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INTRODUCTI ON

Typical electromagnetic shielding problems involve the calcu—
lation of the time—dependent electric or magnetic field penetration of
electrically conducting media. Two material properties which enter
into such calculations are the electrical conductivity ~ and the
permeability ii . In most cases the electrical conductivity does not

~_u significantly vary with electromagnetic field level and can be re—
_..J garded as a constant for a given material. In nonmagnetic materials

~.j ... the permeability is also independent of field level and has the value
for free space (vacuum) ijo = 4ff x l0 7fl/m . For media whose material

C..,3 properties are independent of the applied electromagnetic field level,
the partial differential equations which govern electromagnetic field

r~~’~ ~~~~~~~~ propagation are linear. The analytical theory for electrc~nagnetic
field calculations in media with constant permeability has been well
developed and extensive analyses exist. In fact, quite often the

F exact analytical solution can be achieved by any one of a number of
standard linear mathematical techniques.

On the other hand, ferromagnetic materials, which are common-
ly used in electromagnetic shield fabrication , not only have a per!nea—
bility that is dependent on the magnetic field strength H but also
exhibit the phenomenon of saturation. Although ferromagnetic
materials usually have relatively large (in some cases relatively
enormous) permeabilities compared to nonmagnetic material.s, the pertne—
ability can be greatly reduced if the material is driven into satura-
tion. For these materials the partial differential equations which
govern electromagnetic field propagation are nonlinear and
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considerably less amenable to analytic solution. Due to the difficul-
ties associated with the nonlinear partial differential equations
which arise in this case, relatively few analyses are available so
that it is difficult to assess the effect of a variable permeability

~~~ or~~the time—dependent electromagnetic field penetration.

This study examines the time—dependent pepetration of a step
increase in magnetic field strength H into a semi—infinite conducting
medium having a permeability which varies with magnetic field
strength. The medium is considered to be isotropic, homogeneous , and
initially demagnetized. The medium at any point is presumed to follow
its initial magnetization curve for which a simple approximation is
assumed. The analytical approach consists of mathematical analysis
supplemented with numerical calculations. The problem can be simpli-
fied from one involving a second order nonlinear partial differential
equation to one involving a second order nonlinear ordinary differen-
tial equation utilizing a simple transformation of variables. Al-
though a formal parametric representation of the solution of the
second order differential equation is considered , a simple closed form
solution in terms of elementary functions does not seem to exist.
Hence several analytical techniques, as well as numerical calcula-
tions, have been employed to deduce properties of the solution.

MATHEMATICAL FORMULATION OF THE PROBLEM

The propagation of electromagnetic fields in a conducting
medium (where the displacement current can be neglected) is governed
by the equations

(1)
and

V x i ~~~~c~~~, (2)

~here ~ Is the electric field , I~ is the magnetic field strength , andB is the magnetic flux density.~ In a~homogeneous and isotropic
medium, it can be assumed that B = B(H), i.e., that the magnetic flux
density is a function of the applied magnetic field strength and is in
the same direction. With the differential permeability defined as

= aB/~H, (1) can be written as:

(3)

Consider a homogeneous , isotropic , conducting medium of semi—
infinite extent (x ~ 0). In the present problem it is presumed that
the medium is initially demagnetized , and at time t = 0, a step in—
crease in magnetic field strength in the 9 direction occurs at the 
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CROIS ANT & I~IELSEN

surface x = 0, e.g., as the result of an imposed surface current in
the 2 direction.

Since it is presumed that = H~ (x ,t)9, the propagation of
the electromagnetic fields following the onset of the step increase in
H~ (x ,t) is governed by the equations

3E (x ,t) 3H (x ,t)a 
= ~~~~~ 

~~~~ 
‘ 

(4)

3H (x,t)
= ~E ( x ,t) • (5)

