
F— — ___ -

~ 

— 

~nI
AD AOSb 080 YALE UNIV NEW HAVEN CONN DEPT OF COMPUTER SCIENCE FIG 6/Is ISCRIPT APPLICATION: COMPUTER UNDERSTANDING OF NEWSPAPER STORIES——ETC(U)

JAN 78 p E CULLINGFORD N000lIs.75~C~ IltI
UNCLASSIFIED RR—116 NL

0 flO 0 90

C



7

cX)

El VERj T~~

SCRIPT APPLICATION: COMPUTER UNDERSTANDIN G OF

NEWSPAPER STORIES m

(J; j Jañu 978
-~~~~ — I /

/ Research Repor t ~fl6

Richard Edward/Cullingford j
(i~ r 2 

~ /

=
YALE UNIVERSITY

DEPARTM ENT OF COMPUTE R SCIENC E

7 8 07 (17 04 4
~~t;

•/_ ~~~~~~~~~~~~~~~~~~~~~



This work was presented to the Graduate School of Yale University

in candidacy for the degree of Doctor of Philosophy.

~c’ ;1~~-~ Rept .  ~~~~~~

T~~~ e ~ i u r ~~~, ~~~~~~~~~ ~~~~~~~~ i~ ~~ a

~f t. ;~ r~~ ‘r t  and ~ ‘‘~~:~ ~~~t ~~ ‘
~~

~i : t ed  ~‘r ~~~~~~ 
~~~~~~ste n, ~~~

‘ -

~::. ~~ r~~ tjo~ wa~ ~‘~~ni
t ra c tor .

SCRIPT APPLICATION: COMPUTER UNDERSTANDING OF
NEWSPAPER STORIES

January 1978

Research Report #116 r
Richard Edward Cullingford

~ JUL 1’

~_~; ~
‘::L~.

A

This work was supported in part by the Advanced Research Projects Agency
of the Department of Defense and monitored under the Office of Naval Research
under contract N00014—75—C—llj.1.

~~~~~~~~~ 

~~~~~~~~~



SECURITY CLASSIFICATION OF THIS PAGE (Wh.n bata Entered)

DE
~~’~’ 

I I L A E b J T TIAbJ D AI ’ E  READ INSTR UCT IONS
I~~~~~ t~ I ~~~~~~~UIR t~ I ~~~I I~~~t~ I BEFORE COMPLETING FORM

I . REPORT NUMSER 2. GOVT ACCESSION P40. 3. RECIPIENT’S CATALOG N U M B E R

#116 ______________________________
4. TITLE (an d S~ btitl.) S. TYPE OF REPORT & PERIO~~,COVEREO

Script Application : Computer Understanding of Technical
Newspaper Stories 4 PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) I. CONTRACT OR GRANT NUM&ER (•)

Richard Edward Cullingford NOOOl4—75—C—1lll ,,~~.—

9. PERFORMING O R G A N I Z A T I O N  NAM E AND ADDRESS 10. PROGRAM ELEMENT. PROJECT . TASK
Yale University AREA & WORK UNIT NUMBERS

Depar tment of Computer Science
10 Hillhouse Ave., New Haven, Conn. 06520

II. CONTROLLING OFFICE N A M E  A N D ADDRESS 12. REPORT DATE

Advanced Research Projects Agency January 1978 ‘
~

1400 Wilson Boulevard 13. NUMBER OF PAGES

Arlington, Virginia 22209 203
14. MONITORING AGENCY NAME & AODRESS(If dtf(.r.ot Item Contr ollIng Office) IS. SECURITY CLASS. (of flit. report)

Office of Naval Research Unclassified
Information Systems Program

a . . • , ‘,~aa  -, ISa . OECLASSIFICATION/DOWNGRAOI NGatri.lngton, v lrg.Lnla ~~~~~~~ SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Distribution of this report is unlimited .

17. DISTRIBUTION STATEMENT (of (ha abstract .nt.r.d In Block 20, II different from R.po,t)

IS. SUPPLEMENT ARY NOTES

IS. KEY WO ROS (Continu, on r.v.ra. .ld. if n.ce.wy and id.ntify by block nianb.r)

text understanding frame systems
psychological modelling conceptual dependency
knowledge structures pattern—directed inference

20.’ BSTRA CT (Continue on r ever e. etd. If n.c....sy and Sd•ntlfr by block nu~~b.r)

The report describes a computer story understander which applies knowledge
of the world to comprehend what it reads. The system, called SAN, reads
newspaper articles from a variety of domains, then demonstrates its under-
standing by summarizing or paraphrasing the text, or answering questions
about it.

OD ~~~~
‘
~VS 1473 £DITI~~N OF I NOV 65 IS OBSOL E TE

S/N 0 103 -  0 I 4~ 6601 
SECURITY CL ASSIFICA’TIO$ OP ‘THIS PAGE (When Data inten d)

—-



- —~ .—-~ —

—— OFFICIAL DISTR IBUTION LIST -—

Defense Documentation Center 12 copies
Cameron Station
Alexandria, Virginia 22314

Office of Naval Research 2 copies
Information Systems Program
Code 437
Arlington, Virginia 22217

I

Office of Naval Research 6 copies
Code 1021P
Arlington, Virginia 22217 /

/
Office of Naval ResearcL~ 1 copy
Branch Office — Boston
495 Summer Street
Boston, Massachusetts 02210

Office of Naval Research 1 copy
Branch Office — Chicago N
536 South Clark Street
Chicago, Illinois

Off ice of Naval Research 1 copy
Branch Office — Pasadena
1030 East Green Street
Pasadena, California 91106

Mr. Steven Wong 1 copy
Administrative Contracting Off i~er
New York Area Office
715 Broadway — 5th Floor
New York, New York 10003 S..

Naval Research Laboratory 6 copies
Technical Information Division
Code 2627
Washington, D. C. 20375

Dr. A. L. Slafkosky 1 copy
Scientific Advisor
Commandant of the Marine Corps
Code RD— i
Washington, D. C. 20380



—~~~~~~~

— 2 —

Of f ice of Naval Research 1 copy
Code 455
Arlington, Virginia 22217

Office of Naval Research 1 copy
Code 458
Arlington, Virginia 22217

Naval Electronics Laboratory Center 1 copy
Advanced Software Technology Division
Code 5200
San Diego, California 92152

Mr. E. H. Gleissner 1 copy
Naval Ship Research and Development Center
Computation and Mathematics Department
Bethesda, Maryland 20084

Captain Grace M. Hopper 1 Copy
NAICOM/MIS Planning Board
OP—916D
Office of Chief of Naval Operations
Washington, D. C. 20350

Mr. Kin B. Thompson 1 copy
Technical Director
Information Systems Division
0P—91T
Office of Chief of Naval Operations
Washington, D. C. 20350

Advanced Research Projects Agency 1 copy
Information Processing Techniques
1400 Wilson Boulevard
Arlington , Virginia 22209

Professor Oma r Wing 1 copy
Columbia University in the City of New York
Department of Electrical Engineering and
Computer Science
New York, New York 10027

Office of Naval Research 1 copy
Assistant Chief of Technology
Code 200
Arlington, Virginia 22217



~ 

ABSTRACT

Script Application:
Computer Understanding of Newspaper Stories

Richard Edward Cullingford

Yale University 1977

This thesis describes a computer story understander which applies
knowledge of the world to comprehend what it reads. The system , called
SAM , reads newspaper articles from a variety of domains, then
demonstrates its understanding by summarizing or paraphrasing the text,
or answering questions about it. Since the knowledge struc tures SAM
works with are conceptual and language—free, we have been able to add a
limited machine—translation capability to SAM, as well.

SAM ’s knowledge of the world is encod ed throug h the use of a
representational construct called a ScriDt. Scripts describe the
stereotyped activities characteristic of socially ritualized situations
such as going to stores, museums and restaurants , taking business trips
and vacations, and attending banquets and birthday parties. SAM
consults its Scripts to recognize the events a particular text refers
to, to identify the participants in these events , and to fill in other
events, not explicitly mentioned by a story, which can be plausibly
inferred to have happened . In this process, it moves Scripts in and out
of active memory on the basis of predictions it makes about what may be
seen next.

SAM represents an attempt to build a complete , working story
understander exploiting an important source of knowl edge about the world
to find the connections which make a text “coherent ,” and to build a
memory representation for the text from which natural-language Outputs
can be generated which indicate a reasonable depth of understanding.
Since Scripts model a knowledge structure that peopl e constantly apply ,
both to cope with the world and to understand what they read , SAM
embodies a theory of context and how context is to be used in the
process of understanding .

NT I S lC~US

ttI SadISI

v~iiIt0UNCE~ 0
JUSIlI UIION ...._. 

N,
NI STII IS’~~O9 AV AIL  tR?1 1, ~ 4U

AVAIL ~ 



PREFACE

St.ories constantly refer to people, places , things and events in
the world . The task of story understanding , whether undertaken by a
person or by a computer program , requires numerous sources of world
knowl edge and methods for getting at the appropriate parts of that
knowledge as required . For example , we may need to know about how
physical forces operate, or about the rules governing people’s behaviour
in various social circumstances.

A computer story understander , to achieve a reasonable depth of
comprehension , has to do many of the things that a person does as he
reads a text. It must recognize the context that a given story is set
in. It has to identify each and every reference to an actor in the
story. Most importantly, it must make explicit the things that are only
implicit in a story, to fill in the things the storyteller left out .
Only in this way will the representation the understander retains after
the story has been read be sufficiently rich to allow it to fathion
appropriate summaries , and to answer questions properly.

The process of’ inference in understanding a story is always
informed and controlled by the understander ’s consulting what he knows
to be true about the world. In what follows we describe an attempt to
give the computer a source of detailed world knowledge, and procedures
for using tha t knowledge to comprehend .

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—
- — -

ACKNOWLEDGMENTS

First of all , I’d like to thank my thesis advisor , Professor Roger
Schank, for suggesting the idea of the Script Appl ier to me , and then
spending the time and effort  to keep me on the straight and narrow .
It’s been a pleasure to work with a man who knows where he is going , and
knows how to manage a large research team for maximum benefi t to
everybody. It’ s also been an intellectual adventure to learn , from him ,
the careful mix tur e of freewheeling intui t ion and disciplined
programming that one needs to do research in Artif ic ial Intelligence.

I owe a special debt of gratitude to Yale’s Department of’
Engineering and Applied Science, especially to Professors Werner Wolf,
K. S. Narendra and Franz Tuteur , for encouraging me as I pursued this
topic in Artificial Intelligence, so unlike anything else the Department
does. Professors Narendra and Tuteur also have my thanks for serving on
my reading committee. At Yale, when a Department says it supports
“interdisciplinary work,” it means what it says.

Professor Alan Perlis got me interested in Al in the days before
Professor Schank arrived at Yale , and was rewarded for his trouble by
having to serve on my committee . Dr. Chris Riesbeck , by admonition and
example , taught me many of the techniques of Al research in
natural—languag e processing . He also read a draft  version of’ this
manuscript , and contributed several patches of clarity to my otherwi se
unwieldy prose .

Nearly everyone in the Yale Artificial Intelligence Project has
worked at one time or another on the story understander , SAM , discussed
here . Many of the results I present came out of’ marathon sessions of’
“ crunching” by various teams of hackers . I want to express my thanks to
my friends and co—workers: Jaime Carbonell , Gerald DeJong , Anatole
Gershman , Richard Granger , Janet Kolodner , Wendy Lehnert , James Meehan ,
Warren Odoin, Richard Proudfoot , Mallory Selfridge , Walter Stutzman and
Robert Wilenaky.

Finally, t here ’s a special word of appeciation for the Yale
DECsyatem— 10 computer , serial number 152, for a gritty performance in
the role of Mother Nature.

The research described in this thesis was supported by the Advanced
Research Projects Agency of the Department of Defense and monitored by
the Office of Naval Research under contract N000 114—75—C— 1111 .



_ _ _ _ _ _  - -~~~~~~ - . - . . __ __ --.-—~~~~~~~~~~~~~~~~~~ --

For Sylvia :
Who helped me preserve my sanity,

at the expense of hers.



_ _ _ _ _ _ _ _ _

TABLE OF CONTENTS

ABSTRACT
PREFACE . .   ii
ACKNOWLEDGMENTS   . . .   iii
DEDICATION . .  iv
TABLE OF CONTENTS .   v
MDLC OP- FIOIJ I1BC  . .

Chapter 1: What This Thesis Is About

1.1 A Computer Program That Understands Stories 1
1.2 Knowledge about Context~ Scripts 2
1.3 What SAM Does 5
1.4 Scripts and Script Applying in Historical Perspective    7
1.5 An Overview of Script Application  10
1.6 An Annotated Exampl e   19
1.7 Outline of the Thesis   30

Chapter 2: Script Structure

2.1  Introdu~tion . . . .  33
2.2 Riding the Subway      35
2.3 Script Variables and Patterns 39
2 .4  Episodes and Pathvalue . . .   .  . .   44

2 .4 .1  The Structure of’ Episodes    44
2 . 4 . 2  Connecting Episodes Together     48
2 .4 .3  Pathvalue      50
2 . 4 . 4  More About Patterns 52

2.5 Scenes and Tracks . . . . .   53
2.6 Permanent Memory St ructures 56

2 .6 .1  Setting and Point of View . .    . .   . .  57
2.6.2 Script Preconditions 60
2.6.3 Script Headers 62
2.6 3.1 Example Headers for $SUBWAY    .  66

2.7 Summing Up .   67

Chapter 3 Managing Scripts

3.1 Why This is a Problem   69
3.2 Organizing Expectations about Stories 71
3.3 Connections Among Scripts     75
3.3.1 Scripts in Simple Sequential Relation 76
3.3.2 Scripts Occurring in the Same Place . . .   78
3.4 Fitting Scripts Together  85
3.4.1 Scripts Involving Organizations and Forces      87
3.4.2 Transactions 88
3.4.3 Natural—Force Scripts . .   90
3.4.4 Situations       92



3.5 Summing Up . . . . . . . . . . 97

Chapter II: Script Application:  The Basic Cy c le

4. 1 Introduct ion . . .  .  .        99
4.2 Story—Telling Conventions . .    100
14.3 Inter~:alizing Conceptualizations 101
14.4 Choosing a Context 103
14 5 Pattern Match ing   106
4.5.1 The Backbone Match  107
4.5.2 Rolef’it       108
4.5.3 Rolemerge . . . .      109
4.6 Making and Unmaking Predictions  110
4. (.Instantiating Episodes     113
4.8 Changing Contexts  114
14.9 Processing Newspaper Stories    115

Chapter 5: Inferencing in SAM

5. 1 Introduct ion 11 9
5.2 Classes of Inferences .   120
5.3 Immediate—Result Inferences . .            120
5. 14 Mental—Act Inferences          121
5.4.1 Perception and Remembering       121
5.4 2 Authority Announcements      122

5.5 Locational In ferences        123
5.5.1 Transitivity of Proximity   123
5.5 2 Enclosur e      124

5.6 Movement Inferences 124
5.6.1 Movement of Personal Possessions     125
5.6.2 Conveyance Inferences   126
5 7 Agency Inferences  127

Chapter 6: A Very Detailed Example

6.1 Introduction 128
6 2 Understanding the Story  130
6.2.1 Finding the Inputs 130
6.2.2 Making the Story Representation  152
6.3 Answering Questions  . . .  . . .  1 58

Chapter 7: Representing Conceptual Nom inal s

7.1 Motivation 163
7.2 Actors 168
7.2 1 Persons .      169
7.2.2 Groups    170
7.2.3 Organizations .       173
7.2 14 Polities  .       174
7.2.5 Forces . . .  175
7.3 Physical Objects . .     177
7.3.1 Simple Objects .       177
7.3.2 Structured Objects   178
7.4 Places . .  179
7.4.1 Simple Locales   179

L ~~~~~~~~~~~~~~~~~~~ .-..-—----— .-.—~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ - .- --~~~~-. .~~~~~~~~~~~ -- -  -



~~~~- -—— -., --
~~~~~~~~~~~~ ~~~

- .-——-
~~~~~~~~

7 . 1 4 . 2  Geographical Features   . . .  180
7.14.3 Links .  180
7.5 Miscellaneous PPs . . .  . . .  181

Chapter 8 Finale

8 .1 Why Did We Do This? .  .     182
8.2 ~hat Else Could Be Done? .  183

8.2 1 A Laboratory for Inference    183
8 .2 .2  A Model of Reading 1 814
8 .2 .3  Scripts and Plans    185

APPENDIX 1~ Representation and Notation 187

APPENDIX 2: More Output fr om SAM . .  . . .  195

BIBLIOGRAPHY 2~0



U’.’.,

Chapter 1
What This Thesis Is About

1 .1 A Computer Program That Understands Stories

What do you have to know , and how should you use what you know , in
order to read a story? This thesis describes an attempt to answer these
questions by building a computer model which appl ies knowledge of’ the
world to understand texts it is given to read . The task of’ story
understanding has two aspects which the model will have to account for:
( 1 ) the actual .~~~~~ s of understand ing; and (2) what the understander
does with the information acquired . Our computer simulation should be
able to read simple stories the way people do : “left—to—right ,” in one
pass , a sentence at a time . And , since people can demonstrate their
comprehension of stories by summarizing them , paraphrasing them , or
answering questions about them , the simulation should be able to do the
same.

If we wish to build a computer story understander , we must search
for ways of classifying and organizing world knowl edge so it can be used
by a computer . Organization is the crucial issue for two closely
related but opposing reasons : ( 1)  a program which achieves a reasonable
depth of understand ing as it reads will certainly require an enormous
amount of knowl edge drawn from very d i f fe ren t  domains; but (2 )  the
particular information needed at any point during comprehension must
somehow be mad e accessible without a large am oun t of search.

This thesis is about the organization of world knowledge for the
particular task of’ story understanding by computer . On the one hand , we
describe ways of setting up a data base containing knowledge of the
world without having an information explosion. On the other , we discuss
how such a data base can be arranged for reasonably efficient retrieval .
Our computer model , SAM , exploits knowl edge of a particularly important
kind to read stories referring to a variety of knowl edge domains . It
solves the problems tha t a text presents by finding the connections that
make the text “coherent.” Then it shows that it has “understood” the
text , in a fa irly deep sense , by answering questions about it ,
summarizing it, or paraphrasing it. Additionally, SAM’s output can be
expressed in a variety of natural languages, so SAM is a kind of Machine
Tr~mslation system as well .



— 2 —

1.2 Knowledge about Context: Scripts

Broadly speaking , stories describe the working out of’ problem s by
actors in some context (Note 1). An intelligent story understander ,
therefore , will have to embody a theory of what constitutes a context ,
and how one is used . If competing context s are available , the
understander will al so need rules to decide which takes precedence.

Our computer model , SAM , implements ~ part ial  theory of how context
can be appl ied in text comprehension. The basis f’or the theory is a
representational construct , devised by Schank and Abelson [314), called a
Scriot. Use of the Script enables us to encode for the computer our
cultural ly shared knowl edge of the stereotyped events that  occur in suc h
socially ritua ’.ized activities as going to stores , restaur ants and
museums; riding trains and subways ; at tending plays and banquets ; and
playing games or driving cars. We bel ieve that people themselves have
Scripts , acquired by repeated ex posur e to situations , which tell them
what can happen in a situation , what follows what , and when ; what roles
various people and things typically have; and , most importantly, what
the person is expected to do. Aside from their “operational” value ,
people use Scripts in “cognitive” activities , e. g., to help in
understanding ref’erences to the situation in the things they read .

As an example of a typical Script , consider the activities which go
with eating in a restaurant. The ord inary course of’ a f fa i r s  is tha t the
patron enters , is seat ed , and orders a meal . The meal is then prepared
and served , and the patron eats it. Finally, the patron pays the bill
and leaves. Each of these activities is described by a stereotyped
chain of’ events, which prescribes the order in which things happen , and
the people and objects participating in the action. Entering the
restaurant , looking for a table , walking over to one and sitting down
comprise one such event—chain , or “episode.” Episodes in Scripts are
organized as causal chains [28 ,314]. Each event has resulting states
which in turn become the enabling conditions for further events to
occur . For example , one must physically be inside a restaur an t before
one can look for a table. Seeing an empty table enables walking over to
i t .  As a result of’ walking to a table , one can sit down at it. The

1. Interpreting people ’s actions in terms of their  underlying
motivations is an extremely d i f f icul t problem for which no complete
theory yet exists. The work of’ Schank and Abelson [314] represents one
Artificial Intelligence (Al) approach to this domain , based on a small
set of very general procedures called Plans. Plans characterize
people ’s standard desires and their preferred methods for satisfying
them . An early version of’ Plan theory is implemented in a computer
story understander called PAM [14 1]. Schn idt and Sridharan [37] have
developed a second representational system for dealing with this
problem , based on a construct called a “plan schema .” These researchers
have been developing an Al system , cal led BELIEVER , wh ich uses plan
schemata to model in a psychologically plausible manner how people use
their bel iefs about other people to arrive at an intentional explanation
of observed behavior .



episodes in Scripts are connected together at “turning points ,” where
alternative paths for accomplishing a given Scriptal activity are
available. A turning po int in the restaur ant Script occurs when the
order is placed , since the order may either be accepted , or rejected for
some reason .

Each event in a Script contains references to the people (“ roles”)
who have well—known duties there , and the things (“ props ”) they use when
engaged in their duties. For exampl e , “patron ” fills a defined function
in the restauran t Script , as does “ waiter , ” “cashier ” and “table. ” Since
we believe that the memory structures which embody a person ’ s
understanding of events in the world are “conceptual , ” that is ,
language—free, Scriptal events are encoded according to the rules of
Conceptual Dependency meaning representation [32]. Therefore , a Script
is a large network of interconnected Conceptualizations, each containing
“slots ,” or Script variables, with requirements on the real—world peopl e
and things which can fill the slots.

A given story about a situation will refer to , or “instantiate,”
only some of its episodes. Script—based story understand ing ,
accordingly, is a process of constructing a “trace” or “scenario”
through a gi:en Script which contains both the events explicitly
mentioned in the story , and those which can be inferred to have
happened . The Script is used , tha t is , not only to recognize what has
been read , but also to fill in what was left out . Continuing our
restaurant exampl e , let’ s suppose that a story referring to the
restaurant Script begins:

John walked into a restaurant. He asked for some lasagna .

The Script is “invoked ,” or activated , by the first sentence , since the
understander is now primed to hear more about things which go with
eating in a restaur ant. When the second sentence is read , we understand
that the event being instantiated is one way of carrying out the
“ordering” activity which always goes on in restaurants. (We call the

• collection of possible ways an important activity suc h as ordering can
be accompl ished a “ scene” of the Script.) We assume that John is asking
the restauran t to prepare some food for him which he will eat there.
Note that “asked for some lasagna” would have quite a different  meaning
if John were in a food store .

The Script also tells us that the order is directed to a unnamed
“waiter , ” that John is probably seated at a table , and that the wa iter
is standing there , too . In fac t , we in fer that all the actions which
are appropriate for finding a table and sitting down have already taken
place. The structure of the restaurant Script tells us which particular
pieces of causal chain from the “seating” scene to fill in between the
acts of entering and ordering .

Our computer model of this process is called a Script Appl ier . It
is the heart of a Script—based story understander called SAM (Script
Applier Mechanism), which reads newspaper articles referring to events
such as car accidents ,, train wrecks and state visits, and then
summarizes them or answers questions about them . We have tried to make
SAM read newspaper stories in a way which simulates an average adult 

.. 



• - 
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - . . -  

_ 1 4 _

reading the same material . he assume that the task is careful reading ,
rather than skimming ; and that understand ing relies on general world
knowledge, embodied in the appropriate Script , rather than specialist
knowledge of a domain . For example , a reference to an ambulance ride in
a car-accident story would be understood in terms of an ord inary
person ’s knowledge of ambulances and emergency rooms , not a doctor ’s.
Additionally,  we assume that the understander is emotionally neutral
about the stories read . The peopl e mentioned are not personally known
to the reader, and the events described are not interpreted in terms of
any personal belief system . (Note 2.)

Here is an example of the kind of stories SAM has read , which
illustrates the level of under~3tanding it can achieve. (Story 1.1 is a
slightly simplified version of’ a newspaper article about a car accident
from the New Haven Register.) The text shown is actual input and output
from the computer (Note 3).

Story 1 . 1 :
Friday evening a car swerved off Route 69. The vehicle struck a
tree. The passenger , a New Jersey man , was killed . David Hall ,
27, was pronounced dead at the scene by Dr Dana Blauchard ,
med ical examiner . Frank Miller , 32, of 593 Foxon Rd , the
driver , was taken to Mi l f’o rd Hospital by Flanagan Ambulance. He
was treated and released . No charges were made. Patrolman
Rober t Onofrio investigated the accident.

English Summary :
AN AUTOMO BILE HIT A TREE NEAR HIGHWAY 69 FOUR DAYS AGO . DAVID
HALL , AGE 27, RESIDENCE IN NEW JERSEY , THE PASSEN GER , DIED.
FRANK MILLER , AGE 32, RESIDENCE AT 593 FOXON ROAD IN NEW HAVEN ,
CONNECTICUT, THE DRIVER , WAS SLIGHTLY INJURED . THE POLICE
DEPARTMENT DID NOT FILE CHARGES .

Spanish Summary:
UN AUTO CHOCO CONTRA UN ARBOL CERCA DE LA CARRETERA 69 EL
VIERNES AL ANOCHECER . DAVID HALL , DE 27 ANOS , QUE “IVIA EN NEW
JERSEY , EL PASAGERO , SE MURIO . FRANK MILLER , DE 32 ANUS , QUE
VIVIA EN 593 CALLE FOXON EN NEW HAVEN , CONNECTICUT , EL CHOFER ,
QUEDO UN POCO HERIDO . EL DEPARTAMENTO DE POLICIA NO ACUSO A
NADIE .

2. An early version of’ SAM , designed for simple stories about
restaurants , busses and subways , is described in [36]. Methods
developed for building and applying Scripts as SAM evolved are discussed
in [10] and [11).

3. SAM is programmed in Irvine LISP and MLISP for a DECsystem—1O
computer (KA— lO processor , 192K of core memory). Processing of Story
1,1 , including summarization and question—answering , took about 8
minutes of CPU time , with most of the system’s code executed
interpretively.



— 5 —

Question-Answer ing Output :
Qi : Was anyone killed?
Al: YES, DAVID HALL DIED.

Q2: Was anyone hurt?
A2: YES, FRANK MILLER WAS SLIGHTLY INJURED.

Q3: Why was Miller hurt?
A3: BECAUSE THE AUTOMOBILE HIT THE TREE.

Q14: Did Miller go to the hospital?
A4: YES , HE WAS IN THE MILFORD HOSPITAL.

Q5: How did Miller get to the hospital?
A5 : THE FLANAGAN AMBULANCE COMPANY TOOK HIM TO THE MILFORD
HOSPITAL.

1.3 What SAM Does

What is SAM doing as it reads a story such as (1.1)? This text is
understood by SAM as referring to the motor—vehicle—accident Script ,
$VEHACC IDENT (Note 13) . The accident Script is more complicated than the
restaurant Script , but the principles by which it is constructed are the
same. There are causal chains , or episodes , containing well—defined
roles , which characterize this situation , and the episodes are grouped
into scenes by the importance of the activity in the accident context.
There is, for example , a “crash” scene, describing the ways in which a
vehicle can go out of control and run into something . Script variables
in these events include the functions for “ vehicle ,” “driver ” and
“obstruction .”

Not only is $VEHACCIDENT built like a simpler Script , but stories
about it are processed by SAN in the same way as stories referring , for
exampl e , to restaurants . The basic strategy is to recognize the event
which the current input refers to , and then to fill in the things which
have been left  out , both missing rol es and uninstantiated , connecting
episodes . In Story 1.1 , SAM has used its knowledge of typical
happenings in a crash and its aftermath (treatment , investigation ,
dealing s wi th the Insurance company, e tc .)  to make explicit the
connections , or inferences, which are only impl icit in the text.

As we mentioned above , the most important kind of inference SAM
makes is filling j~ ~ causal chain. The structure of $VEHACCIDENT tells
the Script Applier which sequence of causally connected events to select
and instantiate between explicitly mentioned events. In Story 1.1 , we
read about a crash , then about a person being taken to the hospital.
How can these events be connected? SAM applies its knowledge about car

14. In this thesis, upper case names preceded by “$“ are names of
Scripts. Names preceded by “&“  refer to Script variables , that is, to
props and roles from the Script . For example , &BUSDRIVER is the “bus
driver” role from the bus Script , $BUS.



-
_ _

— 6 —

accidents and the functions of ambulance companies (the ambulance
Script) to fill in the probable causal relations that someone saw the
crash and called an ambulance , that the ambulance came to the scene,
that the ambulance attendants placed the person on a stretcher and put
the stretcher into the ambulance , etc . It also makes the crucial
connection , never stated in the story, that the person who was taken to
the hospital in (1 .1) must have been injured in the crash . The reason
it can do this is because it “knows” what ambulances and hospitals are
for, in the sense tha t the appropriate Scripts connect together for the
purpose of aiding people who are sick or hurt , and cannot get to the
hospital under their own power. A necessary part of filling in causal
chains is role—instantiation: specifying the necessary properties a
Picture Producer (PP: entities, such as people , places and things,
having a “static” memory representation [32]) must have to fill a
specified role in an event. An example of role—instantiation can be
seen in the summary of (1 .1 ), which asserts that the “police
department ,” as the organization responsible for investigations and
arrests , chose not to file charges in this instance.

Anot her basic class of infe rence is reference soecification. The
need for this process arises when a Script variable which has already
been bound to a PP is mentioned in a subsequent input . At this point a
decision has to be made : Can the new PP be an instance of an old one?
The classic reference problem occurs with pronoun s , e. g . ,  can “he ” be
the “John ” we heard about earlier? In newspaper stories , a more
complicated reference problem arises because of what we call
“ paraphrastic reference: ” the use of arbi t rar i ly  complex noun groups to
refer to the same PP. An example is recognizing that the man from New
Jersey mentioned in the third sentence of ( 1 . 1 )  mus t be David Hall , age
27.

SAM also uses the time/olace setting of’ a story for inferences
about where thing s are happening and how long they take . A Script ’s
causal chains have associated default  value s for the l ength of’ time they
typically use up, or where they would be expected to occur . SAM uses
these defaults in Story 1.1 to in fer that the crash must have occurred
on the same day as the “ swerve , ” namely Friday evening . Cars simply
cannot stray from road s for very long (on the order of seconds) before
encountering an obstruction . ( SAM inserts the phrase “four days ago”
because it is arrang ed , by conv ention , to be reading newspaper stories
on Tuesdays.) ~imilarly, the crash must have occurred “near Route 69,”
altho ug h the story does not expl icitly say so. This is because road s
are provided with all sorts of nearby objects for cars to run into .

Finally, SAM makes various kinds of delayed infere~~~~. Sometimes
a story will leave a point of interest to a reader hanging for a while ,
only clearing up the problem in a later sentence. The inferences needed
in these cases have the nature of “demons” [7], hovering around waiting
for a feature of an input that satisfies their expectations . In car

• accidents , for exampl e , we want to know whether anyone was killed; if
someone was hurt , how badly;  what the police did , etc . In Story 1.1 ,
although we know that the man taken to the hospital was hurt —— this is
what ambulances do —— , we cannot initially be sure how seriously. Will
the person be operated on and spend some time in the hospital? Will he
be so badly damaged as to die there? This decision cannot be made until



—— . - .  — .— ,—-. — .• — • — —• ,————— —— , . . .  
~

—.——.——- — ,— .—..—,— •——
~

- , ——-  —— .— —-—— .- —

— 7 —

the sentence about “treated and released” is seen , at which point SAM
nonclitdes that he must not have been too badly hu r t .

1. 13 Scripts and Script Applying in Historical Perspective

Early attempts to program computers to understand natural language ,
despite the initial optimism of the researchers , met with only limited
success . For example , the problem of machine translation between
languages was viewed as being essentially one of supplying the computer
with dictionaries and grammars of’ suff icient ly high quali ty.  The
ultimate failure of the translation projects of the 1950 ’s, as
described , for example, by Bar—Hillel [2], can be directly attributed to
a rel iance on fo rmal , syntactic methods. Knowledge of the world was
almost completely lacking in the systems actually buil t .

Natural—language processing research undertaken from the Artificial
Intelligence (A l )  viewpoint has approached the crucial knowl edge problem
from two distinct d irections . One approach Is to set up a
“ micro—world , ” that is , to l imit  the knowl edge domain to be addressed
enough that programs can be written which can “ understand” input s in
some nontrivial sense , and generate appropriate responses. For exampl e ,
Wood s’ LSNLIS [136] answers questions about the composition and
properties of a collection of’ moon rocks. Winograd ’s SHRDLU [143)
engages in conversation with its user concerning the manipulation of
blocks in a simple visual scene. Brown and Burton’s SOPHIE [6] tutors a
student in troubleshooting a simulated electronic circuit via a
“mixed—initiative” dialog .

Al systems like these clearly demonstrate the increases in power
tha t can be achieved by incorporating more and more domain—specific
knowledge. The obvious worry about “micro—worlds , ” however , is
extensibi l i ty . It is never clear whether techniques which work well in
one world will go over into another . The problem is compounded in
SHRDLU and SOPHIE because most of the knowledge possessed by these
programs is imbedded in procedures rather than in the data on which the
procedures run.

A second approach is to attempt to develop generalized
representational constructs which can handle large chunks of knowledge
in a standardized way. One well-known scheme which takes this viewpoint
is Minsky’s Frame—system [19]. Frame—systems are built up out of
static , hierarchically organized descriptions (“frames”) of stereotyped
situations , such as being in a store or seeing a well—known room , which
are associated by virtue of sharing “terminals” or “slots” to be filled
by objects with prespecified properties. A visual Frame—system for a
cube, for example, would consist of frames describing the cube as seen
from various orientations. Shifts in perspective are then mirrored by
retrieval of the appropriate fr ame. The notion of the Script , although
independently developed , takes the same standpoint as the Frame—system .
It seeks to represent a variety of knowledge domains in terms of a
hierarchical data structur e containing slots or gaps wh ich prescribe
what things in an input can fill  them; and how to construct a defaul t
for one if the input does not mention it at all .

-•.-- ———--



— 8 —

What does a representational system like this buy us? First of
all , since descriptions are naturally declarative in fo rm , a system
embodying a Script— or Frame—like approach should be easier to extend
than a procedure—based system . Extending a system whose knowledge is
procedurally imbedded always runs into the problem of ~J~..~—effe ct s. It
is a commonplace among programmers that a minor change to an existing
program can have far—reaching effects on other parts of the program .
Extensive changes are even harder to implement , especially in Al
applications , where often it is not cl ear how to split a given process
into independent , “structured” subprocesses, or whether such a split is
possible at all. A related problem is with the understandability of a
procedure—based system . Modifying such a system becomes very difficult
because a programmer (especially a new programmer who is trying to learn
a large system) cannot foresee all the interactions among the system’s
procedures.

Adding a new knowledge area to a Frame-system , on the other hand ,
amounts to augmenting a database of interconnected declarations with a
new set of assertions constructed in exactly the same way as the old
ones . The most important advantage , however , is in the control of
processing this kind of database affords.  The sharing of features among
pieces of a Script guides the understander on how to fill  in gaps in the
input description. The existence of defaults with their associated ,
prescribed features tells the process what inferez~ .e~ to make , and when .
In our example of a Frame—system for a cube , effects of changes in the
orientation of the viewer could be computed cheaply because of the
terminal s ( edges , faces) which are known to be common to the two views ;
and because of the precompiled information , or defaults , available to
help the processor identify new features of a scene .

Charniak [8] has sketched out what a Frame—system for understanding
stories about shopping in supermarkets would look like . More recently
[9], the same researcher describes how commonsense knowledge about the
process of ordinary painting could be represented in a Frame—based
format .  Neither proposal , however , has yet been reduced to a working
program which in some sense actually uses a data base to understand a

• text about supermarkets or painting a house . SAM , on the other hand ,
does just these things in its particular realm of newpaper stories. It

• actually applies Scripts to achieve a reasonable comprehension of what
it reads. As a working system , therefore , it embodies a set of
mechanisms which solve a problem which has often been discussed but only
seldom attacked by an actual program , namely,  the problem of making
inferences as an aid to comprehension .

The importance of controlling inference in natural—l anguage
understanding can be seen by considering what happens in a system , such
as Reiger ’s Conceptua l Memory program [22] ,  in which inference goes on

• “by reflex ,” without any control at all from higher—order processes.
This program was designed to operate on Conceptua l Dependency (CD )
representations for single English sentences , generating all the
inferences ( commonsense assertions) that could be reasonably associated
with the representation. Rieger ’s theory recognized sixteen classes of
inferences needed to understand text , and the program could handle
examples of each kind . Here are samples of’ some of the more important
kinds; the inferences are in upper case :

- - - - --- --- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— 9 —

(Ii) Resultative Inferences:
John went to New York.
JOHN IS PROBABLY IN NEW YORK.

(12) Feature Inferences:
Andy’s diapers are wet.
ANDY IS PR OBABLY A BABY.

( 13) Function Inferences:
John wants a magazine .
JOHN PR OBAB LY WANTS TO REA D IT.

(113 ) Situation Inferences:
John went to a masquerade party.
JOH N PR OBABLY WORE A COSTUME.

Rieger’s work greatly expanded our understanding of inference. As
the heart of the MARGIE system [32], the Conceptual Memory program
implemented a kind of “deep” understanding of sentences in a null
context , by generating inferences and making memory connections on the
basis of those inferences . The problem , of course , is the possibility
of an inference explosion . Any Conceptualization can be the potential
subject of up to sixteen inferences. The new inferences in turn become
the starting po ints for further inferences . An exampl e discussed in
[22] shows how even a simple reference problem can lead to a potentially
unstable inferen cing process.

Suppose memory knows about two individuals named “Andy, ” one an
adult , the other a baby; and this is ~j). it knows about the world .
Given the input “Andy ’s diapers are wet ,” the Conceptual Memory program
went through two cycles of infereneing , eac h new set of inferences being
handed to Memory ’s reference processor for a featur e check. Although

• the output given does not specifically say,  we may assume that on the
order of twenty inferences were generated , of which only a few were
actually relevant . In a memory with more facts , an undirected process
clearly run s the risk of becoming clogged up by its own in ferencing .

SAM controls its inference process by building the most important
inferences into the database i tself .  Its episodes are in fact ~~~~~~
~1lain~ [28] : event sequences in which each action has results which in
turn bec ome the springboards for further actions. Suppose , for example ,
a patron has just taken a seat in a restaurant. The episodes about
ordering a meal make use of the fact that he is sitting in the dining
room to connect the ordering event to the seating event. The waiter may
see that the patron is seated . Because the waiter has a definite role
in the restaurant Script , this perception must be followed by the
waiter’s going to the table. Another way the act of coming to the table
can be started up is by the patron ’s calling out to the waiter. Again ,
the facts that the patron is in the dining room , and that this is where
a waiter is ex pected to be , are combined to initiate the act of taking
an order.

• Note that we are not saying that all sixteen classes of Riegerian
inference may not be needed to understand arbitrary inputs , just that
some of them commonly function to interconnect events in a causal chain ,



_ _  _ _ _ _ _ _ _ _  ~~~~~~~~~~~ ~~•--~~~~~~~—...-- ~~~,-•-

— 1 0 —

while others hardly occur at all. Consider , for exam ple , t he in ference
needed to understand why the following sentence [22] is peculiar:

John told me he Ci. e., John) killed himself.

We know that an actor, to initiate a communication , must actual ly be
al ive , and the apparent violation of this simple condition is what makes
the example sound strange.

The real challenge is not providing the capability for making
inferences like these , but in only making them ~~~~~ needed. In SAM , the
commonest inferences, such as (I 1 )~ (I14), are either built into the
Script , predict that a particular Script will be referenced in a story ,
or themselves depend on a Script .  Inference (I i ) ,  for exampl e , is
available from the causal chain . Inference (12) is handled , in a given
Script context , by SAM ’s reference processor, which “knows” who can be
doing what because of the associated Script variable’s place in its
context .  The function inference , (13), is used by SAM to make
predictions about inputs to follow , through the Script(s) which are most
strongly associated with an object. For a “magazine , ” SAM would predict
the occurrence of the read—Script , which defines where reading can go
on , how to hold a book and turn the pages, etc . Finally, the
situat ional inference, (III), is nothing less than all the knowledge the
Script itself organizes. For masquerades, this includes getting and
wear ing a cost ume , perhaps buying a present , etc .

1.5 An Overview of Script Application

This section is an introduction to Script—based story
understand ing . We discuss the pieces of the SAM system , concen trating
on its central module , the Script Applier. The purpose is to orient the
reader to the data structures that go into Scripts , and the methods
developed to apply them to texts. An example of SAM ’s processing of’ a
short newspaper article is given in the next section , as an illustration
of the depth of’ comprehension it can achieve.

The version of the Script Applier Mechanism described in this
thesis operates as a set of three to six separate but intercommunicating
modules , the number varying according to the task. We do not believe
tha t human story understand ing can be neatly divided into modules
concerned with parsing , inference , generation , etc. ,  function ing
independently. On the contrary, the psychological evidence , limited as
it is, argues for close integration of’ processes.

The original reasons for dividing SAM into modules were logistical
ones. Versions of the Conceptual Analyzer and Generator were already in
existence when the SAM project started . Furthermore , the programs were
big enough that running them as a single process soon became impossible.
However, once the problem of communicating among the modules was solved ,
we saw that the division made sense for functional reasons, as well.
Each part of SAM is intended to model one kind of process or knowledge
source that seems to be needed in story understand ing ; or ,
alternatively, to solve one specific problem . We will briefly discuss
these problems below . 

--- . .-~~~~ • —.-~~~~~~



— 11 —

We said tha t we wanted SAM to be a “ complete” story underotander .
For any particular story , this means the system runs in three distinct
passes , or phases:

1. Understand ing Phase : the actua l reading of the text and formation
• of a memory representation for the story.

2. Summary/Paraphrase Phase : production of a summary or paraphrase of
the story from the memory representation , and its generation in som e
natural language.

3. Question—Answering Phase : reading of questions , search of the
memory representation and auxiliary inferencing to find an answer ,
and expression of the result .

During story comprehension (see Figure 1.1), SAM is configured as a
set of three modules: one (ELI) for analyzing the text into a meaning
representation ; one (PP-MEMORY) for tagging and identifying references
to Picture Producers (PPs); and one (APPLIER) for applying Scripts.

ELI] .j pp -MEMORY ‘1 APPLIER J
f STORY / /~~RIPT / / STORY
j TEXT / / DATA / /REPRESENTATION

Figure 1. 1
SAM : Understanding Phase

Control moves around among the modules of SAM in a co—routine
fashion. One program may run for a while , send elsewhere for some
information it needs to continue , and ev entually regain control . Since
SAM is designed to read stories making heavy use of Scripts, the basic
job of understanding is perfo rmed by the Script Applier . However ,
Script knowledge can be , and is, exploited by the other modules as well.

