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CONSISTENCY OF THE AUTOREGRESSIVE METHOD
OF DENSITY ESTIMATION

by
Jean—Pierre Carmichael 1

State University of New York at Buffalo

1. Introduction

The autoregressive method has been used so fa r  only in the context

of time series . Consider , for  instance , a discrete  time real process

{X( t ),  t c  Z} (where Z is the set of all integers) with s ta t ionary

covariance function

Cov (X(t), X (t  + v)) = R( v ) , vc Z -

X(• ) is an autoregressive process of order p if t here ex ist a seq u en ce

j  = 1, . . . , p}  and an or thogonal  process ~n (t) , t~~ z} wit h mean

zero and variance > 0 such that
TI

p
(1.1) X(t) + ~ a X ( t — j )  = fl(t) , t c Z

j= l

When (1.1) holds, lt(.) satisfies the Yule—Walker equations

p
(1.2) E at R( t — j )  = 0 , j  =p

1Thls research was supported in part by the Office of Naval Research

INS 1970 subject classifications. Primary 62C05; Secondary 42A52, 60F05.

Key words and phrases. Density estimation , autoregressive representation ,

orthogonal polynomials on the unit circle , consistency. 
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(1.3) 

~~~ 

a2~,R(&) 
= with a

0 1

In the autoregressive method , we obtain estimates , j = 1,...,p)

and from a sample (X(l),.. ..X(T)} by solving (1.2) and (1.3) with

R(.) replaced by

-l T-IvIR~ (v) = T E X(t) X(t + v)
t—l

The spectral density f() of the process X(•) is defined

implicitly by

iT
R(v) = f e

i
~

T
~

C f (x )  dx -

For an autoregressive process of order p
S

(1.4) f (x) = ~
2 
(2rY~

’ I i  + a eiJ
~

C !_ 2 
, xc [— r ,r ]

It is estimated using the estimated autoregressive parameters.

The consistency of these procedures has been studied by Krorner

(1969) and Berk (1974).

In this paper , we present the first application of the autoregres—

sive method in the context of independent identically distributed random

variables as a new method of density estimation and we study its conver—

gence properties in terms of consistency.
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2. Probabilistic in te rpre ta t ion  of the autoregressive method.

Let X be a bounded random variable taking values in [—I T ,7rJ

with absolutely continuous dis tr ibut ion function F( .)  , density function

f(.) and characteristic function ~(~)

$(v) = J ~~~~ f(x) dx , v real

It follows that ~(•) is Hermitian and nonnegative definite , i.e. 4e )
satisfies the necessary and sufficient conditions to be a covariance

function. It also follows that f() is completely determined by the

sequence {qi(v) , v = 0,1,2,...) (see Feller (1966), chapter 19).

We think of 4(.) as the covariance function of a stationary com-

plex time series (unobservable) and of f(.) as its associated spectral

density.

Theorem 2.1

If f’1(.) and log f ( . )  are both Lebesque—integrable  on [—r ,ir]

then f ( .)  can be represented as the spectral  density f ( )  of an

inf in i te  order autoregressive process:

(2.1) qt(v) f e
i\t
~~~(x) dx , v c Z

(2.2) ?(x) = a~(21r )_ h I l  + E a
jj 

~
1

(2.3) E Icz~ I
2

< ° ° ~ a~~>0
j=l

(2.4) f (x )  = ? (x) , a.e.

S

-
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Proof.

Apply the argument of Doob (1953, p. 577) to f(•) and f~
1(.)

We approximate 
~
(.) by f~(~) , the spectral density of an auto-

regressive process of order p such that

(2.5) •(v) = f e”9~(x) dx , v =

(2.6) ?~(x) = a2 (2x)’4 Ii + 

~ 
aj ei’lX I 

2

Now, we can estimate (a. , j 1,... ,p} and for different values

of p as in Section 1 by solving the Yule—Walker equations with 
~()

being estimated by the sample characteristic function 
~~() of a

sample {X1,. ..
S

—l n iVXk
e

k=l

Finally, the estimated density is

1 P A
f (x) a (2r) 1 + ~ a4 e jxp p

Note that 4~ (’) is usually a complex—valued function and the estimated

autoregressive coefficients are also complex .

Theorem 2.2

is a probability density function.

L ~~~~~~~~~~~~~~~ ~~~~~~~~~~~
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Proof.

