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Air Force Base, Ohio.

J.D.V | was the program manager and ﬂR. M. Kulfan was the technical integrator and
principal investigator. Others supporting the effort were R. D. Anderson, V. D. Bess, W. N.

Holmquist, K. Kumasaka, R. L. Sullivan, G. R. Swinford, J. H. Ward, H. Witonsky, and
L. L. Wright.
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SECTION I
INTRODUCTION

Increased concern about the cost and availability of aviation fuel, in addition to possible
requirements for global-range movement of large payloads, suggests a need for efficient
military transport aircraft designs that conserve fuel.

The recently completed AFFDL/Boeing Boundary Layer Control Technology Application
study“) evaluated large military transport designs that incorporated various advanced
aerodynamic concepts. The study identified laminar flow control (LFC) as the aerodynamic
concept offering the greatest potential for conserving fuel. A more in-depth preliminary
design study(2) was then conducted to further assess the potential performance and eco-
nomic benefits of the application of LFC to very large military transport airplanes. These
later results indicated that LFC can provide large reduction in fuel usage, and lower gross
weights. The life-cycle costs were found to be very dependent on airplane utilization, on
technology complexity costs, and on LFC total systems weight.

Purpose of the study reported herein was to conduct a preliminary design investigation of a
large turbulent flow mulitary transport airplane. Study tasks included:

e Wing geometry/cruise speed optimization of a large turbulent flow cantilever wing
military transport airplane

® Preliminary design and performance evaluation of a strut-braced wing transport airplane

® Performance and economic comparisons between the strut-braced wing and cantilever
wing configurations

®  Aecroelastic structural analyses of very large-span wings of graphite/epoxy sandwich
construction (1985 technology)

The study approach is described in Section II. Final configuration characteristics, perfor-
mance, and economic comparisons are presented in Sections III and IV. Section V describes
the cantilever wing geomeiry/cruise speed optimization study. Structural analyses of the
large-span wings are summarized in Section VI. The remaining sections contain research and
development recommendations, and the main study conclusions.

1. Kulfan. R. M.. and Howard. W. M.: “Application of Advanced Aerodynamic Concepts
to Large Subsonic Transport Airplanes.” Tech. Report AFFDL-TR-75-112,
November 1975,

2. Kulfan, R. M.. and Vachal, J. D.: “Application of Laminar Flow Control to Large
Subsonic Military Transport Airplanes.” Tech. Report AFFDL-TR-77-65. July 1977.




SECTION 11
STUDY APPROACH

Design mission objectives for the study configurations included:
®  Range = 10,000 nmi

® Payload = 350,000 Ib

®  Takeoff field length = 9,000 ft
®  Mach number: determined by tradeoff studies

Payload density limits were set by the requirements to carry either 75 military standard
cargo containers or three M-60 tanks.

The general technology level assumed for the study configurations, as shown in Figure 1,
corresponds to projections that would allow start of prototype production in 1985. First
flight would occur in 1988 or 1989, and airplane in service would be after 1990.

This study used the substantial data base of Boeing in-house large freighter studies, and of
the previously mentioned USAF/Boeing advanced aerodynamic technology studies, to
provide design ground rules and configuration development guidance.

The design development and analyses methods that were used to develop each of the study
configurations are described in Reference 2.

1975 1980 1985 1990 1995 2000
ﬁ ?
ENGINE
TECHNOLOGY —— ::.F:?;LT |
LEVEL ? ;

START OF AIRPLANE IN SERVICE

PROTOTYPE ;
PRODUCTION

Figure 1  Study Technology Levels
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The approach used to achieve study objectives is summarized in Figure 2. The initial task
was to define the reference cantilever airplane configuration. This configuration was derived
from the reference turbulent airplane, Model 767-768, of Reference 2.

A wing geometry/cruise speed parametric optimization study was then conducted for this
cantilever wing configuration. Results of the parametric optimization study substantiated the
selection of wing planform characteristics of the new reference configuration Model 767-768a.

A baseline strut-braced wing configuration was developed from the reference cantilever wing
configuration, with structural and aerodynamic design guidelines from Bocing in-house
braced-wing large freighter studies. The strut arrangement selection was guided by
specifically conducted structural analyses. The baseline strut-braced wing configuration was
then sized to meet the mission objectives. The sized strut-braced wing configuration Model
767-790a definition was then completed.

Economic analyses were then made of the cantilever wing configuration, Model 767-768a,
and the strut-braced wing configuration, Model 767-790a. Calculations were made of
20-year lifecycle co-ts, and of 60-day surge condition operating costs.

The aforementioned design, parametric, and economic analyses incorporated statistically
derived parametric weight evaluations.

Detailed analytical structural and weight analyses were then conducted for the final
cantilever wing and braced-wing configurations. Additional structural and weiglit analyses
were made for the cantilever wing, with increased wing thickness distributions. Results of
these detailed weight evaluations were combined with the weight sensitivity study results
to finalize the cantilever wing configuration and braced-wing configuration performance
comparisons.

Characteristics of the final cantilever wing and braced-wing configurations are discussed in
Section II1.

o




SECTION 111
CONFIGURATION DESCRIPTIONS

This section contains a description of the final cantilever wing and strut-braced wing
configurations.  Considerations that led to the final configuration arrangements are
discussed below. The performance and economic evaluations of the final configurations are
discussed in Section 1V,

1. REFERENCE CANTILEVER WING CONFIGURATION, MODEL 767-768a

The reference cantilever wing configuration for the study reported herein was derived trom
the baseline turbulent tflow configuration, Model 767-768 of Reference 2, which is shown
in Figure 3. Model 767-768 was reanalyzed, and the following updates were made: a 3%
reduction in reserve fuel allowances, a 3% increase in induced drag for nonoptimum span
loading, and an increase in the takeoft field length calculation temperature to 90°F, instead
of the original 59° F. Model 767-768 was resized with these updated inputs to define the
present reference cantilever configuration, Model 767-768a. Fuel requirements and gross
weight increased by approximately 2% as a resuit of these updates. The weight and geomet-
rical characteristics of Model 767-768, and the updated configuration Model 767-768a, are
shown in Table 1.

Geometrical features Hf Model 767-768a are illustrated in Figure 3.  The reference
configuration features a three-bay oval fuselage that was dictated by design payload
requirements.  This arrangement provides the necessary space for the low-density payload
of 75 military cargo containers without requiring excessive cargo floor length. The kneeling
landing gear results in a cargo tloor loading height of 84 in. The body has front and aft
loading capability tor the cargo containers and for light vehicles. The high-density payload
consisting of three M-60 tanks requires front loading and unloading. The fuselage has an
advanced one-piece windshield design to minimize forebody drag. This design provides
direct viewing, and incorporates a conventional flight deck with state-of-the-art displays
and controls for the 1985 time period. The design would require development of an
optically corrected smooth structural windshield and a scamless seal assembly.