Transforming the English text of a story into a CD mean ing
representation is the job of the An alyzer , ELi (English Language
Interpreter) .  This is an extremely complicated program whose operation
is described in [2 13 ] and [26). Script Application , proper , works with
the language—free output of ELI , and so , al though ELI is an integral
part  of SAM , we will not discuss it in any detail in this thesis.



— 12 —

A few comments about its funct ion in the story understander may be
helpful , however . ELI is the only modul e of SAM that is concerned with
linguistic input as such , that is, with the particular ways that English
signals meaning through the choice of wo rd senses , how words are ordered
and inflected , etc . ELI’s job in SAM is to extract  from an English
sentence only conceptual elements which are expl icitly there , ~~~~inference 

~~ .f.~j ~~ possible. In SAM , we have deliberately reserved the
task of filling in things which an input leaves out for the “memory ”
routines (PP—Memory and the Script Applier) , rather than ELI. This is
because inferences of this type depend on the use of world knowledge ,
rather than on the superficial semantic information ELI possesses as
part of its knowledge of English .

ELI builds only conceptual entities which are expl ic i t ly  flagged by
the sur face string . It constructs its meaning representations by
fi l l ing slots in conceptual structures derived , usual ly ,  from the
surface verb . A particular sentence invoking the structur e will f i l l
some , but not all , of its slots. As an illustration of conceptual slots
which may or may not be filled , consider how ELI would handle the
following simple story:

Story 1.2:
John took the BMT to Manhattan to see a play . At the theatre ,
he walked over to the ticket counter and asked for a ticket.
The usher took it from him and showed him to his seat. The play
was so offensive tha t John decided to leave. The theatre
refused to refun d his money .

In Story 1.2 , the Analyzer would not make any inference about where John
cam e from in the first sentence. Similarl y ,  in parsing “ . .. asked for a
ticket , ” it would not make any assertion about the recipient of the
communication , other than the defau l t  assumption that this must be
“higher animate .” Fi na l ly ,  ELI does not at tempt to specify references ,
pronominal or otherwise . Inferences needed to f i l l  empty slots or to
make needed reference specifications depend on detailed world knowledge,
and so are more properly performed by the “ memory ” routines.

ELI maps the surface text into a Conceptual ization: a piece of
data expressing the “inference—free” meaning of the sentence. From this
point on SAM deals direc tly with the mean ing representation. The
details of the sentence as it actually appeared in the story are lost.
This mode of operation is consistent with our claim that understanding
is language—free, in a deep sense . This claim is supported by many
psychological experiments on the recall of text (e. g., [3, 16 ,17)) which
indicate that the representation of stories in memory is “conceptual ,”
or “propositional .” What is rem embered are the ideas in a text , not the
actual words used . ELI sends its result to PP—Memory , the second module
of’ SAM , which is a memory for Picture Producers (PPs).

Conceptualizations are built out of two ingredients: PPs, and
propositions about PPs whose central elements are the primitive ACTs and
STATES of’ Conceptual Dependency. (See Appendix 1 for a description of
CD representation.) PP—Memory ’s job is to find the PPs in the
Conceptual ization and assign tokens to them . The tokens are tags or
handles by which the PPa will be known to the rest of SAM . This modul e



— 13 —

also supplies tokens for roles which the Script Applier has encot ~:~ .ere.~in the course of ins tan t ia t ing  a Script path , b ut wh i c h  were not
mentioned in the input . In Story 1.2, the Applier woulo tell PP—Memory
to create a token for the cashier who is implicitly introduced by the
Conceptualization for “ . . .asked for a ticket.”

A PP in an ELI Conceptualization may refer either to something SAM
has seen before , or something “new.” Therefore , PP—Memory has to deal
with the problem of “reference:” is a new PP in a Conceptualization an
instance of one already seen , or a reference to a “permanent” token
known to the system , or a pointer to someone , something , someplace ,
et c . ,  not seen before? The data structures possessed by PP—Memory
encod e “time— invar iant” facts about PPs such as the “ co n cept ual cla ss ”
they belong to (human , physical object , organization , etc.), what roles
they have in different Script contexts , and certain assertions about
them which are true in any context. For exampl e, the PP *C}jAIf ~* denotes
a “physical object” which people sit on in a variety of contexts ,
realized as “chair” in a restaurant environment , and as “seat” in the
bus or subway environment (since it presumably can ’t be moved).
Attached to ~~~~~~~~~~~~~~~~ in a real human memory would be additional things
such as its “visual image” (perhaps the chair at the person ’s desk), and
such facts as that it usually has legs, a seat and a back. SAN ’s memory
for PPs does not have much in the way of the latter kinds of
information , because we frankly don ’t know how to repreF,ent images and
quantified assertions too well. What it does have is data about how PPs
are used in Script contexts. PP—Memory is a memory for Scriptal roles
and props .

At any point in unders tanding , then . SAM has a l ist of tokens
already identified , and a set of new tokens from the current
Conceptualization. Some of the new tokens correspond to pronouns in the
surface sentence , and we have the usual problem of pronorninal reference.
In Story 1.2 , for example, there are several references to John using
“he .” A more difficult reference problem is created by the occurrence of
“it” in “the usher took it from him.. .“ here , recourse to detailed world
knowledge about the duties of ushers in $THEATER is needed to enable the
correct assignment of “it” to the “ticket” John presumably got from the
cashier by asking for one. In each of these cases , the reference
problem is solved by the Script Applier .

Another class of tokens refers to well-known people and things in
the world . These are called “permanent” tokens. Examples of permanent
tokens in Story 1.2 are “the BMT” and “Manhattan .” Although permanen t
tokens are ident i f ied  as such immed iately by PP—Memory , they may have
differ ing Script roles in d i f fe ren t  stoties.  “Chairman Mao , ” for
example , might be the head of the state which made the invi ta t ion  in a
“ vis i t ing—digni ta ry ” story , or the deceased Very Important  Person in a
“ state—burial ” story . As in the case of pronominal reference ,
therefore , PP—references of this kind can only be settled by detailed
examination of context :  the PP wi th  its associated Conceptual izat ion ,
and what has been read before . The reference problem is always solved
cooperatively in SAM , by PP—Memory and by the Script Applier , the module
which knows about contexts and what can be a role in a con tex t .



— 114 —

~hen PP—Memory is finished processing the Analyzer ’s output , it
sends the result to the Script Appl ier . This program has three
fundamental problem s to solve as it processes a new Conceptualization:
(1) locating a new input in its database of Scripts; (2) setting up
pred ictions about likely inputs to follow; and (3) instantiating the
appropriate segments of the Script up to the point referred to by the
input . Of these three problems , the first one , which we call the

~~ -ma na~ em~p.~ ~~oblem , is the most important .  To solve this
problem , we had to answer questions such as: Which pieces of SAN ’s
episodic knowledge are relevant at any given point in processing? When
should a context  be removed , and what should take its place? We discuss
ho w SAM manages its Scripts in Chapter 3.

The Script Applier controls the comprehension process by consulting
its collection of Scripts. Each Script has several important parts.
First , there are the Script ’s characterist 1c event— chains , or episodes.
Since an event in a Script may be realized in the world in many ways ,
the events in Script episodes are patterns.  These are data structures
containing constant parts which are expected to appear exactly in an
input ; and variable parts which def ine a range of a l ternat ive  inputs.

In the theater Script , for examp l e , which ( 1 . 2) accesses
repeatedly,  any member of the public can f i l l  the role of the patron ,
and the story may give the name of the theater or not .  The pattern
looking for a patron to enter a theater must  be able to recognize the
Conceptualizat ions corresponding to the sentences “John/a man went into
a playh ouse ” and “Mary entered a thea te r / the  Yale Repertory ” as
instances of the same event from the Script . The Script is also
responsible for ident i fying references in a story to its various roles
and props . “Th e usher , ” “hi s

s 
seat” and “the theater” are examples from

Story 1.2. Sometimes a story will refer to a chain of events comprising
a sub—Script from the Script , and the understander must be able to
rec ognize it , as well . ln ( 1 . 2 ) ,  for exampl e , we see a reference to
“the p lay , ” one of the things which happens in a theater .

A special set of patterns are the Script “ preconditions , ” those
global facts which SAM assumes to be true when a Script is entered for
the first  time , unless it reads something to the cont rary .  When the
res taurant—Scr ip t  is activated , for example , the Script Appl ier will
assert that  the person is hungry,  and has money to pay f’or the meal . If
the text has ind icated that the patron does not have any money ( i f , for
ex am ple , he left  his wallet home) , the v iolation of the precondition
will trigger a prediction that the patron will have trouble when it
comes time to pay the bi l l .

Another important piece of a Script is the def in i t ions  of the
Script Variables appearing in the patterns . Each def in i t ion  has a dual
pur pose . First , it must define the range of features an input PP can
have and still satisfy the Script ’s requirements . The “patron” role in
$RESTAURANT , for example , must be capable of accepting either a single
person or several persons , since we may hear either of “John ” or “the
Gavin fam i l y ” going to a restaurant . Secondly, a Script variable must

L 

be capable of giving directions to PP—Memory dur ing ins tant ia t ion of a
role which was not expl ic i t ly  mentioned in a story . If we hear about a
parad e dur ing a v is i t ing—digni tary  story , the Script Appl ier must be



— 15 —

able to create a token for an organization whose “ occupation ” is the
Script $LIMOUSINE , to stand for the limousine service which presumably
carried the dignitaries around .

The last important part of each Script is the information which is
always in active memory . This includes static data such as an initial
list of patterns which activate the Script ; how related episodes are
combined into chunks or “scenes;” time— and place—setting data for the
Script ; and how other , simpler Scripts may be used as units in it.

The Script Applier ’s control structure is sketched in Figure 1.2.
The three main procedures are a Pattern—Matcher , a Predictor , and an
Instantiator . All the procedures run under an Executive , and all have
access to Script data . The Pattern—Matcher consists of’ a routine which
sets up desired Script contexts , one at a time , the Matcher proper, and
a set of auxil iary inference processes. The Predictor adds and removes
event— patterns based on the Pattern currently active and what has gone
before.

[ APP LIER
EXECUTIVE

I CO~#i LERT~~~~~~ 

___________ 

J
PREDICTOR J

~ CONTEXT 1 MATCHER I FIN FEREN — I SEGMENT TOKE N

L~
ETT

~ 1 J J CER INS TAN TIATO R VREATOR

EPISODE EPISODE1
L LOADER CLEARER

J

Figure 1.2
Script Applier Control Structure

—- —..---—— ~~~~~ ~
-.



.-,~~~- - .-

— 16 —

An “ active” Script in SAM defines a context which consists of’:

1. A list of’ patterns which predicts what inputs will be seen at a
given point in a story .

2. A bind ing list which links the tokens for PP5 produced by PP—Memory
with Script variables .

3. A record of the Script scenes which are current ly act ive.

‘4. A list of Soriptal interferences —— events which have happened which
interfere with the normal flow of act ivi ty  in the Script —— which
are currently outstanding .

5. A Script—global “ strength” indicator which SAM uses to flag how
strongly it “ bel ieves” in its inferences .

The process of Script Application is described in detail in Chapter
4. The Script Applier ’s basic cycle is to call in these Script contexts
one at a time , and to attempt to locate an input in the context invoked
(Section 14. 14 ) . Candidate Scripts are brought into active memory in the
following order : f i rs t  are those Script contexts which were expl icitly
referred to by the input or which were ind irectly accessed via a PP or
sub—Conceptualization in the input ; next are the currently active
Scripts; last are the Scripts the system possesses but which have not
been invoked .

The Applier uses its Pattern Matcher (Section 1 4 . 5 )  to decide which
Script is being referenced by an input . The matching process has two
distinct phases. First the “backbone ” of the pattern , 1. e . ,  the ACTs ,
STATEs and other constants , is matched against the backbone of the input
(Sect ion 14.5.1). If the input backbone is of the right type , then the
features of’ the PPs appearing in the input are checked against the
features of the correspond ing Script variables.

Script variables referred to by an input may either be ones which
were prev iously bound , or ones which have not been accessed . The
featur e—checking process is sl ightly d i f fe ren t  in each case . If the
Scr ipt varia ble is a “new” one , a process called Rolef it determ ines
whether the candidate PP can be an instance of the variable (Section
~4.5.2). Since Script variables are really defined by tunctioD, the two
primary features used in Rolefit are: (1) the conceptual “class” the
object belongs to , e. g., human , animate , physical object, organization ,
etc.; and (2) any indicator of’ the function the PP might have. If the
PP is a person , for exam ple , Rolefit would look for an occupation , t itle
or associated Script .

If the variable is an “ old” one , there already exists a PP—token
which has to be compared to the new one . The comparison is carried out
by a procedure called Nc’lemerge (Section 4.5.3). This looks at the
conce ptual class and f u n c tion of  the input , as bef o re , then checks
secondary features of the input PP and the previous one , f o r  example ,
res idence , age, color , etc . ,  looking f o r  contra dict ions .  The Rolemerge
process is SAM ’s method of doing reference specification.



— 17 —

A form of pattern—directed function invocation [15] is used to
check ~n special features of the input which SAM may be interested in at
any given point.  Suppose , for exampl e , the system is reading a story
about a car accident.  At some point in th is  context , a pattern will
bec ome act ive which is conceptually equivalent  to the surface form
“ someone was h u r t . ” When this pattern is matched , the Script Applier
automatically calls a funct ion to check on the value  on the hEALTH scale
indicated in the input to see whether the actual  event referred to was
equivalent to “ sl ightly hur t , ” “seriously i n j u r e d ”  or even “dead .” The
resul t of’ the funct ion  call would be to modify  predict ions about futur e
inputs , e. g . ,  how l ong the subsequent stay in a hospital  is l ikely to
be.

Once an input has been located in a Script context , the
Instantiator l inks it up with what has gone before in that context
(Section 1 4 . 7 ) , and then checks on the e f fec t  th is  may have on other
active contexts (Section 14.8). If a Script is being referenced for the
first time , the Applier checks on the Script Precondit ions to see
whether a Script is being entered normal ly ,  or whether some unusual
events are to be expected in the new context  because of a previous
events. . If more than one context  is curren t , the Appl ie r may be able to
update the story representation on the basis of the  static informat ion
tha t is always avai lable for the Scri pts. For example , the bus Script ,
$BUS , contains the info rmation that this  Script is “ seq uent ia l”  wi t h the
train Script $TRAIN. That is, if $FUS is ac t ive  when $TRAIN is f i rs t
invoked , the instantiation of $BUS must be completed before $T R A I N is
started . On the other hand , $THAIN contains the information that a
reference to the $R ESTA URANT con text via “dining car” in an existing
$TRAIN context defines a “parallel—nested” relationship. Inputs to
follow may refer to either Script , but $RESTAIJRANT should be completed
before $TRA IN.

Many transitions between component Scripts are handled by the more
complex Scripts which define the “global” context of the story. For
exam ple , $BUS, $TRAIN , $PLANE , etc., are known to be “instrumental”
means of reaching or leaving the place where the “goal” activity of a
trip takes place. The global $TRIP Script may be explicitly introduced ,
as in “John went to Mi ami on a business t r ip ; ” or impl ic i t ly  referenced
by one of its instr uments , as in “John took a train to Miami. ” Script
Situations , as these global Scripts are called , provide the most
important machinery for the solution of what we have called the
Script—manag ement problem . (Script Situations are described in Chapt~r3 .)

When the linking process has been completed , SAM updates its
predictions about the context based on the new input and what has gone
before by merging the specific incremental predictions associated with
the pattern that was matched with the Script global search list (Section
14.6). The updated context is then stored , and the next round of
process ing is star ted with a call to ELI . Af t e r  the whole text has been
absorbed , the Script Applier constructs a representation of the story
that is used by all the postprocessing routines. The representation is
a network of causally connected Conceptualizations: both those which
were explicitly accessed by an input , and those which could be inferred
to have happened . “Header” information is also provided which the



— 18 —

summarizing and question—answering modules use to get at the important
events in the network , the global structure of the story in terms of the
Scripts which were referred to , and the details of the Script role
bi ndings.

SAM ’s summary and paraphrase methods are discussed in detail in
[36] and [34 ].  Brief ly,  these routines access the story representation
and pick out the “interesting” events record ed there . Since the CD
structures SAM deals with internally are interlingual , output can be
generated in any languag e whose speakers have the requisite world
knowl edge. As a Machine Translation system , SAM can express summaries
or paraphrases in Mandarin Chinese and Spanish , or simulate
“ simul taneous translation” of an English story into Chinese [39] .  The
generators used by SAM are modifications of Goldman ’s BABEL program
[1 14] .

The summary/paraphrase task is one of choosing what it seems
appropriate to say . Even if we have the means for expressing any
conceivable Conceptualization memory may have access to , there is the
prior problem of deciding which ones are the best response in a given
situation . That is , the summary/paraphrase process has to answer these
two questions : ( 1)  which of the Conceptualizations marked by the Script
Appl ier as being important are “interesting” enough to be expressed?
and (2 )  what time— or place—setting info rmation should be includ ed to
form the result into a connec ted whole?

The abi l i ty  to an swer questions about a story that  has been read is
in many ways the most crucial test of whether the story has really been
understood . The theory underlying SAM ’s quest ion—answering (Q /A )
capability is provided by Lehnert’s QUALM , discussed in detail in [18].
For orientation purposes , we briefl y outl ine the relevant features of
QUALM here.

In the work on SAM , it was desired not only to get an “ acceptable”
answer to a question , but to get the answer a person wo ul d consider
“best .” To do this , QUALM attempts to mimic the way the person would
find that answer. That is, QUALM is designed to answer these two
quest ions: ( 1 ) what kinds of searc h processes on the story
representation , and what other kinds of inferences , are needed to find
“acceptable” answers to questions? and (2) what methods are there which
determine which , out of a number of possible answers , is t he most
appropriate one?

There is just no limit to the number of reasonable (or
unreasonablel) questions that can be asked about a text. The Q/A
processor may need to get at every bit of information in the
representation to construct an adequate response to a query . Indeed ,
the answer to a question may refer to an event which did not happen in
the story , and active processing may be needed at Q/A time. This is why
the Q/A Phase of SAM may involve a computing load comparable to that
required for understand ing .

In Q/A , an English question to be answered is analyzed into a CD
re presentat ion by the Analyzer , and tokenized by PP-Memory , as usual .
The conceptual question is then passed to the Q/A modul e, which selects



— 19 —

a search strategy based on the conceptual “type ” of’ the question ,
examines the story re presentat ion f o r  an answer , then sends the answer
to the generator to be expressed .

1.6 An Annotated Example

This section presents some excerpts fr om the processing log SAM
kept as it read a three—line story about a state visit of the Premier of
Albania to China . Lines shown in upper case are fr om the prog r am . Each
few lines of computer output are accompanied by commentary explaining
what ’s going on.

We ’ve includ ed this example to give the reader some feeling for how
SAIl goes about its job . However , because SAM is an extremely
complicated system , we have not attempted to describe everything it has
to do here. For those heroes who really want to know , we have included
a more complete , detailed example in Chapter 6. Append ix 2 gives input
and out put f o r  other stor ies SAM has rea d .

Our sample story is understoo d by SAM as ref e r r ing to the Scr ipt
Situat ion $VIPVISI T , which has component Scr ipts f o r  travel ling ($PL ANE
and $ S H I P ) ,  para des ( $ P A RA D E) ,  banquets ( $BAN QU E T ) ,  etc . First is
output for the understanding phase of SAM . Then a summary for the story
is expressed in English and Spanish . Finally SAM answers several
questions about the story .

The text of the story is as fol lows :

Story 1.3:
Sunday morning Enver Hoxha , the Premier of Al bania , and Mrs
Hoxha arrived in Peking at the invitation of’ Communist China .
The Albanian party was welcomed at Peking Airport by Foreign
Minister Huang . Chairman Hua and Mr Hoxha discussed economic
relat ions between China and Al ban ia f o r  thre e hour s.

Though superficially quite simple , ( 1 . 3)  conta ins very r eal problems of’
analysis , inference and generation , as will be indicated below .
Although the log conta ins out put f rom every module of  SAM , the emphasis
will be on the interactions of the “deep—memory” modules, viz . ,
PP—Memory and the Script Appl ier , rather than on the internal workings
of the other modules. The Conceptual Analyzer , in part icular , carr ies a
large processing load in SAM . Except for the most complex stories , it
uses the most CPU time of all the routines. However , the log will
conta in onl y the sentences input to it and the LISP CD re pr esentat ions
it computes. (Append ix 1 discusses the particular form of Conceptual
Dependency representation used here.)  For a detailed description of how
the Analyzer operates, see [214] and [26].

The log from which these excepts were taken was made under a
DECsystem-1O utility program called OPSER , which has facilities for
starting up and controlling several jobs, and sending any output from
the jobs to a single terminal . Lines beginning with a “ !“  are OPSER
messages indicating the module from which succeeding lines of output
came. PARSER is the Conceptual Analyzer , TOK is PP—Memory , and APPLY is



— 20 —

the Script Applier .

SAM starts up wi th the Script Applier in control :

!(APPLY )
SCRIPT APPLIER MECH AN I SM .. . VER SI ON 14 .1. . . 12  JULY 1 976
PROCESSING NEWSPAPER TEXT (TEXT . V3)
AVAILABLE SCRIPTS:
( $T RA IN W RE CK $VIPVISIT $VEH ACCIDEN T)
GETTING NEW INPUT

The version of the Script Applier running here is arranged for
processing news paper stories about , train wrecks , state visits and
motor—vehicle accidents. It contains special procedures for handling
lea d sentences , making predictions from what it finds in the lead , and
taking care of the reference problems that the complicated noun groups
foun d in these stories cause .

PARSER get s cont rol and analyze s the f irst sentence. The
Conceptual ization for “arrived” says that a group consisting of Premier
and Mrs Hox ha P TRAN Sed themselves into the city of Pe king , and that the
arrival happened in some temporal relation to an invitation by Communist
China. (PTRANS is the CD action primit ive for events which contain a
change in physical location . The MODE specifier on the
Concept ualization indicates that the PT RANS ceased ( “ arrived” vs.
“went” ) in Peking.)

Next TOK replaces references to PPs in the Conceptualization with
tokens which name the property— list  s tructures that  the memory modules
use . If the PP is a “ permanen t token , ” a well—known person or place in
the world , TOK also copies the info rmation from the permanent token onto
the new token created for this story. “ Enver Hoxha , ” “P eking ” and
“Albania ” are examples of permanen t tokens.

I ( PA R SER )
Sunday morning Enver Hoxha , the Premier of’ Al bania , and Mrs Hoxha
arrived in Peking at the invitation of Communist China.

CONCEPT: GN 1
(( ACTOR ThP32 <=> (*PTRANS* ) OBJECT TMP32

TO (~ INSIDE~ PART (#POLITY POLTYPE ( ‘MUNIC ’ )
POLNAM E ( P E K I N G ) ) )

FROM (NIL )  INST (N I L ) )
MODE (M 0D 1 ) TIM E ( TI M 2) )

MOD 1 ( ‘TF’)

TIM 2 = ( (W HEN TM P 7 ) ( D A Y P AR T M O RNING ) ( WEEKD A Y SUNDA Y ))

TMP7 = ((<:>($INVITATION INVITER (#POLITY POLTYPE (‘NATION’)
POLNAME ( COMMUNIST C H I N A ) )

I N VI T E E  (N I L )
INVITOBJ (N I L ) ) ) )



— 21 —

TMP32 (#GROUP MEMBER (#PERSO N GENDER (‘FEM’ )
LASTNAME ( HOXHA ))

MEMBER (#PERSON GENDER ( ‘MASC’ )
FIR S TNAME ( E N V E R )  LAS TN AME (H O X H A )
TITLE (PREMIER )
POLITY (#POLITY POLNAME ( ALBANIA ) POLTYPE

POLTYPE ( ‘NATION ’))
REF ( D E F ) ) )

I (TOK)
top level PARSER atom is: GN 1

processing PP:
(#GROUP MEMB ER TMP2 14 MEMBER TMP28 )
creating new token : GROUPO

processing PP:
(#PERSON GENDER TMP25 LASTNAME TMP26 )
creat ing new token: HUMO

processing PP:
(#PERSON GENDER TMP 11 FIRSTNAME TMP 12 LASTNAME TMP 13 TITLE TMP19

POLITY TMP2O REF TMP2 3)
creating new token: HUM 1

process ing PP:
(#POLITY POLNAME TMP21 POLTYPE TMP22)
creating new token : POLITO

processing PP:
(#POLITY POLTYPE TMP59 POLN AME TMP 6O )
creating new token: POLIT 1

processing PP:
(#POLITY POLT YPE TMP714 POLNAME ~fl4~’75 )
creating new token : POLIT2

PERMANENT TOKEN IDENTIFIED :
PO LI T2 IS I POL 1O 1
PER MANENT TOKE N IDENTIFIED:
P OLIT 1 IS I POL 100
PERMANENT TOKE N IDENTIFIED:
POLITO IS t POL1O3
PERMANENT TOKEN I D E N T I F I E D :
HUM 1 IS !HUM100

top level TOK atom for GN 1 is MEMO

!( APPLY )
NEW INPUT : MEMO

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --



r
— 2 2 —

At this point , the Script Applier has received the tokenized
Conceptualization underlying the first  sentence of’ the story . It is
important to note what PARSER and TOK have done , and what they did not
do. PARSER has not attempted any inference about where the hoxhas came
from , or how they got to Peking , al though world knowledge suggests that
they pro bably  f l e w  f rom the ir homeland , Al ban ia , to China . Furthermore ,
though we know tha t invitations characteristically preced e the invited
person ’s actually going somewhere , PARSER has suggested onl y tha t there
is some temporal relation between the inviting and arriving events. The
surf a ce str ing does not direct ly state who was inv ited or what the
reason for the invitation was, so PARSER leaves the corresponding slots
empty.

TOK has provided tokens for the PPs appearing in the
Conceptualization , for example, the Premier and his wife. It has also
rec ognized that the Premier , Peking , Albania and China are permanent
tokens. Like PARSER , however , TOK does not have the knowledge required
to infer that the group that arrived is the one that was invited , so it
leaves this slot alone . Finally,  TOK has not been able to suggest a
possible Script that the PPs in this Conceptualization may be
participating in. This is because people , cities and nations are
assoc iate d with so m any contexts that it is imposs ible to make a
processing suggestion.

APPLY searches first for the imbedded “ invitation.”

I ( A P P L Y )
FINDING IMBEDDED CBS : ( MEM 6)

SEARCHING FOR MEM 6 IN SCRIPT $TR AINW R ECK
SEARCHING FOR MEM 6 IN SCRIPT $VIPVISIT

LOCATED AT VAR 1
BOUND SCRIPT VARIABLE : &INVGSTA TE TO POLIT2
TRACK $VIP 1 OF $VIPVISIT ACTIVATED

SETTING PARSER WORD—SENSES FOR $VIPVISIT

APPL Y searches for the input in $T RAINWRECK. However , since
invitat ions don ’t initiate train crashes but often start up state—visit
stor ies , it finds an appropriate pattern in $VIPVISIT. In this pattern ,
the entity which made the invitation , China , is identified , and APPLY
makes a note of this fact.

Now the system is primed to read more about events from the
$VIPVISIT domain . APPLY was able to identify the nature of the
invitation f rom the f ac t  that a nat ion , China , was doing the inviting ,
rather than a private citizen . Since SAM now assumes that it knows
which context is active , it biases the Analyzer to check f irst  on wo rd s
and phrase s which are appropriate for the state—visit context.

APPL Y now looks for the “arrival” the input mentioned :



— 23 —

SEARCHI N G FO R MEMO IN SCRIPT $VIPVI SIT

PATTERN BACKBONE MATCHED AT VAR 3
VARIABLE BINDING CONTRADICTION IN ( &PT HORG . GR OUPO )
TRYING INFERENCE TYPE CONVEY ON VAR 3
PATTERN BACKBONE MATC HED ON DERIVED PATTERN:
(( ACTOR &INVDG R P <=) ( ‘PTRANS ’) OBJECT &INVDGRP TO

(‘INSIDE ’ PART &INITDEST) ))
SUCCESSFUL MATCH ON DERIVED PATTERN

LOCATED AT VAR 3
BOUND SCRIPT VARIABLE :
&INITDEST TO POLIT 1
&INVDGRP TO GR OUPO

GETTING NEW INPUT

Now tha t the first sentence has been read , a number of predictions
about what will come nex t have been made , and some of the Script’s
variables have been identified . The pattern—match on the “arrival”
event contains a typical exampl e of the auxil iary inferencing processes
SAM uses to reconcile small differences between an input and a pattern
which encodes a specific expectation about what will be read . One of
the predictions which is active when the top—level Conceptualization is
accessed is for a journey by the invited Very Important Person ,
specifically,  a pattern for an organ ization such as an airl ine company
or a passenger shipping line moving this person , or a group containing
this person , to the country making the invi tat ion . What SAM gets
instead is a Conceptualization in which a VIP party moves itself there .
In this circumstance , SAM makes a Conveyance inference , and assumes tha t
the VIPs were moved by an organization which wasn ’t ment ioned . If this
pattern were instantiated for inclusion in the story representation at
this time , APPLY woul d assume that an a irl ine was , in fact, the
organiza tion that did the moving . ( Conveyance inf erences , and other
kinds of auxil iary inferences , are discussed in Chapter 5 .)

SAM now starts on the second sentence of (1.3). PARSER interprets
this as a “ state welcom e” since $VIPVIS I T  is act ive:

I ( PARS E R )
The Albanian party was welcomed at Peking Airport by Foreign
Minister Huang .

CONC EPT : GN7
( ( < :>  ($V IPWELC OM E WELCOMER (#PE R SON TITLE ( FOREIGN MINISTER )

FIR STNAME ( H U A N G ) )
WELCOMEE TM P 5 5 )) )

TIM E (T 1M3) MODE (MOD 7))

TMP55 (#G R OUP RESIDENCE (#POL ITY POLTYPE ( ‘NATION ’)
POLNAME ( A L B A N I A ) )

RE F (DE F ) )



— 2 1 4 —

TIM 3 (( WHEN TM P 72 ) )

TMP’(2 ( (ACTOR TMP55 IS (‘LOC’ VAL ( ‘PHOX ’
PART (#LOCAL E LOCT YPE ( ‘AIRPORT ’ )

LOC NA ME ( P E K I N G ) ) ) ) )

As in the first sentence , the top—level Conceptualization for
“ welcomed ” is related to another Conceptualization by a temporal link .
The modif ying Conceptualization states that “the  Albanian party ” (a
group pronoun) was in the proximity of “Peking Airport .” After TOK has
processed PARSER ’s output , APPLY looks for the latter event :

!(AP PLY)

SEARCHING FOR MEM1 5 IN SCRIPT $VIPVISIT

TRYING INFERENCE TYPE hIRES ON VAR 14
PATTERN BACKBONE MATCHED ON DERIVED PATTERN:
(( ACTOR &INVDG RP IS ( ‘LOC’ VAL ( ‘PROx ’ PART & P T R T E R M ) ) ) )

SUCCESSFUL MATC H ON DERIVED PATTERN
LOCATED AT VA R ’4

RUNN ING PATTERN FUNCTION ( R F1VAR I 4 )

1 ( TOK )
creating new token : ORGO

~(A PP LY )
GOT TOKE N ORGO F OR &PTRURG
BOUN D SCRIPT VARIABLE :
&PT R TERM TO LOCO

This sequence illustrates a typical interaction between APPLY and
TOK in the process of inferenc ing during pattern—matching . An
Immediate—Resul t inference is calculated because of the mismatch between
the pattern looking for the VIP group to come to the arrival point
( e. g . ,  an a irport) ,  and the stative for “at Peking Airport.” Because an
airport has been mentioned , APPLY now knows the identity of the
transporting organization. It calls TOK to obtain a token of the right
type , and binds it to the appropriate Script variable.

Now APPLY searc hes f o r  the “welcoming” event:

SEARCHING FOR ME2I11 IN SCRIPT $VIPVISIT
PATTERN BACKBONE MATCHED AT WEL 14
CHECKING GROUPS : (GROUP 1 GROUPO)
POSSIBLE REFERENCE FOUND: GROUP 1 IS GR OUPO
LOCATED AT WEL 14

MERGING TOKENS ( ( G R OUP 1 . GROUPO ))



-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -

~~~~~~~~

— 25 —

Here we see the f irst  case of a reference that needs to be filled
in. When TOK identified the Hoxhas as permanent tokens , it copied the
information it had about these ind ividuals onto the tokens created for
them in this story. Addi t ional ly ,  the Hoxha family group was marked as
having the same residence as its members , Al bania . The group for “the
Albanian party” is merged with the original group on this basis. Since
SAM keeps only one token around for each Script variable , it tells TOK
to copy an y new informat ion available from the second token it made for
the Hoxhas onto the first , and throw the second one away.

This TOK does , an d SAM starts on the f inal sentence of  the stor y :

!( PARSE R )
Chairman Hua and Mr Hoxha discussed economic relations between
China and Albania for three hours.

CONC EPT: 0N13
(( ACTOR ThP 171 <=> ( ‘MTRANS ’)

MOB JECT ( ‘CONCEPTS ’ REGARDING
(#C ONTRAC T

TYPE ( ‘ECONOMY ’)
PARTY (#GROUP MEMBER (#PQLIT Y POLT YPE ( ‘NATION ’)

POLNAME (ALBANIA))
MEMBER (#POL I TY POLTYPE ( ‘NATION ’)

POLNAME ( C H I N A ) ) ) ) )
INST ((ACTOR TMP171 <=> (0SPEAK’)))

FROM ( ‘CP’ PART Th1 P 17 1) TO (‘CP’ PA R T ( N I L ) ) )
TIM E (TIM 7) MODE (MOD 3 ))

TMP 17 1 = (#G R OUP MEMBER (#PE R SON GENDER (‘MASC’ )
LAS TNAME (H OXHA ) )

MEMBER (#PER SON TITLE ( CHAI RMAN )
LASTNAME ( H U A ) ) )

PARSER interprets this event as a dua l—MT RANS involving a group
consisting of Hoxha and Hua , about an “ economic contract” (agreement of’
some sort) between the countries of Albania and China. After
tokenization , APPLY searches for the event in $VIPVISIT :

1 (A P P L Y)
SEARCHING FOR MEM 2O IN SCRIPT $VIPVI SIT
PA TTERN BACKBONE MATCHED AT TALK2

LOCATED AT TALK2

BOUN D SCRIPT VARIABLE :
&INVITOB J TO CN TR CTO
&GRP1 TO GROUP2

Now all three sentences have been recognized within $VIPVISIT. The
final Conceptualization has realized one of the main Conceptualizations
(Maincons) of the Script , since it is a possi ble reason f o r  the state



V. V

— 26 —

visit. Other reasons, not instantiated in this story , includ e the
signing of a treaty or the issuance of an official communique . APPLY is
prepared at this point to hear about other official ceremonies , or about
the VIPs leaving Peking for home.

There are no more story inputs , so APPLY builde a memory
representation for the story:

B U I L D I N G STORY REP RESENTATION FO R (TEXT . V3)

MAKIN G STORY SEGMENT FOR SUBSCENE $VA RRI VE 1 IN $VIPVIS IT
MAKING STORY SEGMENT FOR SUBSCENE $VWEL CONE 1 IN $VIPVISIT
MAKING STORY SEGMENT FOR SUBSCENE $VTAL K 1 IN $VI PVISIT

R U N N I N G  PATTERN FUNCTION (RFTLK 1 )
bI N D I N G SCRIPT VARIABLE &MT GPLC TO POLI T1

EVENT GRAPH :
((EVN T1 EVNT2 EVNT3 EVNTI4)

(E VN T5 EVNT 6 E VNT7 )
( EVNT8 E VN T 9 ) )

Story (1.3) has instantiated three episodes from $VIPVISIT: (1) an
episod e in which a VIP group travels to Peking ; (2) an
official—greeting episode , acte d out , in this case , at Peking Airport ;
and (3) an instance of the “official talks” episode. APPLY uses the
Script—variable b indings it has accumulated during the recognition part
of the run to instantiate the events in these episodes. Along the way ,
it has made inferences about variables which the story did not
expl icit ly mention . For example , the place where Hua and Hoxha met for
their talks (the Script variable &MTGPLC) was not expl ici t ly stated , so
APPLY assumes it was in the city where the Hoxha party arrived . The
result of the instantiation process is the “event graph” of
instant iate d , interconnecte d episodes. The event gra ph , the details of
the Script variable bindings, and other information about the story are
stored in permanent memory .

At a later time , this in fo rmation is loaded by the summary
postprocessor of SAM , which selects events of interest and passes them
to a Generator f o r  express ion. In the output shown below , ENGLSH is the
English generator , SPANSH is the Spanish generator. (The summarizer SAM
uses was programmed by Jerry  DeJo ng . The Spanish out put was ob ta ined
from a modification of Goldman ’s BABEL , programmed by Ja ime Car bonell ,
J r .)

!(ENGLSH )

CON STRU CTIN G SUMM A RY FR OM STORY (TEXT . V 3)

PR EM IER ENV ER HOXHA , THE ALBANIA GOVERNM ENT READ , AND
CHAIRMAN H’JA KUO—FENG , THE CHINA GOVERNMENT HEAD , DISCUSSED
ALBANIA COMMUNIST—CHINA ECONOMIC AFFAIRS IN PEKING , CHINA
TWO DAYS AGO.



-

~~

— 27 —

For this simpl e story , the summarizer has chosen to express onl y
the Script Maincon . The Maincon has been augmented by setting
info rmation provided by the Script Applier . For example, APPLY has
inf erred that the of f ic ial discuss ions took place in Pek ing , China. The
inf ormat ion tha t TOK had as part of  its knowl edge of  the permanent
tokens “Enver Hoxha” and “Chairman Hua ” has been reflected in the
summary by the additional information about their names and occupations
that ENGLSH has been instructed to express.

Now the Spanish generator expresses the summarizer output :

( SPANSH )

CONSTRUCTIN G SUMMARY FROM STORY ( T E X T  . V3)

EL JEFE DEL GOBIERN O DE CHINA , HUA , Y EL PRIME R MINISTRO
DE ALBANIA , HOXH A , D 1SCUTIERON UN TRATAD O SOBRE ASUNTOS
ECONOMICOS EN PEKING.

Finally, SAM answers some quest ions about the story it has read .
In the Q/A configuration of SAM , PARSER , TOK and ENGLSH are the
Analyzer , PP—Memory and English Generator , as before . QA is the
question—answering module. The details of the Q/A strategies
incorporated in SAM can be found in [18].

PARSER analyzes the first question :

I ( PA RSER )

Who went to China?

CONCEPT : GN IOO 2
((ACTOR TMP8 <:> (‘PTRANS’) OBJECT TMP8

TO (‘PROX’ PART (#POLITY POLTYPE (‘NATION’)
POLNAME (CHINA )) )

FR OM (NIL )  INST (NIL ))
MODE (MODO) TIME (TIM2))

TMP8

I(TOK)
top level PARSER atom is: GN1002

processing PP:
(#POLITY POLTYPE TMP39 POLNAME TMP4O)
creating new token : POLIT 101

top level TOK atom for GN1002 is MEM1O1

PAR SE R inter prets this as a quest ion , marked by (‘?‘), about the
ACTOR of a PTRANS which ended up in the vicinity of China. TOK assigns
a token to China in the usual way. Then QA gets control :



— 28 —

I (QA)
NEXT QUESTI ON :
( ( ACTOR (‘?‘) < = >  ( ‘PT RAN S’) OBJECT (‘?‘)

TO ( ‘PROX ’ PART POLIT 1O 1) ) )

(QUES TION TYPE IS CONCCOMP )
( SEARCHING $VIPVISIT—SCRIPT STRUCTURE )
(FOUND AT SCRIPT STRUCTURE LEVEL )

THE ANSWER IS:
(GROUPO)

!( ENGLS H )
PREMIER ENVER HOXH A AND MRS H OXH A

QA takes the Conceptua l question , identifies it as a query about a
role in a Conceptualization , and searches the story representation for
an an swer. It finds the needed role—fil ler , GRO U PO , and instructs
ENGLSH to express this answer .

The answer to the question “Who went to China?” depends , as always ,
on an inference. First of all , the story does not explicitly say that
anyone went to China , only that an official party arrived in Peking .
The answer depends on a causal—chain inference , that an arrival in the
capital of a country, or anywhere else in the country,  for that matter ,
must be preceded by entering the country the city is part of. The
Script Appl ier , as part of its world knowledge about official visits ,
built this information into the top level of the story representation .
Why the top level? The Script $VIPVISIT, as will be explained in
Chapter 3, is a special case of the trip—Script , $TRI P. People,
especially Very Important Persons, are always taking trips , using
standard means of transportion (that is, Scripts whose Maincons are
based on a PTRANS ) to get to and from the places they want to visit.
$VIPV ISIT has the general struc ture of a tr ip . Therefore , the Script
Applier keeps a record of’ the “going” part of the trip , which the
question-answering mod ul e accesses to find the answer to the question
“Who went to China? ”

I(~~ RSER )
How did they get to China?

CONCEPT : GN 1008
((ACTOR TMP1O3 <:> (‘PTRANS’) OBJECT TMP1O3

TO (‘PROX’ PART (#POLITY POLTYPE (‘NATION’)
POLNAME ( C H I N A ) ) )

FROM (NIL) INST (‘?‘))
MODE (MOD1) TIME (TIlls))

TMP 1O3 (#GROUP MEMBER (#PERSON ) REF (DEF))



— 29 —

I ( QA)
NEXT QUESTION :
( (ACTOR GROUP 1 O 1 <=> (‘PTI~ANS ’) OBJECT GR OUP 1O 1
TO (‘PROX ’ PART POLITIO2 ) INST ( ‘? ‘)))

( QUESTION TYPE IS INSTPROC )
(SEARCHING $VIPVISIT—SCRIPT STRUCTURE)

THE ANSWER IS:
((ACTOR ORGO <= > (‘PTRAN S’) OBJECT GROUPO

TO (‘PROX’ PART POLIT2)))

I (E N G L S H )
MRS HOXHA AND PREMIER ENVER HOXHA FLEW TO COMMUNIST-CHINA

The answer to the question “How did the y get to China? ” depend s on
three crucial inferences that the Script Appl ier has made. First,
“ they” must be recognized as the Hoxha party, a reference problem which
TOK and QA solve by using the same methods as the Scr ipt Appl ier used to
determ ine the ref erence f o r  “the Albanian party” in the story input .
Secondly,  “China” was recognized as “Communist China” by the Script
Applier , rather than “Nationalist China ,” on the basis of the knowledge
of where “Peking” is. Finally, the instrumental mean s that enabled the
Hoxhas to get to China was determined by a Role-instantiation inference
that the Script Applier made when the phrase “ . . .welcomed at Peking
Airport” was read . As in the answer to “ Who went to China?” , the answer
to “How did the y get there?” is stored in the story representation as
the instrument of the Conceptualization which summarizes the “going ”
part of the State—Visit Trip $VIPVISIT.

I ( P A R SER )
Why did Enver Hoxha go to China?

CONCEPT : GN 1O 15
(( CO N (‘?‘) LEADTO

(( ACTOR TMP16 O <=>  (‘PTRANS’) OBJECT TMP16O
TO ( ‘PROX ’ PART

(#POLITY POLTYPE (‘NATION’)
POLNAME ( C H I N A ) ) )

FROM (NIL )  INST (N I L ) )
MODE (MO D2) TIME (T 1M6 ) ) )  MODE ( N I L ) )

TMP16O (#PERSON GENDER (‘MASC’) FIRSTNAME (ENVER)
LASTNAME (HOXHA))

I ( QA)
NEXT QUESTI ON :
((CON (‘?‘) LEADTO

((ACTOR HUM 1O2 <=> (‘PTRANS’) OBJECT HUM1O2
TO (‘PROX’ PART POLIT 1O3))))))

( QUESTION TYPE IS CAUSANT )
(SEARCHING $VIPVISIT—SCRIPT STRUCTURE)

- V ~- . 
~~~~~~~ 

