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ABSTRACT

In this paper some statistical models in connection with

seismic magnitude are presented . Two main situations are
treated . The first deals with the estimation of magnitude

for an event using a fixed network of stations and taking

into account the detection and bias properties of the in-

dividual stations. The second treats the r roblem of estimating

seismicity and detection and bias properties of individual

stations. The models are applied to analyze the magnitude

bias effects for an earthquake aftershock sequence from

Japan, as recorded by a hypothetical network of 15 stations.

It is found that network magnitudes computed by the con-

ventional averaging technique are considerably biased , and

that a maximum likelihood approach using instantaneous

noise level estimates for non—detecting stations gives the

most consistent magnitude estimates. Finally, the models

are applied to evaluate the detection characteristics

and associated seismicity as recorded by three VELP~ arrays

(UBO , TFO, WMO).

. .

~ 
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1. INTRODUCTION

One of the main probi .~~.. ~n estimating I~agnitwle o~ seismic

events from network data is that the events are not always

detected by all stations. The standard procedure of estimating

magnitude by averaging observed magnitude of recording stations

gives estimates that are biased upwards. Methods to cope with

this problem have been given by }Ierrin and Tucker (1972) who

computed the expected error introduced by the averaging procedure

and Ringdal (1976) who developed a maximum likelihood procedure.

The maximum likelihood method given in this paper differs

from flingdal’s ap~roach in that it takes into account the

probability that the event is detected by the network. This

will have effect on the estimated magnitude for small events

(events that are detected by a small number of stations). The

maximum likelihood estimator for magnitude requires knowledge

of the station detection parameters (threshold and slope of

detection curve) and region station bias.

In the second part of the paper, methods to estimate these

parameters are develpoed . This is done under the assumption that

the magnitude distribution in the source region can be approximated

with the usual linear relationship between magnitude and logarithmic

frequency.

The first method uses single station data for simultaneous

estimation of the slope of the seismisity curve and the detection

parameters of the station. This maximum likelihood estimator was,

although not explicitly stated , given by Kelly and Lacoss (1969).

— _ _ _ _ _ _ _ _ _  - - --—----—_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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One interesting result is that the distribution of log (A/T)

rather than magnitude at a station is independent of the focal

locatictis of the events and scattering . The second method is

developed for estimation of region - station bias and scattering

standard deviation. Because of the complexity of the joint

distribution in the general case detailed calculations is

carried out only for two stations. By combining analysis made

for different combinations of station pairs it is possible to

estimate relative bias and scattering standard deviations for

all stations in a network. 

- ~~~~~~~~~~~ -~~~~~~~~~~~~ .
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2.  THEORY

2.1 Basic Assumptions

We assume that the amplitude of the signal generated by a seis-

mic event in a specific region and arriving at a station can be

modelled as

(1) A/T = eme
i
~e
Bec

where

A/T is amplitude over period
m is the “true” magnitude of the event

Q is the distance-depth correction

B is the station-region bias , i.e. the average scattering
effect due to inhomogeneities in the earth

is the difference between total scattering and average
scattering .

Taking 1og~ rithms of both sides in (1) we get

( 2 )  log (A/T) = m + Q + B + c

or letting y = log (A/T ) denote the station magnitude we get

(3) y = m + B + Q +  e

If we regard c as a sum of effects from many travel path in—

homogenities or scattering sources it can be shown (under general

assumption) that the distribution of c is Gaussian. The condi-

tiona l distribution of y for given “true” magnitude m is then

(4) f(y/m) = ~ expt- .~i2(y~~(B+Q+m))2]
a
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Here Q is assumed to be a known constant, and a2 is the
variance of the scattering , i.e., of ~~~~. We will further
assume that the station has a detection curve giving the

probability that the event is seen given y. We will here assume
that this curve is of the form

I Y
(5) ~ (~~_~

- C 
= 

1 exp[—(z—G) 2/2y 2]dz,
Y. / —

~~~

where G can be interj reted as the average threshold and y as

the standard deviation of the threshold.

2.2 Distribution of Observed Log (A/T) at a Network of M

Stations

Let N . denote the subset of station log (A/T ) for given

true magnitude that are not seen at the i:th station . Then , de-

fine the variable a. such that
1

a1 y1 if the event is seen at station 1;

a. € N . if the event is not seen at station i.

Unless otherwise stated , the distance - depth corrections (Qi)

are regarded as known constants. The conditional distribution

of a~/m is given by

If i,~~i/
’m)~ ( 1 , . 

C
i) da~ for a1 ~ N.

(6) h .(a./m)~~a 
= 1 1

1 1 i I 1~~ B . + Q .  + m - G.)\
I ~1 1 1 1 for a. € N.

/ 1 1

1a1 
+ y ~

___
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If the scattering etfo”ts , 1’ ~~~~~ ~ M 
ar e independent the j o i n t

distribution of ~~~~ 32,...,aM
/m) is

( 7 )  h ( a 1, a2l ...,~~M /m ) da
l
da 2 ...daM j lllhj (a j/m) da

~

I f  an event is declared as detected by the network whenever it is

detected bj at least one station , we obta in , the detect ion

probability for the network as

M ,1-(B. + Q. + m - G.)\ M
(8) P(detect/rn) = 1 — H ‘l ’ 

1 1 1 1 = — Ii P(a. E N /rn)
i=l 

1

The distribution of (al , . . . aM/ rn )  given that the event is

detected by the network is then

h(a ,...,a
M
/m) d~i 1.. .da

( 9 )  H( a 1, a2,...,a~ /m) da 1. . .da~ = M
1 — H P(a. E N./m)

1 1
1=1

This is the conditional distribution of log (A/T) recorded at

the network . If the distribution of t r ue earthquake magnitudes

is known we can derive the uncondit ional  d i s t r ibu t ion  of

log (A/T) recorded at the network . Let v(m)drn denote the

d i s t r i b u t i o n  of e a r t hquak e m a g n i t ud e  in a region . The uncondi-

tional distribution of a1,. ..~~
a
M 

is

(10) q(a1, a2,...,~~~)da1 ... d~~~ = J h(a1,...,a~~m)da1 ... d~~ v (m )~~

The probability that all a . E N. , i.e. the probability of not

reco rding  is

11 -(m + B + Q. - C)
(11) P(a1 € Nl?...~

a
M 

E N
M
) = J 

~~~ /2 
)v(m) cim

-
~~~ oj_ + Y i

. 1  - -~ - -.
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givin g th e un (~orm I i t. iona I di ~;t  r i b u t  ~on of log amp i i t  ude r ’~’~orded

at the network

g(a1,. .., aM)dal ... da t,
(12) G(a 1,..., a~)da1 ~~~ l—P(a 1 € N11.., a~ € NM

)

It is often assumed that there is a linear relation between mag-

nitude and logarithmic frequency of earthquake occu~~~ .rcc. ‘°~~~~~~

corresponds to assuming that the distribution of earthquake magnitud

is

v ( r n ) d m  = 13 exp [ 13(m-rn0
) 1dm for  m > m

— 0
v ( m ) d m = 0  for m < m 0.

