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ABSTRACT

A method is presented which yields the autocovariance function of a
stationary discrete-time stochastic process in closed form. Special reference
is made to the Box Jenkins forecasting methodology in which the underlying
process 1is generated by passing white noise through a linear filter. The
impulse response of the filter and its Z-transform, the transfer function, are
obtained from the equation which defines the filter. The bilateral Z-transform
of the autocovariance function is then derived from the transfer function, and
is inverted following a partial fraction expansion. Several examples of this
procedure are worked out in detail, and a summary of solutions for a number

of cases is given.
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1. INTRODUCTION

An important element in the development of forecasting models is the
autocovariance function of the process to be modeled. One obtains information
about the nature of this function by computing the sample autocorrelation
function from a sequence of observed values of the process, and one then uses
this information to establish the structure of an appropriate model. The
method of Box and Jenkins assumes that the process is generated as the output
of a linear filter whose input is white noise. Thus the following question

arises. Given the autoregressive-moving average (ARMA) equation that describes

a particular filter, what is the autocovariance function of the output of 11
that filter and how are the properties of that function influenced through {

the choice of filter parameters. The autocovariance function can be computed b

recursively in accordance with the method given in Box and Jenkins [1], but
that method does not, a priori, shed much light on the nature of the auto-

covariance function.

In this paper we develop a method for obtaining a closed form expression {
for the autocovariance function of a discrete-time stationary stochastic process.
The method is based on concepts from gystems engineering and makes use of the
Z-transform. It permits one to expregs the autocovariance function in terms
of the parameters of the ARMA equation, without the need for solving systems
of equations as would be required by the classical method. As a consequence
we give expressions for ARMA (p, q) with p > 1 and q > 1, which are not to be
found in Box and Jenkins [1]. Described briefly the method involves first ex-
pressing the Z-transform of the autocovariance function, then performing a
partial fraction expansion, and then inverting the expansion.

The paper is organized as follows. In Section 2 we discuss the filter

impulse response and the filter transfer function and their relationship to




the ARMA equation. The autocovariance function is defined in Section 3 and is
derived from the impulse response. It is also indicated how the autocovariance
function may be obtained from the ARMA equations by the classical method.
Section 4 develops, on the conceptual level, the method for the inversion of
the transform of the autocovariance function. The practical implementation of
the method of partial fraction expansion for linear factors, repeated linear
factors, and quadratic factors is shown in Section 5. Finally, a summary of

solved cases is given in Section 6.

2. TIMPULSE RESPONSE AND TRANSFER FUNCTION

We consider a discrete-time stationary stochastic process X, which is
generated as the output of a stable linear filter whose input is the stationary
process a . In the terminology and notation of Box and Jenkins [1], X is an

ARMA (p, q) process, if we have the input-output relation

G R e ¢pxn-p k. S elan-l LT eqan-q A

The process x_ can also be represented in terms of the Zmpulse response v, of
the filter, namely

v ¢03n i wlan-l ML =" Sl (2)
or

X =0 e 3)

where the symbol * denotes convolution. If the coefficients of a and x are 1,
as in (1), then we always have wo = 1. Also, the impulse response is 0 for
n < 0.
Now we define the bilateral Z-transform of x, as
x(z) = f xz " (4)
n=-—o
and we let a(z) and y(z) be defined analogously. We remark that for sequences
which are zero for negative values of n, such as is the case with wn, the

bilateral Z-transform is the same as the ordinary (unilateral) Z-transform.

2
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Equation (3), when transformed in accordance with (4), and with the convolution

rule, becomes

x(z) = Y(z)a(z) (5)
The shifting rule for Z-transforms states that the transform of Xk is
z-ki(z). Transforming equation (1) according to this rule and arranging

terms yields

- 1- elz-l ~ ves = g2 2 g
x(z) = E a(z) (6)

-1 =
1 - 62 -----—cppzp

Comparison of (6) with (5) shows that

" 1- elz - see ~ 9z 3
¥(z) = 1 = (7
1- ¢lz - oo — ¢pz

The function ¥(z) is known as the transfer function of the filter. It is
customary to express $(z) as a rational function of z, that is, as the ratio
of two polynomials. This becomes necessary if we wish to carry out a partial
fraction expansion. We multiply both the numerator and the denominator of (7)

by zm, where m = max(p, q). The result is

m _ m-1 Eas a0 m-q
E(z) i z elz Qg? . N(z) -
/0 - ¢lzm—1 S bl ¢pzm-p D(z)

where both N(z) and D(z) are polynomials of degree m in z. D(z) is the
characteristic polynomial of the difference equation (1). The zeros of D(z)
are the poles of the transfer function. The poles of ¥(z) play an important
role since their location in the complex plane determines the nature of the
impulse response. A simple pole at z = a gives rise to a geometric sequence
in n, according to the transform pair

Az
z=-Q

n
<> Aau 9)

e




where the symbol <—> denotes ''transforms into", and where u is the unit-step
sequence defined as
1l forn >0

v - (10)
0 otherwise .