-
~~



~~~~~~~~~~~~ .— - -- - . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~ V - V V -~~~~~

— 30 —

THE ANSWER IS:
( BECAUSE ( ( C O N  ( ( ACTOR GROUP ? < = >  ( ‘MTRANS ’)

INST (( ACTOR GROUP 2 < :> ( ‘SPEAK ’)))
MOBJECT (‘CONCEPTS’ REGARDING CNTRCTO)
FROM (‘CP’ PART GHOUP2)) TIME (TIME1O))

IS (‘GOAL’ PART (GROUP2))) TIME (TIME1O)))

I(ENGLSH)
BECAUSE CHAIRMAN HUA KUO-FENG AND MR ENVER HOXHA WANTED TO DISCUSS
CHINA ALBANIA ECONOM IC AFFAIR S.

This concludes our sample computer run of SAM on a newspaper story .
Chapters to follow will describe in detail the structure of the Scripts ,
such as $VIPVISIT , which SAM has, and how they are used in story
understanding . To finish our discussion here , let ’s highlight once more
some of the important inference processes which actually came into play
as Story 1.3 was read .

As the first sentence of Story 1.3 is processed , one procedure,
called Rolefit , checks that at least one of the group that arrived is a
Very Important  Person , that is, that this event f its in $ VIPVISIT  rather
than , say, $TOURIST. An allied process , Rolemerge , is used in the
second sentence to decide that “the Albanian party” is the same as the
group that was mentioned in the first sentence , namely Premier and Mrs
Hoxha. Note , in the second sentence , the special sense of’ “welcome”
that is used . This kind of “welcome ,” which typically involves bands,
speeches , e t c . ,  is itself a Script , $VI PW ELCOM E , imbedded in $VIPVISIT,
and this is how SAM , operating in the state—visit context , analyzes it .
Similarly, “party” is interpreted as a group—pronoun rather than as a
Script .

Other inferences which SAM makes can be seen in the outputs
produced for Story .3. The need for time— and place—setting
information can be seen in the summary, which asserts that the meeting
between Hua and Hoxha occurred in Peking on the same day as the arrival ,
even though the story does not expl icitly say this. (SAM inserts the
phr ase “two days ago” because it is arranged , by convention , to be
reading newspaper articles on Tuesday.) The answer to “Who went to
China?” depends on a causal—chain inference , tha t going to Peking must
be preceded by entering the country that Peking is part of. Finally, a
role—instantiat ion inference is required in an swering the question “ How
did they get to China? ” , which assumes that visiting VIPs who are
greeted at airports were transported by plane . This is a typical
use ful , but only “ probably ” true , natural inference that story
understanders make all the time .

1.7 Outline of the Rest of’ the Thesis

Chapter 2, “Script Structure ,” presents the details of the data
structures which are used in SAM ’s Scripts. To motivate the discussion ,
we discuss how a typical Script , the subway Script , is constructe d , and
what it looks like in the computer. The presentation is an extension of
the work of Roger Schank and Robert Abelson [314], which was intended to

_ _ _ _ _ _ _  ___



— 31 —

model a human memory structur e useful , among other things , for story
understand ing . SAM ’s Scripts embod y this theory in networks of patterns
conta ining roles with re quirements on what can f ill these roles . THE
STORY REPRESENTATION BUILT BY THE SCRIPT APPLIER IS A TRACE THROUGH THE
SCRIPT STRUCTURES ACCESSED BY A STORY.

Chapter 3 is a discussion of the various ways in which Scripts can
interconnect to account for a story.  We consider two d i f ferent  kind s of
connections: (1) hierarchical ; and (2) temporal/causal . Newspaper
stor ies are understood by means of a general izat ion of the Script idea ,
called the Situation. The Situation is a way of classifying how Scripts
can be used in a larger context. For example, the Vehicle—Accident
Situation prescribes how component Scripts such as “ambulance,”
“emergency—room” and “police—investigation” will occur: that is, what
order these event—chunks will happen in , how the Script roles interface ,
etc . A Situation is essentially a precompiled set of processing—tim e
suggestions for how Scripts are to be brought into and removed from
active memory .

In Chapter 14 we turn from the consideration of’ the Script as a
static data structure , to the discussion of how Scripts are used by the
Script Applier in the process of story understand ing . We describe the
basic Pattern—Match and Instantiate cycle the Script Applier goes
throug h , and the method of “ pred iction by incremental context” it uses
to follow a story through a Script . We then discuss how the nature of
the reading task can modify the way in which ex pectat ions are aroused
and used . For example , reading a newspaper article differs from reading
a regul ar narrat ive in tha t the newspaper tells you f irst what the most
important things are . This is what the “lead” sentence is for. Having
gotten the lead out of the way , the article then goes over the events in
one or more addi tional passes , adding more details each time .

Chapter 5 describes a set of auxiliary inferences which the Script
Appl ier uses as it tr ies to recognize a new sto ry input , which are
res pons ible for iron ing out discre panc ies between an expectat ion and
inputs which , though conceptually “equivalent” to the expectation , vary
slightly from an exact match. We contend that low—level inferences of’
the kinds described are an essential part of any story understander that
relies , as SAM does , on expectations about what will be read .

For those interested in the gory details of how SAM goes about its
WO 1 fC , we include in Cha pter 6 an annotate d log of  a run of  SAil on a
car—accident story tha t actually appeared (in a slightly more complex
form ) in the New Haven Register .

Chapter 7 presents a keystone of the representational system that
underl ies SAM ’s ability to understand : the representation of Picture
Producers. The system for representing PP5 , like the Conceptual
Dependency system of which it is an extension , posits a small number of
“primitive” classes of PPs, into which the people , places and things
appearing in stories are mapped . The effect of this system on reference
specification in SAM is also discussed .



_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _  _

— 32 -

Finally,  Chapter 8 makes some general comments on the work and how
it fits into the scheme of things in Al. A conclud ing section is also
given on how SAII coul d , and should , be incorporated into a more general
understander having knowledge of Plans and Goals as well as Scripts;
and how SAM could be used as a laboratory for memory organization and
inference techniques.

L .
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—V-V -

Chapter 2
Script Structure

All the worl d ’s a stage , and al l the men an d women merely
players. They have their exits and their entrances ; and one
man in his time plays many pa r t s . . .

Shakespeare , .~~~~ ~~ U~jç~ ~~~~~~, II , 7.

2.1 Introduction

To implement a knowledge—based story understander on the computer ,
we need good answers to two questions : what is the nature and structure
of the program ’s knowledge? and how does the program get at the
information it needs when it needs it? In SAM , these questions are
addressed , respectively, by Scripts , and the Script Applier .

In this chapter , we discuss how Scripts , considered as ~~~~~~~~~~~ are
encoded for use by SAM . The Drocess of Script Apply ing is described in
detail in Chapter 4.

SAM ’s Scripts com e in several varieties. They range in complexity
from the relatively simpl e things that  a person does when serving in a
Script role , such as a waiter or bus driver , to the interlinked
activities of’ police , ambulance service , hospital , e tc . ,  after a car
accident. A classification of Scripts is given in Chapter 3, based on
how complicated their structure is, how rigid the associated
event—chains are , and what their characteristic actors and objects are.
We present here a set of techniques for building Scripts of all kinds.
These techniques have been tested by SAM in the process of reading
stor ies f rom a number of  differen t domains , both simple made—up stories
and actual. newspaper articles. The Scripts that SAM has applied at one
t ime or anot her include:

$VEHACCIDENT motor—vehicle accidents
$VIPVISIT state visits
$TRAIN WRECK tra in cras hes an d derailments
$PLANECRAS H pla ne cras hes
$EART HQUAKE earthquakes
$OILSPILL oil spills at sea
$TRIP generalized trips
$KI DNA P RAN SO M kidnappings
$RE STA URANT eat ing in a res taurant
$B US bus r ides
$SUBWAY subway rides
$TRAIN passenger/cargo train rides
$PLANE passenger/cargo plane rides
$MARRIAGECEREMONY marriage ceremony
$OBITUARY obituaries
$MAR R IAGEANNOUNCE marriage announcements
$P RE PARE preparing food
$DRIVE driving a car

- .— — ———~~~.-— —.~~-
-V 

~~~~~~~~~~ 
V
~

- -
~ 

V V



— 314 —

In the next section , we ’ll pick a typical Script (the subway
Script) from this collection and consider what it looks like in the
computer . Before we start on the details , however, some general
comments about Scripts should be made. First of all , we need to be
clear about what a Script models and what it does not. A Script is
intended to describe events which “belong” to a situation in a
stereotyped way. For subways , we are interested in what people
typically do when they ride on subways. The Script does not care that
subwa y cars in New York have g ra f f i t i  painted on them , or that the
tunnels people walk in are made out of yellow brick and have
advertisements posted on them . Static facts of this kind , while true ,
are simply not relevant to the Script , because they normally have no
ef f ect on events. The events in a sto ry that to re fer to a Scr ipt are
part of the normal course of affairs in the situation. They must not be
idiosyncratic , but must occur “all the time .” In a story suc h as:

John went to the cashier ’s window in the subway station. He
offered the cashier a credit card .

we would not consider that the second sentence would fit the Script ,
because , though credit cards can be used in place of money in most
situations, cash is all a subway cashier will take . It would be
impossible to build in special paths for novel circumstances like this.
There are too many of them . The best a Script Appl ier could do would be
to pass the problem on to a higher—level processor , capable of
inferencing in novel situations, with a note that a recognized Script
activity appears to have been instantiated , but that an expected feature
of one of the props ( the fare) has been contradicted .

On the other han d , consider :

John got on the subway. All the seats were taken , so he had to
hold on to a strap.

Here the second sentence is clearly in the Script , although it would
soun d funny  in isolation. Our world knowl edge about subwa ys ,
incorporated in the subwa y Script , tells us that people become
“straphangers” when a seat isn ’t ava ila bl e .

A second comment has to do with point of vi~j~. Most of us know
about subways because we have used them to get somewhere . That is, we
executed the Scr ipt f rom the standpo int of  a subway r ider , rat her than ,
say, the conductor or trainman . The subwa y Script as embodied in SAM
takes the po in t of view of an outside observer , using general knowledge
of the situation , suc h as a rider of subways possesses, to understan d
what ’ s going on in a story. In most cases , the Script has a designated
“main charact er ,” for example , the person riding the subway , and this is
the role whose actions the observer is watching . We incorporated this
“third—person” point of view in Scripts because this is the typical
story—tell ing mode adopted in simple texts and newspaper stories.

Final ly,  there is the question of the leve~l Qr detail which is
appropriate for Scripts. The subway Script is a dev ice for helping a
computer to comprehend ordinary, boring stories about subway rides , not
a set of proce dures that a ro bot coul d actually use to take a r ide on 

_ _.. — — ..— .— . . ..



— 35 —

the subway. Scripts are encod ed in Conceptual Dependenc y ( C D ) ,  a system
designed for describing events as they appear in the sentences of a
natural language. Script structure is therefore biassed toward
recognizing events in the “ chunks” with which people describe them . lt
does not have the fineness of detail tha t a robot would need to
participate in the events. Such information is not needed for ordinary
story understanding . Most people can comprehend a story about an
airplane pilot , for exampl e , without knowing how to f ly a plane .

2.2 Riding the Subway

Having made these general remarks , let’ s look at the structure of
one of SAM ’s Scripts , $SUBWAY , in detail .

Subways , as everybody knows , are a form of mass transit found in
large cities around the world . There are, f o r  example , subway systems
in New York , Boston , San Fran cisco , Tokyo , Pa ris an d Moscow. A r ide on
the subway in these places differs in various ways. The Boston subway,
un til recentl y , used single cars which look more like a bus or a trolley
than a train . Tokyo ’ s subways employ special people who cram commuters
into cars at rush hour . San Francisco’s BART was designed to run under
computer control , with a human operator as a back—up .

How can we handle this diversity? The most important observation
is that the subway “ride” itself’ is very similar in each of these cases.
Th is suggests tha t a single knowledge structure can be devised which
ca ptures the similar ities , with various pieces of  the structure being
“overwr itten” depend ing on which city’s subways are being ridden . For
example , the definition of’ $SUBWAY ’s var iables woul d be sl ight ly
di f f e r e n t  if  the story were set in Boston . The capacity of the train
woul d be re duced , and the conductor and trainman roles would be merged .
In Tokyo , we would have to create a new role for the train—jammers , and
add a special episode to the standard “get on the tr ain” scene. In San
Fran cisco , the conductor and trainman would disappear entirely. Once we
have the standard “ rid e , ” the modifications needed are of two major
kinds:  (1) roles and props may be redefined slightly, coalesce or go
away altogether; and (2 )  situation—specific episodes may have to be
added or deleted .

What does a trip on the subway look like? Let’ s consider , for
ex ample , an ord inary subway ride in New York. A patron enters the
station and goes to a turnstile. Next , the patron puts a token in ,
passes through, and g oes to the a ppro pr iate pla tform . Eventually ,  the
train comes. The patron enters and finds a seat. After a number of
stops , the destination is reached , the patron leaves the train and exits
from the station .

The ster eotyped sequence of  events just descr ibed is the back bone
of the subway Script , $SUBWA Y , as understood and used by mill ions of
commuters in New York , and , with minor variations, in other cities as
wel l . In each case , what we have is an organization (the subway company
or Author ity ) prov iding a cert ain kind of  trans portat ion to a member of
the public in return for money (Note 1 , overleaf). The details of the
Script backbone change from instance to instance. For example , there
are several different ways a patron can pay for the ride. In Boston



— 36 —

( and New York’ s PATH system) ,  the patron put s coins directly into the
turnst ile. In Par is, magnetized strips are used in place of tokens. A
comprehensive subway Script will have to contain paths for handling each
of these possibilities. The basic structure has to be modified as we
discussed above depending on which city ’s subways are being used .

Let’s sketch out the kinds of things the fundamental subway Script
has to contain. First of all , there is a cast of characters (“roles”);
the objects the y use while going about their business (“ props ” ) ;  and
the places ( “ settings”) where the Script ’s activities happen . The
roles , props and settings of a Script taken together make up the Script
var iables , which are matched up against the real—world people, places
and things that a story contains.

Here are the roles of  the subway Scr ipt :

&PATGRP a group of subway riders
&CASHIER the cashier
&CONDUCTOH the conductor
&DRIVER the person controlling the train
&SUBOR G the subway organization

Picture Producers (PPs ) which fill Script roles must belong to one of
the “ primitive,” higher—animate PP—classes described in Chapter 7. For
example , the patron role in $SUB WAY must be filled by a PP of the class
“person ” or “group, ” since we want to be able to accept both “John
Smi th” and “Mr . and Mrs. Smith.” The subway company providing the
service , for example , “the BMT , ” must belong to the class
“organization.”

We said tha t the settings of a Script are the places where the
Script’s events happen . Settings belong to the PP—class “locale.” In
$SUBWAY , the three most important settings are the originating station,
the inside of  the car the patron selects , and the dest inat ion stat ion.
A more complete roster of’ settings is as follows:

&STATION 1 originating station
&CONCOURSE1 concourse of originating station
&PLATFORM 1 platform of’ originating station
&INS IDECAR the car the patron rides on
&STAT IONn an intermediate station
&STATION2 destination station
&CONCOURSE2 concourse of destination station
&PLA TFORM2 platform of dest inat ion stat ion

A special kind of  sett ing , belonging to the PP—class “link,” is the
col lection of structures which connect settings. ~or a subway station

1. In the classification scheme of Chapter 3, the subwa y Script is an
instance of a commercial Transaction between the public and a special
kind of organ ization , a PTRANS—Organ ization . PTRANS is the Conceptual
Dependency “action primitive” for physical transfer of location. See
Appendix 1 for a discussion of CD representation. 



-V . 

— 37 —

in which the concourse is on a different floor from the tracks , these
would be:

&STA I R W AY 11 stairs or escalator between street and
concourse (originating station)

&STAIR WAY 12 sta irs or escala tor between concour se and
platform (originating station)

&CARDO OR door of  selected car
&STAIRWAY21 stairs or escalator between street and

concourse (destination station)
&STAI H WAY22 stairs or escalator between concourse and

pla t form (dest inat ion station)

In a station in which the cashier ’s bootn is ac tua l ly  on the subwa y
plat form , &STAIRW AY11 and &STAIRWAY12 would coalesce into &STAIRWAYVI .

The props of a Script are associated .?ither with the Script’s roles
or its settings. Examples of the former are small objects , such as
tokens and coins (PP—class “mone y”), which people handle and carry
around . The latter props have the job of’ “furniture” in a setting . For
exam ple , t he cash ier’s booth and the turnstile are furniture in the
subwa y concourse . Seats and bubble gum machines are furniture on a
platform . (These PPs have the class “ physical object. ”) A special prop
in $SUBWAY is the train itself. This is an example of a “structured”
physical object whose parts , the cars , are important locations for
Script activity in their own right . The props of’ $SUBWAY include:

&TOKEN a token
&FA RE money paid for a token
&TU RN STI LE a tur nst ile
&P LATSEAT a seat on the pl a tf o r m
&SUBWA Y the train itself
&SU B WAYCAR one of the cars
&CARSEA T a seat on the car
&STRAP a str ap f o r  the pa tron to gras p
&EXITGATE the gate leading from the platform at

the dest inat ion stat ion

The most important parts of  $SUBWAY ar e the events , involving the
roles , props and settings , which belong to it .  An example is the
patron ’s giving money to the cashier . The events in all of SAM’ s
Scripts are based on a single CD ACT or STATE pr imit ive, with
appropriate Script variables filling the slots in the conceptual
structure. The event described above would look like:

((ACTOR &PATGRP <:> (‘ATRANS’)
OBJECT &FARE TO &CASHIER))

(This uses the CD action primitive ATRANS , which signal s an abstrac t
transfer of possession or control . The LISP CD format for events used
in this thesis is described in Appendix 1.)

Several things need to be emphasized about events in Scripts.
First of’ all , they are lan&ua~e—~~~~. The CD representation of an event
provides a canonical fo rm into which SAM ’s Analyze r maps the many



- -

— 38 —

sur face strings which are conceptually “ equivalent . ” We would use the
sane form whether the sentence were : “John gave 50 cents to the
cas hier ,” “the cashier got 50 cents from John ,” or “50 cents was
received from John by the cashier.” The use of CD representation thus
cuts down tremendously on the size of the Script , since only the
conceptual content of sentences need be considered , and on the amount of
processing SAM needs to do , since the needed inferences can be tied
directly to the concept ual events , rather than having to be dupl icated
for each “equivalent” surface string . (This argument is presented in
detail by Schank in [32 ] . )

Another point about Script events is that they contain both
“constant” parts (e. g., ACTOR and ‘ATRANS’ in the example given above)
and “variable” parts (e. g., &PATGRP and &FARE). Each event , therefore ,
is really a pattern, a data structure designed to match an arbitrary
rang e of real—world events. We know , for example , that any member of
the public can r ide on the subway,  and so the correspond ing slot in the
Script ’s events cannot be fixed but must accept any person or group that
comes along in a story. In the “paying the cashier in the subway”
activ ity ,  we need a way to specify the things which are always true .
For example , this event has a person handing over an amount of money to
another person who is an agent of the subway organization . We also have
to provide for things which can vary in small details. The fare may be
expressed as “f i f t y  cents” or a “hal f dollar , ” “J ohn ” may pay the
cashier , or “John and Mary ” may pay.

Activities in Scripts are stereotyped . Events follow one another
in one of a small set of recognized ways. On entering the subway , for
example , the patron may either proceed directly to the turnstile , or
stop to buy a token . A cha in of events descr ibing~one of these
well—understood activities is called an episo~~ . “Buying a token” is an
episode consisting of the events: “enter the station ,” “ see the
cashier’s cage,” “go to it,” “ask for a token ,” “be told the fare,” and
“pay the fare.” Note that the Script demands that the fare be paid
be~~~~ the token is handed over . This is how this episod e is always
structured in the subway Script , although the actions can be reversed in
other Scripts , for example , if a person were buying an ice cream cone.

The events of  an episode don ’t merely follow one another in time;
they are causally connected , as well. “Causally connected” means that
the results of’ one event set up the enabling conditions for the next
event in the sequence to occur . That is , the events comprise a causal
chain [28]. In the episode we are considering here , the result of
enter ing the stat ion , viz . ,  being at the station ’s “concourse ,” is a
necessar y condition f o r  the patron ’s locating the cashier ’s counter .
Going to the coun ter , in turn , enables asking for a token . The
principles of causal—chaining used in Scripts are set out in [ 3 1 4 ] ,  and
are briefly described in Appendix 1.

How long can the causal chains in episodes be? It would be
possible to define all the events from entering the subway to leaving
the destination station as a single episode , but we would clearl y be
ignor ing Important f a c t s a bout the struc ture of $SUBWA Y. One suc h f ac t
Is that some parts of the subway ride are more important , more cen tra l
to the situat ion , than others.  Gett ing a token , for example , is an

—~~~~ ~ . --,. V - -~~~



V ~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~ 

--

— 39 —

important act ivi ty in $SUBWAY because without one a patron can ’t get
through the turnstile to get his ride. Taking a seat on the platform ,
on the other hand , is not so important because it doesn ’t really have
any effect  on whether the patron can get on the train . Anothe r fac t is
that sometimes different ways to do the same thing may be available.
Hav ing a token bef ore  the ride , as king f o r  one at the counter , or
showing the cashier a special pass are all possible ways of procuring a
ride. In this case , we have a set of  episodes which seem to go
together .

The activities of a Script which always have to occur for us to
rec ognize tha t the Scr ipt has in f a c t  been instant iate d are calle d its
scenes. The scenes of $SUBWAY are:

$SUBWAYENTER enter the station and wait at the platform
$SUB WAYRIDE enter the tra in and r ide to dest inat ion
$S IJ BWAYEXIT leave the stat ion at dest inat ion

“Entering ,” including buying and using a token , is a scene of the subway
Script because it is necess~ry to procure a ride.  “Riding” is a scene
because this is the transporting activity that the Script is all about.
“Leaving” is a scene because we can’t be sure that the ride is over
until the patron exits from the station. He may just be transferring
between subway l ines. Eac h scene of  a Scr ipt is d ef ined by a set of
episodes which (1) describe the different ways the important activity
the scene organizes can happen , and (2) give other , less important ,
act ions , such as sitting down on the platfo rm , which can be interl inked
with the main episodes , but which don ’t contribute directly to their
accomplishment . The use of “$“ before scene names is meant to suggest
tha t each scene ( and each component episode) shares some of the features
of the Script it belongs to. In particular , each scene and episode
consists of causal chains , with specified Script variables and a main
activity each chain accomplishes or contributes to.

A final point about the structural properties of Scripts is that
the ir scenes occur in some character istic order. As with the event s in
episodes , the scenes are interconnected both temporally and causally.
One temporal—causal sequence defining an independent mean s of
accomplishing a complete Script activity is called a track of the
Script. The tracks of the subway Script are its manifestations in the
different cities which have subway systems. As we mentioned before,
these tracks di f fer from one anot her only in how one or more scenes
differ  in details. There is one basic track , using the scene for
“ paying” , ” for example , which is specific to the city which is being
considered . Another Script having more clearly distinct tracks is the
resta uran t Scr ipt , $RESTAURANT , which has “fast—food ,” “cafeteria,”
“regular sit—down restaurant,” and “fancy” tracks.

2.3 Script Variables and Patterns

The units from which Scripts are built are patterns or templates
for events , Conceptualizations having slots conta in ing re feren ces to
Script variables . The Script uses patterns because SAIl needs to
recognize different  real—world events as being examples of the action

L



— 40 —

the Script is interested in. (An event-Conceptualization from a story
which is an instance of’ the pattern is said to match or instantiate the
pat te rn .)  Let ’ s look at the variables and patterns of ’ Script s more
closely.

As with most aspects of’ Script structure, the nature of  Scr ipt
variables can’t really be described in complete isolation from how the
Script is used . It’s enough at this point , however , to note that , in
the process of Script Applying , P ict ure Pro ducers ( P P s )  appear ing in a
text are checked to see whether they can be instances of variables. As
discussed in Chapter 7, every PP in SAM must belong to one of a small
number of “primitive” classes , eac h class def ined by a roster of
conceptual “slots” giving a typical property of the class. Here, for
example , is the definition of a typical person as it would exist in
property—list format in PP—Memory :

“Dr Marcus Welby, 53, of  145 Orc har d St , New York”

HUM O:
CLASS (#PER SON)
TITLE (DOC TOR)
OCCUPATION ( ‘MD’)
PER SNAME (MARCU S)
SURNAME (W ELBY )
AGE (53)
GENDEI~ (‘MASC’)
RESIDENCE (L OCO )

LOCO :
CLASS (#LOCALE )
LOCTYPE ( ‘ADDRESS ’)
STREETNUMBER (4 3 )
STREETNAME (ORCHARD STREET )
POLITY (POLO )

POLO:
CLASS (#POLITY )
POLTYPE (‘MU NIC’)
POLNAME (NEW YORK )

(We ’re assuming that “Marcus Welby ” is a permanent token known to
PP—Memory . This is the basis for the specification of “medical—doctor ”
under the OCCUPATION property. Similarly, “New York” would be known to
be a city.)

Suppose that Marcus Welby is taking a ride on the subway. At some
point , the token HUMO might be matched up against the Script variable
f o r  the patron role , viz., &PATGRP. This Script variable has the
following property—list definition :

&PATG R P:
CLASS (#PERSON #GROUP)
DUMMY T
SFUN CTION ( ‘NONE ’)



— 141 —

This mean s tha t the atom &PATG R P is a dummy variable to be bound to PPs
belonging either to the PP—class “ person ” or “ group .” Welby is a person ,
so far so good . The property SFUNCTION states that  a candidate PP
should not have a function which can be interpreted as belonging to
$SUBWAY. Indicators of the functions peopl e can have are to be found on
the OCCUPATION and FUNCTION properties of the correspond ing token .
Here , the occupation *MD* is not one which is internal to $SUBW AY , so
again the PP checks out . If , however , the PP were “Marcus Welby, the
driver ,” the token would contain a FUNCTION (‘DRIVER’) flag, and the
possible role of Wel by as the “driver” of the subway would prevent the
acceptance of the PP as an instance of the patron role.

This simple example of the relation between a Script variable and
the real PPs that may instantiate  it illustrates two basic facts about
roles and props in Scripts. First is the observation that they are
“abstract” or “generalized .” In our example , it doesn ’t matter that
Welby is a masculine adult , since all kinds of people ride on subways.
Nor does it matter (except , perhaps , for inferring what town the subway
ride is being taken in) where he lives. This leads to a second fact,
namely ,  that Script variables are really defined by function.
Concentrating on what people do and what objects are for ( this might be
called an “episodic” approach), rather than on the details of their
structure as bund les of  f e a t ures re presenting var ious abstract classes
(a “semantic” approach) makes psychological sense . When asked what a
waiter is, f o r  example , people invariably reply on some such functional
bas is as “a person who takes orders in a restaurant and brings people
t heir food .”

This is not to say that finding out whether a given PP can fulfil
the function prescribed by a variable is always as simpl e as checking
property lists. Suppose , for ex ample , we read :

John ’s car swerved off’ the road and struck an X.

The class of things we would be willing to accept as X’s can be
characterized by the function—word “obstruction .” Some PPs , like bridge
abutments and cement walls , are massive enough to serve as obstructions
f o r  any kind of  motor vehicle.  Ot hers can obstruct onl y certain kind s
of vehicles. A motorcycle would be demolished if it hit a guardrail ,
but a garbage truck would demolish the rail . What this means
computationally is that whether a ca ~didate PP can function as the
Script requires can be decided Jr  the last resort only by running a
f unc t ion , attached to the pat tern , t~~ing into account a number of
relevant facts. In the “motor—vehici~ accident” Script , $VEHA CC I DENT ,
for example, such a function accepts “absolute ” obstruc tions suc h as
abutments , but compares the mass and speed of’ the vehicle with the mass
and degree of’ immobil ity of  the can didate obstruct ion. This process of
pattern—directed function invocation [15) is an important mechanism of’
Script Application , to be discussed in Chapter 14 .

Every Script pattern belong s to one of three classes , corresponding
to the type of Conce ptual Dependency action primitive it contains.
First are p at terns which use one of the eleven CD ACTs . An example of
this kind of pattern is:

_ _ _ _ __ _ _ _ _  ~~~~~~~~~~~~ -~~~~~~~~~~~~



— 142 —

“Patron enters station”

( ( ACTOR &PATG RP <=>  ( ‘PTR ANS ’)
OBJECT &PATGRP
TO ( ‘INSIDE’ PART &STAT ION1 ) ) )

Next are patterns based on a CD STATE . For example , the subwa y Script
has a STATive pattern:

“Patron waits on platform for a short period”

((ACTOR &PATGRP IS (‘LOC’ VAL
(‘TOPOF’ PART &PLATFORM 1))

MANNER ( ( D U R A T I O N  &DELT IM 1 ) ) )

In the above pat tern , the variable &DELTIM1 would be bound to an
indicator of the length of the wait , e. g., “a few minutes ,” “half an
hour ,” etc .

The third kind of pattern is based upon a Script . Ideally, Script
patterns shoul d conta in onl y ACTs and STATEs . However, there are many
cases when we need a way to refer , not to a un it event , but to a cluster
of events which is named by a Script . For example , we might have :

“Trainman drives train”

((ACTOR &TRAINMAN <=> ($DRIVE DRIVER &TRAINMAN
VEHICLE &SUBWAY)))

There are two reasons for this . First of all , there are many low—level
Scripts , such as the “drive—subway” Script , which are used
instrumentally in larger Scripts. These Scripts contain a level of’
detail and complication which stories rarely get into . Consider , f o r
example , the process of’ starting a car . We can specify the necessary
actions roughly as follows. First , the driver GRASPs the key, PTRANSes
it into the keyhole , and “turns” it. When the engine catches (an MTRANS
event for the driver ) , the driver unGRASPs the key. At the sam e time ,
the driver might have to PROPEL the clutch with one foot , the gas pedal
with the other . On some cars , all this would have to be pr eceded by
PROPELling the choke . The fact is , however , that a text will rarely say
more than “John started the car ,” so we have not bothered to fill in the
details of low—level Scripts like these .

A more important reason for having patterns containing Scripts is
that stor ies of t e n  ref e r  to them dir ect ly  as a mean s of  summarizing or
pointing to a particular section of’ a larger Script . Consider a
sentence such as: “John ’s subway ride took an hour.” This sentence
refers to the duration of’ the ride scene of the subway Script , and to
the person doing the rid ing . To recognize it , the Script needs a
pattern of the form:

((<:> ($SUBWAYRIDE PATRON &PATGRP))
MANNER ((DURATION &DELTIM2)))

As another example , consider the state—vJ’3it Script , $V1PVISIT . Suppose

V-I



— 43 —

we have a sentence suc h as “The official party was welcomed at the
airport .” The word “ welcom e” points to the entire structure of possible
episodes in a “state welcome ,” includ ing bands, speec hes , 21—gun
salutes , etc . The pattern for this event uses the nam e of the scene to
pick out the participants :

((<:> ($VIPWELCOM E WELCOMER &WELCOME R
WELCOMEE &V I PGRP ) ) )

This pattern would also be instantiated by the Conceptualizations for:

The Secretary of State greeted Chairman Hua .
Politboro spokesmen welcomed the visitors.
The official party was received .

but not by:

Aunt Fanny welcomed her grandchildren .

which is a welcom e of a very d i f fe ren t  kind .

No matter which class a pattern belongs to , the basic idea is to
include only the minimum amoun t of information needed to uniquely
identify the event . Let’ s consider again , for example , the pat tern  for:

“Patron enters station”

(( ACTOR &PATGRP <~ > (‘PTRANS’)
ObJECT &PA T GRP
TO (‘INSIDE ’ PART &STAT I ON 1)) )

This pattern would be matched by the Concept ualizations correspond ing to
inputs such as:

(2.1) John and Mary went into a subway station.
( 2 . 2 )  John walked into a subway station .
(2 . 3 )  John strolled out of a restaurant up the street into a
subway station.
(2.14) John went into the BMT.

Example ( 2. 1) would instant iate the pattern because , as we
explained above, John and Mar y form a personal group undistinguished by
funct ion.  The Instrumen tal Conceptual izat ion f o r  “walked” in (2.2)
would be ignored by the pattern. It would also accept “ sauntered , ”
“ rambled , “ “ran ” or even “ came in on a skateboard .“ In ( 2 . 3 ) ,  where John
came from is of no interest to $SUBWAY , although , in this case , it would
constitute a signal to $RESTAURANT (presumably active at this point)
that this Script should be closed before $SUBWAY is opened (Note 2,
overleaf). Similarly, the phrase “up the street” would tr igger a
f l e e ting ref erence to the “Walk on city street” Script . Finally, (2.4)
would instantiate the pattern because PP—Memory would contain a
permanent token for “BMT,” which is marked as a subway organization.



— 1414 —

2. 14 Episodes and Pathvalue

2 . 1 4 . 1  The Structure of Episodes

Patterns for events are connected together into chains , called
episodes, which describe one typical activity from a Script . every
episode has a main Conceptualization , or Ma incon , which is the goal , or
point, of the episode. Here are the episodes (marked with “E” ) and
Ma incons (marke a with “M” ) of $SIIB WAY:

E l :  Patron enters station
Ml: patgrp PTRANS to inside station

I ( 1 )

E2: Patron goes directly E3 : Patron gets a token , t hen goes
to turnstile to turnst i le

M2 : patgrp PTRANS to M3 : agent ATRANS token to patgrp
t urnst ile

Ek : Patron goes through turnsti le ,
goes to pla t fo rm

WI: patgrp WAIT at platfo rm 
______________

E5: Subway arrives (2 )
M5: trainman PTRANS subway to platform

E6: Patron enters subway and sits down
M6: patgrp MOVE to seat _______________

I.

El: Sub wa y goes to a new destination (3)
M7: trainman PTRANS subwa y to destination

4 I.E8: Patron leaves the station
t18: patgrp PTR ANS from stat ion

Figure 2.1
Episodes of the Subway Script

2. The processing of sentence (2.3) would be handled by refe”ence to
the trip—Script , $TRIP , which contains information about t he  means
people use to get to , and return from , places where “goal” activities
such as going to restaurants and museum s ta 1~- p lace. $TRIP is an
example of’ a Script Situation , to be discussed in Chapter 3.



r-~~~~~
--

~
-- 

- 145 -

In Figure 2 .1 , the branching of paths at (1) leads to the
subsequent episodes E2 and E3, which describe alternative ways of
arranging to get through the turnstile. A branch of’ this type is called
a turninR ootnt. The “loops” at points (2) and (3) are for the cyclic
episodes E5 and El, that is, for episodes which may happen several times
in succession. At (2), for example , several tra ins may arr ive before
the one the patron wants , and so the patron must continue to wait. At
(3), we have the possibil ity of the train ’s stopping at several
intermed iate stations, before the one the patron wants to get to is
reached.

Where does an episode begin and where does it e~id? An episode
begins directly after an event which can be followed by several
different event—cha ins, only ~~~ of which can be instantiated by a given
story. We call these events turning points because the action of the
Script can flow in several possible , mutually exclusive , channels after
they occur . As we indicate in Figure 2.1 , a turning point in $SUBWAY
occurs when the patron enters the station concourse . This can be
followed by two alternative episodes . Either the patron will proceed
directly to a turnstile , if he has a token , or go to the cashier to buy
one . Arriving in a restaurant is an example of a turning point in
$RESTAURANT . Possible outcomes of this event include find ing and going
to a table direc t ly ,  being taken to a table by the hostess , or having to
wait until  a table is ready.  As a final exam ple , a driver ’s losing
control of his car is a turning point in $VEH A CCIDENT , since this may be
followed by the car’s going off the road , through the guard rail on a
bridge , or into the oncoming lane of traffic .

An episode ends when the next possible turning point of the Script
occur s , or when a scene boundary is reached . (We discuss the latter
case below.) The first and last events in an episode are called its
Entrycon and Exitcon , respectively. Turning points are often triggered
by MTRANS events , since an act of perception , remembering or
communication can lead to a decision by an actor to do one of several
things.

Let ’s look at the episodes from $SUBWAY which describe the patron’s
entering the station , followed by a forking of events depending on
whether he has a token or not. In Figure 2.2(a), we sketch how t he
events in these episodes fit together. In Figure 2.2(b), we give the
definit ions of’ the events in more detail . The episodes shown in Figure
2.2  are labelled $SUBWAYEN TER 1 , $SUB WAYE NTER 2 and $SUBW A Y ENTE R 3, three
episodes from the $SUBWAYENTEH scene. (The labels on the arrows
connecting events in Figure 2 . 2 ( a )  indicate the causal relation between
the events . The types of causal relations used in SAM are briefl y
discussed in Appendix 1.)

