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SECTION 1
INTRODUCTION

One important part of the total external SGEMP problem is the
calculation of structural response. Since the structural response can
couple into critical subsystems it is imperative to know what frequencies
to expect from structural resonance and how long an electrical, structural
disturbance will persist. This report addresses, primarily, the question
of radiation damping for a particular type of structure. A general point of
view is taken throughout the report, however, so that the methods used for
finding frequencies and damping constants can be applied to the broader
class of systems to which the particular system analyzed belongs. The
particular system analyzed is similar to a system like the FLTSATCOM satel-
lite or the RESMOD model (see Figure 1) used in the MRC Phase IV A and B

exploding wire experiments.

Damping depends upon frequency. Calculating the frequencies for
1

RESMOD-type systems has been addressed by Marin! and Higgins? utilizing
lumped parameter circuit models. In Section 2 we set up the equations neces-
sary to find the resonant frequency of N capacitive bodies and then particular-
ize the equations to the three capacitive body RESMOD system. The actual
RESMOD structure is used as a numerical example. Since the damping rate is
related to the time rate of change of energy of the system, we also set up
the equations describing the energy of an N body system. Again we particularize
the equation to the appropriate three body system using simplifying approxi-
mations. The N body system is chosen for discussion because it reemphasizes3
the more general applicability and usefulness of the method. It is also a
vehicle for pointing to the assumptions of this type of analysis.
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Approximations and calculations for the damping constant of the
lowest two resonant modes of the RESMOD-type system are made in Section 3.
For systems which do not damp too appreciably in one cycle the methods used
here are quite general. Essentially the method consists of making an
educated guess as to what the current distribution on the various parts of
the system are and then integrating the related Poynting vector over a sphere
at infinity. Graphs resulting from the calculations are also presented in
Section 3. These graphs can be used to calculate the damping of symmetric
and asymmetric modes of general RESMOD or FLTSATCOM-like systems.




SECTION 2
EQUATIONS DESCRIBING LUMPED PARAMETER RESONANT SYSTEMS

In this section we will first set up the equations describing
the resonant frequencies of N capacitive bodies connected by N-1 inductive
bodies. The capacitive bodies are associated with all the electric field
energy and the inductive bodies are associated with all the magnetic field
energy. This approximation to an actual structure is valid if the distri-
buted capacitance of the inductive bodies is small compared to the
capacitance of the capacitive bodies and if the distributed inductance of
the capacitive bodies is small compared to the inductance of the inductive
bodies. The wavelength of the resonant frequencies found by this method
must be larger than twice the geometric length. In Section 2.2 we
particularize these equations to a system of three capacitive bodies con-
nected by two inductive bodies. This latter system is close to the system
we actually wish to analyze. Approximations are then made which correspond
to other treatments of the system. In Section 2.3 we approximate the fre-
quencies of the actual RESMOD and in Section 2.4 we express the energy

associated with the N body system, particularizing to the RESMOD approximation.

Z.) N BODY SYSTEM

For an N body system (see Figure ?) Green's theorem indicates that

Vi= L AQ . i=1LN, (2.1)

th

where Vi is the potential of the i~ body, Qi is the charge on the ith body

8




Figure 2. Possible N body system.




and Aij are constants (elastances) dependent upon the geometry. Equation

2.1, a static field approximation, is valid only in the limit of long
wavelengths. The time rate of change of voltage difference between any two
i*" and the k™), av,

bodies (the i , 1s obtained from (2.1) as

k
ﬁi : "
&Y AR .0 = L ——, i#k, (2.2)
=1 5 i A oy e ik d_t2
where
; a1,
8. = L. — , (2.3)
ik ik at2
and Lik is the inductance of the link between bodies i and k and Iik is the
current running from the ith to the kth body. We note that Iik = - Iki and

Lik = Lki' A dot above a quantity denotes a time derivative. In Equation 2.2
we are assuming that there is no mutual inductance nor any resistance between
any of the bodies. The effect of radiation resistance on the currents is es-
sentially treated as a second order effect. 1In order to find the resonant
frequencies from Equation 2.2 we must relate charge to current. We assume the

continuity equation to hold for all N bodies:

N

=1

j#i
where positive currents are defined as those flowing out of the capacitive
bodies. One constraint results from the conservation of total charge of

the system, namely

N

N
b T ;=0 (2.5)

J

The modes of the system are defined by solving the system of equa-

tions obtained by assuming an elwt time dependence:

N N "
- e - ”
ggi }g% (Aij Akj s LSjasiéjk)Isj 0, (2.6)

S#3
All ik pairs i # k
10




for all capacitive body pairs ik. Equation 2.6 for a many body interaction
was derived using very simple concepts. Those concepts and approximations
limiting the equation were made explicit in the derivation. It should be
noted that the only interaction between all the bodies is capacitive or

electrostatic.