A pole of multiplicity r at z = o gives rise to a geometric sequence multiplied
by a polynomial, according to the transform pair

: o

Z_) <—> A(n+r-1) (ntr=2) <. (n+l)anun (11)

zZ-Qa

A(

A pole, simple or repeated, at z = 0 gives rise to an impulse according to the
transform pair

.
r n

z

(12)

where the unit-impulse sequence (or delta sequence) is defined as
1l forn=r
Gn-r = (13)
0 otherwise

A pair of complex conjugate poles with absolute value o and argument + 8 has

the associated quadratic factor

Dq(z) = (z - aeie)(z - ae-iB) = z2 - 2az cosB + az; i=/=1 Q4

and gives rise to a sinusoidal sequence with geometric amplitude according
to the transform pair

A[gisin y + oz sin(B8-y)]

z2 - 20z cosB+ a

<—> Aa" sin(nB + y)un (15)

Only stable filters are admissible for our consideration since stability
of the filter is necessary in order for the output process x, to be stationary,

and thus necessary for the existence of the autocovariance function. Stability
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implies that wn -+ 0 as n > », or equivalently, that all poles of the transfer
function lie inside the unit circle. The transfer function @(z) has exactly
m poles, wh.ch we denote Gy Gps cres ap, for m = p. If q > p then m = q,
and q - p of these poles are at z = 0. We thus have in factored form

(z - al)(z - az) eee (2 - ap) if p > q

i P-q

(z - al)(z - az) see (z - ap) z if q > p (16)

and we require for stability that |ai| < 1 for all i. Furthermore, the transform
v(z) exists (converges) for values of z outside a circle of radius R, where

R = max{]all, lazl, sy {apl} (17)

is the radius of convergence of y(z). For |z| <R, ¥(z) is not defined.

The method of partial fraction expansion allows us to decompose the
transfer function (8) into a sum of recognizable elements of the form of the
left sides of (9), (11), (12), (15), which have simple inverse transforms.
Details of the method will be found in [2], Chapter 6. A unique decomposition
is possible only for proper rational functions. For this reason we first

divide ¥(z) by z. The expansion then has the general form

- N.(2)
i) . N2 | M
2 2D (2) D.(2) AR5

where the Di(z) are the factors of D(z), which may be simple linear factors,
or repeated linear factors, or quadratic factors. In addition one of the
Di(z) is the factor z if N(z) is not divisible by z. In (18) each term
Ni(z)/Di(z) is itself a proper rational function. Therefore the degree of the
polynomial Ni(Z) is 0 for simple linear factors, r - 1 for repeated linear
factors of multiplicity r, and 1 for quadratic factors. Detailed examples

of the partial fraction expansion of E(z) are given in Section 5.




3. THE AUTOCOVARTANCE FUNCTION

We denote by My and Yie the autocovariance functiong of the processes

a and X - These are functions of the lag k and defined as

] (19)

= Cov[an, a

Mk nt+k

= Cov[xn, X

n+k] . (20)

Tk
It is a fundamental result that Yy can be represented as the output of a linear
filter with impulse response 8y whose input is u» see Papoulis [3]. Thus we

have

Ye = 8 * oy (21)
and in the transform domain

1(2) = g(2)u(z) (22)
The significant part of the result is that 8y is obtained from wk as

B = Y K Vg (23)
and that the transform of this relation is

3(2) = WD) (24)

where E(%) is the transform of w_k. We note that 8y is a noncausal impulse
response because it is nonzero for k < 0, which means that the filter output
precedes its cause (the input). Since a(z) exists for [zl > R, where R < 1,
it follows that E(%) exists for |z| < 1/R. Hence the function g(z) exists in
the annulus of convergence R < |z| < 1/R. We have from (24) tha:

E(%? = g(z) (25)
which implies that 8 is a symmetric sequence. This fact is also seen from

(23) since

B ™ Vo * " B (26)

—— — il — ——




If the input process a is white, which means that it is wncorrelated, then

2
B = 9, Gk (27)

where oi = Var[an], and (21) and (22) become
Y - 02 (28)
k a gk

(@) = o2 &(2) (29)

The pfoblem now at hand is to determine the sequence g This can be done

using the relation (23) which is explicitly

g, = ) Vv ‘ (30)
O AT

but this procedure does not generally yield closed form expressions for 8
Our approach therefore is to invert the bilateral transform g(z), which Box
and Jenkins call a covariance generating function. The details of the inver-
sion will be developed in the next section. Prior to that we briefly discuss

another method for finding Yy in order to allow a comparison with our method.

This method for computing Yi is alluded to in [1], where an example is given for

the ARMA (1, 1) process. If one multiplies equation (1) by a

o
and takes expected values, the result is the system of q + 1 equations
“0 a
b Bt o i
wj‘¢1wj_l""‘¢jw0"'ej°a J=2,3 <.y q
¢j'0 ifj>p (31)

where wy = Cov[xn, an—j] is the crosscovariance of the processes x and a. It
is apparent that this system of equations can be solved recursively for
Ws Wys vees wq. Next one multiplies equation (1) by XK’ k=0, 1, «s+ and

takes expected values. This gives rise first to the system of 'p + 1

s 3 =@y By exes Qs




simultaneous equations defining Yo Yis eres Y
Yo—¢1Y1_ ooo-¢pr =w0—elwl— o.o_ew

\'ll—¢lYo_ -ot-¢pr-1= —elwo- see - 9§ W

- e e e e e e w am wm e e em W e e wm e e e o e e wm W = e

p-1 p'p p o q"q-p (32)

where ej =0 if j > q. Thus, if q < p the last p - q equations of (32) have
a right hand side equal to zero. It gives rise secondly, if q > p, to the

following q - p equations

Wy = *°° = 8§ @ (33)

