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CONSISTENCY OF THE AUTOREGRESSIVE METHOD
OF DENSITY ESTIMATION

by

Jean-Pierre Carmichael1
State University of New York at Buffalo

3 Introduction

The autoregressive method has been used so far only in the context
of time series. Consider, for instance, a discrete time real process
{X(t), te 2} (where Z 1is the set of all integers) with stationary

covariance function

Cov(x(t),x(t + v)) - NoY . wel .

X(+) 1s an autoregressive process of order p if there exist a sequence

{ajp » 3 =1,...,p} and an orthogonal process {n(t), te 2} with mean
zero and variance 02 > 0 such that
P

(1.1) X(t) + £ a

1o jpX(t--j) = n(t), ¢teZ .

When (1.1) holds, R(*) satisfies the Yule-Walker equations
P

(1.2) z alpR(L-j) =0 , j=1,...,p
=0

L

1This research was supported in part by the Office of Naval Research

AMS 1970 subject classifications. Primary 62G05; Secondary 42A52, 60F05.

Key words and phrases. Density estimation, autoregressive representation,

orthogonal polynomials on the unit circle, consistency.
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op

In the autoregressive method, we obtain estimates {ajp S5 FTORE
and oz from a sample {X(1),...,X(T)} by solving (1.2) and (1.3) with
R(*) replaced by RT(‘) s

=1 T-Ivl
RT(V) =T I X(t) (e +v) .
t=1

The spectral density f£(*) of the process X(*) is defined

implicitly by

* ivx
R(v) = [ e f(x) dx .
-

For an autoregressive process of order p ,

>

) P -
(1.4) £(x) » o221+ I oy elix 2, xel-m,m] .
P n j=1 P

It is estimated using the estimated autoregressive parameters.

The consistency of these procedures has been studied by Kromer

(1969) and Berk (1974).

In this paper, we present the first application of the autoregres-
sive method in the context of indapendent identically distributed random

variables as a new method of density estimation and we study its conver-

gence properties in terms of consistency.




2. Probabilistic interpretation of the autoregressive method.

Let X be a bounded random variable taking values in [-m,m]
with absolutely continuous distribution function F(¢) , density function

f(*) and characteristic function ¢(*) ,

m
ov) = [ dvx f(x) dx , v real
-7
It follows that ¢(+) is Hermitian and nonnegative definite, i.e. ¢(*)
satisfies the necessary and sufficient conditions to be a covariance
function. It also follows that f(*) is completely determined by the

sequence {¢(v), v =0,1,2,...} (see Feller (1966), chapter 19).

We think of ¢(+) as the covariance function of a stationary com-
plex time series (unobservable) and of f(*) as its associated spectral

density.

Theorem 2.1
If f-l(-) and log f(¢) are both Lebesque-integrable on [-m,n] ,
then f(*) can be represented as the spectral density ?(‘) of an

infinite order autoregressive process:

" -~
(2.1) ov) = [ V¥ F(x) dx , vez

-

" °° -2
(2.2) T = 2o 1+ 1 oo el
g1
(2.3) z laj|2<oo, oz >0
i=1

(2.4) f(x) = f(x) , a.e.




Proof.

Apply the argument of Doob (1953, p. 577) to £(+) and f-l(-) .
(@]

We approximate ?(-) by ?p(J) » the spectral density of an auto-

regressive prccess of order p such that

m
(2.5) 6w = [ " F(x)dx , veo0,%1,...,4p
TPURERE S P 13x| 2
(2.6) fp(x) op (2m) 1+ jil ajpe .

Now, we can estimate {ajp » J=1,...,p} and 0§ for different values
of p as in Section 1 by solving the Yule-Walker equations with ¢(*)
being estimated by the sample characteristic function ¢n(°) of a

sample {xl,...,xn}

o, (v) = ot I e %

k=1
Finally, the estimated density is fp(-) "

~ A = P A
£fx) =@ i1+ 5 a, elIx
P P j=1 jp

Note that ¢_(¢) 1is usually a complex-valued function and the estimated
n

autoregressive coefficients are also complex.

Theorem 2.2

fp(-) is a probability density function.

e e——




Proof.

