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ABSTRACT

A method is presented which yields the autocovariance function of a

stationary discrete—time stochastic process in closed form. Special reference

is made to the Box Jenkins forecasting methodology in which the underlying

process is generated by passing white noise through a linear filter. The

impulse response of the filter and its Z—transforin, the transfer function, are

obtained from the equation which defines the filter. The bilateral Z—transform

of the autocovariance function is then derived from the transfer function, and

is inverted following a partial fraction expansion. Several examples of this

procedure are worked out in detail, and a summary of solutions for a number

of cases is given.
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1. INTRODUCTION

An important element in the development of forecasting models is the

autocovariance function of the process to be modeled. One obtains information

about the nature of this function by computing the sample autocorrelation

function from a sequence of observed values of the process, and one then uses

this information to establish the structure of an appropriate model. The

method of Box and Jenkins assumes that the process is generated as the output

of a linear filter whose input is white noise. Thus the following question

arises. Given the autoregressive—moving average (ARMA) equation that describes

a particular filter , what is the autocovariance function of the output of

that filter and how are the properties of that function influenced through

the choice of filter parameters. The autocovariance function can be computed

recursively in accordance with the method given in ~ox and Jenkins El), but

that method does not , a priori, shed much light on the nature of the auto—

covariance function.

In this paper we develop a method for obtaining a closed form expression

f or the autocovariance function of a discrete—time stationary stochastic process.

The method is based on concepts from systems engineering and makes use of the

Z—transform . It permits one to express the autocovariance function in terms

of the parameters of the ARMA equation, without the need for solving systems

of equations as would be required by the classical method . As a consequence

we give expressions for ARMA (p, q) with p > 1 and q > 1, wh ich are not to be

found in Box and Jenkins [1]. Described briefly the method involves first ex-

pressing the 2—transform of the autocovariance function, then performing a

partial fraction expansion, and then inverting the expansion.

The paper Is organized as follows. In Section 2 we discuss the filter

impulse response and the filter transfer function and their relationship to

1



the ARMA equation. The autocovariance function is defined in Section 3 and is

derived from the impulse response. It is also indicated how the autocovariance

function may be obtained from the ARMA equations by the classical method .

Section 4 develops, on the conceptual level , the method for the inversion of

the transform of the autocovariance function. The practical implementation of

the method of partial fraction expansion for linear factors, repeated linear

f actors , and quadratic factors is shown in Section 5. Finally,  a summary of

solved cases is given in Section 6.

2. IMPULSE RESPONSE AND TRANSFER FUNCTION

We consider a discrete—time stationary stochastic process X
n 

which is

generated as the output of a stable linear filter whose input is the stationary

process a~. In the terminology and notation of Box and Jenkins [1], x~ is an

ARMA ( p , q) proc ess , if we have the input—output relation

x — • x — — $ x — a — 0 a — — 0 a (1)
n 1 n—l p n—p n 1 n—l q n—q

The process x1~ can also be represented in terms 
of the impulse response ~~ of

the filter, namely

X
n 

— ~0
a + 1J11

a 
1 + IP2a~~,2 + ~~~~~ (2)

or

x ~ * a (3)
n n n

where the symbol * denotes convolution. If the coefficients of a~ and x~ are 1,

as In (1) , then we always have 1. Also, the impulse response is 0 f o r

n < 0.

Now we define the bilateral 2—transform of x~ as

- -n
x(z)  x a  (4)