2.2 3-BODY SYSTEM

The RESMOD type system consists of three capacitive bodies con-

nected by two inductors as depicted in Figure 1. Letting

gy = ys
Lis = by
(2.7)
Lig = 5+
s =g
and
By S8y Ty = A
0.5 Mgz Mt Ry = A A
By T gy ¥ By~ s
we obtain from Equations 2.6 the equations
2
Il(al—le ) + Iz(ao) =0, (2.9)
2
Ila0 + Iz(az—sz ) =0, (2.10)
or the equation defining the frequencies is
2 2 2
(al-Llw )(az-sz ) - a, = 0 . (Zval])
1




If the system is symmetric about the plane through body 2 then L = L, = L

1 2
and a = a, and the frequencies are given by
1/2
w, = +(al—ao)
et L i
(2:12)
I1 = - 12 (symmetric mode)
and
1/2
ksl +(3‘1"30)
-
= 3 (2.1:3)
! I1 = 4+ I2 (asymmetric mode)
From Equations 2.8, noting the symmetry we have
= Y — 2,
o M Rt Tt DR T (2.14]
= - 2
a +a, = A11 A13 . (2.15)
If we denote the capacitance between bodies 1 and 3 by C13 and between
bodies 1 and 2 by CIZ we have
-1 _ >
(2C13) = A11 - A13 5 (2.16)
-1 = 2
(€y) LT T g 18247

(The capacitance between two bodies 1 and 2, say, is defined here as the difference

in potential divided into the charge on body 1 when the charges on all bodies

except 1 and 2 have been set to zero and in addition Q2 = - Ql') Then
4C, .-C
2 1 k& 12
Gy « B, 8 s o i W e oSS
1 > (2.18)
0 €y 263 2C,Cp5
al + ao = -—__ZCI 5 (2‘19)
15

Substituting (2.18) and (2.19) into Equations 2.11 and 2.12 we find that

12




1/2

AC,. - C
13 -~ G2
PR - S , (2.20)
2LC1 5615
1
w, =+ (;—————) ; (2.21)
> o |

In the limit that the presence of one body does not influence the potential

on the other bodies (Aij ~01i # j) we have

1 1
Cia g8 =gy s (2.22]
11
c,C, e
e e T s LE 250

where Cl and C, are the capacitances of bodies 1 and 2 with respect to
infinity. Substituting Equations 2.22 and 2.23 into 2.20 and 2.21 we have

the usual result, namely

6. zcl)l/2
i e[S = : (2.24)
1 ( T
| 1/2
w, = (EE’) (2.25)
£ 1

Since A12 and AlS in Equations 2.14 and 2.15 are positive (and because of

the proximity we would expect A12 > AIS) to first order, the frequencies
calculated from (2.24) and (2.25) should be too high. This latter statement
is true if the electrostatic treatment is the major source of error in
calculating the resonant frequencies. It should be noted that the frequencies
described by Equations 2.20 and 2.21 did not depend upon the particular shape
of the bodies but only upon their mutual capacitances. Reference 2 provides
an instructive analysis for a particular system having a shape similar to

that depicted in Figure 3.

13
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2.3 CRUDE ESTIMATES OF RESMOD FREQUENCIES

In this section we estimate the symmetric and asymmetric frequencies
expected from the RESMOD configuration depicted in Figure 1. The dependence of
the frequencies on general parameters such as rod length and diameter should be
clear from the way in which the estimate is made. We first estimate the capaci-
tances by equating the area of the two bodies to an equivalent sphere. The area
of the end bodies is (2)(10.5)(13)+(2)(13)(4.5)+(2)(10.5)(4.5) or 485 square

inches. The capacitance C1 is then the radius of the sphere or

1/2

c. - [area of body . : ; :
i~ i in square inches X conversion to square centimeters

or

1/2
(485) .. . i
c, = [ = (6.45)] = 15.8 cm = 17.5 x 10°'% farad . (2.26)

The area of the center body is 6(13)2 or 1014 square inches so that

C, = 22.8 com = 25.3 x 10712 fayad . (2.27)

The inductance of the rod is given by
L = 2 x length of rod in cm X en (ratio of length to radius of rod) n.h.

or
L = (2)(2.54)(9.5) x 10" %n i34§3%§3;§l-= 298 x 10°% h . (2.28)

Given these values of capacitance and inductance the corresponding period of
the symmetric mode Tl is, from Equation 2.24,
LCICZ 1/2
Tl = (ZTT) E-TZC—I- =9.3 n.s. (2.29)

and

w, = 6.8 x 108 rad/sec .