By definition of fp(-) -

f (x) dx = 1 . Finally, 02 > 0 (Pagano (1973)).
n P P D

3. Approximation theory interpretation of the autoregressive method.

Let F(*) be a nondecreasing bounded function with infinitely many

points of increase, defined on [-m,m] . We denote by L2

F the space

of measurable complex-valued functions wu(+) such that

2
[“ ]u(eix)| dF(x) < o ., It is well known that L2 with the inner

F
-m
product
5 ix ix
(3.1) (uc-),v(-))F = ue™) vl dare)
-7

2

u(*) and v(+) in LF

is a Hilbert space.

From the set of powers {l,z,zz,...} in Lg , we obtain a set of

orthonormal polynomials {go('),gl(-),gz(-),...} uniquely determined by
L

(3.2) gz(z) = jZo a

2~3

j0 2 oo

0L >0, for all 2

and




- I
(3.3) (gj(°), gk('))F = ij A for all j and e

Consider the subspace L: of Lg generated by (go('),gl(°),...,gp(')) -
It is a reproducing kernel Hilbert space, i.e. there exists a function

Kp(',‘) of two complex variables such that

(3.4) Kp(',y) € L§ i for any fixed y
:
(3.5) Kp(°,y) = a0 kjp(y) gj( )
(3.6) (u<-),1<p<-,y))F = u) . forall () e Ll
P
In fact, Kp(°.y) = I g.(y) g.(*) . We restrict our attention to

j=0 3 j
Kp(',O) and express it as a polynomial

0 ; j
Kp(z, ) = 35 bjp z

Let uj(z) = zj y

0,1,...,p . By the reproducing property of

Kp(°,°) ,.we have that

]
(=1
~
o
~r
L}
o

-
.
]
-
-
-
o

(3.7 RIS ),

n
-

(3.8) (uo('), K, C ,0))F

If we introduce the notation ¢(*)




then the system of equations (3.7) and (3.8) becomes

-

(3.9) Ib ¢(3-D =0, j=1,...,p
g=0 *P

(3.10) g b, $(-2)

i L) =1 .
g P

Upon taking complex conjugates and identifying ¢(*) with R(+) , we ’
see that (3.9) and (3.10) are equivalent to (1.2) and (1.3) up to a con-

stant factor, the difference being that aOp =1 . Thus we divide (3.9)

and (3.10) by KP(O,O) and make the following identification between the

two systems of equations:

of] = (xp(o,O)) e

. -1
a. = b, (K (0,0 ) =0 oy
ip bJp( pi ) e 3 -
from which identification follows that
-2 -2

~ 2=l P ijx -1 ix
f = 2 1+ I ) = K (0,0)(2n K ,0 .
L) = o (2m) Ioag 50,0 2m K (e™*,0)

j=1

We have thus proved the following theorem.

" .

Theorem 3.1

If F(+) 1is an absolutely continuous distribution function, f£(-)
itsldensity, f_l(-) and log f(°+) are Lebesgue-integrable and we
replace in (3.9) and (3.10) ¢(*) by the sample characteristic function

¢n(°) as defined in Section 2, we obtain two representations for fp(‘) 3




~ -~ - P ~ 2 A = ~ 2
(3.11) f ) =o2em 1+ £ a, el =k (0,00 2m 7k (X0 .
P P j=1 jp P P
The properties of Kp(',O) have been studied extensively in the
approximation theory literature, e.g. Grenander and Szego (1958),

Geronimus (1961). We quote known results from these sources without

proof as we need then.

We study the convergence properties of the autoregressive method

under the following sets of conditions:

Conditions A :
F(¢) 1is an absolutely continuous distribution function with

infinitely many points of increase, defined on [-m,7n] .

f(+) 1is the corresponding density function.

f-l(-) and log f(*) are Lebesgue-integrable on [-mw,m] .

Conditions B :

Conditions A are satisfied. Furthermore, O < m < f(x) <M <®™ | a.e.

£(*) € Lip (%,2)

m

2 ¢ a
where Lip (a,2) = {9(-) : sup < [ fu(x + h) - ux)| dx) =0(8 )} :

[n|<s -n

Conditions C:

Conditions A are satisfied. Furthermore, 0 <m < f(x) <M < = , a.e.

£(e) = d(+) , a.e.

d(.) { 2 L]'.P (a)z) y Q@ > !5




4. bias study

In the estimation of f(¢) , we have used an approximate represen-
tation ?p(-) that we have estimated by fp(-) . In this section we

study how good ?p(-) is as an approximation to f(°) .

Lemma 4.1

Define g:(-) by
(4.1 *(z) = K (2,0) K_(0,0) "
. ) gp(z o P z, P ) .

