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\ SUMMARY

In certain military and civil tasks such as surveying, construction and surveillance it
may be helpful if light helicopters can be hovered precisely above some selected point on the
ground. Depending on the task, the height above ground and the nature of the terrain,
hovering precision may be limited by the pilot’s lack of adequate visual cues to
the helicopter’s position and motion in the horizontal plane. This report introduces several
optical methods of providing the visual cues and describes some practical results for one
device which has been called the Hoversight. This device allows an improvement by a factor
of 45 in the horizontal accuracy of hovering at 600 m above a designated ground point. N -
Further improvements in accuracy seem feasible. (U)
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16. SUMMARY

In certain military and civil tasks such as surveying, construction and surveillance it
may be helpful if light helicopters can be hovered precisely above some selected point
on the ground. Depending on the task, the height above ground and the nature of the
terrain, hovering precision may be limited by the pilot’s lack of adequate visual cues to
the helicopter’s position and motion in the horizontal plane. This report introduces several
optical methods of providing the visual cues and describes some practical results for one ;
device which has been called the Hoversight. This device allows an improvement by a factor 4

of 4-5 in the horizontal accuracy of hovering at 600 m above a designated ground point.
Further improvements in accuracy seem feasible. (U)
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1. INTRODUCTION

Accurate surveying by aerial photography usually requires that each photograph include
one or more features for which (he position is known from precise ground survey. In jungle,
swamp or mountainous terrain, the establishment of these control points may be difficult or
impossible by conventional ground survey methods because of inordinately long travel times or
obstructions in the line of sight from previously measured points. These problems can be largely
overcome by observation, from existing control points, of a helicopter that is hovered at a suitable
altitude vertically above the feature being determined. This method is known as the Airborne
Survey Control System (ASCS).

The nature of the task with the ASCS may prevent the use of ground-based aids to precise
hovering, so that a practical airborne aid may allow a useful extension of the technique. Such
an aid may well find uses in other helicopter work, e.g. civil and military construction and
surveillance. This report describes several approaches to the problem of providing airborne
visual aids that allow helicopters to be hovered with impr- .} precision in the horizont.. plane.
As operators’ acceptance of new devices will be influenced by the cheapness and simplicity
of the devices as well as by actual performance, the use of servo-controlled devices has been
avoided and effort concentrated on the only currently practicable alternative, gyroscopes with
direct attachment of optical elements. The idea, of course, is to provide the pilot with an indi-
cation of the ground point vertically beneath the helicopter, independently of the helicopter’s
attitude and motion.

2. LITERATURE AND EARLIER WORK

The accuracy of determination of position with the ASCS method is limited by the accuracy
with which the helicopter’s position can be related to the vertical extending up from the feature
selected for measurement. Helicopter characteristics in the event of engine failure are often
such that it may be unsafe to hover between about 5 and 150 m above ground unless a strong
surface wind is present, so that the helicopter is generally required to hover above 150 m. This
seems too far from the ground for pilots to make a sufficiently accurate assessment of horizontal
rate and position from visual observation of the terrain: in one previously unpublished experi-
ment, experienced pilots without hovering aids were unable or unwilling to keep the ground
speed of their Bell 47G helicopters below about 4 m/s when attempting to hover at 150 m, and
the horizontal excursions from the desired vertical were correspondingly large. The pilot in
one of the more recent trials described below did considerably better, however, although he
was flying the larger Bell UH-1B (Iroquois).

In an early method of hovering for ASCS purposes, the pilot was provided with a gyro-
stabilized vertical tube through which he could see the ground below with unit magnification.
Hovering errors with this device limited operation to altitudes below 200 m (Ref. 1). Presumably
the pilot would experience some difficulty with this device because visual reference to the horizon
would be lost in looking vertically down, and restriction of the visual field is known to increase
the likelihood of pilot disorientation (e.g. Ref. 2).

In another previously unpublished experiment, hovering guidance was given by coloured
sectors projected vertically upwards from the ground and a 0:75 m square mirror was mounted
on the canopy in front of the pilot specifically so that he could see the light source on the ground
while retaining parafoveal visual reference to the horizon. The technique failed mainly because
of the difficulty of distinguishing variation in the colour of a point source seen against a sunlit
background, and the relative coarseness of the rate and position information supplied by various
colour, intensity, and flicker-frequency modulation systems that were tried.

After the inadequacy of the ground-based projected light system had been demonstrated,
a television guidance system (Ref. 3) was developed for ASCS work. Although this system also
makes use of ground-based equipment, it is nevertheless worth mentioning because its use has
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provided important information on the ability of pilots to hover helicopters precisely when
aided by suitable information. The ground-based television system has a camera fitted with a
zoom lens aimed vertically upward, and the picture is transmitted to a receiver screen mounted
in front of and facing the helicopter pilot. A wide field of view is used for initial positioning and
the magnification is increased progressively with the zoom lens as the helicopter is guided by
the pilot to the central graticule on the receiver screen. Aided by this system, pilots were able
to maintain the helicopter within 1-2 m of the indicated vertical for minutes at a time at 1200 m
altitude, sufficient for theodolite and microwave distance measurements, and precise hovering
above the 2400 m altitude actually tried seems quite feasible. More recent trials have confirmed
the order of accuracy originally reported (Ref. 4).

3. REQUIREMENTS

3.1 Physical Characteristics

An all-airborne type of hovering aid would presumably find application in light helicopters,
that is, helicopters capable of carrying a useful load of a few hundred kilograms, and these
helicopters are usually not fitted with stability augmentation systems because of the excessive
mass penalty. A similar consideration applies to any proposed hovering aid; if its mass is say
10 kg it could be acceptable but 100 kg may not be. Linear dimensions of the aid should also
be limited because of the restricted space available in light helicopters. The aid should be quiet
in operation because the sound pressure levels in most helicopter cabins are already unpleasantly
high. Ease of maintenance and low cost are desirable, as otherwise the aid could be beyond
the resources of light helicopter operators.

3.2 Safety

It seems unlikely that any fully automatic control system for hovering could meet all of the
foregoing requirements, so that any system proposed with these requirements in mind would
probably include the pilot as part of the control loop. At present, most light helicopters are not
inherently stable enough to be flown ‘hands off” for any length of time, if at all, and therefore
any equipment used by the pilot should not distract him, feed him conflicting or false information,
or in any other way prevent him from maintaining full control of the helicopter. If the pilot is
hovering with the help of the device and a need arises for the helicopter to be moved quickly,
e.g. out of the way of an approaching aircraft (this happened several times during the develop-
ment of the ground-based television hovering aid), then the time for transition from hover to
translational flight should not be extended by virtue of any characteristic of the hovering aid.

Failure of any part of a hovering aid should not endanger the helicopter. The aid should be
structurally safe, and any electrical circuits should be isclated as far as practicable from the
helicopter’s electrical system, at least during the development of the system, and the aid should
not generate electrical interference to communication systems.

Restriction of the pilot’s visual field in helicopters is an important cause of disorientation,
a factor in many helicopter crashes (Ref. 2), so that hovering aids should not cause any appreci-
able restriction of the visual field. The use of an aid should not cause undue restriction of the
pilot’s head movements as this could lead to early fatigue, and crash safety requires that equip-
ment should not be located close to the pilot’s face.

Some of the above requirements could be relaxed if two pilots are used but this may not be
operationally practicable on logistic or economic grounds.

3.3 Performance

The accuracy of helicopter positioning with the ground-based television system was good
enough for many purposes in surveying. Although the horizontal distances from a selected
vertical could be maintained within one or two metres at the altitudes flown, concomitant
control of altitude was less exact in the initial trials as it depended only on the indication from
the helicopter’s ordinary altimeter. Instruments much more sensitive to alterations in (pressure)
altitude are used in sailplanes (pneumatic or electronic variometers) and in aerial photography
(statoscope, e.g. Ref. 5), and subsequent trials with a sensitive vertical speed indicator mounted
next to the pilot’s monitor screen did allow improved control of altitude during hovering (Ref. 4).

With the ground-based television system, position errors of the helicopter in the horizontal
plane depended firstly on the accuracy with which the vertical was established for the ground-

2




based camera and secondly on the accuracy with which the pilot could maintain a given point
on the helicopter coincident with the graticule mark on the monitor screen. If the camera axis
deviated from the vertical by some small angle 8, then the first error is 8 h where h is the altitude
above ground; in practice § was about 01 mrad. The second error was found to be roughly
inversely proportional to the magnification of the helicopter on the monitor screen, and for a
given focal length of camera lens, this error would also increase proportionally with altitude.
With a suitable lens, the second error amounted to 0-001 h for a Bell 47G helicopter, i.e. about
ten times larger than the error due to non-verticality of the camera. The effect on surveying
accuracy of this second error could be eliminated completely in some instances by photographing
a monitor screen or by otherwise noting the helicopter’s displacement from the graticule mark
at the instant that some positional measurement was made, then using the measured displace-
ment of the helicopter from the mark as a correction to the results.

It seems unlikely that any simple fully airbone hovering system could allow an accuracy
comparable with that of the ground-based television system. The vertical orientation of the
ground-based camera was set by reference to an optical system that was itself set by observation
of the reflection from a mercury bath. Indication of the vertical in a fully airborne system could
hardly be expected to be as precise. One possible method would be based on observation of the
horizon or celestial objects, but cloud would frequently interfere with observations. A more
practicable method would be to use an aircraft vertical gyroscope (attitude indicator). As a
typical modern vertical gyro indicates the vertical within about +0-2° (+3-5 mrad) (Refs. 6, 7),
the fully airborne system is likely to have errors at least three or four times larger than those
of the ground-based system. Although better accuracy could be desirable, an airborne system
nevertheless appears to offer sufficient promise for enough purposes to warrant some investig-
ation. For example, hovering at 200 m altitude would mean a gyroscope contribution to the
horizontal errors of about 0:7 m, still small enough for many survey purposes. At an altitude
of 2000 m, sufficiently high to avoid the hazard of hostile small-arms fire from the ground,
stores dropping could be performed within 7 m of the vertical from a target point nominated by
troops on the ground. This would appear to be adequate even if the dropping zone were in
jungle. In any case, offset corrections for the aerodynamics of the stores to be dropped, for wind
speed and for motion of the helicopter may preclude effective use of any improvement in instru-
ment accuracy.