1%




The period of the asymmetric mode in T, is, from Equation 2.25,

Ty ® 2'n(LC1)1/2 = 14 n.s. (2.30)
and

Wy = 4.4 % 108 rad/sec .
2.4 ENERGY OF RESMOD SYSTEM

In order to obtain damping constants it is necessary to obtain the

h

L t
time averaged energy of the system. The energy € for the £ mode of an N

body system is given by

)=

N
et X Q?”Q;’”A. .

1 2: 0 o2
= P (T ) (2.31)
=1 j%1 ij 2 i 1]~ 4j

1
£ L
where QE is related to the currents by Equation 2.4. For the RESMOD system,

where the approximations expressed by (2.22) and (2.23) are valid we have

@)°

2C

o 2 perl » 12
T

f) 2
' = [@p? + @] 5+ ~
1

The currents have the form Igsin(w2t+b1), where b2 are phase constants.

With this form for the currents it is easy to show that the energy averaged
.

over a cycle <€"> is
<ets - L(Ig)z y B2 (2+-35)

where Ig is the magnitude of the current flowing in system for the Rth mode.

16




SECTION 3
RADIATION DAMPING

If the energy radiated by a system is small enough so that the
amplitude of oscillation is not changed appreciably in one cycle, we can
approximate the radiation loss and then approximate the change in amplitude.
The process of approximation is as follows: we approximate the energy loss
by assuming the geometrical distribution of current on the radiating system
is known and has the same form as the non-radiating system (the same system
treated as though it were not radiating). The energy of the non-radiating
system is calculated in terms of its current amplitudes and then the time
derivative of the energy of the system, averaged over one cycle, is equated
to the energy loss also averaged over one cycle. The time dependence of the
current amplitudes is determined by solving the resulting differential equa-
tion. We require only that the wavelength of the radiation A be large enough
so that our judgement about the form of the current densities is correct.

In effect this usually means A is not smaller than Amin where

2me /A~ 1, (3.1)

and &' is an effective radius of the system (272' is the perimeter of the

system).

The bodies or systems we are discussing are those whose lowest
modes have a wavelength A larger than the perimeter of the system. The
frequency of this mode can be approximated by means of the lumped parameter
electrical models of the system discussed earlier. The form of the currents

on the system used in approximating the radiation damping depends upon this

17




lumped parameter quasi-static model. For example, currents on rods or
wires are assumed constant along the rods or wires in a lumped parameter
model. The lumped parameter assumptions would not be correct for a

higher mode where currents in wires might not be uniform, for example.

As stated in the previous paragraph, the calculations in this section will
be accurate so long as A is not so small that our simple assumptions about

the current distributions are incorrect.

We will be concerned in this section mainly with calculating the
damping for the model depicted in Figure 3. The method can be applied to
more general bodies and is based on three circumstances. In summary these
circumstances are: (1) the knowledge that the radiation rate is small;

(2) a knowledge of the system energy associated with the particular

frequency of radiation; and (3) the knowledge of the distribution of currents.
The calculations to follow are an example of these circumstances.

Circumstance 1 is checked after the calculation and serves as a consistency

check on to the calculation for any particular set of system parameters.
It is well known (a short derivation is given in Appendix I for

convenience) that the average time rate of radiation of energy, <d£m/dt>,

for a system oscillating with a particular angular frequency, w, is

deu) cC /W . 2 A 2
<F> s — (E) flpwl (1-(p, T)7)sinbded¢ , (3.2)

where

N S
> X Fiua—iT X wie > 5
pm = c]j(u(r )e dr' . (3.3)

18




In Equations 3.2 and 3.3, r, 6, and ¢ refer to the coordinates of the field
point in spherical coordinates, T is the unit vector to the field point, T
is the source point position, jw is the source current associated with the

A >
angular friquency w and P, is the unit vector in the P, direction. We first
calculate B for the model ihown in Figure 3 and then find the rate of energy
dissipation. To calculate p, we first need the currents on the various
sections of the system. We drop the subscript w on quantities for simplicity
at this point. On the two rods, labeled 4 and 5 in Figure 3, the current is

assumed constant along the length and cross section.

