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ABSTRACT

In this paper some statistical models in connection with
seismic magnitude are presented. Two main situations are
treated. The first deals with the estimation of magnitude
for an event using a fixed network of stations and taking
into account the detection and bias properties of the in-
dividual stations. The second treats the nroblem of estimating
seismicity and detection and bias properties of individual
stations. The models are applied to analyze the magnitude
bias effects for an earthquake aftershock sequence from
Japan, as recorded by a hypothetical network of 15 stations.
It is found that network magnitudes computed by the con-
ventional averaging technique are considerablv biased, and
that a maximum likelihood approach using instantaneous
noise level estimates for non-detectinag stations gives the
most consistent magnitude estimates. Finally, the models
are applied to evaluate the detection characteristics
and associated seismicity as recorded by three VELA arrays
(UBO, TFO, WMO).




INTRODUCTION

One of the main probl.... in estimating magnitude of seismic
events from network data is that the events are not always
detected by all stations. The standard procedure of estimating
magnitude by averagihg observed magnitude of recordihg stations
gives estimates that are biased upwards. Methods to cope with
this problem have been given by Herrin and Tucker (1972) who
computed the expected error introduced by the averaging procedure
and Ringdal (1976) who developed a maximum likelihood procedure.
The maxiiun likelihood method given in this paper differs

from Ringdal's appnroach in that it takes into account the
probability that the event is detected by the network. This
will have effect on the estimated magnitude for small events
(events that are detected by a small number of stations). The
maximum likelihood estimator for magnitude requires knowledge

of the station detection parameters (threshold and slope of

detection curve) and region -~ station bias.

In the second part of the paper, methods to estimate these
parameters are develpoed. This is done under the assumption that

the magnitude distribution in the source region can be approximated
with the usual linear relationship between magnitude and logarithmic

frequency.

The first method uses single station data for simultaneous
estimation of the slope of the seismisity curve and the detection
parameters of the station. This maximum likelihood estimator was,

although not explicitly stated, given by Kelly and Lacoss (1969).




One interesting result is that the distribution of log (A/T)
rather than magnitude at a station is independent of the focal
locations of the events and scattering. The second method is
developed for estimation of region - station bias and scattering
standard deviation. Because of the complexity of the joint
distribution in the general case detailed calculations is
carried out only for two stations. By combining analysis made
for different combinations of station pairs it is possible to
estimate relative bias and scattering standard deviations for

all stations in a network.

Lol




2. THEORY

2.1 Basic Assumptions

We assume that the amplitude of the signal generated by a seis-
mic event in a specific region and arriving at a station can be
modelled as

(1) A/T = eMeleBet

where

A/T 1is amplitude over period

m is the "true" magnitude of the event

Q is the distance-depth correction

B is the station-region bias, i.e. the average scattering
effect due to inhomogeneities in the earth

£ is the difference between total scattering and average
scattering.

Taking logarithms of both sides in (1) we get
(2) log (A/T) = m+ Q + B + ¢
or letting y = log (A/T) denote the station magnitude we get

(3) y =m+ B+ Q + ¢

If we regard ¢ as a sum of effects from many travel path in-
homogenities or scattering sources it can be shown (under general
assumption) that the distribution of € 1is Gaussian. The condi-

tional distribution of y for given "true" magnitude m 1is then

-

(4) £(v/m) = expl - 7%—[(3,- (B+0+m) ) 7 ]
o

N

Y




Here Q is assumed to be a known constant, and o0? is the
variance of the scattering, i.e., of €. We will further

assume that the station has a detection curve giving the
probability that the event is seen given y. We will here assume
that this curve is of the form

/ Yy
(5) @\X_:_g =

expl-(z-G)?2/2y?%1ldz
Y -0 21 ¥

where G can be interpreted as the average threshold and y as
the standard deviation of the threshold.

Distribution of Observed Log (A/T) at a Network of M

Stations

Let Ni denote the subset of station 1log (A/T) for given
true magnitude that are not seen at the i:th station. Then, de-

fine the variable ai such that

Ry = ¥y if the event is seen at station 1i;
N,
1

a, €

i if the event is not seen at station i.

Unless otherwise stated, the distance - depth corrections (Qi)

are regarded as known constants. The conditional distribution
of ai/m is given by

ai — Gl\
fi(ai/m)¢(—_71—__} da, for a; ¢ Ny
(6) hy(a,/m) da, =

(b(-aai +Qi+m-Gi)\

for a, € N.
e
oS ¥y
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If the scattering cffects, Lye Lansserty

distribution of (a., az,...,aM/m) is

M

(7) h(a a ,...,J.M/m)da1daz...daM"—'iglhi(ai/m) da

5 E52

If an event is declared as detected by the network whenever it is

detected by at least one station, we obtain the detection

probabilitv for the network as

. M f—(Bi + Qi + m -~ Gl)\ M
(8) P(detect/m) = 1 - 1 ¢ =1- [ P(a. € N,/m)
i=1 g / B L
oy +7Yj

The distribution of (al,...aM/m) given that the event is

detected by the network is then

h(al,...,aM/m) da] ...daMl
M

1 .21 P(ai € Ni/m)

(9) H(al, az,.--,aM/m) da]...da”_ =

This is the conditional distribution of 1log (A/T) recorded at
the network. If the distribution of true earthquake magnitudes
is known we can derive the unconditional distribution of

log (A/T) recorded at the network. Let v(m)dm denote the
distribution of earthquake magnitude in a region. The uncondi-

tional distribution of a o pdl s

IS M

(10) g(al, a2,...,aM)dal oo daM = J h(al,...,aM/m)dal nEEE daM v (m) dm

The probability that all a; € N, , 4i.e. the probability ©f not

recording is

}V (m) dm

ol? -(m+B+Qi—G)\
(11) P(a1 € Nl""’aM € NM) = J y ¢<

2 2
%-+ Yi

are independent the joint

2% ..

ST N —
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giving the unconditional distribution of log amplitude recorded

at the network

@ g(al,...,aM)dal ... dey,
M l—P(al € Nl,..,aM € NM)

(12) G(al,...,aM)dal cve /A8

It is often assumed that there is a linear relation between mag-

nitude and logarithmic frequency Of earthquake occurrence. This

corresponds to assuming that the distribution of earthquake magnitud

is

v (m) dm

v
3

f explf (m-m,) ldm for m
(13; '

v (m) dm 0 for m < mq .