4. METHODS

The present problem is related to a basic problem in aerial photogrammetry, that is, the
determination of the vertical in an aircraft subject to unknown small attitude changes during
aerial photography. Pendulous mounting of aerial cameras is of little use because of continual
small horizontal accelerations of the aircraft. Subject to certain conditions, e.g. overlapping of
photographed areas and the existence of ground control points, it is possible to use the information
on each photograph to determine the precise orientation of the camera at the instant of exposure.
The alternative methods of actively controlling the camera orientation (Ref. 7), or of recording
its orientation by gyroscopic or other means have been pursued since the earliest days of aerial
photography (Ref. 8) but the lack of practical acceptance of these many attempts is best indicated
by the continuing widespread use of fixed aerial cameras, some of which have image~motion
compensation but only for the forward movement of the aircraft. It seems that techniques from
aerial photography are unlikely to provide a practical solution to the problem of devising a
simple fully airborne aid for precise hovering.

4.1 Fixed Mirror System

In trials of the ground-based projected light system mentioned in Section 2 above, the image
of the ground beneath the aircraft was reversed in the fore-and-aft direction. Thus the image
seen by the pilot in the single mirror moved upwards when the aircraft was moving forwards,
but tilting of the helicopter associated with forwards acceleration tended to cancel or over-ride
the image movement, and deceleration to increase it. Acceleration to the right moved the image
to the right but the subsequent motion of the helicopter shifted the image to the left. While
the pilot concentrated on the indications of the light projector on the ground, the motion of the
mirror image and the motion of the peripheral visual field provided multiple conflicts of percep-
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tual cues. Such conflicts are particularly undesirable for helicopter pilots. This is possibly a further
reason why the pilots were unable to succeed with the vertical beam viewed in the mirror.

In one type of gyro-stabilized drift meter (Ref. 9), the image of the ground beneath the
aircraft is unstabilized, that is, its location depends on the attitude of the aircraft, but the
graticule used for measuring drift is stabilized and thus maintains its position with respect to
the image of the ground. The possibility arises that a similar system could be of use for the present
problem. To avoid the necessity of having the pilot physically looking vertically downward, a
pair of mirrors arranged as in Figure |1 would allow simultaneously a parafoveal view of the
horizon and instrument panel, and the image seen by the pilot would correspond to the appearance
of a map correctly orientated. The plumb point on the ground (i.e. the point vertically below)
would be indicated by the collimated image of a graticule suspended from the rotor housing
of a vertical gyroscope.

Figure 2 shows the optical arrangement of the plumb-point indication. The plane mirror
shown as part of this system in Figure | is fixed with respect to the collimating lens so that it may
be ignored in analysing the errors of the plumb-point indication. A unity scale factor between
6 and ¢ is a necessary condition for correct indication of the plumb point. This is achieved for
small values of 6 and ¢ if p = f~, but then at lai_ r angles, 6 and ¢ will differ appreciably because

h=psinb=[f+p(l —cos 9] tan ¢
and with f' = p,

For 6 = 10°, a representative value of helicopter tilt while manoeuvring, ¢ = 9-7°. The differ-
ence between 6 and ¢ in this case is thus an error of 0-3° or about 5 mrad. This would be
acceptably small for many purposes, but smaller errors are possible by making p slightly greater
than f' so that 8 and ¢ become equal at some suitable value of 6, say 10°. For instance, with
p = 1-03f", the error at 0° and 10° is zero and it passes through a maximum of -8 mrad
near 7°. Other sources of inaccuracy are the intrinsic error of the gyroscope in wandering from
the true vertical, systematic error introduced by incorrect adjustment of the graticule in its
own plane, and errors introduced by aberrations of the collimating lens and non-flatness of
the three mirrors. It seems that the net systematic error could easily be reduced to less than
0-3 mrad, the resolving power of the human eye, so that among the factors limiting performance
with this system in use would be the unit magnification of the pilot’s view of the ground and
the intrinsic error of the gyroscope.

An inherent difficulty with the fixed mirror system is the movement of the ground image
and its plumb-point indication as the helicopter attitude alters. For large tilts, the plumb-point
will disappear out of the field of view, and even if the pilot moves his head in an attempt to
recover this point the plumb-point indication may not be visible because of practical restrictions
on the size of the collimating lens. Discrientation or other unpleasant consequences of conflicting
information from different parts of the visual field would presumably be more likely if large
and frequent changes in helicopter attitude took place during hovering. On the other hand, if
attitude changes were sufficiently small and slow then the system might prove quite satisfactory.
There seems to be no existing way of determining how acceptable this type of device should
prove in practice, apart from actual trials with the device installed in a helicopter.

4.2 Stabilized Plane Mirror

4.2.1 Concept

Experience resulting from trials of some of the devices mentioned above has reinforced an
earlier expectation that a stabilized image of the terrain beneath the helicopter would be more
acceptable to pilots than the unstabilized image seen via fixed mirrors. Textbooks and journals
on optics seem remarkably devoid of discussion on methods of stabilizing optical images, how-
ever. The one exception is the stabilization of the retinal image on the retina, but these techniques
appear to be inapplicable to the present problem. Mention is made in Reference 10 of two methods
of compensation for image displacement in surveying instruments, the usual method (discussed
below) and the author’s liquid-prism optical plummet (Ref. 11) which was actually tried in a
helicopter but without much success because it responds to the apparent vertical indicated by
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Figure 1 Fixed-mirror system for helicopter hovering. The illuminated graticule would be seen
by the pilot superimposed on the ground, indicating the plumb point. The distance
from the graticule to the centre of the vertical gyroscope gimbal system is
approximately equai to the focal length of the collimating lens.
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Figure 2 Analysis of plumb point error in two-mirror system,
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gravitational and inertial forces with a lag introduced by viscous damping. Servocontrol of the
device by a vertical gyroscope presumably would work, but a servocontrolled (by image-motion
detection) single liquid-prism device that is commercially available* (Ref. 12) or electronic
compensation by raster movement (Ref. 12) could be used only if slow drift of the image and
no indication of the plumb-point were acceptable, which, of course, is not the present case.

The usual technique of image-motion compensation in surveying instruments normally
gives compensation in one direction only and the compensation is for image position rather
than motion, i.e. static rather than dynamic. The instruments in question are called automatic
levels; by setting them approximately horizontal, the telescopic image is automatically brought
to a position where the fixed graticule in the eyepiece indicates the horizontal precisely. Com-
pensation for levelling error serves the purpose of saving time in setting up the level at each
new location.

The principle of automatic levelling can be understood by reference to Figure 3. A telescope,
set roughly horizontal, makes an angle a with the horizontal. The horizontal ray passing through
the centre of the objective is deviated through an angle 8 by a compensating device at C. Regard-
less of the magnitude of « within its working range of a few minutes of arc, the angle B is just
sufficient to direct the ray through the graticule centre. As shown in Reference 10,

B = na (1

where n is a constant. From Figure 3, if OG = fand CG = s, then
Bs x of @
so that & fls. 3)

Compensators often take the form of pendulous assemblies of prisms or mirrors. The
simplest of these forms utilizes a single mirror suspended so as to remain vertical. As the angle
between incident and reflected ray for a mirror is twice the angle of incidence, in this case
n = 2 and the mirror is therefore placed midway between lens and focus (Fig. 4). The image
is inaccessible for observation with the arrangement of Figure 4. Practical considerations require
the suspended mirror merely to make a constant angle with the vertical so that the focus of
the horizontal rays maintains a fixed position alongside the mechanical mounting of the objective.
Surveying instruments generally have at least one additional fixed mirror or prism to bring the
image to a convenient position for viewing.

If the system of Figure 4 is mounted with the optical axis approximately vertical and the
mirror is maintained precisely horizontal, then a distant point positioned vertically under the
lens will be imaged at the second principal point of the lens regardless of small inclination of
the lens and its mounting, or large inclination provided that the change of lens to mirror distance
with inclination has been chosen-to suit the field curvature. This compensation will apply for
any direction of the inclination with the vertical, so that the device provides two-dimensional
compensation, unlike surveying levels where introduced shifts of the image in the horizontal
direction may be undesirable and are therefore eliminated as far as possible by the design. This
device constitutes an automatic optical plummet, and the next stage is to investigate its appli-
cation to the hovering problem.

If gyroscopic stabilization is applied to the mirror of the automatic opticai plummet
described in the previous paragraph, the remainder of the optical system can be fixed to the
helicopter. The advantage of this is that a plane mirror of the size required can have a much
smaller mass and moment of inertia than the complete optical system, so that the direct mounting
of components on the gyroscope rotor housing is much more likely to prove practicable if only
the mirror has to be mounted.

4.2.2 Visual version
Figure 5 shows a layout of a hovering aid based on the stabilized orientation of a plane
mirror. This layout appears to have several important features:
(a) The image viewed by the pilot is erect and corresponds in orientation with the picture
of the ground that would be seen if he could see down through his floor.

* S-023 Dynalens Imhge Motion Compensator Sight, Dynasciences Corporation, Pennsyl-
vania USA.




Figure 3 The principle of automatic levelling. The telescope is tilted at an angle « to the
horizontal, but a compensating device at C deviates the horizontal ray through an angle
B so that the ray meets the centre of the graticule at G. (Redrawn from Ref.10.)
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Figure 4 A simple method of compensating for misalignment between the axis of a surveying
level and the horizontal. The plane mirror is mounted pendulously so that it is free to
rotate in the plane of the diagram, attaining a vertical orientation under the influence
of gravity. The image of a distant object level with the lens principal point is thus
formed at the lens principal point regardless of the misalignment «. In practice, the
mirror is usually mounted at a constant angle to the vertical and a second mirror fixed
to the telescope directs the image to a convenient position for viewing.
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Figure 5 Gyroscopically stabilized plane-mirror vertical viewing device. All optical elements are
fixed to the helicopter with the exception of the plane mirror which is maintained at a
constant angle to the horizontal by the vertical gyroscope on which it is mounted. A
graticule at the position of the real erect image would indicate the plumb point.
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(b) The viewed image is at optical infinity or any other suitable distance.