By eliminating E~
(x,t) from (4) and (5), it is found that the partial

differential equation governing the penetration of H~ (x~t) is

(x,t) ~H (x ,t)
= 01.1 (H)—~~ . (6)

d

In general , B(H) = p0[H + M(H)], where M(H) is the magnetization . As
H is increased from zero, 

~~~~ 
usually starts from an initial value

1~i 
(
~i 

is usually larger than po), increases to some maximum value,
and then decreases to .i,~ as the material undergoes saturation . In
many cases before saturation, the variation of B with H [hence the
variation of pd(H)] is primarily due to M(H). In this study it is
assumed that over the range of interest B(H) can be represented by the
simple approximation

BOl) = B
5[1 

— exp(_H/H
m)],

wher e B5 represents a saturation value for B and 11m is a parameter
which indicates the shape of the magnetization curve for the medium.
With this representation of the magnetization curve,

= ~~ exp (—H/H~)

where Pj E Bs/Hm is the initial slope of the B—H curve. The variation
of B(H) with H is shown in Figure la and the corresponding variation
of Ud(H) with H is shown in Figure lb. For large H, 

~d
(H) actually

approaches 
~~ 

as a lower limit; hence this simple representation is
appropr iate as long as j.ij  exp(—H/H m) > over the range of H under
consideration.
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FIGURE Jo 8(H) vs. H FIGURE lb Pd (H) vs. H

The present problem, therefore, requires the solution of the
nonlinear partial differential equation

(x ,t) ~H (x,t)
= op~ exp(—H/H 

) y

~tm

subject to the initial condition

H(x ,0) = 0 (8)

and the auxiliary conditions

H~ (O~t) = H (9)

and

H (°°,t) = 0 . (10)

The electric field can be determined from the solution to the above
problem by noting from (5) that

1 ~
H (x,t)

E
~

(x,t) = 

~ 
• 

(11)

REDUCTION IN THE NUMBER OF INDEPENDENT VARIABLES

Using an approach similar to that used for nonlinear diffu-
sion phenomena analysis , the number of independent variables appearing
in the problem can be reduced by the transformation

~~Lk~~~~~~~ . .~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
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H ( x ,t) = H(C); ~ 
= 

2

The new variables are introduced by evaluating the partial
derivatives in terms of the new variables and substituting these
quantities into the original partial differential equation. On
calculating the partial derivatives it is found that

3 H ( x,t) 
= 
jç~ dH(C) = ____ 

dH(C)
3x ax dC 2/~~ 

dC

32H ( x t) 
— 

a~ dH()~~ + (a~f~
2 d2H (C) 

— 

o h .  d2H(C)
ax

2 
— 

ax
2 dC \~xJ dC

2 
—

~ 4t 
dC
2

and

au (x,t) 
~~~~~ dH = - .~~~ 

x dH(C) 
= — 

1 ~ dH(C)
at at dC 2 2 dC 2 t dC

Upon substituting these quantities into (7) and cancelling a factor of
cy
~1/4t, it is found that the magnetic field strength satisfies theequation

d2H(~ ) 
= — 2C exp(_H/H m) dR(C) 

, (12)

in which the variables x and t no longer appear explicitly . The
electric field is related to H(C) by

E ( x ,t) = 1,
/cL dH(~) (13)

in which a factor of VE appears. Noting that both x = 0 and t =
imply that C = 0 and that both x = and t = 0 imply that C = ~~~, it
follows from (9) that

H(0) = H
~ 

(14)

and from (8) and (10) that

Hy
(~ ) 0 . (15)

For computational purposes , it is convenient to normalize the
problem in terms of H .  With
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F(ç) = H(C)1H0 
= R

y
(X~t)/H0 

(16)

the problem has been reduced to solving the nonlinear second order
ordinary differential equation

