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1. INTRODUCTION

Historically, the most common assumption for generating a shock wave
in a lattice from a microscopic point of view is to maintain the end
particle at a steady compression velocity u for all times. Paskin and

- 2 e 5 o 11-
Dienes1 2, Manvi3 6, Duvall3 5, and Lowell3 4, Tasi7 12, and Musgrave'1 12,

and Powell and Batteh13 have used the above assumption while Beckett14

1. A. Paskin and G.J. Dienes, '"Molecular Dynamic Simulations of Shock
Waves in a Three-Dimensional Solid", J. Appl. Phys. 43, 1605
(1972).

2. A. Paskin and G.J. Dienes, "A Model for Shock Waves in Solids and
Evidence for a Thermal Catastrophe', Solid State Comm. 17, 197
(1975).

3. R. Manvi, G.E. Duvall, and S.C. Lowell, "Finite Amplitude Longi-
tudinal Waves in Lattices", Int. J. Mech. Sci. 11, 1 (1969).

4. G.E. Duvall, R. Manvi, and S.C. Lowell, '"Steady Shock Profile
in a One-Dimensional Lattice'", J. Appl. Phys. 40, 3771 (1969).

5. R. Manvi, and G.E. Duvall, '"'Shock Waves in a One-Dimensional,
Non-Dissipating Lattice'", Brit. J. Appl. Phys. 2, 1389 (1969).

6. R. Manvi, ''Shock Wave Propagation in a Dissipating Lattice Model",
Ph.D. Thesis (Washington State University, 1968) (Unpublished).

T J. Tasi, "Perturbation Solution for Growth of Nonlinear Shock
Waves in a Lattice'", J. Appl. Phys. 43, 4016 (1972). See also
Erratum (J. Appl. Phys. 44, 1414 (1973)).

8. J. Tasi, "Perturbation Solution for Shock Waves in a Dissipative
Lattice", J. Appl. Phys. 44, 2245 (1973).

9. J. Tasi, "Far-Field Analysis of Nonlinear Shock Waves in a Lattice'",
J. Appl. Phys. 44, 4569 (1973).

10. J. Tasi, '"Reflection of Nonlinear Shock Waves in a Lattice", J.
Appl. Phys. 47, 5336 (1976).

11. M.J.P. Musgrave and J. Tasi, ''Shock Waves in Diatomic Chains - I.
Linear Analysis'", J. Mech. Phys. Solids 24 19 (1976).

12. J. Tasi and M.J.P. Musgrave, ''Shock Waves in Diatomic Chains - II.
Nonlinear Analysis", J. Mech. Phys. Solids 24, 43 (1976).

13. J. Powell and J. Batteh, "Shock Propagation in the One-Dimensional
Lattice', BRL Report No. 2009, 1977. (AD #A044791)

14. D.H. Tsai and C.W. Beckett, ''Shock Wave Propagation in Cubic
Lattices", J. Geophys. Res. 71, 2601 (1966).
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MacDonaldls, and Tsail4_17 have assumed that it is more realistic to

accelerate the end particle from zero to its final velocity in a time

tmax' Indeed, it seems impossible for the end particle to achieve its

final velocity instantaneously. There should be some effect on wave
propagation in the surface atoms, and perhaps some other phenomena owing
to the differences in the two cases. However, it is not clear whether
the results will be changed enough to warrant the additional complications
of a more realistic model. Therefore, the purpose of this report is to
obtain a better understanding of wave propagation in a lattice for the

two different cases. A fringe benefit of this study is that some results
have been obtained for the most common assumption, which will be reported
here for the first time.

The specific problem chosen for study in this report is a small part
of an ever increasing research effort to describe shock propagation in
solids from a microscopic point of view. Usually this nonlinear problem
of solving Newton's second law for the motion of individual particles
is done numerically on the computer. Since this method starts from such
a fundamental equation, many physical effects can be treated without
the usual simplifying assumptions of continuum mechanics. For
instance, a well-known lattice-dynamical result predicts that if a one-
dimensional lattice -with linear interatomic forces is subjected to steady
compression, the wave profile will spread as it travels farther into
the lattice. This effect is explained by the fact that the normal-
mode frequencies have different group velocities. However, this disper-
sion arising from the discrete nature of the lattice is not included in
the hydrodynamic approach. Furthermore, when nonlinear interatomic forces
are taken into account, the wave profile steepens and the normal modes of
the crystal become coupled. The consequences of this coupling can best
be determined by a microscopic approach.

Many physical effects are assumed in a continuum approach to have
specific characteristics based on intuitive reasoning. One such assump-
tion is that the shock compressed material has yielded completely,so that
the stresses may be assumed to be hydrostatic. The usual justification
for this stateiment is that the high pressure in the compressed region

causes the shear-yielding to be complete. However, Tsai15 has suggested

15. D.H. Tsai, '"An Atomistic Theory of Shock Compression of a Perfect
Crystalline Solid", in Accurate Characterization of the High-Pressure
Environment, edited by E.C. Lloyd, Natl. Bur. Stds. Spec. Publ. No.
326 (U.S. GPO, Washington, DC, 1971), p. 10S.