Wing planform characteristics were selected for efficient long-range cruise considerations
incorporating the benefits of active controls and advanced composites structural materials.
The high-lift system includes 747 SP-type single-slotted trailing-edge (TE) tlaps, and variable
camber leading-edge (LE) flaps. The TE flap has a chord ratio (Cp/C) of 0.225 and a
Fowler motion (C'/C) of 1.08.

The canted "7 tail empennage arrangement is a structurally efficient design that provides
the desired drive-through and air-drop capability. The use of active controls, together with
the double-hinged rudder, results in minimum tail areas.

AP el
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Table 1 Initial and Updated Cantilever Wing Airplane Characteristics
INITIAL UPDATED
CANTILEVER | CANTILEVER
WING WING
ITEM AIRPLANE, AIRPLANE,
MODEL MODEL
767-768 767-768a
Design mission Payload, Ib 350,000
Range, nmi 10,000
TOGW 1,665,800 1,701,560
Weights, Ib OEW 608,600 628,230
Block fuel 668,600 685,050
Reserves 43,300 42,880
Area, ft2 14,785 15,766
. AR 12 12
Wing t/c Inboard/outboard 0.14/0.08 0.14/0.08
Ac/4‘ deg 20 2
W/S, 1b/ft? 12.7 108.0
Engine type/no./BPR STF 482/4/7.5
Engine SLST, Ib 77,200 80,720
T, Ib/ib 0.185 0.190
TOGW BUILD UP
20
MODEL MODEL
767-768 767-768a
16
FUEL
WEIGHT,
10%
1.0 V.
OEW
05
PAYLOAD
0
8
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T'he propulsion system includes four 1985 technology high bypass ratio (BPR) engines. The
engines are located on the wing primarily because of airplane balance requirements and
engine design constraints (SLST<90,000 1b) that require a minimum of four engines for the
study airplanes.  Airplane balance is the correct relationship of the center of gravity (cg)
of the airplane to aerodynamic stability limits for different loading conditions. This
relationship is more difficult to achieve when the engines are on the aft fuselage, especially
for aircraft with heavy payloads and large high bypass ratio engines. Because of the
difference between the position of the payload cg and the propulsion system cg, large shifts
in the airplane ¢g would occur from one operating condition to the next. The spanwise
locations were set by flutter considerations and provide wing bending reliet.

2. STRUT-BRACED WING CONFIGURATION, MODEL 767-790a

A strut-braced wing offers the possibility of structurally efficient large-span wings.
Consequently, a strut-braced wing configuration was developed from the reference
cantilever wing configuration to explore the potential performance, economics, and
structural benefits.

Results of Boeing in-house strut-braced wing large freighter studies were used to provide
aerodynamic and structural design guidance in defining the wing/strut arrangement. The
success of a strut-braced wing is very dependent on achieving a structurally efficient design
without encountering significant wing/strut unfavorable interference effects. Previous
Northrop studies and recent Boeing wind tunnel results (Figure 4) indicate that aero-
dynamic interference between wing and strut can be minimized by proper tailoring of
the wing and/or strut, particularly near the wing/strut intersection. Additional detailed
acrodynamic design and test verification are necessary to identify minimum strut effects
on profile and on compressibility drag. An interference factor of 10% was applied to the
strut-isolated profile drag, and a critical Mach decrement of 0.01 was used to account for
strut interference effects in the study reported herein.

A large number of design variables must be examined to fully optimize a strut-braced wing
design. Consequently, results of aforementioned Boeing strut-braced wing studies, such as
shown in Figure 5, were used to define the strut-braced wing configuration for this study.
Design guidelines used to develop the strut-braced wing configuration included:

®  Strut/wing attachment angle = 12 deg

®  Strut thickness/chord ratio = 10%. This is 2% greater than the outboard wing thickness.

®  The wing planform outboard of the attachment station is geometrically similar to the
reference cantilever wing planform (Model 767-768a).

® [nboard of the strut attachment station, the wing chord is held constant.

®  The sweep of the strut and the wing quarter chord sweep are equal (20 deg).
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Figure 5 Strut-Braced Wing Design Considerations

The chord of the strut was determined as the maximumw chord length that satisfies the
tollowing criteria:

1) Strut sweep equals wing sweep.

2 Leading edge of the strut falls behind the  leading-edge  tlaps at the outboard
attachment station,

3)  Strut attaches to the tuselage bulkhead ahead of the toremost mam landing gear.




These criteria resulted in a strut chord equal to one-half the wing chord.

The wing thickness/chord definition is the same as on the reterence cantilever wing (144
inboard, 8% outboard). The braced wing is thinner inboard than the reference wing because
of the reduced inboard wing chords. The braced wing was “sheared-up™ inboard equal to
halt’ the reduction in wing thickness, so that the top of the wing matches the reference con-
figuration at the wing body junction. This provides the greatest wing/strut spacing at the
body without changing the fuselage design. The combination of strut attachment angle and
side of the body wing/strut spacing results in a strut attachment of approximately 457 wing
semispan.

The inboard engine is located at the strut attachment station.  The engine/strut/wing
attachment provides a minimum wing/strut separation distance of 20 in. The outboard
engine location is unchanged relative to the cantilever wing location. The leading-edge and
trailing-edge flaps. spoilers, etc., are constant length inboard of the strut attachment station.

The shortened inboard wing chords reduced the wing area. Consequently, the aspect ratio
was increased from 12 to approximately 13.5.

Initial structural analyses ot the strut-braced wing indicated the desirability of a jury strut.
Consequently, the final strut-braced wing definition includes a 5% thick jury strut located
at midspan of the main strut. The jury strut chord is one-half of the main strut chord. The
strut-braced wing design considerations are summarized in Figure S.

The general arrangement of the strut-braced wing configuration that was developed from the
aforementioned design guidelines is shown in Figure 6.

3. CONFIGURATION COMPARISONS

Geometrical characteristics of the final sized cantilever wing and strut-braced wing
configurations are summarized in Table 2. Group weight statements are shown in Table 3.
Cruise drag comparisons are shown in Figure 7. The cantilever wing and strut-braced wing
configurations have relatively high lift/drag ratios (27.8 and 26.7, respectively). This is
because of the large wing span/wetted area ratio.

