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ABSTRACT

Script Application:
Computer Understariding of Newspaper Stories

Richard Edward Cullingford

Yale University 1977

This thesis describes a computer story understander which applies
knowledge of the world to comprehend what it reads. The system, called
SAM, reads newspaper articles from a variety of domains, then
demonstrates its understanding by summarizing or paraphrasing the text,
or answering questions about it. Since the knowledge structures SAM
works with are conceptual and language-free, we have been able to add a
limited machine-translation capability to SAM, as well.

SAM's knowledge of the world is encoded through the use of a
representational construct called a Script. Scripts describe the
stereotyped activities characteristic of socially ritualized situations
such as going to stores, museums and restaurants, taking business trips
and vacations, and attending banquets and birthday parties. SAM
consults its Scripts to recognize the events a particular text refers
to, to identify the participants in these events, and to fill in other
events, not explicitly menticned by a story, which can be plausibly
inferred to have happened. In this process, it moves Scripts in and out
of active memory on the basis of predictions it makes about what may be
seen next.

SAM represents an attempt to build a complete, working story
understander exploiting an important source of knowledge about the world
to find the connections which make a text "coherent," and to build a
memory representation for the text from which natural-language outputs
can be generated which indicate a reasonable depth of wunderstanding.
Since Scripts model a knowledge structure that people constantly apply,
both to cope with the world and to understand what they read, SAM
embodies a theory of c¢ontext and how context is to be used in the

process of understanding.
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PREFACE

Stories constantly refer to people, places, things and events in
the world. The task of story understanding, whether undertaken by a
person or by a computer program, requires numerous sources of world
knowledge and methods for getting at the appropriate parts of that
knowledge as required. For example, we may need to know about how
physical forces operate, or about the rules governing people's behaviour
in various social circumstances.

A computer story understander, to achieve a reasonable depth of
comprehension, has to do many of the things that a person does as he
reads a text. It must recognize the context that a given story is set
in. It has to identify each and every reference to an actor in the
story. Most importantly, it must make explicit the things that are only
implicit in a story, to fill in the things the storyteller left out.
Only in this way will the representation the understander retains after
the story has been read be sufficiently rich to allow it to fashion
appropriate summaries, and to answer questions properly.

The process of inference in understanding a story is always
informed and controlled by the understander's consulting what he knows
to be true about the world. In what follows we describe an attempt to
give the computer a source of detailed world knowledge, and procedures
for using that knowledge to comprehend.
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Chapter 1
What This Thesis Is About

1.1 A Computer Program That Understands Stories

What do you have to know, and how should you use what you know, in
order to read a story? This thesis describes an attempt to answer these
questions by building a computer model which applies knowledge of the
world to wunderstand texts it 1is given to read. The task of story
understanding has two aspects which the model will have to account for:
(1) the actual process of understanding; and (2) what the understander
does with the information acquired. Our computer simulation should be
able to read simple stories the way people do: "left-to-right," in one
pass, a sentence at a time. And, since people can demonstrate their
comprehension of stories by summarizing them, paraphrasing them, or
answering questions about them, the simulation should be able to do the
same.

If we wish to build a computer story understander, we must search
for ways of classifying and organizing world knowledge so it can be used
by a computer. Organization is the crucial issue for two closely
related but opposing reasons: (1) a program which achieves a reasonable
depth of understanding as it reads will certainly require an enormous
amount of knowledge drawn from very different domains; but (2) the
particular information needed at any point during comprehension must
somehow be made accessible without a large amount of search.

This thesis is about the organization of world knowledge for the
particular task of story understanding by computer. On the one hand, we
describe ways of setting up a data base containing knowledge of the
world without having an information explosion. On the other, we discuss
how such a data base can be arranged for reasonably efficient retrieval.
Our computer model, SAM, exploits knowledge of a particularly important
kind to read stories referring to a variety of knowledge domains. It
solves the problems that a text presents by finding the connections that
make the text “coherent." Then it shows that it has "understood" the
text, in a fairly deep sense, by answering questions about it,
summarizing it, or paraphrasing it. Additionally, SAM's output can be
expressed in a variety of natural languages, so SAM is a kind of Machine
Translation system as well.