~VZ~~~ ~~~~~ -



— 46 —

ShE 1
re

SB~~~~~ ~~~~~~~~~ 
Ne SBE5

SBE~4 SBE 6
IR

SgE7

+
SBE 8

4 
IR

SBE 9

[puts toket in turnstile]

Figure 2.2(a)
Interconnections among Events in $SUBWAYENTER

Events of’ $SUBWAYENTER1:
SBE1: [Patron uses steps]

((ACTOR &PATGRP <= >  (‘PTRANS’) OBJECT &PATGRP VIA
(‘TOPOF’ PART &STAIRWAY11 DIRECTION &DIR11)))

SBE2: [ar rives at concourse]
((ACTOR &PATGRP <~ > (‘PTRANS’)
OBJECT &PATGRP TO (‘INSIDE’ PART &CONCOURSE1)))

Events of $SU BW AYENTER 2:
SBE3: [Patron knows he has token]

((CON ((ACTOR &TOKEN IS (‘POSS’ VAL &PATGRP)))
TOWARD (‘MLOC’ VAL (‘CP’ PART &PATGRP))))

SBE4 : [goes to turnstile]
((ACTOR &PATGRP <=>  (‘PTRANS’)
OBJECT &PATGRP TO (‘PR OX’ PART &TURNSTILE)))

Events of  $SU BWAYENTER 3 :
SBE5: [Patron knows he doesn ’t have token]

((CON ((ACTOR &TOKEN IS (‘POSS’ VAL &PATGRP)) MODE (‘NEG’))
TOWARD (‘MLOC’ VAL (‘CP’ PART &PATGRP))))

SBE6 : [goes to cash ier]
((ACTOR &PATGRP < =>  (‘PTRANS’)
OBJECT &PATGRP TO (‘PROX’ PART &CASHIER)))

SBE 7 : [ gives cash ier the f a r e ]
((ACTOR &PATGRP < :> (‘ATHANS’) OBJECT &FARE TO &CASHIER))

SBE8: [Cashier hands over the token]
((ACTOR &CASHIER < :> (‘ATRANS’) OBJECT &TOKEN TO &PATGRP))

SBE9 : [Patron goes to turnst ile ]
((ACTOR &PATGRP <:> (‘PTRANS’)
OBJECT &PATGRP TO (‘PROX’ PART &TURNSTILE)))

Figure 2.2(b)
Episodes f r om $SU B WAYE NT E R Scene

L . -. ---— --—- —. - ~~~~~~~~~~~~~~~~~~~~~~~~



-.

~~~~

— 147 —

The collection of episodes given in Figure 2.2 is tied togethe r at
the event of the patron ’s arriving at the subwa y concourse (the pattern
labelled SBE2). The trigger for the turning point is the patron’s
realization tha t he either does or doesn ’t possess a token . At this
point , the action branches. Eventuall y , however , the patron ends up at
the turnst ile , and the branching paths converge. Why is having a token
more important at this point in the subway Script than , say , having the
Daily Racing Form? The answer is simply that the patron , having
executed $SUB WA Y many times , knows that without a token he will not be
able to get through the turnstile (legally, that is) ,  hence will not be
able to get on the subway. The foreknowledge of an obstruction to the
Script , based on possession of’ a token , is what makes a subway rider
check his pockets as he enters the station . It’s interest ing to note
that r iders often buy tokens in pairs , one for the tr ip out , one for the
retur n , to avoid having to get a token in both directions. This is
because using the subway is one way of doing the trip—Script , which
always includes a “going” part , and a “ret urn ” part , with the favored
means of returning being the same as was used to go.

Patterns f r om episodes come in three di f f e r e n t  var iet ies.  F irst
are patterns belonging to an event—chain which describes the main flow
of action through a Script . Secondly , there are patterns prov iding an
auxiliary condition which is necessary to keep the main action going.
Last , there are patterns for possihl e, but not necessary, outcomes of
ma in events, which re quire a conf irming episode bef ore  they are inf e rred
to have occurre d . This distinction among patterns becomes important
when the episodes r ef e renced by a story are insta ntiate d f o r  inclus ion
in the final story representation , since it tells the processor which
inference s to make.

A pattern which is part of the “backbone” of an episode , that is,
one which is on the direc t path of the action described by the episode,
is called a “mainpath” pattern . Mainpath patterns are always
instantiated , since they provide the necessary connection between events
which the story explicitly introduced . Patterns SBE1 and SBE2 in Figure
2.2 are mainpath patterns. Patterns giving auxiliary conditions which
are needed for a mainpath event to occur are called
“ auxil iary—inference ” patterns.  These patterns are instantiated
whenever the mainpath pattern they support is instantiated . Patterns
SBE3 and SBE5 are examples of this type . Note that auxil iary—inference
patterns may themselves be formed into causal chains of indefinite
length. Consider , for example , the episode from the Script describing
the patron ’s entering the subway. The important events in this episode ,
the main activity it describes , are the patron’s waiting at the
pla t fo rm , and getting on the train when it stops . A necessary condition
for his entering the subway, however , is that the train be there and the
door be open . The chain consisting of the trainman bringing the train
into the station , stopping it at the platform , and the conductor ’s
open ing the doors is an inf e r e nce cha in that terminates on the patron ’s
entering the car . This configuration of’ events is sketched in Figure
2.3 .

--a



_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V . -.- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 48 —

SBR 1: [tra inman brings train into station]
(( ACTOR & TRAINMAN <~ > ( ‘PTRAN S’)

OBJECT &TRA IN
TO (‘INSIDE’ PART &STAT I ON1 )) )

reê

SBR 2: [takes tra in to platform]
((ACTOR &TRAINMAN <:> (‘PTRANS’)

OBJECT &TRAIN
TO (‘PROX’ PART &PLATFORM 1)))

IR 
4

SBR3: [Conductor opens door]
((ACTOR &CONDUCTOR <~> ($OPENDOOR )))

LEADTO 1 SBHLI: [patron waits]

* ((ACTOR &PATGRP IS
((ACTOR &CARDOOR ISTOWARD (‘LOC’ VAL (‘TOPOF’

(‘LINK’ VAL (1)))) PART &PLATFORM1)))
MANNER ((&DELTIM1))

ENABLE 
/IR

SBR5: [Patron goes through door]
((ACTOR &PATGRP <~> (‘PTRANS’)

OBJECT &PAT GRP
VIA &CARDOOR))

re

SBR6: [Patron enters car ]
((ACTOR &PATGRP < = >  ( ‘PTRAN S’)

OBJECT &PATGRP
TO ( ‘INSIDE ’ PART

& SUB WAYC AR ) ) )

Figure 2.3
In ference Chain in $SUBW AY RIDE Scene

2 . 1 4 . 2  Connecting Episodes Together

Script—based story understand ing rel ies on identifying Script
episodes which a story references . Once these episodes have been
recognized and instantiated , the understander must make inferences to
interconnect the episodes. In our work with SAM , inf erences of  two
radically d i f ferent  types seemed to be required . We call them
“short—range” and “long—range” inferences.

_ _ _ _ _ _ _ _ _ _  __________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — V



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V

— 149 —

Short—range inferences preserve causal continuity between adjacent
episodes. Long—range inferences have more of the character of “demons”
[7), hanging around in wait for some interesting occurrence. As an
example of both kinds of inferences , consider the cluster of’ events
shown in Figure 2.4 which describes a crash in the accident Script ,
$VEHACCIDENT .

[Vehicle hits an obstruction]
(( ACTOR &VEHICLE <=> ( ‘PROPEL ’)

OBJECT &O B STHUCT I ON ))

LEADTO / \ \LEADTO
[Someone suffers physical damage] \ [Someone else perceives

\ the crash]
((ACTOR &BODYPART I STOWARD \ ( (CON ( ( < c >  ( $VE HA CCID E NT )) )

(‘PSTATE’ VAL &NEGVA L1))) \ TOWARD ( ‘MLOC’ VAL
I \ (‘CP’ PART & O N E ) ) ) )

RESULT 4 RESULT\

[affecting his health] [Vehicle is damaged]
((ACTOR &HURTG RP IST OWARD (( ACTOR &VEHI CLE ISTOWARD

( ‘HEALTH ’ VAL &NEGVAL2 ) ) )  ( ‘PSTATE’ VAL &NEGVAL 3 ) ) )

Figure 2 . 4
In ferences from a Crash in $VEHA CCIDENT

One possible result of the crash (the ‘PROPEL’ event) shown in
Figure 2.4 is that someone sees or hears it. This perception triggers a
call to police, ambulance company, medical examiner , e tc . ,  that is, to
the episodes which immed iately follow a crash . Therefore , this event is
a short—range inference , since it connects the crash to the things which
happen next .

Another possible outcome sketched in Figure 2 . 14  is that a bodypart
of someone in the car may undergo a negative physical state—chan ge , wi th
a resulting change in the person’s health . In the Script , however ,
nothing can be done about this until a doctor is called and arrives on
the scene. Note that the doctor’s arrival depends on the short—range
inference described above , since he will not be called until someone has
reported the crash , and the police and ambulance act. Once the doctor
is on the scene , t he decrement of  the person ’s ‘HEALTH’ leads to several
possible decisions. For example, he may be sent to the hospital by
ambulance , first aid may be administered at the scene , or , in the worst
case , the body may go to the morgue . This is a typical long—range
inference: an event which hovers around and has important , though not ,
immediate repercussions in the Script . The final result of the crash ,
the negative change in the phys ical state of  t he car , is also a
long—range inference , since the am oun t of the dam age won ’t become
important until the owner of the car begins negotiating with his
insurance company .

--- .~~~~~~~~~~~ - - .. —---— .~~—--- ~~~~—.-~~~ 



~~~~~~~~~~ _V ._~ -- -—- —V.—V—-—- .— --— —---—---- -V .---——  ~~~~~~~~~~~~~~~~~~

— 50 —

When should inferences like these be instantiated , and when not?
In our example of’ a car crash , the inference about damage to the car
should clearly always be made. It is an immediate result of the
‘PROPEL’ event. This type of inference is called an “immediate forward
inference ,” since it is instantiated when its causal predecessor , the
crash , is. An analogous inference is the “immediate backward
inf e rence ,” which is made when its causal successor is instantiated . An
example of this kind of inference occurs in the restaurant Script , when
a Conceptualization about the patron ’s leaving a large tip is processed .
In this case , the backward inference that the patron remembered that the
service was good would be made.

Returning to the crash example (Figure 2.4), when should the
inference be made about someone in the car’s having been hurt? Clearly,
when a confirming episode is instantiated . We would not infer that
someone was hurt just because there was a crash . However , if we read
that an ambul ance came to the scene and took someone away, the inference
should be made. In the ~erminolog y we have been using , the pattern for
the Conceptualization “ someone was hur t”  is an immediate bac kward
inference connected to the con firm ing episode about the ambulance.
Similarly, the inf erence about someone seeing the cras h an d cal ling the
authorities is a backward inference from episodes describing the police ,
ambulance , emergency squad , etc . ,  appearing at the scene of’ the
accident.

2.4.3 Pathvalue

In considering the episodes of a Script , we come up against the
fact that some of them seem to occur nearly all the time , while others
don’t happen so of’t4n, and , as a result , are not as ex pected as the more
stereotyped episodes . For example , when reading about eating in a
re staura nt , we always expect to hear something about ordering , since
this is a necessary prologue to eating . Expecting to hear about a big
tip, on the other hand , is contingent on fast or polite service, and
would not be predicted as strongly as a normal t ip,  which follows from
ordinary service. This observation motivates us to introduce the notion
of ~~.t~yal ue , a measure of we ight or importance assigned to an episode
which indicates roughly how normal or expected it is in the Script .

SAM ’s Scripts use several pathvalues. The most highly expected
happenings are called default. These are filled in whether the story
mentions them or not. For example , suppose we have:

John entered a subway station . He waited at the platform for
f ive minutes.

This sequence makes no mention of John ’s passing through the turnstile
and walking to the platform . Since these events would commonly be
assumed in this situation , the Script Applier needs a way to fill them
in in the story representation . This is done by marking these episodes
with the pathvalue “default.” The ma in heuristic followed in assigning
the default path in a Script is economy. In reading the above story ,
for example , the Script Applier would not f i l l  in the possible , but
extra , episode in which the patron buys a token . Similarly,  in a story

----- -4



~~~~~~~~~~~ - V V V V V V  -V .

— 51 —

such as:

John went to a restaurant. He ordered lasagna.

the Applier would infer that John found a table by himself and sat down ;
not that a hostess took him to one , or that he had to wait for a table.

These examples illustrate the basic principle of Script—based story
understanding : the filling in of useful —— though possibly mistaken —-
connecting inferences , but not too many of’ them , based on the pathvalues
provided by the person who wrote the Script . Inferences are an integral
part of understand ing . They are needed , for example , to answer
questions about things which were left out of a story . If we read :

John went to a restaurant. He had some lasagna.

the answer to the question “What did he order?” depends on an inference
about what is usual in restaurants.

On the other hand , any inference may be in error. A subway rider
in a hurry may go over the turnstile and run down the steps. Filling in
the default episode would then result in the mistaken inference that the
turnstile was used in the ord inary way. But it is precisely the
unexpectedness of a patron ’s going under the turnstile that would make
us expect that the story—teller would say something about it. For this
reason , we would not want our und erstander to fill in too many things,
since the possiblity for a mistake increases. We would not want to
assume , in reading the story above , that John had to wait a while for a
table , since this event , though possible , seems relatively improbable.
The presence of’ the default path enables SAM to connect up the sentences
of a story with plausible episodes. Since the episodes have been
“pruned ,” that is , contain the minimum number of inferences needed to
establish a causal connection between adjacent events , the Script
provides a built—in control on the am oun t of inferencing the story
understander must perform.

Another pathvalue , called nominal, is assigned to episodes which
are typical of the normal passage of events in a Script , but which don’t
occur often enough to be called “default.” Consider , for example,
another story about $RESTAURANT :

John went into a restaurant. The hostess seated John and gave
him a menu. He asked for some lasagna.

The Conceptual izations for the first and last sentences of this story
refer to the default path through the Script . The middle two sentences,
however , instantiate “nominal” deviations from the default path .

Sometimes things happen in a Script which depart from the highly
expected , normal course of affairs there. This kind of episode is
called an interference path . In $SUBWAY , the fact that the patron
doesn ’t have a token initially is a mild interference to executing the
Script . In $RESTAURANT , having to wait for a table is a blockage,
again , one that’s not too serious . Having no money is a more serious
in ter ference  to both these Scripts. In $SUB WAY , it means that a subway



-V . -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 52 -

rid e can ’t be gotten at all ( in  this case we say the Script has
“aborted”). In $RESTAURANT , the patron will be in trouble because he
can ’t pay for the meal he already has eaten . An “ abort” of $R ESTA UR ANT
can occur if’ the patron has to wait a long time for service , gets mad ,
and leaves the restaurant.

Many interference episc’ies in Scripts are provided with resolution
episodes which clear up the blockage , and get the Script back on to its
normal track. Patrons in. a restaurant , for exampl e, will eventua lly get
a table if they wait long enough. The fabled resolution for having no
money in a restaurant —— has it ever really happened? —— is to wash
dishes.

We must emphasize once again that not all possible events which can
interfere with a Script are actually in it. Only those events which
have repeatedly held up the normal flow of action in a situation will be
handled by the Script . As an illustration , consider the following story
fragment:

John was sitting in a theater. The roof caught fire.

we know that the roof’s catching fire will abort the theater Script in a
rather dramatic way. Nevertheless , $THEATER could not deal with the
second sentence at all , aside from identifying what “the roof” is. A
Conceptualization about a fire could only be handled by a larger fire
Script , which would know about the causes and results of fires, how
organizations such as police and fire department react, etc . (The f ire
Script is an example of a Script Situation. Situations are discussed in
Chapter 3 .)

2.4.4 More About Patterns

At this point , we ’re ready to describe more completely what the
patterns in a Script look like . Every pattern is specified by a set of
properties. There is a VALUE (the pattern itself’); a LABEL which names
the episode the pattern belongs to; a TOP which gives the Script ; a
LASTEVENT pointer to previous events which are connected to it; a
NEXTEVENT pointer to subsequent events ; a CAUSATION property which
defines the respective causal links to the NEXTEVENT5 ; and pathvalue
(PV) and pathtype (PT) properties. Consider the turning point labelled
(1) in Figure 2.1 , whose component pa tterns , as shown in Figure 2.2, are
SBE2, SBE5 and SBE6. In property—list format, these are:

SBE2: [patron enters subway station]
VA L UE ((ACTOR &PATGRP <=> ( ‘PTRANS ’)

OBJECT &PA TGR P
TO ( ‘PROX ’ PART &CONC O URSE 1)) )

LABEL $SUBWAYENTER 1 [the episode SBE2 belongs to]
TOP $SUBWAY [the Script the pattern is part of]
PV DEF [ the pattern is in a “default” episode]
PT MAIN [the pattern is on a main path through

$S UB WAY) 

~~~~~~~~.— V . .------ -— - - -.- -— -



V~ •. . V VVV 

— 53 —

LASTE VENT (SBE 1) [SI3E1 is this event’ s immediate causal
predecessor]

N EXTEVE N T (SbE 3 SBE 6)  [ SBE 3 and SBE6 immed ia tely f o llow]
CAUSATION (re re) [the causal connections between SBE1

and its successors]

SBE5 : [patron realizes he doesn ’t have a token]
VALUE ( ( CON (( ACTOR &TOKEN IS

(‘POSS’ VAL &PATGRP))
MODE (‘NEG ’) )

TOWARD (‘MLOC’ VAL (‘CP’ PART & P A T G R P ) ) ) )

LABEL $SUB WAYEN TE H 3 [SBE5’ s episode]
TOP $SUBWAY [ the Script it belongs to]
PV INT [this event is an interference to

$SUB WA Y]
PT IMMBAKINF [it is an auxil iary inference of

the backward variety, to be
instantiated whenever its

NEXTEVENT (SBE6) causal successor , SBE6, is]
CAUSATION ( I R )

SBE6: [patron goes to cashier]
VALUE ( ( AC TOR &PATGRP < :> ( ‘PT RANS ’)

OBJECT &PATGRP
TO (‘PROX’ PART &CASHIER)))

LABEL $SUHWAYENTER 1
TOP $SUBWAY
PV NOM [going to the cashier is a nominal ,
PT MAIN mainpath event in $SUBWAY ]
LASTEVENT (SBE2 SBE5 ) [preceded by the mainpath event ,

“ enters subway” and interfering
event “no token”]

NEXTEVENT (SBE7 ) [ succeeded by “ ask for token ”)
CA USATION ( I R )

The cluster of events defining this turning point contains a
default mainpath event (SBE2), a nominal mainpath event (SBE6 ), and an
interference event of the immediate—backward—inference (IMMBAKINF)
variety (SBE5). If a story contains a reference to a token—buying
+~ransaction , the Script Appl ier , based on the properties given above,
will make the inference that the patron didn ’t have a token . This
interference event is resolved by the event in which the cashier hands
the patron a token (SBE7). Pattern SBE7 would have pathvalue RES (for
“resolution”).

2.5 Scenes and Tracks

Episodes describing the different ways an important Script activity
can happen are grouped into scenes. Scenes are chunks of action that
follow one another in definite temporal order . In the restaurant
Script , for example, there are scenes for “entering the restaurant,”



— 54 —

“ordering ,” “preparing and serving the food ,” “eating” and
“paying/leaving .” I-low do we decide what goes in a scene? We said that a
scene comprises all the alternative ways that an “important” act ivi ty
can be accomplished . But how do we measure “importance”? The division
of SAM ’s Scripts into their scenes is based on three heuristics: one
baseu on clue s from the language , one based on unity of setting , and ,
most important , one based on the structure of the Script itself.

Lang uage itself often suggests the natural order in which Script
activities should be arranged . All languages possess special words and
phrases which refer , not to discrete actions, but bundles of action. In
English , for example , it is possible to talk about the “order ” or
“serv ice” in a restaurant, a “subway ride,” a “drive” in a car , “booking
a room ” in a hotel , or a “curtain call” at a theatr e . When we lay out a
Scr ipt for SAM , the first thing we do is to accumulate a Script—specific
vocabulary,  and use it to tentatively block out the scenes.

A second heuristic is just the old Aristotelian notion of the unity
of time— and place—setting . Events are likely to belong to the same
scene if they go on in the sane place at the same time . In a theater ,
for example , one class of activities goes on in the vestibule , another
inside the theater , yet a third in the lounge. In Scripts with vaguely
defined settings , the languag e often provides us with special phrases:
for example , “the scene of’ the crime/accident , ” “the night of the fire , ”
etc . Note that the place—setting need not have a fixed location. In
Scripts whose main event , or Maincon , is a PTRANS of people or goods ,
the scene shifts to the inside of the conveyance: “on the bus ,” “in the
dining car ,” etc .

The most important heur istic , however, comes from the type of the
Script . Consider , f o r  exampl e, the class of Scripts called
Tr ansac tions . A Transact ion descr ibes an intera ction between a member
of the public and an organization in which a service is provided in
return for payment. (See Chapter 3 for more details.) This kind of
Script always has a “kernel” of’ important events which we may labei with
the phrases Making the Contract, Providing the Service , and Fulfilling
the Contract. Addi tional ly,  t here may be “ancillary” events associated
with getting the actors in a Script into position for one of the kernal
events. Figure 2.5 (overleaf’) gives the structure of $RESTAURANT and
$SUB WAY , two typical Transactions. (The rough temporal order of the
Script is given from left to right.)

A scene also contains any well—understood interference events to
the scene Maincon, and their resolutions , if  any. Fo r example , the
ordering scene in $RESTAURANT would contain the episodes shown in Figure
2.6 (overleaf).

- V .  ~~~~~~~~~ ~~~~ -~~



— 55 —

Structure of $RESTAU RANT:

~~~~~~~~~~__ ~~~~~~~~~~~~~~ (Script Maincon)

$ORDE R $P REP ~~E $SERVE $PAY (Kernal events)
[Contract [Service rendered] [Payment

~~ ~made] received]

$ENTER $SIT $BRINGCHECK $LEAVE (Ancillary events)
[ se t s  up [ s e t s  up [en ds the

$ORDER ] $PAY] Transact ion]

Structure of $SUBWAY:

$RIDE (Sc r ipt Ma incon)

$BU~~O~~N 
~~ ervice~~endered ] 

(Kernal events)
[Contrac t mad e ,
payment rendered ]

$ENTER $WAIT $LEAVESTATION (Ancillary events)
[sets up getting [precedes [ends the

a token] Serv ice] Transaction]

Figure 2.5
The Structure of Transactions

(Wa iter sees patron) (Patron calls waiter )
I (Wa iter doesn ’t come)

(Waiter comes to table) (Patron bec!’mes annoyed )

(Patron orders X )  (Patron leaves restaurant )

(Restaur ant1~~~

”
X )  I (Restaurant doesn ’t have X)

(Waiter tells patron)

(Patron orders Y)  (Patron r~ads menu)

(Patron o~ders Y)
(Restaurant has 1)

( Wa iter acce pts order)

Figure 2.6
Ordering Scene in $RESTAURANT

L _ _ _  ~~~~~~
..- - . V_ V~~~~~~~~~~~~~~~~



~ -

— 56 —

Script scenes always occur in one or more definite sequences ,
called tracks. These are alternate manifestat ions of the Script ,
differing in the setting and in minor features of the roles and props .
Although a story about a Script will pick one track and stay in it, the
tracks all have the same Maincon , and share one or more scenes in
common. So, for example , eating in McDonald’s and Le Pavillon share
recognizable seating , ordering , paying , etc., events , but contrast in
the fanciness of the setting , the price and type of the food , num ber of
restaurant personnel , sequence of ordering and eating , etc . In the
train Script $TRAIN , there are “commuter ,” “long—distance” and “cargo”
tracks.

An important decision that the Script Applier has to make is which
one of the tracks to select. Sometimes it can do this on the basis of
setting or features of a role filler : “John went into Burger Chef;”
“John got on the sleeper car .” Other times the decision has to be
delayed : “John got on the train in New Haven . He travelled to (New
York/Miami) .“ Sometimes the best it can do is to pick the “default
track” of the Script , describing “things in general” in the situation in
a manner analogous to the “default” episodes of a track.

The scenes of a track follow one another in a definite sequence.
Some scenes, however , contain episodes which are “cyclic ,” that is,
reusable. In $SUBWAY , for example , several trains may arrive and depart
while the rider is waiting. Similarly, once the rider gets on a train ,
arriving at intermediate stops is a cyclic episode of the $SUBWAYRIDE
scene. Each arrival event predicts another until the destination is
reached . (These episodes were labelled (2) and (3) in Figure 2.1.)
Another example of a scene containing cyclic episodes is the arrival of
guests at a birthday party. The guests cone in their own time , and all
go through the routine of greeting the host , depositing their coats ,
handing over the present , etc .

2.6 Permanent Memory Structures

Patterns and their interconnections make up the bulk of the Script
database . Since there is so much of this information , the Script
Applier load s only as much of it as seems necessary at any given point
in story understanding . (How this is done will be discussed in Chapter
4 . )  Static facts about a Script which are used all the time , on the
other hand , reside permanently in active memory.

One suc h body of  inf ormat ion is the “global” description of’ the
Script’s structure , specif ying what its tracks ar e, how each track
breaks down into scenes and episodes , and what roles and props appear in
the episodes.  The Scr ipt App l ier also needs to know the Entrycon ,
Maincon and Exitcon for each episode , and default time— and
place—setting information . Another permanent memory structure comprises
definitions of the Script variables in terms of conceptual class and
function markers , and tells how to make a token for a variable which has
only been implicitly referenced by a story. All this information is
contained in a hierarchical structure which is accessed through the name
of the Script .

_ _ _  r — --



..- V .- ... 
_

— 57 -

2.6 .1  Setting and Point of View

Let ’ s consider first the static information about the Script ’s
settings. Stories are greatly concerned with making clear where things
happen , inserting “in” or “at” phrases when the setting of an event
isn’t obvious. Sometimes these locales are only referred to in
“functional” terms, as in the phrase “the scene of’ the
(crime/accident).” A Script—based story understander , accor dingly , will
have to have a means for recognizing and using setting information.

Every event in a Script happens in a prescribed setting . Settings
are important in Scripts for several reasons . First of all , the
existen~ e of a well—defined local e for a bundle of act ivi ty is one
heuristic for defining the scenes of a Script . For example , consider a
building , suc h as a bank or a subway station , where a Script , or part of
a Script , take s place. In a ban k , the room with the tellers’ counter (a
piece of “furn i ture”) is the place where most of the transactions
characteristic of the bank Script happen . There is also a room where
loan of f icers do the ir “thing” (that is , their Script) ,  and a room where
the vault and safe deposit boxes are. Each of these places is the
setting for a different scene of $BANK . Some of them may physically be
part of the same room . For example , the loan of f icer of t e n  sits in the
room where the tellers’ cages are. However , these two settings are
conceptually quite distinct because of the different pieces of the
Script associated ‘with them .

In the subway Script , there are three important settings, each
associated with a scene of the Script . The $S1JBWAY ENT EB and $SUB WAYEXIT
scenes go on in the originating and destination stat-ions; and the
$SUBWA YRIDE scene is acted out inside a subwa y car . The episodes of a
scene , in turn , have their own settings. The “ acquiring a token ”
episode , for exam ple , is set in the concourse of the originating
station. (This episode was labelled $SUBWAYENTE R 3 in Figure 2 . 2 . )  This
information is accessed through the Script name as follows :

$SUH WA Y :
PARTS ( $SU B WAY1) [Defaul t trac k of $SUBWAY]

$SUBWA Y1 : 
-

PA R TS ($SUB WA YENTER $SUBWAYRIDE $SUBWAYEXIT )
[Scenes of the defaul t track]

$SUBWAY ENTE R :
PARTS ($SUB WAYENTE R 1 $SUBWA YENT ER 2 $SU BWAYENTER 3)
SETTING ( ‘INSIDE ’ PART &STAT ION 1)

[Episodes and setting of entering scene ]

$SUBWAYENTER 3 : [Get—token episode]
ENTRYC ON (SBEÔ ) [First event]
MAINCON (SBE8) [Ma in event]
EXITCON (SBE9) [Last event)
SETTING (‘INSIDE’ PART &CONCOURSE1) [Setting]

For each episode and s’~ene , the static place—sett,ing information
provides a quick answer to the question “Where did this event happen?”



— 56 —

For example , the question “Where did the patron get a token?” would be
answered fr om $SUB WAY , as either “in a subway station ” or “in a
subway— station concourse .“

Anot her reason for the emphasis on “place” has to do with the roles
of a Script . Because roles are so important, SAM keeps trac k of  the
places where they have been by updating a Locale—list atta.~hed to the
token for a person or group after every PTRANS which is instantiated .
Addi t ionally,  every person has two distinguished locales, “home” and
“ job ,” which point to the two most important Scripts the person engages
in.  A person ’s possession ’s , the things that move around with him , are
implicitly located by the Locale—list . Here is an example of the
information in PP—Memory that  would be associated with “Dr Dana
Blauchard , of 593 Foxon Rd , New Haven , who ‘works at Milford Hospital”
aft er the sentence “Dr Blauchard took a suitcase to Bridgeport” is
processed :

1-IUMO:
CLASS (#PE R SON )
SURNAME ( BLAUCHARD )
PERSNAME (DANA )
TITLE (DOCTOR )
ADDRES S (#LOCAL E STREETNAME (FOXON ROAD )

STREETN UM BER (593)
PARTOF (#POL I TY POLTYPE ( ‘MUNIC’ )

POLNAME (NEW H A V E N ) ) )
EMPLO YER (#O RGAN IZA TI ON ORGNAME (MIL F ORD)

ORGOCC ($H OSP I TAL ))
POSSESSES (#PH Y SOB J TYPE ( ‘SUITCASE’))
LOCLIST ( ( T IN E 1 “BRIDGE P O R T ” ) ) )

(Actually , the PPs f o r  “New Haven ,” etc., would be assigned their own
tokens. )

What about organizations? Since organizations don ’t move , the
Script knows about one distinguished place where its “ residence” is. If
the residence is a building , there are also locales for the various
“ rooms ,” wi th their associated Scripts (or  Scr ipt scenes) .

Another kind of setting info rmation is time—setting . Every track
and scene of a Script is assigned a default time— span which defines how
long the associated activities should take . This in formation coul d be
used to answer questions suc h as “ How long does it take to buy a
newspaper at a newsstand?” or “How long does it take to get to Mi am i by
train?” in stories which did n ’t include this information explicitly.

SAM ’ s Scripts use a crud e time—scal e for the defaul t  spans:
“ short” (order—minutes ) , “daypart” ( order—hours ) , “day ” and “weekpart”
(order—days ) .  As an example of how this in formation is structured ,
consider the time-span that the “Acquire a token ” episode in $S UBWAY
would be expected to take . As with the place—setting , this is derived
via the Script name:



~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ .

— 59 —

$SUBWAY :
PARTS ( $ SUB WAY 1) [Default  track of $SU B WAY]
DEFr IM E ( ‘ORDE R HOU R S ’) [Default  time span)

$S UB WAY 1:
PA RTS ( $SUB WA Y ENTER $SUBWA YR IDE $SUBWAY E X IT )

[Scenes of the defaul t  track]
DEFTIM E ( ‘ORDERHOU R S’) [De faul t time span]

$SUBWAYENTER :
PARTS ($SUBW AYENTER 1 $SUB WAY ENTER2 $SUBWAYENT ER 3)
DEFTIM E ( ‘ORDERMINUTES ’)

[Episodes and time span of entering scene]

$SUB WA YENT ER3 : [Get—token episode]
ENT R YCON (SBE6) [First event]
MAINCON (SBE8 ) [Main event]
EXITCON (SBE9) [Last event]
DEFTII4 E ( ‘ORDERMINUTES ’) [Time span of episode]

Another important static datum about a Script is its “ point of
view. ” That is , whose Script is it , or , equivalent ly,  whose stand point
is a given story being understood from? Each of the possible
participants has a d i f ferent  version of the Script . An attempt to model
all these viewpoints runs into several problem s , however . From one
point of view , the activities of other actors may not be visible. In
the subwa y Script , for example , the trainman who runs the train never
really sees the passengers get on and sit down . A patron in a
restauran t may never see the person who prepares the food . In both
cases , however , these people are aware intellectually of the other
actors and what they do , so there is a sense in which the Script is
shared . A more serious problem is tha t certain roles in a Script have
specialist knowl edge which the others do not share . The pilot of an
airplane knows an enormous amount about the mechanics of flying and the
details of the route , which his passengers and the rest of the crew
don ’t share.

Every Script in SAM , l ike $SUBWAY , which describes an interaction
between an organization and a member of the public has distinguished
“main character , ” the patron , whose actions the Script concentrates on.
(Scripts of this kind are called Transactions.) In the subway Script ,
for example , this would be:

$SIJBWAY:
PARTS ($SU BWA Y1 ) [Defaul t track of $SUBWAY ]
DEFTIM E ( ‘ORDERHOURS ’) [Defaul t time span]
MCHA R &PATG RP [Main character)

Since stories referenc ing the Script describe interactions between the
main cl~ • ‘acter and the other roles , the point of view the Script take s
is that of an outside (but not omniscienti) observer , who knows
something about what each of the roles in the Script is expected to do.
For exam ple , this observer , using the plane Script , woul d know tha t the
stewardess is supposed to serve a meal at some point while the plane is 

~~~~~~~~~~~~~~~~~~~~~ . V__ ~~~~~~~~~~~~~~~~~~~~~~~~ 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~~~ 

— 60 —

in the air ; but not too much about how the food is taken aboard the
plane and prepared .

2 .6 .2  Script Preconditions

Another type of static info rmation contained in Script Transactions
comprises the oreconditions for the Script . Preconditions are important
conditions about the main character ( i .  e . ,  the patron) which SAM
assumes are true when the Script is activated , provided the story hasn ’ t
said something to the contrary.  For exampl e , if an ambulance is sent
somewhere , SAM assumes that it is going to pick up someone who has been
injured or is sick.

The most important precondition stored for a Transaction assumes
tha t the main actor is initially in a state which execution of’ the
Script Maincon will “improve. ” When people enter a drug store , for
example , we assume in the absence of other info rmation that they want to
possess what the store has to sell. At Script activation time , t his
object may be bound to a prev iously mentioned PP , as in “John needed
some cough drops ; ” or only instantiated by “ function ,” here , “ a drug .”
(The inference that $D RUGSTO HE will  be relevant given the expression of’
John ’s want is one that a more general Planning mechanism would have to
make , rather than a Script Applier . Such a planner would consult its
list of common methods for achieving universal human goals such as
preservation of hea l th . )  Another important precondition is tha t the main
character has some money to pay for any purchases or services the story
may mention.

The existence of a Precondition linked to the Script Maincon in
this way provides a means by which a Script Appl ier , working under a
rudimentary Plan—type story understander , could deal with a statement
such as:

I went to three drug stores this morning .

This is an example (due to Abelson [1]) of a person ’s communicating not
only the actual events of’ visiting three drug stores, but also a failure
of $DRUGS T ORE in at least f irst  two cases.

Let ’ s assume we had prev iously read “I need ed some cough drops .”
Our Planner would presumabl y recognize this as a manifestation of the
“ preserve—health” drive that people share , and trigger pr edictions about
what might be done to get cough drops . A possible plan would be to
execute $DRUGSTO RE. If the next sentence were :

I went to a drugstore this morning .

the Script Appl ier would take control . Activation of the Script would
cause the Appl ier to assume tha t :  ( 1 )  the patron needed cough drops
( the Precondition);  and ( 2 )  the store was able to provide it ( the
Maincon ) ; as a result of which ( 3 )  the cough drops would now be am ong
the patron ’s possessions. The “three—drugstores ” example , on the other
hand , would be analyzed as:

~ 

~~~~~——~~ -—-- V_ V~~~~~~~ 



— 6 1 —

I went to a drugstore this morning
then

I went to another drugstore this morning
then

I went to another drugstore this morning

Processing of the Conceptualization correspond ing to the first visit to
a drug store would result in the same three assumptions as above.
Read ing the second. sentence would result in reactivation of $DRUGST ORE ,
but this time processing of the Precondition would be stymied by the
fact that the patron already had acquired the needed drug . Althou gh the
current  version of SAM would boggle at this point —- it has no
arrangements for back—up —— , one essential ingred ient for understand ing
what must have happened is already available. A vital assumption about
what must be true when people go into drug stores has been contradicted .

The best way of viewing Script preconditions is that they are
useful “traps ” for extra—Scriptal “demons ” set up by unusual happenings
earlier in a story. In the “three—drugstores” example , the demon is
onl y implic itly present , since we don ’t know something unusual happened
in the first drug store until the second one is ment ioned . Tn more
usual circumstances , demons are activated by the expl icit negation of
the Precondition in the text , or by a Conceptualization which is an
inference from such a negation . In entering a birthday—party Script ,
for ex ampl e , we usually assume that a partygoer has a present. If some
external event , say losing the present or fo rgetting to buy one , has
happened , then this Precondition is direct ly  negated by the fo rmer
event , negated by inference in the latter case . “Losing ” a present has
as its immediate result that the present is no longer POSSessed ,
“fo rgetting to buy ” mean s that the intention to ATRANS a present to
oneself never was carried out , so the POSSession , by inference , never
occurred , either .

As an example of this  use of’ preconditions by the Script Appl ier ,
consider the following story,  part of a longer text which SAM has read
~Note 3) :

John got on the subway. On the subway, his pocket was picked .
He lef t  the subway and entere d a res taurant .  He had some
lasagna . When the check cam e , he discovered he couldn ’t pay.

The pickpocketing event imbedded in $SUBWAY is inferred by the Script
Applier (using its pickpocke t Script ) to have removed money from the
main character . This inference hovers aroun d , waiting for the
activation of a Script in whic.i the possession of money is assumed .
$RESTA UR ANT is such a Script , and the prediction of trouble
—— interference events in the Script —— when the patron goes to pay for
the meal is mad e , through the violation of the Script Precondition , at
Script activation time .

3. Output produced by SAM for this story is shown in Appendix 2.
Detail s on the actual processing of a Precondition by the Script Appl ier
are given in Chapter 4 .



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

$SUBWAY , then , as a typical Script , has the following
preconditions , accessed , as usual , through the Script name :

$SU BW AY:
PA R TS ( $SUBW A Y 1)
DEF TIM E ( ‘ORDERHOURS ’ )
MCHA R &PATGR P
PRECONS (SBPC 1 SBPC2)

SBPC~ : [Pat ron has amount of f a r e ,
( ( ACTOR &FARETOK E N or a token)

IS (‘POSS’ VAL &PATGRP)))

SBPC2: [Patron wants to be at dest inat ion]
(( CON (( ACTOR &PA TGRP

IS (‘LOC’ VAL (‘PROX PART &DEST))))
IS ( ‘GOAL’ PART & P A T G R P ) ) )

The first precondition asserts that the patron will possess either money
or a token initially. &FARETOKEN is a special Script variable which is
designed to acce pt either money in the amount of the fare or a token :

&FARE T OKEN :
CLA SS (#MONEY )
MONE YTYPE ( ‘CURRENCY ’ ‘TOKEN ’)
DUMMY T

(Special checks can also be mad e , via a pattern—invoked function , tha t
the amount of money possessed by the patron is enough to pay for the
f a r e , tha t his money isn ’t in the form of a large bill , which cashiers
won ’t change, etc . This process is described in Chapter 4.) The second
precondition asserts that the patron wants the resul t of the Script
Ma incon , to be at the destination location , to com e true .

2 .6 .3  Script Headers

A final type of permanent memory structure associated with a Script
is the set of patterns for events which “ invoke” or “initiate” a Script ,
tha t is, make ava ilable its predict ions about what should happen next in
the context. (Deciding when a Script has been “invoked ,” i. e., t hat
additional Conceptualizations will occur which refer to the Script , as
opposed to “instantiated ,” i. e., def initely known to have occurre d , is
a tricky business. We will return to this in Chapter 4.) These
patterns , which are called Script Headers , are the onl y patterns f rom
the Script that are present in active memory if the Script has not been
accesse d by the Conce ptua lizations rea d so f ar . It ’s clear that the
entire Script should not be present. This makes neither psychological
nor computational sense . The Headers are the tip of the Script iceberg.

What goes into a Header? The basic rul e is that a complete event
is needed to bring the Script into play . That is, a Conceptual izat ion
should be recognized rather than just a PP. For example , $RESTA URANT
shoul d not be invoked just because “a restaurant” is mentioned . This is
not to say that Script—related information should be completely



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— 63 —

suppresse d , because it may be useful in later stages of understanding.
For example, in “I met a truck driver in a diner ,” remembering the role
the person had in $TRUCK may be crucial to understanding what he might
say or do later. (Note , however , that the necessar y inf erences could
not , in most cases , be provided by a Script Applier . For example,
understan ding a sentence such as “the driver said that he hated Commies
and homosexuals” would require knowledge about the personal belief
system a truck driver is likely to have , rather than knowledge about
what the driver does as part of $TRUCK.)

Conce ptual izations are produced , not only by surfac e clauses , but
also by certain kinds of prepositional phrases. Such phrases can act as
complete thoughts by modifying the Time— or Place—Setting of the main
event. Consider the following sentences:

(2.5) Mary was killed in an accident
(2.6) At the hot dog stand John asked for a Coke.

Example 2.5 can be paraphrased roughly “When there was an accident , Mary
was killed .” The top— level event is placed into some temporal relation
to the Script $ACCIDENT. Similarly, the time of the “asking”
Conceptualization in Example 2.6 is modified by the Locale—specification
“When someone was at the hot dog stand .”

Time/Place modifiers like these , though the sentence may not
explicitly say so, are nearly always connected causally to the main
events . Ma king the causal connect ion is an inf erence that episodic
memory, tha t is, a Script Applier , has to be pre pare d to make . Not ice
that the ac tua l temporal order of  the main and modi f ying events may be
ambiguous. In Example 2.5 we know that that the death occurred after
the crash . In the following , however , (an example discussed by Riesbeck
in [36]):

(2.7) While leaving the bus, Mary thanked the driver .

it seems clear that the physical event of leav ing occurs after the
thanking . Howe-.’er , there is a sense in which “leaving” in this example
ref e r s  to the whole complex of  act ivities assoc iate d with gett ing of f  a
bus , or , as we woul d say, with the “leaving” scene in $BUS. In SAM ,
phrases such as those occurring in Examples (2.5—2.7) are analyzed into
Conce ptual izations of  the f o r m  “When X , 1.” If a Script is active , words
suc h as “accident” and “leaving” are analyzed into the associated
Scripts: $VEHACCIDENT and $BUSLEAVE , respectively. The pattern for X
then calls the appro pr iate episodes into act ive m emory , and the event Y
is found .

Script Headers come in four varieties , which are ranked on the
basis of how strongly they predict that the associated context will be
instantiated . The first type is called a Precondition Header (PH)
because it triggers the Script on the basis of a main Script
Precondition being mentioned in the text. (A Precondition is an
important global condition which SAN assumes to be true when a Script is
act ivated , unless the text says otherwise.) As an example , t he sentence
“John was hungry” is a PH for $RESTAUHANT because it is an enabling
condition for the main Conceptualization (INGEST food) of the Script. A

— V



— 64 —

story understander having access to both Scripts and Plans would make
the predict ion (a relatively weak one , to be sure) that $RESTAURANT
would come up because this is known to be a common means (in the
parlance of Schank and Abelson [314], a Named Plan) for getting fed . A
related PH would be an actual statement of the goal t he Script is
normall y assumed to ac hieve , or one from which the goal could easily be
inferred . In “John wanted to eat a hamburger” or “John wanted some
Ital ian food ,” the inference chain to the Script Precondition is
relatively straightforward . Interestingly , world knowledge about the
existence of restaurants specializing in Italian food would make the PH
prediction about this version of $RESTAUFtANT more forceful than usual.
Another kind of PH occurs in Story 1.3 (Chapter 1 , p. 19). The phrase
“at the invitat ion of  Communist China ” triggers the prediction that the
Premier of Albania will indeed want to instantiate the state—visit
Script , since inv itat ions are often accepted . Patter ns for PHs are
explicitly stored in the Script , since SAM does not have the ability to
use Plans.

We said that P115 are only weakly predictive of their Scripts.
There are two reasons why this is so. The first , of course , is that
many Scripts have similar PHs. If we read “John was hungry” in a null
context , we can ’t be sure that he inten ds to instant iate $REST AURANT .
If he ’s at home , he may just go to his refrigerator to get something to
eat , or go to a supermarket to buy some food . The second reason is
that , even if the predicted Script does occur , t here may be a
substantial delay between the announcement of the P11 and the
instantiat ion.  This is especially true of socially ritualized
situations such as parties , marriages , and vacations which require a lot
of  pre parat ion. If  we have “John and Mary wanted to get married ,” it is
possible that $MARR IAGE CE RE M ONY will occur immediately. Perhaps they ’ll
go to the courthou se or to a marriage parlor (the $ C I VI L CEREM ONY an d
$QUI C K I E C E R E M O N Y  tracks of  the Scr ipt , respect ively) . But the
church—ceremony version of the Script is the one most often used , and
this entails elaborate preparations which take some time. All the
things which happen , arranging for the cer emony and reception , getting
an organist and photographer , issuing invitations , etc., do point toward
the culminat ing Scr ipt , however , so it must be available.

A secon d type of  Hea der making stron ger pred ict ions than a PH about
the associated context is called Instrumental (114). An 114 commonly
comes up in inputs which r ef e r  to two or more Scr ipts , of which one at
least can be interpreted as an “instrument” for the others. For
example, in “John took the subway to the restaurant,” both $SUBWAY and
$RESTAURANT would be predicted , since subsequent in puts about either
make perfectly good sense. Here, the reference to $RESTAURANT is
ant icipatory,  and $SUBWAY is a recognized instrumental mean s of reaching
locales in which more important Script goals can be expected to be
accomplished . The ways in which Scripts are associated with one another
in Instrumental patterns in Script Situations will be discussed in
Cha pter 3.

The notion of a time—plac e Setting for a Script leads to the third
and most strongly predictive type of Header , the Locale Header (LH). We
know that many organizations have a “ residence” or “ place of business”
in which they characteristically carry on their activities. They may



-

— 65 —

have distinctively designed ornaments or buildings (e .g ,  a pawn shop ’s
sign , a barber ’s pole , or McDonald’s Golden Arches) which signal their
Script to the world . When an understander reads that an actor is in the
proximity of the residence , or , better yet , inside the residence , its
expectations about the occurrence of the Script are correspondingly
reinforced . Examples of LH’s are “John went to the soccer field” and
“John went into the Museum of Modern Art.”

The f inal type of  Hea der is a f l a t  assert ion that the Scr ipt
occurred. Examples include:

There was a car accident.
An earthquake struck.
John went on vacation.
Mary went sailing.

Such Direct Headers (DH5) are the top—level patterns in Scripts. DHs
are always the first patterns to be checked in a context , since they
have the maximum pred ictive power. They are matched against even in an
active Script , since sentences (especially from newspaper stories) may
use them to refer to a role or other attribute of’ the Script. Consider ,
for example , phrases suc h as “a two—car crash ,” “a violent hurricane ,”
“a three—day state visit .” A special case of’ the DH occurs for a Script
which can be initiated by “remote control ,” that is, by a letter or over
a phone . If  we read , for example: “John called the police” or “John
ordered a lawnmov er from the Sear ’s catalo g” , we infer, if nothing else
is said , tha t the organizations in quest ion will execute the appropr iate
track of the ir Script .

Schank and Abelson [314) have introduced another kind of Header , the
Internal Conceptualization header . In the example:

John went to visit his friend Mary who was a waitress. While he
was waiting for her , he ordered a hamburger.

the fact tha t a role name in $RE STA UR ANT has been mentioned is given as
a reason for pred icting that the Script will be invoked . This is a very
subtle question , but one can argue that the prediction is made at least
as much on the basis of “where she is” as “who she is,” that is, the ICH
is really an LH.

People characteristically execute Scripts in two important
sett ings , one corresponding to their role in a family, and one f o r  the ir
job. Note in the above that the use of the word “visit” suggests that
the person being visited is in the usual place. An additional specifier
is needed if this is not the case , as in “I visited Mary in the
hospital .” Because of these default settings, it is pe rf e c t l y  possible
to replace the second sentence with “While he was waiting for her , her
mother served him a hamburger.” Here, the $RESTAURANT place—setting has
been overruled by the $HcZIE setting because the role “mother ” has only
one attached Script locale. Even in these liberated times, home and job
are the same for many mothers. Time—Setting can have a similar effect:
“John went to visit his friend the mailman one evening .” Since we know
tha t m a ilmen work onl y dur ing the day ,  it seems clear that the home
setting is the one being visited .



— 66 —

SAM does not use ICHs , as such. The mention of a role in a
Conceptualization results in a processing suggestion that the associated
context be tried . The actual initiation of the Script depends on the
Conceptualization’s matching either a PH, an 111, or an LH. So, in the
sentence “A mailman went into a restaurant,” both $RESTAURANT and
$DELIVERMAIL would be activated via LH. These would be held in
“abeyance” (more about this in Chapter 14) until a further input
clarified the issue. If the sentence were instead “A mailman went into
a restaurant for lunch ,” the fact that a PH and an LII for $RESTAURANT
have been matched would cause $RESTAURANT to be invoked . $DELIVERMAIL
would not be seen .

2.6.3.1 Example Headers for $SUBWAY

Here are the Headers of the subway Script:

$SUBWAY :
PARTS ($SUBwAY1)
DEFTIME (‘ORDERHOURS’)
MCHA R &PATGRP
PRECONS (SBPC 1 SBPC2)
INITQ (SBIN1 SBIN2 SBIN3 SBIN4)

SBIN1: [Direct Header]
( ( < :>  ($SUBWAY MAIN &PATG RP PTRO RG &SUBORG

ORIG &ORIG DEST &DEST )) )

SBIN2: [Locale Header]
( ( ACTOR &PATGRP <~ > (‘PTRANS ’)

OBJECT &PATGRP
TO (‘INSIDE’ PART &STATION 1)))

SBIN3: [Instrumental Header]
((ACTOR &SUBORG <=> (‘PTRANS’)

OBJECT &PATGRP
TO (‘PEOX’ PART &DEST)))

SBIN14: [Precondition Header]
((CON ((ACTOR &PATGR P => (‘PTRANS’)

OBJECT &PATGRP
TO (‘PROX’ PART &DEST)))

IS (‘GOAL’ PART &PATGRP)))

The DII is intended to handle Conceptualizations corresponding to inputs
such as “John took a subway ride to Coney Island .” The LII takes care of
sentences such as ‘~John walked into the Boro Hall subway station.” The
III will handle Conceptualizations such as “The lIlT took John to Shea
Stadium.” Finally, the PH would match Conceptualizations for sentences
such as “John wanted to go downtown” . 



— 67 —

2.7 Summing Up

To close out our discussion on how Scripts are structured, let’s
present a version of the complete subway Script in simplified CD
representation:

Script: $SUBWAY
Script Variables: patron , cashier, trainman , conductor , turnstile, platform ,

train, subwayoar, seat , strap , fare , token.
Default Settings: originating and dest l.nation station , originating and

destination concourses, inside of subwaycar .
Default Time—Span : on the order of hours
Preconditions: patron POSS money/token

AT (destination) IS GOAL (patron)
Headers: patron takes a subway ride [DII]

patron PTRANS into subway station [LII ]
subway PTRANS patron to destination [PH]
AT (destination) IS GOAL (patron)

Scenes: entering, going through turnstile, arriving at platform;
getting on subway, sitting down , riding subway to destination;
exiting from subway , leaving station.

Episodes: Entering Scene:

[entering station]
patron ATTEND station
patron PTRD~NS to PROX (station)
patron PTRANS via steps
patron PTRANS INSIDE (station)

[buying token) I
token IS POSS ( patron)

\NEG [go directly to
turnstile)

token IS POSS (pa tron)
patron PTRANS to

PROX cashier
patron ATRANS fare

to cashier patron PTRANS to
cashier ATRANS token PROX turnstile

to patron
patron PTRANS to

PROX turnstile

[go to platform)

patron P~RAN S token
to INSIDE (turnstile)

patron PTRANS via turnstile
patron PTRANS via steps
patron PTRANS to

PROX platform

- V



~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 68 —

Riding Scene:
[train comes to platform]
trainman PTRANS train

to INSIDE (station)
trainman PTRANS train

to PROX (platform)
[patron waits for train) cond uctor <:> ($OPENDOORS)
patron WAIT AT (platform)

I 
[r ight train?]

[enters car] 
~patron PTRANS to

INSIDE (car)
patron ATTEND [sits down]

INSIDE (car) patron MTRANS
( patron PTRANS to seat

CAN )
[uses strap)
patron MTRANS patron PTRANS to seat
(patron PTRANS patron MOVE to seat

to seat CANNOT )

patron PTRANS to strap
patron GRASP strap

[train moves] 4 ftrainman PTRANS train
from platform

trainman PTRANS train
from station

trainman PTRANS train
to (another) station

trainman PTRANS train
to (another) platform

conductor <=> ($OPENDOOR )

[destination?]

Exiting Scene:

patron PTRANS from platform
patron PTRANS via steps
patron PTRANS to concourse
patron PTRANS via exitgate
patron PTRANS via steps
patron PTRANS from station

_____________________________________ 
~~~~~~~~~~~~~



~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Chapter 3
Ma naging Scripts

3.1 Why This is a Problem

How do you know when you ’re in a Script? Suppose things have been
going smoothly along inside one Script . What tells you when to
terminate it and start up a new one? Is it possible to “ suspend” a
Script , bring in a new one to take care of things for a while , then
restart the old one later? All these questions, considered from the
standpoint of designing a computer program for story understanding , are
facets of what we call the Script Management Problem .