(¢) The plumb-point indicator (i.e. the graticule mark indicating the gyroscope vertical axis)
and the ground image can be superimposed so that pilot head movements would not
affect the indication.

Difficulties arise with this system when the practical design is considered, however. Over
relatively featureless terrain, a wide field of view seems necessary from previous experience,
otherwise the initial acquisition of the target point may take too long. Experience with the
ground-based television system indicates that an initial field of view of about 10° or 15° diameter
is desirable. Supposing that a value of 12° is adopted, for example, then the lens system should
give acceptable imagery over the whole of this actual field of view. The objective has to perform
well over a wider field than this, however, because tilts of the helicopter during hovering would
bring off-axis regions of the image to the centre of the pilot’s field of view. These tilts may also
be in the order of 12° so that the objective’s total field of good imagery in this example would
need to extend over about - 18°. This means that a simple lens system such as a telescope objective
could not be used; rather, a more complex system like a camera lens would be necessary.

The device ought to be usable without the necessity for the pilot to hold his head almost
motionless, so that a large exit pupil is desirable. The objective lens diameter has to be equal to
the exit pupil diameter multiplied by the magnification of the system, so that the physical size
limitations on the objective and stabilized mirror limit both the magnification and allowable
head movement. To illustrate the difficulties that arise with this type of system, a design has been
performed for an existing aerial camera lens as the objective; its clear aperture is 65 mm and
the focal length is 200 mm. If the magnification is chosen to be 2-0, the exit pupil diameter is
only 32-5mm which seems inadequate. A unit-magnification system would be better in
this regard.

Preliminary sketches for this design indicated that the relative positions of the stabilized
mirror surface and the centre of the gyroscope gimbal system have an important effect on the
image plane location when the device is tilted. As direct mounting of the mirror on available
gyroscopes would not allow the mirror to be closer than about 50 mm to the gimbal centre,
values of 50 mm and larger were considered. The best position for the gimbal centre appears
to be 50 mm behind the mirror surface on the normal to the mirror midpoint, as in Figure 6.

Figure 6 shows a serious defect of the stabilized plane mirror system: its tilting image plane
and consequent defocusing over much of the field of view. At the centre of the viewed field,
a 4 12° tilt of the device produces a defocus of as much as 59, of the objective’s focal length.
At unit magnification, this would require about a 0-25 dioptre change of the observer's accom-
modation, which, by itself, is of little consequence. The defocus introduces a much more serious
effect, however; when combined with the allowed range in head movement (i.e. the exit pupil
diameter) and the movement of the exit pupil itself caused by the mirror, the apparent position
of the plumb-point indicator can be in error through parallax by as much as --26 mrad. About
half of this error is systematic and could be compensated by a suitable small change in the value
of n (Equation 3), but the remainder still seems too large for practical application of the device.

Further difficulties arise when the remainder of the optical system is considered. A 12° field
of view requires the stabilized mirror to have the size, orientation and position relative to the
lens shown to scale in Figure 6. It is clear that the layout of Figure S is impracticable for the
field of view required because the stabilized mirror would vignette most of the ray bundle directed
between that mirror and the objective lens. The practical alternative would have the fixed mirror
and the remainder of the optical path all on the observer’s side of the objective. This would
require the fixed mirror to be at least 0-2 m long, however, because of the large angles of incidenee
of some of the rays.

For unit magnification, an erecting lens system of say 100 mm focal length would be required
but to collect all the rays for a constant 12° field of view would require a lens diameter of about
300 mm which is impracticably large. The requirements for the viewing (i.e. eyepiece) lens are
comparable. Some reduction in size could be achieved by introducing field lenses at the primary
and secondary real image positions but only at the cost of increased complexity of the system,
increased positive field curvature (which in the case of lenses other than the objective would
not change the defocus at the plumb-point indicator), and decreased eye relief.

Laboratory models of this type of system confirmed the practical difficulties associated with
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magnifications of unity or more. The requirements for large lenses diminish as the magnification
is reduced below unity but the parallax errors remain unaffected. It seems that this system would
not prove successful in providing the field of view, magnification, eye relief and accuracy con-
sidered necessary for the purposes mentioned.

Alternative methods of arranging for the viewed image to be erect were tried. The simplest
system uses only two mirrors (one stabilized, the other fixed), together with the objective and an
optional viewing lens. This system has the characteristic that tilt of the device produces a rotation
of the image in its own plane. This would be most undersirable from the aspect of controlling
the helicopter with its six degrees of freedom and this optical system is therefore not given further
consideration. Other derivatives of the stabilized plane-mirror system suffer from most of the
faults already mentioned and the visual version of this system has therefore been abandoned
for the time being.

4.2.3 Television version

The use of a fixed diffusing screen was not considered in the previous section because the
advantage it confers, that head movements are no longer restricted to the exit pupil diameter, is
not sufficient to compensate for either of the consequent disadvantages of reduced image lumi-
nance and severe defocusing of the image as the device is tilted. It seems that many of the problems
that beset the visual version could be overcome by placing a television camera at the position
of the stabilized image but this does not obviate the defocusing problem. The precedent that
hovering is possible with the pilot watching a television screen (Ref. 3) encourages further
investigation.

Existing small television cameras commonly have a photocathode area of about 9 % 12 mm.
For the width of the field of view to be -+6°, for example, a lens of about 60 mm focal length
is required. The physical size of present cameras may make the use of such a lens impracticable,
and an alternative would be to use a lens of longer focal length, say 200 mm, stabilize its image,
and reduce the image scale by placing a suitable positive lens between the mirror and camera.
This would not improve the defocus problem, however; at the edge of the field with a 12° tilt,
the image blur diameter with a lens aperture of say f/4 would be 44 mrad which is unacceptably
large by at least one factor of ten. What is required is an objective lens for which the field has a
positive curvature (i.e. concave towards the objective) and the radius of curvature is half of the
focal length. Fortunately, lenses can be produced with these characteristics to a good approximation
by selecting suitable values for the lens component curvatures, positions and refractive indices.
A suitable value of the Petzval sum (e.g. Ref. 13) would give the required field curvature while
the other aberrations, including astigmatism, could be kept sufficiently small. Although such a
lens would eliminate the parallax error discussed in the previous section, the systematic error in
tilt compensation may still be important, depending on the image distortion produced by the
lens and its variation with field angle. A field flattener lens would be required close to the final
image surface but this would not present much difficulty.

As the design and construction of a multicomponent objective lens is a long process, even
with modern computing and glassworking facilities, laboratory trials of this method were not
undertaken as the convex mirror de-ice described in the following section appeared to offer
more promise. However, the plane mirror device may ultimately prove useful for applications
where high magnification is desired with tilt correction limited to a range of a few degrees.

4.3 Stabilized Convex Mirror

4.3.1 Concept

If a convex spherical mirror is rotated about a point in its focal surface, the image will
naturally remain stationary at this point although the focal surface will also rotate about the
point. The ratio n of Equation 3 again has the value 2. The image is virtual and inaccessible,
and if some image-forming relay lens is placed on axis to receive the reflected rays it will also
intercept the incoming light and thus prevent observation. An off-axis arrangement, in which
the principal ray is always inclined to the convex mirror surface at the point of incidence, could
be used to avoid vignetting but with the fields of view required for the present task, the oblique
aberrations appear to be much too great for useful application of this method. One practicable
alternative requires the use of a beam-splitting mirror. Figure 7 shows the arrangement of a beam
splitter and relay lens for observing the stabilized image formed by a convex mirror which is
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mounted on a vertical gyroscope. The virtual image is located nominally at the centre of the
gyroscope gimbal system.
The accuracy of this convex mirror sight is affected by aberrations and by constructional
inaccuracies. The major effects are fortunately all amenable to the simple analysis given here.
(i) Effect of spherical aberration
Figure 8 shows ray paths when the sight is tilted. For paraxial conditions, the com-
pensation for tilt is perfect, but with finite angles and apertures, spherical aberration
affects the compensation by displacement of the virtual image downwards from the
gimbal system centre. The angular error that this introduces is equal to the angular
spherical aberration of the spherical mirror for parallel light, viz. sin® 2¢ in third-order
approximation (e.g. Ref. 14).
(ii) Effect of longitudinal displacement of the mirror
If the mirror principal focus and the gimbal centre are separated longitudinally, i.e.
vertically, the resulting error in compensation is zero for zero tilt angle and will increase
with the sine of tilt angle. If the longitudinal separation of focus and gimbal centre
is d, the angular error introduced is (2d sin 2¢)/r where r is the radius of curvature
of the mirror. If the gimbal centre is below the paraxial focus the resulting error will be
of opposite sign to that introduced by spherical aberration, so that the effects can be
cancelled at some chosen tilt angle and reduced at others by suitable placement of the
mirror with respect to the gimbal centre. Figure 9 shows this graphically. The curves
were chosen to cancel completely for tilt angle ¢ — 2¢ — 10" by equating sin3 2¢ and
(2d sin 2¢)/r, giving d = 0-01508 r. This appears to be a reasonable choice for practi-
cal use as the residual error is less than 2 mrad over most of the range of tilt angles
likely to be met in practice.
(iii) Effect of lateral displacement of the mirror
If the gimbal centre and mirror focus are displaced laterally, i.e. in the horizontal plane,
an error in tilt compensation is introduced that is of opposite sign for tilts on opposite
sides of the vertical. This contrasts with the previous two cases where the under- or
over-correction for tilt compensation was unaffected by which way the device was
tilted. For a lateral displacement s, the compensation error is
s(1 —cos 0)/r = s (1 — cos 2¢)/r.
For 8 = 12° it would be reasonable to limit this source of error to say 1 mrad. Thus,
s/r = 0-022 as an upper limit. This tolerance would not appear to present much difficulty
in assembly of a practical device. As this error grows roughly as the cube of tilt angle,
for most of the practical range of tilts it can be considered negligible when within
tolerance at the extreme working value of tilt.