16. D.H. Tsai and R.A. MacDonald, ''Second Sound in a Solid Under Shock
Compression", J. Phys. C, 6, L171 (1973).

17. H. Prask, P. Kemmey, S. Trevino, D.H. Tsai, and S. Yip, '"Computer
Simulation Studies of the Microscopic Behavior of Shocked Solids",
Proceedings of the Conference on Mechanisms of Explosion and Blast
Waves, editor J. Alster (JTCG/ALNNO, Naval Weapons Station, Yorktown,
VA, 1973, XVI).
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that the yield strength of the material is probably much higher under
dynamic conditions. This problem of time - dependent yielding under
the transient condition of shock compression has not been exhaustively
studied either experimentally or theoretically in the high-pressure
regime. Furthermore, it is not clear if the steady state assumption,
and thus the Hugoniot relationships in their usual form, apply. Other
assumptions for continuum treatments of shock propagation concern the

equation of state for the solid and the nature of viscous effectsls'lg.
Actually, little is known about the equation of state, and the origins of
viscous effects are not completely understood. In principle, by calcu-
lating the positions and velocities of the particles as a function of
time in the microscopic approach, the quantities such as pressure,
density, and temperature can be determined without an equation of state
or assumed viscous effects.

Finally, nonlinear (anharmonic) lattice dynamics has been greatly

influenced by the work of Fermi, Pasta and Ulam (FPU)ZO. At the time of
their paper it was generally accepted that small nonlinearities would
lead to equipartition of energy. In a linear (harmonic) system energy
deposited into a normal mode can never flow to another normal mode, but
it was thought that a small nonlinearity would cause energy to flow from
one mode to another until the time-averaged energy of each mode was the
same. FPU studied the vibration of particles connected by nonlinear
springs by using a computer. They found that the system did not approach
thermal equilibrium, but rather returned to its original state after a
recurrence time. On the other hand, the hydrodynamic theory assumes

that thermal equilibrium exists behind the shock and allows for only small
deviations from equilibrium within the front. A recent report by Powell

and Batteh13 examines this question in some detail, including a discussion
of the similarities and differences in the results and interpretations of
earlier authors.

The approach to thermal equilibrium in the compressed region is
important to the theory of detonation. For instance, the Zeldovich-von

Neumann-Doring (ZND) theory of detonation21 treats the shock front as

a mathematical discontinuity. The only function of the shock wave is to
provide the energy necessary to raise the temperature, density, and
pressure of the lattice to values higher than in the undisturbed lattice.
The condensed region, where chemical reactions occur, is assumed to be
in thermodynamic equilibrium. However, numerical and perhaps analytical

18. W. Band, '"Studies in the Theory of Shock Propagation in Solids",
J. Geophys. Res. 65, 695 (1960).

19. D.R. Bland, "On Shock Structure in a Solid", J. Inst. Math.
Applications 1, 56 (1965).

20. E. Fermi, J.R. Pasta, and S.M. Ulam, "Studies in Nonlinear Problems'",
Los Alamos Sci. Lab. Rep. LA-1940, 1955; also in Collected Works
of Enrico Fermi (Univ of Chicago Press, Chicago, 1965), V. II, p. 978.

21 B.Lewis and G. von Elbe, Combustion, Flames and Explosion of Gases
(Academic Press, New York, 1951), Chap. XI1.
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solutions may show that the shock profile is not steady, or the time to
re-establish equilibrium is of the same order as of the time required
for a chemical reaction. In that case some assumptions used in detona-
tion theory will have to be changed.

2. THEORY

This model treats a semi-infinite chain of atoms, of mass m, which
interact pairwise through a Morse potential. At equilibrium the lattice
spacing between neighboring atoms is a,, the displacement of the jth
atom from its equilibrium position is given by the coordinate xj, the

distance to the jth atom from the origin of the system located at the
equilibrium position of the zeroth atom is r., and the corresponding

h

distance to the equilibrium position of the jt atom is roj’ (see

Figure 1). The coordinates obey the relation,

L. =EL X (2.1)

W e
— VWAV ¢ ¢ e ANNANE
0 1 2 N-1 N

Figure 1. Model for simulating shock propagation in a one-dimensional
discrete lattice.

The aim of this calculation is to obtain the solution for the classical
equations of motion of the atoms when the zeroth atom is subjected to an
acceleration which changes its velocity from zero to its final value u
in a time tmax' Thereafter, the initial particle travels at a steady

compression velocity u.

The Hamiltonian for the chain can be written as
]
H = 1 m Z vzj + 0 (rl. r

2 ooc'r)
J=0

- = oF (2.2)

where vj = dxj/dt is the velocity of the jth particle and ¢ is the total

potential energy of the lattice. Newton's second law for the jth particle

becomes

g G P R (2.3)
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where Fj = - %%— is the force exerted on the jth particle by the remaining
j
atoms of the lattice and F.®*% is the corresponding external force. In

ext

this investigation, Fj is zero for all particles except j=o, when it

is varied in such a manner that this particle goes from zero velocity

to the steady compression velocity u in a time tmax' It is the

intention of this report to investigate the difference between the above
FoeXt and the more usual one which constrains the zeroth particle to

move at constant velocity u for all times.

