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ABSTRACT

At the present time, - data communication networks

transmit much information besides the actual user’s messages.

This “extra” information is called protocol information.

This thesis extends Gallager’s initial work in providing an

information-theoretic lower bound to how much of this protocol

information is absolutely necessary for the proper operation

• of a network. The lower bound is a function of the average

amount of time messages are allowed to be delayed before

being transmitted. The bound suggests that the strategies

considered by Gallager are close to optimal.
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Chapter I

Introduction and Basic Concepts

In the past decade, much of the work in communications

has dealt with various problems involved with the imple-

mentation of data communication networks. In its general

form a data communication network may be considered as a

finite collection of nodes interconnected by communication

links. Each node may have a finite number of sources and/or

receivers connected to it. A source produces messages

which must be transmitted through the network to a specified

receiver.

We define a message as a finite sequence of binary

• digits. The type of source which is of greatest practical

interest is that which produces messages whose length are

stochastic, generally short compared to the length of the

idle periods between messages, and whose starting times are

random. We will call such a source sporadic, and will model-

the message starting times as a Poisson process. (Fuchs and

Jackson, 1969)

It is the job of the nodes to route messages through

the network. There are many options available as to exactly

how these nodes will accomplish their task and much has

been written on various aspects of these options.

One obvious fact is that more information must be

• transferred from the source to the nodes than just the data

to be communicated to the receiver, e.g., there must be

information that tells the node what is the destination of
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the message. This thesis extends the work of (Gallager ,

1976) and establishes a lower bound on how much of this

extra information must be sent. We refer to this “extra

information” as protocol information. The term “protocol”

is often used in connection with any control information

in the network, but we will reserve this term for that

control information which is absolutely necessary for the

network to transmit messages properly.

There are many problems in data networks whose solutions

generate control information that will not be considered

here . We now mention some of these problems and show that

their needed information is separable from the basic

protocol information. This will enable us to define more

precisely that control information which we are considering

to be pro tocol information .

First of all, we assume that the network topology is

static, that is, we do not deal with the problems of add-

ing or removing sources , receivers, or links. Control

information normally generated to handle such problems can

be viewed as ordinary messages generated by special sources

in the network and need not concern us here. Other control

information which we regard in the same manner is that

necessary to insure user privacy, that used to control the

flow of messages into the network, and that required to

• deal with flexible routing strategies. We also consider

all error correcting 4nd error detecting information to be
I

___________________________________________ 
~~~~~- -~~~~~--- ~-:~~~~ —:~~~~~~ •
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imbedded within the message itself; the major problem such

error control procedures present to the network is that of

the v&riable delay for processing and retransmission. We

choose to ignore this problem and other problems which cause

variable delay. We therefore assume that our messages are

transmitted across the network with some fixed delay.

Now that we have mentioned that control information

which is not of interest in this thesis, we next consider

the types of control information which do come under our

definition of protocol. Any information which the receiver

learns simply by receiving the message is necessarily sent

whether intentionally or not. Thus protocol information

includes certain amounts of addressing information (where

the message has arrived), starting time information, and

message length information. In the next chapter we shall

look at particular examples of networks and identify issues

surrounding such protocol information.

t
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Chapter Ii

Examples of Networks

Since we are trying to discover the amount of protocol

required by every network, we first envision the simplest

possible network, reasoning that this network will require

the least amount Of protocol. A very simple system would

be that in which each source is allowed to communicate

with only one receiver and this communication takes place

over a dedicated communication link (or, more precisely,

over a fixed fraction of the capacity of each link on the

path between the source and receiver.)

The fact that each source can communicate with only

one receiver is only a conceptual simplification. If a

source actually wants to transmit to N receivers, it can

conceptually be partitioned into N sources, each of which

transmits only to one receiver. A receiver that wants to

reàeive from more than one source can be similarly partitioned.
We shall call such a system a multiplex system because

of its assignment of fixed fractions of each link capacity

to each source-receiver pair.

At first glance, it would appear that this system

uses no protocol information at all. Indeed, if each

source were to produce messages which were always of the

• seine length and produces these messages at regalar intervals

then this scheme requires no protocol information. Of

course, this contradicts our assumption that the sources

are sporadic.

— --——- - - --•-•• —~~~~~~~~~ •-~~~~~-~— -••* — • • - ~ -~~~•= - -—~•--~~~~~ - • ——---~ -
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We now consider the multiplex system with sporadic

sources. The problem here is that the receiver must be

- 

•

• able to tell when there is a message on the link and when

the link is idle. Otherwise, it might interpret “noise”

on the channel as a spurious message . One method of

accomplishing this is for the transmitter to have a special

idle character or “f l ag ” which is repeatedly sent when it

has no message to send and which cannot appear at the begin-

ning of a message. The first absence of the idle character

signals the start of a message and the next appearance

signals the end of a message. Alternatively, the transmitter

can use a special character or flag to signal explicitly

• the beg inning of a message . Information . must then also be

provided about the length of each message by either prefixing

the message with a header or by providing another (possibly

different) flag at the end of the message. All such “extra~

information is protocol information , necessary for proper

operation of the network. Indeed, in a multiplex system,

the amount of protocol information for each source—receiver

pair is determined a priori as the amount of channel capac-

ity assigned to the pair in excess of the source rate . If

the rate of the source is known, we may set the channel

capacity as close to the source rate as we like but ,
t since the source is sporadic , the result is a queueing

• delay which increases as the channel capacity decreases.

We note finally that the explicit protocol information in

• 
- — -_ • • -

~~~
• —- —-

~~
—-
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-
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the multiplex system consists of message starting time and

message length information. No specific address information

is required.

A second type of system, more commonly used than multi-

plex systems in data communication networks, is a message

switching system. In this latter type of system, messages

are preceded by an encoding of the receiver’s address and

of the message length. These “header” digits represent

protocol information. Each intermediate node looks at the

protocol bits and learns from this header where it must

send the message in order to move it across the network.

(How the node decides where to send the message once it has

the. receiver’s address is a large and interesting problem

unto itself. This problem, called the routing problem, will

not concern us here.) Note.that, to do its job, the node

must also learn the message length so that it will know how

many of the bits following the header should be sent toward

the destination. When the message reaches its destination

the receiver is alerted to this fact by recoqnizing his own

address. Thus, for the receiver, the address in a switching

system performs the same role as the starting flag in a

• multiplex system.

