)
NS S 1/2
u(zg) = <§-_1_ ( 0)>
1/2

and W(2g) = (3u"% ()

*
where er(_gb) is the normalized second-order velocity correlation for homo-

geneous and isotropic turbulence {normalized by the rms values of the velocity

fluctuation in one direction). Here we have used a normalization involving the
velocity fluctuations at the two points 52) and 56 The normalized second-order
velocity correlation has an outer scale which is approximately the distance
from the wall; for that scale we choose M. The scale M is defined as

M-1 = [(z'o) -1 + '1'-1]-1 where T is the thickness of the fluctuating boundary
layer, defined as the distance from the wall where @ attains 0.9 of its
maximum value. This T is greater than § (the displacement thickness defined

[- -]
rather than the smaller 8, The substance of this agsumed form is that we

by &= 0jf‘[l - zﬁ)]dz ). It was felt that this value T was appropriate here,
propose that the second-order velocity correlation is locaily isotropic, but
corrected for the variation in strength of the velocity fluctuation over the dis-~
placement vector Iy The nature of the second-order velocity correlation for

homogeneous and isotropic turbulence is well known through wind tunnel

13-
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measurements. Later we shall take numerical values from standard
literature references > . In fact, for our incompressible flow problem,
the correlation function becomes, for large Reynold's numbers, essen-

tially independent of the Reynold's number: a universal function. Con-

sequently, for different boundary layer measurements it will not be

necessary to change these functions. The normalized velocity correlations

B e R A

; for homogeneocus and isotropic turbulence can be written 3

The f and g and Q; (5_) are simply behaved functions of r/M where M, the
'""distance' from the wall is the outer scale for the velocity correlation as
proposed above.

For the second-order velocity correlation (dropping the scaling

factor for now) it will be convenient sometimes to use the notation
%
Q;(r) = Q,(r)rir; + Q,(r)b;, (17)

with the functions Ql’ C)2 f and g related as shown. Finally for
incompressible flow one can write the function g in terms of the function

f as follows 3

g@)=f+1/27 ¢ (18)

and of course there is a corresponding relation between Ql and Qz. The

-14.
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relation Eq. (18) follows, as indicated, directly from incompressibility.

That condition can be written

d ® 9 *_ o
ar, Q; "a‘f}'Qij“O' (19)

The relation, Eq. (18) is obtained from this by differentiating Eq. (16).

If we substitute from Eq. (15) to Eq. (19)into Eq. (13) we find

2
(1) _[Po ”'f ” ' PSS Y S S |
“pp (—4——) drodip |I'-fo|  |I - I

3 - 3 — " .
X{4 [ az, u (ZO)]u’ (ZZ)) [a -~ u (zo)]u (z'O) (20)
0 20
[ 2
3 * ” ’
|- T Q33 (2o - Xo)

In order to proceed further with this term, sirplifying assumptions
must be made. For now we will consider the more complicated fourth -order
contribution and return to the evaluation of Eq. (20) in Section 1V,

III, DETERMINATION OF THE FOURTH-ORDER CONTRIBUTION
TO THE PRESSURE CORRELATION
Continue now with a discussion of the term C(i) given in Eq. (14)., For

the term CI(;;) we take for the second-order velocity correlation the following

"

Qy (s xp) = v’ quf(go) (21)

-15-
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where our boundary layer assumptions mean that u’ 2 is a function of only
z;. Substitute this relation for the velocity correlation into Eq. (14). Then
integrate by parts and use Gauss' theorem to obtain thes result (see below for

1),

2 2 2
(2) _ po) KR I ) ‘ ry-1 d
Cop —2(7; J arg v iy oo 15wl sr e s 22)
o B Y

From Gauss' theorem one also obtains integrals over the surfaces bounding
the region of turbulence. These surfaces are taken outside the physical flow
and the image flow; on those surfaces all the fluctuations vanish gso the sur-
face integrals vanish. There is also the question of the singular points which
arise when the denominators of Eq. (10) vanish, It is shown in Appendix D
that these singularities in fact cause no difficulty, We have used new variables

in Eq. (22) (as above and as follows),

o= £o " Lo @3)
and
i= £II - £-IO
and defined the integral
- - -1 % *
Lyes®= fdrgl & - 551 7t (xg) Qg lry). (24)

Substituting from Eq. (18)into Eq. (24) we identify the following different types

of terms for that integral:

-16-
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- 7(3) (bl) (b2) (c)
Iozbe - IowB& MR MVEY + I«yvso + ICI!\( RS (25)
) a2
Lobs ‘Idiol £-xol " Qp (rg) roy Tog Toy Tos (26)
S AL (D)5, 8 Ty 4 Ay () (8500, 4 oone] (26a)

1
+ A,y () [606 56+ Byy 888 Sy Bay |-

where the coefficient of AZ(E) has the six permutations of the indices, two-

by -two
] ' et © Id-’-o |2 - xo[ " Q)(rg) @ (xg) Foq Foy Sap - (27)
: ] = [Bl(é') £y 5yt By(%) %v] 65 (27a)
B8 -
Icy(f,éo ) fd-r-o |5~‘£o|'l Q; (rp) Sav ©86 (29)
r:’ F =C(I)& 6 . (29a) ?

ay Bb

We know the integrals must be of the forms of Eqs. (26a), (27a) and (29a)
because of their vector (transformation) properties, One must now find the
4 functions Al' AZ' A3. Bl' B2 and C, These functions are evaluated in

5 Appendix C, For substitution in the integrand of Eq. (22) we must evaluate

the second-order derivatives of the integrals given in Eqs. (25) - (29a).

Again, by the vector properties of the expression we know

-17-
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2
d
-31;'5'5; Lyygsl®) = D1 (5)8, g + D, (§) e - (30)

Substituting the results given in Appendix C into Eq. (30) and addiné the

coefficients of corresponding terms, we find for the functions D1 and D2

D& =4n{ Xt E()+L e E +2670F, +387% G,
2 (31)
-1
- [ml &)+ ¢ az(m] '
3 4,2 2 z -3 4
Dz(g)—4ﬂ-§'§ E1+§E3-1—§§ E6+-§-Fl
(32)
-%2e3r, -2,
These expressions may be simplified by the use of Eqs. (16) - (18)
yielding
D(g)=4"‘12E(§)+7-5E() (31a)
1 5 1 g Hpl8 a
. , ‘ -
D,8) = 3L [12E &)+ 767 E( (9 + 10872E, (8) + 108 22(E)
(32a)

Equation (31a) unlike Eq. (31) is easy to evaluate at § = 0 and differentiation

w.r.t. & is more easily accomplished.