Inserting this in (12) we get

Jf h(al,...,an/m)da. . .da,, exp(=-8m)d
m

= 0
(14) G(al"“'aM)dal daM- = T

[ Q-1 P(a; € N,/m) exp (=frm) dm
J i=1

Mo

The integrals in (14) exist for all mo and are convergent when

m, - -o

In many cases it may be desirable to consider the distribu-
tion of station magnitudes instead of station 1log (A/T) . Lett-

ing m, denote the observed macnitude at the i:th station we have

(15) My = @ = Q)

and the distribution of mi/m is then

fi(mi/m) <b\ s /dmi for m, ¢ Ny

*
hi (mi/m) dmi=h1 (mi-l-o.l/m)dmir

¢<— (Bi+Qi+m—Gi)

',02 + Yi

i

)for my € Ni

*
with fi(mi/m) = f(mi + Qi/m) .

— o e
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From (16) we see that the distribution of mj/m depends on the
distance~depth correcction. But this correction is introduccd in
order to obtain measures of event magnitudes that are independent
of the focal locations. In order to avoid this dependence we
can regard the distance-depth correction as a random variable
normally distributed with expectation Q0  and standard-deviation
0y - We can then obtain the probabilities of detecting an event
for given station magnitude. This curve takes the same form as

(5). We get the detection curve

. = G, /
/ml i\ r - _ = X ko2
(17) ® ) with G, = Gi Qi' M (Yi + OQ)
i
i
and the distribution of mi/m as
G*
; o
£, (m,/m) ¢ =} dm, for m, ¢ N,

Y*
—(Bi-+n1— Gﬁ
.|

——-——-——'—>for m, ENi
12 . %2 -
(637 Y.

i 1

% X%k
(18) hi (mi/m) =

Using h:* instead of hi in {9) and (14) then gives the con-
ditional and unconditional distribution of observed station

magnitudes.

Comments

We have here defined detection of an event as seen by at
least one station. Using other possible definitions like seen
by at least two stations will only change the denominators in
(9) and (l14), which in turn are derived from Eq. (8). In the

following sections most results are derived using log (A/T)

I o
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as a basis. The corresponding results in terms of magnitude are
obtained by substituting magnitude for log (A/T) and settino
all distance-depth corrections equal to zero. The station
varameters G and y are then interpreted as detection parameters
in terms of magnitude and can be transformed back to log (A/T)

basis in a way similar to that in Eq. (17).
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5 i ESTIMATION

The two distriku licus (9) and (14) are in general suited for
two different estimation problems. The conditional case is
useful mainly for estimation of magnitude of individual events
while estimation of structural parameters such as seismicity,
station bias, etc., is most conveniently done in the framework
of the unconditional approach. In certain cases, the conditional
approach can be used to estimate structural parameters and for-
those cases it has the advantage of not requiring any knowledge
of prior distributions.

We shall here address both approaches and begin with the

conditional.

3.1 Conditional Maximum Likelihood

Consider first the case of one station and one event. In
this case the distribution of observed loqg (A/T)=a for given true

magnitude m is

£

\
(19) H(a/m)da = f(a/m) & {3=8lg, ¢L§ﬁi“:§‘.
e Voley7? |
or explicit
(20) H(a/m)da = —X— expl-(a-(B+Q+m))2/202]
V21 o
Y // X
i [ exp(-t?/2)dt - = [ exp(-t?/2) dt
V2T - /2T -

with y = (a=G) /y

(B+Q+m~-G) //oZ+Y?

X
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Fig. L Frequency distribution H(a/m) for m = 3.8, G = 0.0, B+Q = -4.0,
o = 0.3, vy = 0.2 and the corresponding Gaussian distribution with
expectation -0.2 and standard deviation 0.3.
The shape of the distribution is shown in Fia. 1 toqgether with
the corresponding Gaussian distrikution. The CGaussian distribution
corresponds to the case where the station has a probability of

not detecting an event. We see from the figure that the effect of

nondetection is substantial. It is shown in Appendix 1 that

2

(21) E(a/m) =B + Q + m + ———  3(x)
VoZ+y?
with x as before and
Z(x) = = exp(-x?/2) L g 2
/%5 = | exp(-t?/2) 4t
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TRUE MAGNITUDE (m)

Fig. 2 Expected log (A/T) at a station for given true magnitude. Station
parameters used are G = 0.0, B+Q = -4.0, 0 = 0.3, vy = 0.2.

Figure 2 shows E(a/m) for B+Q = -0.4, G = .0, ¢ = 0.3, v = 0.2,
As can be seen from the figure, the bias is large for events of

smaller magnitude and also quite large for events around the

detection threshoild.

In this case it is readily shown that the maximum likelihood

estimate corresponds to solving the following equation for m

2
(22) & =B +Q0+m+ o
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In the case of a network consisting of several station,
one might estim~t~» the magnitude for each station that detected
the event accurding to the above approach and then average
these values to obtain an estimate of the true magnitude.
However, if the stations that did not see the event were
operating properly, the information that some of the stations
did not see the event is useful information and should be
utilized in the estimating procedure. This was first done
by Ringdal (1976) who considered the case with y = 0, i.e.,
the stations detect the event as soon as the 'observed
magnitude' m, is larger than G. His results will differ
from those given here as he included in the sample space
the cases where the event was not seen at any of the stations.
This will have effect on the estimated magnitude for smaller
events but for larger events and/or large number of stations
the differences will be small. The reason for this is that
the probability of not seeing an event tends to zero as the

true magnitude increases and/or the number of stations increases.

Suppose that we have a network of M stations recording an
event. Suppose further that the event is seen by at least one
station. The corresponding log likelihood is

M M

(23) logL= ¥ logh,(a,/m) - log(l- 11 ¢
o b S
i=1 i=1

- (Bi+Qi+m-Gi)\

Y £

1

Ve




Comments
we can see ucire that the likelihood is not a nroduct
of 'individual likelihoods'. If we had considered the case
with events seen at all stations or a specific station,
the likelihood (19) would have been a product of 'individual

likelihoods'.

It is shown in aAppendix 1 that the likelihood estimator for

magnitude is consistent and its asymptotic standard error 1is gjven.