4.3.2 Visual version

Figure 7 includes the essentials of a visual version of the convex mirror sight. The lens is
used as a magnifier or collimator so that a distant, magnified, erect virtual image is formed from
the virtual image at the gimbal centre. The indicated plumb-point is marked by a graticule with
its centre conjugate with the gimbal centre reflected in the beam splitter. The graticule is thus
optically superimposed on the stabilized image so that shifts of viewing position will not introduce
parallax errors.

The magnification of the visual version described is best expressed as the ratio of image
angles to that of corresponding angles in the naked-eye view of the ground, i.e. angular magnifi-
cation. This is equal to the ratio of focal lengths of mirror and lens, and geometrical considerations
of mirror size and field of view limit this ratio to about 0-5 at most. In a design that is practicable
from the point of view of mirror size, clearance between the convex mirror and beam splitter,
and distance of the observer from the viewing lens, the apparent field of view occupies 10° and
the actual field, about 20°.

A laboratory mockup of the visual version of the convex mirror sight confirmed the limited
fields of view attainable. It also showed the existence of a severe problem of multiple reflections
of stray light within the device. Rays originating from the immediate surroundings of the
observer’s eyes as seen from the device proved most troublesome as such rays are returned to
the observer via an effective reflectance factor comparable with that applying to the useful rays
passing through the device. It was found that the unwanted rays could be virtually eliminated
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by keeping the observer’'s surroundings dimly lit and by inserting a combination linear and
circular polarizer sheet as a reflection suppressor in front of the viewing lens. These suppressors
transmit only about 35, of the useful light, however, and the effective transmittance of the rest
of the optical system is only 20°,, so that the luminance of the stabilized image is just 7°, of
the external field luminance. This relatively dark image would undoubtedly create difficulties
for the observer unless he could shield his eyes from the external field. This seems unacceptable
for an observer who is also the pilot.

Several attempts were made to devise optical systems that would increase the magnification
and actual field of view of the convex mirror sight. As these attempts necessarily involved the
use of a real image formed by a relay lens, followed by an erecting system and an eyepiece,
complexity was much greater than for the first version of the sight. This added complexity was
accompanied by increased effects of chromatic and off-axis aberrations and decreased range of
allowable eye movement, to the extent that worthwhile gains in magnification and field of view
are not available unless multicomponent lenses of diameters up to 0-3 m are used. The volume
and mass of such a version of the convex mirror sight would probably be unacceptably great.
This would not necessarily be the case if the requirement for a large eye relief (say 0-5 m) were
relaxed: viewing of the stabilized image via a relay lens and a prism monocular telescope has
been demonstrated to give excellent imagery without the need for polarizing reflection sup-
pressors, at the cost of requiring the observer to have one eye placed in contact with the eye
cup of the eyepiece. Another solution would be to retain the large eye relief and small field of
view of the simple convex-mirror viewing lens system, compensating for the optical short-
comings of the device by requiring the observer to wear 2-5 x telescopic spectacles. The
possibility of introducing disorientation with this arrangement would seem likely, however.
Further work on visual models of the convex mirror sight was postponed when the first trial of
the television version indicated promising results.

4.3.3 Television version

The system of Figure 7 was constructed with a relay lens forming a stabilized image on the
photosensitive area of a television camera. The plumb-point indicator was omitted for simplicity
in the initial trials. Laboratory tests of the device used a fiducial mark on the monitor screen for
assessing accuracy of tilt compensation. Experience with the earlier ground-based television
equipment suggests that a graticule on glass placed in contact with the entrance window of the
image tube would also produce a satisfactory result. The method shown in Figure 7 is probably
the best from the points of view of easy adjustment, accuracy and graticule sharpness, however.

The laboratory tests indicated that tilt compensation was precisely as expected from Figure 9.
Superimposed on the compensation error was a fluctuating error of about 3 mrad, the inherent
error of the gyroscope. The aluminium-on-glass convex mirror was 60 mm in aperture, 126-4 mm
in radius, and | mm thick. The gyroscope was an aircraft artificial horizon operated from a
115V, 400 Hz supply. The whole device was now known as the ‘Hoversight’ (Fig. 10).

5. FLIGHT TRIALS OF THE HOVERSIGHT

5.1 Initial Flight Demonstration

The initial flight demonstration of the Hoversight was made in an Army Bell 47G *Sioux’
helicopter. The wooden box containing the optics and 625 line TV camera was mounted on
the starboard landing skid cantilevers within reach of the experimenter in the right-hand seat.
A 140 mm x 185 mm monitor screen was installed on the upper left side of the instrument
console facing the pilot. A portable video recorder was also carried. The first flight showed that
the pilot was able to hover at 300 m altitude at the first try, despite bad degradation of the
monitor image caused by excessive vibration of the box containing the optics and TV camera.
This box was supported on anti-vibration rubber mounts that provei too resilient in the heli-
copter’s lateral direction. The next flight was made with another miitary helicopter pilot and
with the box supported more firmly, and again the pilot had no apparent difficulty in positioning
the helicopter according to the screen indication of the ground features vertically below. The
second pilot commented favourably on the similarity between the angular sizes of ground objects
viewed directly or seen on the screen. As in the first flight, the pilot had to cope with poor
picture quality. Although the vibration of the optics had been reduced, the ambient lighting was
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greater, and even with the monitor brightness and contrast at their maximum settings the picture
was sometimes difficult to see. Despite these handicaps, the practical utility of the Hoversight
was now established to the extent necessary to continue its development.

5.2 Instrumented Flight Trials

5.2.1 Choice of aircraft

Arrangements were made with RAAF Support Command for the provision of a pilot,
engineering support and 5 hours of helicopter flying at Aircraft Research and Development
Unit (ARDU), RAAF Laverton. A Bell Light Observation Helicopter (LOH) was considered
for use as the test aircraft but some doubt existed about the extent of modifications necessary
to fit the Hoversight, and the continued availability of the aircraft was also uncertain. A Bell
‘Iroquois’ UH-1B was available, however, and the Hoversight was installed accordingly. Although
engineering constraints made the installation less than ideal from an ergonomic point of view,
the aircraft certainly proved adequate for the purposes of the trials.

5.2.2 Hoversight reconstruction, calibration and installation

The Hoversight components housed in the wooden box prototype were re-housed in a sheet
aluminium case. No major changes were made in the optical system but precise adjustments of
the positions of the individual components were now possible. The plumb-point indicator of
Figure 7 was first constructed as a target consisting of black cross-lines on a white disc: light
from the region of the plumb-point on the ground was intended to illuminate this target by
reflection from the beam splitter so that the luminance of the target seen by the TV camera
would always bear a fixed ratio to the luminance of the ground as seen by the camera. In this
way, the target superimposed on the ground image could always be expected to be visible.
During the laboratory calibration, it seemed that the plumb-point indicator was often insuffici-
ently visible on the monitor screen and later experience showed that this would also have been
the case in the field. The plumb-point indicator actually used instead was an aperture of 2-5 mm
diameter, subtending about 1° at the relay lens. A polished metal surface inclined at 45° to
the axis of the relay lens directed light from either the sky or ground through the aperture to
the TV camera. Subsequent experience showed that skylight was the better choice, even with
the lighting variations resulting from scattered cloud. This is the arrangement shown in Figure 10.

The laboratory calibration served four purposes:
(i) to bring optical centres and axes into alignment;
(ii) to check that the gyroscope accuracy was within the manufacturer’s limits:
(iii) to adjust the plumb-point indicator so that it did indicate the true vertical, within the
accuracy of the gyroscope; and
(iv) to allow a measurement of the total magnification of the system.

Item (i) of this list was performed by standard techniques. The remaining items were done
with the optics-TV box mounted 2 m above floor level. A plumb bob suspended from reference
points on the box allowed the actual plumb-point on the floor to be determined to 0-5 mrad.
The plumb-point indicator was adjusted accordingly. The gyroscope was operated for an hour
or more on several occasions and the position of the actual plumb-point image on the monitor
screen was noted at regular intervals. The deviation between this image and the indicator image
was always within the range -4 mrad; this was considered to be satifactory. Finally the magni-
fication of the system was measured by comparing the length of a scale on the floor with the
length of its image on the monitor screen. A small correction was made for the finite viewing
distance.

The system was installed in the Iroquois by ARDU personnel in consultation with ARL
staff. Briefly, the optics-TV box was mounted on a cantilever beam slung from the starboard
auxiliary fuel tank supports, the pilot's monitor screen (200 mm diagonal) was mounted above
the left side of the instrument console facing the starboard pilot's seat, another monitor was
strapped to the floor in front of the starboard rear seat, a portable video recorder was strapped
to the central rear seat, and the 12 V battery and 115 V, 400 Hz rotary inverter (power supply
for the gyroscope) were strapped to the floor under the rear seat. Fuller details are given in the
ARDU report (Ref. 15). A summary of component dimensions, masses and power consumptions
is given in Table I.

The installation was arranged so that the experimenter could operate the system from the
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rear starboard seat. The TV camera lens focus and aperture setting could be adjusted through
a door on the side of the optics-TV box. These adjustments, together with switches on the side
of the box, could be reached in flight without difficulty by the experimenter as all flying was done
with the starboard rear door fully open.

From the ergonomics point of view, the least desirable feature of the installation was the
positioning of the pilot’s monitor screen about 45° in azimuth to the left of his straight-ahead
viewing direction. Although the image of the ground on the screen was correctly oriented (i.e.
with straight ahead on the ground appearing at the top of the screen), the large displacement
of the screen itself from the desirable straight-ahead direction degraded the simple correspondence
between directions on the ground and those on the screen. This choice of screen position is
understood to have been dictated by the following factors:

(i) there was insufficient space to mount the monitor inside the aircraft on top of the
instrument panel directly in front of the pilot;

(ii) with some engineering difficulty, the monitor could have been mounted outside the
windshield directly in front of the pilot but this would have exposed the monitor, an
ordinary portable TV broadcast receiver, to the weather;

(iii) for most of the trials, only one pilot would be available, and it was therefore important
for safety reasons that the visual field of the pilot, particularly the forward and down-
ward view, be no more obstructed than normal; and

(iv) the actual mounting position used was the best available in respect of engineering
convenience, minimal obstruction of cockpit instruments and switches, and crash safety.