Gross weight comparisons of the study configurations are shown in Figure 8. Initial
comparisons based on parametric statistical weights indicate that the gross weight of the
cantilever wing configuration is slightly less than that of the strut-braced wing. Airplane
evaluations using analytical weights, based on the detailed structural analyses (described in
Section VD), indicate that the strut-braced wing configuration has approximately 4% less
gross weight that the cantilever wing configuration.
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Table 2 Configuration Design Characteristics

CANTILEVER STRUT-BRACED
WING AIRPLANE, | WING AIRPLANE,
MODEL 767-768a | MODEL 787-790a
Payload, Ib 350,000
::;3;:‘ R.nr, nmi 10,000
PARAMETERS | Cruise Mach number 0.78 | 0.77
Mil TOFL, ft 9,000
TOGW, Ib 1,701,560 1,734,250
Weights OEW, Ib 628,230 623,680
Fuel, Ib 685,050 721,620
Reserves, b 42,880 44,020
Length, Ib 252
Fuselage Max diameter, in. 426.5
Wetted area, ft2 21,927
Nose 4(49 x 17)
s i Main 40(49 x 17)
Area, 112 15,755 14,450
Wetted area, f12 27,676 26,143
AR 12 134
Wing Ac/4. deg 20
Span, ft 4348 440.0
\. inboard/outboard 0.30 0.0/0.63
MAC, ft 39.7 35.8
t/c, root/tip 0.14/0.08
Area, ft¢ 2,628 2,375
Wetted area, ft2 5,250 4,744
AR 5.07
Hovizontal tail A¢/4. deg inboard/outboard 0.0/22.5
A, inboard/outboard 0.0/0.63
t/c on
MAC, ft 23.2 221
Tail vol coeff 0.615 0.669
Area, 114 2,624 2,467
Wetted area, 1t 5,248 4,934
AR 1.0
Vertical tail ‘\I:IQ' = =
A 0.52
t/c 0.12
MAC, ft 40.0 38.8
Tail vol coeff 0.044 0.045
Type/BPR STF 482/7.5
Seopulion Number/Location 4/wing mounted
SLST, Ib 80,720 81,770
Wetted area, ft< 3,261 3,304




Table 3

Configuration Weight Comparison

CANTILEVER WING | CANTILEVER WING | BRACED WING
CONFIGURATION, | CONFIGURATION, CONFIGURATION,
T MODEL 767-768, MODEL 767-768a MODEL 767-790a
b b Ib

Wing 211,000 223,170 217,570
Horizontal tail 11,900 12,300 11,120
Vertical tail 15,430 16,920 15,910
Body 186,630 187,460 187,820
Main gear 37,600 37,940 38,380
Nose gear 5,760 6,180 6,250
Nacelle and strut 23,800 24,900 25,220

Total structure 492,210 508,870 502,270
Engine 50,030 52,710 53,520
Engine accessories 1,330 1,330 1,330
Fuel system 6,740 7,040 6,640
Engine controls 320 320 320
Starting system 320 320 320
Thrust reverser 6,770 7,090 7.180

Total propulsion group 65,615 68,810 69,310
Auxihary power unit 2,000 2,000 2,000
Instruments and nav equipment 1,270 1,270 1,270
Surface controls 21,310 21,290 22,360
Hydraulic/pneumatic 4,680 4,770 4,860
Electrical 3.120 3,120 3,120
Avionics 3,140 3,140 3,140
Furnishings and equipment 6,710 6,710 6,710
Air conditioning and equipment 3,620 3,620 3,620
Auxiliary gear 270 270 270

Total fixed equipment 46,120 46,190 47,350
Manufacturer’s empty weight 603,840 623,870 618,930
Crew 1,290 1,290 1,290
Crew provisions 320 320 320
Ol and trapped oil 600 600 600
Unavailable tuel 800 800 800
Payload provisions 1,750 1,750 1,750

Total nonexpended useful load 4,760 4,760 4,760
Operational empty weight 608,600 628,630 623.690
Payload 350,000 350,000 350,000
Mission fuel 668,600 685,050 721,620
Reserves 43,300 42,880 44,020

Takeoff gross weight 1,655,800 1,701,560 1,734,250

WEIGHTS COMPUTED BY STATISTICAL WEIGHT METHODS

15
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SECTION 1V
CONFIGURATION PERFORMANCE AND ECONOMICS

Lhe cantilever wing and strut-braced wing contigurations discussed m Section 3.0 were used
o explore the potential mpact of a braced wing on tuel, weght, hte-cyele costs, and

operating costs of a flarge nulitary transport aplane
1. MISSION RULES AND PERFORMANCE OBRJECTIVES

Fhght protdes and musston rales used e developmg the study configurations are shown in

Fagure

MISSION RANGE
' 10,000 nmy

MISSION ELEMENT ALLOWANCES
(M START, TAXI, TAKEOFF @ 5 min AT MAX CRUISE THRUST AT SEA LEVEL
® 1 min AT MAX TAKEOFF THRUST AT SEA LEVEL
@ cLImB @ CLIMB FROM SEA LEVEL TO BEST CRUISE ALTITUDE
AT MAX CLIMB POWER
@ CRUISE CLIMB @ CRUISE CLIMB AT BEST CRUISE ALTITUDE
@ DESCENT ® NO ALLOWANCE FOR FUEL, TIME, OR DISTANCE
RESERVES
® LOITER @ 30 min LOITER AT MAX ENDURANCE SPEED AT
SEA LEVEL
(6 LANDING ® LAND WITH 5% OF INITIAL MISSION FUEL

NOTES: (@) SFCISINCREASED BY 5% THROUGHOUT THE MISSION
@ TAKEOFF DISTANCE 1S BASED ON ALL ENGINES OPERATING
© TAKEOFF SPEED » 1.2 Vs
® DISTANCE TO 50-ft OBSTACLE ~ 9,000 ft, SEA LEVEL 900F
@ ONE ENGINE OUT CLIMB REQUIREMENT > 100 ft/min
(©) INITIAL CRUISE ALTITUDE > 30,000 ft

@ ENROUTE CRUISE SPEED > 300 ktas

Figure 9  Flight Profile and Mission Rules

77




The following performance objectives and constraints have been used to size airplane
configurations:

®  Objectives:

® Payload = 350,000 Ib
L] Range = 10,000 nmi
®  (Cruise Mach: determined by tradeoft studies

®  (onstraints:
[ Field length: 9,000 ft maximum

Range and payload objectives were the detined goals of the study to meet the long-range
military airlitt requirements.  The 9,000 ft military critical field length requirements will
allow operation from existing runways.