We wanted to give SAM a sufficient number of Scripts so that it
could handle texts from a variety of knowledge domains. We also wanted
to put enough detail into the Scripts so that SAM could achieve a
reasonable depth of comprehension in each domain . In doing these
things, however, we found that the benefits of having Scripts were
counterbalanced to some extent by the problems they cause .

We have argued that the most important advantage in having a Script
is that it defines a context inside which understanding can proceed . A
lot of what we do is governed by rules . There are natural forces which
act in invariable ways. A glass released will accelerate toward the
ground , every time . Hurricanes are always accom panied by high wind s and
rain. Institutionalized social situations have a similar character of
rigidity . If a person enters a restaurant or a subway , he knows , from
long practice, the kinds of things he must do to fit in properly. If
working in a restaurant or a subway is his job, his actions are even
more circ umscr ibed . In each of these cases , we see a Script in action .

We are not claiming that ~j~j of what we do is governed by Scripts.
The point is that possession of the appropriate Script can keep us from
drowning in irrelevant detai~ , because it helps us to focus on what is
important. Suppose , for example , someone is watching a football game ,
and one team scores on a long pass. The whole flurry of activity, which
would seem disorganized and confusing to someone who has never seen a
game before , is reduced in the mind of the knowledgable viewer to the
concept “touchdown .” Extraneous details are eliminated , in all
likel ihood they are never seen , because the understander knows the
situation , what its rules are , what can happen and when. Someone
without the knowledge to guide his attention sees, in Will iam James ’
phrase , only “a bloomin ’, buzzin’ confusion.” The application of Scripts
in SAM , we believe , gives it the attention—focussing device it needs to
follow what it reads.

We said , however , that Script—based understanding runs into certain
problems. One problem in having a number of Scripts around is obvious.
The more Scripts available, the harder it is to decide which one to look
at next. This is a problem initially, since we must decide which Script
to bring in first. It is a more serious problem later , when a story
input no longer seems to fit in the Script which has been active.



— 70 —

Another problem with managing Scripts is tha t they can cod ify
knowledge from very d i f fe rent  domains. Consider , for example , the
different  kinds of knowledge needed to understand the following two
sentences :

( 3 . 1 )  Hurricane Esther lashed the North Carolina coast with
high winds and rain last night .

(3 .2 )  Premier Enver Hoxha and Mrs Hoxha arrived in Peking
Sunday at the invitation of Communist China .

Example (3 .1)  is about a natural phenomenon , a hurricane , and its
characteristic agents. Understanding ( 3 . 1 )  presupposes some knowledge
of physical causality, as manifested in weather patterns . For example ,
we know tha t the hurricane did not l i terally “lash” the land . What is
being described are ord inary natural events , wind and rain , but of an
unusual severity.

Ex ample (3 .2)  is a whole world away from this kind of “ naive”
phys ical knowl edge . It refers to a highly ritual ized social occasion , a
state visit , and summons up all kinds of information about who the
lead ing actors are likely to be and what they are probably going to do.
We know , for example , that the Premier , as leader of his nation , was the
one invited , although both he and his wi fe ( and assorted lackeys)
travelled to Peking . Because this is a diplomatic situation governed by
protocol , we also know tha t Hoxha has come to meet someone of similar
stature , probably the Chinese head of state . Finally, we know tha t the
meeting between these two will be surrounded by other social affairs.
It’s likely tha t the Chinese government dispatched an official
delegation to meet the Albanians when they arrived , tha t banquets and
other recreations have been scheduled , and that some indication, perhaps
an “official communique ,” will be given of the results of the meeting .

In designing an understander for knowledge domains of this
complex ity,  we are faced with the problem : how much detail should we
put in , and which of the details will be useful in deciding whether the
Script is the one we want?

People learn a variety of Scripts simply by living . They can also
acquire knowledge about situations they haven’t actually experienced,
such as state visits , by reading and watching television , and comparing
the new information with things they know about from daily life. In
watching an official party ’s arrival on the evening news , for example,
people can use what they know about airplanes to understand who’s coming
down the steps from the plane, and who ’s waiting for them . SAM ,
however , does not learn the Scripts it applies. To solve the problems
created by giving SAM a large number of Scripts of varying complexity,
we needed to know what kinds of Scripts there are in the world , and what
are the possible interconnections among Scripts.



— 71 —

3.2 Organizing Expectations about Stories

Our discussion of Scripts and their interrelations is based on the
ideas of Sohank and Abelson [314]. Their theory recognizes three kinds
of Scripts which people appear to have. First are Situational Scripts ,
which are “characteristic of institutionalized public situations (in
which) the social interactions are stylized [34 , p .  120) . ” Examples
includ e eating in restaurants and riding on subways . Stories about
hurricanes and visiting dignitaries refer to a kind of generalized
Situational Script , as well . Next , there are Personal Scripts , which
em body ways of achieving a person ’s idiosyncratic goal s independently of
the role the person may have in a Situational Script . For example , a
man may have a Personal Script for getting a date with a pretty girl,
which he can apply to the girl behind the counter in a department store .
Final ly,  there are Instrumental Scripts , which describe rigid action
cha ins , involving a single main actor , appearing in people ’s everyday
activities. Sample Instrumental Scripts are starting a car , stroking a
tennis ball , and preparing ~~~ ~~

Since we wanted SAM to read stories which adults would have no
trouble understanding , we were concerned with modelling world knowl edge
which adul t  readers share , rather than private knowledge. Therefore ,
SAM ’s Scripts are Situational rather than Personal Scripts.

What about Instrumental Scripts? We want to argue tha t the idea of
“instrumentali ty,” that actions can serve to support or carry out more
important actions , is a key organizing principle for Scripts of all
kinds. We have given the name Situation to the Scripts which embody the
most important activities in the knowledge domains that SAM handles.
Each of the types of newspaper stories read by SAM is organized by a
characteristic Situation . There are , for exampl e , Situations for
motor—vehicle accidents , state visits and oil spills. In eac h case we
have a class of stories which readers intuitively feel are d i f ferent .
They are interested in the answers to radic?lly differen t questions in
each case . In $VEHA CCIDENT , for example , most readers first want to
know if anyone was hurt  or killed ; then whether the pol ice assigned
blame to anyone ; only later what was the extent of property damage.
Oil spi l l s, though the y too start with a kind of accident , have a
another ~et of interesting questions. We want to know whether any oil
escaped ; if it did , how much; and what beaches, flora and fauna are
threatened by the spill.

What do Situations look like , and how do they use the idea of
Instrumentali ty? Let’ s consider as an example the very common
Situat ion , $TRIP. We know that starting a car is an instrument in
dr iv ing  it , in tha t getting the engine running is a precondition for
mcving the car. We also know that people use cars to take trios of
~~~~~~~~ kinds. They may go to the store, on a business trip , on
~~~~~~~~~~~~~~ or (if they happen to be Very Important Persons) on state
#~~~~~. • i In each of these trips , driving a car is a potential Instrument
• 

~~~~~~ ~o a place where a person needs to be to engage in more
Er t. ~-tivities. (We’re ignoring here the possiblity of driving

- . ~~‘i f r  pleasure.”) What we have is a hierarchy of Scripts, each one
f the one above it. That is, $STABTCAR is subsidiary to

- . & ‘  .. I I V I C A I ~ is one means of initiating and completing



— 72 —

$TRI P .

In considering $TRIP and its subsidiaries , we observe that they are
quite different in structure. $STARTCAR is extremely rigid . There is
only a single action chain , and one main actor. The usual outcome is
highly predictable. Cars nearly always start. $DRIVE , on the other
c~~nd , is somewhat more flexible. What a driver does depend s quite a bit
on what the other drivers on the road are doing . The routes a driver

~an take to get somewhere also vary a fair amount. Interferences to
$DRIVE are possible. A car may encounter t ra f f ic  lights and t raf f ic
jams. Sometimes a favored route is blocked , and the driver must find
another way around . On arriving , there may not be a parking space
available.

$TRIP is more flexible yet. At the highest level , all it
prescribes is that someone went somewhere , they did something on
arrival , then they returned . The choice of instruments for the going
and returning , and the possible goal activit ies , are highly variable.
All $TRIP really demands is that the same main actor appear throughout ,
and tha t the Maincons of the Scripts which fill in the going and
returning parts, or “segments ,” contain a PTRANS . $TRIP also prefers
t hat the same means be used in returning as in going , but doesn ’t insist
on it.

Can looking at trips in this way give us a clue to managing other
Scripts? As an expectation—based understander , SAM makes predictions
about what it will read nex t on the basis of what it has already seen .
The more Scripts it has , the larger the number of potential ex pectations
tha t can be triggered . What we want , therefore , is a method by which
the understander can organize its expectations about a text in
appropriate ways .

Let’ s consider how the structure that $TR IP gives us can help SAM
process stories about trips . The crucial point to be observed here is
tha t some of the events in trips are important ones , directly concerned
with the “ point” of the story . Others are less important.  $TRIP itself
sets up expectations for answering important questions suc h as “Where is
main actor going?” and “What will he do when he gets there? ” $DRIVE , on
the other hand , expects to see less important things , answers to “What
route did he take?” , “Wa s t ra f f ic  bad? ” , etc . At the lowest level ,
$STARTCAR is concerned with “Did the car start? ” , whose answer is highly
predictable.

The use of a multi—level Script , such as $TRIP , with eac h level
contributing its own predictions, lets SAM look for the most important,
therefore most l ikely,  events first. Suppose, for example, a story
begins:

(3.3) John got in his car .

The Conceptualization correspond ing to (3.3) activates the drive—Script ,
$DRIVE, because it instantiates a Locale Header for $DR IVE . What kinds
of things would we expect to happen next? Clearly, reading (3.3) sets
up predictions for further events from $DRIVE . We would not be
sur pr ised if the next sentence read :

• ~~~~~~~~~~~~ .sr- ~~~~~~~~~~~~~~~ -~~~~~~s s.; - —-.•---—-—— —, -



— 73 —

(3 . 14) He started it up and drove off .

Real stories seldom go into $DRIVE in the detail that (3 . 4)  gives ,
however . Driving a car is suc h a commonplace , boring activity that more
than (3.3) will not be said unless something out of the ordinary
happens , such as:

(3 .5)  The car wouldn ’t start .

This sentence refers to an interference event in $DRIVE , and so woul d be
pred icted when (3 .3 )  is read . (Details on how this prediction is made
are given in Section 1 4 . 7 . )

In read ing (3.3), we form another class of expectations which don ’t
refer to $DRI VE at all.  These expectations are concerned with the point
of the story , with the answer to “Wh y are they telling me this? ” Instead
of ( 3 . 1 4)  or (3 .5 ) , we are much more likely to see :

( 3 . 6 )  He drove to the supermarket.

This sentence refers to the trip—Script , $TRIP , in two different  ways .
First of all , it instantiates the “going ” part of $TRI P , since driving
is a good way to get somewhere . More important ly ,  it refers to the
“ goal” activity of $TRIP , since buying things in a supermarket is one
common reason for taking a trip . This goal ac t iv i ty ,  however , is onl y
ored ic ted by ( 3 . 6 ) ,  since further references to the “ going ” part may
still occur . For example , we may read :

(3 . 7)  He parked in front of the store .

Again , (3 .7 )  instantiates a recognized act ivi ty  from $DRIVE , since this
Script is always terminated by a parking-Conceptualization. But (3.7),
like (3.4), is a highly rote , expected activity in $DRIVE . Therefore,
it does not seem so likely as an input referring to the “global” context
of $TRIP , such as:

(3 . 8)  He bought some groceries.

Here, the supermarket Script which was predicted by the
Conceptualization for (3.6) is instantiated . Now we know why John took
the trip : to buy some food .

Let’ s sketch how $TRIP and its subsidiaries organize the
predictions which are needed to handle the possible inputs
(3.3) — (3 .8) .  (This process is considered in more detail in Chapter
14.) Suppose, for simplicity ,  that the only Situation known to the system
is $TRIP , but that it also knows about the simpler Scripts $BUS, $TRAIN ,
$DBIVE , $SUBWAI , $RESTAURANT , $MUSEUM and $SUPERMARKET, eight Scripts in
all. Associated with $TRIP are the Scripts which can fit into each of
its segments, $GOTRIP, $GOALTRIP and $RETURNTRIP:



- - - - -~ ..~~- 
.
~~~~--. .~~~

. , ,

— 74 —

$TRIP :
$GOTRIP: $GOALTRIP:  $R E T U R N T H I P :

$BUS $RESTAURANT sBUS
$TRAIN $MU SEUM $TRAIN
$DRIVE $SUP ERMARKET $DRIVE
$SUBWAY $SUBWAY

Because it is the highest—rank ing Script , $TRIP defines an a ~~j~~ri
processing order for the Scripts in the system , as follows : $TRIP ,
$GOALTRIP , $GOTRIP , $RE STAURANT , $MUSEUM , $SUPE HMARKET , $BUS , $THAIN ,
$DRIVE , $SUBWAY . This processing order , in turn , defines a list of
expectations:

Script Expected Input

$TRIP Main Ac tor takes a t r ip
$GOALT RIP Main actor does a goal act ivi ty
$GOTRIP Main actor goes somewhere
$RESTAU RANT Main actor goes into restaurant
$MUSEUM Main actor goes into museum
$SUPE RMARKET Main actor goes into supermarket
$BUS Main actor goes to bus terminal
$T RA IN Main actor goes to train station
$DRIV E Main actor gets into car
$SUBWAY Main actor goes to subway station

(To simplify things somewhat , we are considering only Locale Headers. )
Using thi s list of expectations , the Script Applier would eventuall y
fi nd ( 3 .3 ) ,  but only af ter  checking f i rs t  for things which in tu i t ive ly
seem to be more important , suc h as “John went sightseeing” or “John went
downtown .”

Sentence (3.3) act ivates $DR I VE . Howev er , because $DRIVE fits into
the $GOTRIP segment of $TRI P , t hese Scr ipts are activated as well , and
are placed at the head of the search list for subsequent inputs. Now
t he searc h list of ex pectations is:

Script Expected Input

$TRIP Main Actor takes a t r ip
$GOTR IP Main actor goes somewhere
$GOALTHIP Main actor does a goal act ivi ty
$DRI VE Main actor starts car

Main actor drives car away
Car won ’t start
Main actor drives somewhere

$BUS, etc .
$R !~STA UR ANT ,etc .

Sentences (3.14) and (3 .5)  are found because of predictions made by
$DRIVE. However , the parts of $TRIP are checked out first , and this is
how (3.6) is found . 

~~~~~~~~~~~~~~~~~~~



— 75 —

Because $GOTRIP is active , (3 . 6) would match the prediction for
someone travelling somewhere. At this point the Conceptualization for
(3 .6)  woul d also be matched in the active Script $DRIVE , subsidiary to
$GOTRIP. This matches the Script Maincon, so $DRIVE remains active.
Furthermore, since (3.6) refers to a possible goal activity, through
“supermarke t ,” the associated Script is predicted . Now the order of
expectations is:

Script Expected Input

$TRIP Main Actor takes a trip
$GOTRIP Main actor goes somewhere
$GOAL.TRIP Ma in actor does a goal activity
$DRIVE Main actor arrives at supermarket

Ma in ac tor parks
$SUPERMARKE T Ma in actor goes into supermarke t

Main actor buys something in
supermarke t

Here the cruc ial advantage the Situation provides for managing Scripts
has become apparent. Six of the eight Scripts possessed by the system
have disappeared from the high—priority search list . The Script
Applier ’s attention has been progressively narrowed by the inputs it has
seen . It very quickly f inds (3 .7 ) , predicted by $DRIVE , and (3.8),
predicted by $SUPERMARKE T.

This example shows , in out l ine , how a hierarchically organized
knowledge structure, such as $TRIP , can help an understander to arrange
its expectations , as a human reader seems to , so as to search for input s
in decreasing order of importance with respeot to what the point of a
story seems to be. The most important predicted events , those from the
highest level of the struc t ur e , are looked for first , then events from
lesser , subsidiary Scripts. The lesson is that Scripts can be made up
of other Scripts. Larger Scripts can “chunk” the knowledge in smaller
Scripts. By controlling access to the smaller Scripts , Scr ipts such as
$TRIP provide the solution embodied in SAM of the Script Management
Problem .

3.3 Connections Among Scripts

In SAM , Scripts are organized in hierarchical structures called
Situations in which the Scripts at one level act as Instruments for the
ones at the next level . Scripts on the same level , in turn ,
interconnect in various ways. Before discussing in detail what the
hierarchical structures look like , therefore , we need to have some idea
about how Scripts can interact and interconnect.

Possible connections among Scripts can be both temporal and causal .
In a sentence such as:

(3.9) I went to a drug store. Then I went to a museum.

the relation seems purely temporal. Going to a drug store does not
ordinarily contribute either to the occurrence or non—occurrence of 

~~~~.. 



— 76 —

$MU SEUM . On the other hand , the relation in:

(3 .10)  I took a bus to the ball park. Then I watched
a game .

seems more “causal. ” We understand that getting to the bal l park was the
reason for the bus ride. Generally speaking , we can define two
differen t kinds of causal/temporal relationships which Scripts can enter
into : ( 1)  sequential, in which Scripts are activated and closed one
after the other; and (2 )  go— occurring, in which Scripts go on
simultaneously, sometimes interacting , sometimes not .

3 .3 .1  Scripts in Simple Sequential Relation

The simplest relation among Scripts is sequential. Here , Scripts
occur one after another , and one Script runs to completion without
affecting the next , except , perhaps , to get an actor to the next one’s
setting . Examples (3.9) and (3.10) show Scripts in sequential relation.
In (3.9), $DRUGSTORE and $MUSEUM follow one another in chronological
order, with the exit from $DRUGSTORE being inferred to have happened
before $MUSEUM begins. The use of “then” in ( 3 . 9 )  emphasi zes the
sequential relation.

The same temporal ordering occurs in (3.10), but now we understand
that $BUS contributes a key precondition for $BALLGAME. It is
“instrumental” in the Locale Header for $BALLGAME. The insertion of
“then ” in (3.10) makes the passage sound redundant , since the second
Conceptualization could have been predicted from the first. Whenever a
causal connection of the kind illustrated by (3.10) occurs, we suspect
that we’re in the presence of a more global Situation in which
predictions of this kind are explicitly made. Example (3.10) is another
instance of the Situation , $TRIP.

In both (3.9) and (3.10), it is important to observe that the
setting in which the Scripts take place changes. In fact , the
constraint on where Scripts can happen is so useful that we have given
it a special name:

The Locale Principle:
If successive Conceptualizations from a story refer to Scripts
which cannot have the same setting (e. g., organization—Scripts
in which the place of business is different), then the relation
between the Scripts must be sequential .

The Locale Principle is simply a way of stating an idea of causal
cont inui ty .  In stories with a single main actor , Scripts which have
different settings cannot co—occur , unless we infer that the actor has
mov ed . For example, the story:

(3.11) Irving ate some lasagna in a restaurant. Then he
bought a watch.

seems to require this inference. Not enough information is given in
(3.11) to make a clear decision about locale possible. Since we aren’t



-- -- -.
~~ 

.
~~~~ 

. -.

— 77 —

told which re~ taur an t is involved , we can ’t tell whether the main ac tor ,
Irv ing , has moved . In SAM , “indefinite” references to organ izations
(e. g., “a restaurant” vs. “Mamma Leone ’ s”)  having differen t places of
business will cause the Script associated with the first organization to
run to completion before the second one is started . This is
accomplished using static information stored in the first Script
prescribing which other Scripts can be in “simple—sequential”
relationship with it.

Sometimes the simple—sequential relation can be stated for entire
classes of Scripts. An important collection of Scripts which are
clearly “orthogonal” to each other , that is , which must occur in
simple—sequential relation , are those whose Maincons are a
PTRANS—Conceptualization. These Scripts are associated with
organizations, called PTHANS—Organizations , which move people or cargo
from one place to another . Examples of PTRANS—Organizational Scripts
are $PLANE , $TRAIN , $BUS , $SUBWAY and $AMBULANCE. It simply isn’t
possible to be moved simultaneously by more than one of these. The
Script Applier , therefore, closes any active Script of this kind when
another one is initiated . For example, reading the passage:

(3.12) John went to New York by bus . He took the subway
to Shea Stadium.

would result in an instantiation of the defaul t path through $BUS ,
connected sequentially to an instantiation of the defaul t  path of
$SUBWAY. (Schank and Abelson [314) call references to Scripts consisting
of a single Conceptualization , suc h as in ( 3 . 1 2 ) ,  “fleeting
references. ”)

Another way of describing the orthogonality of PTRANS—Scri pt s ,
using the Locale Principle, is that the settings of these Scripts (the
inside of’ the associated vehicles) are distinct. The analogous
collection of Scripts involving personal vehicles which people use to
move themselves around (e. g., $BIKE and $DRIVE , but 

~~~ 
$WALK ) share

the same property. These must occur in sequential relation with each
other , and with PTRANS—Organ izational Scripts.

We also know that  PTRAN S—Scri pts must be sequential with Scripts
carried out by organizations whose “ place of business” is fixed .
Ex amples of organizations with a fixed “ residence” are museum s , churches
and theater s. It is character istic of many of these Scripts that their
Ma incons are complex , partly characterized by Scripts rather than simple
actions. What , for example, is the main activity a playgoer engages in?
It’s an extended MTRANS , of’ course , but it is much more than that.
“Applause” and “enjoyment” are also involved . Scripts of this kind are
legitimate “goal” activities of persons who take trips. SAM , therefore ,
shifts from the going—segment of $TRIP, where the Ma incons are a simple
PTRANS , to the goal—segment of this Script , when a reference to one of
these activities is read . The representation of:

(3 . 1 3) John wen t to New York by bus. He took t he subway
to Shea Stadium . He watched a doubleheader .

would consist of the sequential instantiation of’ the PTRANS—Scripts sBUS



-- 

— 78 —

and $SUBWAY (as in (3.12)), followed , in sequence , by the instantiation
of the goal-activity Script $BALLGAME.

3.3.2 Scripts Occurring in the Same Place

Clearly , for Scripts to interact they must share actors and go on ,
at least part of the time , in the same place. We call Scripts which can
happen in the same place “locale—nested , ” or simply “ nested .” This
relation among Scripts is a very common and complicated one . In SAM ,
nested Scripts can enter into three different  relationships : ( 1 )
sequen tial , (2) parallel—unaffecting , and (3) parallel—affecting .
Certain kinds of information about these relations are stored
permanently in active memory . However , in many cases specific world
knowledge can modify this “a priori” information.

Specific world knowledge about a role from a Script can modify the
Script at the time it is activated . (The process of invokin( “ Script,
and the other processes that go on during Script Application , are
considered at length in Chapter 4.) Suppose we read one of the
fo llowing:

( 3 . 1 1 4 )  Mary walked into Woolworth’ s and asked
for some bobby pins.

( 3 . 1 5 )  Mar y walked into Woolworth ’ s and asked
for some ice cream .

( 3 . 1 6 )  Mary walked into J. C. Penney ’s and asked
for some ice cream .

The first clause in each of these examples activates the $VARIETYS TORE
context , since the corresponding Conceptual izations match a Local e
Header for this Script. In each case , “Mary” assumes the role of main
actor , and “Woolworth ’ s” and “J. C. Penney ’s” take on the role of the
organization executing the Script . When the second part of (3 .14 )  is
read , we infer that “asked for” is a preliminary to the standard ATRANS
of’ money for one of the goods the store typically sells. In (3.15),
however , the inference is that this event is an order at a lunch
counter , since Woolworth’s doesn ’t ordinar ily stock ice cream but does
have a kind of resta urant. Note that both (3 . 114 ) and (3 .15)  potentially
refer to Scripts in sequential relation . A story beginning with them
may contain further references to Scripts, nested in the store setting ,
which will be interpreted as happening after the eating/buying Script
has been completed . In (3.16), however , our detailed knowledge about
Penney ’s tells us that Mary will be disappointed , since this store
doesn ’t ordinarily sell food .

SAM contains machinery for handling inputs such as (3.114) and
(3.15), and for other important classes of locale—nested Scripts. (SAM
currently cannot do subtle examples such as (3.16).) The key idea is
provided by the Locale Principle. In Chapter 2, we discussed Script
Headers , the set of patterns which activate a Script , bringing in its
pred ictions about things which may be mentioned next. One important
kind of Header is the Locale Header , a pattern looking for movement of
the main actor to a place (such as an organization ’s place of’ business)
which is strongly associated with a Script. When such a setting is



— 79 —

reached , the associated Script is activated . The point to be made here
is that Locale Headers are used in SAM to activate gjJ. the Scripts which
can go on in that place.

The simplest kind of nesting occurs in a setting in which several
different Scripts clearly belonging to one organization can happen .
This class of examples really refers to di fferen t trac ks of the same
Script , which go on sequentially if more than one occurs. The
Wool wort h ’s lunch—counter example (3.114) illustrates this relationship.
The Script $VARIETYSTORF. which (3.114) instantiates has a subsidiary
Script $RESTAUNANT which is activated at the time Woolworth’s is
entered. In this case , the ordering of expectations , as defined by
$VARIETY STORE , is:

_Script Ex pectation

$VARIETYST ORE Patron goes to sales counter
Patron buys “hard” good s

$REST AURA NT Patron goes to lunch counter
Patron orders food

Anoth er exampl e is a bank , the Script for which has tracks
$WALKUPTELLER , $DRIVEU PTELLER , $OPENACCOUN T , $MAKE LOAN , $SAFEDEPOSIT ,
etc . A person entering a ban k will ord inarily engage in onl y one of
these Scripts , but more than one is possible. If more than on~ occur s ,
these will be interpreted by SAN as happening sequentially in the
bank—locale.

Sequential nesting may occur in a g iven place even thoug h there
isn ’t a pr imary Script present. There are places where many different
activities can go on , no one of which would be more strongly predicted
than the others. Suppose , for example , a story starts :

( 3 . 1 7 )  Bill walked into Central Park.

The setting “Central Park” does not house one dominating Script , as “ a
restaurant” or “ a subwa y ” does . Many different  kinds of things can
happen . For example , we may next see references to $PICNIC , $PLAYGAME ,
$ZO0 , and ( in  certain parks) $THE ATER . Because the setting “Central
Park” has these Scripts associated with it , but not , for example ,
$SUB WA Y , SAM would have no trouble recognizing that:

(3 .18)  Bill walked into Central Park . He looked at the
animals.

is a reasonable story . Reading a Conceptualization for enter ing Centr al
Park would cause SAM to predict that events from the Scripts which have
Central Park as a possible setting might occur . The second sentence of’
(3.18), which matches a Maincon from $ZOO, would be found on this basis.

Consider , on the other hand , the story:

(3.19) Bill walked into Central Park. He bought a token.

The first sentence of (3.19) activates $PICNIC , $ZOO , $PLAY GAME and



-~ -~ .—- —- ..~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  _ _ _ _

— 80 —

$THEATE R , as before . The second sentence , which seems to f i t  into
$SUBWAY , would not be found among the events predicted by these Scripts ,
and SAM would boggle. Some other mod e of processing would be needed to
make sense out of ( 3 . 1 9 ) .  Script Applying could not handle this ,
because the activation of Scripts depends on setting , and the subwa y
Script cannot happen in a park.

Examples ( 3 .18)  and ( 3 . 19 )  i l lustrate , in its most extreme fo rm ,
the mechanism of narrowing ~~ at tention among a collection of Scripts
tha t SAM uses to screen out contexts which probably will not be
applicable to a given story . The presence of setting is constantly
exploited to avoid examining Scripts which cannot be useful because they
cannot be instantiated in an established setting . Only when the main
actor moves to another location will the Scripts that were previously
ruled out be checked again for applicability. If SAM reads:

(3.20) Bill walked into a restaurant.

Scripts which cannot occur in a restaurant —— most of the Scripts , in
fact , possessed by the understander —— will never be seen .

On the other hand , if the setting contains both a main Script and
some subsidiary Scripts, matching of a Locale Header , such as ( 3 .20)
correspond s to , will result in the activation of all these Scripts. The
list of active Scripts is dominated by the primary Script , but the
others are available to the processor. Suppose , for example , (3 . 20)
were followed by:

( 3 . 2 1 )  He used the phone .

Read ing (3 .20 )  would have resul ted not only in $RESTAURANT ’s being
invoked , but also anc illary Scripts such as $BATHROOM and $PH ONE which
can occur in a restaLr ant .  Note that  these Scripts are not part  of
$RESTAU RANT , as , say, $SERVE is , but are auxil iary services which the
place provides .

Subsidiary Scripts such as $PHONE , if they are instantiated , are
defined to be in “parallel—unaffecting” relationship with the main
Script. They are assumed to occur as a ~jj~ and not to have any direct
effect on the main Script, if this is activated as well. In (3.21), the
act ivation of $PHONE onl y places $RESTA U R ANT in the “pending” category .
If a reference to $RESTA UR ANT occurs , $PHONE will be completed , and
placed in parallel—unaffecting relation to $RESTAURANT , which now
assumes control of processing . “Pending” here means that
$RESTAURANT—specific predictions about seating , ordering , etc., will be
made , as though this Script were going on. (See Section 14 .14 for details
on the prediction process.) So, for exam ple , if (3.21) were followed by:

(3.22) He ordered a hamburger .

the Script Appl ier would use these expectations to conclude that $PHONE
should be closed . The default path in $RESTAURANT involving looking for
and sitting down at a table, etc . ,  woul d then be instant iated and
attac hed at the end of the story representation.



— 81 —

Even if a reference to $RESTA UR ANT , such as ( 3 . 2 2 ) ,  does not occur ,
this Script will not be deactivated until the actor leaves the
restaurant locale. The pr imacy of $RES TA U RANT wi th  respect to its
subsidiaries in examples suc h as ( 3 . 2 1 )  can be seen in the alternative
way that ( 3 . 2 1 )  can be expressed :

(3.23) He used their phone.

Here , the refererce to “the ir phone ” clearly indicates the restaurant
organization .

An important  special case of para l le l—unaffec t ing  Scripts occurs
when a conversation goes on in a Script ’s set t ing . (W e ’ re assuming here
tha t conversations have som e of’ the properties of’ Scripts.)  Such
conversation does not belong to the Script , ~~~ ~n ,  but the Script may
provide a faci l i ty  for it to take place. If we read :

(3.24) On the bus John talked to an old lady.

we infe r that John and the old lady were probably sit t ing next to each
other , and tha t their proximity was what triggered the conversation.
The bus Script would not contain an explicit  pred iction that the
conversation would take place , but provides a place for it to occur .
The heuristic that SAM uses to handle “ spurious ” conversations of this
kind is: whenever actors form a group , even if’ only momentar i ly ,  make a
low—l evel pred iction that casual dua l-MTRANS events may occur . This is
used , for example , in the processing of:

(3 . 25) As John lef t  the bus , he thanked the driver .

where the Script contains the causal—chain information that passengers
must pass the place where the driver sits as they exit from the bus . If
the driver is there , then a chance for a conversation exists .  However ,
since these conversational predictions are added to the end of the
search list of patterns , they will not in te r fere  with  the recognition of
MT RAN S events which are a true part of the Script :

(3.26) John went into a restaurant and sat down . The waiter
came over and asked him for his order .

In ( 3 . 2 6 ) ,  the waiter and John form a group when “ asked for his order”
is read . This, however , would be identified as a legitimate part of the
order ing scene of $RESTAU RANT .

SAM records the temporal relation between a main Script and a
subsidiary, if both occur , but normally assumes that there is no causal
connection between them . The subsidiary Script is treated as a “side
effect” of the primary Script . Suppose , fo r exam ple , we have :

(3.27 ) John went into a restaurant. He washed his hands in
the bathroom . He ordered some lasagna .

The story representation for (3 .27)  would contain three sequential
segments , one from the “enter ing” scen e of $R ESTAU RANT , one for a
“nominal” path through $BATHROOM , and one for the “ordering” scene of



— 82 —

$RESTAURANT. The inscantiated causal chain would look roughly l ike
this:

John PTHANS into restaurant ( $ENTE R )

f (a)

John AT~~ ND to inside restaurant
John PT RANS to inside bathroom ($BATH ROOM )
John $WASHHANDS
John PT RANS from inside bathroom

(b)

John ATTEND to inside restaurant
John MTRANS ( table available) ( the rest of
John PTRANS to table $ENT ER)
John MOVE to chair

Waiter M~RANS (John at table)
Waiter PTRANS to table ($ QRDER )
John MT RANS (John WANT lasagna)

The point to note here is that there are no causal connections recorded
between the pieces of $RESTAU RANT and $BATHROO M , except at the
boundaries (points (a )  and (b) , above) . This is to be contrasted to a
case where an event tha t happened earlier has an effect  later in the
story , as would be the case if (3.27) continued :

(3.28) His lasagna came quickly. He left a large tip.

In thi s case the causal chain would look like :

Waiter ATRANS meal to John
(Tim1: shortly after “order”)

John INGEST meal

John MTRANS (John WANT check)
Waiter ATRANS check to John
John MTRANS (“service fast”)

from LTM (3ohn )
John ATRANS t ip to waiter

Here , the episode about the fast arr ival of t he lasagna , remembered at
the time John got the check , is the reason for the large tip .

So far we have considered cases in which Scripts referred to by a
story did not directly affect  one another , even though they might have
happened in the same place. Let’s consider some cases where active
Scripts can have real interactions.

One way two Scripts can interact is if they are going on in the
same place and ~~ ~~~ ~~~ (We cal l this a “ parallel—affecting ”
relationship among Scripts.) Then an event from one Script can interfere
with what’s going on in the other . When this happens , an infe r~nc.~ is
needed to establish the connection between the Scripts. Suppose , for



— 83 —

example , we have:

(3.29)
John got on a train in Penn Station. He went to the dining car
and ordered some soup . As the soup cam e , the train pulled into
Newark. The train lurched , and the soup landed in his lap.

The first sentence of this story initiates the passenger—train
trac k of $TRAIN , and its subsidiary Script, $EESTAURANT . The first part
of the second sentence corresponds to a Locale Header for $RESTAURANT ,
and the Scripts run in “parallel—unaffecting” relationship, as usual .
(The incarnation of $RESTAURANT brought in with $TRAIN prefers “dining
car ” or “snack counter” for the restaurant organization. How these
preferences are set up is discussed in Chapter 4.)

In the third sentence of (3.29), we have references to both of the
active Scripts , and an assertion of a temporal relation between them .
The problem here is: are they causally connected , as well? To a human
reader , the connection seems accidental . It seems absurd to assert
either possible causal relation :

(3.30) Because the train pulled into Newark, the
soup came.
Because the soup came, the train pulled into
Newar k.

Why do the sentences (3.30) sound silly? First , we need to observe that
the two parts of these sentences refer to boring , commonplace events in
their respective contexts. No one reading about a train ride would be
sur pr ised at a reference to the train ’s arriving at a station somewhere.
Similarly, reading “the soup came” in a story about $RESTAU RANT is a
typical way of expressing the highly expected “serving” event. $TRAIN
and $RESTAURANT ex plain “why ” each of t hese events occurred , so it seems
pointless to look for a connection between the Scripts. In the next
sentence , however , “the train lurched” seems perfectly accepta ble as a
reason for “the soup spilled.” A human reader has very little trouble
establishing a causal relation between the sudd en movement of a
conveyance and movement of things inside.

How can a Script—based understander distinguish between cases such
as these? When more than one Script is active , and successive story
Conceptualizations refer to different Scripts, the rule of thumb “no
damage, no connection” is followed . If one event is marked as being
temporally after the other , the Script Appl ier examines it to see if it
instar.tiates a pre—defined interference event in the Script . If it does
not , no causal connection is sought.

The event s “train arrived” and “soup came” in (3.29) are both
marked with pathvalue “default” in their respective Scripts, rather than
with pathvalue “interference.” Therefore, SAM doesn ’t look for a link
between the Scripts. Even in the case where the first event is an
interference in its Script, the second event must be an interference
also before an y fur ther processing is done . This would hand le the case :

-... --. - ---——

~

--—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-.. 

— 84 —

(3.3 1) The train was delayed in Newark. John ’s
soup caine .

in which , to a human reader , the f irst  event , thoug h an interference , is
irrelevent to the second .

In the next sentence of ( 3 . 29 ) ,  however , we read “the train
lurched , ” then “the soup spilled .” A reference to the movement of the
train , while perfectly possible in a story about a train ride , is onl y
very weakly predicted by $TRAIN . Let’ s assum e , however , that it is
eventually found . The Conceptualization for “ the soup spilled” is a
weakly predic ted interference with the normal course of happenings
either in the “ serving ” scene ( the waiter coul d have spilled the soup) ,
or in the “ eating ” scene ( the patron coul d spill the soup himself) . In
either case , “ spilling the soup ” is a pre— defined interference in
$RESTA tJR ANT , and we have a case where a connection between two active
Scripts should be sought. Successive Conceptualizations refer to
alternative Scripts , and the last event is an interference event.

How could a story understander go about determining whether a
causal connection exists in a case like this? What we need here is a
program for calculating ~~, causal chain between arbitrary events.  A
Script Appl ier alone could not compute such connections . Strictly
speaking , it doesn ’t really know anything about causality . The causal
chains it possesses as part of its Script s are pre—def ined , given to it
as data .