Here En(x), Fn(x) and Gn(x) are defined by the expressions

-18.
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o

j rnq(r)dr, n odd
x
and (33)

x
I " q(r) dr, n even
0

with g(r) = Qf(r) for E ; qlr) = Ql(r) Qz(r) for F ; qir) = Qg(r) for G .

Substitute Eq. (30)into Eq. (22), use the known relation

2 ¢ ¢ =1 _ ’ ’
(AR E R S BRI LN FA (34)
define
PP PP PP PP

and find for the term involving DZ'

2
4
(2a) _ _ PO t g
Cpp = -47 T 2’ (z )]Dz(r) (35a)
with r = 1" - _r_' . The other contribution, from Dl’ [C:);b) and Cl()zpc)} is
more complicated. To simplify, use the definition of g [Eq. (23)] to write
r’ - r’ = r - £ and noting that aZ e’ -2 |-1 52 | ¢| find
gL =L"°5 r - = r ~§| fin
3r( 3 =0 LA

2 -1 3[(g. (r - g)]2 2
3 2 L3
€ B z—gg—lr-5| = -5 36
@ % |._r-5|5 I.r_-__‘5|3 oo

. 1 (2 2
Using €+ r = 5 (% +r° - |5_ - EI 2) we have for the right hand side of Eq. (36),

-19-
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2
2 2 2 2
(r2-8% 2 -f) .
- (37)
c-el> |r-gf "'5'} Ir - £

Substitute Eq. (37) and the first term of Eq. (30) into Eq. (22) to find (aside

from the delta function contribution at the singular poiat 5_' - _1_'0', given below)

2 o l4| " @ 1/2
@2b) , + 2. 21/2 \_ Po o’ (2" -850 (¢ + €3)
Cpp <z , (xT+ ¥y , z)— -m -af d€3 Mz pdle _——._M_.-_.
Fas |22 222 262 -8% ] g?
x [ dgld 2 — - —3 (38a]
of {4115-515 PR S‘J lz-2l

where £ = p+ £,k and M = (T-1 +]z” - ;3|~1)'1. Note the scaling factor used
in Eq. (16) has been used explicitly in Eq. (38)., This scaling also applies to
Eq. (35a) and Eq. (38b) though it is not shown there. The aprarent singularity
in the neighborhood of r = £ in the p and £, integration is in fact in integrable,
This is most easily shown by using spherical coordinates about the origin;

convergence results from the angular integrations.

The last contribution comes from the delta-functionat r = §; care must
be exercised in order not to lose this portion--as cautioned at the end of
Appendix D, It can be found by taking the integral of the term involving Dl(g)
in the volume [r’ - £6| < ¢, ¢ very small, We have for it frorn Eq. (22)

and the first term of Eq. (30),

-20-
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I =-r.1<¢ a” B
= "0

Following the result given in {D-7) this is

cles) - - 9%2; w*(z" r®D (r). (38c)
In Appendix F, the techniques used in the calculation of Eq.
(38) will be discussed, Consider now the second order contribution.
IV, DETERMINATION OF THE SECOND-ORDER
VELOCITY CONTRIBUTION TO THE PRESSURE CORRELATION
It is plausible to expect that the second-order velocity fluctuation
terms will dominate the fourth-order; this has often been suggested in
the literature (see e.g. Ref. 1). We shall see from our computations that
this is usually--though not always--the case.
In the determination of the second-order contribution several different
assumptions were considered, The assumption finally chosen as the most

tractable was that the prime location replaces the double prime location except ir

Q 33. 2
3 - 4 4 » é * L IR S
[ ;U (zo’] u (zg) =3 Q33 (55 - Iy) =
azo aXO
___a__ -— ’ AP 32 * -
S~ u (zg) | v (2) —>3 Q33 (Xo ry) (39)
azo on
-21-
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This is reasonable for Q33-»0 as _0 _0 becomes large; it is consistant

with the approximation made for the fourth order contribution in Eq. (21).

Inserting Eqs. (39), (23) into Eq. (20) yields

2 (ry)

(1) ‘ PN 33—0
S, dr (zg) u’ (zg) r-l f 40
f—o[z,“o“zo] z-% e (40)

Analogous to treatment of the fourth order contribution, define

-1
g8 = [ drg 18- 1o | Qpy (rg) = A)(8) £ .8+ Ay (806, 4+ BylE)s_

(41)

where AZ is determined first by using the double cross-product with the
vector £ and then Al is determined by taking the inner product (summing

on the indices). Using results from Appendix C,

-1
B,(§) = 47 ,g F, + F
4 S e =
A,(g) =—;’ IS[; E, + E5] - [{TTE, + E,

Ay(g) = T ’§-5§6 * Ell

where E, F¥ are defined as in Eq. (33) except that here y(r) = Q,(r) for ﬁn and
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q(r) = Qz(r) for _F—n. Using these expressions and Eqs. (16) - (18) we

have the scalar function

2
2 4 o o 1
Dy(8) = 27 135081 = 47 (15} 3 (787 Bele) - )] - £ Byl

1

2
51 -5 = 5

+— [1(8) - Q,(8) - €77 E, (8)] - [2f(8) - € "E, (8)]/5 (42)

£

Substituting Eq. (42) into Eq. (40) and taking into account scaling results in

1
Cm fd:3 (3 (2" gg)) u’ (| 2"-g5] )] fpdpf < )Ir-_gl dg

211'
(43)

where ¢ is the angle between the projections of # and r in the x-y plane.
Noting that g? = pzcoaz(a— @) with qis the angle between the projection

of r in the x-y plane and the x axis unit vector allows Eq. (43) to be written

as

(1)

o, n, = ') sinlq  (44)

C(l)(x, y. %, z)-C;)(v‘, 0, =z, z)cos a +C

>
where n = Vx“ + ;-z_and g% is replaced by pzcoa"@ for the argument y = 0
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and pzsin2¢ for x = 0. The cross term vanishes for integration over g.