n

and we le t ~ (z)  and ~(z) be defined analogously. We remark that for sequences

which are zero for negative values of n, such as is the case with 
~~~~~~ 

the

bilateral Z—transform is the same as the ordinary (unilateral) 2—transform.

2
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Equation (3), when transformed in accordance with (4), and with the convolution

rule, becomes

~(z) = ~(z)~~(z) (5)

The shifting rule for Z—transfortns states that the transform of Xf l k  is

Transforming equation (1) according to this rule and arranging

terms yields

1 — 0 — .‘. — S
x ( z )  1 

— l — 
a(z)  (6)

1 — 4 1z 
—

Comparison of (6) with (5) shows that

l — 0 z~~~— • • • — 0 z ~~
~(z) — 

1 (7)
1—  41

z — •..

The function ~(z) is known as the transfer function of the filter. It is

customary to express ~(z) as a rational function of z, th~t Is, as the ratio

of two polynomials. This becomes necessary if we wish to carry out a pci’tial

fraction expansion. We multiply both the numerator and the denominator of (7)

by z~ , where in — max(p, q). The result is

in m-l m-q
z — 8 z  — “~~— 0 z

~(z) 
1 

— 
N(z) (8)m 

— ~~ ~
m
~
l — — ~ am—p D(z)

1 p

where both N(z) and D(z) are polynomials of degree in in z. D(z) is the

characteristic polynomial of the difference equation (1). The zeros of D(z)

are the poles of the transfer function. The poles of ij~(z) play an important

role since their location in the complex plane determines the nature of the

Impulse response. A simple pole at z a gives rise to a geometric sequence

in n, according to the transform pair

Az n<-+ Aa u (9)
n

3
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where the symbol <—> denotes “transforms into”, and where U is the unit—step

sequence defined as

I
u — 

— 

(10)
L 0 otherwise .

A pole of multiplicity r at z = a gives rise to a geometric sequence multiplied

by a polynomial , according to the transform pair

<—> A(n+r—l) (n+r—2) ~ (n+l) a~ u (11)

A pole , simple or repeated, at z = 0 gives rise to an impulse according to the

transform pair

<—> Aâ (12)r n—r
2

where the unit—impulse sequence (or delta sequence) is defined as

1 1 for n =

— (13)
n-r I 0 otherwise

A pair of complex conjugate poles vith absolute value cs and argument ± 8 has

the associated quadratic factor

D
q
(Z) = (z — c&e18)(z — cze~~

8) = z2 — 2az cos3+ a
2; i = /T (14)

and gives rise to a sinusoidal sequence with geometric amplitude according

to the transform pair

A [z2sin y + az sin(~—y)] < >  Aci~ sin(nB + y)u  (15)
z — 2az cos8+ a

Only stable filters are admissible for our consideration since stability

of the filter is necessary in order for the output process x~ to be stationary,

and thus necessary for the existence of the autocovariance function. Stability

4
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implies that -, 0 as n -‘ ~~~, or equivalently , that all poles of the transfer

function lie inside the unit circle. The transfer function ~(z) has exactly

in poles, wh..ch we denote a1, a2 , ..., ~~ for m = p. If q > p then in =

and q — p of these poles are at z 0. We thus have in factored form

I ( z — c L1)(z— cs2) ... (z — a ) if p > q
D( z)  —~~~ 

p

L (z — a1)(z 
— a2) “ (z — a )  z~ 

q if q > p (16)

and we require for stability that Ici~I < 1 for all i. Furthermore , the transform

~(z) exists (converges) for values of z outside a circle of radius R, where

R = max{1a11 , I a 2~, . ..,  (17)

is the radius of convergence of ~(z). For zj < R , ~(z) is not defined.

The method of partial fraction expansion allows us to decompose the

transfer function (8) into a sum of recognizable elements of the form of the

left sides of (9) ,  (11) , (12) , (15) , which have simple inverse transforms.

Details of the method will be found in [2], Chapter 6. A unique decomposition

is possible only for proper rational functions. For this reason we first

divide ~(z) by z. The expansion then has the general form

~(z) N(z) v (18)z zD(z) ~ D~ (z)

where the Di(z) are the factors of D(z), which may be simple linear factors ,

or repeated linear factors , or quadratic factors.  In addition one of the

D1(z) is the factor a if N(z) is not divisible by z. In (18) each term

N
i
(z)/D

i(z) is itself a proper rational function. Therefore the degree of the

polynomial N~(z) is 0 for simple linear factors, r — 1 for repeated linear

factors of multiplicity r, and 1 for quadratic factors. Detailed examples

of the partial fraction expansion of ~~z) are given in Section 5.

5
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3. THE AUTOCOVAR IANCE FUNCTION

We denote by 
~k and the cLutocovariance functions of the processes

a and x . These are functions of the lag k and defined as
n n

= Cov[a , +k~ 
(19)

= Cov[x , X +k] (20)

It is a fundamental result that can be represented as the output of a linear

filter with impulse response 
~~ 

whose input is Uk~ 
see Papoulis [3]. Thus we

have

1k g~~* 
~k 

(21)

and in the transform domain

~(z) ~(z)~~(z) (22)

The significant part of the result is that is obtained from as

= 

~k 
* 
~
‘—k 

(23)

and that the transform of this relation is

~(z) — z)~~(~ ) (24)

where ~~
) is the transform of 

~~~ 
We note that is a rLonaauaal impulse

response because it is nonzero for k < 0, which means that the filter output

precedes its cause (the input). Since ~~z) exists for z~ > R , where R < 1,

it follows that ~(A) exists for Jz~ 
< h R .  Hence the function ~(z) exists in

the annulus of convergence R < zi < hR. We have from (24) th..~t

— l  —
— g(z) (25)

which implies that g.~ is a synmietric sequence. This fact is also seen from

(23) since

(26)

6
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If the input process a
n is white, which means that it is uncorrelated, then

21Jk = 0 a~~k (27)

where ci
2 Var [a 1, and (21) and (22) become

1k 
(28)

— o~ ~(z) (29)

The problem now at hand is to determine the sequence 
~~~~~ 

This can be done

using the relation (23) which is exp licitly -

0 = V ~ (30
~i—0

but this procedure does not generally yield closed form expressions for

Our approach therefore is to invert the bilateral transform ~(z), which Box

and Jenkins call a covaricznce generating function . The details of the inver-

sion will be developed in the next section. Prior to that we briefly discuss

another method for finding 
~k 

in order to allow a comparison with our method.

This method for computing 
~k 

is alluded to in [l],where an example is given for

the ARMA (1, 1) process. If one multiplies equation (1) by ~~~~ j = 0, 1, . ..,

and takes expected values, the result is the system of q + 1 equations

2
—

2
Cu
1 

— +lwO — — O
1a

p

Cd
j 

— 

~i
W j—i — — — — Sf

2; j  — 2 , 3, . . .,  q

i f j > p  (31)

where W
j 

— Cov[x , a~_~ ] is the crossoovariance of the processes X and a~. It

is apparent that this system of equations can be solved recursively for

wo, (ul, ... , w .  Next one multiplies equation (1) by Xn_k~ 
k — 0 , 1, ... and

takes expected values. This gives rise first to the system of p + 1

——- ---~ — —
~~~

-- -



simultaneous equations defining y0, y1, . . . ‘

= l~ l : ::: : : : :1:1 : ::: :
~1 ~1’r0 ~‘r~_1 1 0 q q— l

— 

~l~p—l — — 
~p~ p 

— 8p~ 0 — — B qWq_p (32)

where 8~ = 0 if j  > q. Thus , if q < p the last p — q equations of (32) have

a right hand side equal to zero. It gives rise secondly, if q > p, to the

following q — p equations

Yp+j 
— c1~1Y~~~ _1 — •.. — = — — — O qW q_p_j (33)

j  — 1, 2, .. .,  q—p

and thirdly to the infinite system of equations

— 

h1r+j_l 
— 4

~p~r+j—p 
— 0; j  1, 2 , ... (34)

where r = max{p, q}. Equations (33) and (34) constitute jointly a nonhomogeneous

difference equation which defines for k > 1. Equation (34) constitutes a

homogeneous difference equation which defines for k > 1 + inax{O, q—p}. In

order to compute one needs to solve equations (31) through (34). This pre-

sents no problem in the case where numerical values are given for the para-

meters and 8~ , and where (34) is solved recursively. The situation is dif-

ferent, however, if one needs a closed form solution expressed in terms of

the parameters and 8~ . In this case one first solves (31) recursively and

expresses 
~l’ ~2’ ~ W

q in terms of the and O~~. These expressions are sub—

- 
stituted in (32) and (33). Next one solves (32). Since these are simultaneous

equations, the solution requires essentially the inversion of a matrix of size

p + 1 in symbolic form, and this may be a difficult part. Equation (33) can

again be solved recursively, but is needed only if q > p. The homogeneous

- 
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— .-. -

equation (34) may be solved by the classical method , yielding the expression

k k k
= A

1a1 + A2c&2 + ... + A a  (35)

where the a
1 
are the roots of the equation

— 4~1
z~~~ — ~~

.. — = 0 (36)

The coefficients A
i 
in (35) are then determined by solving p simultaneous

equations consisting of (35) with k = r—1, r—2 , . . .,  r—p , where r = max{p, qi

and where the values of 
~k 

are substituted from the solution of (32) and (33).