3.1 ASYMMETRIC MODE

The first part of our computation will assume that the currents

in both booms are in the same direction. Then

:J»_—»
he J

n

1/md?k , ay < |z| <g+a (3.4)

5 1 >

where I is the current in the wire and d is its radius; the subscripts 4

and 5 on J in Equation 3.4 refer to the sections of the body labeled by those
numbers in Figure 3. For bodies 1 and 3 we assume the current is along the
surface (in the é”, g1 direction) and goes to zero at 6" = - m and 6' = 0
respectively. If A > Znal and oy > d the charge distribution is quasi-
static and the charge density is constant over the sphere. The surface
current density Jen(n=1,3) on the spheres can be solved for by means of the
continuity equation

19 1

st J,.sinb) = ’
a151n6 30 “On 4""?

n= 1,% (3°5)

and the condition that the current (2nJenalsine) goes to zero at the proper

angles. These solutions are

cotf"/2 a,
31=-1—H(Te', (3.6)

and

19




tan8 /2 6 (3.7)

Sy

g%~ ! 4Ta

The surface current on the center sphere is found by the condition that no

charge is built up on the surface so that

> A

3, = - (2naysing)”! 16 . (3.8)

Substituting Equations 3.4 and 3.6 through 3.8 into Equation 3.3 we find

that
> S >
p = P, > (3.9)
n=1
where
. b
3 A~
p, = 2 iuleReost, i [ cos®1/2 sino/2de
0
“1 . iw/cRcosBy
g L e - (3.10)
and
> i -iw/cRcosH
Py = — Ie k% (3.11)

Consistent with our quasi-static assumption about the charge distribution on
the sphere we have assumed that (w/c«l)2 < 1 in Equations 3.10 and 3.11. We

have also used the definition

k=a2+al+g. (3-12)

Using the assumption w/caé < 1 for the central sphere we have

> aZA

Ps = 21 7;-k . (3:13)

For the rods we find, assuming wd/c < 1, that

20




-a.
2 .
> I 7 pr -icosBzw/c
p, = E-k Jﬁe dz

4
s (g"'az)
= iI(ucos8) '[_g*ticosO(w/c)(gras) , 1c0sO(W/C) (@) 1 5 14y
Likewise
55 = iI(wcose)-l[e—icose(w/c)(g+az)_e-icose(w/c)a2]£ (3.15)

Substituting Equations 3.10, 3.11, 3.13, 3.14 and 3.15 into Equation 3.9 we

have
=S - /\‘ ”1 -1 .
p = Ikl2 o cos (w/cRcosB) +2 (cosbw) 51n(w/c(g+02)cose)

+ Zaé/c - Z(mcose)'lsin(w/Cabcose): 5 (3.16)
and

2(12

lplz =Ig}(—z—) Cosz(w/cRcose)

+ 4(wcos@)-Zsinz(w/c(g+a7)cose)

a

+ 8 7%—(wcose)-lcos(w/cRcose)sin(m/c(g+a2)cose): S %

where in finding p2 from E we have used the approximation that wa,/c < 1

<

in the last term of Equation 3.17 (that is we drop terms higher than first

order in azm/c). IO is the magnitude of I. To calculate the rate of energy

loss we need to compute the integral

m
I(Z)Y(w) Eflpl2(1-(p-r)2)sinede
0
o2
= [Ipl*sin’0do , (3.18)
0
21




if E only has a component in the z direction. Letting

X = cosf , (3.
then

dx = - sin6d6 , (5.
and

sin®0 = 1 - £ . (3.

Y(w) can be expressed as three integrals

Y(W) = Bl + 82 + 83 s (3.
where
2
o =l 1(1-x2)c052@u X) dx (3.
1 (o 1 >
0
-2 L -2 2
B, = 8(w) _/'(x -1)sin (azx)dx s (3.
0
1
b 1
83 = 16 - f(x -x)cos(alx)sin(azx)dx s (3.
0
and
a; = (w/e)R, €.
a, = (We)(gray) = (w/c)(R-a)) , (3.
where we have used Equation 3.12 to obtain the second form of Equation
can easily be shown that
“1) 2,13 3
Bl = 4(7? [3 * 7Y (-201c05201+s1n2alﬂ ¥ (3.