PRI, e TT—————
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1.2 Knowledge about Context: Scripts

Broadly speaking, stories describe the working out of problems by
actors in some context (Note 1). An intelligent story understander,
therefore, will have to embody a theory of what constitutes a context,
and how one 1is used. If competing contzxts are available, the
understander will also need rules to decide which takes precedence.

Our computer model, SAM, implements a partial theory of how context
can be applied in text comprehension. The basis for the theory is a
representational construct, devised by Schank and Abelson [34], called a
Script. Use of the Script enables us to encode for the computer our
culturally shared knowledge of the stereotyped events that occur in such
socially ritualized activities as going to stores, restaurants and
museums; riding trains and subways; attending plays and banquets; and
playing games or driving cars. We believe that people themselves have
Scripts, acquired by repeated exposure to situations, which tell them
what can happen in a situation, what follows what, and when; what roles
various people and things typically have; and, most importantly, what
the person is expected to do. Aside from their "operational' value,
people use Scripts in "cognitive" activities, e. g., to help in
understanding references to the situation in the things they read.

As an example of a typical Script, consider the activities which go
with eating in a restaurant. The ordinary course of affairs is that the
patron enters, is seated, and orders a meal. The meal is then prepared
and served, and the patron eats it. Finally, the patron pays the bill
and leaves. Each of these activities 1is described by a stereotyped
chain of events, which prescribes the order in which things happen, and

the people and objects participating in the action. Entering the
restaurant, 1looking for a table, walking over to one and sitting down
comprise one such event-chain, or "episode." Episodes in Scripts are

organized as causal chains [28,34]. Each event has resulting states
which in turn become the enabling conditions for further events to
occur. For example, one must physically be inside a restaurant before
one can look for a table. Seeing an empty table enables walking over to
it. As a result of walking to a table, one can sit down at it. The

s Interpreting people's actions in terms of their underlying
motivations is an extremely difficult problem for which no complete
theory yet exists. The work of Schank and Abelson [34] represents one
Artificial 1Intelligence (AI) approach to this domain, based on a small
set of very general procedures called Plans. Plans characterize
people's standard desires and their preferred methods for satisfying
them. An early version of Plan theory is implemented in a computer
story understander called PAM [41]. Schmidt and Sridharan [37] have
developed a second representational system for dealing with this
problem, based on a construct called a "plan schema." These researchers
have been developing an AI system, called BELIEVER, which wuses plan
schemata to model in a psychologically plausible manner how people use
their beliefs about other people to arrive at an intentional explanation
of observed behavior.

B T T ——
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episodes in Scripts are connected together at "turning points," where
alternative paths for accomplishing a given Scriptal activity are
available. A turning point in the restaurant Script occurs when the
order is placed, since the order may either be accepted, or rejected for
some reason.

Each event in a Script contains references to the people ("roles")
who have well-known duties there, and the things (“props") they use when
engaged in their duties. For example, "patron" fills a defined function
in the restaurant Script, as does "waiter," "cashier" and "table." Since
we believe that the memory structures which embody a person's
understanding of events in the world are "conceptual," that is,
language-free, Scriptal events are encoded according to the rules of
Conceptual Dependency meaning representation [32]. Therefore, a Script
is a large network of interconnected Conceptualizations, each containing
"slots," or Script variables, with requirements on the real-world people
and things which can fill the slots.

A given story about a situation will refer to, or "instantiate,"
only some of its episodes. Sceript-based story understanding,
accordingly, is a process of constructing a "“trace" or 'scenario”
through a giren Script which contains both the events explicitly
mentioned in the story, and those which can be inferred to have
happened. The Script is used, that is, not only to recognize what has
been read, but also to fill in what was 1left out. Continuing our
restaurant example, 1let's suppose that a story referring to the
restaurant Script begins:

John walked into a restaurant. He asked for some lasagna.