= — 2~ exp(—aF) (17)
dC C

subject to the conditions
F(O) = 1 (18)

and
(19)

where a = Ho/Hm. Having solved for F(C), the electric field can then
be evaluated from the relation

dF(C) 
= 

~~~~~~ 
/~ E ( x ,t) . (20)

ANALYTiCAL ASPECTS OF THE ORDINARY DIFFERENTIAL EQUATION

Classical Linear Solution

In classical analyses of electromagnetic field penetration ,
it is assumed that the permeability is constant , which corresponds to
a = 0 in the present investigation. For a = 0 the problem reduces to

d2F _ dF

subject to conditions (18) and (19). This equation can be integrated
in a straightforward manner , to obtain the classic solution

F(ç) 1 — erf(C) , (22)

where the error function is defined as

2 
C 

2
erf(C) f exp(—C

1)dC 1

It follows immediately that

d~(c) = — —
~~~ exp(—~

2
). (23)

a

~

. ~~~~~~~~~~~~~~~~ . .  ~~~~~~~~~~~~~~~ .
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Formal Solution of the Nonlinear Problem

Most of the standard linear techniques are of relatively lit-
tle use in achieving an exact solution in nonlinear cases (a # 0);
however, in the course of an investigation of a related problem in non-
linear diffusion phenomena, Fujita [1] found a formal solution which
can be directly adapted to the problem presently under investigation .
The problem is satisfied with F and ç being given by the parametric
representations

F = 
~ 

- B~n(~~ ) ] d~ 1 , (24)

1/2

C = { ~~2 
- ~in(~

2
)] -

(2B)~~
2 

(25)

exp - ~Zn(C ) 2] d~~ }

where the derived quantity ~ is related to the given quantity a by

1 -1/2

a = 2 — 
~9.~n(~~)] d~1 

. (26)

The parametric representation of dr/dC can be evaluated from

=
d~ d~ d~

4 2 2 —1 /2 1 (27)
- 

a~ l/2 ~ exp~~- I~[l - 
~~n(~1)] 

d~1J.

The parameter ~ (0 1 ~ 1 1) relates a value of F to thecorresponding value of ç. (Note that ~ = 0 implies ~ = and F 0,
while ~ = 1 implies C = 0 and F = 1.) To evaluate F versus 

~~, 
a value

of ~ is selected and the value of F and the corresponding value of
are evaluated. The integrals appearing in the formal solution do not
appear to be evaluated in closed form , thus numerical integration
seems to be required; howeve; the above representation offers the
advantage of allowing the computational effort to be directed to the
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very accurate calculation of the solution at only a few points , or one
point for that matter, since the know1e~..L ... of intermedi ~e points is
not required. Of special interest is dr/dC evaluated at C = 0 where

dF(0) 
= — 

1/2 exp(—a/2) . (28)

L ,.ddition to its relation to the electric field at x = 0, the cal—
.Lated value of dF(O)/dC can be used to transform the problem from a

two—point problem (with a condition at x = as well as one at x = 0)
to an initial value problem (with both boundary conditions specified
at x = 0). Such a transformation is often useful from a computational
standpoint.

Taylor Series Expansion of the Solution

If F(C) was a known function of C and if F(C) and its
derivatives were continuous, then F(C) could be expanded in a Taylor
(Maclaurin) series about C = 0

F(~) = ~ ~~~~~~~~~~~~~ 

~
-j- = F(O) ÷ dF(0). C + d

2F(O) C~ ÷
m O dC dC

where F and its derivatives are evaluated C = 0. For example, the
solution (22) to the linear case (a = 0’ has the series representation

n 2n+l 3 5
F~~~~— l  2 

~~
(—l) C — l  2 C + C— — 

~‘~~n O  
(2n+l)n! — — 3 5 2 !