2. ENGINE/AIRFRAME MATCHING

The procedure used to size the airplane configurations includes the following steps. First,
the detailed lavouts of the cantilever wing contiguration, Figure 3, and the braced-wing
configuration, Figure 6, were evaluated to provide base point thrust, weight, acrodyvnamic,
and flight control data. In addition, scaling relations were derived by further analyses to
account for changes in wing size, engine size, and gross weight variations in the resizing
cycele. A parametric engine/airframe matching method described in Reference 3 was used to
determine the best combination of engine size, wing size, fuel requirements, and gross
weight necessary to achieve the design mission objectives.

T'he design selection chart for the reference cantilever wing atrplane is shown in Figure 10.
I'his type of design chart parametrically shows the effect of thrust/weight ratio (T/W) and
wing loading (W/S) on the airplane gross weight and block tuel requirements. Performance
factors, such as takeoft field length (TOFL), initial cruise altitude capability (ICAC), and
the ratio of the initial cruise lift coefticient capability to the lift coetficient for maximum
lift/drag ratio (CLR) also are identified.

I'he minimum gross weight for the cantilever wing airplane requires a high wing loading ot
approximatety 140 b, ft2. With the high wing loading, the configuration could not meet the
FOFL requirements. The minimum fuel burned arrangement, which requires a lower wing
loading (110 1b/ft2), also does not meet the takeoft field requirements of 9,000 ft. The
final design for the turbulent airplane was selected by considering the trade between fuel
burned and gross weight along the TOFL = 9,000-1t constraint line (Figure 11). The

3 Wallace., R. L. “Parametric and Optimization  Techniques tor Awplane Desen
Synthesis,”™ Paper No. 7 in AGARD-LS-56, April 1972,
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Figure 11 Cantilever Wing Airplane Design Selection

selected desigin, which has a wing loading of 108 Ib/ftz. has almost the minimum fuel and
gross weight possible for this configuration.

The corresponding design selection chart for the strut-braced wing configuration is shown in
Figure 12. The minimum gross weight configuration would require a wing loading in excess
of 140 lb/’l‘tz. The design wing loading for minimum fuel is less that 110 Ib/ft2. Neither
configuration meets the TOFL requirement. The final design selection for the strut-braced
wing configuration, as shown in Figure 13, has a wing loading of 120 lb/ft:.

3. PERFORMANCE COMPARISONS

Weight and performance characteristics of the cantilever wing and strut-braced wing
configurations are summarized in Table 4. These results, which were derived using
parametric statistical weights, indicate that the gross weight and fuel consumption of the
strut-braced wing airplane are 2% and 5% greater, respectively, than the cantilever wing
airplane.

The weight of the large-span wings of the study configurations is a major area of uncertainty.
Consequently, sensitivity studies were made to determine the effects of variations of wing
weight on the gross weight, fuel consumption, and size characteristics of the cantilever wing
and strut-braced wing configurations. Results are shown in Table 5 as sensitivities expressed
as percentage change in fuel, gross weight, etc. for a 10% change in base wing weight. A
10% variation in base wing weight changes fuel consumption and gross weight of the study
configurations by approximately 4%.
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RANGE = 10,000 nmi WING GEOMETRY

PAYLOAD = 350,000 Ib AR =134
MACH = 077 t/c =0.14/0.08
MIL TOFL = 9,000 ft Ac/a =260
SELECTED DESIGN
10 [— . -1 20
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1051 \ TOGW 108 1b
i -/ -11e
8 FUEL -J 16
7L Y
j 1 | =
100 120 140 160

WING LOADING, W/S, Ib/ft2

Figure 13 Strut-Braced Wing Design Selection

Detailed structural analyses described in Section VI were used to develop more accurate
analytical weight estimates of the base cantilever wing and strut-braced wing. Additional
evaluations were made to determine the effect of wing thickness distribution on wing weight.
The cantilever wing configuration and the strut-braced wing configuration were resized with
the base wing weights determined by the structural analyses.

Effects of wing thickness on the gross weight, fuel consumption, and OEW of the cantilever
wing configuration are shown in Figure 14. Results obtained with the statistical weights
indicate that the 0.14/0.08 thickness distribution minimizes fuel burned, gross weight, and
OEW. Results of the analytical weight evaluation indicate that the weight of the thinnest
wing is significantly heavier than indicated by the statistical weights, The statistical weight
and analytical weight evaluations of the thickest wings were nearly equal. Consequently,
results obtained with the analytical weights indicate that minimum fuel consumption is
obtained with the thin wing (0.14/0.08). Thicker wings, however, will reduce gross weight
and empty weight.

The analytical weight evaluations of the strut-braced wing indicate that the wing weight is

higher than had been predicted by the statistical weights. The relative weight increase was
not as great as tor the comparable thickness (0.14/0.08) cantilever wing.  Hence, using the

22
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Table 5 Airplane Sensitivities to Wing Weight Variations

PERCENT CHANGE FOR A 10 PERCENT
INCREASE IN WING WEIGHT
QUANTITY CANTILEVER WING | STRUT-BRACED WING
AIRPLANE AIRPLANE
AR = 12 AR = 134
t/c = 0.14/0.08 t/c = 0.14/0.08
Empty weight:
~Uncycled 33 3.2
—~Cycled 1.3 6.3
Gross weight 4.2 ‘ 34
Fuel burned 34 j 2.6
Thrust required 4.1 34
Wing area 4.2 | 3.5

| crossweignt |

| swockrFuer |

® ANALYTICAL WEIGHTS
@ STATISTICAL WEIGHTS

05
CANTILEVER WINGS CANTILEVER WINGS
AFUVEL
‘ v
staur.  FUEL Z STRUT
-~ BRACED wl BRACED
v WING — WING
/, / //
7’
i Ykl REFERENCE &~
e - e
P i i it 0 L [t o i A J
0.08 0.10 0.12 0.4 008 010 012 014
WING OUTBOARD, /e WING OUTBOARD, t/c
[ WING oen.scnonj
@ WING TIP CRUISE
OEFLECTION
® WING TIP TAXI
‘ oo DEFLECTION
o n
CANTILEVER WINGS 400 r_ CANTILEVER WINGS + ?‘A,;ml 'O:I?Og:m“‘
° L - s  T—— v J
G SHAPE —
# ! TAXI GROUND LINE
REFERENCE -200
&~ \_ +
e L™ er——E Rl e
008 010 0.12 0.14 0.08 0.10 012 014

WING OUTBOARD., t/c

WING OUTBOARD. t/c

Figure 14 Large—Span Wing Comparisons
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results of the more accurate analytical weights, the strut-braced wing requires less tuel ’
(-1.6%), lower gross weight (-1.870), and lower empty weight (-370), than the cantilever wing

with the “best™ thickness distribution (0. 15/0.10). In addition, the cruise Mach number ot

the strut-braced wing would be shghtly faster than the thicker (0.1570.10) cantilever wing.