It is easy to see that, for a network with a large num-

• ber of receivers, the information contained in the header

will be much larger than that contained in a flag; thus,

from a protocol standpoint, a multiplex system using starting $

Li - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ -~ -~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -_ 
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time protocols is much more efficient than a message switch-

ing system using address protocols. The problem is that,

in order to reduce the protocols in the multiplex system,

we must incur large delays .

We now explore a third type of system which, when the

number of sources per node becomes very large and the

capacity of the channel increases appropriately, can be

made to exhibit ztegligible queueing delay. This system -

has an added advantage in that, if one chooses to allow

delay, one can reduce the protocol information. This system

is a variation of the multiplex system; we will call it a

statistical multiplexing system.

Consider a large number n of sources which want to

• communicate over a common link. They can share the capacity

of the link in the following manner:

• Let each source have a queue associated with it and,

in addition, let there be a central queue at the node. The

transmitting node services the source queues cyclicly,

servicing each queue every T5 seconds. Servicing a source

queue corresponds to transferring the contents of the source

queue to the central queue. (see Fig. 1) The contents of

the central queue are then transmitted to the receiver with

protocol information added to tell the receiving node from

which source the message is coming and how long the message is.

Assume that each source is Poisson and on the average

• 
emits a messages per second . Given any service time T5, if

• — —•
~~~~~~~ 
- • 
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the number of sources n is large enough , the law of large

numbers implies that with high probability, the number of

messages entering the central queue every T5 seconds

divided by the number of sources is very close to xT5. In

order to be able to keep pace , the channel must have the

capacity only a slight percentage in excess of that needed

to transmit na messages and their associated protocol

• information every second . No more than log2n bits per

message are needed to specify the message origin. If the

message length is a random variable M , then very close to

H(M) bits per message will be necessary to specify the

message lengths, where H(M) is the entropy of M. If we

assume that bits in a message are zero or one with equal
• probability, then very close to E(M) bits per message will

be necessary to specify the messages themselves. We have

again invoked the law of large nwnbers in these last two

statements. We can therefore set the capacity to be only

a slight percentage in excess of na(EcN) + H(M) + log2n)

bits per second . B•ecause we need exactly aCE CM ) + H a 4)  + log2n)

bits per second per source with probability close to one we

don ’t need much margin in order to guarantee that with high

probability no message stays in the central queue more than

seconds.

For the statistical multiplexing system, the average
T

delay per message in the central queue is seconds. The
T

average delay permessageineach source queue is also ~~ seconds, 

—~
,— —. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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so the total average delay per message is T5 seconds . As

n increases without limit we can thus make the queuing

delay T5 arbitrarily small if we so desire -- but we shall

see that we also have the option of increasing the delay

in order to reduce the necessary protocol information.

If T5 is small, the probabilLty of finding a message

in a source queue is small each time the source queue is

sampled. Because of this, the messages in the central queue

will be from a completely random selection of sources and

we can do no better than to label each message with log2n

bits per message to indicate its origin (or, equivalently,

its destination.) If we allow T5 to increase, we can

decrease this protocol information.

If T5 is large, there will with high probability be more

than one message from each source entering the queue during

each sampling period. The transmitting strategy can then

be the following: transmit all the messages in the queue

from source 1, with a header telling how many such messages

there are and the message lengths; then do the same for

source 2, and continue for each source in turn, returning

to source 1 T5 seconds later after sending the messages

from the last source. This cycle will also have a period

of T5 seconds when there is no excess capacity. If there

is excess capacity, idle symbols will need to be sent to

fill out the T5 second period, but, since the amount of

excess capacity needed is only a small percentage, these

_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
- - - -
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idle syi~bols represent a negligible a~tount of protocol

information per message. The protocol information in this

situation is the message length information which we can

do nothing about, and the n independent random variables

indicating how many messages from each source arrived in

the central queue in a period T5. These random variables

are Poisson—distributed with mean aT5, so the message

starting time protocol per message is nH(PaT ) where

naT8
H(paT ) is the entropy of a Poisson random variable with

mean aTe. We will show later that, for fixed a and large

T5, ~~~‘CtT5~~~~~4’ + ½ ]n(aT~) -flats so the starting time proto-

col per message goes to zero as T5 goes to infinity. In

fact, this protocol decreases monotonically with increasing

T5. We see that in this statistical multiplexing system

there is a direct tradeoff possible between starting time

protocols and message delay. The nature of this tradeoff

is the subject of~ this thesis. In the sequel, we will

develop a lower bound on the amount of starting time proto-

col information necessary to operate within a certain

constraint on the average message delay. This bound will

hold for all networks with the proper source characteristics

and will  be independent of the particular network strategy

used .

Note that in the above example, despite the fact that

the sources are sharing the central qu eueing facilities, the
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- amount of protocol information per message in the network
is equal to the sum of the protocol per message of each
source divided by the number of sources, i.e., to the aver-

1 age protocol information per message for a single source.

Thus, if we assume identical statistics for each source,
- then we need analyze only one source-receiver pair to

establish a lower bound on protocol information.

I- -- .
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Chapter I I I

Gallager ’s Problem and Results*

. 
In this section we present the original problem as

formulated by Gallager and review his results.

We assume that each source in the network emits messages

at random times. The message starting times are assumed to

form a stationary Poisson process. As mentioned in the

previous section, we need to consider only one source—

receiver pair. Let the Poisson process for this source

have parameter a; that is, a is the expected number of mes-

sage emissions per second, and 1/a is the mean interarrival

time. We assume further that the entire message arrives
- 

- 

. instantaneously at a processor associated with the source.

This processor has the option of holding the message for an

unspecified length of time and then sends it along the net-

work. This processor may be equivalently thought of either

as part of the source or as part of the first node. The

message is then transmitted instantaneously across the net—

work to the receiver.

The messages from the source have independent lengths

(M) described by a probability mass function PM(m). Intro-

ducing such delay does not change the necessary amount of

protocol about messages lengths. The transmitted protocol

information per message must be at least H(M) -! P~ (m)logP~ (m).m— l

All references to Gallager refer to (Gallager , 1976)
unless otherwise noted . 

-~~~~~~ -- -- -
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If we further assume that the message lengths are distribu-

ted geometrically with paramenter £ (i.e., the average

message is 1/c), this expression reduces to H(M) = 1/cH(t)

where K(x) -xlogx - (1-x)log(l-x) 
•
the binary entropy.

function. Let X~, i—i, 2, ...,be the message arrival times

and Y1, i—i, 2, ..., be the times at which the intermediate

processor sends the messages on their way. Since transmis-

sion is assumed to be instantaneous, Y~ is also the time

the ith message arriv.s at the receiver. Let Dj=Yi
_Xj be

the delayfor the ith message. The Poisson arrival assump-

tion implies that the interarriva]. times, Tj=Xj—Xj_].. i—l, 2,...,

are independent that and each has a probability density

P (t)_ae~~
t..Ti

For any given network, for any given scheme for trans-
mitting messages across that network, and for any given N,

• there is a joint probability distribution PN (X
N;YN) ~~

x’~i.( x1, X2, ..., X~) and Y~ ’(Y1, ~~~ 
•
~~~~