22
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B, = 8w 2|

1 I
2 I 1+ 5—[cos(2a2) + =0 51n(2a2)

2 2

+

ZaZSi(Zaz)]: }
and

A e
e B8y, 9~%

>™
1]
o2}

+

-1 -1
(a1+a2) cos(a1+a2) + (az-al) cos(az-al)

(a1+a2)-zsin(ul+a2) = (az—al)_zsin(az-al){

obtained by substituting Equation 3.18 into Equation 3.2:

de -1
2-2
(T - - i,

or

de
) 1 2
<T> = ?//?(w)lo s
where

=
R(w) = SE—-wZY(w) (c-g.s5:)

150> Y(w) ohms .

normalized radiation resistance, /#(w) is given by the relation
R(w) = 80[n1+n2]2d§(w) ohms .

In Equation 3.34 n., is defined using the radius of the end body, «

1

23

Equations 3.26 through 3.30 together with Equations 3.13 and 3.22 are those

necessary for calculating the radiated energy. The radiated energy is

If we define ##(w) as the radiation resistance of the asymmetric mode, the

(3.34)

(3.29)

(3.30)

(3.31)

(3.32)

(3:353)




n, - a

1 1 ’ (3.35)

ale

and n, is defined using the radius of the center body, «

strut, g,

2 and the length of the

n (g+y) % : (3.36)

i

2
Plots of #(w) appear in Figure 4. The curves A to I correspond to various
values of ny. In the low-frequency limit (nl*n2*0)35+1 and the radiation is

purely dipole. Substituting from Equation 2.33 into Equation 3.32, where we

equate d/dt<e> with <de/dt>. we find that
AW o

(I(l)(t))2 = (13(0))2 . e (3.37)

or the decay constant o, for the asymmetric modal current (superscript 1) is

9 ='ﬁ1%l ’ (3.38)

where L is the inductance of one rod.
3.2 TESTS OF THE ASYMMETRIC MODE DECAY CONSTANT

If we let “s be equal to zero we have a system in which a rod is
connecting two spheres. References 1 and 5 show how a rod loaded at both
ends by capacitive bodies may be treated as a rod with an equivalent length.
The decay constant formula for the equivalent length formulation is tested
in Reference 5 using two computer simulations (therein called example 2
and example 3). These simulations model the geometry depicted in Figure 5,
two cylindrical cans connected by a strut. Figure 5 shows the parameters of
the two simulations together with the decay constant g and frequency wg
for each simulation. With Wy taken from the computer simulations we will
test Equation 3.38 against Og- To do so we must first obtain an equivalent
spherical radius for the cylindrical cans. Setting the area of a sphere equal
to that of the cylinder in Figure 5 we find the radius of the sphere, @
equal to

24
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Figure 4. Normalized radiation resistance for asymmetric mode.
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@ = <207 'm . (3.39)

Using Equation 3.39 together with Equation 3.35, Equation 3.36 (with « =0),

4
-

Equation 3.38 and Figure 4 we find that:

P

Example 2

A(w) = 62 ohms © = 2.9 X 106 sec-l

Example 3
6 =ik
R(Ww) = 15 ohms o=17.2 X 10 sec

the damping rates are 15 percent smaller than the code value for example 2

and 6 percent larger than the code value for example 3. Considering the nature

of the approximations which led to Equation 3.39 the agreement is quite good.
3.3 DECAY RATE FOR THE RESMOD ASYMMETRIC MODE

In Section 2 we made a theoretical estimate of the asymmetric mode
RESMOD frequency. We now estimate the damping for that mode. Using the
same procedure as used in the examples of the previous section we find
that, n, = .23, n, = .69, .A#w) = 64 ohm, 0 = 5.4 X 107 sec_l and the time

required to damp one cycle is 19 n.s. In other words the Q for the asym-
metric mode is 1.4. The radiation rate is large and the radiation resistance

could be somewhat in error due to violation of condition (1), discussed in the

introduction to Section 3.
3.4 SYMMETRIC MODE DAMPING

The method for calculating the damping for the symmetric mode will
be very similar to the calculation for the asymmetric mode. The dif‘erence
is that the currents in the two struts are oppositely directed and the current
is equal to zero along the midplane of the central sphere. Proceeding in

a manner analogous to the calculations of Section 3.2 we find that

> > a

L | ; >
Py + p3 =j2 . 1 sln((nl+n2)cose)k 3 (3.40)
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> > i41 J02 n2 ~