T'he results in Figure 14 also indicate that the strut-braced wing is eftective in reducing wing
taxi detlections.

4. LIFE-CYCLE COSTS AND OPERATING COSTS COMPARISONS

tconomic analyses were made to determine the 20-year lite-cycle costs and surge condition

operating costs of the cantifever wing and the strut-braced wing contiguration. Ground rules
tor the life-cycele cost calculations are summarized in Figure 15, The low utilization rate of
1.080 flying hours per airplane used tor the lite-cycele cost calculations is about one-third to
one-quarter that of the annual usage of commercial transports.

Relative lite-cycle costs are shown in Figure 15, Table ¢ contains the life-cycle cost
clements. Production costs are the major cost items. Fuel costs make up a relatively small
portion of the total life-cycle costs, because of the atrplane low-utilization rate.

LIFE-CYCLE COST ELEMENTS

REFERENCE
CANTILEVER STRUT-BRACED
_ WING AIRPLANE, WING AIRPLANE,
MODEL 767.768a MODEL 767-790s
STUDY GROUND RULES e & i
RELATIVE FUEL
® 1976 DOLLARS iy A P
® 20-YEAR OPERATIONS AND SUPPORT cosTs e —
® 112 UNIT-EQUIPPED AIRPLANES os F R }
® 12 COMMAND SUPPORT AIRPLANES L\\\}: OPERATIONS
© 5 TEST VEHICLES, 4 REFURBISHED A ;\\\\ SUPPORT
@ 1,080 FLYING HOURS PER UNIT-EQUIPPED %\_\\ N
AIRPLANE PER YEAR—PEACE TIME o - N
© 7 SQUADRONS \\‘
@ 1,500 FLIGHT TEST HOURS - \
© 24 MONTHS PRODUCT DEVELOPMENT
PRECEDING GO-AHEAD 04} PRODUCTION
© 53 MONTHS FROM GO-AHEAD TO .
CERTIFICATION s
@ C-141 USED AS BASE FOR OPERATIONS 3
AND SUPPORT COSTS 02 & ’rucm
® BOEING COST MODELS FOR AIRPLANE, % 7 1 -
ENGINES, AVIONICS s % N
@ “CACE"” COST MODEL AFR 173-10 FOR / |
OPERATIONS AND SUPPORT COSTS L

Figure 15 Twenty-Year Life-Cycle Cost Comparisons
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Table 6 Twenty-Year Life-Cycle Cost Elements, Based on Statistical Weights

CANTILEVER WING STRUT-BRACED WING
COST ELEMENT AIRPLANE, AIRPLANE,
767-768a 767-790s
Development $ 4,391.843 $ 4.170.731
1,105.061 1,115.144
Airframe o
Engines 55.000 55.000
Avionics
Flight test airplane
Airframe 290.239 289.734
Engines 5.894 5947
Avionics 2.200 2.200
Flight test operations 221.054 218.506
Total $ 6,071.291 $ 5,857.262
Production
Airframe $12,228.037 $12,520.274
Engines 730.814 737.482
Avionics 272.800 272.800
Total $13,231.651 $13,530.556
Support investsment $ 1,984.748 $ 2,029.583
Operations and support
AGE, spares, mods $ 1.623.160 $ 1,647.380
Military pay and allowances 2,012.080 2,012.080
Depot maintenance 1,974.980 1,982.680
Fuel 4,910.920 5,138.420
Pipeline support 307.300 307.300
Other 1,039.360 1,039.360
Total $11,867.800 $12,127.220
Total life-cycle cost $33,155.490 $33,544.621

NOTE: COSTS IN 1977 $, $ MILLIONS

Operating costs were determined for a surge conditon with a higher utilization rate of 10
flying hours per day per airplane for a 60-day period. Ground rules and results are shown in
Figure 16 and Table 7. Fuel costs comprise a major portion of the operating costs.

The cost comparisons in Figures 15 and 16, and in Tables 6 and 7. indicate that operating
costs and life-cycle costs of the cantilever wing configuration are very slightly less than for
the strut-braced wing configuration. These results were obtained using the statistical weight
evaluations. The analytical weight evaluations described in Section VI indicate that the
gross weights of the strut-braced wing configuration are less than those of the cantilever
wing configuration. Consequently, the operating and life-cvele costs of the strut-braced
wing configuration would be slightly less than those of the cantilever wing airplanc.

However, to fully determine the performance and economic potential of the strut-braced
wing configuration, coordinated detailed structural and acrodynamic studies are necessary.
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AND SUPPORT COSTS

® “CACE"” COST MODEL AFR 173-10 FOR
OPERATIONS AND SUPPORT COSTS

08
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LOPE RATING COST ELEMENE]

REFERENCE
CANTILEVER

=

~ WING AIRPLANE,
MODEL 767.768a MODEL 767-790a

STRUT-BRACED
WING AIRPLANE,

5&\\\%‘ OTHER ITEMS
% % e s
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\

MILITARY PAY
AND ALLOWANCES

SE MODS, REPL SP

Figure 16 Surge Condition Operating Cost Comparisons

|

Table 7 Surge Condition Cost Elements, Based on Statistical Weights

CANTILEVER WING

STRUT-BRACED WING

COST ELEMENT | AIRPLANE, AIRPLANE,
i 767-768a 767-790a
Operations and support
SE, mods, repl spares $ 17.504 !‘ $ 172.703
Military pay and allowances 42.992 42.992
Depot maintenance 24.229 24.292
Aviation fuel 136.416 142.734
Pipeline support 541 5411
Other 27.114 27.114
TOTAL $253.666 $260.246
| J
NOTE. COST IN 1977 $, $ MILLIONS
27
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SECTION V
CANTILEVER WING GEOMETRY/CRUISE SPEED OPTIMIZATION STUDY

A wing geometry/cruise speed parametric study was conducted to optimize the cantilever
wing configuration. The technique used consists of the five sequential steps shown in Figure
17. The first step involves the definition of the study variables. Primary variables included:

®  Wing inboard/outboard thickness/chord ratios:

®  Wing aspect ratio: 8,10, 12, 14
®  Sweep Ay 109, 20°, 259, 30°

Secondary variables included:

~5

®  Wing loading: W/S = 60-120 Ib/ft-
®  Thrust/weight ratio: T/W =0.10-0.30

®  Mach number: M =0.70-0.85

®  Optimum cruise altitude

Design constraints included:

®  Range = 10,000 nmi
® Payload = 350,000 Ib
®  Takeoft field length < 9,000 ft

Principal design figures of merit include:
®  Fuel burned

®  Takeoff gross weight
®  Productivity

In the second step, the method of orthogonal Latin squares was used to select 16 wing
designs out of the possible 64 combinations of primary design variables. This design
selection procedure provides an unbiased choice of the primary variables, and is a uniform

representation of the design space.