• -
~ ~N~

• This joint

distribution must satisfy certain constraints. The marginal

distribution on must be consistent with the Poisson

assumption. Also, the delay Dj must be non-negative with

probability one for each i. PN(X
N;Y~

1
~) defines a mutual

information I~ (X
N ;YN) between and 1N• 1 (XN;yN) gives

N - N N
the information about the arrival times X that the receiver

learns just by receiving the messages at times This

information is Bent along with the messages whether the

I

••
~~

•
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network wants to send it or no t! Therefore , this information

serves as a lower bound to the amount of starting time

protocol information necessarily sent. Note that we are

not saying that this information is necessarily in a usable

form or that the receiver desires to have it, but only that

it must be sent whether we want to send it or not . (In the

message switching network of the previous chapter, we need

not explicitly send message starting time information, but

such information is present nonetheless under the guise of

addressing information.)

PN(X ;Y) also establishes another quantity of interest,

the expected delay per message , 5N• This quantity is defined by
N

5 =! E E(D.) (1)- - N N •

i=].

where E(D
~

) is the expected value of Dj~Y~-X~ with respect

to the probability distribution PN (XN ;YN) .  Let PN (d) be the

class of probability distribution PN(X
N;YN) which satisfy

the above constraints and have SN Cd. We want to find the

minimum protocol information in a network with an expected

delay per message less than or equal to d, so we minimize
I (X N ;YN ) over P (X N ;YN) c P Cd). This is the classical

• 1’N N N
rate--distortion problem . Let

inf
RN (d) = PN PN (d) 

~ P (2)

be the Nth order rate-distortion function. The lower bound

we are looking for then is the rate-distortion function

R( d)  = 
lim inf RN (d) (3)

__ • • ~~~~~~~~~~~~~~~ - - ~~~~- 
- 

-
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Unfortunately we have not been able to compute R ( d ) .

Gallager proved the following theorem which provides a

lower bound to R(d). -

“Gallager’s Lower Bound: R1(d) (as given by (2) with N=l),

is a lower bound to Ld(d), for all N > 1, to R(d), and to

the average protocol information per message about message

arrival times between a source—receiver pair for Poisson message

arrivals of rate a and expected delay d. Furthermore, R1(d)

is given by

R1(d) 
_log

2
(l_e~~

d) bits/message. (4)

The probabili ty measure 
~l 

that achieves R1(d) is defined

- 
imp1ic~t1y by

— max(X1,d) + Z 
• 

(5)

where z is a non—negative random variable, independent of

- 
X1~ with probability density Pz(z) = (cx+p)exp(— (a+p)z)

where p is given by

-ad
( 6 ) ”

Notice that Gallager ’s bound R1(d) on R(d) is a

function of ad. A little thought reveals that R(d) itself

will be a function of ~d.

Gallager introduced two strategies for sending messages

which, when there are a large number of sources at each
1-

___________________________________ 
-~~~ -~~~~-
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node , seem to be close to optimal . Strategy 1, which is

better for small values of ad , yields the following upper

bound for attainable protocol information per message.

si M (P 2 &I Cd) < 
~~~
— bits/message. (7)

2ud • -

where H(P2ad) = ! e 2
~~ (2ad)~ log nJe

2
~~ (8)

n=0 
(2ad)~

Strategy 2, which is better for large ad yields;

2H ’ —1‘e(e—1) —

1S2(d)< (9)
2N( 2N(N ’+4,3) ) N > 2

where N is chosen by

ad < (N — r~~ FI6 ~ (10)

R1(d) , 151(d) , and 152 (d) are plotted in Figure 2.

The behavior of I52 Cd) , together with some other

information, led Gallager to conjecture that, for large ad,
R( d) goes to zero as Cad) 2 instead of as e~~d like R1(d).

In the next section , we find an improved lower bound to R(d)

- 
• 

which does indeed approach zero as (ad )~
2 for large ad.

1
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1 S2

new lower bound (44)

l0 2_

Gallager lower bound
R1(ad) 

Cl)

-3 • I
1 0 —  I

I

• 4 
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Chap te r IV

The New Lower Bound

Our attack on the problem will be different from that

of CGallager , 1976) in that we will  transform the system

into a discrete—time system by sampling, use an information—

theoretic approach similar to that used by (Humblet, 1978)

on the fully discrete—time problem , and then return to the

original continuous problem by letting the sampling period

go to zero .

To turn the Poisson source into a discrete source ,

we make use of the fact that , at any time t, the probabi’.ity

of a message arrival in the next ~ seconds is independent

of what happened before t. If the Poisson source has

parameter cx and if t~ is small , the probability of an arrival

in any time period of length i~ is aA while the probability

of two or more arrivals in that period is negligible so

the probability of no arrivals is 1 - at~. Thus, if a Poisson

source is checked every L~ seconds (with ~ small) , the

source can be viewed as a discrete—time source which at

each time instant emits a one ( there is a messaçe available)

with probability ciA and a zero (there is no message avail-

able) with probability 1 - ciA. The source output is thus

a binary sequence~~{x~ , x~~~, ...} where x~~=l indicates a

message arrival in the time interval between (n — l ) A  and nA .

1
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We drop hereafter the A from our notation. We further

introduce the notation X~ = (x1 Xj~~1~ 
... x~_1, x~).

.T?e message arriving each time instant from the source

will be placed in a queue of unbounded length. At each

time instant, the processor serving the queue will decide

either to send a me~s~ge (represented by ~i 
= 1) from the

queue or not to send a message (represented by y~ 
= 0) in

queue. When the decision is to send a message, the processor

transmits the first message in the queu~.

The number of messages in the queue at the end of

time interval i, i.e., after a message has been placed in

the queue if xi — 1 and after a message has been removed

• - from, the queue and sent if Yj = 1, will be called the state

of the queue at time U and denoted by S1. We have the

following formula for updating the state:

+ Xj  — yj = Si (11)

- i  
We also have the constraint

S~ ~ 0 (12)

r
which states the obvious fact that no message can be sent

before it has arrived from the source .

The discrete—time constraint that results from the

• continuous—time average delay constraint is a constraint 

—-~~~~~- •—~~~~ - _-~~~~~~~~ •
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upon the average length of time W that each message can

spend in the queue. This constraint proves to be awkward

when used directly . Thus , we invoke Little ’s formula

(Kleinrock , 1975) to transform it into a constraint on the

average number of one ’s allowed in the queue . Little ’s

formula asserts that (under very weak conditions which are

satisfied in our system)

L = A W

— where L is the average number of messages in the queue,

A is the arrival rate of the messages and W is the average

length of time each message spends in the queue . - Relating

the quantities to our problem we have:

A = number of messages arriving per time interval = ciA

W = average number of time intervals each meSsage

waits =

Then L = average number of messages in the queue = AW

_ aAd _— - - s — — a d

• Thus, the discrete-time problem becomes:

n~..nimize 
lim inf 1 I(X~; Y~ IS0) (13)

LL~~~~~~~~ 
•

• •:_ 

• 

•~~~~ • •~~~~~~~~~~~~~~~~~~~~~~ • • ~~~~~~ 
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where Pr(X~ — k) = ~~1Pr(x~ = ki
) (14)

and where Pr(xj — 0) “1 - ciA and Pr(x~ = 1) = c i A, subject

to the constraints -

Si 
) 0 , for all i (12)

u rn  sup 
~~~~~~ 