Inserting this in (12) we get

j h(ai,...,an
/m)da...d

~~ 
exp (-?~~) d

(14) G(a1,..., a.~)da1 ... da~4 = 0 
M

I (] — U P(a. € N /rn) e x p ( — V r ) d r n
1 1

J 1=1

The in tegrals  in ( 14)  exist for  al l  m 0 and are convergent when

rn
0

- * -~~~.

In many cases it may be desirable to consider the distribu-

tion of station magnitudes instead of station log (A/T) . Lett-

ing m1 denote the observed rna~nitude at the 1:th 
station ~‘e have

(15) m . = a - Q.
1 i 1

and the distribution of m~/m is then

(16) m +Q — G

* 

f1(m1/m) ~
( i 1 i) dm . for m. ~ N .

h1 (m~/m) dxn1=h~ (m14.Q~/m)c~n 1

~ J ,
— (B. +Q . + m — G . ) \

1 ~ I ______  
for m.  € N .

12 2 / 1 1

i0
1 + Y ~

with f1(m1/m ) = f(m. + Q1/m)

- 
.



- 8 -

F rom (16) we see that the distribution of r n / r n  depends on th (

d i s t ance—dep th  cor rec t ion .  But this correction is m t . rodueed I

order to obtain measures of event magnitudes that are independent

of the focal locations . In order to avoid this dependence we

can regard the distance—depth correction as a random variable

normally distributed with expectation 0 and standard-deviation

We can then obtain the probabilities of detecting an evE.nt

for given station magnitude . This curve takes the same form as

(5). We get the detection curve

*

(m. _G. \ * * 2 2 1/2
(17) ~ 1

Y~~ ~~ 
with G. C. — 

~~~ 
= (y .  + cYQ )

and the distribution of m ./m as 

*

** 
(f

’
~ (m ./m) ~ 

(
.l.4_ ±) dm for ~ ~ N

(18) h. (m ./m) -ci
~ 

,(B . + m — G.)\
1 1 for m. € N .L ~‘ /~2 +~~*2 

) 1 1

Using h~* instead of h~ 
in ~(9) and ( 14) then gives the con-

ditional and unconditional distribution of observed station

magnitudes.

‘

Comments

We have here defined detection of an event as seen by at

least one station. Using other possible definitions like seen

by at least two stations will only change the denomiri~ators in

(9) and (14), which in turn are derived from Eq. (8). In the

following sections most results are derived using log (A/T)

——- - -— — -~~~~~~ -.- --
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as a basis. The corresponding results in terms of magnitude are

obtai ned by substituting magnitude for log (A/T) and settinci

all distance—depth corrections equal to zero . The station

~arameters G and y are then interpreted as detection parameters

in terms of magnitude and can be transformed back to log ( A/T )

basis in a way similar to that in Eq. ( 1 7 ) .

‘ a  ~~~~~~~~~~~~~~~~ 

_ _ _  

~~~~~~~

—.-
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3. ESTI~1ATION

The two distriL~~~.~~~s ( 9 )  and (14) are in general suited for

two different estimation problems. The conditional case is

useful mainly for estimation of magnitude of individual events

while estimation of structural parameters such as seismicit”,

station bias, etc., is most conveniently done in the framework

of the unconditional approach. In certain cases, the conditional

approach can be used to estimate structural parameters and for~
those cases it has the advantage of not requiring any knowledge

of prior distributions.

We shall here address both approaches and begin with the

conditional.

3.1 Conditional Maximum Likelihood

Consider f i r s t  the case of one station and one event. In

this case the distribution of observed log (A/T)=a for given true

magnitude m is

(19) H(a/m)da = f(a/m) ~ 
(a
~
C)da /B+Q+m_G\

/ 
l~,/a

L +y L

or explicit

(20) H(a/m)da = 
1 exp[-(a- (B+Q+rn))2/2a2 ]

/y x
—i—- f exp (_t2/2)dt ./

’_.
~~ f exp(-t2/2) dt

with y = (a—G)/y

x = (B+Q÷m_G)//o z+y L

____ ____ -— _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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F r e q u e n c y

2.0

‘.5

~~ HIa Irn I

/
GAUSSIAN

~ 0.5

0 
I I a-, — 0.5 0 0.5 I

Fig . 1 Frequency distribution H(a/m) for m 3.8, G 0.0, B+Q = -4 .0 ,
a = 0.3, ‘y’ = 0.2 and the corresponding Gaussian distribution with
expectation —0.2 and standard deviation 0.3.

The shape of the distribution is shown in ~‘ic~. 1 together with

the corresponding Gaussian distribution . The Gaussian distribution

corresponds to the case where the stat ion has a probabil i ty of

not detecting an event. We see from the figure that the effect of

nondetection is substantial .  It is shown in ADpendix 1 that

a 2
(21) E(a/m) = B + Q + m + 

____  

Z ( x )

with x as before and

Z(x) = ~~ exP (_x 2
/2/~~~ f exp(-t2/2) dt
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TRUE MAGNITUDE (ml

Fig. 2 Expected log (A/T) at a station for given true magnitude. Station
parameters used are G = 0.0, B+Q = —4 .0, a = 0.3, y = 0.2.

Figure 2 shows E(a/m) for B+Q=-0 .4 , G =  .0, a = 0.3, ‘y’ = 0.2.

As can be seen from the figure , the bias is large for events of

smaller magnitude and also quite large for events around the

detection threshold.

In this case it is readily shown that the maximum likelihood

estimate corresponds to solving the following equation for m

2(22) a = B + Q + m + _ ~° Z(x)
+ 2
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In the case of a network consisting of several station ,

one might estir ’. . 
~~

— the magnitude for each station that detected

the event acc~ rding to the above approach and then average

these values to obtain an estimate of the true magnitude.