Can we use the conditional approach to estimate the parameters
Bi’ Gi’ o4 and Y5 and magnitude simultaneously? To try to an-
swer this question we assume that we have a sample of N events
such that each event is seen and recorded by at least one station.

In terms of "true" log (A/T)-Q arriving at the stations we have

the following model
(24) L S Bi + mj + g . . =172 0. 5, Ms s e 152,000, N

If we had had the case where every event was always seen at every
station this would have been the standard model for analysis of
variance of a two way classification. 1In order to make the model
identified we have to impose a normalizing condition on the Bi:s
(or mj:s). The reason for this is that these unknowns are iden-
tified only up to an additive constant. We will here adopt the
condition ? Bi=0' that is, the average station bias is gey

i=1
equal to zero.

In the analysis of variance model with fixed effects the
likelihood does not have a maximum if we treat the 0,:s as un-
known. This will clearly also be the case when we have missing
observations, i.e. some stations faj]l to remort an event bacause of

the detection properties of these stations. However, even if we




treated the 0,8 as known constants there are difficulties be-
cause the nun! ~r of unknowns increases with sample size. That is,
as the number of events increases the number of unknown event
magnitudes increases. Therefore, the standard methods for inves-
tigating the properties of the maximum likelihood estimator do not
apply. The reason for this is that the estimator for mj is not
sufficient independently of Bi’ Gi and Y- And as we cannot
obtain a simple relation expressing the estimator for m. in
terms of data and the parameters Bi' Gi and Yi we cannot use

the approach used by Christoffersson (1970) in connection with

estimating factor loading in the case of missing observations.

So, at least for the time being, we have to regard the condi-
tional approach as a heuristic one for estimating the station

parameters.

For the case of just estimating the magnitude, the
likelihood estimator seems to be fairly insensitive to moderate
changes in the present parameters. However, it is imnortant
that the stations that do not report an event have been operating
properly at that time. Otherwise, there will be large biases
in the estimated magnitudes. The asymptotic standard errors,
on the other hand, are directly related to the present level
of scattering, i.e., on the oi values and also to some extent
on the Yjis. Tables 1 and 2 and Fig. 3 show an application for
a simulated network consisting of 15 stations to an aftershock
from Japan. Here all 0, are preset to 0.3 and all Y; to 0.2.

In the figure there are some outliers. The first, event no. 2,




Average mn,

6+

max imum
likelihood my

» -
@

Fig. 3 Average mg and maximum likelihood for a simulated network

of 15 stations. Aftershock consisting of 72 events.
illustrates the importance of the earlier mentioned condition
that the stations have to be in operation and/or that no

extremely high noise levels or interfering events are present

because this event is so large that it should have been seen
by all the stations. Therefore it is probably best to have |
a variable threshold, for example related to the noise level |
in the time interval preceding the signal, as suggested by

Ringdal (1976). The other outliers, events 3, 4, 40 and 47,

are small events seen by 3, 1, 1 and 1 stations, respectively,

and reflect the bias in the conventional method for magnitude

estimation.




TABLE 1

PR

ESTIMATES OF STATION BIAS Bi' AND STATION DETECTION

THRESHOLD Gi

Station Bi Qi Gi
LAO 0.07 -0.1
MBC 0.29 3.9 +0.2
NAO 0.00 3.7 0.0
RES 0.38 . +0.5
HFS 0.00 +0.1
UBO -0.16 +0.1
KBL 0.09 +0.2
FFC -0.03 ‘ +0.6
BLC 0.20 +0.9
ALE 0.05 3. +0.8
FBC 0.05 3ol +0.8
CHG -0.39 STl +0.3
COL -0.21 e +0.4
FCC -0.15 3 +0.7
YKC -0.21 é +0.7
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.2 Unconditional Maximum Likelihood Estimation

Consider first t!- _se with Jjust one station. From

Eg. (14) we get, letting B * =o

o

(25) G(a)da = [ h(a/m)da exp(-Bm) dm/ [ [1-P(a€N/m)] exp(-8m) dm

- OO -~ 00

Now

0o

(26) [ h(a/m) exp(-Bm) dm /
- -»/2T o

expl-(a- (B+0Q+m))?/207?]

/

exp (-Bm) @(E%Q)dm

const. exp(-fa) Q(aiq)

/

’

(27) [ [1-P(a N/m) lexp(-fm) dm = | @k

-0 -0

B+Q+m-G

) exp (-fm) dm
/o7+y7%

= const.

Thus, the distribution of seen events at the station is

proportional to

{a=G)

28 exp (- | —|

(28) p(-Ba) \ Y
Evaluating the proportionality constant (see Appendix 2) we

find that the distribution is

(29) G(a)da = exp(BG-y’8°/2) exp(-Ba) @(‘a‘;g) da

We note that this distribution is independent of the
scattering standard deviation, the region-station bias and
distance-depth correction, i.e., the observed distribution
depends only on the seismicity parameter B and the station

detection parameters G and Y.

I U R ee—— e
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Turning to the likelihood estimator we have for a sample of N

independent observatiuns, a;, ajr..-.s3y

1. 2 2 o L B, =&y
(30) logL=NlogB+NBG-5Ny" Bg" -8B I a,+ I log<b( )
2 =1 T =1 Y

The derivatives of log L with respect to B8, G, and Yy are

5 N
+NG-NyB- I a
i=1

(31) 8log L _

™| 2

N
(32) §_1_°9_L_=N3-%.2
1=

N
(33) Q—M=N82y—%zyi¢(y.)

The likelihood estimator is defined as the solution to

dlegl _Sdlogl 6 logi _
S 5 8 i e

which corresponds to the maximum of 1log L.

Although not explicitly stated these likelihood equations
(eq. 31-33) were obtained by Kelly and Lacoss (1969) who in addi-
tion were estimating the total number of earthquakes in a given
time period. The likelihood estimator for B8 considered by Aki
(1965 can be obtained as a special case from the above equations

by putting y=0 and G=min(a1,...,aN).
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To illustrate the above method, data in the distance
range 30°-60° observec - <he stations UBO, TFO and WMO have
been analyzed. The results in terms of base 10 logarithms are
shown in Figs. 4, 5 and 6. From the figures we see that the
model fits the data reasonably well. However, for UBO (Fig. 4)
there is statistically significant deviation between model and
data. On the other hand, the number of observations is large
(4562) so that the probability of detecting small deviations
is large. The maximum deviation between data and model is 0.02.
Whether this deviation is of any practical significance will
depend on the situation in which the model is applied. For example,

in seismic risk studies this deviation may be of very great

importance.