E(Sj  — ad] 
~$ 0 (15)

and Pr(X~~~~~~~~IS0, 
4n+z 1, ~in+r-1)

— Pr (X~~~~~~~ ) .  
- (16)

for each i, n, and r , 0cr<n.

Equation (16) ii a causality—type constraint which

states implicitly that the decisions made by the processor

to determine the Yj within a block of length n may not

depend on xj for any j which is larger than the largest i

in the block. This allows the processor to “look ahead”

but only up to n time intervals before deciding what the

first yj in the block should be. This constraint is weaker

than a full causality constraint would be and thus using it

will provide us with a lower bound to the actual rate-

• distortion problem as it should be posed.

I 

__ • _ • __ ___ _ _ _ ___ •____1• _ •~~~~_
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Before beginning our derivation of the lower bound we

introduce one more item of notation. The Hamming weight

function of a binary vector is the number of ones in the

vector, and we write W(X~) for the Hamming weight of X~.

The expression (15),

N~~ ~~l 
E(S~ -ad) < 0

implies that, for every n, there is a r, 0 < r < f l  such that

• lim sup E[ E (S.~~ — ad)J. <0 (17)

for, if the left side of (17) were greater than zero for all

r, 0< r < n , then the left side of (15) would also be greater

than zero. We can now establish

Theorem 1: If S0 is a non-negative, integer-valued random

• variable with E (S0) <~~ and if ‘ 
{ x1, ~~~~~ 

} , i = 1, 2 , ..., is

a random sequence (posSibly dependent on S0), satisfying

(12), (15) and (16-), then 
-

lim inf l N N •

N +~~ (18)
infmax feasible distributions ~ I(X; YIS)

- 

— 
on (X, Y, S)

where X and Y are binary random vectors of length n, S is

a non-negative random variable , and where a feasible

distribution is defined as some joint distribution

• Pr ( X  = (j 1, ~~~ ~
• •

~ ~n~ ’ 
Y = (k1, k2, . . . ,  kn)~ 

S = i) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
___________________



satisfying

i. Pr(~ ~
) — 

~~i 
Pr(xj = ki) where

Pr (xj — 0) — 1 - ciA and Pr(x
~ 

= 1) ciA;

ii. E(S)< ad;

and iii. E[W(X) — W(Y) + S] < ad.

Proof: The proof of the theorem is accomplished by a chain

of inequalitie~ which we will first present together and

then explain , one at a time.

u r n  inf 1 N, u r n  inf 1 m in+r+n-l in+r+n-l
N “ N 

I( 
~ 

Y11S0)> m + 
‘

~~~~~~~ i~o I(Xin+r ~in+r

- - in+r-l in+r-l

(This is true for aii m, n > land all r, 0< r < n )

lint inf 1 
~ H(Xin+r+n-lIS ~ 

in+r-l 
1in+r-1)m + c .  nm j.0 in+r 0 1 1

- H,Xin+r~fl_1 Yifl4r+n 1 
~ ~~~~~ ~in+r-1‘ in+r ‘ in+r 0 1  1

lim inf 1 
~ ~

,, in+r+n-l t
— m l,-’ I 5in+r..1

~L=V

in+r+n-1 in+r+n-l— H(Xi~+~ 
1in+r Sin+r i)

lint inf 1 1 1~~
in+r+n_l 

~
in+r+n-].,5 )m ~ ~~~~~ 

m in+r ‘ in+r in+r-l

©
~ i(X; VI S)  where X, V and S will be defined in the sequel,

inf
> feasible distributions IC X; IfS)
— I~, ~? ~~ % fl — —Ofl ~ A , £ ,  ~~~~~
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Inequality 1

lint inf 
~ i~x

N; ~N i 5 ~ ~. lint inf 1 
~ ~~ 

in+r+n—l• in+r+n—l
• N + N 1 1’ 0 — m + 

i=0 
Xin+ ‘

(19)
in+r—l in+r-l ,

o,X l 11 1

• 

Let 4, X~~1 partition X~ in any way and 4, y~~3 partition y~
in the same way. Then

1(4 X~~1; 4 ~~~~~~~~ = H(4 , Y~~1fs0) 
- H(4 y~÷1f x ~ ~~~~ ~~~

= H(Y ~~+1I4 ~~~ 
+ H(4 1S0) - H(Y~~1fY~ 4 X~~~ S~) - H (4 IX ~X~+1SO) 

- 

-

- 

> H(4 I S c~
) - H(4J4  S0) +H(Y~~1fX~ 4 Sc,) 

•

- H(Y~~1I4 4 x~~1 S~ ) 
-

= 1(4; 4 I S 0
) + I (X ~÷~ ; 

~~~~ 
I S 4 4)

As Ic is arbitrary, we can apply this argument repeatedly to get

1 I(xN• yNi s > 
1

1’ ii o — r + inn + (N-mn-r )

(I(X~; Y~
ISO) + ? I ( X ~~~~~~~

1; ~~~~~~~~~~~~ 4~
÷
~

—
~ 1

in+r- l~

+ 1N i~ ~
mm+r_l 1rnn+r_ l )inn+r’ mn+r ’ o 1 1

where m is greatest integer equal to or less than

Taking the limits of this expression as N + ~~~, and m -‘ and

I
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noting that the first and lasttemms of the right side of it are

finite and that (N — mn — r )  < n, yields (19).