V. NUMERICAL RESULTS AND CONCLUSIONS ' o

This section contains numerical results and conclusions based ) " |
on calculating the pressure variance and correlation function from Eq. ;
(38) and Eq. (44). For the interested reader the details of the calcula-
tion may be found in Appendix E and supplemental numerical

results may be found in Appendix F. In order tc present re-

sults which are cohesive a brief step-by-step procedure for obtaining

the numerical results is presented with equation and figure numbers
prefixed by letters referring to the corresponding appendix, Some of the
results presented here should more reasonably have been presented in B
Appendix F; however, they are presented here to show the reader how to |

calculate the pressure variance for his own boundary layer data without

referring to the cited appendices.

In order to cbtain numerical results, all intermediate functions
were calculated and stored in the computer in tabular form. Numerical
integrations were preformed by Gaussian Quadrature integration techniques 5

with the interval atep size determined by an accuracy criteria of one part

3
in 10, Values of the functions not in the table were obtained by linear

interpolation of the log of the function for positive functions., Ciose to the

o i e

origin or for negative functions second to fourth-order(Lagrange inter-
polation techniques were used, The calculation starts with the definition
of the longitudinal, f(r), and transverse, g(r), velocity correlations (16).

These may be taken from experiments. In our calculations we must

!
£
H
3
fi
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differentiate these functions: a smooth representation is needed. Thus we
usc the calculation which has been made using the Weiner Hermite
expansionb. Those results fitted large Reynolds' number experiments
very well and were differentiable, The second step in the calculation

is the defiunition of Ql(r) Eqgs. (16)-(17). Using f, g, and Q1 the functions
Dl(r) Eq. (31a) and Dz(r) Eq. (32a) are determined by numerical integration
Figure 2 shows the results for Dl(r). After the angular integration in Eq.
(38a) has been performed analytically and the results expressed in terms
of the complete elliptic integrals, a change of variables and an integration
by parts is made on the pcoordinate. This technique removes a numerical
convergence probiem but requires the evaluation of the first derivation of
Dl(r) which can be obtained from Eq. (3la), Once the flow field turbulent
velocity, u’(z), is determined, the fourth-order contribution to the
pressure correlation and variance can be obtained directly (see

Appendix E). Results for this calculation are presented later in this
secticn, As an aside the fourth-order contribution to the pressure vari-

ance can be written as

(2) ,_+ po2 ?, 7 d ¢ ’ 4 -1
Con (z', o) === {-[u’(z")] D, (o) + p dg, [u' (2" + gl ] M(xx)M (E3)
where

M(xx) = fdgnl<§)
X
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xx = § M"1 (E4)

M = (T-1 + | z' + §3 |-l)-1
D, (0) = -0.54154

and T is the thickness of the boundary layer., The function M is plotted
in Fig. 3; the reader may cbtain the jourth-order variance for other,
particular, experimental values of v’ (z).

We now consider the second-order contribution to the pressure vari-
ance and corcelation functicns, From Eqs. (42)-(44) it is seen that D(8)
is required, This scalar function is obtained using Eq. (42) and the defini-
tion of §‘7E6(§) [defined after Eq. (41)]. The interested reader may then
obtain the second-order pressure variance directly from Eq. (43). First it
is noted that r = 0 implies that the angular integration can be performed
analytically yielding a factor T for terms not including §§ and /2 for
terms with ;f‘. The integral over p is then calculated as a function of §3
and normalized by 4ﬂ2M-1, This function is tabulated in the computer and
used in Eq, (43) to obtain the variance for any boundary layer. This func-
tion is plotted in Fig, 4, In order to obtain the second-order correlation
the angular integrations for Eqs, (43)-(44) are also performed analytically
and lead to the tabular function B(x) Eq. (E10). The calculation of C(l)

PP
then proceeds via a double numerical, integration (E12), given the flow

-27-
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field data u; E'. Graphical results for f(r), g(r), Ql(r), Dz(r), Dl(r),
and 5-7E6(§) are found in Appendix F,

In order to obtain specific numerical results, flow field quanti-
ties must be given,

The flow field quantities necessary to perform the calculations
are the normalized mean turbulent velocity used for the calculation of the
Cgp) term and the burbulent fluctuation velocity in the z direction multi-
plied by the derivative of the flow velocity in the x-direction, which is
used in the calculation of the C;;) term,

Our calculations were carried out for two separate boundary
layer flows: first, for a thickened turbulent boundary layer relating to
experiments carried out at NASA-Ames.’ The thickened
layer was generated by a flow of approximately Mach 0,9 and a Reynolds
number of 3 x 106/ft. The thickening came as a result of upstream pins
and spoilers projecting from the wall over which the boundary layer
formed, The second boundary layer for which calculations were made
was an idealized one (called here the canonical boundary layer}, Data
were taken from earlier experimental work with such boundary layers
(Hinze, Ref., g, Figs, 7-4 and 7-10), The flow field quarntities neces-
sary for the calculation are presented in Figs. 5-8 vs, the normalized
distance from the wall, The normalizing factor for all distance measure-
ments is the displacement thickness § defined previously. Figures 5-6 are
for the experimental case while Figs, 7-8 are for the canonical case. For

these two flow fields the normalized (normalization factor 90234 /4)

-30-
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variance and correlation functions are calculated. In Figure 9, the
normalized pressure variance for the thickened (experimental) boun-
dary layer is shown. The variance at the wall and at the peak (which
here occurs at the distance of about 2,25 displacement boundary layer
thicknesses) are larger than the corresponding values (see below)
relating to the canonical boundary layer, probably because of the greater

value of the turbulent fluctuations farther from the wall, The position

of the peak of the variance is considerably farther from the wall for
this thickened experimental boundary layer than is the case for the
canonical layer. This is probably again a result of the fact that the

thickened layer shows greater turbulent fluctuations farther from the :

wall, It is noted in Fig. 9 that the fourth-order velocity-fluctuation
contribution to the pressure variance is slight, amounting to at most but

a fraction when compared with the second-order contribution, In Fig. 10
we sﬁow the corresponding variance for the canonical layer. The variance
f, is easentially the same as the measured values given in Ref. 7, Here the

% fourth-order contribution is a considerably larger portion of the total
pressure variance than was the case with the thickened boundary layer.