P Vpi-1 T T T Y5 T T Ohag% 1“q-p-

Tp+s T
j = 1, 2, cesy q-p

and thirdly to the infinite system of equations

Y =i 0; Jo= I; 2y se (34)

r+j er+j-1 TRty ¢pYr+j-p T
where r = max{p, q}. Equations (33) and (34) constitute jointly a nonhomogeneous
difference equation which defines Ty for k > 1. Equation (34) constitutes a
homogeneous difference equation which defines Y for k > 1 + max{0, q-p}. 1In
order to compute Yy one needs to solve equations (31) through (34). This pre-
sents no problem in the case where numerical values are given for the para-

meters ¢i and 0,, and where (34) is solved recursively. The situation is dif-

3
ferent, however, if one needs a closed form solution expressed in terms of
the parameters ¢i and ej. In this case one first solves (31) recursively and

eXPresses Wi, Wy, «ee; wq in terms of the ¢i and 6 These expressions are sub-

3
stituted in (32) and (33). Next one solves (32). Since these are simultaneous
equations, the solution requires essentially the inversion of a matrix of size

p + 1 in symbolic form, and this may be a difficult part. Equation (33) can

again be solved recursively, but is needed only if q > p. The homogeneous




-

equation (34) may be solved by the classical method, yielding the expression

k k k
Yk Alal + Azaz + + Apa.p (35)

where the a, are the roots of the equation

p- p—l-.‘O— =
2’ - ¢,z 4, =0 (36)

The coefficients Ai in (35) are then determined by solving p simultaneous
equations consisting of (35) with k = r-1, r-2, ..., r-p, where r = max{p, q}
and where the values of Yy are substituted from the solution of (32) and (33).
Here again the solution of simultaneous equations in symbolic form may provek
difficult. It should be apparent that this procedure for finding a closed form
expression for Yk can be a messy one. On the other hand, it is well known that
transform methods serve to simplify the solution of difference equations. This
is especially true of the method presented in the following section. The reason
is that this method does not require a separate solution of the systems (31)
and (32), which are not part of the difference equation, and moreover it does
not involve any solution eof simultaneous equations at all.

We remark as an aside that the power spectral density function (or power
spectrum) of the process X is readily determined from the transfer function
E(z). The power spectrum S(w) is the Fourier transform of the autocovariance
function T’ The Fourier transform is obtained from the bilateral Z-transform
by setting z = eiw, i = VY =1. Thus we have with (29) and (24)

|2 (38)

- 1 2 - {w-=, -1 2=, i
S() = (™) = of $(e™)(e™) = o [V(e™)
This result states that the absolute value of the transfer function must be
determined for values of z on the unit circle. A graphical method for quickly

assessing the form of |w(eiw)| from the zeros and poles of the transfer func-

tion is given in [2], pages 321 to 323.
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4. THE INVERSION OF g(z)

In this section we develop the method for deriving a closed form expression
for g from our knowledge of the ARMA equation. Specific examples will then
be computed in the next section. The transfer function ¥(z) is readily deter-
mined from the ARMA equation, see (8). Next, we get the transform of gk.from
(24). Thus we must now address the question of inverting g(z). It is possible
to have different sequences with the same bilateral transform. For example,
the sequences

pn for n > 0
b = (39)

» 0 otherwise
and
_on-l forn <0
¢, = (40)
0 otherwise

have the same tranform b(z) = c(z) = z/(z-p). The difference is that b(z)
exists for |z| > o whereas c(z) exists for |z| < p. Therefore, to determine
uniquely the inverse of a bilateral transform, one must know the annulus of
convergence of that transform. We had shown before that the annulus of conver-
gence of g(z) is R < |z| < 1/R, with R given by (17).

The function E(z) is itself a rational function. Replacing z by 1/z in

(7) we obtain

1-08.2z=- ¢+ -8 2%
1 -

LN ] - p
1- ¢lz - ¢pz

-1
‘#(;) = (41)

Since each pole of (z) at z = s where ay # 0, gives rise to a pole of ¥(1/z)

at 1/z = @, OF 2 = llai, we can write (41) as

scdy « 22)
QD = 55 (42)

10
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where

Q(z) = (z - 1/a;)(z = 1/ay) =+ (z - l/ap) (43)

In the case q > p, a(z) has poles also at z = 0, these become poles of
¥(1/z) at z = », which means that the degree of P(z) is greaﬁer than the
degree of Q(z). Multiplication of (42) by (8) yields the rational function

- N(z)P(z)
8(2) = 5(2)a(2)

(44)
where the numerator has degree m + q and the denominator has degree m + p.

In order to facilitate the inversion of (44) we will exploit the symmetry
property of 8y and we will reduce the inversion of a bilateral Z-transform to
the simpler inversion of an ordinary Z-tranform. Since 8y is symmetric we

can represent it by its value at k = 0 and by the symmetric right and left

lobes. Thus, if we define

0 for k <0 .
gy for k > 0
we can write
By = 8pS *h b, (46)

The tranform of (46) is
8(2) = gy + i(2) + D) 7
where h(z) is an ordinary Z-tranform which converges for [z! > R and where

5(%? converges for [z| < 1/R. From (45) and the definition of the Z-transform

follows the asymptotic behavior

% %
h(z) ~ - as z -+ @ (48)
ﬁ(l) ~ g z as z-+0 (49)
z g1
11
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where condition (49) implies that ﬁ(%) is divisible by z. We note the fol-
lowing facts. First, h(z) and ﬁ(%) are rational functions. If h(z) were not
rational then E(%) would not be rational and g(z) could not be rational,
which is a contradiction. Second, the poles of h(z) and HC%) combined must
be the poles of E(z), that is, the poles of v(z) and E(%) combined. Third,
for each pole that h(z) has at z =<¥£# 0, ﬁ(%? must have a pole at z = llai.
Since h(z) converges for |z| > R all of its poles lie inside or on the circle
of radius R, and hence are identical to the poles of ¥(z). Likewise, the
poles of E(%) are identical to the poles of E(%). We can therefore write (47)
as