Inequality 2 
- .

lint inf 1 
~ H,XIn+r-

~
n-l S x ’

~~~ 1
in~

Fr_ l)in + ~ 
‘

~~~~~~~ i—o 
‘ in+r 0 1 1

— E(Xmn~~~
.nl IYin4r+n l 

~ ~in+r-l 1in+r-1)in+-r ‘ in+r 0 1 1

lint inf 1 ~ 5(~in+r+n-lI 3 ) - H(Xin+r+n-1,
— in + ~° nm in+r ‘ in+r-l in+r

(20)
~in+r+n-]. ~in+r in+r-l

• in+r—1
5in+r~l 

is determined f rom Sc,, X1 , and 1~n~~~1 ~~
the inequality on the second term on each side of (20)

follows from the fact that removing conditioning cannot

decrease entropy. The inequality on the first term uses

the partial causality constraint (16), i.e •, the fact that

~
in+r+n_1 

is independent of Sjn+r.1~ 
S0, ~~~~ 1~n+r-l

Inequality 3

lint inf 
~ 

1 i x mn
~
r+n-1. 1in+r+n ”1 t 5 )

Ut ~ ~ i—o ~ in+r ‘ in+r in+r-l

~ I(~ ; i~Js) (21)

with 
~~~~
, y and S still to be defined. We know that the

• lint inf onthe left side of (21) exists because the series for

1

J ~~~~~~~~~~~ 
- _ _ _ _ _ _ _  

•~- - -- - - - -- 
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each m is bounded by H(x
~
) above and by zero below. This

implies that there is a subsequence which converges to the

limit of the original sequence. Let Q , V = 1, 2, ... , be

• that convergent subsequence; i.e •,

- 

• 

= 

~~~ i~o ~~~~~~ 
I(X~~~~~

T
~~ ; I ‘

~~~~ISjfl+r..,l
) and

~~~ ~~~ 
= left side of (21). For each j, let

Pr(X~~, 
= v = 1, 2, ..., be a sequence such that

Pr(X
~ 

= A 
j
~~ 

~~~ -. Pr(X ”
~~ = j ,) = Pr(X ~~~n 1  

= i)

because the x1 are independent and identically distributed.

Let Pr (V = ~I X~ = v = 1, 2, . . . ,  be a sequence form v V

each Ic and j such that

Pr(Y
~ 

= k IX
Ut 

= 1) A 
~~ 

~~~- Pr(Y
’
~~~ ~f x ~~~~’~~

1 
= 

2,)

Finally, let Pr(S
~ = = 2’ 

~
‘m
~ 

= k), v = 1, 2, ..., be
be a sequence for each ~ j,, and k combination such that

In

Pr(S
~ = = i~ = Ic) = E 

~~~~
-. Pr(Sjn+r_i = t)  where

the dependence on X~ and is implicit through the state
v v

update equation (11).

We now consider the sequence of probabilities

I 

_
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~ Pr(X~~ = j ;  X = k; S~ = = Pr (S
~ 

= t IX~ = 
~~~ 

~ m, 
=

Pr(Ym = klX
~ 

= 1) Pr (X m 
= ,j) for v = 1, 2 This

sequence is bounded between zero and one, so there exists

• at least one subsequence which converges. Let

Pr(S
~ 

= ,t ,  = 1’ 
~~~~~ 

= ]c) be such a subsequence.
v~, vi,, v~

Note now that not only does 
~m 

converge, but it must also
VW

converge to a probability distribution. Let X, y and ~ be

random vectors of length n, such that , for each (1
~ 
k, 1)

combination,

P r (X  = j~~
, V = Ic , S = 

~~~ ) 
= ~ Pr (x ~ = 1~ Vm = k, S

m
= t).

Since is a convergent sequence in v, every sub—

• sequence , in particular Q~ , converges to the same limit

‘ 

~~ ~~~ Sn~, 
is also equal to the left side of (21) .

We may now use the fact that the mutual information 
-

•

is convex with respect to the transition probabilities

(Gallager , 1968) to get (21) with X, Y, and S as defined

above .

Inequality 4

inf
1
~~~

; y is)  > feasible distribution 
~ 1x ;  I f S)  (22)on (x , I, ) — —

• To show that (22) is true, we need only show that the

distribution Pr (X, Y, S) as given in the section on

Inequality 3 satisfies the three conditions for a feasible

$

I, -

~~ • _ 
-~~~~-
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distribution given in the theorem statement.

Condition i: PrIX = k) = Pr(x. = Ic.) where Pr(x~ = 0)— — i=o 1 1 -

= 1 - ciA and Pr (x~ = 1) = ciA . This is satisfied trivially

by the definition of X.

Condition ii: E(S) <ad :

We first choose p = r + 1 where r, 0< r< n  is such that

(17) is satisfied, i.e., such that

lint sup E[ Z (5~~~~,1 - ad)J<0

But, since the u r n  sup of a subsequence is at most equal to

the lint SUp of the original sequence,

Ut’,
• 

- 

. 

E I E  (Si :: - ad)J<0 . (23)

+ ~~~ 
lint SUP ( E  

~~~~~~~ 
- _ _ _ _

+ E ( S - ad] < 0

+ E( S] < ad

Condition iii: E[W(X) - W(V) + S] < c t d .