However , if the stations that did not see the event were

operating properly , the information that some of the stations

did not see the event is useful  information and should be

util ized in the estimating procedure . This was first done

by Ringdal ( 1976) who considered the case wi th  y = 0 , i . e . ,

the stations detect the event as soon as the ‘observed

magnitude ’ m1 is larger than G. His results will differ

from those given here as he included in the sample space

the cases where the event was not seen at any of the stations .

This will have effect on the estimated magnitude for smaller

events but for larger events and/or large number of stations

the differences will be small. The reason for this is that

the probability of not seeing an event tends to zero as the

t rue magnitude increases and/or the number of stations increases .

Suppose that we have a network of M s tations recording an

event . Suppose fur ther  that the event is seen by at least one

station. The corresponding log likelihood is 
*

M M
( 2 3 )  log L = E log h1 (~t1/m) — log(l — Fl c~ 

~~~~
. 

1 ) )
i=l i=l

-4
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Comments

We can see L L L L C  that the likelihood is not a oroduct

of ‘i ndividual  likelihoods ’ . If we had considered the case

with events seen at all stations or a specific station ,

the likelihood (19) would have been a product of ‘individual

likelihoods ’ .

It is shown in Appendix 1 that the likelihood estimator for

magnitude is consistent and its asymptotic standard error IS aiven.

Can we use the conditional approach to estimate the parameters

B., G., a. and 
~~~~

. and magnitude simultaneously? To try to an-

swer this question we assume that we have a sample of N events

such that each event is seen and recorded by at least one station.

In terms of “true ’~ log (A/T)—Q arriving at the stations we have

the following model

(24) 
~~~ 

= B. + m .  + c.~ i=l ,2,...,M; j l ,2,...,N

If we had had the case where every event was always seen at every

station this would have been the standard model for analysis of

variance of a two way classification . In order to make the model

identified we have to impose a normalizing condition on the B1:s

(or m .:s). The reason for this is that these unknowns are iden-

tified only up to an additive constant . We will here adopt the
M

cond i t ion ~ B . =0 , that is, the average station bias is se ..
S 1=1

equal to zero.

In the analysis of variance model with fixed effects the

likelihood does not have a maximum if we treat the a. :s as un-
1

known . This will clearly also be the case when we have missing

observations, i.e. some stations fail to renort an event bacause of

the detection propertiei~ of these stations . However, even if we

. _ _ _ _ _ _ _ _ _
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treated the ac known constants there are difficulties be-

cause the nun . ~r of unknowns increases with sample size. That is,

as the number of events increases the number of unknown event

magnitudes increases . Therefore, the standard methods for inves-

tigating the properties of the maximum likelihood estimator do not

apply. The reason for this is that the estimator for m~ is not

sufficient independently of B
~
, C1 and y .  And as we cannot

obtain a simple relation expressing the estimator for m~ in

terms of data and the parameters B., C. and ‘y. we cannot use
1 1 1

the approach used by Christoffersson (1970) in connection with

estimating factor loading in the case of missing observations.

So, at least for the time being , we have to regard the condi-

tional approach as a heuristic one for estimating the station

parameters.

For the case of just estimating the magnitude , the

likelihood estimator seems to be fairly insensitive to moderate

changes in the present parameters. However , it is imoortant

that the stations that do not report an event have been operating

properly at that time. Otherwise, there will be large biases

in the estimated magnitudes. The asymptotic standard errors,

on the other hand , are directly related to the present level

of scattering , i.e., on the a1 values and also to some extent

on the i~~:s. Tables 1 and 2 and Fig . 3 show an application for

a simulated network consisting of 15 stations to an aftershock

from Japan. Here all ai are preset to 0.3 and all to 0.2.

In the figure there are some outliers. The first , event no. 2,

_ _ . .t  - . .
- - -  ~~

—.
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Fig. 3 Average ~~ and maximum likelihood rn.0 for a simulated network
of 15 stations. Aftershock consisting of 72 events.

illustrates the importance of the earlier mentioned condition

that the stations have to be in operation and/or that no

extremely high noise levels or interfering events are present

because this event is so large that it should have been seen

by all the stations . Therefore it is probably best to have

a variable threshold , for example related to the noise level

in the time interval preceding the signal , as suggested by

Ringdal (1976). The other outliers, events 3, 4, 40 and 47,

are small events seen by 3, 1, 1 and 1 stations , respectively,

and reflect the bias in the conventional method for magnitude

estimation .

- 

. . .
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TABLE 1

ESTIMATES OF STATION BIAS B
~~, AND STATION DETECTION

THRESHOLD C1

Station B1 01 G1

LAO 0.07 3.7 — 0 . 1
MBC 0 . 2 9  3.9 +0 .2
NAO 0.0 0 3.7 0 .0
RES 0.38 3.7 +0.5
HFS 0 .00 3.7 +0.1
TJBO — 0 . 1 6  3.7 +0.1
KBL 0 .09  3.9 +0 .2
FFC — 0 . 0 3  3.7 +0 .6
BLC 0. 20 3 .7  +0 .9
ALE 0 .0 5 3.7 +0 .8
FBC 0 .0 5 3 .7  +0 .8
CRC — 0 . 3 9  3.7 +0 .3
COL —0.21 3.8 +0.4
FCC —0.15 3.7 +0.7
YKC —0.21 3.7 +0.7

— ..---— .———- —

- t  . 
-~ — - -  - -~~~
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3 .2  U ncond i t ional  Maximum Likelihood Estimation

Consider first t - _~~e with just one station . From

Eq. (14)  we get , l e t t i ng  m
0 * —~~~

(25) G(a)da = f h(a/m)da exp(-~ m) 
d/f 

[l-P(aEN/m) 1 exp(-~m) dm

Now

(2 6 )  f h(a/m) exp (-~m) dm = 
~ 

1 exp [-(a-(B+Q+m))2/2o 2]
—~~ _~~ yT~~~ ~

exp(—~m) ~~~)dr~l = const. exp(-I~a)

(27) f [l-P(a N/m)]exp(—~rn) dm = 7 ~(B+Q+m_G) exp(-~m) dm =

-~~~ -~ 0

= const. -

Thus , the distribution of seen events at the station is

proportional to

(28) exp(—~a)

Evaluating the proportionality constant (see Appendix 2) we

find that the distribution is

(29) G(a)da = exp (~ G-y
282/2) exp(-~a) 

~
(-
~

) da

We note that this distribution is independent of the

scattering standard deviation , the region-station bias and

distance-depth correction , i.e., the observed distribution

depends only on the seismicity parameter 13 and the station

detection parameters G and y.

4 — --— . . .~~~~ — - - - - — - -  - --—. .._ .  
— ---—-—- - —
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Turning to the likelihood estimator we have for a sample of N

independent observaLiuns , a1, a2,.... ,aN

N N a - G
1 2 2  _ _ _(30) l o g L = N l o g 1 3 + N 8 G —~~~N Y  (3 — ( 3  ~ a~~+ ~ iog~~~(~~ )

i=l i=1 ~

The derivatives of log L with respect to (3, G , and ‘j  are

N -

6 ].og L =~~.+ N G - N y 2 
-(3 E a.(31) 

13 (3 • 1i=1

N ~‘(y.)6 log L = N (3 —~~~~~~~ ( )( 32) 6 G

N 
_____

(33) ~~1og L = N (3
2 y — ~~ ~

~~i=1

- G
where y1 =~~~~~ )
The likelihood estimator is defined as the solution to

( 3 4 )  6 l O ~~L _~~~ log L _~~~ lo~~L = 0— — 

~S y

which corresponds to the maximum of log L.

Although not explicitly stated these likelihood equations

(eq. 31-33) were obtained by Kelly and Lacoss (1969) who in addi-
S

tion were estimating the total number of earthquakes in a given

time period . The likelihood estimator for B considered by Aki

(1965) can be obtained as a special case from the above equations

by putting y=0 and G=min(a l,.••,aN).
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To illustrate the above method , data in the distance

range 30 0_ 60 0 observeC -
- this stations UBO, TFO and WMO have

been analyzed . The results in terms of base 10 logari thms are

shown in Figs-. 4, 5 and 6. From the figures we see that the

model fit3 the data reasonably well. However , for UBO (Fth. 4)

there is statistically significant deviation between model and

data . On the other hand , the number of observations is large

(4562) so that the probability of detecting small deviations

is large. The maximum deviation between data and model is 0.02.

Whether this deviation is of any practical significance will

depend on the situation in which the model is applied . For examole,

in seismic risk studies this deviation may be of very great

importance.

F(C ’~ iOnCy

1-0-

0.9

0.8 signi f icant  deviation
= 05)

0.7-’

0.6

0-5

0.4

0.3

0.2

0_ i

0.0 T - 1  T - V 1-~~~~r 
- 