Each of the 16 selected designs was evaluated and sized by the engine/airframe matching
technique described in Paragraph IV.2. This step provides specific values of the optimized -

secondary variables and figures of merit.

A forward step regression analysis method was then used fo construct approximating
functions to represent the relationship between the primary independent variables and each

0.14/0.08:0.15/0.10;
0.16/0.12;0.17/0.14

&
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dependent variable, including the constraints and the figures of merit. The generalized form
of the regression equation is:

Dependent variable = Cyp + Co(AR) + C3(t/c) + Cy (A 4) (Lincar)
+ C5(AR X 1/¢) + Co(AR x A 4) + Cott/e x Ac/4) (Cross products)

+ ('3(AR): + (\,H,"c): + Ac/-l): (Squares)

The stepwise regression analysis retains only the significant terms in the equation.  The
resulting equations are not laws of nature, but rather represent a statistically derived data
enrichment procedure.

The approximating functions can then be used in a powerful nonlinear optimizer to conduct
constrained or unconstrained optimization, sensitivity, and trade studies. This parametric
optimization process is described in Reference 4.

1. OPTIMIZATION RESULTS

I'he design selections for cach of the 16 configurations that were analyzed are shown in
tigures 18 through 21, The selected designs all were close to the constrained minimum fuel
configuration, and also to the constrained minimum gross weight configurations.  The
corresponding wing loadings vary from W/S =85 to {10 Ih/t"(:.

Results of the wing planform/cruise speed optimization study are shown in Figures 22
through 30.  These results illustrate the impact of the wing planform geometry on the
cruise Mach number, lift/drag ratio, range factor. thrust/weight ratio, fuel requirements.
TOGW, and productivity of the cantilever wing contigurations.  The surtace fit equations
are shown to be a good representation of the initial baseline configuration and the additional
15 study configurations.

I'he spanwise variation of thickness/chord ratio is shown in Figure 22. The thickness/chord
ratio referred to in the subsequent figures corresponds to the thickness/chord ratio on the
outboard portion of the wing. In all cases, the inboard thickness/chord is greater than that
outboard on the wing.

The effects of plantorm geometry on lift/drag ratio and cruise range factor are shown in
Figures 23 and 24 respectively.  Aspect ratio and wing thickness have a powerful effect on
the acrodynamic efficiency of the airplane.  High aspect ratios, as shown in Figure 25, lower
the required thrust/weight ratio significantly. Characteristics of the optimum wing planforms

4. Healy, M. )0 Kowalik, 1. S.oand Ramsay, )0 Wooo “Airplane Engine Sclection by
Optimization on Surface Fit Approximations,”™  Journal of Aircratt, Vol 12, No. 7,
July 1975,

)|
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Figure 23 Cruise Litt/Drag Ratio
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with minimum fuel, minimum gross weight, or maximum productivity as figures of merit are
summarized in Table 8. The sensitivities of the optimum configurations to variations in each
of the primary design variables over the range of values studied are shown in Table 8.

The optimum planform with minimum fuel as the figure of merit has the highest aspect ratio,
and the lowest sweep and thickness/chord ratio, (Figures 26 and 27). This results in a cruise
Mach number of 0.76. The sensitivity data (Table 8) show that achieving a high aspect ratio
and low thickness/chord ratios are most important, Reducing the aspect ratio from 14 to 8
would increase the fuel consumption by 21%. Increasing the wing thickness/chord ratio from
8% to 14% would increase fuel consumption by 20%. Wing sweep is seen to be a less impor-
tant parameter.

The minimum fuel consumption configuration is also the minimum gross weight
configuration (Figures 28 and 29). The optimum wing aspect ratio decreases as either wing
thickness or wing sweep are increased. The sensitivity data show that gross weight varies by
approximately 10% for changes in either aspect ratio, thickness/chord ratio, or wing sweep
over the range of values of these variables that was considered. The wing aspect ratio could
be reduced from 14 to 12, however, without significantly atfecting the gross weight.

The maximum productivity configuration has a low thickness/chord ratio and an aspect ratio
of 12.7 (Figure 30). Low thickness/chord ratio is most important in achieving high
productivity. Wing sweep did not significantly affect productivity, since the gross weight
variations with sweep were proportional to the Mach number changes.

2. CANTILEVER WING CONFIGURATION SELECTION

Results of the wing geometry/cruise speed optimization indicate that a wing planform having
an aspect ratio of 14, thickness ratio variation of 0.14/0.08 (inboard/outboard), and sweep of




Table 8 Optimum Configurations and Design Sensitivities

OPTIMUM CONFIGURATIONS
FIGURE OF MERIT AR t/c Ac/a MACH
Minimum fuel 14 (MAX) 0.08 (MIN) 10° (MIN) 0.76
Minimum TOGW 14 (MAX) 0.08 (MIN) 10° (MIN) 0.76
Maximum MT__OP(E;W 12.7 0.08 (MIN) Not significant
Design space: B< AR 14
0.08 < t/c < 0.14
10°< Agjq < 300
DESIGN SENSITIVITIES
CONFIGURATION FRIMAIY FICURE CHANGE (%) DESIGN VARIABLE RANGE
OF MERIT:
214 AR =814
Minimum fuel A/P Fuel: 19.6 t/c = 0.08 +0.14
67 AC/‘ = ‘00 "300
10.4 AR=8—14
Minimum TOGW A/P TOGW: 9.8 t/c = 0.08 ~0.14
9.6 Ac/q = 10° = 30°
-5.2 AR =814
MPL M PL 2
Pt : -15. =0.08 +0.14
Maximum ToGw A/P oo 16.7 t/c = 0.08 ~0.1
Not significant Ag/q = 10° = 30°

10 deg minimizes gross weight and fuel consumption, and is close to the maximum productivity
condition. The wing sweep can be increased to 20 deg and the aspect ratio can be reduced to
12 without significantly affecting fuel consumption, gross weight, or productivity. This
results in an increase in cruise speed (Mach 0.78 instead of Mach 0.76). Additionally, the
wing span is reduced, which is structurally desirable to help reduce wing tip detlections

i
g

Consequently, the near-optimum planform selected for the reference cantilever airplane has
the following characteristics:

®  Aspect ratio= 12

®  Quarter chord sweep = 20°

®  Thickness/chord ratio = 0.14/0.08 (inboard/outboard)

®  Cruise Mach number = 0.78

R e e

This is the planform for Model 767-768a.