_ Nl(z) Nz(z)
g(z) = g9 + () + ) (50)

where Nl(z) is a polynomial of degree m - 1 and Nz(z) is a polynomial of degree

q. Because of the symmetry of g, we have complete information about it if we

know g9 and hk. We let

£ = 8gS thy (51)
and

£(z) = 8o + h(z) (52)
Clearly, £(z) is an ordinary Z-transform which can be written as

= - M(2)

£(z) DCz) (53)

where D(z) is the characteristic polynomial given by (16), and where the degree
of M(z) is the same as the degree of D(z) since
f(z) — gy as z+® (54)

Equation (50) becomes

4 M(z) Nz(z)
82 * 5@ * @ g

12




Our objective is to determine f(z) from g(z). This means that we must find
the coefficients of the polynomial M(z), which is most expediently done by
partial fraction expansion. However, a unique expansion of M(z)/D(z) is not
possible because it is not a proper rational function. We therefore divide

g2(z) by z and obtain

3(2) M(z) N3(Z)
z  zD(z) . Q(z)

(56)

Note that because of (49) Nz(z) is divisible by z, hence we have N3(z) = Nz(z)/z.

Now we can write the expansion

- M(z) M. (2)
£(z) _ . Z i (57)
z zD(z) i Di(z)

which is analogous to (18). Furthermore

z  zD(2)Q(z) = Qlz) +1 D,(2) R

The Di(z) are the factors of D(z) and include an additional factor z if N(z)
is not divisible by z. The Mi(z) are polynomials that have one degree less
than Di(z). We see that the sequence fk has exactly the same structure and
is made up of the same sequences as the impulse response wk’ only with dif-
ferent coefficients. The final and important result is that the coefficients
of the Mi(z) in (58) are determined from E(z)/z by the identical procedure
by which the coefficients of the Ni(z) in (18) are determined from ¥(z)/z.
Although (58) in comparison with (18) has the additional term N3(z)/Q(z),
this term does not affect the procedure (which is based solely on the factors
Di(Z)) because Q(z) does not contain any of the factors Di(Z)’

The analysis up to this point has focused on the underlying concepts. We
emphasize however that the implementation of the method is very simple. It
involves the following steps.

1. Determine E(z) from the ARMA equation.

13
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2. Perform a partial fraction expansion of g(z)/z into terms whose
denominators comprise all factors Di(z).
3. Multiply the expansion by z and invert.
8pecific examples of this procedure for simple 1linear factors, repeated

linear factors, and quadratic factors are given in the next section. A sum-

mary of the results of a number of solved cases is given in Section 6. Details

of their derivat;on are available from the author upon request.

5. EXAMPLE CASES

5.1 SIMPLE LINEAR FACTORS

Example 1: We consider the case ARMA (2, 2) for which (1) becomes

R R T R T\ T L W (59)

The transfer function (8) is

" 5P 8,2 - 8, N(z)
i z2 -l g = D(2) e
1 2
Now let the zeroes of D(i) be @ and . We then have
D(z) = (z - al)(z - az) (61)

and ¢1 =0 + ays ¢2 = - a,. We first find the transfer function. Division
of J(z) by z introduces an additional pole at a, = 0 because N(z) is not
divisible by z. The partial fraction expansion is

- A A A
MY . N e g (62)

z 4 Z-dl 2-0.2

where we find the coefficients by the standard method, see [2]

(z—ai)@(z)

Ai-_—-_z___z-ai 2 i=0,1,2 (63)

14




Specifically we obtain

2
z2 -9,z -9 0
P 1 2 L 2

0 (z-al)(z-az) z=0 %, (64)

And in the same manner we find

2
a; = a0, = 6
T R Chr I (65)
30y

2
Ay = B8, = 6
R 2 271 2 (66)

2 2, (uz—al)

Multiplication of (62) by z and inversion yields the impulse response

n n
b, = Aoc‘Sn + Aja; + A, (67)

To obtain the sequence fk we note that it must have the same structure as the

impulse response, namely

k k
£, = BoSy + Bjag + Bya, (68)

where

- o
(z=a )y (2)¥ ()

z
B, - pmg * 1205 1,2 (69)
i
Clearly then we have
B, = $(=0)A (70)
i o s
s
We obtain from (60)
2
1-06,z-06,z
i = P2 (711)

(l-alz) (l-azz)

and the coefficients are from (70) and (71)

= A (72)

. 0

0

2
l-a,08, -a,0
B. = Xk 12A1 (73)

(l-ai)(l—alaz)

15




2
l-a,86, - a,8
e 2°1 2 2 A (74)
2 (l1-a,a )(l-az) 2
N2 2

This example demonstrates amply the simplicity of the procedure and its sub-
stantial advantages over the approach mentioned in Section 3. We note that
it is not necessary to first find the impulse response and its coefficients Ai.
The structure of (68) is known from the poles of }(z)/z and the coefficients
Bi may be obtained directly from (69). However, since these coefficients

will always satisfy the product form (70), it seems convenient to express them

in that form.