Here again the solution of simultaneous equations in symbolic form may prove

difficult. It should be apparent that this procedure for finding a closed form

expression for 
~k 

can be a messy one. On the other hand, it is well known that

transform methods serve to simplify the solution of difference equations. This

is especially true of the method presented in the following section. The reason

is that this method does not require a separate solution of the systems (31)

and (32), which are not part of the difference equation, and moreover it does

not involve any solution of simultaneous equations at all.

We remark as an aside that the power spectral density function (or power

spectrum) of  the process x~ is readily determined from the transfer function

~(z). The power spectrum S(w) is the Fourier transform of the autocovariance

function y .  The Fourier transform is obtained from the bilateral Z—transform

by setting z — e~~, i — T~L Thus we have with (29) and (24)

S (w) — ~(e~~) — ~
2 

e~~)~ (e 1
~) — a

2
I~~(e

i
~
u
)l
2 (38)

This result states that the absolute value of the transfer function must be

determined for values of z on the unit circle. A graphical method for quickly

assessing the f o r m  of ~p(e~ ) from the zeros and poles of the transfer func-

tion is given in [2], pages 321 to 323.

9
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4. THE INVERSION OF ~ (z)

In this section we develop the method for deriving a closed form expression

for from our knowledge of the ARNA equation. Specific examples will then

be computed in the next section. The transfer function ~~ z) is readily deter-

mined from the ARNA equation, see (8). Next, we get the transform of g~ .from

(24). Thus we must now address the question of inverting ~(z). It is possible

to have different sequences with the same bilateral transform. For example,

the sequences

n f o r  n > 0
b (39 )

0 otherwise

and

f
i— ~ 

for n < 0
c~ — (4 0)

0 otherwise

have the same tranform b(z) — ~(z) = z/(z—p). The difference is that ~
(z)

exists for I z i > ~ whereas ~ (z)  exists f o r  z~ < q. Therefore, to determine

uniquely the inverse of a bilateral transform, one must know the annulus of

convergence of that transform. We had shown before that the annulus of conver-

gence of  
~(z) is R < Iz ! < h/R, with R given by (17).

The function ~(z) is itself a rational function. Replacing z by 1/a in

( 7)  we obtain
1 — 8 a — — 0

~i) — 
1 (41)

Z 
l — $ 1

z —  • .•— z~

Since each pole of ~~z)  at z — a~ . where a1 # 0 , gives rise to a pole of ~ (h/z )

at l/z — a1, or z — 1/a 1, we can write (41) as

— 
P (z )  (42)

a Q (z )

- - - ~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~ 
— - — ---- -

~~~ 

—



where

Q( Z) — (z  — l/a1)(z 
— h/c&2

)  (z  — 1/a ) (4 3)

In the case q > p, ~(z) has poles also at a — 0, these become poles of

l/z) at z — 
~~~, which means that the degree of P(z) is greater than the

degree of Q(z). Multiplication of (42) by (8) yields the rational function

~ (z)  — 
N ( z ) P ( z )  (44)D ( z) Q ( z)

where the numerator has degree in + q and the denominator has degree in + p.

In order to facilitate the inversion of (44) we will exploit the symmetry

property of 
~~~~ 

and we will reduce the inversion of a bilateral Z—transform to

the simpler inversion of an ordinary Z—tranform . Since 
~~~~ 

is symmetric we

can represent it by its value at k — 0 and by the symmetric right and left

lobes. Thus, if we define

I O f o r k< 0
— 

— (45)
f o r  k > 0

we can write

— + h
~K 

+ h_k (4 6)

The tranform of (46) is

~ (z)  — g
0 + i~

(z)  + ~(.i) (47)

where i~(z) is an ordinary Z—tranform which converges for z{ > R and where

i~~) converges for I z i < hR. From (45) and the definition of the Z—transform

follows the asymptotic behavior

—

h(z) — as z -~~ (48)

g1
z as z -

~ 0 (4 9)

11



where condition (49) implies that i(-~) is divisible by z. We note the fol—

lowing facts. First , i (z) and h(~) are rational functions. If 1i(z) were not

rational then i (1) would not be rational and ~(z) could not be rational,
which is a contradiction. Second, the poles of 1 (z) and h(1) combined must

be the poles of ~ (z ) , that is, the poles of ~(z)  and ~
(
~

) combined . Third,

for each pole that i (z) has at a 0, ~(1) must have a pole at z = h/a
r
.

Since i (z) converges for Iz i > R all of its poles lie inside or on the circle

of radius R, and hence are identical to the poles of tp(z). Likewise, the

poles of h(1) are iden tical to the poles of  
~ (~

-) . We can therefore write (47)

as

N
1

(z)  N
2

(z)
g ( z )  g

0 + D ( z)  + Q ( z )  (50)

where N
1
(z) is a polynomial of degree in — 1 and N

2
(z) is a polynomial of degree

q. Because of the symmetry of g.~ we have complete information about it if we

know g
0 

and h
k. We let

— + hk (51)

aild

?(z) — g
0 + i (z) (52)

Clearly ,  ~(z) is an ordinary Z—transform which can be written as

M(z)f ( z )  — D (z)  (53)

where D(z) is the characteristic polynomial given by (16), and where the degree

of M(z) is the same as the degree of D(z) ~iince

?(z) —~ g0 as a (54)

Equa tion (50)  becomes

M (z)  N
2

(z)
g ( z )  — D (z)  + Q ( )

12



Our objective is to determine ?(z) from ~(z). This means that we must find

the coefficients of the polynomial M(z ) , which is most expediently done by

partial fraction expansion. However, a unique expansion of M(z)/D (z) is not

possible because it is not a proper rational function. We therefore divide

~(z) by z and obtain

— M ( z)  N
3

( z )
+ 56z z D (z )  Q (z)

Note that because of (49) N
2(z) is divisible by z, hence we have N

3
(z)  = N

2(z)/z.