A generalized causal—chain calculator , however , is something nobody
yet knows how to build. (For a discussion of the problems associated
with computing causal chains , see [2 8 ) .)  We do know that any suc h
program , if it runs without direction from other ~tciowledge sources , runs
the risk of an explosion of inferenciri g such as we discussed with regard
to Rieger ’s Conceptua l Memory program in Chapter 1. (As a class ,
automatic theorem—provers suffer  from the same problem.) Every
causal—cha in connection calculated is itself a candidate for further
inferencing . To a causal—chain builder operating by “formal ,” i. e . ,
syntactic , methods , any inference is as good as any other . Such a
process soon becomes clogged up, because it has no way to recognize
either “ promising” or “ absurd” paths .

How could world knowl edge , specifically the episodic knowl edge of
Script s , aid a causal—chain builder in connecting events such as “train
lurched” and “ soup spilled.” One thing is true about these events: if’
they were recognized in a Script , t hey have causal connect ions in that
Script. The Script can propose reasons why they occurred , and the
causal chain of’ which they are a part includes what their ex pected
results , in context , shoul d be. A person ’s knocking dishes over and
spilling things on himself is an accident which can occur in the
“eating” scene of $RESTAUHANT. If it does happen , it has predictable
results.  The waiter will bring napkins or cloths to help clean up, and
will ask whether the patron wants something else . As for what happens
before the event “the soup spilled , ” we might have the little causal
chain:



SCRIPT APPLICATION: COMPUT

UNCLASSIFIED ~JAN 7 8 R E C U L L I N G F O R D

ADA
DM080

__ f



— 85 —
(a) patron PROPEL meal (patron knocks his m eal off

from table the table)

gravity PTRANS meal (meal falls on the patron)
to patron

The event marked (a) is the reason recorded in $RESTAURANT why meals
land in people’s laps: out of clumsiness, they knock them off the
table. This causal connection could be made available to a causal—chain
builder by the Script Applier as part of the immediate context in which
the event “the soup spilled in his lap” was located.

It is not as clear that “the train lurched” is part of $TRAIN .
while this event happens often enough, it ordinarily has no effect on
events . Suppose , however , we include a small causal chain describing
its usual results:

(b) train PROPEL obstruction (train hits something on
the track)

(c) train PROPEL objects (objects inside the train
experience a force)

Event (b) is the realization in the Script of the event “train lurched ,”
and (c) is its expected result: that movable objects inside the train
are likely to move. (Let’s ignore the problems with marking PPs as
movable.) The process of causal—chaining for this example , then , would
involve pattern-matching on Conceptualizations (a) and (c). If “train”
could be substituted for “patron” and “soup” were known to be a movable
object inside the train , we would have the connection we need .
(Ac tually, the system would have to know that “soup” comes in a rigid
“container” at meal s , and shares its mot ion —— up to a point.)

3.k Fitting Scripts Together

Section 3.3 discussed some of the important ways Scripts can
interconnect .  Now we need to describe how SAM manages these
connections , both to understand a story and to build a representation
for It afterwards. The basic idea is that Script—based story
understanding rel ies on a hierarchY of Scripts. The Script at the top
level I s  called a Situation . Situations encod e the system ’s
expectations about what the main point will be of a story about a given
knowl edge domain . Scripts at lower levels serve as In struments of
higher ranking Scripts , and contribute expectations which are of a more
“local ” nature.

To illustrate this , let’ s consider again the trip Situa tion , $TRIP.
This Script organizes our knowledge of how and why people travel back
and forth to certain places . $TRIP has three segments , or scenes: ( 1)
$GOTRIP , which describes how peopl e get to places ; (2 )  $GO~ LTRIP , which
defines the kinds of activities people typically engage in when they
arrive at where they want to be; and (3)  $RETU RN TR IP , which describes
how they retur n to where they started .



— 86 —

$GOTRIP and $RETURNTRIP require PTRANS—Scripts for their
instantiation , and will accept several of these Scripts occurring in
sequence. $GOALTRIP requires for its realization Scripts which can be
goal activities of trips . ( Many thing s that people do on trips , of
course , are not explained by Script s at all. SAM is not intended to
handle 3tories of this kind.)  $TRIP , therefore , defines a hierarchy
which looks like this:

$TRIP the global context

$GOTRIP $GOALTR IP $RETURNT HI P its segments

I I I$BUS $RESTA URANT $BUS possible instruaental
$TRAIN $MUSEUM $TRAIN Scripts for the
$PLANE , etc . $VARIETYSTORE , etc . $PLANE , etc . segments

Figure 3.1
The Hierarchy De fined by $TRIP

Figure 3.1 represents a processing hierarchy , since it prescribes
the order in which Script s are examined . For example , the Script
Applier , if it thinks $TRIP may be applicable , will look first for
Conceptua lizations corresponding to inputs such as “John took a trip .”
Next , it will search for inputs which are characteristic of $GOTRIP,
such as “John went down town ,” or one of its Instruments , such as “John
took the subway downtown .” Finally, it will look for Conceptualizations
which refer to $GOALTRIP , such as “John went into a restaurant.” In this
case , it will infer that $GOTRIP has already occurred .

Figure 3. 1 also describes the fo rm of the global structur e ~j
story representation for a text about a trip. For example , the
representation for the story:

(3 . 32)
John took the bus to New York. He rode the subwa y to Leone ’s.
He entered the restaurant and had some lasagna . Later he
returned to New Haven .

would look like this:

I STORY :
VALUE (SEQ SCLAB 1 )

SCLAB 1 :
VALUE (SEQ SCLAB2 SCLAB3 SCLAB1~)
TOP $TRIP
MAINCON (< => ( $T R IP MAIN “John ”

ORIG “New Haven ”
GOAL “ $ R ESTAURANT ” )) )



— 87 —

SCLA B2:
VALUE (SEQ “$BUS” “$SUBWAY”)
TOP $GOTEIP
MAINCON (< :>($G OTRI P MAIN “John ”

ORIG “New Haven ”
GOAL “$ H ESTAUEANT ”)))

SCLAB3:
VALUE (SEQ “$RE STAU RANT ” )
TOP $GOALTR IP
MAINCON (<=> ($GOALTR IP MAIN “John ”

ORIG “New Haven ”
GOAL “$RESTAURANT”)))

SCLAB4 :
VALUE (SEQ “$SUBWAY ” “$BUS”)
TOP $RETU RNTR IP
MAINCON (< = > ( $RETU RNT RI P MAIN “John ”

OJUG “New Haven”
GOAL “$RESTAURANT”)))

The representation derived from the hierarchical structure defined in
Figur e 3.1 says that this story is about a trip , by a main actor “John , ”
whose goal is executing the restaur ant—Script . The trip has a “ going”
part , consisting of the simpl e—sequential (SEQ) instantiation of the
PTRANS—Scripts $BUS and $SUBWAY. It has a “ goal” part , consisting , in
this case , of an instantiation of $EESTAURANT alone. Finally, it has a
“returning” part , which , because (3.31) doesn’t explicitly say, is
inferred to have the same components as the “going” part , executed in
the reverse order .

3 .4 .1 Script s Involving Organizations and Forces

A Situation defines a hierarchical structure of Scripts. Are there
any systematic differences among Scripts at differen t levels in the
hierarchy? Answering this involves a consideration of several fac tors ,
includ ing:

1. How rigid are the action—chains that make up its episodes? Are
alternative ways of accomplishing the “goal” of the behavior
provided?

2. What are the characteristic roles and props in the episodes? Is
there a “main actor” in the episode?

3. How much detail does the event chain possessed by an average adul t
contain? Can the understander fill in a large amount of
info rmation , or is what he can say relatively sketchy?

14. How does language make reference to the knowl edge structure? Are
there word s which “ cl um p” activities into large chunks? Are there
special senses of words and phrases which are tied to a particular
situation?



— 88 —

If we examine Situations such as $THIP and $VEHACCIDENT , we find
two broad classes of Scripts. First are Scripts which describe a
stereotyped interaction between an organization and a member of the
public . These Scripts , which are called Transaction Scripts , includ e
PTRANS— Scripts such as $BU S and $SU BWAY , other commerc ial Scripts such
as $RESTAURANT , $VARIET IS TORE , $BANK and $SUPE}~MA RKET , and “service”
Scripts such as $AMBULANCE and $FIR~DEPT. The other major class of
Scripts describes the characteristic events associated with natural
forces. The forces involved may be simple forces, e. g., gravity ,
mechanical forces such as are generated by the engines in cars and
trains , or complex forces such as hurricanes and earthquakes.

3.4.2 Transactions

Let’ s consider first the characteristics of Transactions. We use
the term Transaction because some idea of a contract is always involved
in these Scripts. A member of the public goes to an organization
providing a service of some kind and contracts for the service. In a
restaurant , for exampl e , the patron “ orders” a meal , that is , arranges
for the restaurant to prepare and serve the meal in exchange for later
payment.  In a subway, the rider pays the cashier and gets a token in
return . The token symbolize s the subwa y organization ’s resposibility
for providing a ride to the patron on demand . Bus and airplane tickets
serve a similar pur pose .

A Transaction is built  up out of the routine actions of the
organization ’s agents as they deal wi th a member of the public .
$RE SThURANT , for example , organ izes the sub-Scripts of the roles of’
waiter , cook , cashier , e tc . ,  in the course of providing a meal to a
patron. The Maincon of a Transaction is always the service event.
Contracting for the service always precedes the Maincon . The
organization needs to be told what exactl y it is that the patron wants
done. The order in which the Maincon and the “paying” event occur
depends on the details of the situation . In a fast—food place such as
Mc Donald’ s , one pays before getting one ’s food . The reverse ordering is
typical in ordinary restaurants.

We call Scripts such as $BUS , $RE STAU R ANT and $TFIEATE R commercial
Transact ions because providing these services for a profit is the
organ izat ion ’s raison d’etre. Commercial organizations
characteristically compete with one another for the public ’s business .
Often they adopt special symbols (e. g., Mc Donald ’s Golden Arc hes) or
specially designed buildings (e.  g., theaters and banks with drive—up
windows ) which signal their Script to the public . There is another
class of Scripts , belong ing to governmental and other service
organizations , which share som e of the characteristics of Transactions .
in these Scripts, called service Transactions , an organization provides
a service to the public without being directly repaid . Ex amples are
police , f ire and ambulance services. These kinds of organizations do
not compete with each other , as commerc ial organ izations do , but are
services provided by the community in return for the tax money the
ci t izens pay.



— 8 9 -

How do these observations help in the job of story understanding?
First of all , they provide a blueprint for putting together a multitude
of different Scripts. If the Script is about an organization and a
person interacting with one another , the “kernal” of the Scr ipt is the
three events of contracting, the service and paying . (In service
Transactions, the paying event is implicit.) The other activities of the
Scr ipt are arranged aroun d the kernal events according to whether they
contribute a precondition for the kernal event , or are a resul t of the
kernal. event. In $RESTAURANT , for example , the kernal events are
ordering , eating and paying . Entering and sitting down are
preconditions for ordering . Preparing and serving the food are
preparatory for the Maincon. Getting the check is necessary for paying
it.

The structur e of Transact ions also assists in applying the Script .
The crucial inference that needs to be made in a story referring to a
Transaction is whether the Maincon has occurred . The Script Applier
will not infe r the Ma incon unless it is either explicitly instantiated ,
or a confirming (that is, succeeding) kernal event occurs.

Suppose a story about $RESTA URANT begins:

(3.33) John entered a diner .

Having read (3.33), SAM now expects to hear about a contracting event ,
v iz . ,  the ordering of a meal . Unt il such an event is instantiated , the
system will not set up an expectation for the Maincon . Suppose now we
read about a contract:

(3.314 ) John asked for a coke.

When (3.31%) is read , the system is satisfied to infer that the main
INGEST event has occurred if it reads something that can be interpreted
as a paying event:

He gave the cashier a dollar .

This is because paying succeeds the Maincon in $RESTAIJRANT , and hence is
a confirming kernal event.

This is to be contrasted with the following two cases, in which SAM
will ~~~ infe r the Ma incon :

(3.35) John entered a diner . He gave the cashier a dollar.
(3.36) John entered a diner . He asked for a coke . He left.

In (3.35), we can ’t be sure that the kernal ordering event has occurred .
In (3.36), we haven’t heard about either eating or paying , so again the
Maincon is not inferred . In both these cases, t he system constructs an
“abort” path out of $RESTAURANT , without inferring a reason for the
exit. 

-~-——--—-——



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— 90 —

3. 14.3 Natural  Force Scripts

The other broad class of Scripts involved in the Situations SAM
handl es are those in which natural forces appear . The structure of
force Scripts is simpler and much more rigid than that of Transactions.
This is simply because forces have no “intentions” and act in invar iable
ways . The force Scripts used by SAM are very sketchy . Newspaper
stories seldom get into the physical details of what the forces are
doing . Therefore , we have taken a “naive ” physical view of forces. The
Script contains a single Maincon , with connections to the most important
events resulting from the application of the force.

One kind of force Script which appears in newspaper stories
describes a mechanical force which has gotten out of control .
Mechan ical forces are generated by art ificial objects such as engines ,
and ordinarily operate at the behest of a person executing a Script .
For example , t he sentence “John drove his car to a restaurant,” when
amalgamated with the Scr ipt structure $DRIVE , has the representation:

((ACTOR HUMO (:> (‘PTRANS’) OBJECT STRUCTO
TO (‘PHOX’ PART ORGO)
INST (( CON

((ACTOR HUMO <~> ($DRIVE )))
LEADTO

((ACTOR FORCEO <:> (‘PROPEL’)
OBJECT STRU CT O)) )) ) )

HUM O: “John”
STRUCTO : “car ”
ORGO : “restaurant”
FORCEO:

CLASS (#NATFORCE)
TYPE (‘ENGINE’)
PARTOF (STRIJCTO )

This Conceptualization says that “John took the car to a restaurant, ”
with an In strument “John drives” , controlling “ engine moves car ” . If
now we read “the driver lost control of the car ” :

(( ACTOR H IJMO <=> ($DRIVE VEHICLE STRU CTO ))
MODE ( ‘CANNOT ’))

memory makes the inference “the car ran out of control” :

((ACTOR FORCEO <~> (‘PTRANS’) OBJECT STRUCTO))

This, of course , is a Header for the Situa tion $VEHACCIDENT , since cars
out of control soon run into something .

Complex natural forces, such as hurr icanes and earthquake s, also
have Scripts which newspaper stories talk about . Unlike mechanical
forces , complex forces cannot be controlled . They “just  happen .”
Complex forces charac teristically use simpler forces as their “agents .”
If we read “Hurrican e ~arlene brought high winds to Connecticut ,” we
understand that the complex force “Hurric ane Darlene” is being described
as the ACTOR in a PROPEL Conceptualization , moving itself and its agent,



- - -~~~~~~~~~~~~~~~~~~~~~~~
---

~~~~~~~~~~~~~~~~~ 

— 91 —
the wind , around :

“Hurricane Darlene brought high winds to Connecticut”

(( CON
((ACTOR FORCE1 <~> (‘PROPEL’) OBJECT PHYS1

TO (‘PROX’ PART POLITO)))
LEADT O

((ACTOR FORCE2 <:> (‘PROPEL’) OBJECT POLITO))))

FORCE 1:
CLASS (#NATFORCE )
TYPE ( ‘HURRICANE ’)
FORCENAM E (DARLENE )

PHYS 1:
CLASS (#PHYSOBJ)
TYPE ( ‘AIR’)

FORCE2:
CLA SS (#NATFOECE)
TYPE (‘WIND’)
STRENGTH “high”

POLITO: “Connecticut”

Sometimes the complex forces are spoken of as acting directly:

“An earthquake struck Rumania .”

((ACTOR FORCE3 (=> (‘PROPEL ’ )
OBJECT POLIT 1))

FORCE3:
- 

- CLASS (#NATFORCE)
TYPE (‘EARTHQUAKE’)

POLIT 1 : “Rumania”

In any case, the interest that newspaper readers have in complex forces
is not in the details of how they work. The man in the Street doesn’t
know much about that. What he wants to know are, what were the main
effects of the phenomenon? , and how did the area involved react? That
is , complex forces f i t  into another kind of Situa tion , in which
questions like these are explicitly asked .

- -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— 92 —

3 . 14 . 1% Situations

Read ing the newspaper is completely unnecessary. If you’ve
read about one train wreck or earthquake , yo u’ve read about them
all .

Henry Thoreau , Walden.

Each distinct knowl edge domain SAM deals with is assigned its own
global Script , or Situation . We have already described the
characteristics of one Situation , $TRIP , in some detail . What do other
Situations look like?

First of all , like sTRIP , Situations such as $VEHACCIDENT and
$OILSPILL organize the knowledge contained in smaller Scripts. In
$VEHACC IDENT , for exam ple , we have an instance of a mechanical force
Script , $CRA SH , in which a dr iver loses control of a motor vehicle and
is involved in a collision. After the crash , various service
organ izations , such as ambulance , police and emergency squad , appear at
the scene and perform their Scripts. We may also hear about the
activities of emergency rooms and operating rooms at a hospital . Also,
like $TRIP , these Situations are relatively sketchy. The main reason
for this is that ord inary people simply haven’t been involved in these
kinds of events personally . Very few of us have ex per ienced $EARTH QUAKE
or $FORESTFIRE , for example. We may never have seen an oil spill. All
we know about them is what we have read in the newspapers that makes
sense in terms of our own personal ex per ience .

A related characteristic of these Situations is that readers are
interested in the answers to rather general quest ions , instead of the
details of what happened . (Probably they aren ’t equipped to understand
the details, anyway.) In stories about accidents and natural disasters,
we all want to know if anyone was hurt  or injured , and what the
authorities are doing about i t .  If there ’s blam e to be assigned , we
want to find out who was blamed . As in $TRIP , where the answers to
“Where is he going?” and “Wh y is he going there? ” are explicitly encod ed

• in the knowledge structure, the answers to questions about injuries and
blame appear as expectations in the Situation. For each Situation ,
there is a scorecard of questions whose an swers the processor wants to
find .

Actors and objects in stories handled by Situations may have
several roles. They may , for exam ple , f i t  both in their local Script (a
Transaction or force Script) and in the Situation. They may also have
roles in more than one component Script in the Situation . To see this,
consider a simple car—accident story:

(3 .37)
Sunday evening an 18—ton tractor ’ trailer ran off the Connect icut
Turnpike and struck a bridge abutment . Frank &nith , 37, the
driver , was critically injur ed . He was taken to Yale—New Haven

L Hospital by Flan agan Ambul ance.

In this story, “Frank Smith” belong s to the component fo rce Script
$DRIVE in the role of driver . He simultaneously fi l ls  the roles of



— 93 —
“hurt person” in the Situation , $VEHACCIDENT , and of “person taken for
medical treatment” in the service Transaction $AM BULANCE. Even objects
in newspaper stories may have multiple roles. For example , the trac tor
trailer has the role “vehicle” in $DRIVE. If a follow—up story to
(3 .37 ) contained the sentence “The trailer involved in the accident was
declared totally lost ,” the trailer would be filling the role of
“dam aged vehicle” in an insurance company Transaction .

A specialized role in every Situational domain is that of
“ authority figure. ” This is a person or group of persons representing
the organizations involved in the Situation who make pronouncements
about what happened . In $VIPVISIT , for example , a typical authority
figure is “ a White House spokesman .” In $OILSPILL , an authority is “the
Coast Guard .” In accidents and disasters , an “ eyewitness” is a person
who happened to be at the scene of the event (and , in the case of a
disaster , lucky enough to have lived throug h i t) .  Since , in SAM , we
deal with “ overt” or “physical” circumstances that no one would want to
lie about!, the statements of aut hority figures are assumed to be true .
This is the basis of the Authority—Announcement inference , described in
Chapter 5.

SAM deal s with three major kinds of Situations. First are
specializations of $TRIP. One special case of $TRIP that often appear s
in newspapers is $VIPVISIT . A visiting dignitary is indeed engaged in a
t r ip ,  but , because ~he is a special person , it’ s likely tha t special
modes of tran sportation will be used to get him where he ’s going . The
President of the United States doesn ’t ride a bus to the airport to fly
Pan Am , but is taken by helicopter to an Air Force base to fly US 1.
More importantly, his goal activities are extremely special ized . (Not
all of them , of course , are accounted for by Scripts.) There is nearly
always an official welcome when the visiting party arrives. There may
be a parade in their honor. There are banquets, visits to new
buildings, and other recreations. Finally, there are “official
meetings” and , perha ps , an “of ficial commun ique” describing the outcome
of the meet ing . Eventually, the Very Important Person returns to where
he came from .

Since $VIPVISIT has the same global structure as $TRIP, it could be
summarized in the same way . Suppose we have the following lead
sentence:

(3.38)
• Foreign Minister Andrei Gromyko arrived in Vancouver this

morning on the Russian cruiser Suvarov for the International
Conference on The Law of the Sea.

Story (3 .3 8)  defines a state—visit having a top—level representation
like this:



— 9 1% —

!STQRY: (SEQ SCLAB 1)

SCLAB 1: (SEQ SCLAB2 SCLAB3 SCLAB4 )
TOP : $VIPVISIT
MAfl !1CON : ((<~ > ($VIPVISIT VIP HUMO

INVITINGSTA TE POLITO
REASON E V N T 1) ) )

SCLAB2: (SEQ SCLAB 5)
TOP: $GOVIP
MAINCON : ((ACTOR HUMO <=> (‘PTRANS’) OBJECT HUMO

TO (‘PROX’ PART POLITO)
INST ((ACTOR ORGO <=> ( ‘PTRAN S’)

OBJECT HUM O
TO (‘PROX’ PART POLITO)))))

SCLAB5:
TOP : $SAIL

SCLAB3:
TOP: $GOALVIP
MAINCON : EVNT 1

SCLAB 1%: UN IN STANTIATED

HUMO: “Gromyko ”
ORGO : “ Russian Navy ”
POLITO: “Canada”
EVNT1: ( (< :>  ($CONFERE NCE MEMBER H I JMO)) )

The summarizer would use this structure to generate the following
summary of (3 .3 8) :  “Gromyko sailed to Canada for a conference.”
Questions such as “Who went to Canada?” and “How did Gromyko get to
Canada?” refer to the “going ” segment of $VIPVISIT. These would be
answered by reference to the Maincon of $GOVIP: “Gromyko ” and “The
Russ ian Navy took him there ,” respectively. Similarly, the question
“Why did he go to Canada?” refers to $GOALVIP , and its Ma incon “fo r a
conference.”

A second class of’ Situations that SAM deals with is accident
stories. The system currently can do examples of motor—vehicle
acc idents ( $VEHACC IDENT), train wrecks ( $TRAINWRECK ) , plane crashes
($PLANECRASH) and oil spills ($OILSPILL). The global structure of these
Situations is the same in each case . Each is a mechanical force Script ,
describing a mechanical force out of control , the resulting accident,
and reactions by appropriate authorities. In each case , the Script
starts with an instance of a PTRAN S—Script in normal operation. For
$OILSPILL we would have:

((ACTOR ORGO <=> ( ‘PTRAN S’) OBJECT STRUCTO
FP.OM “ origin”
TO “destination”
VIA “ route ”

• INST ( ( < ~ > ($SAIL SHIP S T R U C T O ) ) ) ) )



— 95 —

ORGO: “ shipping line”
STRUCTO : “t anker ”

This Conceptualization corresponds to inputs such as “The Liberian
freighter , Argo Merchant , bound for Boston , was sailing in Nantucket
Straits.” Suddenly, the Script is interrupted , the captain loses control
of his ship, and “the tanker ran aground :”

((ACTOR STRUCTO <=> (‘PROPEL ’) OBJECT GE OFEATO))

GEOF EATO : “ shoal”

The resul t of the PROPEL event which is typical of $OILSPILL is:

[The ship broke up]
((ACTOR STRUCTO TOWARD (‘UNIT’)) MODE (‘NEG’))

Since this is a tanker , we have oil in the water . The Coast Guard comes
to the scene , and clean—up squads are dispatched . Perhaps the spill is
contained , perhaps it threatens beaches and ocean life. The analogies
between $OILSPILL and the other accident Situations should be clear.

The analog y also extends to the third class of Situations possessed
by SAM : natural disasters. Again we have a force Script , this time
describing a complex force and its characteristic results . Again the
appropriate organizations react in their Scripted ways . For example , we
might have:

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-
~

—
~

---
~ - • • -

— 96 —

[An earthquake struc k Rumania ]
((ACTOR FORCE O < = > ( ‘PROPEL ’) OBJECT POL I T 1))

pOr,IT-1 : “Rumania”
FORCE 1:

CLASS (#NA TFO RCE)
TYPE (‘EA RTHQUAKE’)

The story might describe a typical result of a large natural phenomenon
like this:

[1000 people were killed]
( ( A C TOR GROUPO TOWARD ( ‘HEALTH ’ VAL ( — 1 0 ) ) ) )

GROU PO:
CLASS (#G R OUP )
NUMBER (1000)

It might also describe the severity of the quake :

[The quake measured 7 on the Richter scale]
( ( :> ($EART H QUAKE SEVERITY ( 7 ) ) ) )

At any rate , medical and rescue forces will be sent to the scene :

[The Rumanian gov erment sent troops to the scene]
((ACTOR ORGO <=> (‘PTRANS’) OBJECT GROUP1

TO (‘PROX ’ PART LOCO)))

OEGO: “Rumanian government”
GROUP 1: “troops”
LOCO : “the scene”

For both accidents and disasters, the Situation provides a
processing hierarchy , a global story struc ture , and a scorecard . For
$VEHA CCI DENT , the Situation first prescribes an instance of the
mechanical force Script . Initially, we have expectations for inputs
suc h as:

[There was a car accident]
( ( :> ($VEHACCID ENT VEHICLE STRUCTO)) )

STRUCTO: “a oar ”

[car out of control]
((<:> ($DRI VE DRIVER HUMO VEHICLE STRUCTO))

MODE (‘CANNOT’))

HUM O: “ someone”

[car hits something]
((ACTOR STRUCTO <:> (‘PROPEL’) OBJECT PHYSO))

PHYSO : “something”



--
~

- - -~~
- - .

~~~ 

— 97 —

Once a crash has been confirmed , the Situation sets up expectations for
the activities of appropriate organizations , that is , for service
Transactions suc h as $AMBULANCE and $HOSPITAL. The Situation also
defines the connections among its components, depending on which of its
Transactions Is instantiated . For example, if we read :

(3.39)
John was in a car accident. He was treated at Milford hospital .

the Situation would define the global story structure:

$CR~S~
$AM~ULAN CE

$HOSPITA L

That is , $VEHACCIDENT contains the information that people involved in
crashes don ’t suddenly appear in hospitals, but that an ambulance
probably took them there .

Finally , the Situa tion mainta ins a scorecard of the activities
which are “interesting” in that domain. For $VEHACCIDENT , the Script
wants the answers to the questions:

Was anyone killed?
Was anyone hurt, and how badly?
What did the police do?

Patterns correspond ing to these answers are part of the Script , and are
connected in its causal chains as always. Because they are on the
scorecard , however , the Script Applier is always looking for events
which have a bearing on them . In (3 .39) ,  for example, a statement that
John was injured is not explicitly made. The event—patterns
correspo nding to “ went to hospital” and “ was treated” , however , when
instantiated , will cause this inference to be mad e ( through a
connecting , default episode in $AMBULANCE).

This completes our discussion of the Situations SAM applies. How
the Script Appl ier actually uses these Situations to organize its
processing of stories referring compl ex knowledge domains such as
$VIPVISIT and $VEHACCIDENT is described in Chapter 1%. A detailed
example of SAM in action in one of these domains is given in Chapter 6.

3.5 Summing Up

Let’ s go over the ma in points of the Script management methods
we discussed in prec ed ing sections .

• The f i r s t  idea is that our expectations regard ing stories that
we read come in several d i f ferent  varieties. Having heard about some
well—known physical activity , such as going to a bus stop, we form
predictions , local in nature , about what we may hear next. Because
of this we have no trouble understanding a sentence about a bus



— 98 —

arriving or someone getting on. Hovering above all stories , however ,
is the global question “Why am I being told this? ” We want to know
what the “ point” of the story is. For a text beginning with a bus
rid e , we want  to know why the rid e is being taken , where the rider is
going and why.  That is , we want to know what the reason for the 

~~~~is. In SAM , the highest level expectations about a given knowledge
domain , such as trips , are organized into global knowl edge structures
called Situations. Situations are extensions of simpler Scripts ,
suc h as $RESTAURANT and $BUS , which define how these Scripts can fit
together . A major reason why SAM is able to process newspaper
stories of various kinds is that a Situation can be set up for each
domain . Each Situation prescribes a DrocessinR order in which the
component Scripts in the Situation are tested for applicability, a
story reoresentation giving the global structur e of the permanen t
memory representation retained for the story , and a scorecard of
events the Situation is particularly interested in finding out about .

Below the Situations , simpler Scripts interconnect in various
ways . The chief distinction to be made here is on the basis of
setting. Scripts can happen in the same place , or in different
places. The class of personal and organizational PTRANS—Scripts
define the circumstances under which ACTORs move around .
PTRANS —Scripts , in tur n , combine with Scripts having a fixed setting ,
suc h as $THEATER , to define the global Situation $TR IP.

Scripts which can happen in the same place may interact , or they
may not.  One case of non-interacting Scripts comprises the differen t
tracks of a commercial Transaction . In a bank , for exampl e , a person
may wi thdraw something from a checking accoun t , then arrange for a
car loan . These differen t manifestations of $BANK , thoug h they
happen in the same place , happen in sequence , without interacting .
Another class of non—affecting Scripts are ancillary Scripts which
the setting of a primary Script can contain . An exampl e is using a

• phone in a restaurant. Here the activation of $RESTA URANT , say by a
Locale Header , activates $PHONE , as well. If VHONE is instantiated ,
it goes into the story representation as a unit. If $RESTAURANT is
also instantiated , SAM assumes that the two Scripts - occur in
sequence.

The principle of setting is used in processing stories about
events in a place , such as a park or a beach , which does not have one
dominant Script , but several , equally likely ones. A reference to
the setting brings all these Script s to the forefront of attention
together , so that a reference to any of them can be recognized . A
reference to a Script which cannot gc on in that setting will not be
identi fied immediately. Like peopl e , SAM ’ s processing is dominated
by things which are familiar in a known setting .



- -

.99’.,
Chapter 1%

Script Application: the Basic Cycle

ILl Introduction

Story understanding is a ~~~~~~~ Script application models an
important part of this process: establishing and using contexts ,
Scripts , containing stereotyped sequences of events in the world .

The Script Applier attempts to understand a story by introducing
the “largest , ” most inclusive Script it possesses which is initiated by
the first Conceptualization in the story . As each input
Conceptualization is recognized in the Script , predictions are aroused
which the Script Applier uses to find further inputs. This cycle
continues until the system receives an input which does not refer to a
pred ..cted event. At this point , it again brings in the largest Script
which the input initiates, matches roles and props across the Script
interfaces , checks the preconditions , if any, for the new Script , and
starts matching inputs in the new context. As a knowledge—based ,
top—down understander , therefore , SAM conforms well to the idea [27]
that “the process of understanding a passage consists in finding a
schema which will accoun t for i t . ”

In this chapter , we turn from the consideration of the Script as a
static knowledge structur e , to the application of Scripts in the process
of story comprehension . The discussion will focus on the “memory”
modules , viz., PP—Memory and the Script Applier itself, which , as the
“kernal” of SAM , cooperatively process the Conceptualizations produced
by the Analyzer and build a story representation . Script—based text
comprehension runs in a cycle which can be divided , roughly ,  into the

• following phases. First , the input Conceptua lization has to be
Internalized . This process includes: replacing conceptual references
to PPs with memory tokens of’ the appropriate class; identifying new

• tokens as instances of on’~s which the story has already mentioned , or
ones (“permanent” tokens) known to memory from prior experience;
marking references to Scripts in the Conceptualization; and decomposing
the Conceptualization into its “atom ic” components .

“iex t comes a process of Pattern—Matching of the unit
Conceptualizations in the “high—priority” queue of Scripts formed from
the act ive Script contexts and those referred to , either explicitly or
implicitly, by the Conceptua lization. If a new Script has been

• referenced , this will be activated , i. e., its predictions about events
to follow will be made accessible to the understander . If the Script
form s a possib le start for a Situation , as discussed in Chapter 3, this
str ucture will be activated also . If a Script is already active when a
new one comes in , the old one will be closed or continued depending on
the instructions provided by an active Situation , if one is available;
or by the “local” constraints defined by the old and new active Scripts.



- 

— 100 —

Once a matc h has been accepted , the understander must build up an
inference chain consisting of’ the episodes or parts of episodes which
can be assumed to have happened between the new Conceptualization and
the last one which was read . Finally, on the basis of the new pattern ,
it must update the search list of predicted events: i. e., load those
which are expected to be seen next , and clear those which are temporally
to the past of the new pattern .

11.2 Story—Telling Conventions

Before describing these activities , we must recognize that there
are several different conventions for telling stories. The simplest
type is simply “narrative” node , in which the events described in the
story follow one another in the world in the same order as in the text.
At the othsr extreme of the stories that SAM can handle is the newspaper
article , which employs the device of the “lead” sentence to quickly put
down what the most interesting events in the story were. The points
raised in the lead are then brought up again in subsequent paragraphs,
with more detail being introduced each time. An intermediate mode of
story—telling uses devices such as “flashbacks ” to suddenly shift  the
setting of a story being told , and connectives such as “but” to signal
to the understander that something out of the ordinary is about to
happen .

We believe that narrative mode is basic to the others we will
discuss . By this we mean that , although writers use other devices to
flag the events they want the reader to pay attention to , these are just
superimposed on a narrative. Consider , for example , the following lead
sentence from the New Haven Register :

(IL l)
A New Jersey man was killed Friday evening when the car in which
he was riding swerved off Route 69 and struck a tree .

This complicated sentence has, at the top level , the most important fact
which t he writer wanted to convey : that someone died . The
“when”—clause describes the accident that caused the death. In this
clause , the sub—Conceptualizations are presented in narrative order :
someone loses control of a car , then the car strikes a tree .

Because narrative order occurs so often , the Script Applier ’s basic
processing cycle is designed for Concept ual iza tions that are presented
in this way. This cycle first decom poses a complex Concept ual izion into
simple sub—Conceptualizations. These are then input to the recognition
process in narrative order . The complex Conceptualization underlying
( ‘L i ) .  for exam ple , would be presented to the Script Applier in the
following pieces: “a man was riding in a car ,” “the car left the road ,”
“it struck a tree ,” and “a New Jersey man was killed .” Modifications to
this scheme for handling stories with “but” —Conceptualizations and
newspaper articles will be di scussed in Section 1 1 9 .

Narrat ive processing order has impor tan t advanta ges for a story
understander. As eac h event is ident ified , the system need only predict
~v’ent— patterns in the near future of the present one . Patterns for past



— 101 —

events can be cleared from memory. Thus, an active Script has a
“window” defining the events that are expected to be seen , anchored on
one end by the last event from the Script that was read , and on the
other by the “reach” of the predictions that the Script has made. As a
story progresses , this window moves through the Script from the initial
Scenes to the later ones : and only a part of the data base is
immediately accessible at any given time. For example , if a story
begins “John went into a restaurant and ordered a hamburger , ”
predictions for inputs about his looking for a table , going to one and
sitting down , etc., will be cleared from active memory , and replaced by
predictions about the “service” part of the Script : the preparation and
serving of the food , the patron ’s eating it , etc . In ef fect, the window
on $RESTAURANT has shifted from the Scenes containing the Script’s
Headers forward to Scenes in the middle of the Script .

A similar windowing effect is built into more complicated Scripts ,
such as $VEHACCIDENT. The Headers for the vehicle—accident Script are
looking for inputs which either suggest that an accident is about to
occur (as in the Conceptualization for “Mary fell asleep at the wheel”)
or has happened (as in “there was a car crash”). Once one of the
Headers has been instantiated , its predictions reach forward to events
which are closely associated with a crash . For example , having read
“Mary fell asleep at the wheel ,” the understander is prepared for
Conceptualizations for sentences such as “her car left the road ,” “her
car went into oncoming t ra f f ic ,” “her car smashed into something ,” etc .
The system will not predict anything which happens ~jtez~ a crash until
the crash event is instantiated . This is because the crash is the
Maincon of the scene , and we want to avoid inferr ing Maincons . For
example , the story “Mary fell asleep at the wheel . An ambulance took
her to the hospital” is peculiar because it leaves out the Maincon .

11. 3 Internalizing Conceptualizations

As an illustration of the Script Applier ’s cycle of
pattern—matching , instantiation and prediction , cons ider SAM ’s
processing of a simple story:

( 11.2)
- 

John Smith decided to go to a museum . The subway took Smith to
Manhattan . He strolled up Fifth Avenue and entered the
Metropolitan Museum . He gave the cashier fifty cents. He
looked at some sculpture. Then he looked at some paintings.

• Later he went home.

The first step in understanding a story is internal izing a
Conceptualization that the Analyzer has produced , that is, transforming
it for use by memory and amalgamating it with existing memory
structures . After analysis, the first sentence of (4.2) is:

“John Smith decided to go to a museum”

GN O :
((ACTOR GN1 <~ > (‘MBUILD’) TO (‘CP’ PART GN1)

MOBJECT GN2))



— 102 —

GN2 :
((ACTOR GN1 <=> (‘PTRANS’) OBJECT GN1

TO (‘PROx’ PART GN3))

GN1:
(#PERSON PERSNA ME (JOHN) SURNAME (SMITH))

GN3:
(#ORGANIzATION ORGOCC ($MUSEUM) REF (INDEF))

(The CD representation used here is discussed in Appendix 1. “GN” —ato ms
represent “ gap nodes , ” i . e . ,  slots with requirements on what can fill
them , in the CD structures built by the Analyzer.) PP—Memory replaces
the list structures (#PERSON...) and (#ORGANIZATION...) with tokens
having the appropriate properties :

“John Smith” HUMO:
CLASS (#PERSON)
PER SNAME (JOHN )
SURNAME (SMITH )

“a museum ” ORGO :
CLASS (#ORGANIZATION)
ORGOCC ( MUSEUM )
REF ( INDEF )

Then , PP—Memory attempts to identify the tokens just created with tokens
already present in its memory : “permanent” tokens for well—known PPs
which are always around ; and tokens created in the course of reading
the story thus far. Assuming that “John Smith” is not a special person
known to SAM , PP-Memory can’t identify either PP at this point. The REF
(INDEF) marker is left by the Analyzer to tell PP—Memory not to look for
a referent for the PP among existing entities. (For a discussion of
this and other kinds of notes left by ELI , see [25].)

Next , PP—Memory marks the reference to the occupation Script of’ the
museum as a suggested Script to be tested by the Script Applier for
applicability .

The tokenized Conceptualization and the various processing
structures that PP—Memory has built (basically, the list of new tokens
and suggested Scripts) are passed to the Script Applier , and the main
phase of Script—based comprehension begins. The Script Applier
decomposes the Conceptualization into sub—Conceptualizations containing
only a single CD ACT or STATE. The result of this process is a list of
simple Conceptualizations preserving the temporal or causal ordering
between events

Simple Conceptualization—patterns are needed to calculate
causal—chain results of connections. For example , t he causal resu lt of
a PTRAN S is a change in the location of the OBJECT PTRANSed . A sentence
in a natural language can clump simple Conceptualizations together in
arbi trar ily com plex ways . Consider , for example , t he CD s tructure built



— 103 —

by the Analyzer for the following sentence:

(4.3) Mary Jones died Tuesday of head injuries received in a
car accident on Sunday.

( ( CON GN 1 LEADTO GN2) )

GN 1: ((ACTOR GN5 TOWARD (‘PSTATE’ VAL (‘NEGVAL’)))
EEL GN3))

GN2: ((ACTOR GN6 TOWARD (‘HEALTH’ VAL (—10))) TIME (TIM2))
TIM2: (( WE EKDAY TUESDAY ))

GN3: ((CON GN’4 LEADTO GN1))

GN4: ( ( <= > ($VEHACCIDENT VEHICLE GN7)) TIME (TIM’4))
TIM1I: ((WEEKDAY SUNDAY))

GN5: (#BODYPART TYPE (‘HEAD’))
GN6: (#PERSON PERSNAME (MARY) SURNAME (JONES) GENDER (‘FEM’))
GN7: (#PHYSOBJ TYPE (‘CAR’))

The Conceptualization underlying ( 11.3) says , roughly ,  that a negative
change in the physical state of a bodypart (belonging , by inference , to
Mary Jones) caused a terminal change in her state of health ; and that
the physical change was caused , somehow , by the occurrence of a Script,
$VEHACCIDENT . The process of decomposition for (4.3) would produce the
ordered list of simple Conceptual izations: “there was a car accident ,”
“a head injury occurred ,” and “Mary Jones died .” In a story containing
(11.3), SAM would try to locate each unit event in the indicated order .
(In (14.3), there is also “global” Time—Setting data : “accident on
Sunday” and “died on Tuesday .” This information would be used later to
infer that Mary Jones spent two days in the hospital before dying,
rather than being pronounced dead at the scene , or on arrival at the
hospital.) Putting the simple Conceptualizations into “narrative order”
takes advantage of the natural causal/temporal order of the Script.
Each new Conceptual ization is ex pected to be found on the basis of
predict ions set up by earl ier inputs. After decomposition , the process
of internalization is complete.

11 .11 Choosing a Context

In the course of understanding a story , the Script Applier
man ipulates several processing struc tures , som e of them specific to a
particular Script , others related to the story representation as a
whole. Information about the state of’ each Script possessed by the
system forms a Scriot ~~~~~~~ which , if ’ the Script is active , is updated
whenever a new Conceptualization is found to f i t  within the context.
Each Script context is defined by: the list of’ patterns from that
Script which are currently in memory ; an association—list of tokens
boun d to Script variables ; the name of last pattern matched in the
Script ; the list of Script episodes currently in memory; the header



- _ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ - ---- ~~~~—~~~~~~ -

— 1 011 —

for this incarnation of the Script ; and a Script—global
inference—strength indicator which the Applier uses to flag how probable
its inferences appear to be.

The Script Applier also maintains several important  global
variables which are updated in all the active modules of the system
whenever they change , and so are available to af fec t  the process of
analysis and internalization . These variables are: the list of’ all the
currently active Scripts: the name of the Script accessed by the last

• story input ; and a pointer to the the most “global” Script currently
available. Other Script Applier variables include: (1) the list of’
Scripts suggested by PP—Memory ; (2) the high—priority search list of
Scripts where the current Conceptualization is expected to fit, formed
from the list of suggested Scripts and currently active Scripts: and
(3 )  the header for the story representation being constructed by the
Script Applier for the current text. The story header provides access
to the final record of the story , from the most general information
about the story to the most specific.

Initially, the record of the Script contexts contains only the
Headers for the Scripts in the system , and the variables keeping track
of the act ive contexts ar e null .  The Scr ipt App lier rec eives the
tokenized Conceptualization for the first  sentence of Example (11.2), and
looks at the museum Script., $MUSEUM , because of PP—Memory ’s suggestion.
The “local” context variables for $MUSEUM are loaded into active memory .
Note that this means that the contexts which are active do not “see”
each other directly, but overwrite each other when a context—shift takes
place. Because this is the first input , the high—priority search queue
of Scripts is simply the list of suggested Scripts , ($MUS EUM ) .

At this point the only parts of $MUSEUM which are present in active
m emory aside from its permanent memory struc tures ( descr ibed in Section
2.6) are the Header episodes. The input is matched successively against
the Headers. The input matches a Precondition Header of $MUSEUM (“main
actor decides/wants to go to a museum ”), and $MUSEUM Is activated . More
predictions from the Scr ipt are loaded , and $MUSEUM is added to the list
of act ive Scr ipts and the Scr ipt search list. It is also marked as
being the most recent Script accessed by an input .

In addition , the setting of the museum—Transaction has the property
that other Scripts can take place there . These Scripts (e .  g . ,
$BATHRO OM and $RESTAURANT ) are added to the search list of Scripts.
Next , the Analyzer’s handling of lex ical and phrasal informat ion is
changed . For example , ELI is given definit ions of word s such as
“exhibit” and “painting” which are appropriate for $MUSEUM.

Final ly,  the information that $MUSEUM is always imbedded in a
trip—Situation is used . That is , $MUSEUM is an appropriate part of’
$GOALTRIP in $TRIP. $TRIP is a Script Situation , ranking above $MUSEUM
in the hierarchy of Scripts described in Chapter 3, so it takes control
of processing .

This means that $TRIP is marked as the most global Script currently
active , and added to the active Script list . Next , the global story
representation variable is initialized with the $TR IP story—template ,



— 105 —

discussed in Chapter 3. The Script label corresponding to the
goal—segment of $TEIP is initialized with the Scriptname $MUSEUM . Since
$MUSEUM was initiated via a Precondition Header , we may hear about the
going—segment of $TRIP, $GOTRIP. Therefore, $TRIP is marked as having
progressed into the $GOTRIP segment , and this segment. is initialized
wi th a list of Scripts which are appropriate for moving people around ,
viz., the personal and Organizational PTRANS Scripts . “John Smith” is
assigned the rol e of ma in ac tor in both $MUSEUM and $TRIP.

At this point , a number of part ially built processing structures
have come into existence. At the top level , t he story is a
simple-sequential sTRIP. $TRIP is currently in the go—segment. sTRIP
in turn consists of a simple-sequential arrangement of $GOTRIP ,
$GOALTRIP and $RETURNTRIP. The go—segment is as yet unspecified , but is
expected to be instantiated by a simple— sequential connection among
PTRANS—Transactions. The goal—segment is expected to consist of a
sequent ial instant iat ion of $MUSEUM and , perhaps, some other Scripts
which are appropriate “goal” activities of a trip. The return—segment ,
if explicitly instant iated , will be a sequent ial arrangement chosen fr om
among the P TRANS— Script s .  Finally,  the instantiation of $MUSEUM will be
a Locale—nested arrangement among $MUSEUM , $BATHROOM and $RE STAURANT.
The current story representation (stored in the global ~STORY ) has the
following property—list structure:

1 STORY : (SEQ SCLAB 1)

SCLAB1 : (SEQ SCLAB2 SCLAB3 SCLAB 11)
Scriptname : STRIP
Scriptseg : $GOTRIP

SCLAB2 : ( SEQ )
Scriptname : IGOTRIP
Scriptq: (SBUS $SUBWAY $TRAIN $DRIVE $WAL.K)

SCLAB3: (SEQ SCLAB%)
Scriptname: $GOALTRIP
Scriptq: (SMUSEUM $RESTAURANT $MOVIE $THEATER $VARIETYSTORE)

SCLAB11: (SEQ)
Scriptnam e: $RETURNTRI P
Scriptq: ($BUS $SUBWAY $TRAIN $DRIVE $W A L K )

SCLAB5 : (NST )
Scriptname: $MUSEUM

• Scrlptq: ($BATHR OOM $RESTAURANT )

The introduction of STRIP in this way partly “hides” the activities
appropriate to $MUSEIJM . The active Script list is currently ( STRIP
$GOTRIP $MUSEUM). Since the global search list which guides the
selection of contexts is built up from the active—Script global , the
patterns appropriate for $TRIP will be looked at first , then those for
$GOTRIP , finally those for $MUSEUM . (This assumes that no new Scripts
are suggested by PP—Memory.) The Script search list thus has this

-— -- - .- —~~~~~~~~~



— 106 —

( impl icit) struc t ur e:

$TRIP
$BUS $SUBWAY STRAIN $DRIVE
$MUSEUM

$BATHROOM $RESTPLURANT

4.5 Pattern—Matching

We said that the first Conceptualization from ( 11.2)  matched a
Precondition Header for $MUSEUM . Str ict ly speaking , the real inference
from this sentence is that the decider intends be at a museum at some
time. The pattern for this Precondition Header is:

(14.4) ((ACTOR &MGRP <=> (‘MBUILD’) TO (‘CP’ PART &MGRP)
MOBJECT

(( ACTOR &MG RP <~ > ( ‘PTRANS ’)
OBJECT &MGRP
TO (‘PROX’ PART &MORG)))))

EXPLICIT (&MORG)

In pattern (14.4), the variable &MGRP is the main actor of’ $MUSEUM , that
is, a grou p of people ( perhaps only one) who don ’t have a function in
$MUSEUM and who will perform as the “public” in this Script . &MORG is a
variable standing for the museum Organization , the “actor” providing
this service to the public . The property EXPLICIT on the pattern
indicates that the museum—Organization must explicitly appear in the
input Conceptualization. This avoids a spurious match on an input such
as “John decided to go.”

In formation about these two Script variables is stored on the
property lists of the variables as follows:

&MGRP : CLASS (#PERSON #GROU P )
DUMMY T
SFUNCTION (‘NONE’)

&MORG : CLASS (#ORGANIZATION)
DUMMY T
SFUNCTION ($MUSEUM )

The “dummy” property is a flag which tells the matcher that this
atom is to be bound to the corresponding conceptual cluster in the
input . The CLASS marker gives the conceptual PP—classes the input PPs
are expected to fall into . The SFUNCTION property indicates the most
global function the PP can have in the Script . For &MORG , this is the
Script i tself .  For the “main character ,” the marker (‘NONE’) indicates
that the input PP should not be strongl y identified with any Script

• context. If, in fact , the input PP has a strong connection , by
function , with some other context , the Script Applier delays activation
of a Script , as discussed in Section 4.9.