One improvement to the monitor over its configuration in the Sioux trials was the addition
of a light shield. This was made from blackened corrugated cardboard (for crash safety) lined
with black flock paper which is ‘dead black’ like black velvet. A curved sheet of combination
linear and circular polarizer fitted inside the box eliminated most of the unwanted reflections
of external scenes from the air-dielectric surfaces in front of the CRT phosphor.

5.2.3 Arrangement of flight trials

The helicopter pilot (Flight Lieutenant B. G. Haylock) had over 2300 hours of rotary wing
experience including 2000 hours on type. He was employed as a test pilot at ARDU and not
long before the present experiment he had hovered the Iroquois for 100 hours in some other trials.

It was decided that the concrete numerals 11 at the threshold of the grass runway |1 at
RAAF Laverton would provide a suitable ground target. A 16 mm motion picture camera was
mounted horizontally on a heavy tripod between the numerals, and a front-surface mirror at
45° in front of the lens allowed the sky above the camera to be photographed.

An observer from ARL as well as the experimenter was carried in the helicopter on each
flight.

5.2.4 Flights

Flights with the Hoversight were made in daylight and in mostly fine conditions on 24 June,
1 and 9 August, and 15 October 1974. The gaps between the flights were the result of non-
availability of either the aircraft, pilot, experimenters or equipment. Adverse weather also caused
some delay, as did the author’s desire to investigate some of the results before proceeding with
further flying.

Because of the developmental nature of the apparatus and the likelihood of the various
delays just described, it was not possible to plan the trials as a completely counterbalanced
ergonomics experiment. Insofar as it was possible, however, the accepted principles of such
experiments were applied rigorously. For example, no information at all was given to the pilot
about his performance either with or without the Hoversight until the full flying program had
been completed. The tasks set in the flying program were chosen to provide the data considered
most important at that stage. Thus the first flight was used to demonstrate hovering with the
Hoversight at 60 m above ground level and then at 600 m. After practice, these hovers were
filmed from the ground but not videotaped because of a recorder malfunction. Accordingly,
flights at these altitudes were repeated on a subsequent day with both airborne and ground
recording equipment operating, first with the pilot using the Hoversight and then with his
monitor set turned off but with the videorecorder still operating. This was followed by about
10 minutes of hovering within a metre or two above tarmac markings in a partial simulation
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of shipboard landings. (A 25 mm objective lens was fitted to the Hoversight on this occasion.)
(The pilot had recently performed actual shipboard landings with a Bell LOH).

Flights on the remaining two days consisted of a series of recorded hovers with and without
the pilot’s monitor operating, for a range of altitudes between nominal values of S m and 600 m.
Most of the flights on the last day were made with the 75 mm focal length TV camera lens of
the Hoversight modified by the addition of an achromatic Barlow lens to make a telephoto
lens of 136 mm focal length.

Three incidents during this phase of the study deserve special mention. Firstly, on the first
day of flying, settling with power was experienced while the pilot was manouvring close to the
desired hover point in gusty conditions at 600 m altitude. Recovery was made at about 400 n.
No film or video recording was being made at the time. No other instances of settling with
power occurred in the subsequent flights. Secondly, near the end of the planned flights on the
third day, the gyroscope was observed to be behaving erratically and observation of the monitor
screen showed that the view was many degrees from vertically downwards. The remaining tests
for that day were postponed and the gyroscope was later dismantled in the laboratory. The
fault was traced to the counterweight that had been added to counterbalance the convex mirror:
it had worked loose and was rubbing on the inside of the instrument’s outer casing. This time
it was fixed in place with epoxy adhesive. The third item concerns the crew. On the last day,
an extra pilot occupied the left seat. Both pilots wore a new type of back-pack parachute. This
altered the conditions of the experiment and confounded at least two variables: the effects of
day of test and increase of lens focal length. However, in view of the likely minor nature of any
effect due to wearing the parachute, the existing defects in full counterbalancing of the experi-
mental design, and the added safety with the second pilot on board, no objection was raised.

5.2.5 Observations of pilot

During the trials an ARL observer (K. W. Hendy) sat in a seat between and behind the
two pilot’s seats. From this position it was possible to observe the instrument panel and the
pilot’s eyes when he was looking at the monitor screen. For the first two flights the observer
noted the pilot’s overt behaviour and recorded his comments when these related to the hovering
task. In the remaining flights the proportion of time the pilot spent looking at the monitor
screen was noted by direct observation of the pilot’s head and eye movement.

The pilot’s comments in the first minutes of using the Hoversight at 60 m altitude concerned
altitude and heading. He claimed to be using ‘50%, outside reference’ and was glancing outside
the cockpit about once each second. In three minutes the altimeter indication increased from
200 feet to 280 feet (61 m to 85 m) and the pilot complained of the lack of altitude information
on the monitor screen. The pilot attempted to devote full attention to the screen but the altitude
began to decrease and he overcontrolled the aircraft momentarily. At 600 m altitude, the pilot
complained of insufficient screen contrast. Wind heading and velocity varied so much that he
seemed unable to devote sufficient attention to the screen. This was when the settling with power
incident occurred.

In the second flight, the pilot said that the offset position of the screen made it difficult
for him to make the control actions required to reduce the position error displayed on the screen.
When hovering without the display as part of the trial, the pilot complained of a lack of visual
cues, as much of the external visual field was a generally featureless grassed plain. Although
the wind at altitude was varying in speed and especially in direction on this occasion, the pilot
stated that the wind made control easier.

Table 11 indicates the amount of time that the pilot spent looking at the monitor screen in
the remaining flights when the monitor was operating. The values as a percentage of total hovering
time at each altitude lie between the extremes of 719, and 91°9.

5.2.6 Analysis of films

As the ground-based movie camera was not aimed precisely and no method of indicating
the precise zenith on the film was used, the analysis of the films had to be restricted to finding
the extent of variation of the helicopter’s position for each condition of altitude with and without
the aid of the Hoversight. A complete 30 m roll of 16 mm film was used for each of the 7 con-
ditions that were photographed. As the camera mechanism was clockwork-driven with a duration
of 100 s, the mechanism had to be rewound twice while the helicopter remained on station.
Each roll of film recorded a total of 240 s of hovering at 16 frames per second.
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The films were measured on a Vanguard motion analysis projector with a digital readout.
Four values were recorded: the x and y co-ordinates of the lower fuselage beacon (which is close
to the mast axis and hence close to the centre of mass of the helicopter), the azimuth of the heli-
copter’s longitudinal axis, and the length of either a landing skid on the low altitude films or
the whole fuselage on the remaining films. The co-ordinates and azimuth each had an arbitrary
zero.

From the measured focal length of the movie camera lens, the measured magnification of
the motion analysis projector and the known dimensions of the helicopter, it was possible to
calculate the height of the helicopter above the camera at the ground observation point. A
separate determination of this height was possible for every measured frame on all films except
the two taken at a nominal 600 m altitude: in these, the image was so small that measuring errors
masked any variation in apparent length caused by altitude variation. With the height known,
it was then possible to calculate the distances in two horizontal dimensions from an arbitrary
origin which was approximately vertically above the ground target. These horizontal co-ordinates
were then transformed to a new pair of horizontal axes aligned with the helicopter’s mean azimuth
for the particular film. This was necessary because wind changes between flights resulted in large
differences in mean azimuth on different films. Finally, the displacements of the helicopter from
its mean position in two dimensions and its deviation from the mean azimuth were calculated,
together with mean and extreme velocities. The results are summarized in Table I11.

The calculations were performed by digital computer. Several checks were included in the
program to allow detection of input data anomalies caused by transcription errors. Corrections
were made where appropriate. A r-test applied to the mean positions of the helicopter for each
camera run within each film proved inconclusive as a way of demonstrating that the camera
aiming had not been disturbed by the rewinding of the clockwork drive. However, several of
the rewinding breaks in filming coincided with the presence of identifiable cloud features in the
background and interpolation of the cloud movement in each case was so regular that any camera
movement was imperceptible. This was as expected, for the camera was mounted on a tripod
that is quite massive by ordinary photographic stardards. A check was also made on the effect
of varying the time interval between measurements. From inspection of the films, it was initially
decided that it would be adequate for the purpose if only every twentieth frame were actually
measured, i.e. the helicopter’s position would be sampled at 1-25s intervals. A check on this
sampling rate was made by repeating the calculations with the program arranged for a sampling
interval of 2-50 s and again for an interval of 3-75s. The results proved so little different from
the original that the 1:25 s interval appears quite adequate.

The results of Table 111 were analysed for differences between the monitor-off and monitor-on
cases. Table 1V shows the method. For each of the nominal altitudes of 61, 152 and 610 m, the
values of radius standard deviation (SD) (Table ) for the monitor-off case were divided by
those for the monitor-on case. To overcome the differences in actual mean altitude between the
cases at each of the three nominal altitudes, the radius SDs were brought to a common basis
for comparison by dividing by the corresponding calculated mean altitude. Similarly, the mean
horizontal velocity for each flight was divided by the mean altitude for the flight, and this treat-
ment was also applied to the extreme horizontal velocities. The off/on ratios of radius SDs,
and mean and extreme horizontal velocity on this basis in Table 1V should not be significantly
greater than unity if the helicopter movements (as distinct from accuracy of hovering vertically
above a designated ground target) are unaffected by whether the pilot's monitor was on or off.
A t-test showed this to be the case for each set of comparisons. The same result is obtained regard-
less of whether the first two rows of Table 111 are pooled as is the case in Table 1V, or if one or
other of the rows is discarded. There are also no significant differences between the cases in
respect of the mean horizontal velocity or the standard deviation of the azimuth angle. Although
there does seem to be some indication of a trend towards reduced mean velocity as well as a trend
towards reduced displacement of the helicopter from its mean position with increasing altitude
when the pilot’s monitor is on, the trend in extreme horizontal velocity leads to the opposite
conclusion. This conflict is not an artifact of the method of processing the raw data, and its
practical significance has not yet been determined.