Now we can write the expansion

— , ., M ( z )  M ( z )
f~z, = ____ = ~ i (57)z z D (z)  

~ 
D
i

(z)

which is analogous to (18) . Furthermore

— N ( z ) P ( z )  N (a) M (z)
= 

3 
+ V ~ (58)

a z D (z) Q ( z)  Q (z )  
~

The D~ (z) are the factors of D(z)  and include an additional factor z if N(z)

is not divisible by z. The M~(z) are polynomials that have one degree less

than We see that the sequence 
~k has exactly the same structure and

is made up of the same sequences as the impulse response L’k~ 
only with dif-

ferent coefficients. The final and important result is that the coefficients

of the M
1
(z) in (58) are determined from g(z)/z by the identical procedure

by which the coefficients of the N~(z) in (18) are determined from ~(z)/z.

Although (58) in comparison with (18) has the additional term N
3

(z ) / Q ( z ) ,

this term does not affect the procedure (which is based solely on the factors

D1(z)) because Q(z) does not contain any of the factors D1(z).

The analysis up to this point has focused on the underlying concepts. We

emphasize however that the implementation of the method is very simple. It

involves the following steps.

1. Determine ~(z) from the ARNA equation.

13
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2. Perform a partial fraction expansion of ~(z)/z into terms whose

denominators comprise all factors D~(z).

3. Multiply the expansion by a and invert.

Specific examples of this procedure for simple linear factors, repeated

linear factors, and quadratic factors are given in the next section. A sum-

mary of the results of a number of solved cases is given in Section 6. Details

of their derivation are available from the author upon request.

5. EXAMPLE CASES

5.1 SINPLE LINEAR FACTORS

Excmrple 1: We consider the case ARMA (2, 2) for which (1) becomes

x —~~~x —~~~x a — G a  — G a  (59)n l u—h 2 n—2 n l n—l 2 n—2

The transfer function (8) is

z
2

— G z - 0 N(z)

~ (z)  = 
2 

1 2 
= D( ) (6 0)

z _ 4
~l
z _ 4 I

2 
z

Now let the zeroes of  D (z)  be a1 and a2 . We then have

D ( z )  = (z  — ai) ( z  — a2)  (61)

and c
~l 

— a1 + a2, 
~2 

— —a1a2. We first find the transfer function. Division

of ~ (z )  by z introd uces an add itional pole at a
0 

— 0 because N(z) is not

divisible by z. The partial fraction expansion is

- A A A
~~a) ,,, Q~ + 1 + (62)z a z a1 a—ct2

where we find the coefficients by the standard method , see [2]

(z—c* )~~( z )
A
1 

— a.a~ 
, i — 0, 1, 2 (63)

14 
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Specifically we obtain

z
2

— S a — S  S
A —  

1 2 2 (6 4 )
0 (a—a

1
) (a—cs2) z—0

And in the same manner we find

2a, — cz,G, —

A — ( 6 5)
1 ct

1
(a
1—a2

)

2
— ct~,8 , — 5,,

A — ‘ ‘~~~~~ 
‘

~ ( 66)
2 a 2 (c52—a 1

)

Multiplication of (62) by z and inversion yields the impulse response

— A
0~
5 + A1a~ + A2

a~ ( 6 7 )

To obtain the sequence we note that it must have the same structure as the

impulse response, namely

— B
O~
S
k 

+ E 1a~ + B 2a~ (6 8)

where

B1 
— 

~~~~~~~~~~~ 

i — 0, 1, 2 ( 6 9 )

Clearly then we have

— ~(—~—)A~ 
(7 0)

We obtain f r om (60)

1 — 0 a — 0
2
z
2

— 1 (71)
Z (l—a~~) (1.-a2z)

and the coefficients are from (70) and (71)

— A
0 

( 72 )

1 — a e — a29
B — 

1 1  1 2  A
1 

( 7 3)
1 (1—u

1
) (l—a

1
a2
)
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2
1 — cs

20 
— 

~

2 2 2(l—a
1
a2) ~~~~~

This example demonstrates amply the simplicity of the procedure and its sub-

stantial advantages over the approach mentioned in Section 3. We note that

it is not necessary to first find the impulse response and its coefficients A~.

The structure of (68) is known from the poles of ~p(z)/z and the coefficients

may be obtained directly from (69). However, since these coefficients

will always satisfy the product form (70), it seems convenient to express them

in that form.

Es~np le 2: Whenever the order p of the autoregressive part is greater than

the order q of the moving average part, the division of ~( z)  by z merely cancels

an existing factor z in the numerator N(z). As an example we take the system

ARMA (2 , 1). Equation (1) becomes

a —~~~x —~~~x — a — G a  (75)n l u— h 2 n— 2 n l n— l

and the transfer function is

2
a — G z

~(z) 
2 

1 ( 7 6)
a — —

Now let the denominator of ~(z) be factored as

D ( Z)  (z  — cs) ( z  — B)  ( 7 7)

we have

— a — B
____ — 

1 ( 7 8)
a (z  — a) ( z  — B)

and the expansion (41) becomes

- A A
~s(z) — 

1 + 2 (79)
a a — c s  a — B

The impulse response is

- A1a~ + A2? (80)

16



where, f r om (63)

a — B
A1 — a — B ’  A2 B — c s  

(81)

Furthermore

— B
1
c5
k + B28k (82)

where

2 l c s  1 — a S
B =

~~~~
— A = 

1 A 
(83)

1 (l a)(1 B)  1 (l ~~~a
2) ( l~~~czB) 1

= 

(1 - cs8)(1 - 8
2
) 

A2 (84)