A series expansion approach can also be used to develop the
solution F(C) from the second order differential equation. If F(O)
and dF(O)/dC are given as boundary conditions, then the approach is
straight—forward since the second and higher order derivatives can , in
principle, be determined from successive differentiation of the second
order ordinary differential equation. Although F(O) is one of the
auxiliary conditions in the problem presently under investigation , it
is evident that a difficuLty arises because the second condition F(~)
= 0 is specified at C = 

~~~. For this reason we are led to consider
the associated initial value problem

d
2F dF

= — 2C exp(—aF) (29)
dC

subject to

F(0) — 1 (30)

_ _ _ _  
~~~~~-. . . .- - ~--~ _ _
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and
dF(O) 

= ~ , (31)

where y is to be chosen such that F(co) = 0. This value for y can be
computed from Eq. (27).

The second derivative can be determined directly from (29)
from which it follows that

d
2F(0) 

= 0 .
dC
2

The third derivative can be found by differentiation of Eq. (29)

4-4 = — 2 
{
exP(_aF)~~ 4- C~

-
~

- [exP(_aF) 

~~
-]  

} 

, (32)

from which it follows that

d
3F(O) 

= - 2 y exp (-a)

Differentiating (32) and evaluating the result at C = 0 yields

~~iu~I~ d4F~0’ 2/ = — 2ay exp(—a)
dC

Similarly, it is found that

d
5F(O) 

= -6a
2
y3 exp(-ct) + l2y exp(-2a)

dC

The approach could , in principle , be extended indefinitely ; however,
in practice it becomes rather tedious after the first few terms.

To fifth order terms the solution F(C) is given by

F(ç) = 1 + IC - 
y exp(-a) ~3 + 

ay2 exp(-a) 
C
4

+ 2y exp(—2ct) 
— exp(—ct) ~ + (33)

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~
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The series representation (33) can be used to calculate F(C) for small
values of C.

In the study of pulse penetration it is frequently of
interest to know the time that it takes for the fields at a certain
point to rise to a given value. For this purpose a convenient

• ma~iipulation is the reversion of series. Given a series for the
dependent variable y in terms of the independent variable x,

2 3 .  4 5
y ax + bx + cx +dx +ex + ...

Using a reversion of series one can write x as a function of y:

x Ay + By2 +Cy 3 +Dy4 +Ey5 + ...

where

2 2 3
A l . 1, _ b • , , _ 2b_ — a c

rn 
5 a b c — a d — S b

— 
5 , 1) —

a a a

- 
6a2bd + 3a2c2 + l4b4 - 2lab2c - a3eE —

a

For example , the classic linear solution (22) can be rewritten as

n 3 5
— 
2 

~‘ (—1) 2n+]. 2 / C C— L / . C — ~.C 
— — -r — . .

~~n+i)n. ~
— 3 10yir n=O

A reversion of series yields

which is suitable for calculating the value of C at which the solu-
tion F(C) has a specified value for small values of (1 — F) (which
implies small C).