We start with (23), change the index to j = i+l and divide

to get
w

- 4
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].3.Tn sup 
E[(E 

krw 
~ j n+ P+n~ l 

- 

w 
+ ~~~~(S~~~1 

— ad) < 0

Since , in the limit, the separated term goes to zero , we have

m
1~m sup E [E 

~
vw 

~~~~~~~~ 
- 

~~w
’
~~
° (24)

By using the state update equation (11) repeatedly, we also

have

+ W (Xin’fQ+nl) - w y jn+P+n_1, — Sjn +p— l jn+ p jn+p — j n+p+n-1

Substituting this into (24 )  gives

my
lint sup E 

w ! s + W (Xjn+P+n_ lw + 

~
_o ~v ~ jn+p—l jn+p

w
- W(Yi~~

P+fl h)) - ] < 0)fl+ P Dl —

m
V 

I’,

+ E[ lInt sup + &~ 
W ( x ~~~~’~

1)

- 1 W (y~
f l ’

~
1
~~
1) - < 0jn+p m —-

w Vw

So E [S+ W ( X )  — W ( y )  — a d ] < 0 .

At this point we have shown l~ m inf 
~ I X ~5 y

~Is0)

> feasible distributions ~ I (X ;  Y ) S )  (25 )
~~ ~~‘~~~‘ 5~

Since (25 ) is true for all n , we can take the maximum

of the right side over n and obtain

- -• -
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lim inf 
~ I(X~; Y

~ I S ~
) max feasible distributions ‘CX ; Yf 5) (l8~

which proves the theorem.

Hereafter we will abbreviate “feas ible distributions

on CX , Y , S) ”  to “ feas . dist.”

We now present a lemma due to (Humblet , 1978)/which will

enable us to underbound the right side of (18).

Lemma 1: If X and Y are random vectors with some joint

probability measure and thus some mutual information I(~ ; ~)

and if f(•) and g(•) are deterministic functions, then

- 

‘CX; Y) > I(f(X);g(Y)) (26)

Proof: I CX; 1) = H CX) - H (XIY) > H CX) — B (Xfg (Y))

• = ‘CX ; g(Y)) = H(g(Y)) — H(g (Y)JX) > H(g(Y)) — H(g(Y)ff(X))
• = I(f (X) ; g ( Y ) ) .

Applying (26) to (18) ,

1~m~inf I(X~; ~~~~~~~~ 
> m~x feas. dist. ~ I(X; Yf S)

> 
max 

feas. dist. ~ I(W(X); W (Y)fS) (27)

= feas. dist. ~ (H(W(X)fS) 
— H(W(X)fW(Y), S) H

= 
max 

f eas . dist. ~~ H ( W ( X ) ) — H(S’)] (28)

where S ’ = W(X) - W ( Y )  + S.

I 

——--—
•:
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Equation (28 )  is tru2 because , given W ( Y )  and S , H ( X )

and 5’ are identically distributed and so they have the same

entropy. In addition ,

max 
feas. dist. ~[H(W(X)) 

- H ( S ’ ) ]

max inf 1 R(W(x) — 
SU~ I H ( S ’ ) ]  (29)

— n teas . dist. n — feas. dist. n

To overbound the last term of the right side of (29)

and thus underbound the whole expression , we use the fact

that 5’ is constrained by E(S’) <ad and that 5’ is non-

negative. We then maximize the entropy of S ’ given these

constraints. The result must be at least equal to the sup

over feasible distributions.

- 
• We now make use of a well-known result, (Gallager, 1968),

but give the proof as it is not explicitly available in the

literature.

Le:~ma 2: If S ’ is a non-negative random variable with

Pr(S’ = k) = 
~k 

and if E(S’) <ad , then

H (S ’)  < (1 ad) 
~“l+ctd~ 

(30)

where H ( . )  is the binary entropy function.

Proof: We note that the maxim um will occur when E(S ’) = ad

so we wish to find max E - in 
~k = -mm ! 

~k 
ln 

~kk=0 k=0

subject to ! 
~k

=1 ’ ! kp = ad , and 
~k 

> 0 for all k. We
• k=0 k=0 k —
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temporarily ignore the inequality constraint and form the

Langrangian:

• 

• L(p ,  A , ii) = 

~k 
in 

~k 
+ X (  E 

~k 
- 1) + 

~~ k Pk ad).
k=0 k=0 k=0

0 = = 1 + ln p~ + A + Ui

= e U + A + iU) 
(31)

so all p~ > 0 and our inequality constraint will be satisfied.

0 = = p -- 1 = ! e~~~ 
+ A + k~) -

k=l 
• 

k=].

! e~~~ =

k=l

1 
= e~~

X (32)
• 1 - e u

! k p k _ a d _ ! k e 1
~~~~~~-~~~~~~~”~ •

k=0 k=0-

~~~~~~~~ ! k(e~~)
k= ad

k=0

—iie
2 e’~ ad (33)

(1 — e U)

Substituting (32)  into (33) yields

e~~ 1• 2 = ad
(i—e U) (1—e U)

I

_ _  
_ _ _ _ _

_ _  
- j
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U _ ade 
~~l+ctd

— 1 1+czd
~~ — l n  ‘ ctd~~”

e~~
A = 1 = l + ct d

1 ad
l+ad

1 ad kThus, = 

~~~~ ~1+cx d~

and H ( S)  = 

k=O ~~~~ 
(
l d

) k 
[ln( 1+ad) + k in l+c&d~ H

= ln(i+ad)  + ad in (~~~~4) flats

= (i+ctd) H(l~~ d
) bits .

We are now left with the problem of underbounding

feas dist H ( W ( X )) . Note that the infimum is meaningless

since the feasibility constraints determine the distribution

on X completely and therefore , they also determine the

di stribution on W ( X ) . But , since nothing is gained by

trying to find H(W(x)) in the discrete—time setting rather

than the continuous-time setting , we will apply our limit—

ing operation on the sampling time interval  and return to

the continuous-time problem.

To this point , we have shown that , for any A ,

_____________________________________________
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u r n  inf ~ I( NA N~N 4 l~ 
x]•~ Y1A )

maX 
~ [H(W(X)) - ln( 1+ad) - ad 1n(~~~~)]nats per time (35)• interval

• where we have returned A to our notation on the li-ft side

of (35) in anticipation of returning to the continuous—

time problem, and where W(X) is binomially distributed with

parameters p = ciA and N = n i.e.

Pr(W(X) = k) = (~) (aA)
k (1 — aA)r~~

Now in order to recover our original Poisson source ,

we must let A + 0, n + ~ and N + oo so that nA + t and NA + T.

We first divide in (35) by ciA to get

lim inf 1 ,~ xNA NA

Ifl~ X 
~~~~~~~~~ 