~~~~
—
~

— 1~~ I i~~~j -
~

0.0 0.2 0.4 0~S 0.8 1.0 1.2 *4 1.6 1.6 2.0 3.2 24 2. 6 2.8 3.0 3.2 3.4 3.8

Fig. 4 UBO distance 30°_90°. 4562 events . Observed and theoretical
cumulative distributions. (3 = 0.85 (.017) ,

o = 0.19 (.010), y = 0.11 (.007). Standard errors within
parenthesis -

--
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Fig. 5 TFO distance 30°—90°. 3725 events. Observed and theoretical
log1 (A /T) cumulative distributions . (3 = 0.93 ( .019) ,

= 8.09 (.008), y = 0.10 (.005). Standard error wi thin
parenthesis.

1.0
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0 2
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0.0 I - I 0O~ 50
(tV1.)

0.0 0.2 0.4 0.6 0.8 tO 1.2 1.4 1.6 1.6 2.0 2.2 24 2.6 2.8 30

Fig. 6 WMO distance 30°-90°. 2321 events. Observed and theoretical
log1 (A/T) cumulative distributions. B 1.16 (.035),
0 = 8. iio (.015), y = 0.16 (.007). Standard error within
parenthesis.
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Looking at the estimated (3-values we se~ a rather larqe

variation, 
~UBO = 0.85, = 1.15 and 

~TFO 
= 0.93. This

d i f f e rence may be at tr ibuted to the d i f f e r e n t  seismic area

(see Figs. 7 , 8 and 9) that are sampled . The southern part

of Japan is outside the distance range 30°-90° for ~ MO whi ch

may explain the relatively high a-value for WflO. On the other

hand , it has been suggested that the linear seismicity model

is valid only for a limited magnitude range and that the slone

of the seismicity curve increases with magnitude . The relatively

high detection threshold and 13 for WMO is supporting this latter

hypothesis

Whereas the magnitude distribution for one station can be

used to obtain reliable estimates of the detection parameters

G and y no information about the station bias B and the scatterinq

o can be obtained as the distribution of observed magnitude

at a station is independent of these parameters . To estimate

these parameters we would like to consider the distribution

(14) for the general case of M stations.
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Fig. 7 Azimuthal projection with center at UBO. The distance curvesfrom origin are 30°, 450, 60°, 750, 90°. Azimuths are 0, 30, 60 ,90 a.s.o . degrees.
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Fig. 8 Azimuthal projection with center at WMO . The distance curves0 0 0 0 0 -f rom origin are 30 , 45 , 60 , 75 , 90 . Azimuths are 0, 30,
60 , 90 a .s.o. degrees. 
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Fig. 9 Azimuthal projection with center at TFO. The distance curvesS . . 0 0 0 0 0 -from origin are 30 , 45 , 60 , 75 , 90 - Azimuths are 0, 30 ,
60, 90 a.s.o. degrees.
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Unfortunately, evaluation of the integrals in (14) for

the general case lead - - very complicated expressions which

do not seem to be us.~~ul from a practical point of view

(except of course for the case with events seen jointly by

all stations, but then it is very difficult to obtain

enough events for  analys is) .  Using numerical integration

does not seem to work with more than a few stations .

However , for the case M=2 and events seen jointly by

the two stations the unconditional distribution is not too

complicated . In this case the distribution turns out to be

(see Appendix 2)