If we assume that ¢ can be obtained by summing over two body
potentials, i.e.,

Q(rOI’ roz"“’ rij’...) = Z ¢ (Irl-rJl) 3 (2-4)
i<
where rij = ri-rj, then ¢ can be expanded in a Taylor series about the
equilibrium positions of the relative displacements, ri? . 2oy * roj'

Furthermore, if we assume that the deviations of the rij from their

equilibrium value are small, the expansion can be truncated after second
order terms such that

o
8=0_(+++, ;0,000 +

i (2.5)

N —
0~
“
>

where ¢° is a constant which will arbitrarily be set equal :o zero here-
after and where

2
sl ;
¢ij ¥ ( ar.ar. ) 2 (2.6)
i r

oAb
0i 0j

The first-derivative term in the Taylor series expansioghfor the potential
vanishes since it is the negative of the force on the j atom in the
equilibrium configuration, which is zero. The potential in Eq. (2.5) is
called the harmonic potential. Finally, if we assume only nearest-neighbor

interactions such that only the j+1St and j—lSt atom exert an appreciable

force on the jth atom, we have

Bos %o ¥ES, . - = 28

1) i,)-1 ij i Gi»j+1) g (2.7)

s — - ——————— e s e . =N



where y is the force constant of the ''spring' connecting successive
particles and § is the Kronecker §. Equations (2.3)-(2.7) then imply

that the equation of motion of the jth particle is given in the harmonic
approximation by

2

d x.
R G 2
e bl U e O el

ext

j (2.8)

Equation (2.8) is a linear, second-order, differential equation and it
has an exact analytic solution for certain external forces, which will
be given later.

However, while Equation (2.8) can generally be used for calculating
the equilibrium properties of a lattice especially at low temperatures,
it is not a good starting point to describe a shock wave in a solid.

The first reason is that at the high temperatures present in shock waves
the relative displacements of the atoms from equilibrium are so large
that higher order terms must be retained in Equation (2.5). Second, in
the harmonic approximation the shock energy is initially distributed
among the normzl modes in a nonequilibrium fashion and there is no
coupling mechanism allowing the crystal to thermalize after the shock
has passed. Furthermore, the steepening of the wave profile in a
compressed lattice is caused by the nonlinear terms. Therefore, the
“shock wave, which results from the steepening, must include nonlinear
terms.

In the present research a Morse potential was used, and only nearest-
neighbor interactions were assumed. The Morse potential can be written

as
® -a(x,-x, ;) 2
oy =D [e = A -1] : (2.9)

i=1

where D, and a are constants which are usually fit to the experimental
data.

3. THE HARMONIC LATTICE

A harmonic lattice cannot support a shock wave in the usual sense
for the reasons given in the preceding section. However, the calcula-
tion was performed to gain a better physical understanding of the
analogous nonlinear case. In addition, the calculations for the
anharmonic case must reduce to the harmonic case as the nonlinear terms
go to zero.

We shall begin by presenting the solution of Schroedinger22 for the

22. E. Schroedinger, "Zur Dynamik Elastisch Gekoppelter Punktsysteme',
Ann. Phys. 44, 916 (1914).
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equations of motion for the atoms of an infinite, one-dimensional,
harmonic lattice for arbitrary initial conditions. When the lattice
is in equilibrium neighboring atoms are uniformly separated a distance
a s where the zeroth atom is located at the origin (see Figure 2). All

the external forces are zero. By observing the symmetry of the problem
we can choose the initial velocities and positions of the particles for
j < 1 so that the zeroth particle travels to the right in a prescribed
manner. The result of the above selection is to change the boundary-
value problem for wave propagation in a semi-infinite lattice to an
initial-value problem for an infinite chain. We then use this model to
investigate wave propagation for two sets of boundary conditions on the
zeroth particle. In the first case, the zeroth particle is set in
motion at constant velocity u, and in the second case it is accelerated
from zero to its final velocity u in a time s after which it moves
at constant velocity u.

3.1 General Solution of the Equations of Motion for the Semi-Infinite,
One-Dimensional, Harmonic Chain with Boundary Conditions.

Consider a chain consisting of N atoms (see Figure 2) connected
by harmonic springs of force constant y. Every atom has mass m and is
labeled by index j

We will assume for convenience that N is odd. It will be made arbi-
trarily large in the final results.

The differential equation of motion for the jth atom, assuming
only nearest-neighbor interactions, is given by Eq. (2.8) without the
forcing term, viz.,

2
d X
m ;;51 = \((xj+1 - 2xj + xj-l)' (3:1)

As N+« Morse and Ingard23 give the Schroedinger solution22 in our
notation as

23. P.M. Morse and K.U. Ingard, Theoretical Acoustics (McGraw-Hill,
New York, 1968). Chap. 3.
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© )
2

x;(t) = 1 2, J252p ot *(Z): ) vm)sz_zp_l(wot)}, (3.2)
p=-= m=p+1

and

dxj(t) o 1

e %Vp I2j-2p(") * 7 96 (3p=3p,1)955 051 (061 E R
p:-oo

where ap, Vp are the initial displacement and velocity at time t=o,

Jm(mot) are the Bessel functions of the first kind, of order m, and

= X
wo—2 s

We can guess from symmetry considerations the initial conditions
which must be imposed on the particles j < - 1 in order that the zeroth
particle has the equation of motion X =ut for all time. Consider an

observer in a frame of reference moving at velocity u which is located
at the origin of our stationary system at time t=o. If the initial
conditions of the particles j = 1 are the mirror image of the particles
j € -1 in this moving system, there will be no force on the zeroth
particle. Therefore, we assume the following initial conditions,

- ™ Riiis ¥ = 2u-V =0, V. =u |, .4
3151 = 21510 Vo1p|T 2 V)p)r 20700 Voou et

It can be shown that
) v, = 2ulp| -u+ J V., p<o . (3.5)
m=p+1 m=|p|

Rearrangement of Eq. (3.2) using Eq. (3.4) and Eq. (3.5) results in the
solution to the semi-infinite chain with the boundary condition
x0=ut, ViZs,

oo

X; (t) =) 3ap(.12j_2p(wot) - J2j+2p(wot))
p=1

(=2}

2

+ -“g ) Vi (sz*zp_lfwot) + sz_zpd(mot))
m=p

2u
P (2p-1) J

E L @, : ,i>o0 (3.6)