5.2 REPEATE D LINEAR FACTORS

We consider now the case where one of the factors of zD(z) occurs more

than once. Let B be a zero of zD(z) with multiplicity k. Then we can write

aD(a) (a — B)
kD ( )  (85 )

and the transfer function is expanded as

~(z) = 
N(z) 

— 

N1
(z) 

+ 
N2

(z) 
( 86)

a z D (z)  (a — 8) k D2(a)

where the term of interest has the further expansion

N (a)  A A Ak_ i1 0 
+ 

1 
~~~~~~~~~~~~~~ 

.1. 87
(z — B) (a — B) (a — B)

We need to determine the coefficients A1, A2, . . .,  A.~~1
. To this end we

define the function

P ( a)  — ~(z) (z  — 8) k (88)

17 
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It now follows from (86) and (87) that

k 1 N
2

(z)
P ( z )  = A0 + A1

(z - B) + + 
Ak_i

(2 - B) 
- 

+ D 2 (z) (z - 8)k (89 )

and the required coefficients are isolated by evaluating P(z) and its derivatives

at z — 8. Thus we have

A0 P ( 8)

A1 dz

1 d~A . = - - -  —i- P(z) (90)
~ ~~ dz~

After the coefficients have been determined we multiply (87) by z and invert.

The inverse transformation is denoted by the operator symbol £
1. In the

case 8 # 0 we use the rule

a 1 = ( n ‘
) 8

n+l—j (91)
~~ ‘ 

[(z — 8) j j  \j — 1 ,

from which it follows with (96) that

z_ l [ 1 ]  — A~ (k — 

n 
— 1) 

8
n+l-k+j 

(92)

In the case B — 0 we require the inverse transform of z1~~ which is simply a

unit impulse at the position n — j — 1, namely

~—l — 

~~~~~~ 
(93)

and the inverse transf orm of  (87)  becomes

—l 
N
1

(z)  t~—l
k 

— 
~ 

A
j
6
~~.l_k+j 

(94)
a j — o

18
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The expansion of the transform of the function in analogy to (86), is

?(z) M
1
(z) M

2
(z)

Z 
= 

(a — 8) k 
+ 
D
2

(z)  ( 95)

where

M
1

(z)  B0 B
1 + 

Bk h  ( 9 6)
(a — 8) k 

= 

(z  — 8)
k + 

(z  8) k—l 
+ “ z — B

After defining the function

~ 
(a) 

~ 
()

~~~

a 
(z  — 8) k = P ( z) ~,(~)Q ( z )  =

we obtain

1B0 
= Q(B) = A

0
q,(-~)

B1 = Q ( z )  
v.8 

= A
1ip(~

-) + A
0 dz (2=8

1 d3
B. —i- —- Q(z)! (98)

~ dz3 fz=8

It then follows that

k-i

( z )  (~=o ~~ ~k - - ~) 8
n+l-k+j 

for B ~ 0

~~
1 M1 

~~~B ’ n

_ 
- 8)

k] I k-h
B~~ f o r 8= 0 (99)j  n+l-k+j

Excviip le 3: We consider the system ARNA (2, 1) whose characteristic polynomial

has a double zero at z = 8. Equation (1) becomes

X - 2BXn_l + 8
2
X . .a  — G a  (100)n—~ n lu— i

19



and the transfer function is

2
Z — 8.~z

~~z)  = 
2 (101)

(z — B)

In accordance with (88) we find

P ( z)  = z — G
i; ~~ 

P ( z)  = 1 ( 102)

and the coefficients of the impulse response are computed from P(z) by (99) as

A0 = 8 — 8
1; A1 = l  (103)

The inverse transform (91), for j  = 1 and j  = 2 is

a 
•

~ = 8
n

_ L2 8J -

— B)~~~] 

= nB h l l  
(104)

and the impulse response becomes

- 

~
p
n 

= (8 — 8 )nB~~
1 

+ 8 (105)

The function Q(z) defined in (97) is

1 — 6
1
z

Q ( z )  = (a — B
i
) 2 (106)
(1 Ba)

and

d 1 — 28
18 + + (8 + 8~ B — 28

i
) z-a-— Q ( z )  

3 (107)
(1 — Bz)

The coefficients of 
~k 

are computed with (9 8) as

(8 — Oi)(l  — 8
1~~B0 — 2 2 (108)

(1 — B )

20
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(1 + $2 )(l  + 0~~) — 40
18B = 2 3  (109)1 ( i — B )

Finally we have

~k = BØkB
k 1 + B1B

1
~ 

(110)

Excanpie 4: We treat here the system ARNA (1, 3), which induces a triple zero

at a = 0. Equation (1) becomes

x —~~~x = a  — B a  — G a — G a  (111)
n in— i n i n—i 2 n—2 3 n— 3

and the transfer function is

~ (z)  = = 
z3 - 0

1
z
2 

- 0
22 

- 0
3 (112)

a ( a — + 1
)

In this case D(z) has a double zero at a = 0, and the division by z

introduces the third zero. The partial fraction expansion is

- A A A A
~ (z)  O~~~~i~~~~2~~ 3 (113)
a 3 2 a z — c ~a z

where the c o ef f icient A3 is determined by the method f o r  linear f a c tors ,

namely 3 2
A
3 

= 
N (z)  

— 
l 

— O
l+l

_ 0
2+1 

— 
3 ( 114)

a a~~~~1

To obtain A0, A1 and A2 we use the method for repeated linear factors. From

(88)  f ollows 3 2z — G a  — 8 z — 0
P(z) — i1 (z)z

2 
a 

~~~~~_ 

2 (115)
+1

2 3 23z — 2 01z — 8 ,, a — G a  — 8,,a — 8 ,,
-~~— P ( a )  — — (116)dz Z — • ].

- - 

- 
- 
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d2 3a - 
~h 

(3a
2 

- 20
1 

- 0
2
) (z 3 — 0~ z

2 
- 82z 

- 03)