The suggestion is that for well developed idealized boundary layers it may
éx not be valid to assurme that the fourth-order contributions may be neglected.

It is further noted that in this, canonical, case shown in Fig., 10, the peak

of the pressure variance occurs extremely close to the wall (0, 04 §),
esgentially in the vicinity of the laminar sub-layer. This comes about

because the velocity.-fluctuations tend to peak sharply within that layer.8
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The normalized correlation functions are shown in Figs.
11-13 for the experimental, thickened boundary layer. In Fig. 11, the
correlation in the z-direction normal to the wall is shown for a base
position located at the wall and in Fig., 12 the corresponding correlation
is shown for a base position located at the position of the peak variance
for that boundary layer. In both cases the fourth-order velocity contribu-
tion to the pressure correlation is slight, It is noted that the correlations
have a long tail, retaining 10% of thcir value, even out to 9 boundary layer
thicknesses, In Fig. 13 the x- and y-correlation functions, that is in the
streamwise and transverse (or spanwise) directions are shown for the
experimental, thickened boundary layer, It is interesting to note that
the x-correlation shows a marked negative lobe; the other correlations
remain positive., The scalie for the three correlations is essentially the
same. In Figs, 14-16 the normalized correlation functions are shown
for the canonical layer. It is seen in those figures that (again) the fourth-
order velocity-fluctuation contribution to the pressure correlation, though
smaller than the second order, is in some ranges appreciable, Scales of
the correiation functions in the three directions are essentially the same,
the displacement thickness., The x-correlation (in the streamwise direc-
tion) shows a slight tendency to go negative, but this is not viewed as relia-
ble. It is interesting that the measured pressure correlations at the wall
likewise show no negative lobe (as is found experimentally, see Willmarth
and Woolridge, Ref, 9),

To sum up, the fourth-order contribution to the variances and

correlations appears to be negligible for the thickened experimental
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turbulent boundary layer, though in certain regions it would be necessary
to include it for the canonical boundary layer (where the velocity fluctua-

tions are confined for the most part to regions very close to the wall),
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Appendix A

POISEUILLE FLOW PROBLEM

There is a problem which exactly satisfies the assumptions made

for the single boundary layer problem, It is the flow between parallel
plates -- called Poiseuille flow. Consider the turbulent flow between such
plates, where the Reynolds' number is large enough to generate two (tur-
bulent) boundary layers, one associated with each of the plates, and a
central region of lesser fluctuation intensity between the plates. It is
plausible to suppose that each one of the boundary layers is related to a
single boundary layer over a single flat plate, There are some differences
between the two fluid flow problems; e, g., in the flow between flat plates
the central region shows a residual level of turbulent activity which exceeds -
that observed outside a single boundary layer, Further, we know that

a single layer increases (slowly) in thickness downstream; this doesn't
occur for the Poiseuille problem, in equilibrium,

@ In our application we can, as stated, treat the fluid flow as one
which is statistically stationary, that is, a flow in which all of the (tirne)
averages are independent of the time at which the average is taken.
Furthermore, for the parallel plate problem after the flow has developed,
the flow may be assumed to be statistically homogeneous in planes parallel
to one of the plates. All averages depend only on z, see Fig. A-1, (it is
not assumed that the flow is statistically isotropic.) It will be seen that
these conditions permit considerable simplification in the statistical

quantities which we need. The geometry of the flow problem is sknown in

the sketch.
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Fig. A-1. Sketch of Turbulent Poiseuille Flow; the y-axis is
perpendicular to the page.
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We use the notation given in Section I. It is easily shown from Eq. (2)
thatV. u="9. _El = 0. If we substitute Eq. (4)into Eqs. (1)and (2)anduse statistical

hornogeneity (in planes) and statistical stationarity we find after averaging

 — 2
T (2) -‘;f w vi(z’) dz’ + 5 [h"' -(z - h) ] (A-1)
0 (A-1)
u'w =viw =0
£ max - w'iz) (A-2)

recalling that averages of terms in Eq. (1) depend at most on z. Here a is
the pressure gradient in the downstream direction; it overcomes the viscous
.-drag of the plates upon the flow.
To relate these results for the parallel plate problem to the single
boundary layer problem, we replace the parameters a and h by the gradients
of the pressure and velocity at the z = 0 plane., Eqs. (A-1) and (A-2) be-

come

a= -p_/p (A-3)
and

- =N T - Ity Py
h=-=u (0)= -veu_ (0)/p, (0) (A-4)

where the argument equal zero represents the value of the function at the
plane z = 0, and the subscripts x and z indicate the derivatives with respect
to those coordinates, We can substitute Eqs. (A-~3) and (A-4) into Eqs. (A-1)

and (A -2) to obtain averages for the related, simple boundary layer,
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Appendix B

EVALUATION OF SURFACE FORCES

R oty D - T T

We begin with the stress on the boundary layer, exerted by the

wall on the fluid, The general stress is

du,
= - 14 _a.l’i -
Oj3 = Pb3 »( 2 3r, (B-1)
with the boundary condition

u =0, onthe wall,
80

du _ dv _ .
X 3y 0, on the wall,

Thus the continuity equation gives

. oW _ _ du _ _aov
AT ax ay

= 0, on the wall

From these relations the force per area exerted by the wall on the fluid is

du % dv ¢ »
ul vl B 3z j+tpk (B-2)

where '{, 3 and k are unit vectors in the x, y and z directions,

« In the body of the report the image flow is discussed; it is remarked
! that a force must be added when the wall is removed in the imaging process.
Thus a force term must be added to Eq. (1), to represent the drag of the
wall; the pr - ure force is correctly given by the pressure of the imaged
flow. The equation for the imaged flow problem, which replaces Eq. (1) is

from Eq. (B-2)

P N MUY - £ Sl A
A AL V(az” 3z J) 8(z). N

e
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with §(z) the Dirac delta fuuction, To obtain Eq. {8) we took the divergence

of the equation now replaced by Eq. (B-3). Thus the wall stress gives an ,

added term to Eq. (8) which is

Po ,a [ Feiay i) o
4; fl 5"501 v T 6(z4) ar (B-4)
m dzg dxy  dz By

Suppose we integrate over zé and compare estimates of the integrals of
(B-4) andof Eq. (8)., Near thewallthe scale in the x and y directions is of

order §, the thickness of the boundary layer, For (B-4) the scale in the

z- direction is the thickness of the laminar sublayer whizh is of order

1/2
(.Y.Q.) (B-5)

4
u

Then, for example, the first term in the integrand of (B-4) is of order,

after z(') integration

2

3" u’ yu’ 1
Y el anl 172 (B-6) !