Example 2: Whenever the order p of the autoregressive part is greater than
the order q of the moving average part, the division of v(z) by z merely cancels
an existing factor z in the numerator N(z). As an example we take the system

ARMA (2, 1). Equation (1) becomes

an = ¢lxn-l - ¢2xn-2 % an 8 elan-l (75)
and the transfer function is
- 22 - elz
W2) = = (76)
- ¢,z - ¢
? 1 2
Now let the denominator of ¥(z) be factored as
D(Z) = (z - a)(z - B) an
we have
v(z) o 78)
z (z - a)(z - B)
and the expansion (41) becomes
= A A
p(z) _ 1 2
z z - a g z -8 (79)
The impulse response is
n n
wn = Ala + AZB (80)

16




where, from (63)

T b 1
o Bonleprens gl o Bl pg
Furthermore
k k
fk = Bla + 826
where
e
a2 la 1 - ael
B, = A, = A
1 2
R P T L T
a a
1 - 88
1
By 4,

(1 -aB)(1 - 62)

5.2 REPEATED LINEAR FACTORS

(81)

(82)

(83)

(84)

We consider now the case where one of the factors of zD(z) occurs more

than once. Let B be a zero of zD(z) with multiplicity k.

k
zD(z) = (z - 8) D,(2)
and the transfer function is expanded as

p(z) _ N(z) _ 7 b 2 Ny(2)
z zD(z) (5 » B)k Dz(z)

where the term of interest has the further expansion

N.(2) A A x
P RBE | DO e R

z-8% -8 -p*? A

We need to determine the coefficients Al, Az, vieivy Ak-l'

define the function

P(z) = i%fl (z - B)k

17

Then we can write

(85)

(86)

(87)

To this end we

(88)

PPy S ey




It now follows from (86) and (87) that

N,(z)
Dz(z)

k

P(z) = Ay + Al(z = B) + e + A.k_l(z = B)k'1 + (z - 8)" (89)

and the required coefficients are isolated by evaluating P(z) and its derivatives

at z = B. Thus we have

Ay = B(8)
-4
A =3z P ag
J
A, =L L p2) (90)
3 I 4 7=8

After the coefficients have been determined we multiply (87) by z and invert.
1

The inverse transformation is denoted by the operator symbol Z: . In the
case B # 0 we use the rule
Z-..-l[_'z | (j : 1) " i
(z - B)
from which it follows with (96) that
-1 Hie e n n1-keHj
z 1 B SRS PR L (92)
(z - B) j=0

In the case B = 0 we require the inverse transform of zl-J which is simply a

unit impulse at the position n = j - 1, namely

-1 -z— -
8 [zj] k-3 e
and the inverse transform of (87) becomes
N, (2) k-1
-1 1
% [ K ] LI (94)
z 4=0
18
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The expansion of the transform of the function fk in analogy to (86), is

£(2) = Ml(Z) + MZ(Z) (95)
B gy gl
where
M. (2) B B B
— xt . k—1+"’+?k_:1_s £95)
(z - B) (z - B) (z - B)
After defining the function
- =1
Vv(z)v ) %,
0z = —= (z - B = P(2)FD) (97)
we obtain
= A&
By = Q(B) = Ao¢(B)
- =l
B) = 3z 2| W@ Ay ) -
J
B, =+ L q) (98)
LR z=8
It then follows that
Z B, ( 5 )sn+l'k+j for 8 # 0
J\k~3 -1
Z_l Ml(z) 3 j=0
~ - g)k =1
2 By, 41k for 8 = 0 (99)

Example 3: We consider the system ARMA (2, 1) whose characteristic polynomial
has a double zero at z = B. Equation (1) becomes

2
Ty Zan_l + B R ela -l (100)

19
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and the transfer function is

2
z - elz

V(z) =
(z - 8)2

In accordance with (88) we find

- . 4 -
P(z) = z 61, iz P(z) 1

(101)

(102)

and the coefficients of the impulse response are computed from P(z) by (99) as

1; A1 =1

The inverse transform (91), for j = 1 and j = 2 is

-1{__=z o on
& [z-s]'B

-1 z n-1
Z ——| = nB
. [<z - s)z}

and the impulse response becomes

b= (8- 0)n"" + g"

The function Q(z) defined in (97) is

and

1 - Glz
QEY = = ———

(1 - B2)

1-20.8+0%+ (8+0628-20)z
d 1 1 1 I
3z U2 = 3
(1 - B2)
The coefficients of fk are computed with (98) as
(8 -8,)(1 - 6,8)

B0 =

yA
a - 8%

20

(103)

(104)

(105)

(106)

(107)

(108)




2 2
(1+87)Q + 61) - 4618

B, = (109)
3
. a - 8%
Finally we have
k-1 k
fk = BOkB + BIB (110)

Example 4: We treat here the system ARMA (1, 3), which induces a triple zero

at z = 0. Equation (1) becomes

= = = = = 11

B el T T War T %% T Yt i)

and the transfer function is
3 2
z- -60,z2° -6,z -8
V(z) = gg:; -t = (112)
2z (z = ¢;)

In this case D(z) has a double zero at z = 0, and the division by z
introduces the third zero. The partial fraction expansion is

= A A A A

¥z) 9, L, 2, 3 (113)

z 3 2 z z - ¢
z z 1
where the coefficient A3 is determined by the method for linear factors,
namely
¢ 01 = 8,47 - 00, - &
a, = M2 = 2 (114)
z z = ¢1 ¢l