Equation (33) can be rewritten as

(1 - F) -IC + 
Y exp(-a) C

3 
- 

~~~~~~~~ exp(-a)C
4

2 3
- ~~~~ exp(-2a) — a ~ exp(—ct) 5 

+ ...20 C 

. . .
~~~ 

. . .. .. _____
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A reversion of series yields

C = i [1 - F) + 
exP(_a)(1 - F) 3 + 

a exp(-a) (1 - F)4
I . 3y 6y

- + L a2exp(—a) — 
7 exp(—2a) 

~ 
(1 — F)5 +‘20 2 30 4 /

I I
which can be used [for small values of (1 — F)] to examine the varia-
tion with a of the value of C at which F(C) has a specified value.

NUMERICAL CALCULATIONS

For a specified value of ~ the corresponding value of a canbe computed by numerical integration of (26) and- the value of dF(O) / d C
• = Y can be calculated from (28). Some numerical calculations were

performed and the results are shown in Table 1. An examination of
Table 1 reveals that rather large changes in ~ correspond to relative-
ly small changes in a. This situation can make it difficult to
determine the value of ~ which corresponds to a specified value of a.
On the other hand , it is evident that dF(O)/dC = y exhibits a
relatively moderate variation with a. While a varies in the range
0 � a ~ , I varies in the range — 2//~ ~ I ~ 0. This moderate

fr-~ variation makes it possible to accurately represent I as a function
of a using the regression equation

dF(O) 
= y = - 1.1284 + 2.0490 x lO~~a — 3.4426 x l0

2
a
2

+ 4.4139 x l0 3a3 - 4.1562 x

+ 2.7025 x l0 5a5 - 1.0736 x l0 6
a
6

+ 0.9395 x 10 7a7 —

which provides a convenient means of evaluating 1 for 0 ~ a < 10.

The variations of F and dF/dC with ~ 
were calculated for a =

= co) , a = 2(~ = 3.959 x 10—1 ) ,  and a = 5(~ = 5.922 x 10—3) and are
shown in Figures 2a and 2b. The magnetic field strength H can be
determined from (16) and the electric field from (20). In shielding
applications , the time variation is often of interest; therefore the
variations of F and dF/dC with 1/C2 are shown in Figures 3a and 3b.

_ _ _ _ _ _  . t ~~
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Table 1

Numerical Calculations of a and dF(0)/dC.*

— 
dF(O)

0

s x 0.0112 —1 .1260

1 x ~~~ 0.0249 —1.1233

5 x 10~ 0.0351 —1.1212

1 x lO~ 0.0773 —1.1127

5 x 102 0.1083 —1.1066

1 x io2 0.2326 —1.0825

5 x 101 0.3197 —1.0662

1 x 101 0.6424 —1.0098

5 x 10~ 0.8475 —0.9769

1 x 100 1.5058 —0.8847

5 x 10 1.8681 -0.8414

1 x 10 1 2.8683 —0. 7432

5 x lO~~ 3.3552 —0.7043

1 x 10 2 4.5797 —0.6255

5 x lO~~ 5. 1378 —0. 5965

1 x lO~~ 6.4838 —0.5392

5 x l0~~ 7.0801 — 0.5183

1 x lO~~ 8.4931 —0.4767

5 x lO~~ 9.1115 —0.4612

1 x 10~~ 10.5651 —0.4300

*The calculations were performed on a CDC 6600 computer using simple
trapezoidal numerical integration.

________— - 
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CONCLUSIONS

In the linear case (a = 0), the solution F(Cj is linearly
scaled by H~, and the shape of the solution F(C) remains unchanged .
Examination of the preceding analyses and numerical calculations
reveals that the nonlinear case is more complicated. As might be
expected , the results in the nonlinear case may not be simply scaled
in the usual linear fashion. Although by the nature of the problem
the final value H0 is the same , the manner in which this value is
approached depends on the value of H0. The variation in permeability
with applied magnetic field strength in the present problem results
in a more rapid penetration of the medium by the magnetic field . In
other words, at a given position in the medium, the magnetic field
strength H will reach a given percentage of the applied field H0 in a
shorter time. Alternatively , at a given time the point at which the
magnetic field strength has a prescribed value will have penetrated to

• a greater distance. In addition it is evident that for a given value
of the parameter a the solution F(C) at some C = c will have the same
value for all combinations of x and t which are related by ç = c.
This indicates that if a certain value for the magnetic field strength
H has reached location x at some time t, then the same value of H will
occur at some location x’ = ax at some time t’ a2t. It might be
pointed out that for a given a, the solution F(C) will have reached a
prescribed value F~ at some ~~~~~~ 

Thus, one can consider a “penetration
thickness”

beyond which the magnetic field strength has changed by less than ‘p ’
percent of H

~
. For example, the linear solution (22) has a value less

than 0.01 when the error function argument is about 2. If it is
necessary to calculate the electromagnetic fields in a shield of
finite thickness, then the solution F(c) will be a good approximation
if the “penetration thickness” is small with respect to the shield
thickness.
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