5.2.7 Analysis of videotapes
The videotape recorder carried in the Iroquois was used to record the TV camera output
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during hovering regardless of whether the pilot’s monitor was switched on or off. Hovering
attempts were recorded for close to 120 s on most occasions. This time was chosen as a com-
promise between the need for long recordings for accuracy and the constraints imposed by the
limited flying time available. Among these constraints were the desire to avoid rewinding and
substituting tape reels in flight and a 20 minute limit on recording imposed by tape length. The
need to obtain data for as large a range of heights and conditions as possible also influenced
the choice.

The periods recorded on videotape overlap most of those recorded on film but exact synchro-
nism was not achieved nor attempted because:

(i) the pilot indicated to the ground observer that filming could start by switching on the
red flashing beacons, whereas the Hoversight operator commenced timing the videotape
recording usually some seconds later, after the pilot had said that the beacons were
now on;

(ii) the film recording had to be interrupted for camera rewinding while the videotape
recording was still in progress; and

(iii) no important advantage would have been gained even if much effort had been put into

synchronising the recordings.

The videotapes were analysed in the laboratory after the completion of the flying program.
The analysis required a measurement of the amount of time (the inclusion time) that the ground
target point was within a given size of circle on the monitor screen. Some of the circles used for
this measurement were part of the structure of the plumb-point indicator, and the remainder
were fine wire circles taped to the replay monitor screen concentrically with the indicator. The
timing was done by an observer with an accumulating chronometric stop-watch. On some of the
recordings made when the pilot’s monitor was switched off, the ground target disappeared off
the edge of the recorded field of view but in all cases it was possible to reconstruct its position
moment by moment with sufficient accuracy by turning the replay monitor controls to high
contrast, thus allowing identifiable ground features of known position relative to the target to
be tracked until the target again became visible.

The angular sizes represented by the seven circles used in the measurements were measured
with the laboratory arrangement aiready used to determine the overall magnification of the
Hoversight. Also, for each of the 120 s videotape recordings, the maximum and minimum altitudes
were calculated from the screen length of some ground feature of known dimensions, and a mean
altitude for that period of the flight was estimated by taking into account the course of altitude
variation over each particular 120 s recording. The percentages of the total recording time for
which the target was within the various circles in each recording (i.e. the inclusion time per-
centages) were plotted to give a cumulative frequency distribution of inclusion time percentage
against angular size of the various circles. Smooth curves were drawn through the observed
points. On each of these curves, the angular size corresponding to a 509, inclusion time was
found and these values provide a convenient indication of hovering accuracy. Furthermore, each
of these angular field sizes can be combined with the estimates of mean altitude for individual
recordings to give, for each condition of the trials, a measure of the linear radius (R,.;) of the
circle for which the helicopter had an inclusion time percentage of 50°;.

Figure 11 shows the observations of R,.; as a function of mean altitude for the case when
the pilot’s monitor was off. Figures 122 and b show, to the same scale, the results for the monitor-
on case with the 75 mm and 136 mm lenses. It was considered possible that fitting straight lines
to the observations could obscure some useful point. On the assumption that some sort of power
law might fit the observations better, linear regression analysis was used after recasting the data
in log-log form. The regression lines for the three cases are shown in Figure 13. Individual points
have been omitted from the figure for clarity. The lines have been terminated at the perpendiculars
from the appropriate extreme data points, however.

The regression equations are:
for the monitor-off case,

log A = 1:048 (log Ry.5) + 0:773 (r = 0-904, N = 10, t = 6:66):
for the 75 mm lens,

log A = 1-340 (log Ry.5) -+ 1105 (r = 0-965, N = 10, ¢
and for the 136 mm lens,

log A = 1:079 (log Rg.5) + 1:153(r = 0-969, N =8, 1 = 11-2);

10 i
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where A is the altitude in metres, R,.; is the altitude-dependent radius of the horizontal circle
occupied for 509, of the time by the helicopter, the centre of the circle being vertically above
a designated target on the ground, r is the correlation coefficient and N is the number of obser-
vations. The values of ¢ indicate significance at the 0-001 level for all three correlations.

5.2.8 Comments

Data taken from near the ends of the regression lines of Figure 13 are given in Table V. From
these values it can be seen that the use of the Hoversight with the 75 mm lens improves hovering
accuracy by a factor of 2-0 at 10 m altitude and by 4-5 at 600 m aititude. For the 136 mm
lens, the corresponding values are 2-3 at 10 m and 2-5 at 600 m. Although a rigorous statistical
test of the results would be difficult and time consuming to perform, it is clear from inspection
of the graphs that the Hoversight allowed a statistically significant improvement in hovering
accuracy compared with the monitor-off condition of the flights. It also seems likely that the
superiority of the Hoversight when fitted with the 75 mm lens, by comparison with the 136 mm
lens results, is real at the higher altitudes of the tests but at lower altitudes the differences may
not be significant. The practical significance of the results is discussed in the next section.

6. DISCUSSION

6.1 Hoversight Flight Trials
6.1.1 Horizontal accuracy

Under the conditions of the trials in the Iroquois the use of the Hoversight allowed a sub-
stantial improvement in the accuracy with which the helicopter could be hovered vertically
above a ground target. However, the magnitude of this improvement may have been less if the
Hoversight as a hovering aid had been compared with the aid provided in current Air Force
practice: a crewman trained to look down at the target and give verbal instructions to the pilot.
Although it would have been most instructive to make this comparison, it was not possible
because the available number of flying hours was already marginal for the evaluation that was
made. This evaluation was considered more important as a means of indicating both the potential
and disadvantages of the Hoversight as an aid to be inserted into the pilot-helicopter loop. As
the following argument indicates, the Hoversight may be capable of modification that would
allow a substantial increase in performance, and until appropriate further development has
taken place, a comparison between the Hoversight and current practice would be quite premature.

First, consider the accuracy achieved in terms of the angle subtended at the ground target
by the value of Ry at a given altitude. With the pilot’s monitor operating, the smallest value
of this angle in the trials was 33 mrad for 600 m altitude with the 75 mm lens in the Hoversight.
However, the accuracy of the Hoversight in indicating the vertical is in the order of 5 mrad
so that the question arises as to why the trials result was not much more favourable. Helicopters,
including the Iroquois, can certainly be hovered with very small linear excursions when close
to the ground, and it has also been shown that even a Bell 47G can be hovered within a metre
or so of the true vertical at up to 1200 m altitude when given adequate guidance (Ref. 3). The
pilot in the present trials had previously gained many hours of experience in hovering at altitude
and this is evident in the excellent results he achieved when his monitor was switched off. There-
fore there seems to be no obvious reason why the achieved accuracy with the Hoversight was
not much better.

The results of the present trials appear even paradoxical when other facts are considered.
At an altitude h which may be well out of ground effect, the Hoversight fitted with the 75 mm
lens allowed a certain accuracy of hovering. At an altitude 136h/75 with the 136 mm lens installed,
the scale of the pilot’s monitor image would be unchanged and it seems reasonable to expect
that the linear accuracy of hovering would also be unchanged, and the angular accuracy actually
improved. However, the results show quite clearly that both of these measures were degraded.

Experience with the earlier ground-based system parallels the present finding. In the quest
for greater accuracy with that system, progressively longer focal length lenses were used to
increase the image scale on the pilot’s monitor. Because of the difficulty of initial positioning
when the long focal length lenses were used with their consequent small angular fields of view,
stepwise increases in focal length were tried. These were not entirely satisfactory for reasons
which are only now becoming fully apparent. The best results in these earlier trials were achieved
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by using zoom lenses: a ground operator, who was in voice communication with the helicopter
pilot, slowly increased the focal length as the helicopter became more closely stabilized over
the target. .

It is instructive to compare the image scales on the pilot’s monitor screens in the two
systems. For the ground-based system, Reference 3 states that the TV camera lens focal length had
to be about 1/2000 of the hovering altitude. However there is some evidence that the use of even
longer focal lengths produced better results, at least at altitudes below about 400 m for which
sufficiently long focal lengths were available for the tests. With a suitable combination of focal
length and altitude, the width of the pilot’s monitor screen could be made to represent a linear
distance in the order of 5 m. Using this as a basis for comparison and taking into account
differences in monitor screen size and viewing distances, the Hoversight with the 75 mm lens
in the Iroquois had a similar apparent magnification when at about 15 m altitude. Interestingly
enough, for this altitude and the 75 mm lens, Fig. 12 indicates R,.5 as 1-1 m, comparable
with the accuracies attained with the Bell 47G using the ground-based system although this
was achieved in the 47G at much higher altitudes.

Perhaps the explanation of the present results is that at low altitudes, as evidenced by the
results for the monitor-off case, the pilot used cues from the surrounding terrain to keep the
helicopter stable enough in position to derive additional benefit from the Hoversight. Even
with the image scale maintained for an increased altitude by a discrete increase in the lens focal
length, the pilot had lost some part of the cues previously available when the terrain was closer,
again as evidenced by the monitor-off results for increasing altitudes, and this presumably
accounts for the reduced performance with the Hoversight. What is implied is that the pilot
cannot make optimal use of the information on the monitor screen unless he already has reduced
the helicopter’s position error and velocity to appropriately small values. The obvious way of
trying to overcome this difficuity is to provide the Hoversight with a zoom lens. This provision
was actually recognised as desirable before the second prototype Hoversight was built but no
suitable lens was available then, and even if it had been, limitations imposed by the dimensions
of the other existing optical components may have made much of the zoom range unusable, or
at least usable only in bright sunlight on light-coloured terrain. In view of the limited flying
time allowed for the present trials, the refinement of having a zoom lens was thought
to be not justified. It would certainly be regarded as necessary in any further work,
however.