The corresponding quantity in Eq. (8), after integration in the .z'o direction, is

of vrder
urZ
6 ~—35— (B-7)
8
. . . n-1/2
or bigger., The ratio of (B-6) to (B-7) is {(Re’)
wkere
u’ &
Re’ = (B-8)

If we suppose in an application that § = 15 cm, u’ = 0,1 ¢y, with ¢, the speed

of sound (the mean flow, the.,, near Mach 1) and use v = 0,2 cmz/sec, the
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‘, ratio of the terms is 0, 6 X 10’2. The cortribution of the wall drag is less

than 1% of other forces in the fiow.

»
e
i

; Essentially the ccntribution of the wall is a visacous force, usually
P
: §
| (a8 here) of leas importance than that of inertial forces. j
5 H B
; : {
f %
3 {‘ ;
‘1 {
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i
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Appendix C

e T S Y

EVALUATION OF Ay Bi AND C

, These functions are needed for the evaluation of the integrals given in

Eq. (24). Begin with the functions Ay, and refer to Eqs. (26)and (26a). A simple
r . way to find the functions is the following. Take the cross product of Eqs. (26)
and (26a) four times, using the _Ei, and contract indices. Then tlie only term in
Eq. (26a) which doesn't vanishis the third on the right side, thus giving a

single equation for A;. Now continue by taking a cross product of Eqs. (26)and

(26a) twice with §, summing on the other two indices. This gives a single
. equation involving A, and Aj; substitute 1he value for Aq just found, and
determine A,. To determine A,, sum on the four indices in pairs in Egs. (26)

and (26a), use the values of AZ and A3 already found and determine Al'

From these rnanipulations, one obtains the following results :or these

functions.

aje =g fars® Qfm[% K6, 1) - 23 Ky(5, 1) + 3¢ K4(§.r)]

3 AE-E—ZJ‘d"éQZ() Ly . 3x 5k (G-1)
3 2(5) = T Q) -g Kot 38 -gFy -
“ \E 0
: 6 .2 1 1 1
Aglt) = .rdr Q) [§K0'2K2+§K4]
0

with (see below)

1 n
dx
Kn(g,r)=2nf X

It va +bx

’ (C-2)
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To find the functions Bl and Bz refer to Eqa. (27)and (27a), removing the
factor 6p6. Using those equations take the cross product of both twice with
the vecter §, yielding a single equation for BZ' Then sum on the two in-

dices giving a single equation for B1 and B2 frorm which B1 can be found.

. The result is
| 20, 4 3 1
Bl =g" bfdr r Ql(r) Qz(r)[-z- KZ(E,r) - 2-K0(§,r)]
(C-3)
[ -}
B, = Idr aq,r)a (r)[lK Lk
2 1 2 27077 M2
0
Finally to determine the function C refer to equation (29a). One
simply carries out the integral involved there and obtains the result
-}
2 .2
C=f§drr Qz(r) KO(E, r) (C-4)

: O . g
The integrals in (C-2) can be found in terms of elementary functions:

Kol€or) = 25, E<r ;

- K50 = 4 [s542 2 €<
;- 2'> )= Ty —Z| r

K, (5, T) = —~fn ’63+36 g +8'§4 £E<r
457 = 3757 = 87

and are gymmetric in € and ¥, as must be so from their definition, (C-2).
The functions have discountinuous derivatives, which lead (under two differ-

entiations) to Dirac delta functions in the work,

-58-




k|
w

it A o

¢
i
i
{
3
i
¢

o R o e e

B et

Appendix D

INTEGRATION BY PARTS, AT A SINGULAR POINT

It will be convenient to integrate Eq. (8) by parts (i.e., use Gauss'
theorem). In the process, the singular point at 5’ - _r_z) = 0 must be treated
carefully; we present the reasoning in detail. First note that as it stands,
the integrandis integrable at that point, Thus we may set up a small sphere
of radius ¢ about the point and delete the integral over sphere-¢ fram the
rest of the volume of integration (all space) without changing the result, Let

the remaining volume be V-, whereas all space we let be V. Thus we have

for Eq. (8)
t, e Po ’ -1 52 ’ ¢
P s g ffflg -2 = mp ey e (D-1)
Ay or
V- Oy OB

_Po J-J-; d ’ 0 -1 3 ’ ’
il ar’ _lf-o -r 7 Hyglzg)| dzg
v- Tox

(D-2)

Po o) ' o) ‘ =1 ¢
B [ ] e o
v- L% 0pg

Use Gauss' theorem on the first; we have two surface integrals, one at
infinity (i.e., large distance) which vanishes because all fluctuations vanish
there, and the other on the ¢-sphere; that one vanishes as well because the
element ol surface area is of order ez, giving an integrand of order e. Thus

the first term on the right side of (D-2) vanishes. Consider the second:
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P PR

Po _EL_ ’ ) ’ 24=-1 ?
ey IH " [HQB(-I:O) ——ar' | Ip- _‘| ] dr', (D-3)
V> °Top O

Po fjj H (rl) az |r1 rll-l dr’
114 ’YB —'0 d 4 ar' ‘-O = _O.
V-

Yoo “Fop
Use Gauss' theorem on the first term on the right side; it is equal to (recalling

that surface integrals at infinity vanish)
Po -
T 4m ‘U‘ (M) g HozB(iz))
€

Let p = 5_6 - _z;' and recall that  is directed into the surface of the sphere

2| xy- x| as(zp) (D-4)

r001

and find for (D-4) for e very small:
Loy (r')ff LA Y AN Pa_ Zdn D-5
an Hyelz P z) PP (D-3)
€

with d the element of solid angle. This is easily seen to give

22 AT g (+'). Gombining th 1t find
iy i o aa(£ ). ombining these results we fin

’