Frequency

0.8 H
significant deviation

(= .05)
0.74

0.6

0.5+

0.1
0.0 - T T —t T T T T \ R R B o T T T 5 T l‘”m"\"”
0.0 J! 04 06 Ojﬂ 10 1.2 14 16 18 20 22 2 26 28 30 32 34 36
s ' O o i
Fig. 4 UBO distance 30 °-90 . 4562 events. Observed and theoretical

loglo(A/T) cumulative distributions. 8 = 0.85 (.017),

o =0.19 (.010), ¥ = 0.11 (.007). Standard errors within
parenthesis.
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Frequency
1.0 4
0.9
0.8
0.7
0.6
0.5
0.6
0.31
0.2 1
0.11
0.0 ——¥¥rr—r——r++ logyg AT
-2 00 Q2 04 06 08 10 12 14 18 18 20 22 24 26 28 30
Fig. 5 TFO distance 300-900. 3725 events. Observed and theoretical
logl8(A/T) cumulative distributions. B = 0.93 (.019),.
o =0.09 (.008), Y = 0.10 (.005). Standard error within
parenthesis.
Frequency

Fig.

6

log, - (A/T)
T T L ¢ TR T TR, T T y 10
OTO 0.2 OTO 0:6 Or.O 10 12 14 16 18 20 22 24 26 28 30

WMO distance 30°~90°. 2321 events. Observed and theoretical
log, . (A/T) cumulative distributions. B = 1.16 (.035),

o =l8.40 (.015), Yy = 0.16 (.007). Standard error within
parenthesis.




Looking at the estimated B-values we se> a rather large

variation, @ = 0.85, Q

= 5 = i
S e = 1005 and QTFO 0.93. This

difference may be attributed to the different seismic area
(see Figs. 7, 8 and 9) that are sampled. The southern part

of Japan is outside the distance range 30°-90° for WMO which
may explain the relatively high Q—value for "WMO. On the other
hand, it has been suggested that the linear seismicity model

is valid only for a limited magnitude range and that the slope

of the seismicity curve increases with magnitude. The relatively

high detection threshold and B for WMO is supporting this latter

hypothesis.

Whereas the magnitude distribution for one station can be

used to obtain reliable estimates of the detection parameters

G and y no information about the station bias B and the scattering

0 can be obtained as the distribution of observed magnitude
at a station is independent of these parameters. To estimate
these parameters we would like to consider the distribution

(14) for the general case of M stations.
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Fig.
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7

Azimuthal projection with center at UBO. The distance curves

from origin are 30, 45, 60°, 75°, 90°. Azimuths are 0, 30, 60,
90 a.s.o. degrees.
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WMO  WICHITA MTS.

Fig. 8

Azimuthal projection wigh cegter gt WMg. The distance curves
from origin are 30 , 45, 60, 75 , 90 . Azimuths are 0, 30,
60, 90 a.s.o. degrees.
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Fig.

9

Azimuthal projection with center at TFQ. The distance curves

from origin are 30, 450, 60 , 750, 900. Azimuths are 0, 30,
60, 90 a.s.o. degrees.
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Unfortunately, evaluation of the integrals in (14) for
the general case lead  * very complicated expressions which
do not seem to be usciul from a practical point of view
(except of course for the case with events seen jointly by
all stations, but then it is very difficult to obtain
enough events for analysis). Using numerical integration
does not seem to work with more than a few stations.

However, for the case M=2 and events seen jointly by
the two stations the unconditional distribution is not too
complicated. In this case the distribution turns out to be

(see Appendix 2)

{35) G(a

(a Gl ® a2-G2
Y1 \'y,

2 /ZOH

where

(36) y-= (a1'a1'(Bl+Q1'Bz'Q2” + B(202 5@ =B;=0;) + 2ol(a2 B,-0,) -

2 2 2 2
= 0y 9, M)///(ol+-oy

e JJobk g esiles Plat iy Syl eh e e S
(37) o) = ((Bj+Q; = B,=0,) - (G~G,) = (o + YZ)B)////Vél +05 4y *tyy

e B = 2.2 2
(38) ay = L(BZ+Q2 Gz) + B (02 + YD) L
2 2 /2 2 2 2
(39) iy = ((BZ+Q2 - Bl-Ql) — (G2-Gl) = (01 + Yl)B)//// 51 + o, ar Yl an \2
g 3 2;.2 2
(40) g = BB +Q G) + 8 (ol + yl) / 2

)eXp(—y/Z) (®(0q) exp(ay) +

¢ (ay) explag))

P Py a.a
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When comparing two stations it is a common practice to plot the
magnitude at onc s.ation for given macnitude at the other. It
is shown in Appendix 2 that the conditional distribution of

log (A/T) at station 2 for given log (A/T) at station 1 is

Gl e e R s S e A e
/%y \ T2 5 o p v NS

/
al+B+(Q2-Ql)-G2
/37175”

®

(42) B=B, - B, - B0

The parameters that are identified are B, G,, 0% and Yé' and

these can thus be estimated. The corresponding likelihood

estimator is given in Appendix 2.

This distribution is of the same type as the distribution of ob-

served log (A/T) for given true magnitude (eq. (20)) so the first

two moments of (41) are

3
44 = g P~ (x)
(44) E(ay/a;) B+ (0,0 )+a + s X
/o +Y,
and
5) DRl ot e i B (x L ')
: ey YW o x)




e —— e S,

_30_
where B and 02 given by (42), (43) and

a, tB+(Q. =,

(46) R Kbl o ol
Jﬂz-}-\g

If we had also considered events not seen at station 2 (but seen

at station 1) we would have obtq}ned the following distribution

b

1 Ag=G\

: expl-(a,-a;-(Q,-0,)-B)/20% 10, [aa
V21 O \ /
if seen at st. 2

2
- (a,+B(Q,-Q,)-G,);

{ L B 2 { if not seen at st. 2
{ ChEaEd

\

)

\

B and o are given by (43). This distribution is of the same
type as (6).