By definition of f~e)

$ (v) = f ~~~~ f (x) dx , v = 0, ± 1, . . . ,  ± p

h A  A

For v 0 , f f (x) dx = 1 . Finally, a2 
> 0 (Pagano (1973)).

—ii P p 
0

3. Approximation theory interpretation of the autoregressive method.

Let F(.) be a nondecreasing bounded function with infinitely many

points of increase, defined on [—x , Ir] . We denote by L~ the space

of measurable complex—valued functions u(.) such that

J ~ Ju(e~ ’5J~ dF(x)  < . It is well known tha t 4 with the inner

product
.

(3.1) (u( .)~ v ( t ) ) F 
= f u(e~~ ) v( e~~ ) dF(x)

u(’) and v(.) in 4
is a Hu bert space.

From the set of powers (l,z,z
2
,. ..} in 4 , we obtain a set of

orthonormal polynomials (g
0

( ) , g
1(•),g2(•),.. .} uniquely determined by

£
(3.2) g

t
(z) = Z ait ~~~ a

0& > 0 for all L
jatO

and
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(~~e)~ 5k~~~)F ~~k ~ 
for all and k

Consider the subspace L2 of generated by (g0
( ) , g

1(),...,g()) -

It is a reproducing kernel Hilbert space , i.e. there exists a function

K(’,) of two complex variables such that

(3.4) K(•,y) e L2 , for any f ixed y

P
(3.5) K (.,y)  = E k 4 (y) g.(’)

p =0~~~~

(3.6) 
(
u(-)~ K(.,y))~ 

= u (y) , for all u() 4
In fac t, K (.,y)  ~ g.(y) g.() - We restrict our attention top 

~~~~~~ 
3 3

K ( , O) and express it as a polynomial
.

P
IC (z ,0) = Z b4

=0

Let uj (z) = z~ , j = O,l,...,p . By the reproducing property of

K ( , ’) , we have that

(3.7) (uJ
( .)

~~K e ~~o)) F 
= u~ (O) = 0 , j =

(3.8) (u O e I K
P e I o ) F  = 1

If we introduce the notation 4(’)

•(v) f ~~~~ dF(x)
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then the system of equations (3.7) and (3.8) becomes

(3.9) E b
i 4(j—t ) = 0 , j =p

P .—
(3.10) E b~ •(—t) = 1

t=0 ~

Upon taking complex conjugates and identifying 4(.) with R(’) , we

see that (3.9) and (3.10) are equivalent to (1.2) and (1.3) up to a con-

stant factor , the difference being that = 1 . Thus we divide (3.9)

and (3.10) by K(O ,O) and make the following identification between the

two systems of equations:

2
= 
(~~<o,o~

a . = b~~(K (O,O))’ , j = o,... ,p

from which identification follows that

~~(~) 
= a~ (2r)~~~(1 + 

j=l 
a~~e
’
~~ I = Kp (O ,O ) ( 2 ~ ) _ l !K

p (e iX ,O) 1

We have thus proved the following theorem.

Theorem 3.1

If F(.) is an absolutely continuous distribution function , f(.)

its density, f~~ (-) and log f(.) are Lebesgue—integrable and we

replace in (3.9) and (3.10) ~(•) by the sample characteristic function

as defined in Section 2, we obtain two representations for f ( •)
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A A2 —l P A  2 ~ .

~ 
2

(3.11) f~ (x) at o~ (2r) ~l + ~ a 4 e j x f  = K (fl,O)(21r)~~ IK (e 
x O) l

j al JP P p

The properties of K ( ,O) have been studied extensively in the

approximation theory literature , e.g. Grenander and Szeg6 (1958),

Geronimus (1961). We quote known results from these sources without

proof as we need theto.

We study the convergence properties of the autoregressive method

under the following sets of conditions :

Conditions A

F(s) is an absolutely continuous distribution function with

infinitely many points of increase , defined on t —7r , lr]

f(.) is the corresponding density function.

f~~(.) and log f(.) are Lebesgue—integrable on

Conditions B

Conditions A are satisfied . Furthermore , 0 < m � f ( x )  � M < ~ , a.e.

f(.) E Lip (½,2)

where Lip (a ,2) at (uC.) : sup ( f (u (x  + h) - u( x ) (
2 

dx) = o(~~))
IhI< 6 — f l

Conditions C

Conditions A are satisfied . Furthermore , 0 < m � f (x )  � N , a.e.

f ( .)  = d( •) , a.e.

d(~) E Lip (a , 2) , a > ½

~ 