The Script is "invoked," or activated, by the first sentence, since the
understander is now primed to hear more about things which go with
eating in a restaurant. When the second sentence is read, we understand
that the event being instantiated is one way of carrying out the
"ordering" activity which always goes on in restaurants. (We call the
collection of possible ways an important activity such as ordering can
be accomplished a "scene" of the Script.) We assume that John is asking
the restaurant to prepare some food for him which he will eat there.
Note that "asked for some lasagna" would have quite a different meaning
if John were in a food store.

The Script also tells us that the order is directed to a unnamed
"waiter," that John is probably seated at a table, and that the waiter
is standing there, too. 1In fact, we infer that all the actions which
are appropriate for finding a table and sitting down have already taken
place. The structure of the restaurant Script tells us which particular
pieces of causal chain from the “seating" scene to fill in between the
acts of entering and ordering.

Our computer model of this process is called a Script Applier. it
is the heart of a Script-based story understander called SAM (Script
Applier Mechanism), which reads newspaper articles referring to events
such as car accidents, train wrecks and state visits, and then
summarizes them or answers questions about them. We have tried to make
SAM read newspaper stories in a way which simulates an average adult
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reading the same material. We assume that the task is careful reading,
rather than skimming; and that understanding relies on general world
knowledge, embodied in the appropriate Script, rather than specialist
knowledge of a domain. For example, a reference to an ambulance ride in
a car-accident story would be understood in terms of an ordinary
person's knowledge of ambulances and emergency rooms, not a doctor's.
Additionally, we assume that the understander is emotionally neutral
about the stories read. The people mentioned are not personally known
to the reader, and the events described are not interpreted in terms of
any personal belief system. (Note 2.)

Here is an example of the kind of stories SAM has read, which
illustrates the level of understanding it can achieve. (Story 1.1 is a
slightly simplified version of a newspaper article about a car accident
from the New Haven Register.) The text shown is actual input and output
from the computer (Note 3).

Story 1.1:

Friday evening a car swerved off Route 69. The vehicle struck a
tree. The passenger, a New Jersey man, was killed. David Hall,
27, was pronounced dead at the scene by Dr Dana Blauchard,
medical examiner. Frank Miller, 32, of 593 Foxon Rd, the
driver, was taken to Milford Hospital by Flanagan Ambulance. He
was treated and released. No charges were made. Patrolman
Robert Onofrio investigated the accident.

English Summary:

AN AUTOMOBILE HIT A TREE NEAR HIGHWAY 63 FOUR DAYS AGO. DAVID
HALL, AGE 27, RESIDENCE IN NEW JERSEY, THE PASSENGER, DIED.
FRANK MILLER, AGE 32, RESIDENCE AT 593 FOXON ROAD IN NEW HAVEN,
CONNECTICUT, THE DRIVER, WAS SLIGHTLY INJURED. THE POLICE
DEPARTMENT DID NOT FILE CHARGES.

Spanish Summary:

UN AUTO CHOCO CONTRA UN ARBOL CERCA DE LA CARRETERA 69 EL
VIERNES AL ANOCHECER. DAVID HALL, DE 27 ANOS, QUE “IVIA EN NEW
JERSEY, EL PASAGERO, SE MURIO. FRANK MILLER, DE 32 ANOS, QUE
VIVIA EN 593 CALLE FOXON EN NEw HAVEN, CONNECTICUT, EL CHOFER,
QUEDO UN POCO HERIDO. EL DEPARTAMENTO DE POLICIA NO ACUSO A
NADIE.

2, An early version of SAM, designed for simple stories about
restaurants, busses and subways, is described in [36]. Methods
developed for building and applying Scripts as SAM evolved are discussed
in [10] and [11].