[H(W(X) ) - ln(l+ad) - ad lnC 1
~~~~)]nats per message

We now let A+0, ~~~ nA+t, NA+T as described above.

lim inf 1 I X T ; 1T ) > ~~~~~~~ ~~ [ H ( W ( X t ) )  - lnCl+ad)

- ad ln(1~~~)] flats per message (36)

where xT represents a Poisson process with parameter ci

from time 0 to T , 1T is some other-  stochastic process f rom

time 0 to T and W ( X t ) is a Poisson random variable associated
-

~~~

• ~~• • _ -~~ — - - _ 
______ •- _ ~~~~~~~ ~• _ •• -- • -- — ~~~• - ~~~~•~~~~~~~~~ -• ~~~ - - - - - _ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _

-- ~~~~~~~~~~~~~~~~~~~~~ ___________



- - -  -~~~~~~ ~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~ 

40

with the Poisson process at time t. ~ is distributed

as follows:

k -at - -

Pr(W(Xt) = k) = Cat) e

It is the entropy of this random variable that we must

lower bound, and we use the properties of the gamma function

to assist us.

Lemma 3: The gamma function

r (x) = ~çC~ t~~~ e tdt , x > 1 (37)

has the properties that r U+x) ~ xl when x is a non-
• • negative integer and, for (x>1) , ln[r(x)] is convex U in x.

Proof: The first property is well-known (See Feller, 1968)
• To prove convexity , we show that d

2ln~ (x) 
> 0 as follows:

dx

d lnr (x) ~~cIn t ) t
(
~

C
~~~~ e t dt

dx 
~ç° t (x

~l) e t dt

d2 ln r (x )  — 
[~ t 

_ 1)
e

_t
d t] [ r ( lf l  t ) 2 

~~~~~~ e t dt]
dx ~~~~co 

~(x— l) e
_t 

dt)2

Defining f ( t )  = (t ) e t ) ½ and g (t )  = in t (t )
e t)½

and using the Schwartz inequality

(~~~
°‘ f(x)g(t)dt)2 < [

~~
° f 2 ( t ) d t J [~

°’ g 2 ( t ) d t ] ,

we have that d
2lnNx 

> 0, so the Garr~ a function is convex U.dx

L. - - - 
—, -.-

~
••----- ~~~~~~~~~~~~ - _ 

~~~~~~~~~~~
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- 
We now return to our entropy underbounding.

,t~
n -at

HCW (X ) )  = E ‘ (—nlogc *t + at + log n i l• n 0

= -at log at + at+ log rCn+ 1 ).

We now use the Stirling approximation (usually used for ml

but also true for non-integer values of the gamma function)

(Feller , 1968).

ru+x) > (2ir )½ e~~
C 
~
(x+½)

So H ( W ( X t) > -at log at + at + log(2ir)

- - - +at log at - at + log at

• 
(38)

H 41n 2rr+ 4ln at nats.

• This lower bound together with the true value of the

entropy (for which there is no convenient analytical

expression) are plotted against in at in Figure 3.

This plot is on a semilog scale with Cx) representing

the true entropy and (0) representing the lower bound. When

viewed as a function of log at, the bound is a straight line

with slope 1/2. Investigation reveals that the difference

between H(W (Xt)) and the lower bound reaches a minimum of

approximately .355 at at ‘~‘ .504. In addition , when H ( W (X t ))

is viewed as a function of in at, its slope is greater than

• 1/2 for all at > .504. This means , that given any at0 ~ .504 ,

_ _ _  
- -- —--•.~~ - 

-
• 

_~~~~~~~~~~ _~~~~~~~~~~~~ __
-
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- -- 

—~~~4 J



~ •_~__w—~w-.•~•’

I 

~~

:

42

~~~~



r~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~T I ~~~1T~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~~~~

43

we can bound H(W(Xt)) for all at > at 0 by adding 1/2 ln at
• t

to [H(w(x 0) )  - in at0]. We note that H(W(Xt)) at at 10

has a slope (when viewed as a function log at) of approxi-
mately .509 and that = .5 with the limit

approached monotonical].y from above for at > 10. This
• suggests that at = 10 is a legimate breakpoint for a

piecewise lower bound to H(W(Xt) )  given by

1.274 + 1lnat nats for 0< at <10
H(W(X ) )  > { — 

• (39)
1.410 + ~1nat flats for at > 10

This bound is denoted by a (A) in Figure 3.

To show that this lower bound is quite tight, we make

use of an upper bound on the entropy of an integer—valued

random variable given its variance. This bound is due to

Massey (private communication).

Lemma 4: If S is an integer-valued discrete random variable
with variance a2, then its entropy satisfies

11(X) <~~~~ log(2ir e(a
2 
+

Proof: We first form a continuous density function from the

discrete distribution by

f~ (y) = Pr(X = x), yc (x - 1/2, x + 1/2).

The continuous entropy of the new random variable Y is

• equal to the discrete entropy of the original random variable
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X, since

f (y) log f (y) dy = - ~ 1i+½ 
~ (y)log  f~~(y ) dy

i=-~~i-½

= - ! Pr(X=i)log P r (X = i ) .
i=-co

Using Shannon ’s bound for continuous random variables

(Ga].lager , 1968) we have

11(X) = 11(Y) <~~~~ log(2ire a~) (40)

Now E(X) = E(Y) in. Moreover,

2 = ! f~~
½ (t_ m,2 Pk (t) dt

y k=-cD k-½

= ~~ f k+½ (t_ m) 2 at
k=-co

= 

k=-co 
pk((k_m) + ~~ ] = a~ +

Substituting in (40) gives the result.

In our case , the bound of Lemma 4 becomes

H ( W ( X t ) )  <~~~~ log(2we(at  + 1.42 + ~log(ctt + ~~ ) nats (41)

showing that our lower bound (39) is very tight for large

values of at.