SECTION Vi
LARGE-SPAN WING STRUCTURAL ANALYSES

The long range and large payload requirements of the design mission have resulted in study
configurations with very large wing spans. Consequently, preliminary weight evaluations
based on statistical methods required considerable extrapolation beyond the weight analysis
data base. Detailed structural analyses were therefore made to provide analytical wing
weights, and also an understanding of the elastic characteristics of the very large-span wings.

Structural analyses were made of the base cantilever wing with three different thickness/
chord ratios. The base strut-braced wing was also analyzed.

The structural criteria, analysis methods, and results of the analytical structural and weight
analyses are described in this section.

1. STRUCTURAL SIZING CRITERIA

The structural material technology level assumed for the study (1985 technology) corresponds
to in-service in the mid-1990 time period. The basic structural material was 350° cure T300
graphite/epoxy. The study wings incorporated a two-spar concept with honeycomb sandwich
surfaces.

The effects of active controls have been estimated and included in the wing load calculations.
Gust load alleviation was estimated to produce a 15% reduction in the incremental gust load
factor, and was simulated by an appropriate reduction in dynamic gust factor. Maneuever
load alleviation was approximated using selected control surface deflections.

The structural calculations did not include flutter evaluations. Although large deflections were
anticipated, the wings were strength sized and the wing deflections were noted for

comparative evaluations. A 2.5g limit maneuver condition and a 1.67g limit taxi condition

were used.

Structural analyses ground rules are summarized in Figure 31. The structural analyses for the
cantilever wing included the basic thickness/chord distribution (0.14/0.08—inboard/
outboard) and two additional thickness distributions, (0.15/0.10 and 0.16/0.12). The
cantilever wing thickness distributions are shown in Figure 31 along with the strut-braced
wing thickness distribution. Typical structural design speeds are also shown in Figure 31.

2. STRUCTURAL AND WEIGHT ANALYSES METHODS

Material requirements for the cantilever wings were determined using a computerized wing
structural synthesis program, ORACLE. ORACLE combines an aerodynamic loads analysis.
a simplified box-beam stress analysis, and a weight analysis of the wing box. A flow chart
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tor ORACLE is shown in Figure 32. The aeroelastic loads analysis is based on beam theory
and lLifting line acrmlynaunics“’. The elastic properties of the wings were described by bend-
g stiftness, E1, and torsional stiftness, GJ. The box-beam stress analysis includes the etfect
of combined shear and axial stress.,

I'he effects of maneuver load alleviation were investigated by deflecting either an outboard
atleron with the trailing edge up, or an inboard flap with the trailing edge down.

Statistical weight estimates were used to support the initial airplane sizing exercises and the
cantilever wing parametric optimization studies. These weight estimates established trends
that allowed selection of desired wing planform characteristics and wing size. The statistical
weight estimates required considerable extrapolation of the data base to account for the
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Figure 32 ORACLE-Structural Synthesis Program

5. Gray, W. L., and Schenk, K. M.: “A Method for Calculating the Subsonic Steady-State
Loading on an Airplane with a Wing of Arbitrary Planform and Stiffness,” NACA
IN-3030, December 1953
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large size of the study airplanes and for the advanced technology. The required degree of
extrapolation was minimized by scaling from analytical wing weights derived in Boeing
in-house large freighter studies.

The structural analyses described in this section provided definition of the wing material
requirements necessary for the analytical weight evaluations of the cantilever and strut-braced
wing planforms. These theoretical evaluations of the wing primary structure, plus statistical
evaluations of the secondary structural weight items, comprise the analytical weight
evaluations of the large span wings. The weight analysis procedure is described in more
detail in Reference 6.

Results of the structural and weight analyses of the cantilever and strut-braced wings are
summarized in the sections that follow.

3. CANTILEVER WING STRUCTURAL ANALYSES

The locations of spars and the load reference axis used for all of the cantilever wings are
shown in the planview in Figure 33. The outboard aileron and inboard flap control surfaces
used in the maneuver load alleviation studies are also shown. The aileron is located between
the outboard nacelle and the wing tip, and has a chord length equal to 20% of the wing
chord. The inboard flap is located between the inboard nacelle and the side of the body,
and has a chord length equal to 10% of the wing chord. The flap used for load alleviation is
the aft part of the main flap, and was assumed to rotate about a hinge located at 90% wing
chord to allow rapid action.

All of the wings were sized by a 2.5g maneuver condition and the 1.67g taxi condition.
Figure 33 contains the design loads for the thinnest wing. The differences in wing thickness
distributions of the three study wings (Figure 31) had little cftect on the design loads.

The required equivalent structural material thicknesses of the wing boxes of the three
cantilever wings are shown in Figure 34, The equivalent structural material thickness
requirements decrease as the wing overall thickness/chord ratio increases. Bending and
torsional stiffnesses are shown in Figure 35. Wing stiffness increases as the wing is thickened.

Vertical deflections of the cantilever wings and the strut-braced wing are shown in Figure 36
at taxi, cruise, and maneuver conditions. These results indicate an area of concern in the taxi
condition, where the tip and/or outboard nacelle strike the ground. Increased wing thickness
alleviates but does not cure this probiem. Additional design modifications and studies would
be necessary to define the most desirable solution. The strut-braced wing discussed in the
next section provides asolution for wing deflection concerns during taxi, as shown in Figure 36.

6. Anderson. R. L., and Giridharadas, B.: “Wing Aeroelastic Structural Analysis Applied
to the Study of Fuel<Conserving CTOL Transports,”™ SAWE Paper No. 1040, May 1975,
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Figure 34 Cantilever Wing Equivalent Structural Material Thickness
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Figure 35 Cantilever Wing Stiffnesses

The effects of mancuver load alleviation (MLA) were investigated by detlecting either an
outboard aileron with the trailing edge up, or an inboard tlap with the trailing edge down, to
try to shift wing lift Joading inboard and thereby reduce the wing root bending moment. The
spanwise lift distributions with and without MLA are shown in Figure 37. When the ailerons
were deflected, the flexible wings tended to wash in at the tips, thereby shifting the wing lift
outboard. Hence, use of the ailerons actually produced an undesirable increase in root
bending moment.