Ringdal (1975) based a likelihood estimator for the
detection parameters on the probabilities of detecting an
event at station 2 for given observed magnitude at station 1,
i.e., essentially on Eg. (47). However with this latter
approach it is not possible to separate the effects of

scattering (0?) and slope of the detection curve (Yz).
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To illustrate the method based on the distribution (41) the same
data as for the single station case has bee; used. The analysis has
been made for both log (A/T) and magnitude data. Letting "*" denote
the parameters in the model with magnitude data, the relation to

parameters with log (A/T) data is

48) *_ N i *+— *_’ *_ 2 Sj
( B =B ; G2 = G2 Qz, g =g F ¥y~ y2+ 02

where Q is the average distance-deepth correction and Séz is the

corresponding variance.

TABLE 3

LOG (A/T) DATA

Station Ref.station B G S Y
WMO -.04 .07 .37 .05
TFO « 195 - <11 3/ .08

(.01) (.02) (.01) (.02)

UBO -3 .37 .37 .17
(.02)(.02) (.01) (.01)

WMO
TFO 87 3% .35 .18
(02 1.02) .01 (.01)
UBO ST .08
(.01)(.01) (.01) (.01)

TFO
WMO B B .05

(.01) (.02) (.01) (.02)

*
Lower limit for G.
Standard error within brackets.




TABLE 4

MAGNITUDE DATA

- BB

Station Ref .station B G 5 Y Q S0
WMO .14 3.88 .36 240 3 T 6
(1080 = 0L 03) (G0 (.02)
UBO »
TFO -.05 3.82 37 <20 3072
(.01) (.03)(.01) (.02)
UBO Siedi2 4.17 .37 24" - 375"
(.02) (.04)(.01) (.01)
WMO
TFO -.06 4.20 .35 <26 .3.74 .16
(.02) (.04)(.01) (.02)
UBO =42 il =36 <22 SRR s
(.01) (.03)(.01) (.01)
TFO
WMO -.26 3.67 .35 G208 307 S
(.01) (.03}(.01) (.03)

Standard errors within brackets.

P




Fig.

WMO

—>UBO
8 80

10 Average observed magnitude at WMO for given 8bserved magnitude at
UBO for 1958 events in the distance range 30 -90°. B= -0.32 (.02),

0=4.17 (.04), $=0.37 (.01), y=0.24 (.01), Q=3.75, SQ=0.17.
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The results of the analysis are shown in Tables 3 and 4. In

Fig. 10 a plot of the vpserved average magnitude at WMO for qgiven
magnitude at UBO is shown together with the exnmected averaqge
magnitude calculated from Eg. (44). There were no difficulties

in solving the likelihood equations except for one case; using
log (A/T) data in estimating the parameters for TFO with WMO

as reference station. This problem is probably caused bv in-
sufficient coverage of events in the neighborhood of the detection
threshold for TFO due to the high detection threshold for

the reference station. Anyhow, by restricting the permissible
range of variation for the estimated threshold so that it had

to be larger than the smallest observed log (A/T)+ 0.01 it

was possible to obtain reasonable estimates of the parameters.
Comparing the results based on log (A/T) and macgnitude we find
close agreement., If we use Eq. (47) and transform log (A/T)
parameters to magnitude or vice versa, the results will

differ only slightly. There is a tendency for maagnitude data

to give somewhat larger numerical values for both G and Y.

VI T S ——




In the distribution (41) it is neighter possible to identify the
individual scatterinag variances nor the region-station piases

But if we can acssume that the parameters are at least approximatly
constant over the different regions we can combine the results

for all possible combinations of station pairs and obtain
estimates of scattering variance and region station bias. Using

log (A/T) data we have for the different combinations (see eq. 43).

USBO+ oémo = .372
ogmo* Otro = 377
G ot Oy = BT
G%Mo+ 0%?0 = .352
°L21130+ O;FO - .37°
G%Mo+ U%FO = .362

Solving this system by least squares we obtain the following estimates

of the scattering standard deviations: oUBd=.27 ¥ Oumo™ .25 and O .25
Similarily, for magnitude data we get %yBo™ .27 ; O™ .25 and OTF0=‘24

Turning to the region-station bias we obtain from eq. (43) using

log (A/T) data

g 2
Bueo™ Bumo™ B 9ypo= -.04
2
Byeo™ Brro™ B oygo= .15

(50) 2
BWMO BTFO B UWMO= -.07

" 2
Brro~ Buso™ B Oppo= --44

s 2
Brro~™ Bumo™ ® Oppo= ~-29




We first note that the region-station cocefficients can only be
determined up to an unk. —-. . additive constant. We therefore adopt

the normalizing condition BTFO: 0. If in addition we substitude

. . . . 2
the estimated scattering variances obtained from (49) for UBO’
2

2
;OWMO and ogn, we can solve (50) for B and P by least

UBo’ Buwmo

squares. This gives BUBO: «31 3 BWMO= .14 and g= 2.78,
]
(in base 10 logarithms R= 1.20). This estimate of B must be regarded

as very unreliable compared to the estimates of B and BuMo

UBO
because the diagonal element in the inverse of the moment matrix
obtained when solving (50) is more than 100 times the elements

corresponding to B

and B Using magnitude data we obtain

UBO WMO*

BUBO= .28 ; BuMO™ .12 and 8= 2.53 (in base 10 logarithms g= 1.10).

The reliability of this A-value is of the same order as for log (A/T)

data.