2j+2p-
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dx. (t) o, =
dt ub & ) (ap-ap+1) (JZj-Zp-l(wot) g J2j+2p+1(mot))
p=o
) (vp Jpj-2pWot) * (2u-V) J2j+2p(w°t))
p=o
-u sz(wot) s, J =20 (3.7)
where the following relationship has been used
N e R T (3.8)
dt "m o 2 m-1""0o m+l* o ’ ]
Other useful relationships of Bessel functions are
o oty :
J_m(wot) = (-1) Jm(mot), m integer (3.9a)
1=] Jt)=J(ut)+2] J,(ut) , (3.9b)
m=-% m=1
wyt = 2 T (2m+1) Tone1 @ot) (3.9¢)
m=0
and
Jm(o) = Gom (3.9d)

With the above relationships one can easily verify that x. (o) = a.
J

xj(o) = Vj'

From Eq. (3.6) and Eq. (3.9c) one can show that

_ 2u %
x,(t) = = (2p+1) J2p+1(w°t) = ut , (3.10)

!
p=0

o

which is the correct boundary condition.
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A special solution of Eq. (3.6) used in this investigation for the
quiescent lattice, (aj=o, \G=o for j > o, V°= u), is

(wot) - (3.11)

u ¢
x;(t) = g (2p+1) I35 0001

Another special solution used in this investigation of the semi-

ut

max 4> ¢
2 max

infinite chain with the boundary condition X, = ut -

can be determined by making the following observations. Let
ut

=y _ £y max
YJ (t) = xj (t) 2 > (3'12)
where t = t—tmax so that the initial conditions at t=o are
. utmax
Yo(o) = o, Yo(o)=u, Yj(o)=aj £

and (3.13)

Y (0)=V. (i
YJ-(O) J-,(J > o) ,

where ay and Vj are the position and velocity of the jth particle at

t=o.

Yj(f) satisfies an equation of the same form as Eq. (3.1), and has the

same initial conditioa% at t=o as xj(o) in Eq. (3.6). Therefore, the

; max .
solution for x =ut - —— is

o

ut

470 _ max 1 ] X
xj(t-tmax) 5 pzl ap 2 JZj-Zp(f”o(t tmax)) ‘12j+2p(“’o(t tmax))

21 )
E G; £=p %m/ J2j+2p-1(wo(t'tmax))
i J2j-2p+1(;”o(t'tmax))

ut
2j+2p—1(“o(t_tmax)) TR Y e

+ 2 2p1y g
o}
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and

dx.(t-tmax) . L
e BRL i )
p=

dt (aj_aj+1) [ J2j-2p-1(wo(t'tmax)>

o

2 J2j+2p+1 (wo(t—tmax)) ] 3y IL3=° Vp J2j—2p<mo(t'tmax)>

i (2u-Vp) J2j+2p (wo(t'tmax)) e J2j (wo(t-tmax))’

EE .. . (3.15)

The above solutions are matched at t=tmax to the solutions which have

a different boundary condition between t=o and t=tmax'

Let us now consider a special solution to Eq. (3.1) with the follow-
ing initial conditions at t=o, viz., aj=0, vo=0, v|j| are arbitraty,

and v_|;| are to be determined, with the boundary condition

ut  ““max Tt
X, * 5= - <= san ( - ), 0<t< t (3.16)
max
and
dx, u u Tt
a—t— = E - 5 Cos T o (3'17)
max

Under these conditions Eq. (3.3) and Eq. (3.17) reduces to

o

u mt
5 [ 1-cos = FJ (Vv ) J, (ut) , (3.18)
. <tmax) p=1 B AR

where the V_p are to be determined for arbitrary Vp. The cos (t“t )
max
has an expansion24 in terms of Bessel functions depending on the range

m

T it viz.,
max o

24. Handbook of Mathematical Functions, edited by M. Abramowitz and
I. Stegun (Nat'l Bur. Std., WASH, DC, 1964), Chap. 9).
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(0

cos(w t sing) = J (ut) +2 [ J, (ut) cos 2n B, (3.19)

n=1
for the case < 1 where sin B = L -
max"o max o
and
. k
= = h
cos(u t cosha) = J_(u t) + 2 E=1 (-1)7 J,, (w t) cosh 2k a, (3.20)
for the case = 1 where cosh a = - L o . With the aid of
max o max o

Eq. (3.9b) and the above equations, Eq. (3.18) can be written as

5 u p=1(l-cos 2pB) sz(mot)
N (vp + v_p) sz(wot) =

p:l (3.21)

o )

_1\P
p_1(1-( 1)* cosh 2pa) sz(mot)

dx
[ i ; : .
—q¢ 1s an example of an entire function. Therefore, it has a unique

Neumann's expansion. We can conclude that the relationship between the
arbitrary Vp and the determined V_p is

u(l-cos2pB), L - < 1
max o
V +V = (3- 22)
P -P
u(1-(-1)? cosh 2pa), — > 1
manO

A note of caution is appropriate at this point. If one tries to oLtain
Eq. (3.22) by multiplying Eq. (3.18) by
J2 / (wot)
wot
and then integrating from 0 to = with the aid of Kapteyn's orthogonality
relationzs,

25. W. Kapteyn, "Sur Quelques Integrales Definies Contenant Des Fonctions

De Bessel', Archives Neerlandaises Des Sciences Exactes et Naturelles,

VI, 103 (1901).