(35) G(a1 a2) 
1~~~~~ ~

(

a1-Gl) ~(a2-G2) exo(_Y/~~~~~ ~~~~~~ 
exp (a2) +

c~~ ) exp(ct 4) )

where

(36 ) y (a
1 —a 1

-(B
1
+Q
1
—B
2
—Q
2
) 2 + (3(2o~ (a

1
-B
1
--Q
1
) + 2a~ (a 2 B

2~~2
) —

- o~ o~ (3))/(o~ + o~)

~~~~~~ = ((B
1~~ 1 

- B
2
-Q
2
) - (G1-G2 ) - (o~ + ~)(3)/~~ + +

~ 
+

(38 )  
~‘2 = (3(B

2
-fQ
2—G2

) + (32(2 + Y~~) / 2

- B1~~1) 
- (G2-G1) - (o

~ + 
(3) /k 

+ + 
~~ 

+ Y ~

(40) 1
4 

= (3(B1 + 
- G

1
) + (32(~2 + y~) / 2

i — ~~~~~~~~~~~~~~~~~~~~~~~~ --______________________________________
- - a  — . - .
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When con~paring two stations it is a common practice to plot the

magnituJe at onc. s..ation for given macTnitude at the other. It

is shown in Appendix 2 that the conditional distribution of

log (A/T) at station 2 for given log (A/T) at station 1 is

(41) g(a2/a1) = 
~~a2 G

2) 
1 

~ 

exP[_ (a2
_a

i
_ (Q

2
_Q

i
)_B) 2/202]/

(ai+B+ (Q2—Q1) -G2

t\
where

(42) B = B2 
— B1 — B

(4 3) 0
2 

= +

The parameters that are identified are B, G2, 0
2 and y~~, and

these can thus be estimated . The correspondinq likelihood

estimator is given in Appendix 2.

This distribution is of the same type as the distribution of ob-

served log (A/T ) for given true magnitude (eq. (20)) so the first

two moments of (41) are

(44) E(a2/a1) = B+(~
)
2-Q1 )+a

1+ 
_g__~

and

(45) D2(~~/a1) = ~
2 

— 

(a2+y~~) 
~~~~~ 

(
~~~ + ‘ 

—

~~~~~- .  - - ~

- - - -
:_ - -
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where B and ~2 given by (4 2 ) ,  ( 4 3 )  and

a +B+(() ~~~
(46) x =  1 ~ 2 i  2

I If we had also considered events not seen at stat ion 2 (but  seen

at station 1) we would have oht~ ined the following distribution

1 ex p ( — ( a  —a — ( 0  —Q ) — B ) / 2 o 2 1~~. 2 2
~ da

2 1  1 2
•if seen at St. 2( 4 7 )  g *(a 2/a 1)da 2 =

-— (a 1+B (Q 2 — Q 1) —C 2
) - ,

_____  
if not seen at st. 2

B and a are given by (43). This distribution is of the same

type as (6).

Ringdal (1975) based a likelihood estimator for the

detection parameters on the probabilities of detecting an

event at station 2 for given observed magnitude at station 1,

i.e., essentially on Eq. (47). However with this latter

approach it is not possible to separate the effects of

scattering (02
) and slope of the detection curve (y 2).
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To illustrate the method based on the distribution (41) the same

data as for the sinyle station case has been used. The analysis has

been made for both log (A/T) and magnitude data. Letting “k” denote

the parameters in the model with magnitude data, the relation to

parameters with log (A/T) data is

(48) B =  B ; G2 
= G~ +Q 2~ 0 =  0 Y;=\J Y2

+S02

where ~ is the average distance—deepth correction and S~ 2 is the

corresponding variance.

TABLE 3

LOG (A/T) DATA

Station Ref.station B G S y

WMO — .04 .07 .37 .05
UBO (.01)(.01) (.01) (.01)

TFO .1 5 .11 .37 .08
(.01)(.02) (.01) (.02)

UBO — .34 .37 .37 .17
(.02)(.02) (.01) (.01)

WMO
TFO — .07 .39 .35 .18

(.02)(.02) (.01) (.01)

USC — .44 .03 .37 .08
( . 0 1) ( . 0 1 )  ( . 0 1 )  ( . 0 1 )

TFO
*

W140 — .29 .01 .36 .05
(.01)(.02) (.01) (.02)

*Lower l imit for C.

Standard error within brackets.

—-~- -

-
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TABLE 4

MAGNITUDE DATA

Station Ref.station B G S 0 SQ

WNO .14 3.88 .36 .24 3.71 .16
(.01) (.03)(.01) (.02)

(JBO

TFO — .05 3.82 .37 .21 3.72 .17
(.01) (.03)(.01) (.02)

UBO — .32 4.17 .37 .24 3.75 .17
(.02) (.04)(.01) (.01)

WMO

TFO — .06 4.20 .35 .26 3.74 .16
(.02) (.04)(.01) (.02)

UBO — .42 3.77 .36 .22 3.71 .17
(.03)(.O1J

TFO

WMO — .26 3.67 .35 .20 3.71 .15
(.01) (.03)(.01) (.03)

Standard errors within brackets .

_ _ _ _ _  ____  - - -- --—---——------— .--- - -- -~~~~~~~~ — — ------ - —.
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WMO

7.0

.3 -4

2- 1

:

50=

.1 -4
- I

40-4

.8=

S

•‘1

I I T ’ l l  ~~~~ 
—r , I T I I ~~~~~~~~~~~I T T I ! T ~~~~~~~~ 1.180

2.2 .4 .5 .8 40 .2 .4 .5 .1 53 .2 .4 .5 .5 53 .2 .4 .8 -S 20 .5 .4 .5 .5 SO

FIg. 10 Average observed magnitude at WMO for given observed magnitude at
UBO for 1958 events in the distance range 30 —90°. ~~ —0.32 ( .02 ) ,
ci=4.17 (.04), S=0.37 (.01), y=0.24 (.01), Q~3.7S, S

~
=O
~
l7• 

- -

- - -—-- — . .
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-rhe results of the analysis are shown in Tables 3 and 4. In

Fig. 10 a plot of the u~ servt~d averaqe magnitude at ~~0 for qive- n

magnitude at UBO is shown together with the e--znected averaae

magnitude calculated from Eq. (44) . There were no difficulties

in solving the likelihood equations except for one case; using

log (A/T ) data in estimating the parameters for TF() with WMO

as reference station . This problem is probably caused by in-

sufficient coverage of events in the neighborhood of the detection

threshold for TFO due to the high detection threshold for

the reference station . Anyhow , by restricting the nerm issible

range of variation for the estimated threshold so that it had

to be larger than the smallest observed log (A/T) + 0.01 it

was possible to obtain reasonable estimates of the p-9rameters.

Comparing the results based on log (A/T) and magnitude we find

close agreement , If we use Eq. (47) and transform log (A/T)

parameters to magnitude or vice versa , the results will

differ only slightly. There is a tendency for magnitude dat-i

to give somewhat larger numerical values for both G and Y .