It must be noted that the results concerning bias and scattering

are based on the assumption that the parameters are the same for all
sampled regions and that the analysis of single station data inlicated
’that the slopes (B) may not be equal. This difficulty can be overcome

by using data from one specific region. However, in this paper, data

is used only to illustrate the statistical methods. And for this

purpose data is considered to be of sufficient quality.
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Appendix 1
The condit®..«=* Jistribution of observed log(A/T) at a station

is given by eq. (19) as

: 1
(A1.1) H(a /m) = Vong €¥@l-(a-(B+G+m))2/262] ¢(y)/¢(x)
where y = (a -G)/v;  x =(B4Qtm-G)/Vo2+y2

X

and o(x) = E];-i exp(-t2/2) dt

To obtain the expectation of observed magnitude for given true
magnitude we first evaluate
0

(A1.2) F = ‘,-2—1—0 /(& -(B+Q4m)) exp[-(a~(B+0+m))2/202] o

a-G

) da

Put u =a - (B+Q+m) and G, = B+Qim-G

Thus
3 oo 5 LH"GO
= = -u?/202) ¢ d
(A1.3) F= _i“exP(u/0)<v)u
(A1.h) %—- exp(-u2/202) = -y/g?2 exp(-u?/2¢2)
u
Thus
g U+Go %
- Pl L =42 2
(A1.5) F= s exp(-u?/202) o 2 S
~ g 2 /0.2
> = exp(-u?/20?) expl~(u+G_)?/2y2] qu
it~ VER f55 o
=0 + f =2— expl-(u2y?+(u+G )262)/26?y2] au
-00 Q“Y ~
Now
(A1.6) " # (uh0) 0 w Sgne a1 s g
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We then find

(A1.7) F = c}(p[“';é/ r2)2] f i (r) +y )(1)+('.-O()?/(nl"+yy

and finally

!Al'8> /'3-2_._—? /— eXP["Cé/Q(Ozﬁ-Y?—)]

Then

(A1.9) E(u/m) = F/o(x)

and

(A1.10) E(a /m) =B+Q+u+F/d(x)=B+Qim o o'(x)
. e : VoZry?  9(x)

B+Qém-G
where x = /57:;7

To obtain the variance of observed magnitude for given true magni-

tude we first evaluate

e R s .
(A1.11) ¥ o= F e ox e el p(-u?/2062) o y ) du =
u+0y W w

2o’y

))?/CJJ):)'YI/‘] du

[/—~ 3 exp(~u?/20?) #(-——=)]1 + f —— exp(-u?/20?)

exol - ( u+Cc)2/Qy2}du
w U n.,(_2d2_‘ s ,2?2 =
= e TR /20%) exp[-(u+G_)?/2y*] du
-G expl-0%/2(g2+y2)]
- F=’?r7-;7 = o' (x) with bef
* /21 JoTayZ (o24y2) TEYI;YT x) with x as ore.
This gives
; o x ¢'(x)
(A1.12) E(u?/m) = 0? -

(o2+y2)o(x)
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and

(A1.13) DZ(u/m) = E(u?/m) - E2(u/m) =

Thus, the variance in the observed distribution is

4 '
(R.14)  D2(a /m) = 02 - pfeg) $rd) (x+ 2lx)

It can be easily shown that

lim @'(x) o' (x)
W25 it @t =0
and
lim ¢'(x) (x)
(A1.16) st Q( ) (x ) =
This gives
(A1.17) ;_fﬂ D2(a /m) = o2
and
(a1.18) 5T D%(a/m) = 02 (1 - r¥yey )

Turning to the likelihood estimator we have
(A1.19) log L = log H(.a /M) =

= const.=(a=(B+Qm) )2/202 - 10g ¢(x)

(A1.20) 3 log L - (a_(B+Qm))/02 i o' (x)
i o

am

Solving ——LQE—E = 0 then leads to solving

¥ o2 or(x
(A1.21) a -B+Q+m+m-[ W?Tl

ot ' (x) o' (x
L TR Xt oo

)

)




L S—

C
(A1.22) g5 =B+Qim+ Z?TIVT z(x)

Turning to the case of several stations, the likelihood is from

(eq. 19)
M M
(A1.23) L(m) =121 hi(ai/m)/(1;:1P(aia Ni/m) =
= L*¥(m)/P*(m)
with
M
(A1.24) L*(m) = w (h,(g./m)
; e
i=1
M
(A1.25) P*¥(m)=1-T p@E_ %V /m)
0 S
1 ity

- = 2 21
/’2—".’1 EXP[ (ai (Bi+Qi+m)) /20]'_" (D( )

n K
(Al.26) h,(8,/m) =
s
-(m+Bj+gj—G?
¢(/—z——z————— if the event is not seen
of*vi
and

-(m+B3+Q; Q)

c4+y§
U1 Yl

(A1.27) P(a,eN./m) = &(
p - 1

It was mentioned earlier that this likelihood is not a product of

independent 1likelihoods, so the usual asymptotic results for maximum

) if the event is

seen

likelihood do not appiy directly. However, by showing that the maximum

for L(m) is the same as for L*(m) when M tends to infinity we can




apply . the asymptotic formulaes to L*(m) which is a regular likelihood.

We have
(A1.28) log L(m) = log L*(m) - log P*(m)

Provided Bi’Qi? Gi’ofyi are well behaved for all i, that is, are such
that each station has a non zero probability to see the event it follows
that log L(m) tends to log L¥(m) for every finite m. Specifically
assume that there exists a 6>0  that

-(2i*B; ¥Q;i -Gy
—r )e 1-§ for all i

(A1.29) 6 « ¢ (
CERAET

(A3.30) 1 = (18} & P¥(m )2 1

And as M tends to infinity we have

(A1.31) limP¥(m ) =1
Moo g
It then follows directly that

(A1.32)  limlog P*(m) = O

M-sc0

n
i %*
(1.33) Hm 2LBPY®) _ g ror a11 finite m and n=1,2,3....

From this it follows that the asymptotic properties of the
estimator obtained by maximizing L(m) is the same as that obtained

by maximizing L*(m). As the latter is a regular maximum likelihood
estimator we have, letting m denote the true magnitude of the event

and m the likelihood estimator, that ﬁi(m-mo) tends to a normally




5 * =1
(A1.34)  D2( (m-m )) = [(3 gL L2m)y 0 )2y
0 M am o
Now
M
* :
(a1.35) T ppdteeltm) ;.o g2y o1y pr(Rloe hi@i/m) o 2y
M om o M i am o
as: . . 3
_l_igéfg;iﬂo) if the event is seen
i
9log hi(a:/m)
(A1.36) 5 f m=m_=
o (—(mc+Bn~+Qj-G)1)
/ggé—z ;l:g% . If the event is
1M1 p(ARatBiiOeCy not seen
/012+y1.2
or letting
(A1.37) u, = ai - (Bi+Qi+mO)
62 2
(A1.38) 3, = (mo+Bi+Qi+Gi)/ i+Yi
we have
ui/oi
(A1.39) Slog BARL/) ; jey
B 2 ol otlx;}
V02+y§ o(-x3)
and
(ag/m) ® 1 ul ol
3 log hi;(34/m Paia = Y1 oyp(-u2/2062) o
( o g axp(-u?/20? {
LEL-S0%F TR am £ 35 _i /ame o ¥ i Lf
- $'(x4),2
» B ) ¢(-x,)
01§ 0(-xi) i
From eq. (Al.11) it follows that
[}
Aw———~———-~~— - —~ e ——————

cotbabion zoro and varianceo




(A1.41)