~~~~~~~~~~~~~~ 
. --
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4. i~ias study

In the estimation of f(.) , we have used an approximate represen-

tation 
~~~
(.) that we have estimated by f (.) . In this section we

study how good f~(.) is as an approximation to f(’)

Letmna 4.1

Define g() by

(4.1) g (z) = K ( z ,0) K~ (0. O) —½

The Lebesgue—integrability of log f(.) is a necessary and s u f f i c i e n t

condition for the existence of the following limits

2(4.2) 0 < lim K (0 ,0) = u r n  E jg.(0)~ ~ g.(O)j~ = K(0 , 0) <
p j’O ~ j~’0 ~

(we will now use K = K ( O ,0) and K K(O,O) )

(4.3) lim g*(z) = g(z)  = K~~ ~ g . ( O) g . ( z )  , I z i  < 1

where the convergence is un i fo rm in !zl � r < 1

ix ix ’(4.4) g(e ) = lim g(re ) , a.e.;

—2
(4.5) f(x)  = (2riY~

1jg(e1’5~ , a .e . ;

for E (x : 0 < f(x) < co} , define g(.) ,

r

_ _
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C ix
~g(e ) , x E E

g(x) =

X 4 E

has the following expansion in terms of the orthonormal polynomials

{gj(’) , j = 0,1,2,...)

(4.6) ~(x) K~~ E g (0) g .( e~~)
j=O j  3

that converges in 4

(4.7) iim H~ ( .) — 1(1 K~~ * ( ) U  
at 0 -

where = (s~ J u ( e~~ )~~
2 

f ( x )  dx~
1 

(Ge ronimus (1961), Chapter  I I ) .

Theorem 4.2

Under Conditions A

1(4.8) lim f If (x )  — f (x) f (x )  dx at 0
P4~~~ ht p

(4,9) Urn 
iT 

If ( x )  - T (x) r’( )  dx = 0
P4~~~ 7T

Proof :

If ’’(x) — ?
~~(x)I 2~~~g(e~X)j

2 
— ~g ( e ii5~

2
~ , a.e.

I
_ _ _ _ _ _ _ _ _  .