The Lebesgue-integrability of 1log f(*) is a necessary and sufficient

condition for the existence of the following limits

P
4.2) 0 < lim Kp(0,0) = lim X lgj(O)l2 = &

Igj(o>l2 = K(0,0) < @ ;
poo j=0 j

0

(we will now use Kp = Kp(0,0) and K = K(0,C) )

(4.3) Mo g¥(2) = g2} K7 £ F.00) g.(2) ., 2| <1
S, P jai i

where the convergence is uniform in |z| <r <1 ;

-1 o |

(4.4) : g(eix) = lim g(teix) s, a.@.}
r-1"
wly .tk

(4.5) f(x) = (2m) " |ge™)| , a.e.;

for E= {x : 0 < f(x) < »} , define g(+) ,

R

278 Tvons




- 10 -
e g(eix) 5 x € E
g(x) = .
0 ’ x ¢ E

E has the following expansion in terms of the orthonormal polynomials

{gj(.) sy 3= 0,1,2,-..]’

(4.6) B ~K% I g;(0) g (™)
3=0 .
that converges in L; 5
~ -l -
(4.7) lim |lg(+) - KZK % g ()l = © .

pw

m 2 1
where "u(-)“F = (f Iu(eix)l f(x) dx)’5 (Geronimus (1961), Chapter II).
-n

Theorem 4.2

Under Conditions A,

LS | ~1 -
(4.8) lim [ |f "(x) - £ "(x)]| f(x) dx = 0
5 P
ol P =7
L i ape
(4.9) lim [ |f(x) - £ (x)| £ "(x) dx = 0
g P P

Proof:

- 2 2
|£ 1(x) = ?;l(x)| = 2n||g(eix)| - lg;(eix)l I 3 Mol




=

Thus,

. |
1 - Tl £(x) dx
-n F |

m
s [ (lse™] + 15, ™) (lee™ - ghe™)]) 260 ax

-m

s 2n (e llg + lley )

*
IF)llgm =& ()i,
by Schwarz inequality.

legC g =1, leC)llp =1 (by (4.6)) and

lim [lg(+) - 8;<°)||F = lim [|g(+) - g*(-)llF =0 by (4.7 and (4.2) .

Finally, (4.9) is equivalent to (4.8).
D

Lemma 4.3

Under Conditions B,

IG;(Z)I $sC , for |z} =1

We can replace the Lipschitz condition by

o(v) = o(vl)

(Geronimus (1961), Theorem 3.8).




- 310 -

Theorem 4.4

Under Conditions B,

(4.10) im [ |f "(x) - f (x)| dx = 0
L P
pre -q
W o 2
(4.11) lim f |fG) - £ @) £ “(x) dx = 0
P P P

Proof.

As in the proof of Theorem 4.2,
= ~ * *
€700 - Tloo| < 2n [ee™)] + g ™| Jee™ - g ™), but

|g(cix)| < m—!i a.e., as f(*) 2m >0, a.e.

*
(eix)l < C, by Lemma 4.3.

e,

Thus,

B Sy o9 p
J 10 - Floo|” ax s dn’m
-m

5

+ 0 flgt) - gyl 7

and the right-hand side converges to zero as in Theorem 4.2. Again,

(4.10) and (4.11) are equivalent, £(¢) being bounded from below a.e.

Lemma 4.5

Under Conditions C,

*
lim gp(eix) = g(eix) , uniformly on [-w,7] .

P

(Geronimus (1961), Theorem 5.2).

O




=13 -
Theorem 4.6
Under Conditions C,
L ~ 2
(4.12) lim [ Jfx) -F (x)| " dx = 0
pre - 4
. H ~2
(4.13) n F x) = @m7L g™ ™" uniformly.
preo P

Proof.
Under Conditions C, 0 <a < |gp(eix)] < A<® for any p
*
(see Ibragimov (1964), Lemma 5), and because Igp(eix)| = lgp(eix)l "
it follows that 0 < b < ?p(x) < B <*® and (4.12) follows from (4.10).
R e T% 578 o
Finally, 1lim Igp(e )| = Ig(e )l uniformly by Lemma 4.5 and the fact

po
*
that |gp(°)| is uniformly bounded from above and below.D

Having obtained uniform pointwise convergence, we state the follow-

ing rates of decrease of the bias.