6.1.2 Altitude maintenance

Values of the helicopter’s altitude during hovering were derived from subsequent anaiysis
of both the films and the videotapes. These were supplemented by written notes of the altimeter
readings during the first three flights. In view of the rather large errors inherent in the deter-
mination of altitudes from the films and tapes, especially at the higher altitudes, the agreement
between these results is considered satisfactory. The discrepancies between the calculated results
and the nominal altitudes are several times larger. The inference is that the altimeter in the
Iroquois usually read low, by as much as 30°, at the lowest altitudes. When the pilot began to
hover at or near the nominal altitude, the actual altitude was usually higher according to the
two independent optical records. On three occasions an observer noted the altimeter indications
during hovering, and the variation in altitude, e.g. an increase of 30 m during a hover at a
nominal 61 m, agreed with the increase in calculated altitude. In this example, however, the
altimeter was apparently reading high by about 22 m. The reason for such unexpectedly large
discrepancies is unknown but it is possible that it is connected with the precise conditions of
wind speed and direction near the ground and at altitude, together with the conditions under
which the altimeter was zeroed, the placement of the altimeter vent and the operation of the
helicopter with unusually low airspeed at altitude. Certainly, only a minor part of the discrep-
ancies could have been caused by the lack of synchronism of the altimeter readings with the
optical measurements and the inherent errors in the optical methods.

Notwithstanding the altitude discrepancies, it is clear that variation of aititude during
hovering was much larger than the variation in position in the horizontal plane. The largest
calculated range in altitude was 59 m in hovering at a nominal altitude of 122 m. The altitude
variations seem generally larger in the cases when the pilot was using the Hoversight but the
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available data are insufficient for any meaningful statistical tests of the significance of this
difference.

The results of the- earlier tests of the ground-based system had already indicated that
maintenance of constant altitude during hovering was a problem and the pilots for this reason
had suggested that an altimeter should be mounted alongside the monitor screen. When this
was done the pilots were better able to maintain a steady altitude. In some later tests, a particu-
larly sensitive indicator was used and this allowed a further improvement (Ref. 4). Although
this was known before the present trials began, no attempt was made to provide an additional
altimeter for the following reasons:

(i) it was first necessary to demonstrate that the problem also existed with the Hoversight;
(ii) the addition of an indicator in the vicinity of the monitor screen would have meant
another variable in the experiment; and
(iii) the choice of altimeter type and position is itself a suitable topic for investigation but
only after the utility of the Hoversight has already been established.

It may be that best results could be obtained by incorporating an altitude indication on the
monitor screen or by using an aural presentation of vertical speed like those used in high per-
formance sailplanes. Radio or radar altimeters have characteristics (Ref. 16) that might make
them particularly suitable as information sources for visual or aural display of altitude or
altitude variation.

6.1.3 Hovering accuracy in other trials

Reference 17 describes some tests in which a modified CH 53 helicopter was used in precision
hovering over a simulated landing zone in trials of simulated night vision devices. Pilots were
instructed to hold a stable hover at an altitude of 23 m for a period of 2 minutes. Movements in
three dimensions were measured by theodolites. Most accurate hovering was achieved with the
pilot observing a panel-mounted 1023-line monitor screen fed by an unstabilized downwards-
pointing TV camera with a field of view of 60°, 120° or 180°. The values of R,.; were 5:0 m,
5:-6 m, and 6-4 m respectively. For the day VFR case (no TV display) the value of R,.; was
8-4 m. “Despite pilot comments to the effect that they thought they were holding a good hover;
the theodolite data showed a consistent tendency for the helicopter to drift rearward while
rising in altitude ... the CH 53 is a highly stable helicopter with an excellent flight control
system . ... precision hover performance should exceed that obtainable in a less stable aircraft.”
(Ref. 17). The tendency for slow ascent during hovering was also noted in the present trials.
The monitor-off line in Figure 11 indicates a value of 3-6 m for Ry.; at 23 m altitude which
suggests that the pilot in the present trials was particularly skilful compared with the three pilots
in Reference 17. Whether a less skilful pilot would be better or worse than the present pilot in the
improvement of hovering accuracy afforded by the Hoversight is an important question but
any claim based on the current evidence would appear to be unjustifiably speculative.

6.1.4 Pilot’'s comments

The results, discussion and conclusions of the pilot’s report (Ref. 15) are reproduced in
Appendix 1. Read in conjunction with the present report, it provides an independent view of
the prototype system in practice.

One point is worth clarification. In 13. Vertical Hover Accuracy, it is stated that “The ARL
data also had altitude variations of up to 300 feet between analysed film data and analysed video
tape data.” As mentioned above in 6.1.2, the measurement errors become rather large at the
higher altitudes. On both the films and tapes, there is an approximately constant component of
the error associated with the measurement of the image size. At the higher altitudes, the image
size is small so that the measurement error becomes larger as a proportion of the image size.
This is particularly pronounced for the films as the largest distance available was the length of
the helicopter. On the videotapes, the available range of dimensions of ground features was
better suited to the technique. As the calculated height is inversely proportional to the image size
on the film, this is why a | m error in 20 m altitude arises from a film measurement error that
could also cause a 30 m error in a 600 m altitude. This is a difficulty inherent in stadiametry, and
is one reason for the discrepancy mentioned in the above quotation; another is the fact that the
film and videotape recordings were not simultaneous. Differences of some minutes exist in some
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cases and these were taken into account in the analysis of the heights and height variations in
the trials.

6.2 Applications

With the Hoversight in its present form (but with any required engineering modifications),
and on the assumption that the present results are indicative of the performance it will allow for
other pilots and other helicopters, it appears that its use for certain military and civil tasks could
be advantageous. The military tasks could include aerial photography from reproducible view-
points, surveying in difficult terrain, artillery fire control, rescue operations (especially over water
or at night), navigation aids and radar calibration, construction of bridges, instaflation and
inspection of overhead power and telephone cables, sonar dunking, winching, rappelling, landing
in confined areas and pilot training. Many of these applications would also be appropriate in
civil operations. Other civil applications include traffic control and surveys, minerals search,
police work, television coverage of events, pollution monitoring, resources and city growth
surveys, air ambulance landing, and lighthouse calibration. Many of these tasks might benefit
further by any increases in hovering accuracy resulting from further development of the
Hoversight.

6.3 Further Development

It seems clear that any further development of the Hoversight should include the incorpor-
ation of a long focal length zoom lens. As the radius of curvature and the linear aperture of
the convex mirror in the optical system govern the dimensions of the other optical components,
the linear aperture of the camera lens is limited and the relative aperture of the system is also
limited. The zoom lens focal length range has to be selected with this in mind: otherwise, there
may be insufficient light for the TV camera. From the experience gained so far, it appears that
best results will be obtained with a TV camera in which the design emphasis has been aimed
at low light level capability rather than on miniaturization as in the present camera.

Several other improvements would be desirable. The camera lens aperture and focal length
adjustment should kave remote controls. The structure and mounting of the equipment should
be less prone to vibration manifested as image degradation. The monitor screen should be
mounted closer to the pilot’s straight-ahead line of sight. Higher screen luminance would be
desirable. Finally the whole system would need to be made sufficiently rugged and reliable to
stand up to the rather harsh environment.

A possible extension of the Hoversight principle is stabilized viewing in directions other
than vertically downwards. This has obvious military applications, such as in the ‘pop-up’
operation of surveillance and armed helicopters. Both for this purpose and for hovering at high
altitudes, the plane mirror system of Section 4.2.3 may also be worth consideration, either by
itself or as a high magnification adjunct to the convex mirror system.

One further aspect of these devices deserves mention. So far, the effort has been directed
towards the evolution of a workable physical system, and ergonomics aspects have been intro-
duced only in terms of what is or was feasible, not optimal. The human operator is an essential
active link in the control of helicopter hovering with the aids described. Although automatic
hovering may well be possible with some adaptation of the Hoversight, the inevitable increase
in complexity, mass and cost may prove unacceptable to the operators of light helicopters as
long as the currently simpler alternative of using a human in the control loop is not precluded
on the grounds of safety or excessive pilot workload. Finally, there may well be some advantages
in developing a visual version of the Hoversight as an alternative to the television version already
tested. However, the ergonomics aspects would require careful consideration even in the earliest
stages of such a project.

7. CONCLUSIONS

Closed circuit television fed by a simple optical system incorporating a stabilized convex
mirror has been demonstrated as a hovering aid for light helicopters. Successful flight tests at
altitudes between 5 m and 600 m above ground have been made in which the stabilized image
of the ground beneath the helicopter was presented to the pilot on a television monitor screen.
With this aid, the accuracy of hovering in the horizontal plane in terms of departures from the
vertical passing through some designated ground point was better than without the aid by a
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factor of up to 4-5. The accuracy did not reach the limiting value set by the inherent error of
the gyroscope so that further improvements may allow even more accurate hovering. The most
important of the imprevements suggested are firstly the provision of a zoom lens, and secondly,
an altitude indication on or near the monitor screen. Even with the present system, the point
vertically beneath the helicopter is displayed continuously with an accuracy of a few milliradians,
regardless of hovering accuracy. Other stabilized viewing systems seem feasible. There appear
to be several possible military and civil uses for helicopters fitted with simple stabilized viewing
systems.
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TABLE 1
Mass, size and electrical requirements of components of the prototype Hoversight

Component Mass kg | SizeL x B x Wm Electrical requirements
Gyroscope unit and 89 050 < 0-28 x 0-18 | Gyro: 110V, 400 Hz,
TV camera 75 W at start, 12 W running
Camera: 12V, 0-:2 A D.C.
Pilot’s TV monitor 4-8 0-35x0:25x0-23 112V, 1-3A D.C.
Rotary inverter for 6-1 0:20 x 025 x 0-15 | In: 24to 28 V,
gyroscope 20 A at start, 4 A running, D.C.

Out: 110V, 400 Hz, A.C.

Video tape recorder I1-0 0-33x 0-13x0-30 | 12V, 85A D.C.

Ni-Cd battery pack for 11-0 0:24 X 017 x 0-19 | 13V max., 7-5 x 104C
television system




TABLE II

Record of times that the pilot spent looking at the TV monitor screen
while hovering with the Hoversight during three flights. The asterisks
indicate occasions when wind turbulence was particularly marked.