—
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Appendix 1

The condit~ . - Jistribution of observed log(A/T) at a station

is given by t~~~~. ti,) as

(Al.i) H(a /m) 
~~~~ 

exp [_ (a_ (~~+r;+rrj))2/2o2]

where y (a —G)/y; x =(B+Q+m_G)//c2+y2

1and 
~(x) = f exp(— -t2/~ ) dt

-~~~

To obtain the expectation of observed magnitude for given true

magnitude we f i rst  evaluate

( A 1 . 2 )  F = / (a  -(B+Q~m) ) e~~[-(a-(B+Q+m))2/2o2] ~
(
~~~ ) da

Put u = a - (B+Q~in) a~d G = B+Q4~ -o
Thu s

u+G1 2 2(A1.3) F = 
~~~

=— .c u exp(—u - /2c ) 
~
(—) du

(A1 .~~) ~
._ exp (—u2/2o2) = —u / o 2 exp (—u2 /2c2)

Thus

u+G
(A1.5) F = [ )

~
— exp (—u2/2c2)

+ j  ~~~ exp(—u2/2c2) 1 
exp[— (u+G )2/2 y 2J du

=0 + j ~~~~~~
— exp[— (u2y2+(u+G )2~ 2)/2a2Y2] du211y 0

Now

(A1.6)  u2y2 + (u+G)2c2 = 
~~~~~

‘

~

‘ 

~~~~~~~~ +
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We then f i nd

(A l . ? )  r = e xp[— ~~2 / ( n -  - ç :’)~~ } 
J 

-~~L 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ lu

and f inally

~A 1.8) F = 
G

2 

~~~~

_ exp [-c~ /2(o
2+y2)]

Then

(A l .9 )  E ( u /m ) = F/~~(x )

and

(A 1.10) E(a /m)  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

B4Q4,~-G
where x =

To obtain the  variance of observed magnitude for given true magni-

tu d e  we f i r s t  evaluate

1 2 u+G
(A 1.l 1)  F = f  

,,~~~~~~~~~ 4 (
~

-
~

- —1 ) ex p ( — u 2/2 i 2 )  ~~~~~~~~~~~ du =

ij+fl ro

= ~~~~~~ exp(—~
2 /2o2) ~~~~~~~~~~~~~~~~~~~~ 

+ 
f

exn{—(u+G )2/~~(2]du

= ~ 
u exp~—u

2/’
~c
2) exp [—( u+~ )2/2y2] du

2iia y o
-U-

—G exp [_ ; 2 /2 (c 2+y 2)]

= 
/~~~/~2+~ 2 (~~2~~ 2) (~~~~~2) 

-:~‘ x )  with x as before.

This gives

(Al.12) E(u2/m) = -
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and

(A1.13) D2(u/m~ = E(u 2 /m )  - E2 ( u / m )  = a2 — “~~~~ ~‘(x) ____

(o 2+y~)~~(x) 
(x +

Thu s , the variance in the observed distribution is

~~~ ~ ‘ ( x )  
_____( x  +(Al .l14) D2(a m i )  = — 

(~~~~~~~~~Y)  ~ (x )  4 ’(x)

It can be easily shown that

u r n  ~‘(x) _____(Al.15) x-~ ~ 
( ~ 

+ ) = o

and

liiii ~‘(x) 4’(x)(A1.i6) (x+x-~—U- ~(x •(x) , = 1

This gives

u r n(Al .17) D2 (a/in ) =
Ifl ’U-

and

u r n  
______

1(Al .18) D 2 (.a /m ) = 02 (u — )m+~~

Turning to the likelihood estimator we have

(Al .19) log L = log H(.a /M) =

= const .— (a— (B+Q+in) )2/202 — log •(x)

______  
2 1(Al .20) ~ log L = (a— (B+Q+zn))/a - 

/a2+yz ~(x)am

a Log L 
= 0 then leads to solvingSolving am

02
(Al.21) a = B+Q4m+/~~ —2- 

~(x)

—
-4



or letting z(x) =

( A J .2 2 )  a = B 4 +
10~~~~2 z ( x )

Turning to the case of several stat ions , the li}~e1ihood is from

(eq. 19)

M 14
(A ~~.23) L(m) = ~s h .(a./m)/ (l—it P(a .~. N ./ m ) =

1 1 . 1 1
1=1 1=1

= L *(m ) / P * ( m )

wi th

M
(Al.214 ) L* ( m )  = ~ (h.(a ./m)

i=1

(Al.25) P*(m) = 1 —~~~~ P(a .~~~./m )
i~ l 

~

exp(-(a.-(B.+Q.+~ ))2/2ofl if the event is

(P.1.26) h .(a .Inl ) =

__________ -
J if the event is not seen

and

— (rn+Bj+
C ( Al .2 7 ) p( a .c:1. - ’m )  =

it was ment ioned  ear l ier  that this likelihood is not a product of

i rv~ep -r d ‘-n t  i i~ rd ihood s , :;n t h r  usual asymptot ic  results  for maximum

1 iI~e1 ihoor l ~ r~~~t . appiy r l i r e - t I y .  However , by showing that the maximum

for L (m) i~ t h e  same pt:; for r ,*( m )  when M tends to infinity we can

-~~ 
— -V—-- - V 

-

a - - 
. - - 

~~~~~

- - - ~~~~~~~~~~~~~~ — - — — -
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a~~1y. the asymptotic fortnulaes to L*(m) which is a regular likelihood .

~e have

(P.1.28) log L(m)  = log L*(m) — log P*(m)

Provided B.,Q1, G1,a1,y. are well behaved for all i , that is , are such

that each station has a non zero probability to see the event it follows

that log L(m) tends to log L*(rn) for every finite m. Specifically

assume that there exists a ~>0 that 
-

(aI+Bj #Q1—G
(Al.29) 6 ~ ~ (/~~~~2 

— 
~ 1—6 for all i

(P.1.30) 1 — (1 6) M P*( m )  ~ I

And as M tends to infinity we have

(Al . 31) u n  P* (m ) = 1

It then follows directly that

(Al .32 ) u r n  log P*(rn ) = 0

(Au .33) ~ = 0 for all finite m and n 1 ,2,3....