~~~~1



— 107 —

4.5.1 The Backbone Match

The first phase of’ matching consists of a comparison of’ the
“constant” par ts of the Conceptua lization for the sentence with the
constant parts of the pattern . The full form of the Conceptualization
for the first sentence of (14.2), after PP—Memory has finished with it ,
is:

(11.5) “John Smith decided to go to a museum ”

MEM1:
((ACTOR HUM 1 <=> (‘MBUILD’)

TO (‘CP’ PART HUM 1)
FROM (NIL )
INST (NIL )
MOBJECT MEM2 )

TIME (TIM 1 ) MODE (NIL ) MANNER (NIL ))

TIM1: ((BEFORE ‘NOW’ X))

MEM2:
((ACTOR HUM I <=> ( ‘PTRAN s’) OBJECT HUM 1

TO (‘PROx ’ PART ORG 1)
FROM (NIL )
INST (N I L ) )

TIME (TIM2) MODE (NIL )  MANNE R (N I L ) )

TIM2: ((VAL GN O ) )

HUM 1 : “John Smith”

ORG1: “a museum ”

Note , in ( 14 . 5 ) ,  that many “gaps ,” such as the INSTrument of the PTRANS
(how John went) , hav e been left unfilled ( N I L ) ,  because the sentence did
not explicitly refer to them .

The basic rules in the backbone match are: (1) “literal” roles and
fillers specified by the pattern must appear in the input ; (2) extra
roles and fillers in the input are ignored ; (3) a dummy must be matched
against the same conceptual cluster each time it appears in the pattern ;
and (‘I) an empty filler slot in the input matches anything , unless the
pattern , using the EXPLICIT property, demands that the filler be
explicitl y present.

Since the pattern does not conta in instrumentals , and doesn ’t care
where John is deciding to leav e FROM , these roles are not examined .
Since the OBJECT to be PTRANSe d is the same as the ACTOR of both the
PT RANS and the MBUILD , we avoid a spur ious match on a sentence such as
“John decided to throw a ball at the museum.” Finally, since (14 .14) has
an EXPLICIT marker on &MORG , the backbone match will fail if’ the

• corresponding slot is ( N I L ) .  This would abort the match if the sentence
were “John decided to go.”



- 108 —

14.5.2 Rolefit

The result of a successful backbone match is a list of bindings of
candidate PPs to Script variables . The next step in the matching
process is checking that the candidates can in fact be instances of the
variables. The general process of fitting variables to PPs is called
Rolefit. When a variable has been previously bound to a token by
Rolefit, the fitting process must be augmented by checks to be sure that
the new PP can be an instance of both the variable ar~ the old token .
This process is the manifestation in SAM of Reference Specification , and
is called Rolemerge.

Rolefit on the results of the match of (14.11) to (14.5) involves an
intersection of the conceptual class markers of PP and token , and a
check that the rwloflQfl specified by the variable can be performed by
the PP. &MGRP can either be a person or group , since we want the Script
to handle cases such as “John and Mary went to a museum .” “Museum”
matches the class specified for &MORG exact ly.  The point of this
initial check on PP—class is to provide a fast failure if the candidate
PP obviously cannot fill the specified role. This is possible because ,
as we argue in Chapter 7,  the PP—classes form a contrast set which is
intended to model the distinctive ACTORs who do things in the world , and
the objects associated with their act ivi t ies .  Note that the class
distinctions used are to a certain extent antihierarchical : human and
group actors are physical objects , for example , but it usually isn ’t
very helpful to think of them this way in story understanding .

The checking of function is also facilitated by the existence of
the PP—classes. One feature of each class is that the indicators of
function it may contain are to som e exten t unique to the class. For
people , a title or occupation marker strongly suggests the function the
person will have in a context .  For organizations , t he associated Scr ip t
( and the sub— and super—Scripts it points to) is the main indicator of’
function . Physical objects, however , often have a function in more than
one Script . A car , for example , can figure as a “vehicle” in a driving
situation , or as the “object of sale” in a car—showroom situation. A
reference to “a car” in text maps into a conceptual structure of the
form (#ST R4J CT URE TYPE ( ‘CAR ’) ) ,  where the reference to ‘CAR’ is a
shorthand for the cluster of functions and other information that
PP—Memory possesses about cars in general :

‘CAR’: CLASS (#STRUCTURE)
SCRIPTROLES ((&VEHIcLE 1 . $DRIVE)

(&SALE—OBJ . $AUTOSHOWROOM))

Picture Producers fit into Scripts on the basis of function .
Because of this , a simple compar ison of feat ures may not be suf ficient
to determine whether a PP can be an instance of’ a variable. This is the

• case , for example , for the “ obstruction ” role from $VEHACC IDENT , and the
role “ group of visit ing dignitaries” in $VIPVIS IT . When faced with
com pl ex funct ions such as these , the Script Applier resorts to a form of
pattern—directed function invocation [15], to examine the input and the
association—list of tentative variable bindings for applicability. In a
state—visit context , for exampl e, there is a Header pattern looking for



— 109 —

the arrival of a Very Important Person. If a group of people actually
arrived , this pattern would call a function to search among the members
of the group to see if one of them qualifies as a VIP. This is the only
way to distinguish $VIPVISIT from other manifestations of the trip
Situation , such as $VACATION or $BUSINESSTRIP. A characteristic of
functions invoked at match time is that they have no real side—effects.
If the match fails, all is as before .

14.5.3 Rolemerge

The process of fitting new PPs to Script variables bound to PPs
from previous Conceptualizations is called Rolemerge. It is important
to note that Rolemerge can , in fact , be implemented in two differen t.
places in SAM : in PP—Memory or in the Script Applier itself. The
primary reference processor , however , is the Script Applier , since this
module may have to act as a “backstop ” for PP—Memory in cases where too
little information is available in the PP5 alone to make the decision .
The reason the Applier can figure out the needed reference in these
latter cases is that it has the additional information that a predicted
pattern involving the variables has been matched (Note 1).

The most important signal in text that Rolemerge will be needed is
an instance of a definite determiner (REF (DEF)) attached to a PP by the
Analyzer . For example , “he” is mapped into (#PERSON GENDER (‘MASC’) REF
(INDEF) ).

This processing note is first seen by PP—memory, which looks for
the referent  among the tokens already in existence , those created during
the processing of the current Conceptualization , or in its collection of
permanent tokens. If the PP is a permanent token , PP—Memory makes the
connection and turns off the processing suggestion . The Script Applier
then searches for the PP as though the reference were indefinite.
Suppose , for example , the second sentence of (14 .2) referred to “the BMT”
rather than to “the subway.” The corresponding PP would be treated as
though it were simply “a subway,” which , from the point of view of
Cwi~aQ~i, it is.

The first example of a definitely determined PP in (14.2) is “the
subway” in the second sentence. This is an interesting case , because
“the subway” can either refer to the class of PTRANS—Organizations that
move people around in certain cities , or the unique one which Smith
would use to get where he wants to go. If our memory representation for
Smith were more complete , it might be possible to decide which subway is
in fact being referenced by knowing where Smith lives and what his
destination is. In this case , Smith would be a permanent token . We are

1. Versions of the Rolenierge processor are implemented in both modules
of SAM . In the “newspaper—processing ” arrangement of the system ,
however , the Applier Is the “act ive ” modul e during the understanding
phase . This is why, in the sample story given in Chapter 1.6 , Rolemerge
is only done by the Applier : PP—Memory ’s act ions are conf ined to
identifying PPs as instances of permanent tokens.



— 110 —

assuming , however , that PP—Memory doesn ’t know about Smith initially, so
the decision about “the subway” has to be left for the Script Applier .
As was previously discussed , the possibility of’ a subway ride was
introduced when the $TRIP Situation was activated , so the second
sentence of (14.2) would match a prediction from $GOTRIP of the form :

((ACTOR &PTRORG < >  (‘PTRANS’)
OBJE CT &TRPGR P
TO (‘PROx’ PART &PTRDEST)))

This match would result in a second call to the Applier Rolemerge
procedures , to see if “Smith” can be an instance of’ “John Smith ,”
previously bound to the global main actor &TRPGRP by the activation of
$TRIP. The basic heuristic used by Rolemerge is called
“Reference—by—Abstraction .” It is assumed that each new reference to a
previously bound token will be defined by features which are a subset of’
the previous ones. In this case , the new PP is defined simply by a
SURNAME feature: a subclass of the (CLASS SURNAME PERSNAME GENDER)
features that came in with “John Smith.” (Rolemerge does not demand that
the new f’eaturé~s form a proper subset. It would accept an occurrence of
“John Smith” in the second sentence , even though this sounds strange.)
The Reference—by—Abstraction heuristic would handle cases such as “John ”
and “he ,” and also a definite reference to Smith’s occupation through an
OCCUPATION or TITLE : e. g., “Patrolman John Smith ,” followed by “the
policeman .” If the PP were simply “a man ,” however , Rolemerge would
boggle on the REF (INDEF) processing note.

11.6 Making and Unmaking Predictions

Each time a pattern is matched , the “window” on the associated
Script must be moved to conform with the Script ’s expectations about
what will happen next. Since , as was discussed in Section 14.2, the
Script Applier assumes that stories will be told in narrative format
unless something signals otherwise , the prediction process has two
distinct phases: (1) clearing patterns from active memory which lie in
the past of the presently matched pattern ; and (2) bringing in episodes
containing the patterns predicted by the present one . The removal of
unneeded patterns is accomplished by consulting the permanent memory
structures for the Script to determine which scenes currently in memory
precede the scene of the currently active pattern , and by nullifying the
property lists of patterns belonging to these scenes.

The stories SAM reads refer in general to Transactions and
Situations. How are predictions made in these cases? Predictions made
in Transactions use the structure of the Script : that is , that it is
about a request for some kind of service which an organization provides
in return for some sort of payment. ‘-~ince the Script Applier is
interested in determining whether the Transaction can be inferred to
have taken place , the first line of’ predictions after the Headers are
about requests for the service the organization provides. Once a
request can definitely be assumed , predictions are made about the
occurrence of the service and payment. The order in which these things
are predicted depends on the details of the Transaction . In each case ,
if the predicted scene contains turning points , places where Scriptal 

~~~~~~~~~~~~~~~~~~~ 



-—-~~
. - “•~~~~~

. -

— 11 1 —

interferences can happen , the prediction list for patterns preceding a
turning point contain templates looking for the possible outcomes.

Let’ s consider how the prediction process works in a simple story
about a restaurant-Transaction :

(11.6)
John walked into a restaurant and ordered a hamburger. The
waiter said they didn ’t have any,  so he asked for a hot dog .
When the hot dog came , it was burnt .  John left  the restaurant.

Internalization of the first sentence of ( 11 .6)  would result in a
suggestion by PP—Memory that $RESTAURANT be tried . The first clause
satisfies a Locale Header for this Script , so $RESTAU RANT is activated .
(Actually,  $TBIP would be activated , too , but it is not needed for this
story.)  The predictions attached to the Header look for events related
to a request for service. In the restaurant context , this is the
“ordering ” scene. The prediction for an ordering event is matched by
the second clause . Since the request has been instantiated , the Script
Applier now predicts an instantiation of the serv ice (t his precedes
payment in the “default” track of $RESTAURANT), and scenes which prepare
for i t .  Also , since the act of ordering is a turning point , predictions
about possible interference events ( the restaurant can ’t fill the order ,
or the preparation will take a long time) are added to the search list .

The next sentence from ( 1 4 . 6 )  instantiates an interference
prediction , so patterns for resolv ing events are predict ed . For
example , the waiter might ask the patron if he’d like something else. A
resol ution for the interference appears in the next clause . Since
“ reordering” is a case of “ ordering” (i t ’s an alternative Maincon in
this scene) , the standard predictions about service and payment are
re”~.ored to the search list . The clause “When the hot dog came..  .“ is
interpreted as a realization of the predicted service event , and so
predictions about events to follow ( eating and paying ) are made. As
before , the serving event precedes a turning point in the Script , namely
the things that can happen when the customer reacts to the meal . The
“default” course of events is that the patron will accept the order and
begin to eat . An “interference” reaction is that he will find the food
unsatisfactory in some way. This interfering event in fac t occurs.
Possible resolutions of the interference , e. g . ,  sending the meal back
to the kitchen , are added to the prediction list . The most extreme
t’esolution for this interfering event , namely an abort path out of the
Script , is realized by the last sentence. The Script Applier
instantiates a path out of $RESTAURANT which includes a negative change
in the customer’s ‘ANGER’ STATE , but not an instance of a paying or
t ipping event.  Since “leaving” is an Exitcon in $RESTAURANT , its
instantiat ion deacti.-ates the Script .

The prcc°ss of making and clearing predictions in stories processed
under Script SituatIons is very similar to what has been described here .
In Story (14.2), the Situation STRIP is active after the first sentence
is read . STRIP is a linear sequence of going— , goal— and
returning—segments , with appropriate Transactions filling the segments.
The structure of Story ( 1 4 . 2 ) ,  for example , is roughly as follows~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  .-~~~~ -~~~~~~—~~~~~ • - • ~~~~

— 112 —

~~~~~~_— $TI~I P
$GOTRIP $GOALTRIP $RETUqNTRIP
$SU~ WAY $M 1~SEUM $SUB WAY

The processing of this story will involve , ~t various points ,
predict ions from its com ponent Scripts : $SUBWAY and $MUSEUM . But there
is a predictive component in Situations , over a~’d above what the
component Scripts provide. The STRIP Situation , fo.’ example , predicts
that only certain Scripts will be used in each of its segments. For
example , it initially prescribes that only personal and organizational
PTRANS Scripts will be referenced . Yu have to get to the place where
something “important” is happening before you can participate in it.
Furt hermore , a text can refer to a tr ip in general without f i l l ing in
too many details. Consider , for example , what it means to “take a train
trip,” “go on vacat ion ,” or “return from Miami.” These phrases refer ,
respectively, to the three segments of $TRIP in general terms.

In SAM , when a story is read with the aid of a Script Situation ,
the first predictions to be looked at are those provided by the
Situation . After the first sentence of (4.2) is processed , t he $GOTRIP
segment of $TRIP is active , making available the toplevel patterns:

• [A trip was taken]
((<~> ($TRIP MAIN &TRPGRP ORIGIN &ORIG DESTINATION &DEST

INSTRUMENTALITY &PTRORG)))

[Someone went somewhere]
((<=> ($GOTRIP MAIN &TRPGRP ORIGIN &ORIG DESTINATION &DEST

INST RUMENTALITY &PTR ORG )) )

Recall that “John Smith” is bound to &TRPGRP and “museum” to &DEST.
These patterns would handle inputs such as: “The trip/outing took three
hours;” and “John journeyed downtown .” When the second sentence is read ,
the variable &PTRORG would be bound to “subway.” When Smith enters the
museum , $TRIP would move into the predicted $GOALTRIP phase. At this
point , a further prediction about a return journey would be made ,
corresponding to the toplevel pattern :

[Someone returned from somewhere]
( ( < c >  ($RETURNTRIP MAIN &TRPGRP ORIGIN &OR1G DESTINATION &DEST

IN STRUMENTALITY &PTR ORG ) ) )

This pattern would be instantiated by the last sentence of (14.2):
“Later Smith returned home.”

The introduction of STRIP in this way partly “hides” the activities
appropriate to $MUSEUM . The active Script list Is currently ($TRIP
SGOTRIP $MUSEUM). Since the global search list which guides the
selection of contexts is built up from the active—Script global , the
patterns appropriate for STRIP will be looked at first, then those for
$GOTRIP , finally those for $MUSEUM . (This assumes that no new Scripts
are suggested by PP—Memory.) The Script search list thus has this
(implicit) structure:



— 113 —

$TRIP
$BUS $SUBWAY $TRA IN $DRIVE
$MUSEUM

$BATHROO M $RESTAURANT

4.7 Instantiating Episodes

When a predicted pattern has accepted the current input , the input
has been “recognized” within the Script , and a causal chain is
constructed which connects t he last input to the new one. This chain
contains events which can be plausibly inferred to have happened given
the inputs that were read .

The Script Applier builds up causal chains by examining the episode
structure stored in permanent memory for the active Script. Suppose ,
for example , we read :

(4.7) Smith went into the BMT. He took the train downtown .

The first sentence of ( 14. 7 )  instantiates an event from the entering
scene , $SUBW AYENTE R , of $SUBWAY , and activates the Script. The second
sentence real izes the Ma incon of $SUBWAY , which is in $SUBW AYRIDE.

To com pute a causal connection between events such as these , the
Script Applier uses the following rules. First, if the episodes are in
t he same scene , t he Applier traces the causal successors of the earl ier
event , reniaining on the main paths of the episodes, unt il it encoun ters
the later ev ent. While looking at any given main path event , the
Applier will also check on events which are immediate inferences
( forwa rd or backward ) from it. If the events are in di ffer ent scenes,
the Applier will construct a causal chain having three segments. First
is a causal connection between the earl ier event and an Exitcon for its
scene which has pathvalue “ default. ” Next is a segment consisting of the
default paths through scenes which lie between the scenes of the earlier
and later events . Finally,  there is a connection between a default
Entrycon of the later event~s scen e and the later event. In ( 14 .7) ,
$SUB WAYENTER and $SUB~AY RI DE are adjacen t scenes , so the connecting path

• contains only the first and last segments.

The result of this process is a list of uninstantiated patterns
representing a mainpath connection between the events. The Applier
takes this list and “real izes” the patterns, one after the other , by
replac ing occurrenc es of Script var iables in the patterns with the

• PP—tokens bound to the variables . For example , in the pattern for
“patron goes to cashier :”

((ACTOR &PATGRP <=> (‘PTRANS’) OBJECT &PATGHP
TO (‘PROX’ PART &CASHIER)))

the variable &PATGRP would be replaced by the token for Smith , say,
HUM O .



— 11 14 —

The above pattern conta ins a variable &CASH IER , which is not bound
to a PP , because the role was not mentioned in (4.7). When this
happens, we have a need for a Role—Instantiation inference , in which the
Applier asks PP—Memory for a token having properties which are
appropriate , in default , for this role. At the time $SUBWAY was
activated , PP—Memory was informed about the properties of all the
variables having a place in the Script . It uses this information to
supply the Instaritiator with a token for “cashier” in which the PP’s
place in the Script is recorded under the SROLES property :

HUM1 :
CLASS (#PERSON I
SROLES (($SUBWAY . &CASHIER))

With this token supplied , the realized form of the pattern is:

((ACTOR HUMO <=> (‘PTRANS’) OBJECT HUMO
TO (‘PROX’ PART HUM 1)) TIME (TIME5))

where TIME5 def ines an appro priat e temporal relation between th is
Conceptualization and the other events in the causal chain .

Inference events which are immediate results or enabling conditions
of’ mainpath events are realized at the same time as the main events.

4.8 Changing Contexts

When the second sentence of Story 14.2 is read , $SUBWAY is activated
under control of the $GOTRIP segment of $TRIP. As we said in Chapter 3,
this means that the bindings for “person(s) taking trip,” “conv eyance”
and “destination” are copied from $GOTRIP to $SUBWAY , and various parts
of $SUBWAY are real ized .

The instantiat ion of $SUBWAY up to the point referred to by the
Conceptualization for the second sentence has several parts. First , the
Preconditions of $SUBWAY are realized . For example , the Script Applier ,
not having read anything to the contrary, will assume that Smith
possesses a token to get through the turnstile , and wants to go

• somewhere on the subway . The “main character” is known to be “Smith”
and the “destination” is known to be “a museum ,” so these tokens are
used directly. PP—Memory uses the defaults supplied by the Script
Applier to create a “token .” Next , the Script Applier constructs a
causal chain from the default Entrycon to the Ma incon (which the second
sentence of (4.2) instantiates), and realizes this chain as described in
th° previous section . In this process it obtains tokens from PP—Memory
for “cashier ,” “turnstile ,” “platfo rm ,” etc ., as it encoun ters the
associated Script variables . The first part of the third sentence
instantiates an Exitcon from $SUBWAY , so a path consisting of’ the
default  episodes of $SUBWAYRIDE and $SUBWAYEXIT is constructed , and
$SUB WAY is closed .

The Conceptualization for the second part of this sentence (“. . .he
entered the Metropolitan museum.”) activates $MUSEUM using the Locale
Header . At this point the Situation moves into the goal—segment,



— 115 —

~ .TR IP , because this is the goal activity that was predicted at the
b~~...nning of the story . The specification of the reference for “he” in
this clause is made on the basis that the main character in a
Transaction which is part of’ a trip is required to be the same as the
global main character , &TRPGRP . Activation of $MIJSEUM results in the
prediction of a possible “admission” event , in which a member of the
public pays to get into a museum . This pattern matches the next
sentence from Story 14.2~ “He gave the cashier fifty cents .” Now that
the main character is firmly inside the museum Locale , the Script
predicts a number of episodes which are appropriate for museum—going.
One of the most important of these is the “cyclic” episode in which the
patron goes to an exhibit of some sort , and studies the things on
display there. The Maincon of this episode natches the
Conce ptualizat ions for the next two sentences , where each instance of
matching predicts another possible instantiation of the episode.

The last sentence of Story 4.2 fails to match the outstanding
predictions in either $GOALTRIP or $MUSEUM . It does , however , fit the
prediction associated with the returning—segment of $TRIP. This pattern
has as one of its roles the conveyance that the main character used to
get back to where he started from . The conveyance is not mentioned in
the last sentence , so $R ETURNT R IP assumes that the conve yance that was
instantiated in $GOTRIP is the one that Smith used to get home.

14.9 Processing Newspaper Stories

Story ~4.2 illustrates the processing of stories using Situations to
organize the understander ’s expectations about a large Imowledge domain .
Understanding of certain kinds of newspaper stories, as we indicated in
Chapter 3, is also facilitated by the presence of an appropriate
Situation . SAM , for example , has applied Situations for vehicle
accidents , state visits , train wrecks and oil spills.

• Newspaper stories, however , differ from stories such as (14.2) in
that they are typically not told in the same way , even though the
knowledge domain they refer to may be describable in terms of a Script .
The most important difference is that they do not use narrative mode ,
that is , events may not follow one another in the stor y in the same way
as they do in time . In this section we describe some of the effects of
the way in which newspaper articles are told on SAM ’s processing . The
general conclusion is that the machinery set up for narratives is
adequate , with minor changes and extensions , for newspaper art icles as
well.

The most striking thing about stories from newspapers is the
phenonemon of the ~~~ ~~~~~~~~ This, the first sentence of a story ,
is usually a very complicated one giving the major event that happened ,
together with time— and place—setting , and other supporting information .
A t ypical lead sentence from $VEHACCIDENT , for example , might be:

(4.8) A Pennsylvania man and wife returning from vacation were
killed today in a violent car crash on the Connecticut
Turnpike .



— 116 —

Sentence (11.8) announces the most important thing that happened in this
instantiat ion of the Script , the thing that  readers want to know f i r s t ,
namely, that a certain couple died . The death is placed in an
appropriate setting in time (“today”) and in relation to the Script
itself (“in a violent car crash”). The Conceptualization concerning
$VEHA CC IDENT , in turn, is located on a typical road—link , “the
Connecticut Turnpike .”

Newspaper writers use the lead sentence as a means of quickly
communicating the main point of a story . Readers can scan the first
sentence and quickly extract the gist of each article. The format of
lead sentences is roughly, “When X , Y ,” where X is a Conceptualization
about the Script which was realized , as in (14.8), or a Script Maitmon .
Having selected the appropriate knowledge domain , the writer describes
the most important thing that happened . If someone was killed or hurt ,
Conceptualization I will say so. If people are both dead and injured ,
the details on the dead people are usually given first.

This format for writing lead sentences fits rather well into the
decomposition strategy which SAM uses to find the unit
Conceptualizations in a complex input . (This process was described in
Section 14.3.) In the case of (14.8), for example , the right Script would
be found very quickly because the phrase “in a violent car accident ,”
which would be searched for first , corresponds to a Direct Header for
$VEHACCIDENT . The match against the Header would also yield information
about the vehicle involved (“car accident”) and the place (“on the
Connecticut Turnpike”) of the accident. Having activated this Script ,
the Script Applier would go on to find the top—level event : “two people
died ,” since this realizes one of the standard predictions that the
Script Applier makes when it reads about an accident.

Example 14.8 also illustrates a typical feature of newspaper
stories , the use of paraphrases to refer to Picture Producers . Here ,
the PPs serving in the role of “people killed in the crash” are
introduced by residence , rather than by name . This process , which is
called “ paraphrastic reference ,” is handled by a simple modification to
the Script Applier Rolemerge heuristics. The standard method used by
Rolemerge is called “reference by abstraction.” It is assumed that each
new description of a PP will use a subset of the features named when the
PP was first introduced . Having heard about a certain “John Smith.” for
example , Rolemerge now expects to see PP—tokens containing some or all
of the features (F IR STNAME LASTNAME GENDER ) , as in “John ,” “Smith” or
“he.” (Note 2.) In the case of newspaper stories , Rolemerge will not try
to do reference by abstraction unt il it knows the “tag ,” i. e., the
unique name of the PP. For persons , f’or example. the tag is an instance
from the set (FIRSTNAME LASTNAME). Until it gets a tag , Rolemerge will
be satisfied if there are no contradictions between features of a new PP
proposed for a variable and the PP already bound . For example , it would

• accept “the Pennsylvanians” as a reference to the “Pennsylvania man and
wife” introduced by (14.8). If the story which (14.8) leads off

2. Reference—by —Abstract ion assumes that the noun—group descriptions of
PPs will be “simple ,” that is, no additional appositives or relative
clauses will appear in later descriptions of the PP. For example , we
will not see something like “Smith , who was a boxer.”



~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 117 —

continued :

(4.9) John and Mary Gavin , of Morristown , Pa , were pronounced
dead on arrival at Milford Hospital.

the Script Applier would now have a tag for the group of people that
died , and would be prepared to accept “Mr and Mrs Gavin ,” “the Gavins”
or “both .” It would make the identification between “a Pennsylvania man
and wife” and “John and Mary Gavin” even if (4.9) omitted the residence
specification “Morristown , Pa.” This is because the event of a death in
$VEHACCIDENT predicts the announcement of this event by an appropriate
medical authority.

A final feature of’ newspaper articles , related to the lead
sentence , is the “multi—pass” nature of descriptions of events. The
lead sentence introduces the main event of the story, then the story may
talk about other things which happened . However , it is quite possible
that the writer will later refer again to an event which has already
been instantiated , for the purpose of filling in some details which are
not appropriate for a first reading . For example , suppose the full
story introduced by (4.8) were:

(14.10)
A Pennsylvania man and wife were killed today in a violent car
accident on the Connecticut Turnpike . John and Mary Gavin , of
Morristown , Pa., were pronounced dead on arrival at Mi lford
Hospital . The Gavin ’s 17—year—old son , Irving , was taken to
the Milford Hospital emergency room , where his condition was
described as “critical .” The Gavin ’s car went off Interstate
95 and struck a bridge abutment. Both victims died
instantaneously.

The first two sentences of (4.10) talk about the people who were killed .
The third sentence refers to a third participant in the crash , who was
still alive at the time of writing . Suddenly the story jumps back to
the Maincon of the Script , the crash itself’, and an event which has
already been explicitly mentioned is brought up again , with a new detail
added .

A mode of’ processing which established connections between events
at the time when each new input is matched would be forced to
“backtrack” in the presence of inputs such as the above. For example,
the obstruc t ion role in $VEHACC IDENT , which is implicitly introduced by
the first sentence of’ (14.10), would be filled in by default when this
input is processed . The pattern which is instantiated would be matched
again when the sentence containing “a bridge abutment” is read , and new
features would have to be added to the “default” PP. Similarly, the
pattern for “someone died ,” instantiated when the first sentence is
processed , woul d have to be updated when “instantaneously” is added by
t he last sen tence.

To avoid backtracking in cases such as these , the Script Applier
delays computing causal chains until all the story inputs have been
read . At that time , all the fact s about PPs and events have been
accum ulated , and the instantiation process can proceed without the need



— 118 —

to overwrite something that has already been done . For more information
on how the pattern—match and instantiation cycle is implemented in
newspaper stories , the reader is referred to the detailed example given
in Chapter 6.

I

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • .~ • .— ~~~~~~~~~~~~~~~~~~~~ •~~~~~•~~~~~ -~~~~~~~~ •-~~~~~~~~~~ • . •



Chapter 5
Inferencing in SAM

5.1 Introduction

Chapter 14 described the Script Applier ’s fun damental process of
matching an input against a pattern from one of its Scripts. This
activity has three major goals: to identify the context to which an
input Conceptualization refers; to move around in an an active Script;
and to change Scripts when the one which was active no longer seems
appropriate. Since the SAM understander is driven by this recognition
process , it is crucial that it be “robust ,” that is, capable of coping
with inputs which , although they are “equivalent” to an expectation in
some sense , deviate from an exact match in various ways.

A Script’s expectations are encoded as patterns which fit into
causal chains. As we explained in Chapter 2, the form the pattern takes
is determined by its connections to other patterns in the chain . In
$RESTAURANT , for example , the pattern looking for an instance of the
waiter going to the patron to take his order has the form :

((ACTOR &WAITER <=) (‘PTRANS’) OBJECT &WAITER
TO (‘PROX’ PART &PATGRP)))

The patt ern requires the waiter to be “near ” the patron because this is
the only way, causally speaking , that the nex t event in the chain (an
MTR ANS between waiter and patron) can take place. The literal English
real ization of this pattern : “The waiter went to the patron ,” while a
possible way of expressing this ev ent , sounds a little strange , as
though the waiter were about to ask the patron for some help. Another ,
“equivalent” way to express this event is “The waiter went to the
table.” The first—stage match of the pattern to the Conceptualization
for the latter sentence will fail , however , because of the discrepancy
between the slot—filler “proximity of patron” demanded by the causal
chain , and the filler “proximity of table” appearing in the input .

Reconc iling the di fference between what was expected and what is
read requires inferencing . We discuss several classes of discrepancies
between “equivalent” inputs and predictions , and a set of inferences for
ironing them out , some of which have been incorporated in SAM.

A prediction and a closely related Conceptualization may fail to
match for one of two reasons: (1) the backbone of’ the input may be
slightly different from what was expected; or (2), as in the above
example. some features of a PP bound to a Script Variable may deviate
trots the norm . In SAM , a fa iled match is handled by processes attached
directly to the patterns. This way, the machinery for dealing with
problems is only used where and when a specific pattern doesn’t accept
an input for a specific reason.

The discrepancy—resolving process proceeds in the following cycle.
First , the backbone match takes place. If the match fails, a
discrimination net is applied to decide which inference , if any, should



- -

— 120 —

be made. The result of the inference is a modification of the original
pattern which is then fed back into the pattern—matcher , proper . If
the initial match succeeds, or if the match against a derived pattern
succeeds , it may st ill be the case that a candidate PP does not con fo rm
to the requirements the Script has for the slot . In these cases
“PP—fi t t ing ” inferences are tried . These call either PP—Memory or
Script Applier routines which search special data structures attached to
the Script .

5.2 Classes of Inferences

Below we discuss a set of problems presented by certain texts which
SAM has read . For each problem , we describe the circumstances under
which it arises, and the inference needed to solve it. If a pattern
modification is required , the test on the result of the failed initial
match is given . If an auxiliary memory call is necessary , we describe
the routines which perform the call. In cases where SAM cannot handle
the needed inference entirely, we indicate the additional procedures
that an extended version of SAM , or a more general understander , woul d
require.

The classes of inferences automated wholl y or in part in SAM are :

( 1 ) Rolef it
(2) Ro lexnerge (Reference Specification)
(3)  Causal—Chain Instantiation
( 4 )  Rol e Instant iat ion
(5) Immediate—Result Inferences
( 6 )  Locat iona l Inferences

(a)  Transit ivity of Proximity
( b ) Enclosure

(7) Movement Inferences
• ( a )  Personal Possessions

(b) PTRANS Organizational
(8)  Mental—Act Inferences

(a)  Perception/Remembering
(b )  Authority Announcement

( 9)  Agency Inferences

Of these , the first four , Rolefi t , Roleinerge , Causal—Chain
Instantiation and Role Instant iat ion , are bu ilt into the basic con trol
structure of the Applier . These processes were described in Chapter 14.
Rolefit or Rolemerge is performed on every pattern that is matched .
Causal—Chain Instantiation (including Role Instantiation , as required )
fills in the events of Script episodes which , though not explicitly

• mentioned by a story, can reasonably be inferred to have happened . The
inferred items are then available for later stages of inferencing .

5.3 Immediate —Result  Inferences

A simple , but important kind of’ inference computes Immediate Results
of patterns. Immediate results describe the CD STATE arrived at by the
ACTOR or OBJECT participating in the event. For example , if we have :



— 121 —
(5 .1 )  John gav e Bill a book.

((ACTOR HUMO <:> (‘ATRANS’)
OBJECT PHYSO
TO H(JM 1))

the immediate result inferred is that “Bill has the book :”

((ACTOR PHYSO IS (‘POSS’ VAL H U M 1 ) ) )

Immediate result STATives of this kind are not stored in the Script , since
they can be computed from inputs such as (5. 1 ) if the fillers for the
ACTOR , OBJECT and TO slots are known. The practical benefit of this is
that the physical size of the Script is reduced considerably.

If an input STATive is compared to an ACT—pattern , a simple test can
be tried to see if an immediate result inference is appropriate . The
tests and derived patterns for various ACTs are as follows :

Act Test Derived Pattern

‘ATRANS’ Is input a stative containing ((ACTOR &OBJ IS (‘POSS’
IS (‘FOSS’)? VAL &GRP)))

‘PTRANS’ Is input a stative containing ((ACTOR &OBJ IS (‘LOC’
IS (‘LOC’)? VAL &LOC)))

‘MTRANS’ Is input a stative containing ((CON &MOBJ IS (‘MLOC’
IS (‘MLOC’)? VAL &MLOC)))

Table 5.1
Immediate—Result Inferences

Suppose , for example , a pattern of the (‘PTRANS’ TO) variety is
compared against a stative of the (IS ‘LOC’) type. Immediate Result
generates a new stative pattern from the original one and hands it to the
matc her. An actual instance of this occurred in the sentence : “The
Albanian party was welcomed at Peking Airport by Foreign Minister Huang,”
from Story 1.3 (Chapter 1 , p. 19). Here, t he STATive Conceptual izat ion
for “at Peking Airport” woul d be matched against the pattern looking for a
PTRANS—organization taking its passengers (the group of visiting
dignitaries) to the organization’s terminal (e. g., an airport).

5. 14 Mental—Act Inferences

5.14.1 Perception and Remembering

Another set of inferences, analogous to Immediate Result but
performed for only “mental” ACTs , is Immediate Enablement. The causal
chains in Scr ipts are built up out of events performed by one or more
actors , including ACTs of perception , remembering and communication.



- 122 —

English characteristically refers to the thing perceived or rem embered ,
less often to the ‘MTRANS’/’MBUILD’ ACT itself. That is, the causal chain
may conta in connect ing patterns involv ing mental ACTs on the part of some
roles , but the linguistic input will refer to the mental object contained
in the pattern , not to the ACT itself.

The inference is called “enabling” because it is assumed in Scripted
situations that the things perceived , remembered , decided or communicated
are , in fact , true . There isn ’t any deception , amnesia or hallucination
going on. So , if we read “The doctor pronounced John dead ,” we infer that
John is indeed dead , since this is an immediate enablement for the
pronouncement.

A failed matc h against a “mental—act” pattern causes the MOBJECT to
be extracted and used as a pattern , provided a simple test is passed .
Suppose we have :

(5 2) John had some lasagna in a restaurant. The service
was good so he left a large tip.

The stative “in a restaurant” in (5.2) would activate $RESTAURANT via an
Immediate Result infe rence operat ing on the Locale Header . When the
Gonceptualization for “the service was good” is processed , an active
expectation (from the pay/tip scene $FAY) is “Patron remember something
about service:”

((ACTOR &PATRON <=> (‘MTRANS’)
TO (‘CP’ PART &PATRON )
FROM (‘LTM’ PART &PATBON)
MOBJECT
((CON ((<=>($SERVE))) IS

(‘APPROPRIATE’
VAL &V A L ) ) ) ) )

The test used by the Script Applier to decide whether to try a
Perception/Remembering inference when the toplevel match fails is simply
to check that the input and the MOBJECT of the pattern are of the same
conceptual “type :” that is, that both are either ACTs or STATEs. If this
test is passed , the MOBJECT is extracted from the pattern , and the pattern
matc her is called again. In the example we are considering , the input
(“service was good”) and MOBJECT are both STATives, so the test is passed .
When the matching process is restarted , tha value of “ appropriateness”
bound to &VAL would be used as the basis of a prediction about the size of
the tip. For example, if &VAL were low enough, the tipping event would ,
in fact , be~~unpredicted .”