Py + P = Sosoy Sin (cosGTTJk . (3.41)
and

52 D, (3.42)

where I is the current flowing in the system and we have used the defini-
tions expressed by Equations 3.35 and 3.36 for ny and n,. To find the
energy loss we must compute the integral of |p]251n38 from 6 = 0 to B8 = 7

3 - T p

(where [p|° = |( L pil"). Defining this integral by Igy'(w) (I, is the
i=1

magnitude of the current flowing in the system) we find that

n

W2 {w) nf(fl-fz) ¢ A(E,-F,) + 4n (£-£) (3.43)

where

1 1o 172 I
Ea-(a- 5-51n(2a)) » & =Ny +n

1
£ zofsinz(ax)dx 5

1
ol o -
fz _6l'x sin” (ax)dx e (2acos(2a) + (20°-1)sin(2a)) ,

8a
£ :.lJSin4 (fzg)dx = - é._ Ez.(COS(znz) + 51(2n2))
3 ‘O x2 2 8 2 4n2 2 (3.44)
n, cos(n,)
+ _2"( n2 + Sl(nz)) )

1 -
s 1”51n4(ffg)dx B Ji.n ) 51n(n2) s1n(2n2))
4 - & n 16 2 4 32

0 2
1 (n,x)
_ (sin(ex) . 2 "2 W bt W i

fs = gﬁ sin 5—dx = 3 S (a) 7 (S)(n2+a) + Si (o n,))

and
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1 Xn
2 . 2 2 kg :
f = (_“_) N %
6 0f.xsm(onx)sm 5 dx > qz (sina- cosa)

- %—(n2+u)'2(sin(n2+a) - (n2+a)cos(n2+a))

- %—(a-nz)-z(sin(a~n2) - (a-n,)cos(a-n,))

The rate of change of the average energy in the system is related to wZY'(w)
thrrugh an equation analogous to Equation 3.32. In the case of the symmetric
mode the radiation resistance 4'(w) is

' (w) = 150°Y (W) ohms . (3.45)

We again define a normalized resistance ' (w) by the equation
{ 2"_1
A (W) = 80(n;+n,) R (w) , (3.46)

where . #' (w) is plotted in Figure 6 as a function of n and n,. In the low-

frequency limit.#' (w) > 0. This is so because the radiation from the

symmetric mode essentially arises from two oppositely directed dipoles; in

the long wavelength limit these dipoles are superimposed.

Because the averaged energy in the symmetric mode is L(Ig)z, from

Equation 2.33, the decay constant, o', for the current is

v R (W)
" = __4L— ’ (3.47)

except for the primes this formula is exactly the same as that of the asym-

metric mode.
3.5 DECAY RATE FOR THE RESMOD SYMMETRIC MODE

As an example of symmetric mode damping we calculate the decay
rate of the RESMOD system. Using the theoretical estimate of the frequency
given by Equation 2.29 and the equivalent spherical radii given by
Equations 2.26 and 2.27 we find that n = .36, n, = 1.1, .# (w) = 16 ohms,
o' =1.3 x 107 sec.1 and the time required to damp one cycle is 77 n.s. The
Q for the symmetric mode is then 8.2 .

29




M

TR =
o v
WX N
T
/.
S
\ /,/ i
N « NS .
OMNKACN ’
\ X :
N N \ A N~
K. Nm./ ﬂrn E o= W
s IR )
,./ /, e \ & ™
,/. .f, N // o
\ A N .
RN R e
/// L i N = N, N
\ N N ~ l: N J
b. - \ hy S SN
"\ e : // N N
fz 58 k. “ Mg N
\ \ . S
/../ /H./ g W oW R W Mo
\, 9 N g .
/. r./. ,/ N, ,.I // S .r.
3 3 e T W Y
N // // \ . b N R o
S \ o SN N
. Y \ R Ne
N . N B N Sen k" by
\ 5 // 5 /, / f, )
.// ,/// N \
N ass
X b, !
W X g F Ja Y r it
\ ,, % ,., / A
\ = \
/ / / X / //
/ \

e

(a¥]

oc’

L

(a8}

=

L2

=
()

iz

< WO W~

....
n n n n
—~ r—r— —
E E £ =
+ 4 4 4
Ww uw o xT

T
QS == & ™
= . . .
" n n "
o o AN

= E 5 &

> %% %

<L O WD

I"n-|=-

Normalized radiation resistance for

symmetric mode.