From this it follows that the asymptotic properties of the

estimator obtained by maximizing L(m) is the same as that obtained

by maximizing L*(m). As the latter is a regular maximum likelihood

estimator we have, letting m denote the true magnitude of the event

and m the likelihood estimator , that ~41~ (rn—rn0
) tends to a normally

-- -V  - ----  - - --- 
~~~~~0~~~~~~~

_V _ p  - 
. — — —



i~ ri u r v - -

(P. 1. 314 ) D 2 ( v ~i (rp -.rn )) = [ (
~~~ 

F( 0
~~

1 ( T h
~~,~ =m )2)]

Now

(Al .35) ~~ E [ ( ~~~~~~
L ( m )  

i m m ) 2 j  = 

~ i=l 
~ [( auog hi (a1/ m) 

/ ~~~~)2]

a1.(B~~~.~~5) if the event is seen

alog h . ( a . / n i )
(Al .~~i)  — I m m

I ~~~~~~~~~~— l ~
/c~~+yf ~(

—cm fl+B~4Q~—cl) 
if the ev:nt is

or letting

(P.1.3?) u . = a~ — (B . 1Q -‘in
1 1 1 i o

(A 1.38) x~ = (m +B.4Q~+Gj)/v~~~~~
’

we have

(P.1.39) 
a1~g h~ (a1/m) / mmn = 

1 1

am ° — 1

1°~~1
ar.d

(P.1 . 140) E ( ( 3 log h~ (a~/m) 
/ m m ) 2 )  

U- 

~~~~~~ 
exp (-u212 o?) du. +

+ 
1 ~~‘(Xj)~~

2 
,

,y
~ +Y~ ~,(— ~1)’ ~~1~~ X1

P r ~~n eq. (P.1.11) it fol l ows that

~

-

~

- _  

.
-

~~~~~~ 

-

~~~~~~~~~~~~~

--

~~~~~~~~~~~~~ -
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(P.1.141) E ( ( a log h~ (~~~/ rn ) 
/ m r n  )2) =

am o

= ~~x .)  4 + ~~~~~~~~~~~~ 
~~~~~~~~~~~~ 

— x .)  = b

And finally

M
(P.1.142) D2(vc(m—m ) )  = u/ (~— E b . )o 1

.—..- -----

~ 

— - - - - -  
~~~~~~~~~~

— --- ---- - - - —  — —  —





N
(A2 . L)  log L(~~, , { ~ = ~~~ G ( a . )  =

= N L~~ ~ + r-~ G — ~~~ ~~~~~ —

N
+ E 

~~~~
i=1

The first order derivatives are , letting y . = (a.—G )/y

(A2.5) 
a log L(~~,G ,y) 

= ~~~~ + NG — N12
~ —

a log L(~~,G,y) — u N

i=l

(P.2.7) a log L(~~,G , y )  
= — 1 

~ ~~~a1 
1=1 

1

Turning to the second order derivatives we have

(P.2.8) 
a 2 log L(~~,G ,y) 

= — 
N 

— ~~~~~~
2

(P.2 9) a 2 log L(8,G,y) — N

(P.2.10) a 2 l
~L~~

(8I G
~
Y) 

= — 2 N~ y

(A2.1u) ~2 log L(8,01y) 
= - 

~~~ ! ~~ (y. +

(P.2.12) 
a 2 l

~~ a~
(e

~
G
~

Y )  
= ~ i~ 1 ~ 

(1 — — 
~~ )

4 — ---
~~ 

-

-- V.- -- -  

- -~~~~ - -
~~~



32 log L(8 ,G ,y) 
= — + ~~~~~ ~- ~~~~ _ _ _ _ _ ___________________ __________ 2 ~‘(i 

)
)(A2.l3) 

312 
~~-

i

Put 0 = (6,G,y).Let ~ = (~~ ,G .-y ) i~~.. - 
~he likelihc~od estimator

and e = (8 ,G ,y )  the true parameter set. As we here have a ~~i 1nr0 0 0

likelihood estimator it follows that the l i mi t in ~ d i s t r ibu t ion  of

/~ (~ —0 ) is normal with expectation zero and covariance matrix -0

,~~2 log L (O)/ 0 Ø ) )~~(P.2.114) D2(v’~i(O— 0)) = (— E~ 30 2

32 log Lwhere 
30 2 given by eqs. (A2.8)—(A2.l3). For large samples

1 
(
32 1~~ L(0),eê) computed from the data instead ofwe may use 38

E( 3 log L(0)
/0 0°) because30 2

(A2.15) Pu n  I ,~ 2 log L (o) 
_ _ _ _ _ _ _ _ _ _ _

N N 30 2 /o=ê ) = E (
~2 log L(0) 

~~~~
\ 3O~ 

/

Next, consider the case of events seen jointly by two stations.

The joint distribution of log (Air) :s a1 ar~ a2 is

U-

(A2.l6) G(a1a2) = I h
1
(a
1
/m ) h

2(ajni) exp(— (3m) din

m+B~+~1~~~ 
m+B~+~~~ .~) ex~ (-~r)d~

+

with

1 a.-G.
A(2.17) h1(a.~

/m) = 
,

~~~~~~~~~~~~ 

~~
,( 1 1

) exp (—(a.—B .—o,.—m )2/2cyfl for i = a , 2
1 1 1 1

I

Put = a
1 

- B1
Q,~ v~~a2 

- B2
- 
~2

a a -G  b= a_ G
1 1 2 2

-- .-~~ - -— - - - 
— -~~~~ — ~~~~~~

— a  - - . — —  —
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Then

CO

(P.2.18) F
1 

= f  h 1
(a1

/m)112(a2
/m) exr ~( - t ~’ . )  1~-. =

= 
~ (~~~~ ) ~~(~~~~ ) ~ 

e~~~[ ( ( . ! /+ (v ~~~
)2/

~ o~~)1 
e x p (-8r n )  ~~

~
‘
l ~2 

U- 
2 1T 01

0
2

Now

(A2.19) —4 ((u_m)2/o~ + ( v_ m )2 / o~~)_ 8m =

02÷02 21 1 2 1 2 2 2 2
= —

~~~ ~~~ 
(m— ~ 2÷0 2 (02u4-01v—0 102

8 ) )  —

— 
2(o~+o~~) 

((u_v)2 + 8(2o~u+2o~v—0~o~ 8)