And finally

(A1.42)

—)45—

E((a log hi(%i/m) /m=mo)2) =

om

= o(x,) -(;:?L-+ —z-—&—q’ (1)

ostys
i 1Yy

D2(fi(m-n_)) = 1/(%

(¢

l(x_

)

¢Z-xi5 g

)

b
i
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Appendix 2
The unconditic:-! *istribution of observed log(A/T) at a station

is from eq. (23) proportional to
(A2.1) G*(a) = exp(-Ba) 4’(?-;—G)

As the integral of the distribution equals 1 we can determine the proportionality

constant by evaluating

(=]

(A2.2) [ exp(-8a) qs(%ﬁ) da = [‘—; exp(-ga) ¢(a—;9)]

-0

oo

—co

+ % J  exp(-Ba)

exn[-(a-G)2/2y?] da

—w /2y
- 1 > —(a(Ce 2 /ny2 —RCeR22
=0 + s ' Jomy expl-(a-(G-28y))?/2y?] exp[-BG+B%y?/2] da

% exp(-B8G+82y2/2)
Thus, the distribution of observed log (A/T)is

(A2.3)  G(a) = B exp(BG-B®y?/2) exp(-pa) @(E‘:,‘q)

Suppose we have a sample of N independent events recorded at the
station. The likelihood estimator of the parameters B,G,y are obtained
by maximizing the logarithm of the likelihood. We have, letting a;

denote the observed log (A/T).




N
(A2.L) log L(B.G,y)= % 1log Gla.) =
S B ! ’
: N
= N log B + NBG - = Ny“B%2 - B I a.
: i=] 1
N as o
+ ¥ log ¢(—==)
i=1 ¥

The first order derivatives are, letting s (ai-G)/Y

N
(a2.5) & l°§8L(B’G’Y) = %-+ 0~ N6 = I om

N
3 log L(B,G,y) _ L o' (yi)
(A2.6) 3G = NB ~ - i 57;?&—

3 log L(B,G,Y)
ay

1
_NBZ —
¥ Y

(A2.7)

5 ®'(X€)
.r’i 4’(}'1 1

Turning to the second order derivatives we have

i=1

2
(A2.8) 3 l§§2L(B,G,1) L g? o Ty

32 log L(B,G,y) _
383G

2
(A2.10) - log L(B,G,y) _

3837 -2NBY
2 N b i
(h2.11) 2 lggzL(B’G’Yl ol 5711%2.(yi v ¢(§ ))) {
L i Yy

N
32 log L(B,G,y) _ 1 ' (y1) 2 o' (yi)
(A2.12) 305, g 57_17_ (Ll = S stk
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2 1 red? : '
(A2.13) E) 10& IZ-‘(B’GQ-Y) o = NB? & _.-:5— 1 k_l.Q_(.b_) (?_y?__y. &LL—))
3y T as ¢(yi) 171 oy, )

Put 0 = (B,G,y).Let & = (8 ,G ,y ) dencte the likelihood estimator
and 80 = (BO,GO,YO) the true parameter set. As we here have a regular
likelihood estimator it follows that the limiting distribution of

/N (6-90) is normal with expectation zero and covariance matrix

(A2.1k) Dz(/ﬁ(é-eo)) == % E(—a—z—a%‘%&ﬂ/ewo))-l

2
where 3—5%§E—E given by eqs. (A2.8)-(A2.13). For large samples

2 X
we may use %‘(a aéo L(e)/6=€3) computed from the data instead of

E(235%%5L2421/6=6°) because
(A2.15) ﬁljmw 3%%85——/9 8) = (——75———/9 e)

Next, consider the case of events seen jointly by two stations.

The joint distribution of log (A/T):s a; and a, is

0

(A2.16) G(alaz) = [ hl(al

-00

m) h, aE/m)eXp( em) dm

-00

0+Y2

with

A(2.17)  h @ /m) = ,/_0 (&L 1) expl-(a;-8,-q,-m)2/206}]  for i = a, 2

Put 4

a - — v=a e -
1 =BG Ve, -8 &

= a - =28
= ek e

+B . +Q,-G-
A ‘.’.111_31191_(:3) = “-9"°—u‘~) exo(-Bm)dm
0 + Y1

s e e e




Then
(pA2.18) Fl = h]@]/nu}ijag/m) exp(-pm) dm =
=3 (=2 ¢(_Pq V- El. exp[—(\u-m);/30i+(v—m)3/L0;)] exp(-fm) dm
T, Ya o ™ ;
Now

(42.19)  —= ((u-m)?/0% + (v-m)2/03)-gm =

1 O':i‘+0'2 i 2 2 2 2
S - - + & LT3
5 5?53—-(m E?:Eg'(ozu ofv 01028))

3k
- m ((u-—v)2 + B(QO%U*‘QO’%V—O%O%B)

And we find

1
8y By = = expl-((u-v)2+8{202u+202v-02028))/2(03+02)]
(A2.20) w ¢(Y1)¢(Y2)/§;"gf?12 P o T 19

Next
o WHR Q=G WHB,+Q,~C

(A2.21) F, =_i ¢(/bf+{?‘ ) (/5§1Y§ £ exp(—Bm) dm

Put W By 40,0 QR 46, % G358y = oYy 3 S, RV, 3R T S "2 M1 'e
Then

(m§£)¢(m§i) exp(-Bfm) dm =
i 2

k=
N
N
N
=i
]
8§ S
IS

o

-+ [¢<"‘—;91-)¢('"—;%) exp(-pm)]  +

o — p—




N e

©

o
M=C l

0 iF AR
+ E if @(*;—) ¥ EZP[‘(W—d)Z/Pgél exp(-Pm) dm

vyon 32

-0 5

+ la._ f ® (.'.’.-\,. \
f S,
2 )