To obtain AO’ A1 and A2 we use the method for repeated linear factors. From

(88) follows 3 9
z- -0.2° -0,z -6

P(z) = fp'(z)z2 = zl_ 3 2 3 (115)
1
2 3
3z - 26,z - 6 2 =0 Zs =0. =0
35 B(z) = ———2—2 1 23 (116)
1 (z - ¢1)

— e AR e S——




2 3 2
1 g2 3z - 61 (3z" - 291 - 92) (z~ - 617. - 8,z - 83)
SR Rk B e 2 * 3
dz 1 (z - ¢1) (z - '&1)
Evaluation of (115), (116) and (117) at z = 0 yields
e3
Ay = —=
1
62 63 02¢1 + 63
A, = =S4 =a-t=_ 2
g i
.2 .2
2
61 82 93 61¢1 + 82¢1 + 63
o Sy e Sy b 3 (118)
1 ¢ % ]
1 1 1
The impulse response is
n
wn = Aodn-z + Aldn_l + Azcn + A3¢1 (119)
Now, because Q(z) = P(z)a(%), the equations (98) for the coefficients BO, Bl,
and B2 become
-1
By ™ Agb (;) 34
1 d -1
B, [Alw(z) +a, & "'(z)]z-o
= L d =-,1 1 d2 - 1
B, = [Azw(;) tA G VR T A ;—2- “’(’z’)Iz-o (120)
where
2 3
a(—l-) s 1 - elz ezz - e3z
z 1l - ¢lz
2 2 3
Ll =By = 2922 - 3932 ¢1(1 - elz - 0,2" - 932 )
dz W(? i 1~ ¢.2 = 2
1 a- ¢lz)
2
1%_ E(l) - -262 - 6932 ) 2¢1(91 < 2822 + 3932 )
ant 2= a- ¢1z)2
2031 - 0,3 - 0,2% - 0,2°)
+ ok ! 3 (121)
1- ¢lz)3




Substituting these results into (120) gives

Po ™ B

Bl = Al + (¢1 - el)AO

By = Ay * (6 = SDAL + (8] - 918, - 84, (122)
The function fk is

fx "B T hi%a TRt B34’1k (123)

where B3 is obtained as

gt
A= 0t = Bah, =0

-1
B, = Aﬂ(;;) = Ay (124)

1. 82
5.3 QUADRATIC FACTORS

A quadratic factor with real coefficients arises as the product of two
linear factors with complex conjugate zeros. Let these zeros be at aeiB
and ae-iB, where i denctes the imaginary unit. We then obtain the quadratic
factor

Dl(z) = (z - aeie)(z - ae-ia)= z2 - 2z cosB + az (125)

Now let the denominator D(z) of the transfer function contain the quadratic

factor Dl(z). We can write

zD(z) = Dl(z)Dz(z)

and the transfer function has the expansion
3(z) _ N, (2) g N,(2)
z Dl(z) Dz(z)

(126)

23
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Nl(z) is a polynomial of degree one and has two open coefficients which are
to be determined by the method of partial fraction expansion. If we write

Nl(z) in the form

Nl(z) = Az sin vy + a sin(B - y)] (127)

= Ala sin B + Az(z - a cos B)

where
A1 = A cos Y; A2 = A sin vy

then the inverse transform of the first term of (126) multiplied by z is

-1 le(z)

n
Z DITZ) Ao sin (nB + v)

an[Al sin nB + A, cos nR] (128)

2
Thus every transform with denominator Dl(z) represents a damped sinusoid of
amplitude Aan, frequency B, and phase angle y. We have to determine the values

of A and Yy or of Al and AZ' We first define the function
P(z) = yi-(:—) D, (2) (129)

It then follows from (126) and (127) that

Nz(z)Dl(z)
P(z) = Ala sin 8 + Az(z - o cos B) + W—— (130)
The required coefficients are isolated by letting z take on the value
iB
zy = ae = a(cos B + 1 sin B) (131)
This value is a zero of Dl(z), hence Dl(zo) = 0. We then obtain
P(zo) = Ala sin B + Az(a cos B + ia sin B - a cos RB)
= o sin B(A1 + iAz) (132)
and, dividing by a sin B
P(zo)
seing - ALt 1A, (133)

The values of Al and A2 are now readily determined. We note that P(zo) is simply

24




a complex number. Denoting its real part by R and its imaginary part

by I, that is, letting

P(zo) = R + il

we find
o S T R
asing * [ R
or
R 1
Al a sin B A2 a sin B

(134)

(135)

(136)

An analogous procedure applies to the transform f(z). As the counterpart to

(126) we have the expansion

0 W D
z Dl(z) Dz(z)
where
Ml(z) = B[z sin € + a sin (B - €)]
= B.a sin B + B,(z - o cos B)
d 34 2
arl B, =B cos ¢€; B, = B sin ¢

1 2

We define the function

2 p () = P(2)TD)

and obtain

Q(zj)
a sin B8 2 B1 i iBZ

(137)

(138)

(139)

(140)

Now let C, and C, be the real and imaginary parts of @(fL). It then follows that

1 2 0

Q(z,) P(z,) _
A 0 7

a sin B a sin B

1
)

) = (A1 + 1A2)(cl + 102)

and also that

B, = A,C. - AC

g BNy = BaSa 8

g = 8440y + AC

25
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Ezample 5: Consider the system ARMA (2, 2) governed by the equation

2
i = 2a cos8 x _ ta'x a (143)

1 T T T\ Rl

The transfer function is

_ z2 - elz - 62
¥(z) = — 5 (144)

z° - 20z cos B + a

and the partial fraction expansion of y(z)/z has the form

;;zl Ao Ala sin B + Az(z - a cos B)