23

= — . — e —————— ——




n

e J_(t) n
/e"‘t “t dt=l( X2+l -x) ,n>1 (3.23)

o

a different result is obtained. This procedure requires a questionable
interchange of two limit operations, one being the infinite series, the
other the infinite (improper) integral. Apparently Eq. (3.20) is not

uniformly convergent as pointed out by Gautsch126. The following
summations are used for the final solution, viz.,

P

_sin{(2p+1)B ] 1
mzl cos(2mB) = T5ia 6 7 s (3.24)
and
2 (-1)Pcosh(2p+1) h
m _ (-1)*cosh(2p+1l)a - cosha
mzl (-1)" cosh(2ma) = o 3 (3.25)

Therefore, the solution to Eq. (3.1) for a semi-infinite chain with the
boundary condition Eq. (3.16), and the initial conditions

aJ.=0, Vljl=0 , (3.26)
is
sin[ (2p+1)8] 1r <1
. © 2sinB ’tmaxwo
= — L) -
x5 (8) = 5 zo Jje2pr1 (08) { (P+)
P (-1)Pcosh (2p+1)o sl o
2 cosh a 2 w
max o
(3.27)
and
m
dx. (t) E NEsEoRcR) tmax‘”o< :
J - J. (0. t) . (3.28)
dt p=1 - 2j+2p' " ©

21

(1-(-1)Pcosh2pa), ¢
maxwo

26. W. Gautschi, private communication.
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Eq. (3.27) and Eq. (3.28) at t=tm . become the initial conditions
aj, Vj for Eq. (3.14) and Eq. (3.15), 312.,

aj = xj(tmax) s (3.29)
and
dx. (t )
v = -l*a%ii— ) (3.30)

We now have the matched solution for a semi-infinite chain whose end
particle is accelerated in a prescribed manner from zero to constant

velocity u in time t 8
max

3.2 Propagation in the Initially Quiescent Lattice.

If we assume that initially all particles except the first, which
travels at velocity u (xo=ut), are at rest in their equilibrium positions,

we have Eq. (3.11). The velocity of the jth particle is
dx. (t ©
J( )

o =u sz(wot) + 2u pzl J2j+2p(wot) g (3.31)

The infinite series in Eq. (3.11) and Eq. (3.31) converge rapidly, and
a computer program was written to evaluate the sums.

In Figure 3, we have plotted the nondimensionalized velocity and
displacement of the 10th particle as a function of nondimensionalized
time, i.e.,

w ds. (t) dx. (t)
& W3 dec o'h =
Sj(T) = xj(t), T - . 5 T=w.t . (3.32)

The peak velocity of the wave disturbance arrives at the IOth particle
at a rate of one half particle per unit of nondimensional time. This
result is the maximum normal - mode velocity as can be obtained from
the dispersion relation for the harmonic lattice, viz.,

ka
w(k) = wy [sin —= | (3.33)

where w(k) is the frequency of the normal mode with wave vector k.
The group velocity is

a ka
dw (k Yo% (6]
gk) = 2 lcos == |, (3.34)
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Figure 3. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 1oth
particle are plotted as a function of time for a harmonic
lattice with a rise time rmax=0.0.
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where the maximum is given by

Qa
do(l) | _ Y0 0

dk 2 :
max

Per unit of nondimensionalized time r=w°t, the speed is ao/z, or one

(3.35)

half lattice spacing per unit tau. At a later time the wave has

reached the 60th particle, as can be seen in Fig. 4. The dispersive
nature of the wave is evident.

The results for all cases where tma;fo.o are obtained from Eq. (3.27)
and Eq. (3.28) for t < tmax’ and from Eq. (3.14) and Eq. (3.15) for
t >t . When the rise time t__ =1.0, we notice little difference in
max max
Figure 5 from the case t__ =0 in Figure 3. For a rise time t__ =6.0 we
max max
notice that each amplitude of the successive peaks in the wave train at
the 10th particle in Figure 6 is less than the corresponding amplitude

at the 10th particle in Figure 3. When this wave reaches the 60th
particle in Figure 7, each amplitude is not so great as the corresponding

amplitude at the 60thpartic1e in Figure 4. This trend continues as the

rise time increases. For a rise time t__ =12.00 each amplitude in the
wave train for the 10th particle in Figﬁ?g 8 is very low. By the time
the wave reaches the 60th particle in Figure 9 its amplitudes are much
smaller than at the 60th particle in Figure 4. When the wave reaches
the 140th particle in Figure 10, it still does not have the amplitudes
of the 60th particle in Figure 4, although its amplitudes have increased

from their value at the 60th particle in Figure 9.

Now we can make some general observations about the velocity-time
trajectories at specific particles near the surface in the harmonic
approximation. Each amplitude of the successive peaks in the wave train
is less than the corresponding amplitude for the instantaneous com-
pression case by an amount which is inversely proportional to the rise
time " This phenomenon most likely results from the fact that the

total computed work done on the zeroth particle at the time when the
first velocity peak is at a specific particle is less than the corre-
sponding instantaneous acceleration case. Therefore, surface effects
will persist for hundreds of atoms if the rise times are large enough.
It should be pointed out that wave propagation in a quiescent harmonic
lattice has more applicability to propagation on a thermal background

than one might at first suspect. Powell and Batteh13 have concluded
that in a harmonic lattice the ensemble average taken over many initial
conditions will lead to the same results for the average velocity and
displacement as for the case in which the initial conditions are zero.
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Figure 4. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 60th
particle are plotted as a function of time for a harmonic
lattice with a rise time Tmax=0.0.
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Figure 5. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the IOth
particle are plotted as a function of time for a harmonic
lattice with a rise time rmax=1.0.
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In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 10th
particle are plotted as a function of time for a harmonic
lattice with a rise time rmax=6.0.
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Figure 8. 1In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 10th
particle are plotted as a function of time for a harmonic
lattice with a rise time Tmax=12.00.
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Figure 10. In dimensionless units the velocity which oscillates

about unity and the displacement from equilibrium of

the 140th particle are plotted as a function of time
for a harmonic lattice with a rise time Tmax=12.00.
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4. NONDIMENSIONALIZED EQUATIONS
FOR ANHARMONIC CASE AND METHOD FOR SOLUTION