When the inboard flaps were deflected, the lift loading shifted inboard, producing a desired
reduction in root bending moment (Figure 37). Hence, an MLA system using the inboard
flaps provided a wing weight saving for the study configurations.

Results of the wing weight evaluations based on the aforementioned structural analyses are
shown in Figure 38 as weights relative to the statistical weight evaluations of the reterence
cantilever wing (t/c = 0.14/0.08).
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Figure 37 Wing Lift Distributions and Root Bending Moments
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Figure 38 Comparison of Statistical and Analytical Weight Estimates—Cantilever Wings

The statistical weight analyses under-predicted the wing weights, particularly tor the thinner
wings. The effects of wing thickness on wing weight as predicted by the analytical and the
statistical methods are simifar. The impact of the differences in estinted wing weights on
the fuel consumption, empty weight, and gross weight of the study airplanes is discussed in
Section IV.

4. STRUT-BRACED WING STRUCTURAL ANALYSES

The strut-braced wing has been structurally analyzed by the following iterative procedure.
Initially, an equivalent stiffness was assumed for the portion of the wing supported by the
main strut/jury strut arrangement. The beam analysis program, ORACLE, was then used to
calculate the aeroelastic loads and deflections of the ‘“equivalent’™ cantilever wing
representation of the strut-braced wing.

The initial aeroelastic loads were then imposed on a finite element model of the wing and
strut geometry with estimated stiffnesses. The finite element model provided the distribution
of the loads between the strut and the wing, and the corresponding internal loads. The
inboard wing and strut were resized, based on the internal loads from the finite element
program, and new stiffnesses were incorporated into the modeling of the wing. Iteration was
concluded when the wing and strut loads, deflections, and stiftnesses sutticiently converged.
This iteration procedure is shown in Figure 39,

Initial analyses of the strut-braced wing indicated the need for a jury strut to provide a more
structurally efficient wing/strut arrangement. Consequently, a jury strut was incorporated
into the definition of the baseline braced wing arrangement (Figure 6).
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Figure 39 Strut-Braced Wing Structural Analysis Methods

The strut-braced wing spar locations are shown in Figure 40. This figure also contains the
design loads for the strut-braced wing.

The required equivalent structural material thickness of the strut-braced wing is shown in
Figure 41. The analytical weight of the strut-braced wing was approximately 5% higher than

the statistical weight prediction.

Vertical deflections of the strut-braced wing are shown in Figure 36. The strut-braced wing
concept eliminated taxi deflection concerns of the large-span wings of the study

configurations.
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SECTION VviI
RECOMMENDATIONS

Transport aircraft configurations designed to carry large payloads over very long ranges
favor relatively thin, high aspect ratio wing planforms for low gross weight and minimum
fuel requirements. These very large-span wings experience large aeroelastic deflections.
The large structural deflections could ultimately limit wing span lengths. Span length limits
could impose a strong indirect relationship between the design mission requirements and the
optimum wing planform characteristics.

The strut-braced wing concept offers a potentially structurally efficient approach to develop
large-span wing designs. However, a significant number of design variables related to
integrated wing/body/strut design must be investigated to arrive at an optimized design.
Detailed aerodynamic design, structural design, and wind tunnel test verification studies are
necessary to fully identify the potential of transport aircraft configurations employing
large-span strut-braced wings.

Recommended studies necessary to determine limitations, and performance and economic
benefits of very large-span transport aircraft include:

®  Detailed structural design and analyses studies (including flutter) with aluminum
structure, and also with advanced composites materials, to identify design limitations
and performance potential of very large-span cantilever wings.

®  Aerodynamic design studies and wind tunnel test verification studies to minimize
wing/strut interference effects on profile and compressibility drag. The use of
emerging advanced aerodynamic design and analysis methods capable of properly
modeling the wing/strut intersection, including viscosity effects and three-dimensional
transonic flow, would be very desirable.

®  Detailed design and structural analyses (including ilutter) of strut-braced wings with
aluminum structure, and also with advanced composites materials, to define design
limitations and weight characteristics of large span-braced wings.

®  Parametric detailed design studies to determine optimum wing/strut geometry
characteristics.

® Range/payload studies to explore the impact of design objectives and criteria on
optimum wing/strut characteristics and on structural design limitations.




SECTION VIII
CONCLUSIONS

The purpose of the study was to conduct a preliminary design investigation of very large,
long-range turbulent flow military transport aircraft. Performance and economic comparisons
were made between strut-braced wing and cantilever wing configurations.

Major conclusions of the study that apply specifically to very long-range, high-payload
military transport airplanes of relatively low utilization are:

Based on parametric statistical weights, the best cantilever wing planform for minimum
takeoff gross weight (TOGW), and minimum fuel requiements has a high aspect ratio,
low sweep. low thickness/chord ratio, and a cruise Mach number of 0.76.

A near optimum planform with greater speed capability has:
®  Aspectratio=12
®  Quarter chord sweep = 20 deg
® Thickness/chord ratio = 0.14/0.08, (inboard/outboard)
®  Cruise Mach=0.78

Results obtained with the more accurate analytic weights confirmed the parametric
statistical weights result: that the thinnest wing (t/c = 0.14/0.08) is the best for mini-
mum fuel. However, the analytic weight results indicated that minimum TOGW is
achieved by increasing the wing thickness ratio to t/c = 0.15/0.10. The cruise speed
would be reduced to M = 0.76. The minimum empty weight occurred with the wing
thickness ratio further increased to t/c = 0.16/0.12. The cruise Mach number in this
case would be reduced to 0.74.

Results of the structural analyses indicated that the very large-span cantilever wing
designs experience significant deflections. Increasing the wing thickness tended to
alleviate taxi condition deflection concerns at the expense of increased fuel
requirements.

Additional detailed design and structural analyses are necessary to establish design
limitations of very large-span cantilever wings.

Based on analytic (structural analyses) weights and projected improvements in wing/
strut aerodynamic designs, the strut-braced wing offers the potential of lower gross

weight, lower empty weight, and reduced fuel consumption.

The strut-braced wing design was effective in reducing taxi deflections of very large-span
wings.
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Aerodynamic design and wind tunnel test verification studies are necessary to fully
identify the wing/strut integration aerodynamic effects.

Additional wing/strut design investigations and structural analyses are necessary to
optimize the design of a very large-span strut-braced wing.
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