)--;-—fﬂﬂaa(_o) = |y - =1 axf

T oy Br
(D-6)

p
- —59- Hacv(-lli)

Consider now the value of the integral in Eq. (D-6), if carried out

within €, We see
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‘ 7, -1 ’
00 g e 1
Tos
Q'—P-g-H r') j‘J’ Bz P-l d
¥ gm Hoele 5, Opp P (D-7)
€

Py ’ 411) Po ’
= Hyelz) ('T Swg = 7 T3 Haalz)
using the vector properties of the integral. Evidently if we (incorrectly)
drop the surface integral which gave the added term to Eq. (D-6)and

(incorrectly) extend the volume integral in Eq. (D-6) throughout €, we have

cancelling errors and the correct result

e fff iy sy o
ar ar
all 08
space

Some care must be exercised to be sure that the delta-function contribution

at 5,0 = _x;' is not lost,
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. ¢ Appendix E

; TECHNIQUES USED IN EVALUATION

: OF THE PRESSURE CORRELATION

3 { In order to numerically evaluate the pressure correlations
* £qs. (38) and (44) the angular integration is first performed analytically

in terms of Hypergeometric functions. From Eq. (38)

E‘ T 2
S sl

3 [(gz L 22 , 2 €22
%

+ -
lr -85 |e-gl® Is-il] lr-g|°

a3 { 75 [(g.z-rz)zb'2 Ax) + 2(8%-r%p L Bix) + C(x)l - 25"l p(x) (E-1)
where
x= 28 ase4n? s (2-87% b= (p0-n)? 4 (2-8,)°
1 and
- :
% ‘ -.5 -
E ! Clx) = zoj (1-y%) 7" 2(1-xy?) ™ Bay = 2 K(x)
i ‘ 1
' B(x) = ZJ (l-YZ)_' 5(1-xy2)" de = 2E(x)
- A(x) = 2 [{2-x)B(x) -.5(1-x)C(x)]/3 (E-2)
7' Note that €2 = p2 + §§ and r2 = nz + zz.
Simple polynomial expressions accurate to two parts in 108 exist for the
; complete elliptic integrals 10 K and F. Note that for x = 0 (for example)

-63-




calculation of the variance or the correlation for z separation cnly),
A=B=C=mn, For r2 equal to 0 (i, e, the variance) Eq. (E-1) becomes

simply 211/&, This implies that the fourth-order variance is given

simply by
p 2 F

i a’,0) =-;,_3,.,—[-[\1'(z')]4D2(o)+ _,,f a8,z 48 | PMuom ™} (E-3)
where

Mixx) = f d%Dl(g) (E-4)

xx

and

xx = §3M-1

M=(T 14|z + §3|“1)‘1

The function M(xx) is a universal curve independent of the velocity field and
should not be confused with the scale factor M. Continue with the calcu-
lation of the correlation Cl(’zpb) by substitution of (E-1) into Eq. (38). Direct
numerical integration at this point leads to significant error and large
computation times due to the apparent singularity near § = r, Instead

change integration variables letting

p=n+Ad

g

=2 « W
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Expressicn (E-1) becomes

[(n%-2%) (82 -w?)-4nzbu] BOx) + 2?82 -2nz0u0sw 2.2 [B(x)-. 5C(x)]
bz ab

+ (nAng! [3A(x) + B(x)] + [. 75A(x) + . 5 B(x) + . 75 C(x)] (E-5)

Substitute (E-5) into Eq. (38) and integrate the first term in (E-5)

by parts w.r.t, 4, This gives

2 © ' 114
aofu’( |z
(2b) , . P 0 f ;
Cpp (z', M, 2) = 471‘2 _wf > - da P(n, =z, zor b, w) (E-6)

where

2 2 ,
P(M, 2,24, 8,4) = l““ 2 g"‘m“’][a" >BD, + 2a” 1 onxN(1-2p(p+mpa~Y)

% (B-C)D; + o272/ | ta™ 5BD'l - p(p+mia”l SBDl]

. [(nA;.nz) (3A4+B) + ZLnZAZ-ZT&zAw-kazZ) (B-.5C)
a

+ (.T5A + . 5B +,75C) ](a" >oD,) (E-7)

and
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a = (2n+ 8)% + w?
b=A2+w2
€ = (pz+§§)‘5

I
J¢:=4~‘l'K1'H-A)a'1

’

zg = z' +w

The argument of the functions A, B, and C is x while the argument
of D1 and the derivative of D1 "D;" is §M-1. To complete the numerical
evaluation of Eq. (E-6) the integral over 4 was first broken with two
terms, one from -N to N and the other from M to ®, Then the integral
over i from -m to M was rewritten in terms of a single integral from 0 to
n. Finally the integral over W from -® to ® was rewritten as a single
integral from 0to ®, Note that [u'(|z;| )]4M"2 was brought inside the
A integral in the final expression. The final results do not give numerical
difficulty at &4 = w = 0 and typical evaluation times for 7, z not too large are
of the order of 10 seconds on a CDC 7600, Note that the integral over
A is a universal function of (N/M, z/M, &/M). If one krew this function,
it would be very easy to evaluate CI(;) for any velocity field, Unfortunately
this function is too complicated to compute and store for all parameter
values, Instead one may consider the special cases when either N or
z are equal to zero., This results in a two parameter function which can be

tabulated and stored. If there are many different boundary layer cases to

be considered, there may be a significant advantage of tabulating these
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functions, However, even on a CDC 7600, the calculation time required
to determine these functions for C:p and C;p terms will take approximately
one hour, Proceeding now with the case when n = 0 the fourth-order

correlation becomes

2 ® ’ 1114
(2) ’ _ pO dw[u (‘zoll w z
Cpp (zy 0, 2) = z— _mf v M("M—. VL (E-8a)
where from Eq. (E-7)
M(A, B, 0) = M'lg/ dAP(0, z, lzé|. A, wy = (E-8b)
fAdA[(2-4K'ﬁb'1)D1(§) - Azﬁzb'lg'lD;(E)lb"s