If the Morse potential of Eq. (2.9) is used in Newton's second

law of Eq. (2.33, and F.eXt is set to zero, we can obtain the nondi-
mensionalized equations”’of motion, viz.,

2
d gj(r)
de = 4Am exp {-Am(sj+1-sj)} - exp<{- ZAm(sj+1'5j)}

(4.1)
- exp {-Am(sj-sj_l) } + exp~{- ZAm(sj'sj-l)}J’J 21
where the definitions in Eq. (3.32) are used as well as
2
Mo
A = au & D= 3 = . (4'2)
mo oW 8a

The boundary condition for the zeroth particle can be chosen as desired.
In this paper three cases are investigated,

"ty T @0 (4.3a)

1 Tmax . ( T )
s =5t - sin » 0€ <€ 1 -
o 2 ( m Tmax max

(4.3b)
By %% ~R2 "max’ ¥~ Tmax
T2
2 * - = "3
5 * 5% , K 1 < Tnax® So = T 172 st ¥ >t (4.3¢)
max
where 1 = t

w .
max 0 max

Eq. (4.1) and Eq. (4.3) constitute a set of N coupled, nonlinear, second-
order differential equations which must be solved numerically for various
values of the parameters under consideration. These equations can be
converted to a set of 2n first order equations, viz.,

s. =V

j j

o = 2de ex [-ZA (s;=s. ,) A

L™ - m3T75-1 ]“ exP['m(sj'sj-l)]

- exp [;ZAm(sj+l-sj)] + exp ['Am(sj+1-sj)] },j 21 (4.4)
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where the dot denotes differentiation with respect to the dimensionless
time T.

To solve Eq. (4.4) we employed a computer program developed by

Powell and Battehls, modified to take into account the different
boundary conditions in Eq. (4.3). This program uses a fourth-order

Runge-Kutta scheme27. Given the values of the functions on the left-
hand side of Eq. (4.4) at time 1, this method approximates their values
at time 1+ At by a fourth-order polynominal in Art.

The harmonic limit of Eq. (4.4) occurs as Am tends to zero. When
Am = 0.0001, good agreement with the harmonic case was obtained. The

interested reader can obtain more details on the program from the above
reference 13.

The remainder of this paper will discuss the results of the numeri-
cal solution of Eq. (4.4) for different cases.

5. PROPAGATION IN THE INITIALLY
QUIESCENT, ANHARMONIC LATTICE

In this section we will discuss the numerical solution of Eq. (4.4)

for various values of the anharmonicity parameter A, and rise time P

For this discussion the following definitions are needed. The term
solitary wave means a localized traveling wave of constant shape and
amplitude. In this report, the term soliton describes a nonlinear
solitary wave which emerges from a collision with a similar pulse,
retaining the same shape and speed it had initially. Finally, the term
envelope soliton describes an envelope of constant speed imposed on a
solitary wave train with its own carrier speed.

The results are divided into four parts, each of which represents a
different boundary condition on the zeroth particle. When the zeroth
particle travels at constant velocity, we observe a solitary wave train
at the head of the velocity trajectories of individual particles and an
oscillatory tail which persists in the long-time limit. A sinusoidal accel-
eration on the zeroth particle produces what may be an envelope soliton
traveling much slower than the shock wave. The same behavior is observed
for a ramp acceleration. Finally, when the zeroth particle is decelerated

to zero, an example of solitons spreading out in time is observed.

27. B. Carnahan, H.A. Luther, and J.0. Wilkes, Applied Numerical
Methods (W' ‘:y, New York, 1969), Chap. 6.
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5.1 Zeroth Particle Travels at Constant Velocity

Laand

Let us look at the results of solving Eq. (4.4) under the boundary '
condition Eq. (4.3a). This physically corresponds to the case where the
zeroth particle is pushed at constant speed for all time. For the

anharmonicity parameter Am=0.2, Tmaxzo’ and At=0.05 the velocity and

position of selected particles is plotted as a function of tau. As the

wave travels from the 10th particle to the 90th particle in Figure 11
to Figure 14, we see the amplitudes of the successive velocity peaks
near the head of the shock wave gradually develop into a solitary wave

train as was pointed out by Tasi9 and Powell and Battehls. The latter13
have plotted the maximum particle velocity behind the shock front for
Am=0.2 and A =1.0 at a time when the front is approximately located at

the 480th particle. Their result indicates that the amplitudes of the %
leading solitary waves approach a dimensionless velocity of 2.0. The
leading amplitudes for the case Am=1.0 approace the value of 2.0 much

sooner than the case Am=0.2. The oscillatory tail is evident in Figure 4

11 and Figure 12 as was noticed by Tasi7. A similar oscillatory tail
was reported by Zabusky in his numerical solution to the Korteweg-de