~~~~~~~~~~~~~~~~ _ _ _ _

~~~~

.. .
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Thus,

I If~~(x) — 

ç
’(x)I f(x) dx

� 2i~ f (jg(e
ix
)~ + ~g(e~~)~)(fg(e

i~C) - g*(eix)~
) f(x) dx

211 (II~(.) “F + I!~;(.)IIF)lIS(.) —

by Schwarz inequality.

IIB~~)II F = 1 , Jl~(.)IJ~ 1 (by (4.6)) and

- g~~~) ‘1 F 
- g ( ’)  ‘1 F 

= 0 by (4.7 and (4.2)

Finally, (4.9) is equivalent to (4.8).
0

Lemma 4.3

Under Conditions B

� C , for jz~ � 1 .

We can replace the Lipschitz condition by

$(v) O(v~~) .

(Ceronimus (1961), Theorem 3.8).
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Theorem 4.4

Under Conditions B

-l =~-1 
2

(4.10) u r n  f If  (x) — f (x)~ dx = 0
p-,
~ it 

p

11 2
(4.11) lim f ~f (x) — ~ (x)~ 

1_ 2 ( )  dx at 0
p-’~ 1i 

p p

Proof.

As in the proof of Theorem 4.2,

~f~~(x) — � 2-u ~g(e~~)~ + !g
*(ei 5 1 ~g(e~~ ) — g*(eix)I , but

g(ci~5~ < m~~ a.e., as f(.) � in > 0 , a.e.

* ixIB~(e )~ 
< C , by Lemma 4.3.

Thus,

f ~f~~ (x) - dx < 4r 2(m~~ + C) 2 m ’ 
~g(’) 

- g;(.)~ ~

and the right—hand side converges to zero as in Theorem 4 .2 .  Again ,

(4.10) and (4.11) are equivalent , f(.) being bounded from below a.e.
0

Lemma 4.5

Under Conditions C ,

* ix ix
u r n  g (e ) = g(e ) , uniformly on [—ir ,ir]

p

(Ceronimus (1961), Theorem 5.2).

L .  - - -
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Theorem 4.6

Under Conditions C ,

iT 2
(4.12) lim f I f (x)  — f (x) I dx = 0

p+~~~-1T p

(4.13) lim ~ (x) 
= (211) 1 Jg(e

i
~5 I

_2 
uniformly.p

Proof.

Under Conditions C , 0 < a � Igp (ei~
C) I � A < ~ for any p

(see Ibragimov (1964), Lemma 5), and because Ig (e~~) = !g*(e
iX
) I

it follows that 0 < b � f (x) < B ~ and (4.12) follows from (4.10) .
* ix —2 lx —2

Finally, u r n  Jg (e ) J  = Jg(e )j uniformly by Lemma 4.5 and the fact
r

that 
~g~ ()j is uniformly bounded from above and below.

Having obtained uniform pointwise convergence , we state the follow-

ing rates of decrease of the bias.

Theorem 4.7

Under Conditions C

lf(x) — ?~(x)f = O(p~~) a.e., 0 � B < a — ½

Moreover if the function d(.) has r derivatives and d (r) (.) c Lip (a,2)

0 < a � 1 , then

I f (x)  — ~‘~(x) I = O(p~~) , a.e., 0 < B < r + a — ½ -

(ICromer (1969), Theoram 3.12).

I.. . — ..-.--- .—- —— --- .~~~~~~~~~.
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5. Consistency of the estimators of the autoregressive param eters .

We use the following representation for

(5.1) f~ (x) at (2r K~)lll + E ctjp  e
uj
~C I

where the estimation is based on a sample of size n - We also consider

p as a function of the sample size n

In what follows, the Euclidean norm of a p—dimensional vector

or matrix X~ is represented by ~~ , whereas = sup ~~~~ ~~l -

A].so, the symbol 
A on 

~ 
indicates tha t each element is estimated .

Lemma 5.1

(5.2) I I X ~, • 

~~II � ‘ !F~ II � ~x I ~ 
. lix II

if is Hermitian and nonnegative definite ,

(5.3) II x ~ I~ = Amax (Xp ) . = A rn (X
p
)

where A (X ) and A (X ) are the maximum and minimum eigenvalueswax p mm p

of X~ ; if Y~, is nonsingular and if — < ( 1— c )  .j j~
;1
~4

c > 0 , then

(5.4) tI x;1I~ � IIY;’I~ 
•



— 15 —

Proof.

These results are well—known. For a proof of (5.4) see Davies (1973).

Lemma 5.2

Let 0 < in � f(x)  � M < , a.e. [—11,11]

Let ~~v) = f e~~X f (x)  dx , v = 0, ±1 , ± 2,...
-it

Define the Herniitian Toeplitz matrix R~ -

1”°~ 
...

R a t
P

4~(l— p) ... ~ (0)

Then, is nonsingular ,

.

(5.5) 2it m � A  (R ) � A  (R)�2 II M
miii p max p

and

(5.6) lim A (R ) = 2ir in
mm pp4

~

(5.7) lim A (R ) at 2ir H
max p

(Crenander and Szeg3 (1958), Chapter 5).

Lemma 5.3

Let (~
(_l)~~...~~ (_P))’ . If lim p2 n~~ = 0 , then ,

1IL~ 
— converges to zero in probability.
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Proof.

IIE ~ 
— n t  � /~~ max(I~~ (v) — ~~v)~ ; v —1 ,..

and

p(~
r
~~ max (I~~ (v) - ~(v)~ ; v  = -l,...,-p) � � 1 - p

2
n 

1
c 2(~ _ 

l~ (v)I 2)

by Bonferroni ’s inequali ty and Chebyshev ’s inequality.

Corollary 5.3.1

If lim p2 n 1 
= 0 ItR~ — R~II converges to zero in prob .~bi l i t y.

If u r n  p3 n 1 
= 0 , p1~Ir — 

~~~ and ~~~~ — R u  bot h converge

to zero in probability.

Proof.

Ju’st note that because R and R are Toepli tz  and Ilermit ian ,p p

II R — ~~~ < 2 ,Tj ~ max (k (v) — c~(v)~ , v _l,...,_p)

Lemma 5.4

Let a at (a0~~. ..,a ,0,...)

(ct0,a1 
)

If 0 < in � f (x)  � N < ~~~, a.e. (—11,71) , then

1im II~ ,- ciIf = 0
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Proof.

By the representation introduced in Section 3 and Lemma 4.1,

a e~jX = K~~ g* (e iX)
j—0 p P

and

ijx -½ ixE a 4 e K g(e ) , a.e.
j=0 ~

it follows that

II~~ 
- ~~ = f l ~~(a . - a.) ehjXI

2 
dx

� m~ K
1 tt~( )  — ç

½ K½ g*(..) 11 F

—* 0 , by Lemma 4.1.