2

-

(A2.23)  -(m-d)?/2s3 - Bm

Similarily

L}

(a2.2L) —(m-c)2/2s§ - Bm

alaldeale)i2rma? 4B o L o2
(m-(d-s3B))?/2s% * 5 Bear

“(m'(c-slﬁ))z/st - cf * % g252

exp[—(m—c)y/ﬂg{] exp(—ﬁm) dm

dap
2

1

So
(A2.25) ¥ ( St DBy b T i
Bl ' = exp\-Bd+B<ss/2) = ¢ ) o = (.-—-___._.) e (_B +82,,2/’))
2 xp e S e
SRR N vy SR oo £ !
172 1L Sl
And finally
a, -G a, G
(A2.26) G(alaz) =B i & ( . 1)db( e 2)exn(~ /2)
\ 2 PN
em 1402 ! = /

where

(A2.27) y = ((a)-a,-(B;+Q;-B,~Q,)

n

(A2.28) 0.1

(A2.29) ay

)2

2 2 2 2 2 2
(20 (a, 8,0y 1+20%(a,B,-4,)0%38) ) A4

((Bl...Ql_Bg-QE)—(Gl—G2)-(Og*‘Y§)B) |,L§+G§*‘Y§+Y§

B(B2+Q2~G2)$2(U%+Yg)/2

(A2.30) a3 = ((BZ+Q2-BI-Q1)-(c2—q1)—(ofwf)s)/‘(cfmgwiwg)

(A2.31) oy = B(By+Q;~G,)#2(024y2)/2

The marginal distribution of al’ given that the event is seen at both

stations is

S S———




-
o5
1]
] ——
=
=
1]

~a={B. +Q. -B,-Q, \)}‘74’(’;(7"}(& ~B,-Q,.))/ (()"l'+‘>f‘,}‘] da
2 [ W)= ‘ A f.

¢

——
1

»:xp[—(;”.-7:)‘]—.,‘{?"’0‘,'(';l—bl—_»’),.l))/2'((;%%:,7/_)] Vo /(—)-]7:_0—7

Q, +a.~B.~-Q.~Ba?%~G,,

i e e W MG TR
i ( )
t e

\ A0 Fli 10 F=e a5 /
%o

From this we can obtain the conditional distribution of &, given 8,

for events seen at both stations. We get,

(A2.33) F.(a.z/al) = Gl ]az)/g(al) =

« G S e e
o = ) oy expl (ae a, B)4/20%4]

a]+B—Gﬁ

Vs

where B =B 10 -B 0 “Ra-
. o o8y N b, aad
G2 o g D
1 2

This distribution is of the same type as the distribution of observed
log (A/T) for given true magnitude eq. (Al.1) so the first two moments

of gl /& L) are given by eq. (A1.10) and eq. (Al.14). On the other

hand, had we also considered the events not seen at station 2 given

oT
et

the events were recorded zt station 1 it is readily seen that we

X btain the following distribution
(] 1 .
(A2. 3k) = épf'—l—i?-) —= nxp[—(n.,)—(_a1+(Hp+Qp-Bl-’-J,1-O%R) )% /?202] 'in,‘,

Y > ;
. Vr_‘]'[ > if seen at station 2

g (az/ai)daz=

—( a3 + ( B2+Q2-B1~QL.O§B) )-Gz

& ( if not seen at station 2
s




P

_53_
The log likelihood based on (A2.33) for a sample of N independent

observations is except for a constant

.—G2

N a
g . 2 2i
(A2.35)10g L= §-Nlogy ~(a,;=Qy 8,59, ;)-B)/20%+ log O(——

Yo

a_.+B+Q..-Q, .-G
i 2
= dog B 1ot 21l

/7T

)

‘where B = (B —Bl—Boi) and 02=02+0?

2 L

Putting G =G, and vy = ¥

5 2 * Y= Y,

(A2.36) x, = (B+Q.+a,;-6)/ {022
(A2.37) ¥y = (aei_G)/Y

and
(A2.38) Bilat) %_()%l

The first order derivatives gre

3logL B 3
(A2.39) e z (8,,-B0,~a )/ 0"~ 2(x,)

1 gy

dloglh _ _ .
(A2.4%0) 3G ifl z(yi)/y + WZ(Xi)

(A2.41) 31084 , <R

90 ;

n ™2

2 ox
(1B -0y ) fodE Ty (xy)

i=1l

N
d9logL X
b 910gL -
(A2.42) gt yi2y )y + rhmdy #lxg)
The likelihood estimator is then obtained by solving

dlogl_d1loglL _d1logL_ 3logl
T ¢ Same T A R

)

e e e —




-‘J“"

" ; : i
Let, (;” = (P,0,a0,y) denote the Lruc paramelor sel and 0 = (1,6, 0,.7)
denote the Tikelihood otimate,. [t Lhen follows dirvccetly from the
general properties of the maximum likelihood method that /ﬁ(eo-u)

is asymptotically normally distributed with expectation zero and

covariance matris given by

1 _,5%10gL -1
(- N E(§677%;60))

which may be estimated by

1 3%1ogl y-1I
b N 36 /o=e)
Turning to these second order derivatives we find after some

calculation

321ogL N il 5
2.h3 = ) (x, +
(a2.u3) Sl s amre b 2ln M sz, ))

I

2
(a2.un) 2308b - 5

- 2y 2y I+ sy 2xg) (e (x,)
i

1

n2
9“1loglL _ N
(AE.hS) __3%.)%—=—2-+

e -(8,;-B-Q;-8,; )

n o~ =




o) N Z(X.)
9°logl _ i’ (x, + z(x,))
(A2.47) 353G e
i=l
(A2.48 3%10gL ’ a o /o3
A2.48) Sl 51 = (i 2i-B-Qi—a1i G- -
oz(x.)

2 N
)4 3 lOEL =
(A2.L9) 93B3y E

g o N
(a2.50) LAoEL . o

N
(Az.51) LdeEk . o

1
* T 7rare

and finally

xi+z(xi))—l)

N yox,z(x,)
azlogL il i
(A2.52) SO0y r - 7371;777_-(B_Xi(xi+2(xi)))

i=1