Theorem 4.7

Under Conditions C,
lfe) - E00| = ™) e, DEBea~k

Moreover if the function d(¢) has r derivatives and d(r)(') € Lip (a,2) ,

0<a <1, then

lf(x) - ?;(x)l = O(p-B) y Belsy; 03B <.r +0 -k |

(Kromer (1969), Theorzm 3.12).
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5. Consistency of the estimators of the autoregressive parameters.

We use the following representation for fp(') s

~

~ ~ ’2
(5.1) £, = (2m xp)'1 1+ a o

jp {

where the estimation is based on a sample of size n . We also consider

P as a function of the sample size n .

In what follows, the Euclidean norm of a p-dimensional vector §p
or matrix X is represented b . , whereas X = s X * =
o is Tep y Il - sop e s, |

~P
Also, the symbol ~ on gp indicates that each element is estimated.

Lemma 5.1

: . W | . .
(5.2) %, « xll< 1%l « syl < I s, 1
if Xp is Hermitian and nonnegative definite,

» 1y _ =1
(5.3) llxpllH = Ao ®) s Il = 2 (x))

max  p P min

where A (X) and A (X ) are the maximum and minimum eigenvalues
max  p min'"p
g -1-1
of xp s if Yp is nonsingular and if ||Xp = YPIL < (1-¢) 'IIYp]’IIH >

€ >0, then

-1 -1y , -1
(5.4) I < I - e
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Proof.

These results are well-known. For a proof of (5.4) see Davies (1973).

Lemma 5.2
Let 0 <m< f(x) sM<e®, a.e. [-mu].

m

Let ¢(v) = [ e £(x) dx, v=0,%1,%2,...

-

Define the Hermitian Toeplitz matrix Rp .

$(0) cee $(p-1)

R = . .
$(1-p) ... ¢(0)

Then, Rp is nonsingular,

(5.5) 2m m < Amin(Rp) < xmax(Rp) <21 M
and
(5.6) lim Xmi“(Rp) = 2T m
(5.7) lim Amax(Rp) = 2m M
p—m

(Grenander and Szegd (1958), Chapter 5).

Lemma 5.3

' 2 -1
Let £p = (¢(-1),...,¢(-p)) . If limp™ n

n-*ce

“gp - EP" converges to zero in probability.

=0

then,




- 3t -

Proof.

Iz, - 5ol < /7 max(lo ) - 6|5 v = -1,e..,p)
and

?(JF max([¢_(v) = 6() | ;v = -1,...,-p) < e) 2l =pn e‘z(l- l¢)(v)|2)

by Bonferroni's inequality and Chebyshev's inequality.

Corollary 5.3.1

2 -1

If lim p“n 0, IIRp - RPII converges to zero in probsbility.

3

. _1 !i ~ ;5 ~
If = - - }
lim p™ n 0, plx Ep” and p ”Rp Rp" both converge

to zero in probability.
Proof.

A

Just note that because Rp and Rp are Toeplitz and Hermitian,
IR, - R Jls2 /o max(|¢>n(v) -6, v= -1,...,-p) .

Lemma 5.4

Let o = (aop,...,a 505 o)

P PP

g = (ao,al,....) v

If 0<m¢< f(x) sM<®, a.e. [-m7], then

Lin [|g, - gl = 0

P




Proof.

By the representation introduced in Section 3 and Lemma 4.1,

- 37 -

P ~ *
j=0 JP P °p
and
(-]
z aj eijx = K-!5 g(eix) s @l
j=0
it follows that
M o
2 isz
g, - ell® = [ |2, -a) ¥ dx
P RS LA

Theorem 5.5

= P T e T
<m K |lgC) - K gp()llF

-—.)O
w

, by Lemma 4.1.

If O0<m<f(x) SM<®, a.e. and linp°n ' =0, then

-

llgp - gpll and [k - K

Proof.

It is sufficient to consider gp =

~

b igad

| converge to zero in probability.

L
e |
(°‘1p’ pp)

o=-1

i H-H K [(Ep'zp)"L(Rp'Rp) glP:I
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because the Yule-Walker equations can be written

Rp2p = 7%
®p ~E
Thus
s
(5.9) A ||0L < IR [Ir -z l|+HR -2k * Ilapll] by (5.2).

We now bound each term on the right-hand side.

lim Jla ]| = |la]] < © as can be seen from Lemma 5.4. Both |lxr - r ||
P i P P

and "Rp = Rpll converge to zero in probability by Lemma 5.3 and its
Corollary.