~~~ 

—
~~ P( a) — 

~~ 
— 

— 
2 + 

3 (117)
dz 1 (a — 

~~~~ 
(z —

Evaluation of (115) , (116) and (117) at z = 0 yields

0
3A

0

0
2 

0
3 

8
2+1 + 0

3A - — + — -

~~ 

1 

+ 0
2$1 + 03A

2 
+ — ~~~+~~~~~~~~ 3 (118)

+1 +1 +1

The impulse response is

4, — A
0d 2 + A

1
d

1 
+ A2

cS + A3+~ (119)

Now, because Q(z)  — P (z)~~(
1),  the equations (98) for the coefficients B0, B1,

and B2 become
— lB0 A
04,(~

-)

B
1 

— [A1~~~~ + A0 ~~

B2 — [A 2+(
A) + A

1 ~~~
— 4 ,(’) + ~ A~ ~~ ~~~~]aaO (120)

where 2 31— 0 z — 0  a — 8  z

d - 
— 29

2z — 30
3
z
2 

+ 
+i
(l — G1z — 0

2a
2 — 0

3a
3)

da “a - 
1 - +1

2 (1 -

d2 — 1 ~
2B
2 

— 60
3
a 2+1

(8
1 
+ 2022 + 38

3
a2)

— i — +1.
z (1 —

2,
2(1 — e a — 8 z2 — 8 a3)

+ 1 1 2 3 (121)
(1 — •1

z)

—



Substituting these results into (120) gives

B0 — A 0

B
1 

— A
1 + ~~~~~~ 

—

B2 = A2 + (~~~~ 
— 81)A1 + ~~~~~~ 

— - 82
)A 0 (122)

The function 
~k 

is

— B
O
dk_2 + Bl~k_l 

+ B2~k 
+ B

3~1
k 

(123)

where B3 is obtained as

B
3 

= A
3~(~~) = 

- :r~ 
- 

~ A3 (124)

5.3 QUADRATIC FACTORS

A quadratic factor with real coefficients arises as the product of two

linear factors with complex conjugate zeros. Let these zeros be at

and cse ~~~~~~ where i denotes the imaginary unit. We then obtain the quadratic

factor

D1
(z) — (z — ae18)(z — cse

_iB
)~ 

2 
— 2ctz cos$ + a2 (125)

Now let the denominator D(z) of the transfer function contain the quadratic

factor D1(z). 
We can write

aD(z) — D
1

(a)D2(z)

and the transfer function has the expansion

.~ N
1

(z) N
2

(a)
— + (126)z D1(a) D

2
(a)

23



N
1
(z) is a polynomial of degree one and has two open coefficients which are

to be determined by the method of partial fraction expansion. If we write

N1(z) in the form

N1
(z) — A[z sin y + a sin(8 — y)] ( 127)

= A
1
c z si n B + A 2( z —c s cos B)

where
A
1
= A c os -r; A2

=A s i n y

then the inverse transform of the first term of (126) multiplied by z is

—l zN1(z)1
D
1

(z) = Act” sin (nB + y)

= a”[A
1 
sin nB + A2 

cos nB] (128)

Thus every transform with denominator D
1(z) represents a damped sinusoid of

amplitude Act~ , frequency B, and phase angle y. We have to determine the values

of A and y or of A
1 

and A
2. We first define the function

P(z) j(z) D
1

(z) (129)

It then follows from (126) and (127) that

N2
(z)D

1
(z)

P( a) — A1a sin B + A,(a — a cos B) + 
~
. ., (130)

The required coefficients are isolated by letting z take on the value

z0 
— ae18— a(cos B + I sin 8) (131)

This value is a zero of D
1
(a), hence D

1
(z
0) 

— 0. We then obtain

P(z
0
) — A

1
a sin B + A 2(a cos 8 + Ia sin B — a cos B)

— a sin 8(A1 + IA2
) (132)

and , dividing by a sin B

P(a 0)
A + ia (133)asinB 1 2

The values of A
1 and A

2 are now readily determined. We note that P(a
0) is simply

24



a complex number. Denoting its real part by R and its imaginary part

by I , that is, letting

P(z
0) 

= R + ii (134)

we find

A = 
1R2 + 1

2 
y — arc tan (135)a sin B

or

R IA = A = (136)
1 cL sin B ‘ 2 a sin 8

An analogous procedure applies to the transform f ( z ) . As the counterpart to

(126) we have the expansion

~ (z) 
= 

l,f~ (z) M
2

(z)
a D1

(z) + D2
(z)  (137)

where
M
1
(a) = B[z sin e + a sin (B —

= B
1ct sin B + B2(z 

— a cos B)
and B1

= B c o s~~ ; B2 B sin€ (138)

We define the function

4, (z) ~ (I)
Q(z) — D (z) — P(z)~~(-1) (139)z 1

and obtain

Q(a0)
asin 8

3l~~~~~2 
(140)

Now let C
1 

and C
2 
be the real and imaginary parts of j(-~ -) .  It then follows that

Q(z
0
) P(z

0
) 

1
a s inB asin 8~~~~~

)a
~~~l

+ I A2) l +iC
2

) (141)

and also that

B
1 

— A
1
C
1 

— A
2C2

; B2 — A
1
C
2 

+ A2
C
1 

(142)
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Excznple 5: Consider the system ARNA (2, 2) governed by the equation

x — 2 a cos$ x +a
2
x — a  — G a  — B a  (143)n n— i n—2 n 1 n—i 2 n—2

The transfer function is

— 
a2 — 8

1z — 8 24,(z) — 2 2 (144)
a — 2aa cos $ + a

and the partial fraction expansion of 4’(z)/z has the form

~ (z) A
0 

A
1a sin B + A2

(z — a cos 8)
z a 2 2z — 2az cos8+a

By the usual method for linear factors we find

— e
A0 

= ~ (O) — (146)

Next we let in accordance with (129)

2
a — 0

1a — 8 2 —lP(z) = z — 0~ — 02 2 (147)