And we find

(P.2.20) F1 
=

Next

~ m+~ 1+Q1
—G

1 
m+T~2

+Q
2
-G

(P.2.21) F2 f ~~( /o~+~r 
~ 

~~~~~ 
exp (-Br ) din

Put 
~~~~~~~ 

c;-Q~ 2
+G
2 

= d;s
1 

= = /;;- ;:cT =

Then

(A2.22) F2 
= 

U- 

e x p ( — f ~r n )  dn~i =

= 

~~ 
91 S2 

exp(-~rn) ] +



— 1~~~ —

+ 1~~ ~~~~~ ~~~~~ ~,L~[~~~~1)u/~ /J ~~Y~~~~~~~ ’ T )  (In
8~_~~ s

1 
2n 

~2

+ 1 ~~~ e x r ~{— ( ~ t—~~)2 / *~~ ] ex n ( — y ~’ )  ~~S 1

(P.2.23) — (m—d)2/2s~ — Om = — (m—(d—s~ 8))2/2s~ ~~~~~ + 
I ~2~ 2

~ im1lari1y

(P.2 .214) — (m — c ) 2 / 2 s~ — Bin = — ( m — ( c — s 1
B ) ) 2 / 2s~ — 4 ~2s~

So

e—s —c c— ~ —d
(A 1-  .25) F

2 
= exp (—8d+~3

2s2/2) ~ 
2 1 1 

exp(—Bc+82s2/ 2 )2 8 8

And finally

a-G a G
(A2.26) G(a1a2) B - 1

~~~~~ (

( t ( a 1) exp (n
2
) +~(a3

) exp(ct 14 )

where

(A2 .27 ) y = ( ( a 1~~ 2-(B1
+Q -B~.-~2

)

(P.2.28) a~ =

(P.2.29) 
- 

a2 =

(A2.3o) a~ = ( ( B 2+Q2-B1-~~~)-( G2-G1 ~~~~~~~~~~~~~~~~~~~~

(A2.31 ) az =

The marginal distrib”tion of a1
, given that the event is seen at both

stations Is

- - —V  - _V -~  V -~ V~~ ~~~~~~~~ _~~__~_ .—  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- ~~~~~~~~~~~~~~~~~~~~~~~~~ - - ‘ 



— i
-) , - —

( i - .~ ~~~~~~~ :~~~t )  = ~~~~~~~~~ I i ; =

= 
~ 

~ -:-(—— — )  
~ ~I[ ( (~~~~ ~~~~~~~~~~~~~~~~~~~~~~ a ,~~J ))/ ()~~+ ~ ) 1 , 

-

= c - -
~~~~~

-
~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ) )/ ~~(o~ +~~~
) ]  ~~~n

— 
B, +~~ +a —

~~~~~ 
--Q —~~~~? —h

~L ~~~~~L~~~~LL)

- - h i~; w~~~r - - ,rI -~ b ~~~ i ri L h~- - - ‘nd i t (ru (. I ( i i  I, r ihut - ion ~,f a,, ~ j~~~e r j  a

f o r  ‘rj er~ , : ;ec :r i  aL bct ,h ~; t , :t t . i u r I ~i . We get.

( j , 2 . 7 ~~~~~ ) ~~~2/a1
) = G(a 

1a 2 )/g(a1 ) 
=

= ~~~
)_ G 2) j~~0

exp[_ (a
2
_a
1
_B)2/2a2]

a .i-B—G

~

wh ere = +Q2—B —Q1--B~~ and

+ (~2
1 2

h1 :; ~ist ,ributiort is of the same type as the ~1~~str ibution  of obse rved

log (~ /~ ) for g iven t rue  magni tude eq. (P.1.1) so the first- two moments

t g(a,~~~1
) are given by eq. (A1.10) and eq. (Ai.l it). On Lhe oi;,her

h- - I , h - t  we ~j]’y
- ron:-j, l p rpd the events not seen at station 2 ‘ iVen

- h eVE~~~S Wer e r~~ -n r - t e ~ ~.t station 1 it is readily seen that we

U r I I - ~H -~ .‘!rg di.ntr 11 I:~~ 1 On

(A 2 . ~~~) (= ~~~?—G 2)~~~~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In
12 ~2fl - - - 

if neC-n r~t st~~L 2

g (a2/a1)da1= ~

)if not seen i~~ st~~t 1rr 1  2

a 
~~~

-I
____- - - - —- - - - —
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• The log likelihood based on (P.2.33) for a sample of N independent

observations is except for a constant

N a -G

(A2 .35)log L ~-Nlogy -(a 2 • -~~2 • -~~1• —~~1~~-B) 2 /2 G 2+ log ~~ 
21 2)

I
a +B+Q2 . —Q11—G 2

— log~~ ( li

where B = (B
2—B1

—Bo~ ) and

= Q -QPutting G = G
2 
and y = 

~2 ~i 21 li

(A2.36) x = (B+ Q.+a1 .—G)/j 1

(P.2.37) y. = (a
21—G)/y

and

(A2.38) z(x) = •Tx )

The first order derivative s a r e

N
(A2.39) 

3logL 
~ (a ~~ — 

2 1
21. 1 a11)/a — z(x

i 1

N 1
(P.2.140) alogL 

~~ z ( y
1

)/y  + /2  2 z(x )
+11—1

(P.2 .14 1) 3lo~L —N 
+ ~ (a

21
_B_Q

1
—a11)

2/a~ 
aXj  z (x

(a 2+y 2)a 1=1

N
(P.2.142) 3logL 

= E — y1z(y1)/y + 
T~~~~~y~~

) 
z(x1)

i—i

The likelihood estimator is then obtained by solving

~312z.r~Za1o~ L a1o&LZ 31ogL, ~a 

- -- --— - --- -

- I  — - . — .  —
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J r  t~ (I = ( B ,~~ ,o , y ) (1’-rI(, L’- t . hi- I . ru’ r~:~ r:,in, -L~ •r n - t . arid fl = ( B ,h , ,

1’ riet ’ i -h ’- t 1 K ’ -  h’’ ,d :: ‘ ‘ r ’ i a tj ~. II t .hv~r i 1 , 1  1 w n  ‘Ii r .~ I .I:/ t r ( , r ~ Ih-

general properties of the maximum l ikelihood method that /~
(0 o— (~

)

is asymptotically normally distributed with expectation zero and

covar ianc e matris given by

1 (
3 logL ) ) _ 1

— 
N 
E 

302/0=80

which may be estimated by

1 32logL —1
— j~ ~2/)~~~~

Turning to these second order derivatives we find after non e

calculat ion

(A2.Y~) 
321o~L = 

N 
+ 

~~~ i~ 1 
z (x

i
) (x .+z(x. ) )

(P.2.1414) 321o~L = 

i~ 1 
- z(y.)(y ~+z(y 1

) ) / ~
2 + 

a~+y2 z(x~
)(x+z(x

1
) )

(A 2.li5) 321o~L ~L~- + 

i~1 
-(a2.-B-Q1-a21)

2 . 3/a
14 

+

+ 
~~~~~~~ 

[a 2 ( x
~

(x
~

+z ( x
~

) ) _ 2 )  +

- _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _



— c r .  —
‘
/ -I -,
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