Vries equation28

For the anharmonicity parameter Am=1.0, Tmax=0.0,AT=0.025, and
boundary condition Eq. (4.3a), we see that the solitary wave train at

the head of the shock wave has nearly formed at the 20th particle

in Figure 15. As the wave passes the 80th and 240th particle in

Figure 16 and Figure 17 we notice that the leading amplitudes of suc-

cessive velocity peaks have increased slightly over the 20th particle.
For all these cases we notice that the amplitudes of the oscillatory
tail at times long after the shock has passed has not approached zero
as was the case for the IOth and 20th particle for A=0.2. A careful
examination of the 80th and 240th velocity trajectories will also show
a slight spreading of the leading solitary waves. The greater the
amplitude the faster they travel. This property is a characteristic of
solitons. It was decided to observe the oscillatory tail at times long

h

after the shock wave has passed. The 1°% and s* particles were observed

for times greater than 200 in Figure 18 and Figure 19. The maximum
amplitude of the 3%* particle is approximately 1.2 while that of the Sth

particle is approximately 1.5. The oscillatory tail for the 20th particle

28. N.J. Zabusky, "Solitons and Bound States of the Time-Independent
Schrodinger Equation'', Phys. Rev. 168, 124 (1968).
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Figure 11. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 10th
particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=.2 and a rise time

% =0.0.
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Figure 12. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the ZOth

particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=.2 and a rise time

T =0.0.
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Figure 13. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 60th
particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=.2 and a rise time
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Figure 14. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 90th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=.2 and a rise time
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Figure 15. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 20th
particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=1.0 and a rise time
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Figure 16. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 80

th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter A =1.0 and a rise time
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Figure 17. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 240th
particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=1.0 and a rise time

T =0.0.
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Figure 18. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 1
particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=1.0 and a rise time

T =0.0.
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Figure 19. 1In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the Sth
particle are plotted as a function of time for a lattice
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in Figure 20 was observed for a much longer period of time, and its

maximum amplitude was found to be slightly greater than the Sth

particle.

5.2 Zeroth Particle Accelerated Sinusoidally

Let us compare the results of solving Eq. (4.4) under the boundary
condition Eq. (4.3b) to the ones obtained under the boundary condition
Eq. (4.3a). This physically corresponds to the case where the zeroth
particle is accelerated sinusoidally from zero velocity to its final

velocity in time Tnax’ For the anharmonicity parameter Am=0.2,

tmax=12.0, and A¥=0.5, we observe that the amplitude of the velocity

of the shock wave at the 20th particle in Figure 21 is less than the
case Tmax=0.0 in Figure 12. As the shock wave reaches the 60th particle

the leading peak in Figure 22 is the same as Figure 13, but the succeed-
ing pulses are less in ampl%ﬁude. According to our results, by the time

the wave has reached the 80 particle, the cases Thax- 00 and rmax=lﬁ.0

look the same. Therefore, for a low anharmonicity parameter such as
Am=0.2 each amplitude of the successive peaks in the wave train for

surface particles is less than the corresponding amplitude for the
instantaneous compression case by an amount which is inversely propor-

tional to the rise time T oc® This phenomenon is analogous to the

harmonic case. The most distinguishing factor between the harmonic
and $Tightly anharmonic cases is the steeper and narrower pulse width
for the latter, which gradually develops into a solitary wave train.

For the anharmonicity parameter Ap=1-0, rmax=12.0 and At=.025 not

only do we see the characteristics already described at lower anharmoni-
cities, but also the appearance of a dip in the amplitude of the
velocity at a time after the shock wave has passed an individual parti-
cle. Perhaps, the disturbance is an envelope soliton. In Figure 23

to Figure 27 we observe the envelope traveling past the Zoth, Soth, 40th,
and 60th particle at approximately one sixth the speed of the shock
front. The amount of computer time prevented us from fol{gwing the
envelope past 325 tau. The velocity trajectory of the 60  particle

hos : - a 4 S o
the same profile for Tnax-0 as for Cotx 12.0 except in the vicinity

of the envelope from the time the shock wave arrives until 325 tau.
The profiles of particles greater than 60 look alike up to 325 tau as
the envelope would be expected to appear at a later time.thln Figure
28 we show the initial solitary waves arriving at the 380  particle
for the case Tmax=12.0, but we expect the same initial profile to hold

for other values of Tax’ The 380th particle is the farthest point in

the lattice for which we were able to compute a meaningful profile.
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Figure 20. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 20th
particle are plotted as a function of time for a lattice
with an anharmonicity parameter An =1.0 and a rise time
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Figure 21. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 20th
particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=.2 and a rise time
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Figure 22. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 60

th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=.2 and a rise time
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unity and the displacement from equilibrium of the 20th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter A =1.0 and a rise time
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unity and the displacement from equilibrium of the 30‘h
particle are plotted as a function of time for a lattice
with an anharmonicity parameter A =1.0 and a rise time

T =12.0.
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Figure 25. 1In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 40th

particle are plotted as a function of time for a lattice
with anharmonicity parameter A=1.0 and a rise time

T =12.0.
max




300 T 1 T l T iL B ' ] 1 1 l 1 L| T l 1 b 2.0
o N s 40 -
- TMAX < ]2.00 ]
E AM = 1.00 B
260 - 1.6
u_1220 u | — 1.2:
9 E —
: HH H 2
< 9
; =
© 180 Ho.8
140 —0.4
- .
100 1 ISR [ RNy S VP AN]SR [Ty NN SRR | SR NRSINT TEMETE] (RE [N R 1R 0
200 240 280 i 320 360 400
Figure 26. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 40th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter A =1.0 and rise time