This function is now evaluated at

P (z 0
) — ae1~ — 0

~ 
— -

~~~~~ e~~~

0 0
— (a — —

~~) cos 8 — 8 + i(cs + ._a) sin B (148)
a 1 a

After dividing (148) by a sin B and comparing it with (133) we see that

B B
A1 (1—4 C 0t B _ a s ~n B

- S
A2 — (l+_4) — 1 — A 0 (149)

• The impulse response is

- AO~
Sn + a’~(A1 sin B + A2 cos nB) (150)
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The function has the same expansion as (144), namely

= B
O~
Sk + ak (81 sin kB + B2 cos kB) (151)

where

B0 = A
0~(
1) 

z—0 
— A0 

(152)

In order to find and B
2 we must evaluate 4,(~) at z = z0. We have from (144)

and (125)

~ (z) = 
~2 

- 

~2 
-18 

(1~3)
(z—cs e )(z—cs e )

and therefore

1 — 8 z —  B z
= 

lB 
2 

—iB 
(154)

(1— zae )(l — zcte )

• Substitution of 2
0 

— ae18 in (154) yields

18 2 2i8
1 1 — G ,ae — 0.,a e

(_±_) _ -I. 4

2 2 i8 20 (1 — a e )(l — a )

iB 2 2i$ 2 —2iB(l— G
1
ae — O 2a e  ) ( l —a e  )

— 2 4 2 (155)
(1— 2a cos 28+a )(1 — a )

We let D
1 

and D
2 be the real and imaginary parts of the numerators of (155).

We thus have

+ 
~~2 

— 1 — O1cse~
8 — 0

2
a2e218 — a 2e 218 

+ 01a
3e iB + G2

ct4 (156)

and after separating real and imaginary parts

— 1 + 02cs4 + 01
(a3— a) cos 8 — a2(l + 02) cos 2B 

(157)

D
2 

— —8
1

(a + a3) sin 8 + cs
2(1 — 8

2) sin 28 (158)
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The result is that

D + iD
= C

l + IC2 = 
2 

2 
2 (159)

0 (l—2a cos 2 8+ a ) ( l —a )

and 8
1 
and B

2 
are given by (142).

Since it is not possible to work out simple expressions for 8
~ 

and B
2 
in

terms of the coefficients a, B , 81 
and we now work a numerical case.

- Let (143) be

a — l. 4X
1 

+ O . 9 8 X 
2 

= a + an_h — a 2 (160)

In this case we have

O 2~~~
l

2a = 0.98;

cos B — sin B

a sinB a c o s B O.7

cos 2B O, sin 2B l

substitution of the appropriate values in (148) gives

P(z
0
) — 0.98571 + i(1.41429) (161)

and using (136) we obtain

A
1 

= 1.40815

A2 
— 2.020414 (162)

From (146)

A0 
— —1.02041

So the impulse response (150) becomes

— —1.02041 a + (0 98)n12(1 40815 sin + 2.02041 cos ~~) (163)

28
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We further have from (155)

~~~1) — 
[1 + 0.7(1 + i) — 0.981] (1 + O.98i)

(1 + 0.98 2) (1 — 0.98)

= 
1.9744+1.3861 

= 50.357 + 35.351 (164)

and with (142),  (159) and (162)

B1 
= —0.51143

B2 = 151.52

It therefore follows that the function is

= —1.02041 + (0 98) k/2 (0 5 11 4 3  sin + 151.52 cos ~~~~~
-) (165)

6. SUMMARY OF SOLVED CASES

This is a su ary of the form of the impulse response and of the auto—

covariance function corresponding to the most frequently encountered ARMA

equations. In listing the various cases we use the numbers (1), (2), (3)

on the left margin to denote:

(1) The defining ARNA equation

(2) The impulse response ~~ and its coefficients

(3) The normalized autocovariance function and its coefficients

We note that the autocovariance function of the filter output X
n 
is multi-

plied by the variance of the filter input a~ . Also, the expression given

for 8k represents the autocovariance function only for k > 0. For k < 0

the s y e try is used, that is g .~ —

- 

CASE 1: ARNA (0, 1)

(1) x — a  — G a
n n i n—i

(2) j , — a  — e a
it n i n-i

(3) g.~ — (1 + 8
~
)ak — e

lak_l

29
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CASE 2: ARMA (0, 2)

(1) x — a  — B a  — B a
n n i n—h 2 n—2

(2) 4, a — elan i  
—

(3) g~ — (l+e
~

+e
~

)a k + 6l~~l
02~~k—l 

— 02ak 2

CASE 3: ARMA (0, 3)

(1) x — a  — G a  — B a  — G an n lu— i 2 n— 2 3 n—3

(2) ‘p —~~~ — e d  — G ~~ — s on a i n—h 2 n—2 3 n—3

(3) = (i+0
~
+0
~
+0
~
)Sk + (_e l

.I.8
1e2+02

8
3
)Ok h  + 

~~
0
2~
0
h°3~°k2 

— 0
3
6k 3

CASE 4: ARMA (1, 0)

(1) X — = a
n

(2)

(3) g,
~ 

— q~ f(h —

• CASE 5: ARNA (1, 1)

(1) x —$x  — a  — G an lu-i n i n—i

(2) *,~ 
— A

0
0
n 
+ (i—A

0
)cb~ ; A0 

— e1/~1

k (1 — 0l~ l)(i  — A0)(3) g~ = B
OOk + B

1~1
; B

0 
— A

0
; B

1 
— 

21

CASE 6: ARNA (1, 2)

(1) X — $iXn_h 
— a — G1a~_1 

—

(2) - A0& + A1
0

1 + A2~~

01+1 + ~2 
02A0 — 2 ~ A1~~~ — ;  A2 — i — A 0

$1

~~ 8k 
— BOdk + Biók_i +
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2

B
0
= A

0 +(+1
— 8

1
)A
1
; B

1
= A

1; 
B2 2 A

2
+1

CASE 7: AENA (1, 3)