Nominal Time on Total 9, Time on
Altitude m Screen s Time s Screen
5 111 128 87
5 115 142 81
9 82 93 88
9 112 134 84
30 139 160 87
30 119 131 91
61 65 79 82
122 103 126 82
122 116 147 79*
122 101 127 80
152 146 183 80
152 72 102 71*
213 95 126 7
213 137 163 84
304 91 123 74*
304 113 129 88
Mean 82-1
SD 5-6
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TABLE III
Results of measurements of films recorded from the ground station. This shows a comparison
between horizontal displacements and velocities of the helicopter with and without Hoversight
information supplied to the pilot’s monitor screen. The respective mean horizontal positions are
not necessarily vertically above the ground target.
Pilot’s Altitude m Radius Horizontal Velocity m/s | Angle SD
Monitor | Nominal | Mean SD SD Mean Extreme Degrees
m
On 61 49-8 9-81 4-14 0-60 1-76 3-1
On 61 36-2 5-67 -07 0-61 1-94 68
Off 61 47-4 5-04 4-51 0-50 2-70 7-5
On 152 156 7-03 I1-8 [-59 5-64 57
off 152 165 19-1 13-7 1-47 6-96 5-8
On 610 600* — 24-6 1-51 5-20 9.7
Off 610 600* — 29-9 1-92 S-7i 56

* At this altitude, measurements of helicopter image size were too imprecise to permit meaningful
determination of altitude variation.




TABLE 1V
Comparisons between measures of helicopter movement calculated from ground-based films.
Pilot’s | Nominal | RadiusSD | Ratio |[Mean Hor. Vel.| Ratio |[Extreme Hor.Vel.| Ratio
Monitor | Altitude |Mean Altitude | Off/On |Mean Altitude| Off/On| Mean Altitude |Off/On
On 0-097 7* 0-014 4* 0-044 5
61 0-974 0-729 1:270
off 0-0952 0-0105 0-0570
On 0-0756 0-0102 0-036 2
152 1-095 0-867 1-168
Off 0-0830 0-008 85 0-042 2
‘ On 0-0410 0-002 52 0-008 67
610 1:217 1-26 1-096
Off 0-049 8 0-003 18 0-009 51
* Results for two flights pooled.
&
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TABLE V

Comparison of accuracy of hovering above a given ground target as a function
of altitude and presence or absence of information from the Hoversight. These
data are taken from the regression lines shown in Figure 13.

At 10 m altitude At 600 m altitude
Condition
log Ry .5 Ro.; m log Ry.5 Ry.; m
Pilot’s monitor off 0-22 1-66 1:92 83-1
Monitor on, 75 mm lens 1-92 0-83 1-27 18-4
Monitor on, 136 mm lens 1-86 0-72 1-53 33-8




APPENDIX 1

Extract from RAAF Aircraft Research and Development Unit Report No. TI 453, Flight Test
Report, Helicopter-Hover Sight by Flt Lt B. G. Haylock, Laverton, September 1975 (Ref. 15).

RESULTS OF TESTS AND DISCUSSION

General

7. ARL analysis of the results indicated that when using the hover sight the mean horizontal
displacement from the desired hover position was approximately one third of that measured
when the pilot’s TV monitor was not operating. This was not a valid operational comparison
since without the sight the pilot had no indication of relative positions of aircraft and target.
RAAF helicopter units use crewmen to direct accurate hovering over targets directly below the
aircraft, and comparative testing under these conditions would be essential if further testing of
the sight was conducted.

Engineering

8. Several design and fitment aspects limited the operational capability of this prototype
system. The external camera and gyro system required precise positioning to sight between the
airframe and the skids using relatively rigid retaining structures to isolate induced vibrations.
These requirements made the interchange of equipment between helicopter types (Iroquois and
Bell 206B-1) impossible without major structural changes to the retaining framework. The
unstreamlined framework added considerable drag in cruise flight. Available cockpit space
directly in front of the pilot for the TV monitor varied between helicopter types, again making
it unlikely that a single system could be developed which was suitable for all types.

9. The prototype system was operated at full brightness and contrast using a shrouded
cockpit screen in an attempt to provide sufficient clarity of the hover target for the pilot. How-
ever, these conditions did not give satisfactory definition of targets of similar brightness such as
bitumen runways and green grass. The problem was compounded by sunlight reflections on
the cockpit monitor which could not be alleviated, regardless of screen shroud size. Production
systems would require wider contrast and brightness setting to provide suitable clarity of targets.

Hovering Accuracy
10. The hovering accuracy was a direct function of monitor observation time. Division of
observation was primarily in three areas;

a. Cockpit (altitude, engine instruments).

b. Exiernal (attitude, heading).

¢. Television Monitor (hover accuracy).

Since the cockpit television monitor was mounted on the co-pilot’s side of the aircraft (owing
to space availability) excessive scanning movements were required to cover all of the observation
areas. Consequently, at least one scanning area had to be disregarded to provide realistic hovering
results. Below 200 feet AGL the TV monitor was closely observed and a co-pilot was used to
observe cockpit and instruments. Peripheral vision was suitable for altitude monitoring. Above
200 feet AGL the television monitor was the least observed owing to the vertical accuracy
requirements (paragraph 13) and attitude variations associated with station keeping in the
naturally higher wind conditions. Hence, the hovering accuracy above 200 feet AGL (apart
from the magnification difficulties detailed in paragraph 12) decreased noticeably with increased
altitude. At all altitudes the trials hovering accuracy qualitatively did not appear to be as high
as the crewman directed hovering technique currently employed within the RAAF.

11. The offset television monitor also caused orientation problems when correcting for
drift away from the target. Although the figure ‘11’ on the Laverton grass runway was used as
the target, and aligned in the vertical sense on the screen (aircraft heading 290° magnetic), diagonal
aircraft movements to bring the target to screen centre were difficult. In most cases, corrections
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in hovering position were accomplished by moving laterally and longitudinally to make the
resultant diagonal correction. Directional corrections were also difficult, particularly when
tracking line features in forward flight. These problems would be alleviated by positioning the
monitor directly in front of the pilot.

12. Lenses. For hover heights between 15 feet and 200 feet AGL, the 136 mm lens provided
adequate magnification for target sighting and guidance for hovering. Initial target acquisition
was extremely difficult when using the sight for the run-in owing to the high magnification but
was improved when the 75 mm and 25 mm (wide angle) lenses were employed. However, the
25 mm lens was unsatisfactory for hovering at these heights owing to the small size of the target
image. For hover between 700 feet AGL and 2000 feet AGL the 136 mm lens was suitable for
target acquisition but had insufficient magnification for accurate hovering. At 400 feet AGL
the hovering task was most difficult, as this altitude was the ‘crossover’ noint for the 136 mm
lens between limits for hovering magnification and acquisition magnification. A zoom lens
system, operated by the pilot, would improve this system and provide greater flexibility and
accuracy.

13. Vertical Hover Accuracy. ARL results, measured from image sizes on the ground based
films and video recorded tapes, showed large discrepancies between the calculated hovering alti-
tude and nominal hovering altitude. These discrepancies varied from 20 feet at 15 feet hover
height to 300 feet at 2,000 feet hover height. The ARL data also had altitude variations of up
to 300 feet between analysed film data and analysed video tape data. The inaccuracies at altitudes
below 200 feet AGL are inexplicable owing to the visual cues available to the pilot, both peri-
pheral and image size variation with altitude variation. At higher altitudes the visual cues were
absent and altimeter cross-checking was the only available altitude monitoring technique. The
inherent lag in this system proved dangerous and led to ‘settling with power’ (uncontrolled, high
descent rates recoverable only by entering autorotation) which took up to 1,000 feet loss in
altitude for recovery. Incorporation of a radar altimeter beside the monitor, or incorporation
of radar altimeter readout with the image on the screen is essential for operations above 200 feet
AGL and preferred for altitudes below 200" AGL.

14. Directional Accuracy. Directional hovering accuracy was maintained by use of a direc-
tional target (the runway marking: ‘11°). Although peripheral visual cues assisted directional
accuracy below 200 feet AGL, above this altitude loss of visual cues and the diminished image
size markedly reduced directional hover accuracy. If directional hovering accuracy was an
operational requirement, a magnetic heading readout beside, or on the monitor would be
essential.

Operational Applications
15. The operational applications for this system considered during the trials were:

a. hoisting,

b. rapelling,

c. external load operations, and
d. survey operations.

The hover sight had only limited application for hoisting and rapelling since a crewman is
essential during all phases of these tasks and he would be available to assist the pilot with
obstruction clearance and position holding. As these operations are normally required only when
surface conditions are unsuitable for landing, obstruction clearances from a crewman are essential
and this could not be provided by the hoversight system. In the test format, the sight was also
unsuitable for external load operations since the camera field of view did not include the cargo
hook during the hook-up phase. Single crew survey operations, where a helicopter may be
required to hover over an inaccessible survey point, was the only operation for which the sight
had an application. However, the sight limitations previously discussed would make this an
extremely hazardous operation.

CONCLUSIONS
16. The television hover sight as tested was unacceptable for helicopter operations. However,
many of the detrimental aspects of this system were a consequence of the prototype nature of
the equipment and could be improved to an acceptable standard. These were:
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c.
d.
e.

insufficient contrast and brightness control to provide clarity of the target image;

. lack of zoom lens facility to provide adequate magnification for target acquisition

and hovering accuracy;

lack of superimposed radar altimeter information for maintenance of altitude;
lack of superimposed heading information for directional stability; and

poor positioning of the pilot’s television monitor requiring excessive scanning.

17. If the television hover sight was to be developed beyond the prototype stage the following
engineering aspects would need to be considered:

a.
b.
c.

Interchange of externally located equipment between helicopter types.
Interchange of cockpit TV monitors between helicopter types.
Externally located equipment would require streamlining.

18. Although comparative trials were not flown, the flight tests indicated that the present
RAAF procedures using crewman to direct hovering operations would provide more accurate
hovering conditions than the television hover sight. Although the sight could have a survey
application, single crew survey operations would be hazardous owing to the sight limitations
discussed in paragraph 13.
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