3. SAM is programmed in Irvine LISP and MLISP for a DECsystem-10
computer (KA-10 processor, 192K of core memory). Processing of Story
1.1, including summarization and question-answering, took about 8

minutes of CPU time, with most of the system's code executed
interpretively.
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Question-Answering Output:
Q1: Was anyone killed?
A1: YES, DAVID HALL DIED.

Q2: Was anyone hurt?
A2: YES, FRANK MILLER WAS SLIGHTLY INJURED.

Q3: Why was Miller hurt?
A3: BECAUSE THE AUTOMOBILE HIT THE TREE.

Q4: Did Miller go to the hospital?
A4: YES, HE WAS IN THE MILFORD HOSPITAL.

Q5: How did Miller get to the hospital?
A5: THE FLANAGAN AMBULANCE COMPANY TOOK HIM TO THE MILFORD
HOSPITAL.

1.3 What SAM Does

What is SAM doing as it reads a story such as (1.1)? This text is
understood by SAM as referring to the motor-vehicle-accident Script,
$VEHACCIDENT (Note 4). The accident Script is more complicated than the
restaurant Script, but the principles by which it is constructed are the
same. There are causal chains, or episodes, containing well-defined
roles, which characterize this situation, and the episodes are grouped
into scenes by the importance of the activity in the accident context.
There is, for example, a "crash" scene, describing the ways in which a
vehicle can go out of control and run into something. Script variables
in these events include the functions for "vehicle," "driver" and
"obstruction."

Not only is $VEHACCIDENT built like a simpler Script, but stories
about it are processed by SAM in the same way as stories referring, for
example, to restaurants. The basic strategy is to recognize the event
which the current input refers to, and then to fill in the things which
have been left out, both missing roles and uninstantiated, connecting
episodes. In Story 1.1, SAM has wused its knowledge of typical
happenings in a crash and its aftermath (treatment, investigation,
dealings with the insurance company, etc.) to make explicit the
connections, or inferences, which are only implicit in the text.

As we mentioned above, the most important kind of inference SAM
makes is filling in a causal chain. The structure of $VEHACCIDENT tells
the Script Applier which sequence of causally connected events to select
and instantiate between explicitly mentioned events. In Story 1.1, we
read about a crash, then about a person being taken to the hospital.
How can these events be connected? SAM applies its knowledge about car

4, In this thesis, upper case names preceded by "$" are names of
Scripts. Names preceded by "&" refer to Script variables, that is, to
props and roles from the Script. For example, &BUSDRIVER is the "bus
driver" role from the bus Script, $BUS.
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accidents and the functions of ambulance companies (the ambulance
Seript) to fill in the probable causal relations that someone saw the
crash and called an ambulance, that the ambulance came to the scene,
that the ambulance attendants placed the person on a stretcher and put
the stretcher into the ambulance, etc. It also makes the crucial
connection, never stated in the story, that the person who was taken to
the hospital in (1.1) must have been injured in the crash. The reason
it can do this is because it "knows" what ambulances and hospitals are
for, in the sense that the appropriate Scripts connect together for the
purpose of aiding people who are sick or hurt, and cannot get to the
hospital under their own power. A necessary part of filling in causal
chains 1is role-instantiation: specifying the necessary properties a
Picture Producer (PP: entities, such as people, places and things,
having a "static" memory representation [32]) must have to fill a
specified role in an event. An example of role-instantiation can be
seen in the summary of (1.1), which asserts that the "police
department," as the organization responsible for investigations and
arrests, chose not to file charges in this instance.

Another basic class of inference is reference specification. The
need for this process arises when a Script variable which has already
been bound to a PP is mentioned in a subsequent input. At this point a
decision has to be made: Can the new PP be an instance of an old one?
The classic reference problem occurs with pronouns, e. g., can "he" be
the "John" we heard about earlier? In newspaper stories, a more
complicated reference problem arises because of what we call
"paraphrastic reference:" the use of arbitrarily complex noun groups to
refer to the same PP. An example is recognizing that the man from New
Jersey mentioned in the third sentence of (1.1) must be David Hall, age
27.