(1) x
n 

— +l
Xn_l = a — G

1
a

1 
— G2

an 2  
— 0

3
an 3

(2) 4,n 
— A

0
6~ + A1

0 
~ 
+ A20 2 + A34~

A — 
~~~ + 02+1 

+ 8
3 

8
2+1 + 

~3 - 

63 
-

0 3 
, A

1
— ——-— 2 

, A~~—~~-— , A
3

— l — A 0
+1

(3) g~ = B
o
8~ + BlcSk_i + B20k 2 + B34,~

B0 
= A

0 
+ (+

~ 
— 0

1
)A
1 
+ (4,~ 

- — e2)A 2 ; B1 
= A

1 
+ (+

~ 
— 0

1
)A2;

B
2 

= A
2 

; B
3 

= 

— 
11 — 2~i — 

8
3+~ A3

• l — ~~~

CASE 8: ARMA (2, 0) 
-

Set G~ = 0 in Cases 9, or 10, or 13.

CASE 9: ARMA (2, 1) where the characteristic polynomial has two real zeros,

That is, a — a and a = B. We then have

a2 — — 

~2 
(a — a)(z — B)

(1) X — (a + 8)x 1 + a8X 2 
= a — 8

1
a

1

a — B  8 — 0
(2) *~~= A 0

a” +A
1B~~ ; Ao

a
~~~_ 8

1 ; A
i
a

8_ ~~

• I— a O  1 — 8 0
(3) — B

0ct
k + B

18
k ; B0 — 

2 
1 A

0 ; B — 
2 A1

(l—a)(1 - a8) l (l-aB)(1 - B )

CASE 10: ARNA (2, 1) where the characteristic polynomIal has a double zero at

a — 8. We then have

— — 2~~ 

2 _ 23z + 8
2
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2
(1) x — 28x + B x  a — G a

a n— i n—2 xi i n—i

(2) 4,n 
= A

0
nB’~~

1 
+ A1 8 

n A
0 

= B — 0
1 

; A
1 

= 1

k— i k (8 — 0i) ( l  — 86 ) (l+8 2
)(1+e

2
) — 488

• (3) g~ — B
0
k$ + B18 ; B~ = 2 2 ; B = 

2
1
3(1-8) 1 (i - B )

CASE 11: ARNA (2, 2) where the characteristic polynomial has two real zeros,

that is, z = a and z = B. We then have

z
2

— + 1z — + 2 = z — a ~~z — B  
-

(1) X — (a + B)xn_i + a8x 2 
= a — S

i
an_i — 0

2
a

2 
-

(2) 4, A
0
0 + A

1
a
ul 
+

8
2 

a 2 
- a0

1 
— 0

2 8
2 

— BO i — 0
2

A
0

= — ~~~~; A
1 a(a — 8) ; A

2 — 8(8 — a)

• (3) g = 

~O
0k + B1a’~ + B28k

• l — a O  — a
2
G 1 — 8 0 — 8

2
G

B0 = A
0 ; B1 = 

1 2 
A
1 ; B2 = 

1 2
2 

A
2

(1—a)(1 — a8) (i—ci8)(1— B )

CASE 12: ARNA (2, 3) where the characteristic polynomial has two real zeros,

that is, a = a and a = 8. We then have
2 

— — (z — a)(z — B)

(1) x
n 

— (ci + 8)Xn_i + a$x 2 
= a

n 
— B

1
a~_1 

— G
2
an_2 — G

3
an 3

(2) 4, - A00 + Al
O
n 1 + A2a

” + A
38
”

• 

A _ _ _ a _ 3 . A _ _ _
~~

. A _ ’ 2 3 .
0 aB (a8)2 ‘ 1 a8 ‘ 2 a2 (c* — B)

- 8
2
0
1 - 

882 - 
0
3A~~— 2

8(8—a)
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(3) g~ = B
0O~ + BlOk ~. 

+ B2a~ + B3Bk

• B
0 A0 + ( a +$— 0

1)A1 ;

2 3 3
1 — ctG

1
— a 8 2 — a 8

3 
i — 8 0

1 — B 8 2 — B 0
3

2 (1 - a2)(i - aB) 
, B~ - 

(1 - ciB)(1 — 82) 
A3

CASE 13: ABMA (2 , 1) where the characteristic polynomial has complex conjugate

zeros, that is, a0 
— cte~

8 and a
1 

= ae~~
8. We then have

2 2 2
a —c P 1z — + 2 z — 2az c o s B + c z

(1) X — 2a(cos B)x~_1 + a
2
x 2 

= a — e
l
an_i

(2) 4,n 
= a

n(A0 sin nB + A1 cos uB)

01
A0 =co t B —

~~~~~~~8
; A1 l

(3) g~ = ak(B0 sin k8 + Bi cos kB)

B0 = A0C1 
— A

1
C2 ; B1 = A

0C2 
+ A

1
C
1

4 3 2
1 4 a + e (a — a) cos B — a cos 28

C1
Re4(-~— )~~ 2

1 
4 2

(l— 2c t cos 2 8 + c t ) ( h — c z)

—8 (a + a 3) sin 8 + Ct
2 
sin 28

C2
aIm 4,(-1--) 2 4 2• Z

0 (l— 2a cos28 + a ) ( 1 — a)

• CASE 14: ARNA (2, 2) where the characteristic polynomial has complex conjugate

zeros, that is, z0 
— ae~

8 and z
1 

— ae~~
8 . We then have

2 2 2
a — + 1a — + 2

a z  — 2aa cos 8+a
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(1) x — 2a(cos B )x
1 + a 2x 2 — a - G

i
a
n i  

- 8
2
a

2

(2) 4, = A
0
0 + ~

“(A
1 
sin nB + A2 cos nB)

02 0
2 B 0

A
0 

= — —
~~ 

; A1 = (1 — —~)cot B 
— 

sin
1

B ; A2 
= (1 + -4)

(3) — B
0
O~ + ak(B

1 
sin kB + B2 COS k8)

B0 — A
0 

; B
1 

= A
1
C
1 

— A
2
C
2 

; B
2 

= A
1
C
2 + A2C1

— 1 + 02
a
4 

+ 01
(a3 - ci) cos B - ct

2
(l + 02) cos 28

C
1
a R e 4,(—) = 2 4 2

0 (l —2 a cos 2 8 + a ) (l — c i )

- 1 -0
1
(ci + a3) sin B + a

2(l 0
2

) sin 28
C2

1m 4,(—)= 2 4 2( l - 2 a  cos 2 8 + a ) ( 1 - a )

S 
• 34
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