Theorem 5.5

If 0 < in < f (x)  � H , a.e. and lirn p2 n ’ = 0 , then

— and ~K — K~ I converge to zero in probability.

Proof.

It is sufficient to consider ci (ct
1 ,...,c z ) ’

(5.8) - ~;l[~ - ~,) + (R -  R)

__ -~~~~- --— .. ---- .- -- -
~~~

—-
~.- . --

~ 
- . - - -



because the Yule—Walker equations can be written

R a  _r
p— P —P

A A A

R a  = - r
P— P

Thus

(5.9) IIa -a~ � IlR~~IIH~~r - r j ~ + ~~ -R~~j . 
~~~~~ by (5.2).

We now bound each term on the right-hand side.

Urn J~ci Jj = Jj cz J j < ~ as can be seen from Lemma 5.4. Both ILt 
— 

x. II 

-

p

and IIR~ — R~II converge to zero in probability by Lemma 5.3 and its

Corollary.

Finally , we use (5.4) to bound IIR;
’11 11 . Note that  R~ is non—

singular and because I i R~ 
— R~~( converges to zero in probability,

II R ~ — R~II � (1 — c) II1~;’IIH’ < (1 — c) 2nM ;

so, by (5.4), IIR II c IIY~
’II11 � c (21T mY~ ,

i.e. II R; IIfl 
is bounded with probability one.

To prove the second part of the theorem , we note that
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A _i — P A
IC — K 

1 
= E a 4~ (i) 

— E a 4)(j)p P jatl iP 
~~~~~

— flfl) + ~(j)(ct~, —

t IC;
’ — K;

’I � ~cz~j~ /p max(~q (j) — 

~(i)t , j =

A P 2½+ Vct —
~~~~~ II ~ t~(i)I

P p 
j=l

2This goes to zero in probability provided u r n  
~ !~(i)t < 

~ 
. But

p+
~ 

jatl

2 2urn Z 
~~(j)~ 

= f f2(x) dx � 211 M <
p+a j=1 —ui

because 
~~(j)} are the Fourier coefficients of f(’) - Final ly,

I K — K ‘$ converges to zero in probability as K < K < ~p p p

Corollary 5.5.1

Let

~ (c*1 , . . . ,ct ,0 , . . . )

— (a1, c12,...)

Under the conditions of Theorem 5.5, Ita~ 
— 
~~ and IK ~ — K I  converge

to zero in probability.
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Proof.

— K~ � IK~ K j  + f K~ - KI . Similarly

— � — 
~~ii + — 

~u.

Just apply Lemma 4.1, Lemma 5.4 and Theorem 5.5.

6. Consistency of f(’)

Lemma 6.1

If 0 < m � f ( x )  < H < , a.e. and lim p
3 
n
1 

0 , then

— g*(e~~)I converges to zero in probability uniformly in x

Proof.

By the same technique as in Theorem 5.5

A*  4 
* .1 A~ j) A A~~~ ~~

~g (e~~) 
— g (e~ 5J < K1 2 Ia. — ci. + JK~ - 

~~ Z ci.
1=1 3=0

�i~ ~~~~~~~~~~~~~~~ • I I ~p uI

for all x

converges in probability to ; f~ — converges to zero

in probability if lirn p3 n~~ 0 by Theorem 5.5, and the same for

~~~ ~~ - K½~p p 0
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We can now prove consistency theorems analogous to Theorems 4.2,

4.4 and 4.6. We give only one example.

Theorem 6.2

Under Conditions C and if lini p3 n~~ = 0 , then

1ç1(x) - 211 Ig (eix)1 21 and Jf (x) - (211)~~ Jg(e
1X )1 2

converge to zero in probability uniformly in ii

Proof.

We prove only the first statement.

Iç’(x) — 2r Ig(e1~5 ~2 J < ~~~~~~ — f~ (x) J + — 21T

lim Ir’(x) — 2ui I c ( e 1
~5 1 2! = 0 , uniformly in x , by Theorem 4.6. On

the other hand ,

1 A
* ix * ix A

* ix * ixI f ~ (x) — f (x)~ ~ 2i1(lg (e )I + I~~(e )I)Ig (e ) — g~(e )(

We now apply Lemma 4.5 and Lemma 6.1.
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