SAM also uses the time/place setting of a story for inferences
about where things are happening and how long they take. A Script's
causal chains have associated default values for the length of time they
typically use up, or where they would be expected to occur. SAM uses
these defaults in Story 1.1 to infer that the crash must have occurred
on the same day as the "swerve," namely Friday evening. Cars simply
cannot stray from roads for very long (on the order of seconds) before
encountering an obstruction. (SAM inserts the phrase "four days ago"
because it is arranged, by convention, to be reading newspaper stories
on Tuesdays.) wosimilarly, the crash must have occurred "near Route 69,"
although the story does not explicitly say so. This is because roads
are provided with all sorts of nearby objects for cars to run into.

Finally, SAM makes various kinds of delayed inferences. Sometimes
a story will leave a point of interest to a reader hanging for a while,
only clearing up the problem in a later sentence. The inferences needed
in these cases have the nature of "demons" [7], hovering around waiting
for a feature of an input that satisfies their expectations. In car
accidents, for example, we want to know whether anyone was killed; if
someone was hurt, how badly; what the police did, ete. In Story 1.1,
although we know that the man taken to the hospital was hurt -- this is
what ambulances do --, we cannot initially be sure how seriously. Will
the person be operated on and spend some time in the hospital? Will he
be so badly damaged as to die there? This decision cannot be made until
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the sentence about "treated and released" is seen, at which point SAM
concludes that he must not have been too badly hurt.

1.4 Scripts and Script Applying in Historical Perspective

Early attempts to program computers to understand natural language,
despite the initial optimism of the researchers, met with only limited
success. For example, the problem of machine translation between
languages was viewed as being essentially one of supplying the computer
with dictionaries and grammars of sufficiently high quality. The
ultimate failure of the translation projects of the 1950's, as
described, for example, by Bar-Hillel [2], can be directly attributed to
a reliance on formal, syntactic methods. Knowledge of the world was
almost completely lacking in the systems actually built.

Natural-language processing research undertaken from the Artificial
Intelligence (AI) viewpoint has approached the crucial knowledge problem
from two distinct directions. One approach is to set up a
"micro-world," that is, to limit the knowledge domain to be addressed
enough that programs can be written which can "“understand" inputs in
some nontrivial sense, and generate appropriate responses. For example,
Woods' LSNLIS [46] answers questions about the composition and
properties of a collection of moon rocks. Winograd's SHRDLU [43]
engages in conversation with its user concerning the manipulation of
blocks in a simple visual scene. Brown and Burton's SOPHIE [6] tutors a
student in troubleshooting a simulated electronic circuit via a
"mixed-initiative" dialog.

Al systems like these clearly demonstrate the increases in power
that can be achieved by incorporating more and more domain-specific

knowledge. The obvious worry about “micro-worlds," however, is
extensibility. It is never clear whether techniques which work well in
one world will go over into another. The problem is compounded in

SHRDLU and SOPHIE because most of the knowledge possessed by these
programs is imbedded in procedures rather than in the data on which the
procedures run.

A second approach is to attempt to develop generalized
representational constructs which can handle large chunks of knowledge
in a standardized way. One well-known scheme which takes this viewpoint
is Minsky's Frame-system [19]. Frame-systems are built up out of
static, hierarchically organized descriptions ("frames") of stereotyped
situations, such as being in a store or seeing a well-known room, which
are associated by virtue of sharing "terminals" or "slots" to be filled
by objects with prespecified properties. A visual Frame-system for a
cube, for example, would consist of frames describing the cube as seen
from various orientations. Shifts in perspective are then mirrored by
retrieval of the appropriate frame. The notion of the Seript, although
independently developed, takes the same standpoint as the Frame-system.
It seeks to represent a variety of knowledge domains in terms of a
hierarchical data structure containing slots or gaps which prescribe
what things in an input can fill them; and how to construct a default
for one if the input does not mention it at all.
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What does a representational system like this buy us? First of
all, since descriptions are naturally declarative in form, a system
embodying a Script- or Frame-like approach should be easier to extend
than a procedure-based system. Extending a system whose knowledge is
procedurally imbedded always runs into the problem of side-effects. It
is a commonplace among programmers that a minor change to an existing
program can have far-reaching effects on other parts of the program.
Extensive changes are even harder to implement, especially in AI
applications, where often it is not clear how to split a given process
into independent, "structured" subprocesses, or whether such a split is
possible at all. A related problem is with the understandability of a
procedure-based system. Modifying such a system becomes very difficult
because a programmer (especially a new programmer who is trying to learn
a large system) cannot foresee all the interactions among the system's
procedures.