We summarize our results as

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Theorem 2: If W(Xt) is a Poisson random variable with mean

at, then

1.274 + in at nats 0 < a t < lO
— H(W()~

t)) >
~~~~~ { 1 

— 
(39)

1.41 + in at flats at > 10 - 

•

and H(W(Xt)) < 1.42 + in (at + ~~) nats (42)

Using the bound (39) in 
-

:

lim inf 1 ICXT; 1T) maX l tn (W(Xt)) ln(l+ad)

- ad ln(~~~~~)] nats per message (36)

we obtain the bound, - - -

lim inf 
-4 I(x

T; yT) (42)

• 1 1.274 OCat < l0max ] + in at - f(ad) flats per message for [ ]
— 

~. ~ 1.41 a t > O

where f Cad) = ln(l+ad) + ad

Let c equal 1.274. We can then see that if we maximize

(42) with respect to at the maximum occurs at

at = e2~~~~~~~~~~ 
•

This leaves us with:

1 2c
u r n  inf 1 T 1T~ > ________ 

(43) •

T ~ ~~ I ( X  
— e2~~~tC1)

S
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If we use the fact that f(ctd) <ln (e(l+~d)) and evaluate the

numerator of (43) , we arrive at

Theorem 3: R(d) as given by Equation (2~ is lower bounded by

R(d) > 
•318

2 flats per message (44 )
(l+ctd)

This bound (44) can be improved for ad > 10 by using

C = 1.41 instead of C = 1.2 7 4 .

Note also that for large ad (44) approaches zero as
1 

2 The bound given by (44) is plotted in Figure 3 
•(ad)

along with Gallager’s lower bound (4), and the performance
H of Gallager ’s best strategy (mi nimum of (7) and (9) which

provides an upper bound -to the actual rate distortion

• function which is the solution to the minimum protocol

problem.

- ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Chapter V

Discussion and Suggestions for Further Research

Let us review what we have accomplished at this point.

• We have found a lower bound (44) to the continuous-time

version of the problem constructed on page 25, i.e., we
lower bounded the solution to Gallager’s rate—distortion

problem (page 18) with the additional constraint (corres-

ponding to C16)):

For every i, the process ~~~~~ is independent of the

processes ~~~~~ 4~~-~~ 
and the random variables S0 and 

~~~ (45)
where X~ represen~~the message arrival Poisson process

from time u to time v, Y~ represents the stochastic process

for the message sending times from time u to- time v and 
-

s~ represent the number of messages which have arrived

but have not yet been sent at time v.

As pointed out in Chapter IV, this added constraint

is a partial causality constraint. 
• 

If we divide time

up into blocks of t seconds, then (45) allows us to observe

the X process for an entire block before deciding when to

send messages in that bloc}~. It does not allow us to

observe the X process for any time past the end of present 
• -

block so the largest length of time that we are allowed

to look ahead is t seconds.

Since we eventually would like to find the minimum

protocol information required we would really like to solve

S
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the following problem which we shall call the minimum

protocol problem:

Find R(d) = 
lim inf T~~ d)

• j
~ f N Nwhere RN(d) PNC ~
‘N~~ ~ P Y )

where PN (d) is the class of probability measures which

satisfy the constraints for PN(d) given in Chapter II

(Gallager ’s constraints) and also satisfies the following

constraint. - 
-

The complete causality constraint: Assume that, at any time

t, i messages have arrived from the source and j ~ i messages

have been sent . If Y~ 41 is the t ime the j+l~~ message is

sent , then Pr Ct < Y~~ 1< t+6) must be independent of (Xk,
k = i+2, i+3, ...) where Xk is the time the K

th message

arrives from the source. But, Pr(t<Y)+l< t+~) may

depend on X~ 4 1 only through the event t }.

It can be ~~
-. . - lily seen that the complete causality

constraint is a v¼ ry difficult constraint to incorporate

in a precise mathematical framework. We note that in the

discrete—time framework the constraint becomes much simpler.

If x1 equal one when a message arrives in the ~
th time

interval and zero if no message arrives in the interval

and if Yj equals one if a message is sent in the 1
th time

interval and zero if no message is sent in the interval,

- -WE---- - -- 

- •
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then the discrete—time complete causality constraint is: 
-

• y
~ must be independent of {xj~ j = u-i , i+2 , . . ., } and

i i
• E x. + S0 > E y., for all i.

j =l ~ j =l ~

The fact that the partial causality constraint is a

weaker constraint than the complete causality constraint

means that the solution to the partially causal problem is

a minimization over a larger set than the solution to mini—

mum protocol problem and thus the partially causal solution

is a lower bound to the minimum protocol solution. We also

note that Gallager’s optimal strategy ((9) and (11)) are

completely causal and they provide an upper bound to the - 

-

minimum protocol solution.

We have achieved a lower bound (44) to the partial

• causality problem and thus to the minimum protocol problem.

As ad goes to infinity, this bound approaches zero as

(ad) 2. As can be seen from figur~ 3, there is still a

gap between the lower bound (44) and~ the upper bound to

the minimum protocol solution, i.e., the performance of

the best attain~ble strategy (9). The upper bound (9)

approaches zero as in ci~~ . Due to the fact that the lower
( ad)

bound was found using a relaxed causality constraint, we

conjecture that the upper bound is closer to the actual

minimum protocol solution than the lower bound.

——~~~~~~~~~
-—— - 
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- - -
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In reviewing our derivation we see that the first time

that we might violate a complete causality constraint was

in applying the Hamming weight function W to our X and Y

sequence in equation (27). We first note that this step

is necessary to finding a bound on the second term, so our

additional analysis could not be applied unchanged if the

complete causality constraint were added.

The way that the complete causality constraint may be

violated by applying the W function is that we are allowed

to look ahead n time units at the beginning of a block

before we must pick our Y vector for this block. What

saves our bound from triviality is that we then maximize

over n. For n small, the inequalities used to find the

bound are not very tight. As n increases, the inequalities

- 
~- 

get better but eventually the effect of the non—causal&ty

begins to dominate.

There are two ways to approach this problem. One way - 

-

is to start with the results from theorem 1 and try to

proceed without using the Hamming weight function. This

approach does not appear to be fruitful.

A second way is to try to extend Gailager’s approach.

It can be shown that RN(d) as given by Equation (2) provides

a lower bound to R(d) for any N. We have expended

considerable effort to no avail trying to find R2(d) in the

continuous-time case using standard rate—distortion

S

_ _  
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methods . These methods lead to integral equations involving —

the probability density , W C Y 1, Y 2 ) .  We have been able to

prove that, unlike W (Y1) in the R1(d) problem, W (Y1, Y2) is

ill-behaved. It seems that a more promising approach is to -

try to solve the R2(d) problem for the discrete case in

order to obtain more insight before renewing the attack on

the continuous—time problem. This approach has the

advantage of allowing the use of computer methods and it

also allows a simpler introduction of the- 
- 
complete causality

constraint.
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