= (145)
& = 22 - 2az cos B + az

By the usual method for linear factors we find

o '62
Ay = y(0) = ;i_ (146)

Next we let in accordance with (129)

2
z - elz - 92 <4
P(z) = > =z - el - ezz (147)

This function is now evaluated at z0

0
iR 2
P(zo) ae - el i e

-iB

% )
= (a0 =-—) cos 8B -6, + i(a + =) sin B (148)
a 1 a

After dividing (148) by a sin 8 and comparing it with (133) we see that

9 )

A= (1- -%9 COL B = e
a

o sin B

8
2
A2 = (1+ —5) =1 - Ao (149)
a
The impulse respoﬁse is =

W = AgS, * an(Al sin B + A, cos nB) (150)
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The function fk has the same expansion as (144), namely

fk = Boék + ak(B1 sin kB + B2 cos kg) (151)
where
B, = A5 - A (152)
0 0"z’ [z=0 0
In order to find Bl and BZ we must evaluate wc%) at z = zg- We have from (144)
and (125)
z, - 6.z -8
o) = —2 L2 (153)
(z - ae”  )(z - ce )
and therefore
2
l-6,z-06,2z
by - T yhat)
(1 - zae " )(1 - zae )
Substitution of z = aeis in (154) yields
1 1-09 aeiB - ezazeZiB
V) = E 5
0 (1-ae )1 o)
{1 - GlaeiB S ezazeZiB)(l = aZe-ZiB)
- (155)

(1 - 2a2 cos 28 + a4)(1 - az)
We let D1 and 02 be the real and imaginary parts of the numerators of (155).
We thus have

18 2 248 2 -218 3 -iB 4
D1 + iD2 -] =~ elae - 92a e -a e + ela e + 8,0 (156)

and after separating real and imaginary parts

D1 =14+ 9204 + el(a3-a) cos B - az(l + 62) cos 28 (157)

D, = -el(a + a3) sin B + a2(1 - 62) sin 28 (158)

2
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The result is that

D. + iD
= 2
11;(—21) = Cl + 10, = 1 (159)

0 (1 - 2a2 cos 28 + aa)(l - a2)

and Bl and 82 are given by (142).

Since it is not possible to work out simple expressions for Bl and B2 in

terms of the coefficients a, B8, el and 62 we now work a numerical case.

. Let (143) be

a - l.4x
n n:

+ 0.98x =a + a - a
-1 n- n

2 (160)

In this case we have

a” w o080 B -

cos 8 =sin 8 =1// 2
a sin B = a cos 8 = 0.7
cos 28 = 0, sin 28 = 1
substitution of the appropriate values in (148) gives
P(zo) = 0.98571 + 1(1.41429) (161)
and using (136) we obtain

A1 = 1.40815

A2 = 2.020414 (162)

From (146)

Ao = ~1.02041

So the impulse response (150) becomes

n/2 om

¥, = -1.02041 6_ + (0.98) 2

(1.40815 sin ZT + 2.02041 cos 70 (163)
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We further have from (155)

E(—l-) & [1+0.7(1 +# i) - 0.98i](1 + 0.981)
) (1 +0.98%) (1 - 0.98)

_ 1.9744 + 1.3861

0.039208 = 50.357 + 35.35i (164)
and with (142), (159) and (162)
Bl = -0.51143
B2 = 151.52
It therefore follows that the function fk is

£, = -1.02041 6+ 0.98)%/%(20.51143 sin %} + 151.52 cos %f% (165)

6. SUMMARY OF SOLVED CASES

This is a summary of the form of the impulse response and of the auto-
covariance function corresponding to the most frequently encountered ARMA
equations. In listing the various cases we use the numbers (1), (2), (3)
on the left margin to denote:

(1) The defining ARMA equation

(2) The impulse response wn, and its coefficients

(3) The normalized autocovariance function gk, and its coefficients
We note that the autocovariance function of the filter output x is 8y multi-
plied by the variance oi of the filter input a. Also, the expression given
for 8, represents the autocovariance function only for k > 0. For k < 0
the symmetry is used, that is 8 = 8-

CASE 1: ARMA (0, 1)

(1 *n T % " elan-l

(2) wn - 6n 8 elsn-l

(3) g = (1 +0oDs - 66 .
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(1)

(2)

(3)

(1)

(2)

(3)

(1)

(2)

(3)

CASE 2: ARMA (0, 2)

" i 4, ~ e1an-1 L e2an-2
lbn - 6n ¥ elsn—l 5 e26n-2
= (l+62+62)0 + (-8, +6 6 )6 8,6
& 2 k=1 = “2%k-2

CASE 3: ARMA (0, 3)

A sy e
LR TRl L TR
2.2 y
(146, +6,+65 )6 + (=8,+6,08,40,8,)8, ; + (-8,+3,83)6, ,

CASE 4: ARMA (1, 0)

xn - ¢lxn-l 7 an

n

k 2

CASE 5: ARMA (1, 1)

(1) x -¢1xn_1 . - elan-l
n
(2) wn - Aoﬁn + (1-A0)¢1, Ao = 91/¢1
(1 -0,9.)(1 -4y
= ) i g ! 0
(3) g = Bydy + Bl¢1, o = Ags B, 3
1- ¢1
CASE 6: ARMA (1, 2)
1) R "M% % 1% 928,-2
- n
(2) wn AOGn r Alan-l i A2"1
A-M-A-k. 'l"A
0 2 2 n R TR 2 0
¢1 1
3 =
) =B 8§ 4+ B.§ + 52¢1