Adding a new knowledge area to a Frame-system, on the other hand,
amounts to augmenting a database of interconnected declarations with a
new set of assertions constructed in exactly the same way as the old
ones. The most important advantage, however, is in the control of
processing this kind of database affords. The sharing of features among
pieces of a Seript guides the understander on how to fill in gaps in the
input description. The existence of defaults with their associated,
prescribed features tells the process what inferences to make, and when.
In our example of a Frame-system for a cube, effects of changes in the
orientation of the viewer could be computed cheaply because of the
terminals (edges, faces) which are known to be common to the two views;
and because of the precompiled information, or defaults, available to
help the processor identify new features of a scene.

Charniak [8] has sketched out what a Frame-system for understanding
stories about shopping in supermarkets would look like. More recently
[9], the same researcher describes how commonsense knowledge about the
process of ordinary painting could be represented in a Frame-based
format. Neither proposal, however, has yet been reduced to a working
program which in some sense actually uses a data base to understand a
text about supermarkets or painting a house. SAM, on the other hand,
does just these things in its particular realm of newpaper stories. It
actually applies Scripts to achieve a reasonable comprehension of what
it reads. As a working system, therefore, it embodies a set of
mechanisms which solve a problem which has often been discussed but only
seldom attacked by an actual program, namely, the problem of making
inferences as an aid to comprehension.

The importance of controlling inference in natural-language
understanding can be seen by considering what happens in a system, such
as Reiger's Conceptual Memory program [22], in which inference goes on
"by reflex," without any control at all from higher-order processes.
This program was designed to operate on Conceptual Dependency (CD)
representations for single English sentences, generating all the
inferences (commonsense assertions) that could be reasonably associated
with the representation. Rieger's theory recognized sixteen classes of
inferences needed to understand text, and the program could handle
examples of each kind. Here are samples of some of the more important
kinds; the inferences are in upper case:
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(I1) Resultative Inferences:
John went to New York.
JOHN IS PROBABLY IN NEW YORK.

(I2) Feature Inferences:
Andy's diapers are wet.
ANDY IS PROBAELY A BABY.

(I3) Function Inferences:
John wants a magazine.
JOHN PROBABLY WANTS TO READ IT.

(I4) Situation Inferences:
John went to a masquerade party.
JOHN PROBABLY WORE A COSTUME.

Rieger's work greatly expanded our understanding of inference. As
the heart of the MARGIE system [32], the Conceptual Memory program
implemented a kind of "deep" understanding of sentences in a ,null
context, by generating inferences and making memory connections on the
basis of those inferences. The problem, of course, is the possibility
of an inference explosion. Any Conceptualization can be the potential
subject of up to sixteen inferences. The new inferences in turn become
the starting points for further inferences. An example discussed in
[22] shows how even a simple reference problem can lead to a potentially
unstable inferencing process.

Suppose memory knows about two individuals named "Andy," one an
adult, the other a baby; and this is all it knows about the world.
Given the input "Andy's diapers are wet," the Conceptual Memory program
went through two cycles of inferencing, each new set of inferences being
handed to Memory's reference processor for a feature check. Although
the output given does not specifically say, we may assume that on the
order of twenty inferences were generated, of which only a few were
actually relevant. In a memory with more facts, an undirected process
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