0

and a change of variables was made within Eq. (E-8b) su that

b= 8% 4 K2

g =2ty (B-K)°
A= w/M
B=z/M

In obtaining Eq. (E-8) the partial integration proceeded in a slightly
different way than discussed after Eq. (E-7) since a = b, Depending on

the accuracy required, this function M can be stored in tabular form
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or the complete double integral Eq, (E-8a) can be calculated. If the

first method is used an interpolation is performed for intermediate

values of Aand B. In a similar manner, for z = (

Faufu’ (12 DIF _
cSl’,m, 0 - CTY i LS TR (E-9a)

where

o
M(A, 0, ©) =M™ f dap (n, 0, lz4l, 8, w) =
n

[ (s

-C

B(x)D,(8) + Za'lx‘lpﬁn —Zp(p+'c':)a‘1][B(x)-C(x)]D1(€)

+ ng'lB(x)Di(g) - p(p + 'C)a‘IB(x)Dl(é)! +

Cab i3 + Bx)] + 2828207 1a " [Bx) - . 5C(x)] +

501(;>> db (E-9b)

and
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PSR
. 4

A = w/M
! . C = n/M
= %4 32
p = AL+C
a = (p+T)%+ a4

x = 4;:‘6::1-1

Again the integration over 4 should be broken into two parts, one from Q
to Cand the other from C to = for use of numerical integration.

The calculation of C;L) proceeds in a similar way though it is
much easier, First the integration is performed over angle, The
required scalar integrals are [the underbars do not represent vectors

on A (x) and B (x)]

n
a 12 ¢ f lr-g]"1 do
| 0

. ,
w250 - 8a'1/20f y2 1y 2 (1xy) " 2ay |

i
dfsin 2o1r-8] " 1ap (E-10)

n
A(x) = a‘1’2[01x)-4_§<x)]=0f cos’s|r-3| 'ag

a-l/Z
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Now B(x) is not easily expressed in terms of the elliptic integrals;
therefore, B(x) is calculated as a function of x for 0 $ x £ 1 and stored
for later use., A polyncmial fit could also be made, Substituting £qgs,

(E-~10) into Eqns, (42)-(44) yields

2 © @
2p
1) ’ — ' ' AT A '
Ci)p(noorznz )=_1$‘" -Qf dw[u (izol)u (!zo|)] of pdp N(p,w,Nn,z, 2z )

(E-11)
where ;
2 i
g 1.2 2
' -.5(°3 g E\ip !
N(p,w,n, z, z )= a (‘_‘ [7DB =] .Q - = A(x) - :
M2 <M) I(M)ng a
(8 g gy g2 g \] 02 -
DB (g)cta | + [f(m“)'Qz(ﬁ)-;;z DB(37) gz Ak - |
- 2 ’
[zf(l\%[) 5 B (E—A)] C(x)/5> (E-12)
M '
and it is recalled that
_ 2 2.5
E =  (p" 4+ §3)
§3 = 2z - W
’ ¢ ;
Zo = z + W ;
x = 4np/a
a = Mmepf+ol ‘
M = (T4 lz(’,l'l)'l
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Replace A (x) by B(x) in Cl(i':i’) (0, N, 2z, z'). Direct numerical integration
of Eq. (E-11) may follow though there may be a time advantage by repla-
cing the integral over W from -® to ® by one from 0 to ®», When either 2z,
or M is zero, then C1 can be determined in terms of a two parameter |

scalar function N which is equal to
[--]
N(@A, B, €)= M‘ff PApN(p, w, m, 2, | 2{ )=
0

M'lofpdp ((‘B -A)* l (7DB(E) - Q, (8] 0? E'Zé (x) -

DB(E)C(x)| + [£(8) - Q,(8) - £2 DB(H] p2¢"24 (x)

- L2£(g) - 2°DB(E)] C(x>/s>a'°5

(E-13)
where
A = o/M
—B‘ = z/M
C = n/M
a = p+C)+%2

8 = Yplh (B-K)2

x = 4pC a-l

and A (x) and B (x) are interchangeable depending on whether the x or y
correlation function is desired. The variance is cvagy to determine since

then Nreduces to a one parameter function.
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Appendix F

GRAPHICAL REPRESENTATIONS OF VARIOUS FUNCTIONS
USED TO CALCULATE THE PRESSURE CORRELATION

Figure F-1 is the plot of the longitudinal velocity coefficient
f(r) vs r on a log-log scale. Figure F-2 is the plot of g(r) vs r on a
linear scale. A plot of Ql(r) ve r is shown on a log-log scale in figure
F-3. Dz(r) and -D'l(r) vs r are shown in figs. F -4 and F-5 using log-
log scaling. The guantity §-7§6(§) vs & is shown in figure F-6 on a
log-log scale. The funciion B (x) vs x is shown in figure F'-7 on a linear
scale. Note that tabular data is included in figures F-] through F-7,

As mentioned in Appendix E, it is possible to obtain two para-
meter functions Mand N, when either 7 or z is equal to zero, from
which the correlation functions could be calculated. For a large number
of correlation calculations for differing flow field conditions this technique
would have a significant computer time advantage over performing a
double integral for each desired point. For M= 0 the function M (&, B, 0)
is calculated and shown in perspective in figure F-8. The parameters
A = w/M(x axis) and B = z/M (y axis) with M = (7! 4+ | 2" + wl'l).1 with
ranges of -100 S A <] and 0 s B < 100 were used to calculate M, The
parameter interval was variedlogarithmicly., Figure F-8 views the function
from a location of x = 10, y= 100, z = 100. The plot shown is for the range
of values -5 <A <1 and 0B 5. The scaling is reduced by a factor of 5
in the y direction and a factor of 10 in the z direction. Note that there are

two sheets to the function - one for positive A and the other for negative A,
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Fig. F-1. Longitudinal Velocity Coefficient
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The values for A= 0 have been removed to show a clean figure. I M is