Finally, we use (5.4) to bound HR;1 Note that Rp is non-

I -

singular and because ”Rp = Rp[l converges to zero in probability,

-1

5 =1
IR, - &l < @ - o [

< (1 -¢€) 2tM

so, by (5.4), ||R;1||H <e ”Y;IHH <emm)l

‘r
E i.e. "E;IIIH is bounded with probability one.

To prove the second part of the theorem, we note that
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L EP - P
¥ TR B - o e

P (~ -
" jio{ajp(cbn(J) SN te(@y, - ajp)}

o=l g ll V7 maxclo () = 6], 5 =1,....p

n ™Mo

+llgp - gl

2
[6¢3)]
j=1

P
This goes to zero in probability provided 1im I |¢(j)|2 < @ ., But
' P j=1

P L
lim % IQ(j)I2 = f fz(x) dx < 2m Mz < o

P j=1 -
because {¢(j)} are the Fourier coefficients of f£(*) . Finally,

K - K converges to zero in probability as K < K < o ,
i = s ¥ . p a

Corollary 5.5.1

Let

9. ol (alp"..’app’o"")

- pvnTs N
B = Wypeeecmy )

g = (a;,0,,...)

Under the conditions of Theorem 5.5, ”ap - al| and |Kp - K| converge

to zero in probability.
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Proof.

~

|xp - K| < |1<p - xp] + [xp - K| . Similarly

lep - all< g, - 2,0l +le, - gll.

Just apply Lemma 4.1, Lemma 5.4 and Theorem S.S.D

6. Consistency of fp(')

Lemma 6.1

If 0<m< f(x) s M< ® » a.e. and lim p3nn1 =0, then
o

A% % {3
lgp(eix) - gp(elk)l converges to zero in probability uniformly in x .

Proof. *

By the same technique as in Theorem 5.5

-~ ~ P
la, = a, |+ lx!‘ - K!’I E |m,
i Tip # P gug 4P

% ix *  ix o
e - e < K
Isp( ) 8, ( )| 5

n Mo

l
j=1

S KD /P llg, - g ll+ 5 IR - K] gl

for all x .

Kt converges in probability to K* s Jp ”gp - gpll converges to zero
in probability if 1im p3n-1 = 0 by Theorem 5.5, and the same for

Is 1% - 5
/p |1<p xp] >




- 9% -

We can now prove consistency theorems analogous to Theorems 4.2,

4.4 and 4.6. We give only one example.

Theorem 6.2

Under Conditions C and if iim p3n-1 = 0, then
e ix, 2 i o -2
fpl(x) - 21 |g(e™)| l and lfp(x) - {2m"} lg(e"‘)l

converge to zero in probability uniformly in x .

Proof.

We prove only the first statement.

260 - 2n fecet®) 2] < |10 - Bloo] + [#100 - 2n Jeeet™ 7] .

lim ,?‘l(x) - 27 ]g(eix)lzl = 0 , uniformly in x , by Theorem 4.6. On
P

p—.co

the other hand,

15 0o - Tlol < Zn(lg;<eix)| + [g:<e‘x)l)lg;(eix) - g™ .

We now apply Lemma 4.5 and Lemma 6.1.n

7e Acknowledgements

I want to express my thanks to Professor Emanuel Parzen for his

guidance, his enthusiasm and his dedication to research.




- 29 .

REFERENCES

Berk, K. N. (1974). Consistent autoregressive spectral estimates.

Ann. Statist. 2, 489-502.

Davies, R. B. (1973). Asymptotic inference in stationary Gaussian time-

series. Adv. Appl. Prob. 5, 469-497.

Doob, J. L. (1953). Stochastic Processes. Wiley, New York.

Feller, W. (1966). An Introduction to Probability Theory and Its

Applications, Volume II. Wiley, New York.

Geronimus, L. Y. (1961). Orthogonal Polynomials. Consultants Bureau,

New York.

Grenander, U. and Szegd, G. (1958). Toeplitz Forms and Their Applications.

University of California Press, Berkeley.

Ibragimov, I. A. (1964). On the asymptotic behavior of the prediction

error. Theor. Probability Appl. 9, 627-633.

Kromer, R. E. (1969). Asymptotic properties of the autoregressive

spectral estimator. Ph.D. dissertation, Stanford University.

Pagano, M. (1973). When is an autoregressive scheme stationary?

Comm. Statist. 1, 533-545.

e——