Figure 6.

30




SECTION 4
SUMMARY

For general systems whose lowest resonant frequencies can be cal-
culated by means of electrostatic and magnetostatic concepts we have shown,
in the second section of this report, how the equations for these frequencies
can be arrived at without the need for an equivalent circuit. (For those
not versed in drawing equivalent circuits, a system like that depicted in
Figure 2 might appear formidable.) The method used is useful for estimating
the errors made in approximating these resonant frequencies. The magnetostatic
parts of the system were assumed not to interact in the derivation of the
equations of Section 2. It would be a simple matter to include these inter-

actions in the equations, when they are important.

Using a generally applicable method the damping rates of a symmetric
three-capacitive two-inductive body system are calculated for the lowest two
modes, in Section 3. It is assumed that the modes are actually normal modes
of the system so that when both modes are stimulated the radiation from one
does not effect the amplitude of the other. The three capacitive bodies are
spheres and the whole system loosely corresponds to the RESMOD geometry used
in the MRC Phase IV A and B exploding wire experiments. The radiation
resistances corresponding to the two modes are normalized to the low-frequency
asymmetric mode limit and plots of the normalized resistance appear in
Figures 4 and 6. These figures together with Equations 3.34 and 3.46 and the
definition expressed by Equations 3.35 and 3.36 can be used to calculate the

actual radiation resistances.
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Numerical examples are provided in Sections 2 and 3. These examples
use, for the most part, the actual dimensions of RESMOD with rods of radius
.05 cm. The numerical estimates for frequency made in these examples are
crude in the sense that the actual elastances Aij were not known. A zeroth
order approximation is made where the interaction between bodies is assumed
zero. Such an approximation is valid when the centers of the capacitive
bodies are separated by about 3 body radii. This condition is just about
satisfied for RESMOD but would not be for general systems. To apply the
methods outlined in Section 2 to general systems an experimental and/or
analytic procedure needs to be developed to measure or compute the elastances.
These procedures could take the form of electrical tests or moment method

computer codes.
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APPENDIX I

RADIATION FROM A SYSTEM OSCILLATING WITH ANGULAR FREQUENCY

In this appendix we integrate the Poynting vector over a sphere

at infinity and then average over one cycle to obtain the average rate of

energy loss due to radiation.

The Poynting vector is defined as

3-8, (1.1)
where
> 1 3R
E = - E-a—t— > (1-2)
and
B=9xXk. (1.3)
In the Lorent:z gauge
> >
3(;’,1: _Jr-_r'L
> 1 C -
AE,t) = dr' (I.4)
€ It - 7|
and
> >
ot ¢ S22
> >
o(r,t) = | —— S g7 (1.5)
It - 1|
If
I&E, 0 = RpS, (F1)elt | (1.6)
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where Rp denotes the real part of, then for large r

o iw(t") |

A=Rp—=0—p, (I.7)
where

2 -iw/c ToT' >

PiEE 30e de? (I.8)
and

Y =t = e, (I1.9)

f We also have
iwt'

LR St (1.10)

where
i "‘ =

q Efpoe-lr'r w/c i (1.11)

noting that
| -i;';' w/c >
+ iwq = -ﬁV . Jo)e dit s (L.12)

from the continuity equation, we have after integrating Equation I.12 by

parts

qe=- BB (1.13)

Substituting Equation I.13 into I1.10 and the result together with Equation

I.7 into Equation I.2 we have

iwt! % iwt' X
E=Rpi%® (p-r+p) = Rpi L& r x (pxr)
[ T C
] A N - LIPS o
= 22 (1 x @) - e P, (1.14)
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From substituting Equation I.7 into Equation I.3 we also obtain

iwt!
e

A 1 A~ -1 2 A
Exr = —2%117 ('16510Ut ;Xr = p*xr). (I.15)

=g . W
B—Rpl;

Substituting Equations I.14 and I.15 into Equation I.1, integrating over the

sphere at infinity and averaging over one cycle we obtain the average rate of
radiated energy <dew/dt> at the frequency w:

de
<Tt2 5 STT c _[Ipl ((F x (er)) X (pxr)) - T dQ

iz s—ﬂ;-f p1@p) - ()

=-8—“?/'(p| - ¢H% de . (1.16)
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