8 ~ Po% T ®1%-1

30
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By = &5 + (o) - 6))A); By = 4A); By = 7 4,

CASE 7: ARMA (1, 3)

(L) x = %1 =3, =83 1~ 8y3, 5038 4
n
(2) Ibn = Aodn + Aldn_l + A26n-2 + A3¢l
6ds + B4 + 8 S.4. + @ 0

PR, by e TEETRE L s R
0 ¢3 | 2 2 9, s 0

1 21

) g = B8 €08 . 480 . B

™ P T Mg T R0 s Rty

=]
L}

2
0= A *F (9 -8 A) + (67 - 018y = 0)Ay) 5 By = A+ () - 8))A);

2 3
1= 8.4 ~ 6.4 ~ 0.4
e b G e BN

3 3

2
1- ¢y
CASE 8: ARMA (2, 0)

Set 61 = 0 in Cases 9, or 10, or 13.

CASE 9: ARMA (2, 1) where the characteristic polynomial has two real zeros,

That is, z = o and z = 8. We then have

£-¢f-¢2=u-axz-m
(1) x - (o + B)xn_l + ann_z e elan_l
a -0 B -6

n n po & & 1.

(2) wn Aoa + AIB 3 AO S 7 Al T
I - af 1 - Be

k k 1 1

(3) 3k = Boa + Blﬁ H BO = AO H Bl — A

@ - o)A - as) (1-a)(-gH?t
CASE 10: ARMA (2, 1) where the characteristic polynomial has a double zero at
z = 8, We then have

22 - ¢1z - ¢2 = z2 - 2Bz + 82

Sk
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-1
n-1 n e 2 %5
2 y_= Ayn8 +AB T Ap=B-6 ;5 A =1
e (8 - 0)(1 - 88)) (1 +8%)a+ed) - 4so,
(3) g =Bykg ~ +Bip ; By = 7.2 3 By = 73
(1 - 87) (1-28)

CASE 11: ARMA (2, 2) where the characteristic polynomial has two real zeros,

that is, z = a and z = 8. We then have

z° = ¢z - ¢, = (z - a)(z - B)

~
(S
~
]
L}

(a + B)xn + ann_Z = a

n elan-l 2 6Zan-Z

n -1
n n
(2) v = Ays + A+ A8
2 2
o 33 LR o - a0, -0, o 8" -~ ge, - o,
0 aB > 1 a(a = B) > 72 B(B - a)
k k
(3) 8 = Boék + Bja” + BZB
1- a8, - a292 1- 8o, - 3292
B,=A,; B, = A, ; B, = A

1 1 2 2

@@ - &3CL = ap) (- aB)( - 8%

CASE 12: ARMA (2, 3) where the characteristic polynomial has two real zeros,

that is, z = ¢« and z = B. We then have

2 =g g (z - a)(z - B)

R Y R T R Tl LR T R
n n
(2) ¢n = Aoan + A15n_1 + A2a + A3B
] (a + B)O ) a” - aze - ab, - 8
2 3 3 1 g = %
Mot (e THmEE S . Su® M ) 5
(aB) a (o = B)
3 .2
8% - 8%, - 86, - 6,
By = )
B (B - a)
32
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(3) 8, = Bgd, * ByS,_; + Ba + B8
By =4y + (e +8 - el)Al H B1 = A1
1- aal - azeq - a36 1 - g6 = 826 - 836
B = 2 3 M 1 2 3 A
2 ? 3 3

61 = & Xl = i) (1 - aB) (1 - 8%

CASE 13: ARMA (2, 1) where the characteristic polynomial has complex conjugate

zeros, that is, zo = aeiB and z1 = ue_iﬁ. We then have

22 - ¢, = z2 - 20z cos B + az
(1) x_ - 2a(cos B)x + azx =3 ~- 0.a

n n-1 n-2 n 1 n-1

n
(2) wn =q (A0 sin nB + A1 cos nB)
%

Sy = SRET e
(3) = ak(B sin kB8 + é cos kB)

8 0 1

=AC, +A.C

B, = AC, - A.C, ; Bl ) 1%

0 0"1 L2

1+ a4 + 61(a3 - a) cos B - az cos 28

P |
C, = Re p(=) =
: ) {1 = 25" cos 28 + a1 = &9
3 2z
il -el(a + a”) sin B + a° sin 28
C2 = Im ‘P(z—) e

0 (1- 2a2 cos 28 + aa)(l - GZ)
CASE 14: ARMA (2, 2) where the characteristic polynomial has complex conjugate
zeros, that is, zy = meiB and z, = ae_ie. We then have

22 - ¢lz - ¢2 = 22 - 2az cos B + az
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(1)

(2)

(3)

1 n

2
2a(cos S)xn_ + a X an - 0.a = ezan_2

0

- 2 . A
2 b
a

B.§, + ak(Bl sin k8 + B

0k

21

n
A Gn + a (Al sin nB + A2 cos nR)

92 el 8
iy 1 (1 - ;E)cot g8 - e 3 A2 = (1 + ;E

5 cos kB)

A1C1 = A2C2 5 B2 = A1C2 S- AZCl

1+ eza4 + el(a3 - a) cos B - az(l + 62) cos 28

(1 - Zaz cos 28 + aa)(l - az)

—el(a + a3) sin B + az(l - 62) sin 28

(1 - 2a2 cos 28 + aa)(l - az)
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