T =12.,0.
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Figure 27. 1In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 60th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter Arl 0 and rise time
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Figure 28. 1In dimensionless units the velocity of the 380th particle
which oscillates about unity is plotted as a function
of time for a lattice with an anharmonicity parameter

A _=1.0 and rise time T =12.0.
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We wanted to verify that the envelope would occur for other
anharmonicities, and at the same time investigate the effect of different
rise times LB For the anharmonicity parameter Am=l.2, and At=0.025
we looked at the ninth particle for different values of Lo For

Tmax=4.0 we see no envelope at all in Figure 29. This result is most

likely explained by the fact that as 7 approaches zero no envelope

max

has been reported by any investigator. For values of Tmax=8.0, 12.0, and

20.0 in Figure 30 through Figure 32, respectively, we observe an envelope
which appears to deepen and appear at a later time relative to the
arrival of the initial disturbance at the ninth particle.

5.3 Zeroth Particle Given a Ramp Acceleration

We wanted to make sure that what seemed to be an envelope soliton
was not caused by our choice of the sinusoidal acceleration given to
the zeroth particle, rather than some other acceleration, like the ramp
acceleration in Eq. (4.3c). For the anharmonicity parameter Am=1.2,
and At=.025 an envelope was observed at the ninth particle for rmax=4.0
and rmax=12.0 in Figure 33 and Figure 34, respectively. Even for
rmax=4.0 an envelope was formed in contrast to the case in Figure 29

for the same rise time. For rmax=12.0 the envelope was deeper than the
case rmax=4.0 and occurred at a later time after the arrival of the

shock wave.

5.4 Zeroth Particle Decelerated to Zero

Finally, we wanted to see the effect of starting the zeroth parti-
cle at constant velocity and then decelerating it to zero in time

T oix” The boundary condition is Eq. (4.3a) minus Eq. (4.3b). For the

anharmonicity parameter Am=1.0, At=.025, and rmax=12.0 we have a beauti-

ful example of solitons spreading out in time starting at the tenth
particle in Figure 35 and going to the fortieth particle in Figure 36.

6. DISCUSSION

In this report we have investigated the effect of accelerating the
end particle of a one-dimensional lattice to its final velocity in a
characteristic time Tnax® The purpose was to determine the shock pro-

file caused in this manner and compare it with the instantaneous com-
pression case. For harmonic lattices we noticed that in the surface
atoms each amplitude of the successive peaks in the wave train was less
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Figure 29. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 9th
particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=1.2 and rise time

T =4.0.
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Figure 30. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 9th

particle are plotted as a function of time for a lattice
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Figure 31. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the ch
particle are plotted as a function of time for a lattice
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unity and the displacement from equilibrium of the ch
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particle are plotted as a function of time for lattice
with an anharmonicity parameter Am 1.2 and rise time
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Figure 35. In dimensionless units the velocity which propagates as

four solitary waves and the displacement from equilibrium

of the 10th particle are plotted as a function of time for
a lattice with an anharmonicity parameter Am=1.0 and

deceleration time rmax=12.0. The zeroth particle starts

out with initial velocity of unity and is decelerated to
zero.
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of the 40th particle are plotted as a function of time for
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than the corresponding amplitude for the instantaneous compression case
by an amount which is inversely proportional to the rise time Toax’ As

the lattice becomes slightly anharmonic, each amplitude of the succes-
sive peaks in the wave train passing through the surface particles
behaves in a manner which is analogous to the harmonic case. The most
distinguishing factor between the harmonic and slightly anharmonic

cases is the steeper and narrower pulse width for the latter, which
gradually develops into a solitary wave train at the head of the shock
wave while an oscillatory tail persists. Finally, for an anharmonicity
parameter one or greater we noticed, in addition to the above anharmonic
effects, what appears to be an envelope soliton propagating at a slower
speed than the shock wave for certain rise times.

As was mentioned in the introduction, a very important and current
research area is the process by which the lattice returns to thermal
equilibrium, if at all, after it has been perturbed by a shock wave
propagating on a thermal background. All the investigators of this
problem sample their data behind the shock front to determine whether
or not the criteria for thermal equilibrium have been satisfied. The
question of whether chemical reactions in reactive materials occur in
the equilibrated or the non-equilibrated region of the crystal is very
important for detonation theory. Surface chemistry will also be
influenced by the strength of the disturbance passing through this
region. It is possible that different rise times could affect the

above phenomena. Tsai16 has already reported that instantaneous

compression of the end-most particle causes a large increase in the
kinetic energy of the surface atoms which takes a long time to ther-
malize.

There also remains the problem of why the principal investi-

gators interpret their results differently. For instance, Tsaim.16

uses non-zero rise times and claims that the shock profile is not
steady in time for a three-dimensional lattice. He says that there

is an ever-expanding region of non-equilibrium between the shock front
and the thermally equilibrated region behind the front. On the other

hand Paskinl'2 uses a zero rise time and claims that the shock profile

is steady in time. Powell and Batteh13 use a zero rise time and have
found that the shock profile is not steady in a one-dimensional lattice.
Unfortunately, we did not propagate our shock wave on a thermal back-
ground in this investigation. However, we feel that the different

wave characteristics in the surface atoms, and the possibility of
envelope solitons propagating at a slower speed than the shock front,
would exist, but would be masked by the thermal background. Therefore,
future investigators should be aware of these results as they strive for
a uniform interpretation of the shock wave problem.
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