(2b)
dt lculate C
used to calculate PP

the two sheets are calculated separately and then
added together during the computation. Figure F-~-9 is the positive sheet
of M (A, B, 0) alone from the vantage point of x = 10, y = 10, z = 10,

The z scale has been reduced by a factor of 10 and M is only plotted for
0<X £1and0<B < 1. Figure F-10 contains both positive and negative
sheets of M (A, B, 0) plotted separately from the vantage point x = -10,

y =10, z = 100 and a z scaling reduced by a factor of 10. From figures
F-8, F-9, and F-10 it is seen that the A positive sheet is maximum at the
origin and falls rapidly for increasing values of A or B. The A negative
sheet on the other hand increases with increasing B, reaching a maximum
value near B = .1 then falls rapidly to zero. The other available fourth-
order contribution is for z= 0. Then M (A, 0, C) is required where C=

n/M. The function was calculated over the range 0 < A<)10and 0 <Cx 10,

Figure F-11 is a perspective plot of this function obgserved from a position of

x =100, y= 100, z= 100, Figure F-12 is the same function observed from

100, y= 100, but z = 10, It is seen that the function is highly peaked at

X
K= C= 0 falling rapidly as both A and Cincrease. The function falls a bit
faster in the y(C) direction becoming negative then approaching z = 0 from
the negative values. In the special case that nor z equals zero N (Eq. E-13)
can be determined. Figure F-13 is a perspective plot of N(A, B, 0) (n=0)
viewed from from a location of x = ~-20, y= 10., 2 = .3 with the z scaling
increased by a factor of 100. The range of values are for -10 <x(A) £ 1 and

0 < y(B) £10. The same function i3 viewed from a location x = -20, y = -20,
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ative Sheets of M(A, B, 0)
Z scaling reduced -

g
= 100,

(left figure) and Ne
10, y = 10, and z

pective of Positive
m a Location of x

by a factor of 10,

Pers
fro

Fig. F-10,




Perspective Plot of M(A, 0, C) from

a Location of 100, 100,

100

Fig. F-11.
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Fig. F-12. Perspective Plot of M(A, 0, 73) Observed from
x =100, y =100, z = 10
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Fig. F-13. Perspective of N (A, B, 0) Viewed from a

Location of (-20, 10, .3). The z scaling
has been increased by a factor of 100.
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z=0andx=0, y= 20, z=,3 in "figures F-~14 and F-15 respectively,
Perspective views of N@&, o, C ) are given for the x correlation function in
figures F-16 and F~17 where the viewing locations are x = 20, y= -20, z =
.3and x = -20, y= =20, z = .3 respectively. The 2 scaling has been
increased by a factor of 50, The perspective views of FX-(K. 0, €) for the

y correlation function are giver. in figures F-18 and F~19. In figures F-16 -

F-19 the figures are plotted for 0 < x(A) < 10 and 0 < y(C) =< }0.
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Fig- F“ls.
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1

Percpective of N (A, B, 0) Viewed from
a Location of 0, 20., and 0.3,

z ecaling has been increased by a factor
of 100,
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Fig. F-17. Perspective Plot of N(A, 0, C)
(x correlation) Viewed fxrom a
ILocation of x = -20, y = z0,
z = 0,3. =z scaling lucreased
by a {actor of 50.
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Fig. F-18. Perspective View of N (A&, 0, T) for the
y Correlation Viewed from the Location
x=10, y = -20, z = 0.3. The z scaling
is increased by a factor of 50.

-93.




iia ARASBUN

Fig. F-19. Perspective View of N(Z&, 0, C) for
the y Correlation Viewed from a
Location of x = -20, y = -20, z=0.3.
The z scaling is increased by a fac-
tor of 50.
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THE IVAN A, GETTING LABORATORIES

The Laboratory Operations of Ths Aerospace Corporation is conducting
experimental and theoretical investigations necessary for the evaluation and
application of scientific advances to new military concepts and systeme, Ver-
satility and flexibility have besr developed to a high degras by the laboratory
personnel in dealing with the many problems encountered in the sation's rapidly
developing space and missile systems, Expertiss in the latest sclientific devel-
opments is vital to the accomplishment of tasks related to these problems. The
laboratories that contribute to this research are:

Asrophysics Laboratory: Launch and roentry serodynamics, heat trans-
f r, resatyy physics, c cal kinatice, etructural mechanics, flight dynamics,
a. moepharic pollution, and high-power gas lasers.

B stry and Physics ratory: Atmospheric reacticns and atmos-
pheric op%‘ct. chcmcﬂ rol'éﬁloal Tn p_'oﬁutcd atmospheres, chemical reactions
of excited species in rocket plumoes, chemical thermodynamics, plasma and
laser-induced reactions, laser chemistry, propulston chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena, photo-
sensitive materials and sensors, high precision laser ranging, and the appii-
cation of physics and chamistry to problame of law enforcement tnd biomedicine,

%%ntr%gg Ressarch Laboratory: Electromagnetic theory, devices, and
propagation phanomaena, inc ng plasma eslectromagnetics; quantum electrunics,
lasers, and electro- co; commnaication sciences, applied slectronics, semi-
conducting, superc cting, and crystal device physica, optical and acoustical

imaging; atmospheric pollution; millimeter wave and far-infraced technology.

ww;gg}a_ggbr 1 Development of new materials; metal
matrix composites new forms of carbon; test and evaluation of graphits
and ceramice I reentry; opacecraft materiale and electronic componsents in

nuclear weapons eanvironment; application of fracturs mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals.

mg‘i F ey ra 1 Atmospharic and ionospharic sics, readia-
tion from [ Te, Gemsity and composition of the atmosphers, aurorse
and alrglow; magnetospheric pliyrics, cosmic rays, generation and propagation
of plasma wavaes in the magnstosphars; sclar physics, studies of solar magnetic
fields; apace astronomy, x-ray .stronomy; the sffects of nuclear sxplosicas,
magnatic storms, and solar activity on the ssrth's atmosphors, ionospherv, and
magnstosphure: the effects of optical, electromagnetic, and particulate radia-
tions in spacs on space systems,

THE ACROSPACE CORPCRATION
.:l Segunde, California