5.4.2 Authority Announcements

A second mental-act inference , which comes up repeatedly in newspaper
stor ies , is the Authority—Announcement inference. If a person , group or
organization known to be an “authori ty” in a context makes a
pronouncement , the event referred to is inferred to be “true .” For
example , suppose we have an otispill story that includes a sentence “The
Coast Guar d reported that the oil slick was 100 miles long .” The knowledge



— 123 —

that “Coast Guard” is an authority in $OILSPILL would be exploited by the
Authority—Announcement Inference.

In SAM , each Script has associated authority figures , for exam ple ,
“police ,” “an eyewitness” or “a reliable source.” Authority—Announcement
differs from the other inferences discussed here in that the iij~ut. ismodified , rather than the pattern , before matching begins. This is
because the Script is interested in the events themselves , rat her than in
some authority ’s talking about them . The needed modification is made at
the top—level of the Script Applier , when decomposition of the input
Conceptualization is taking place.

5.5 Locational In ferenc es

Much of the activity in “scripty” stories concerns actors moving from
place to place. Because Scripts are associated so strongly with “place ,”
as was discussed in Chapter 2, the Script App lier keeps track of where its
various roles are at any given time in the story. If the role is in fact
the main actor , we described in Chapter 2 how the Applier updates the
Locale—List attached to the token bound to the main actor each time a
PTRANS (either explicit or implicit) occurs. Additionally, roles strongly
associated with a certain place in the Script have a direct indication of’
that place stored as one of their properties. Examples of non—moving
roles are the tellers in a bank , the cashiers in the token—booths in a
subway , and the people who sell newspapers and magazines in kiosks on city
streets. (“Non—moving ” is not literally meant , only that the activity of
these actors is confined to a small place in the setting.)

5.5.1 Transitivity of Proximity

Because of’ this information , the Script Applier has the capability of
making several kinds of’ inferences about locations of actors. One of
these , called TransItivity—of— Proximity, is concerned with spatial
relations in groupings of similar sized PPs. As an example of the need
for such an inference , consider’

(5.3) John sat down in a restaurant. A waiter came over
to the table.

The first sentence of (5.3) gets John into position to initiate a
restaurant-Transaction . We understand that he is sitting on a chair at
(an implied ) table. The patterns from the $ORDER scene in $RESTAURANT
which would be predicted after this sentence is understood would include
one for an agent of the organization to approach John to take his order .
Note that causal—chain continuity demands that the waiter approach the
patron because the predicted MTRANS requires that the participants form a
small enough group that verbal communication can take place. But the
second sentence of (5.3) in fact maps into a PTRANS of a waiter to the
proximity of “the table” which was int roduc ed when $RESTAUR ANT was
initiated , and instantiated when John sat down .

Because of this , the initial match would fail. The features of the
patron—Pp bound to the main—actor role do not match those of “the table.”
At this point , the test for Transitivity—of—Proximity would be carried



— 1214 —

out: is the pattern of the (‘PTRANS’ TO ~PRCX’) variety? The answer is
“yes ,” so the inference process examines the main—actor ’s Locale—List to
see where he is. The last thing that was stored there (in the processing
of the first sentence of (5.3)) is the assertion that he is “at a table.”
The tokens for “the table” that the waiter went to , and “the table” John
is near merge properly, so the heuristic “things near the same thing are
near each other” is used to infer that the waiter is indeed near the
patron.

A slightly different form of the inference would be required to
process the story fragment :

(5 . 14) John walked up Main Street to the Bijou Theater . He went
over to the ticket counter .

From the causal—chain viewpoint , the relevant pattern is (patron PTRANS TO
cashier), which then enables the ticket—buying transaction . Again , the
top].evel backbone match would succeed , but the acceptance of the match
would hang up on the disparity of the features of the predicted “cashier ,”
and “the counter” actually read . However , the role &cashier is known to
be a “ non—moving ” one in $THEATER. Stored in the Script is the
info rmation that “the t icket counter ” is where “ the cashier ” is. and once
again the inference goes through .

The Transitivity—of—Proximity inference , though useful , has two
provisos. First , note that the PPs involved should be roughly
commensurable in size: from the facts “John left his bike near Ft. Lee”
and “Ft . - Lee is near Manhattan , ” we would probably not want to infer that
“John ’s bike is near Manhattan .” The Script Applier will , in fact , attempt
the inference only if people and “ small” physic al objects are involved .
Also , it is clear that the heuristic can ’t be applied indefinitely: if A
is near B, B is near C, and C near D, it isn ’t necessarily true that A is
near D. The Applier cannot chain transitivity inferences together , so
this problem is avoided .

5.5.2 Enclosure

A related locational inference , called Enclosure , xeeps track of’
where actors are in a Script—global context. Many Scripts have
well—defined locations where their activities go on , often associated with
buildings. For these kinds of Scripts , the Script Applier consults a
crude “building— frame” stored in the Script to decide whether an actor has
left the associated setting . Suppose , for example , a story starts “John
was taken to a hospital .” If this sentence , which ini t iates $HOSPITAL ,
were followed by “he was treated in the emergency room ,” the Enclosure
Inference would conclud e that the treatment was taking place in the
hospital , since hospital s have emergency rooms , operating rooms ,
intensive—care wards , etc .

5.6 Mov emen t Inferences

Another class of inferences is associated with the motion of actors.
These inferences are connected with a generalized idea of “possessions.”
An actor ’s possessions are those things either permanently or temporarily



- 

~~~~~~~~~ 
- ------

— 125 —

controlled by the actor , which share the actor’s motion . The two most
important classes of entities which move are people and vehicles.

For people , the~idea of possessions is clear : these are their
clothes , things they may be holding , and the contents of their pockets.
The animate and inanimate contents of vehicles share their motion , so
there is a kind of possession here as well. lf the vehicle belongs to an
organization (e. g., a PTRANS—Organization) , then there is a sense in
which the Organization “possesses” the contents of the vehicle for the
duration of the ride. These ideas are used to keep track of the movements
of things and people through various Script contexts.

5.6.1 Movement of Personal Possessions

When the main actor role in a Script is bound to a token for a
real—world person , the Script Applier has access to the list of the
person’s possessions the things explicitly stated as belonging to him .
If the Script contains an ATRANS event with the main actor as recipient ,
the OBJECT ATRANSed (if it is a small PP) is added to this list. The new
possession then shares in any PTRANS the person is involved in. For
ex am ple , suppose we have:

(5.5) John went into the movie theater and asked for a ticket.
The usher took his ticket and showed him to his seat.

The event of “asking for a ticket” is followed by an dual ATRANS event
(inferred via Causal—Chain Instantiation), money being given to an
implicit cashier , and the patron getting the ticket. This is the ticket
that “the usher took.” In terms of the implementation , the Script Applier
would not ask PP—Memory to create a new ticket—token when “the usher too,
his ticket” is processed , because one would already exist among the
patron ’ s possessions.

Sometimes the possession—adding ATRANS can only be inferred
indirectly. Suppose , for exam ple , we read:

(5.6) John picked up a magazine from the kitchen table ,
walked into the living room , sat down and began to read .

In processing ( 5 . 6 ) ,  the Script Applier would eventually activate the
read—Script , $READ . At this point , it should not create a new token for
the th ing read , but use the one that appeared in the first
Conceptualization . This requires an inference that the GRASP event
(“ picked up a magazine ”) implemented an ATRANS of the magazine to John .
(This inference is called an Immediate—Enablement Inference in Rieger’s
inference system , and was incor porated in his Conce ptual Memor y program
[22).)

The current implementation of the Applier pattern—matcher will make
this connect ion prov ided two conditions are met.  First , the PP GRASPe d
must be small and capable of being moved from place to place. This avoids
problems with sentences such as “John grabbed the doorknob.” Secondly, the
PP must have at least one funct ion ( that is , a role in some Script) that
is intelligible in the existing context. In (5.6), one funct ion attached
to “magazine” is that It can be “printed—matter ” in the Script $READ . 

~- - -~~~~~~~ - --



— 126 —

This Script is expected ( though on a low—le vel )  in the Script Situation
$HOME which presumabl y would be controlling the processing of (5.6).
Therefore , the ATRANS would be inferred in this case . On the other hand ,
the second condition , on functions of objects in context , would prevent

• “John walked into the kitchen and picked up a rock” from adding a rock to
his possessions. Note that we are not saying that in fact the rock won ’t
be carried around . The next sentence might very well read “He went into
the living room and threw the rock at his wife.” However , the possessional
inference should not be made by a Script Applier , since in fact there is
no Scr ipt for the above.

5.6.2 Conveyance Inferences

A second class of’ movement inferences is concerned with the
organizations whose business is PTRANSing people from place to place. A
reference to such a PTRANS—Organization occurs , for example , in the
sentence:

(5.7) “John Smith took the BMT to Manhattan”

((ACTOR HUM1 <~> (‘PTRANS’) OBJECT HUM 1
TO (‘PROX’ PART POLIT1)

INST ((ACTOR ORG1 <=> (‘PTRANS’) OBJECT HUM 1
TO (‘PROX’ PART POLIT1))))

HUM 1: (#PERSON LASTNAME (SMITH) FIRSTNAME (JOHN))
POLIT1: (#POLITY POLNAME (MANHATTAN) POLTYPE (‘MUNIC’))
ORG1 : (#ORGANIZATION ORGNAME (BMT) ORGOCC ($SUBWAY))

Suppose this Conceptualization is be matched against a pattern from the
Script Situation STRIP of the form (&ptrans—org PTRANS &grp TO &dest),
with the &ptrans—org being specified by $TRIP as a subway or bus . This
pattern would match directly an input such as “the BMT took Smith to
Manhattan ,” which mentions the PTRANS—Organization as the ACTOR in the
Conceptualization . It would also match on inputs where the ACTOR of’ the
PTRANS is not specifically mentioned , as in “Smith was taken to
Manhattan .”

The initial backbone match of the Conceptualization for (5.7) would
succeed , but there would be a contradiction between &ptrans—org (CLASS
#ORGANIZATION) and “Smith” (CLASS #PERSON). This contradiction would
trigger the Conveyance processor , which has several means for reconciling
the difference.

The first thing Conveyance tries is to check for the occurrence of an
Instrumental Conceptualization . The idea here is that natural—language
utterances are more likely to focus on the ~~~~~~~~ ACT (“ Smi th  went to
Manhattan”) rather than its Instrument (“Smith went to Manhattan ~~
a~~wa.x”). If there is an Instrument , Conveyance extracts it from the
input Conceptualization and rematches it against the original pattern .
This strategy would succeed for (5.7). If there is not an Instrument , as
in “Smith went to Manhattan ,” Conveyance would accept the match , leaving
the decision as to what &ptrans—org is to the Role—Instantiation
processor.



— 127 —

Another type of Conveyance inference would be needed if the sentence
were instead :

(5 .8) “A bus took Smith to Manhattan”

((ACTOR STRUCT1 <=> (‘PTRANS’) OBJECT HUM1
TO (‘PROX’ PART POLIT1)))

HUM 1 : (#PERSON LASTNAME (SMITH ))
POLIT 1: (#POLITY POLNAME (MANHATTAN ) POLTYPE ( ‘MUNIC ’))
STRUCT 1: (#STRUCTURE TYPE (‘BUS ’))

Here , the contradiction is between &ptran s—or g and “a bus .” Conveyance
would test to see that “a bus” is a vehicle , and that it functions as one
in a PTRANS—Organization Script . Both conditions are met , so the
inference goes through. When the match is accepted , the
Role—lnstantiation processor would specify $BUS as the occupation of tne
Script variable &ptrans—org .

5.7 Agency Inferences

The class of Agency inferences is illustrated in the following story
fragment :

(5.9) John went to the theater to see a movie . The film was so
offensive he decided to leave. The theater refused to
refund his money .

Reading this, we understand that it was probably the cashier or manager ,
speaking for the organization , that actually participated in the MTRANS.
Here , the Script Applier makes use of a built—in “chain—of— command” in
Transactions , in this case (cashier , manager , theater) , to replace the
ACTOR in patterns , producing a new pattern for the matcher to try . The
various patterns generated would match inputs such as: “the
cashier/manager refused... , “ “the management refused... , “ or even “they
refused...” Which patterns are selected is determined by the conceptual
class of the PP in the input ACTOR slot (viz., person , group,
organ ization) , so once again the match proceeds in a structured manner .



~ -- —-~ -

Chapter 6
A Very Deta iled Exam ple

6. 1 Introduct ion

This chapter is for the benefit of those who wish to see the
innards of SAM as it reads a newspaper story. We ’ve selected a fairly
long story which exercises most of the inference capabilities and data
structures described in previous sections. We ’ll follow the processing
of the story from start to finish , giving as much detail as possible
about what PP—Memory and the Script Applier are doing . From time to
time we ’ll interrupt the processing log to show some of the data
structures the system is using . (As in previous examples , our

• discussion of ELI and the postprocessing modules will be relatively
cursory.)

Our story describes a car accident and what happened afterwards.
The story is essentially the same as one that appeared in a local
newspaper , the New Haven Register :

( 6 . 1 )  Friday evening a car swerv ed off Route 69 . The vehicle
struck a tree . The passenger , a New Jersey man , was killed .
David Hall , 27, was pronounced dead at the scene by Dr Dana
Blauchard , medical exam iner . Frank Miller , 32, of 593 Foxon Rd ,
the driver , was taken to Milford Hospital by Flanagan Ambulance.
He was treated and released . No charges were made. Patrolman
Robert Onofrio investigated the accident.

By “essentially the same,” we mean that the real story and our exam ple
differed only in that the real story packed the first three sentences of
( 6 . 1 )  into a complicated lead sentence , as follows :

• ( 6 . 2 )  A New Jersey man was killed Friday evening when the car in
which he was riding swerved off Route 69 and struck a tree .

The remaining six sentences of ( 6 . 1 )  are exactly as they appeared in the
newspaper . We simplified ( 6 . 2 )  because ELI was not up to analyzing the
complicated , nested relative clauses this sentence contains. The Script
Applier , however , is capable of handling the Conceptualization for (6.2)
just as it stands , using the decomposition techniques described in
Section 14.3.

Before starting on the details of the story processing , let’s give
an overview of what SAM is up to as it reads (6.1). The first sentence
of the story, “Friday evening a car swerved off Route 69, ” init iates the
car—accident Script , $VEHACCIDENT , because it suggests the loss of
control of a motor vehicle which typically prec edes a crash . When the
second sentence is read , SAM def initely knows that this Script is
applicable , and immediately sets up expectations for Conceptualizations
about in ju ry  to the persons in the ear , and what the appropriate
authorities will do as a result.

• —~~—



~~~~ --

— 129 —

When SAM reads “a New Jersey man was killed , ” it makes predictions
about a police investigation of the accident , as is routine when a
serious injury  or a death occurs . It also makes short—r ange predictions
about what ambulance and hospital authorities are likely to do. One
short—range prediction , being “ pronounced dead , ” is in fact instantiated
by the nex t sentence. ( Another possiblity allowed for in the Script is
being pronounced dead “on arrival” at a hospital.) Because this is a
car—accident Situation , the Script Applier has retained its highest level
expectations about further injuries and police action . It uses its
injury prediction to understand the fourth sentence , “Bill Miller was
taken to the hospital , ” because this event customarily follows the ( in
this case, implicit) event of an injury in a crash. Since the ambulance
component of the Script has been accessed , SAM now makes short—range
predict ions about what usually happens next , namely, activities in a
hospital . These predictions are fulfilled by the next input , “he was
treated and released ,” which SAM understands as referring to emergency
room treatment in an (implicit) hospital . (Alternatives to “released” in
the Script includ e “ sent to operating room ,” “kept for observation , ”
etc.) Because the injured man was allowed to go , SAM concludes that his
injuries were minor.

The next sentence , “the passenger was ex t r ica ted . . . ” , represents a
sudden jump in the story , back to the events surrounding the deceased
man Such jumps are typical of the “multi—pass ” nature of newspaper
reports. SAIl handles jumps like this by retaining all the predictions it
ever made in the course of reading the story. As new inputs appear , the
associated predictions go at the head of the search list , so that the
older ones gradually lose priori ty.  On this basis , SAM final’~recognizes the event as an instance of an “ emergency—service ”
organization assisting at a motor—vehicle accident . (Another service
such an organization could render in the Script would be putt ing out a
fire caused by the crash.)

The high—level prediction about police act iv i ty ,  which has been kept
active all this time , is instantiated by the eighth sentence , “No charges
were made. ” Because SAM is interested in what the police may do in
accidents , it interprets “ charges” as the police department ’ s init iating
a prosecution , rather than , say, a bill for services from the hospital .
The last sentence , “Patrolman Onofrio investigated the accident , ” is a
continuation of the police activity component of $VEHACCIDENT . This
event is causally in the 2â~t. of the sentence about charges previously
read. Therefore, finding it would ordinarily be delayed until that
event’ s short—range pr edictions are processed . Since “ no charges” is an
Exitcon from $VEHACCIDENT , there aren ’t any successors , so “ investigated”
is found because it is a high— level expectation . If, howev er , the input
had been something like “police charged Miller with reckless driving ,”
finding “investigated” would be delayed unt il the ex pecta tions
corresponding to “they gave him a ticket” or “they took him to the
station house ” were processed .



— 130 —

6.2 Un derstanding the Story

Story ( 6 . 1 )  is processed by SAM with the hel p of the Script
Situation $VEHACC IDENT . Because this is a newspaper story rather than a
simple narrative , SAM understands the story in two distinct phases .
First , it tries to recognize all the inputs , then it builds a story
representation on the basis of the facts that have been accumulated . As
we discussed in Section 14.9, newspaper stories tend to go over events in
several passes , adding new details each time . As a practical means of
dealing with this, the Script Applier delays instantiating any of its
causal—chain patterns until all the inputs have been read . We consider
the processes of locating the inputs and building up the story
representation in turn .

6.2.1 Finding the Inputs

The version of SAM described here is intended for reading newspaper
stories. It has Scripts describing four different knowledge domains
which newspapers report on: car accidents, train wrecks. state visits
and oil spills. Initially,  only the headers from these Scripts ,
together with the permanent data structures described in Chapter 2. are
present in active memory.

The log of a SAM run given below was made under a DECsystem— 1O
utility program called OPSER, which has facilities for starting up and
controlling several jobs, and sending any out put from the jobs to a
single terminal . Lines beginning with a “I” are OPSER messages
indicating the module from which succeeding lines of output came .
PARSER is the Conceptual Analyzer , TOK Is- PP—Memory , and APPLY is the
Script Applier . The data structures shown are displayed as they existed
at the corresponding point in the processing . The log has been edited

• slightly for readability.

COMPUTER OUTPUT COMMENTARY

OPSER TRANSACTION LOG

YALE SYSTEM 507B—2

I (PARSER )
Friday ev ening a ear swerved ofT First PARSER displays the text
Route 69. The vehicle struck a to be read , a 9—sentence story
tree . The passenger . a New Jersey about a car crash . Then it
man , was killed . David Hall , 27, turns control over to A P P L Y . . .
was pronounced dead at the scene
by Dr Dana Blauchard , medical
examiner . Frank Miller , 32 , of 593
Foxon Rd , the driver , was taken to
Milford Hospital by Flanagan
Ambulance. He was treated and
released . The passenger was 



—~~~~~ • •-

— 13 1 —

extricated from the vehicle by the
Branford Fire Department. No charges
were made. Patrolman Robert
Onofrio investigated the accident.

!( APPL Y )
SCRIPT APPLIER MEC FI ANISM.. .VE R SI ON 1 4 . 1  AP PLY notes that  it has four

12 JULY 1976 Scripts available to read
PROC ESSING NEWSP A PE R TEXT ( TE XT . Cl) this story...
AVAILABLE SCRIPTS:
( $TRA I NW RE CK $VIPVI SIT $VEHACC IDENT

$OILSPILL)
A PPLIER RUNTIME : 56 0 AP PLIER GC T IME : 0
FREE : 9615 FULL 1626 .. .then it instructs PARSER
GETTING NEW INPUT start working on the first

sentence.

I ( PARSER)
Friday evening a car swerved PARSER displays the f irst
off Route 69. sentence . . .

CONCEPT S and parses it into a
GN7 Conceptualization about a
( ( ACTOR GN 3O <~ > ( ‘PT RANS ’) PTR ANS from a “li nk” of

OBJECT GN 3O TO (NIL )  type “highway” ...
F ROM (‘TOPOF ’ PART
(#LINK LINKTYPE (‘ROAD’)

LINKNUMBER ( 69)
DIRECT ION ( 1)
ROADTYPE ( H I G H W A Y ) ) )

INST (NIL))
MODE (MOD1)
TIME (T IM 2 ) )

GN 3O . . .by a “ structured” object
(#STRUCTURE TYPE (‘CAR’) REF (INDEF)) of type “ car . ”

PARSING T IME : 3 1143 1 GCTIME : 3223

!(TOK) TOK looks at this concept ,
top level PARSER atom is: GN7 and assigns tokens to
processing PP:
(#S TRU CTU R E TYPE GN 17 REF GN 18)  the car

• creating new token: STRUCTO
processing PP:
(#LINK LINKTYPE GN147 LINKNUMBER
GN148 DIRECTION GN149 ROADTYPE GN5O )
creating new token : LINKO and the road

Suggesting Script $VE HACCIDENT Because the car has a
possible role in one of the
Scripts that  APPLY has , TOK

top level TOK atom for GN7 suggests that  it be tried
is MEMO f i rst .



— 132 —

I ( A P P L Y )
NEW INPUT : MEMO

At this point , APPLY has been passed the tokenized
Conceptualization corresponding to the first sentence. Let’s look at
some of the data structures SAM is using. First . the Conceptualization
itself:

MEMO S
( ( A C TOR STRUCTO <=> ( ‘PTRANS ’ ) OBJECT STRUCTO TO (NIL )
FROM (‘TOPOF’ PART LINKO) INST (NIL))

MODE (MOADO ) TIME ( TYMEO ))

This asserts that a certain physical object (STRUCTO) moved itself away
from a certain kind of place , a road “link.” The time specifier (T YMEO )
for the Conceptualization says that the event happened on a certain day
of the week ( FRIDAY ) , during a certain part of the day (EVENING), and
that all of this happened sometime in the past (“ swerved”) of the time
(‘NOW’) when the story is being read :

TYMEO :
((WEEKDAY FRIDAY )

(DAYPA R T EVENING )
( BEFORE ‘NOW’ X ) )

The Conceptualization mentions two PP 5. The f irst  is a structured
physical object , a car. The property—list representation for this
object indicates its conceptual class , possible lexical realizations for
it in English , Spanish and Mandarin , and a note ( REF )  that it was
referenced indefinitely in the surface string using the slots
(SURFSLOTS) of “class” and “type .” The token also points to the car’s
function (as a vehicle) , and the possit.le roles it can fill (SROLES) in
var ious Scripts :

STRUCTO :
TOKEN ( T )
CLASS (#STRUCT IJRE )
ELEX ( AUTOMOBILE )
SLEX ( AUTO )
CLEX (CHE/ TZ)
REF (INDEF )
SURFSLOTS

( CLASS TYPE REF )
SUPERSET (‘VEHICLE’)
SROLES
(($VEHACCIDENT . &VEHICLE1)
($DRIVE . &VEHICLE1)
($AUTOSTORE . &SALEOBJ))

The other token refers to a “link ,” a certain specialized kind of
“place” which connects various localities together . This particular
link is a “highway,” it was described in the surface string using the
SIJRFSLOTS of “class ,” “number” and “type .” and has been assigned a



— 133 —

defaul t direction ( 1 )  by PP—Memor y :

LINKO :
TOKE N CT)
CLASS (#LINK )
LINKTY P E ( ‘ROAD ’)
SURFSLOTS (LINKTYPE CLASS LINKNUMBER )
ROADTYPE (HIGHWAY )
D IRECTION ( 1)

Importan t global variables manipulated by TOK are the list of new
tokens created for this Conceptualization (!CDTOKENS ), the list of all
currently active tokens (!TOKENS), and the suggested Script
( !SCR I P T SU GG ) ,  The most important variable used by AP PLY is the Script
cont ex t ( I SCBP T CNTXT ), which records the current state of each Script
possessed by SAM . The most importan t features of a Script ’ s “ state” are
the patterns current ly  in memory and the association list of Script
variables bound to tokens. Initially , only the headers for each Script
are in active memory , and the association lists are nu l l .  Here ’s how
these variables look :

TOK APPL Y

CDTOKENS : I SCRPT CN TXT :
(S TR UCT 0 LINKO )  ( ( $T R A INI ~R ECK

( TCRLOC TLR1 TCH2 T C R 3 ) )
TOKENS : ($VIPV I SIT

(S TRUCTO LINKO ) (VIP 1 VA R1 VA R 2 V A R 3 )
( $VEHA CCIDENT

I SCRIPTSUGG : (ACC1 ACC2 CRA5O CRA51 CRA52
($V EHACC IDENT ) CRA53 CR A 1I  CR A 12 CRA2 1 CRA22

CRA1 3 CR A2 CRA 3 CRA I4 )
($OILSPILL

— 
(SP L 1 SPL3 D S C 6 1) ) ) )

APPLY begins searching for the f i rs t  input .

FINDING TOPLEVEL CDS : (MEMO) APPLY searches for the
SEARCHING FOR MEMO IN SCRIPT $VEHA CC IDENT input in the Scr ipt

suggested by TOK.
PATTERN BACKBONE MATCHED AT CRA 3 It finds a match at pattern
LOCATED AT CRA 3 CRA 3 in the “ crash” scene.

MAKING TIME —SETTING ASSERTION APPL Y stores the global
(( WEEKDAY FRIDAY )  (DAYPA R T EVENING ))  t ime— sett ing “Friday
IN SUBSCENES : evening ” in the episodes
($CRASH 1 $CRASh2 $CRASH3 $CRA SH14 which can occur at the
$CRASH5 $TREAT 1 $TREAT2 $TREAT 3 $INVE ST 1) same time as the crash .

BOUND SCRIPT VARIABLE: APPLY notes that the
&LINK 1 TO LINKO Script variables for road
&VEHI CLE 1 TO STRUCTO and vehicle are bound .



— 13 14 —

Here is the pattern the input matched , and the Script variables it
contained :

CRA 3 :
((ACTOR &VEHICLE1 <=> (‘PTRANS’) OBJECT &VEHICLE1

F ROM (‘TOPoF’ PART & L I N K 1 ) ) )

&VEHICLE 1: The Script var iable “vehicle ”
CLASS (#STRUCTURE ) A structured object
DUMMY T It is a dummy
SFUNCTION (‘VEHICLE’) It has the function “vehicle”
SUBSET (‘CAR’ ‘BUS’ ‘TRUCK’ Vehicle includes these kinds

‘MOTORCYCLE ’ ) of PP5.
ELEX (VEHICLE )

&L I NK 1:  The Script variable “ road”
CLASS (#L INK )
DUMMY T
SFUNCTION (‘ROAD’)
ELEX (ROAD )

PREDICT: (CHA 14 CRA5 ) These are the inputs predicted
by CRA 3 :

“vehicle hits obstruction”
“vehicle is damaged”

Hav ing made a successf ul match in $VEHA CCIDENT , APPLY activates
this Script :

TRACK $VEHACC 1 OF $VEHACCIDENT “Swerve off a road” suggests
ACTIVATED that a one—car accident is

about to occur.  APPLY invokes
this track of $VEHACC IDENT ,

COMPONENT SCRIPTS: noting that it includes these
($CRASH $AMBULANCE $HOSPITAL $POLICE) component Scripts.

SETTING PARSER WORD—SENSES FOR Activating the Script means
$VEHACCIDENT re—ordering wo rd senses used

by PARSER . VHACC is an
I (PARSER ) accident—specific dictionary ,
(DICTIONARY FILES ARE ) BASIC is PAR SER ’s ordinary
(TOK : (VH ACC . IDX ) dictionary .

(28 3145) ( BASIC . IDX ))

I ( A P P L Y )  APPLY notif ies TOK of
SETTING TOK SCRIPT VARIABLE PP—definitions which are

• DEFINITIONS FOR $VEHACCIDENT specific to vehicle
accidents.

I (TOK )
( LOADING VARIABLE DEFINITIONS FROM )
A CC VA R



— 135 —

I ( APPLY
COMPONENT SCRIPT $CRASH Finally,  APPLY notes that the

OF $VEHACCIDEN T ACCESSED input event refers to the
“ crash” scene of the Script .

APPLIER RUNTIME : 126514 APPLY goes for the next
APPLIER GCTIME: 0 Conceptualization .

FREE: 9020 FULL: 1600
GETTING NEW INPUT

I (PARSER )
The vehicle struck a tree . PARSER gets the nex t sentence

CONCEPT :
GN6O which corresponds to a PROPEL
((ACTOR (#STRUCTURE Conceptualization involving a - •

FUNCTION (‘VEHICLE’) structured object having
REF (DEF ))  function “vehicle. ”

<~ > ( ‘PROPEL ’)
OBJECT (#PHYSO BJ TYPE ( ‘TREE ’)

REF ( INDEF ))
INST (NIL ))

TIME (TIM 14)
MODE (MOD2) )

PARSING TIME : 22391 GCTIME : 31146

I ( TOK )
top level PARSER atom is: GN6O TOK assigns tokens to the PPs

for:
processing PP:
(#STRUCTURE FUNCTION GN614 REF GN65) the vehicle
creating new token : STRUCT 1

processing PP:
(#PHY SOBJ TYPE GNB 8 REF GN89 )
creating new token : PHYSO and the tree .

top level TOK atom for GN6O is MEM7

• I ( A P P L Y )
NEW INPUT : MEM 7

Here is the new concept passed to APPLY and the state of the
“deep—memory ” modules as the second sentence is processed :

MEM7 :
(( ACTOR STRUCT 1 <~ > ( ‘PROPEL ’) OBJECT PHYSO INST (NIL ) )

TIME (TYME 1) MODE (MOAD 1 ) )



— 136 —

TOK APPLY

I CDTOKENS : ! SCRPTCNTXT :
(STRUCT 1 PHYSO STRUCTO LINKO ) (( $VE HACC ID ENT

(CRA 11 CRA5 ACC 1 ACC2
I TOKENS : CRA5O CRA5 1 CRA52

(ST RUCT 1 PHYSO ) CRA53 CR A11 CRA12
CRA21 CRA22 CRA 13

I SCRI PTSUGG CRA2 CRA 3 )
N IL ( ( & L I N K 1 . LINKO )

(& VEHI CLE 1 . S T R U C T O ) ) ) )

Note how the inputs predicted by the pattern previously matched
have been added at the front of the search list for $VEHACCIDENT . Also ,
since “vehicle” is neutral as to Script , TOK has not suggested a Script
for this input . Now APPLY searches for the second concept :

FIN DING TOPLEVEL CDS : (MEM7 ) APPLY begins looking for new
SEARCHING FOR MEM 7 IN SCRIPT input in the currently

$VEHAC CIDENT act ive Script .  It f inds a
backbone match at CRAI4 ,

PATTERN BACKB ONE MATCHED AT CRA 14 checks whether the crash can
CHECKING GLOBAL TIME ASSERTION happen on the same day

IN MEM 7 ( Friday) as the “ swerve , ”

RUNNING PATTERN—SPECIFIC FUNCTION then checks that the PP
(PFCRAZ4) bound to the obstruction

variable can fill that role.

5OSSIBLE REFERENCE FOUND: This works, so APPLY notes
STRUCT1 IS STRUCTO that “a car ” and “the

vehicle” can be the same ,
LOCATED AT CRA14 and accepts the match.

BOUND SCRIPT VARIABLE : It binds up the var iable for
&OBSTRUCTION TO PHYSO “obstruction .”

Here is the pattern the second input matc hed , its Scr ipt var iables ,
and the pattern—invoked function that checked on the plausibility of the
candidate obstruction . Note that the pattern function f irst  checks to
see whether the candidate obstruction ( appearing in the
pattern—matcher ’s list of tentative role bindings , NEWPAIRS ) is a solid ,
immovable object , such as a pole or abutment . If this check fails , it
retrieves the token attached to the vehicle role ( from the Script—global
binding list ALIST ) and passes vehicle and obstruction to an auxiliary
function ( not needed in this case),  to look at the mass and speed of the
vehicle , and the solidity of the obstruction .

- -



— 137 —

CRA 14:
((ACTOR &VEHICLE 1 <:> (‘PROPEL’) OBJECT &OBSTRUCTION))

&OBSTRUCT ION
CLASS (#PHYSOBJ #STRUCTURE)
DUMMY T

PATFCT : PFCRA 14

(DEFPROP PFCRA 14
(LAMBDA NIL
(PROG (PAIR OBJ VEH TYP)

( COND 
-( ( NULL

(SETQ PAIR (ASSOC (QUOTE &OBSTRUCTION ) NEWPAIRS)))
( RETURN T ) ) )

(SETQ OBJ (CDR PAIR ) )
( SETQ TIP (GET OBJ (QUOTE TYPE )) )  -

( COND
(( INTERSECT TIP (QUOTE (‘POLE ’ ‘TREE’ ‘BRIDGE ’ ‘WALL ’)))

(RETURN T ) ) )
( SETQ VER ( CDR ( ASsoc ( QUOTE &VEH I CLE 1) AL I ST)) )
( COND (( CHKOBST VEH OBJ ) (RETURN T) )  (1 (RETURN N I L ) ) ) ) )

EX P R ) -

SAM is now firmly in the vehicle—accident domain . It resumes
processing of the story.

GETTING FILES FOR $VEHACCIDENT APPLY loads predictions
FTRE 1 about injur ies and
FTRE2 treatment into active
FTRE3 memory...
FTRE 14

APPLIER RUNTIME: 105314 APPLIER
GCTIME : 0

FREE : 6328 FULL : 1 1472

MERGING TOKENS (( STRUCT 1 . STRUCT O)) instructs TOK to merge the
PPs “car” and “vehicle ,”

GETTING NEW INPUT and goes for next input .

• !(TOK)
merging STRUCT1 with STRUCTO TOK carries out this command .

I ( PARSER
The passenger , a New Jersey man , was PARSER analyzes the third
killed , sentence. . .



— 138 —

CONCEPT :
GN99 as an unknown event (NIL )
( ( CON (NIL TIME (TIM7)) causing a certain person’s
LEADTO death...
( ( ACT OR GN 155

TOWARD (‘HEALTH’ VAL (— 10))
LEAVING (‘HEALTH’ VAL (NIL)))
INST (NIL )

TIME (NIL )
MODE ( N I L ) ) )
MODE (MOD 3))

GN 155 =
(#PERSON . . .and that this person was

DREL f illing the “default” role of
( ( < = >  ($DRIVE PASSENGER G N 1 5 5 ) ) )  passenger in the Script $DRIVE ,

REF (DEF ) and lived in New Jersey.
GENDER (‘MASC’ )
RESIDENCE
(#POLITY POLTYPE (‘US—STATE’)

POLNAME (NEW! JER SE Y ) ) )

PARSING TIME : 45670 GCTIME : 6502

I ( TOK )
top level PARSER atom is: GN99 TOK gets the new concept ,
processing PP: assigns tokens to:
(#PERSON DREL GN 1O3 REF GN 1O5

GENDER GN 111
RESIDENCE GN 112 REF GN 11 5)

creating new token : HUMO the passenger

processing PP:
(#POLITY POLTYPE GN113 POLNAME GN11I4 )
creating new token : POLITO New Jersey

processing script : TOK sees the reference to
($DRIVE PASSENGER GN 155 ) $DRIVE in the input ,

$DRIVE imbedded in $VEHACC IDEN T notes that this is imbedded
SCRIPTROLES addi tion : in $VEHACCIDENT , and passes

(PAS SENGER $DRIVE HUMO ) the role informat ion on to
APPLY.

top level TOK atom for GN99 is MEM12

I ( APPL Y )
NEW INPUT : MEM 12

Here is the state of deep—memory at this point in the reading process ’
(I SCRIPTROLES is a message from TOK telling APPLY about a Script role
attached to a PP in the input . )

_ _ _ _ _ _ _ _



— 139 —

MEM 12
( ( CON (NIL TIME (TYM E2) )

LEADTO
( ( A CTOR HUMO TOWARD ( ‘HEALTH ’ VAL ( — 1 0 ) )

LEAVING (‘HEALTH’ VAL (NIL)))
INC (N I L )  TIME (TYME 3 ) MODE ( M O A D 2 ) ) )

MODE (M OAD 3 ))

TOK APPLY

I SCRIPT ROLES : I SCRPTCNTXT :
( $D RI VE PASSENGER HUMO ) ( ( $VE HACC I DENT

( CRA5 CRA 9 TRE 1 TRE 5
TR E 6 TRE9 TRE5O TRE 55

!CD TOKENS : TRE 78 CR A 4 ACC 1 ACC 2
( HUMO POLITO ) CRA 5O CRA5 1 CRA52 CRA53

CR A 11 CR A 12 CRA 2 1 C R A22
CRA 1 3 CRA 2 CRA 3 )

I TOKENS : (( &OBSTRUCT I ON . PHYSO )
(HU M O POLIT .~ PHYSO STRUCTO LINKO ) (&LIN K I . LINKO )

( &VE H IC L E 1 . STR U CTO ) ) ) )

APPLY begins processing the thi rd sentence:

SETTI N G SCRIP T ROLE A PPLY bi nd s u p t he ro le of
(PAS SENGER $DRIVE HUM O) passenger in $VEHACCIDENT
IN $VEHA CCIDENT and in the imbedded $DR I VE .

BINDING SCRIPT ROLE IN $DRIVE It updates the association
SCRIPT VARIABLE BOUND l i s t . .

&PASSGRP1 TO HUM O

FINDING TOPLEVEL CDS: (MEM15) and begins looking for the
SEARCHING FOR ME M 15 IN SCRIPT new input . It gets a match

$VEHACCIDENT at T RE 1.  APPLY checks that
PATTERN BACKBONE MATCHED AT TRE 1 this event can happen on
CHECKING GLOBAL TIME Friday.

ASSERTION IN MEM 15

LOCATED AT TRE 1 APPLY accepts the match , with
BOUND SCRIPT VARIABLE : HUMO in the role of “the
&DEADGRP TO HUMO group of dead people.”

GETTING FILES FOR $VEHACCIDENT APPLY predicts a police
FINV 1 investigation , then goes
APPLIER Rt JNT IME: 7953 APPLIER for the next input .

GCTI ME : 0
FREE : 5757 FULL : 1421
GETTING NEW INPUT

• —- 
~~~~ —-•- - - - -

~~~--- •~~~~
- -- - - • •

~ 
- - - -

~~~~



_ _ _ _ _ _

— 140 —

I (PARSER)
David Hall, 27, was pronounced dead PARSER analyzes the next
at the scene by Dr Dana Blauchard , sentence..
medical examiner .

CONCEPT : .. as a communication
GN 177 = (MT RANS) event in which the
((ACTOR GN222 <~> (‘MTRANS’) state of a person’s being
MOBJECT dead is announced. . .
(( ACTOR (#PERSON GENDER (‘MASC’ )

FIR STNAME (DAVID )
LASTNAME (HALL ) AGE (27 ) )

IS (‘HEALTH ’ VAL ( — 1 0 ) ) )
TIME GN238)

FROM (‘CE” PART GN222)
TO (‘CP’ PART (N I L ) )
INST ((ACTOR GN222 <=> (‘SPEAK’))
TIME GN238 MODE GN239))
TIM E GN238 MODE GN239 )

GN222 = .. by a doctor named
• (#PERSON OCCUPATION (‘DOCTOR’) Blauchard .

FIRSTNAME ( DANA )
LASTNAME ( BLAUCHARD ))

PARSING TIME: 61595 GCTIME : 10014

I (TOK)
top level PARSER atom is: GN 177 TOK makes tokens for

processing PP:
(#PERSON OCCUPATION GN257 the doctor
FIRSTNAME GN258 LASTNA ME GN259)
creating new token: HUM1

processing PP :
(#PERSON GENDER GN 18 1 David Hall

FIRSTNAME GN 182
LASTNAME GN 183 AGE GN 188 )

creating new token : HUM2

processing PP :
(#LOCALE REF GN254 )
creating new token : LOCO “the scene”
top level TOK atom for GN 177 is MEM26

I ( A P P L Y )
NEW INPUT : MEM26

When the third sentence is received , the state of the system is as
shown below . Note the setting—Conceptualization “at the scene” (MEM31)
which is imbedded in the “ pronounced dead” concept . Note also that HUM O

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - -~~~~~~~~~~~~~~~~~~ -~~ ------- - - -•



- _ _

— 141 —

is serving simultaneously in the roles of “dead person ” and “ passenger ”
in this story.

MEM26:
((ACTOR HUM1 <~ > ( ‘M TRAN s ’)

MOBJECT
(( ACTOR H[JM2 IS ( ‘HEALTH ’ VAL ( — 1 0 ) ) )

T IME ( TYME L I ) )
FROM (‘CP’ PART HUM1)
TO (‘CE” PART (N I L ) )
INST

((ACTOR HUM1 <=> (‘SPEAK’))
TIME (TYM E5 ) MODE ( M O A D 4 ) ) )

TIME (TYME6 ) MODE (MOAD 5 ))

TYME6 :
( ( B EFORE ‘NOW ’ X )

( WHEN MEM 3 1 ) )

MEM31:
( ( ACTOR HUM 1 IS

(‘LOC’ VAL (‘PROX’ PART LOCO))))

TOK APPLY 
-

I CDTOK ENS: !SCRPTC NTXT :
(HUM 1 HUM2 LOCO ) ( ( $VE H ACCIDENT

(TRE1 TRE5 TRE6 TRE9
!TOKENS : TRE 11 TRE5 O TRE5 5
(HUM1 HUM2 LOCO HUMO POLITO TRE78 CRA ’4 ACC 1 ACC2

PH YSO STRUCTO L INKO ) CRA 5O CR A5 1 CRA 52
CRA 53 CRA 11 C R A 12 CRA 21
CRA 22 CRA T 3 CRA 2 CRA 3 )

((&DEADGRP . HUM O )
(&PASSGRP 1 . H UMO )
(&OBST RU CTION . PHYSO)
(&LINK 1 . LINKO )
(&VEHICLE1 . STRUCTO))))

APPLY will attem pt to recognize the new input by decomposing it
into its “units” and finding them in the temporal order indicated .

INPUT HAS COMPLEX TIME IMBEDDINGS APPLY notes the concept in
( ( W H E N  M EM 3 1))  the time atom of the top—
FINDING IM EEDDE D CDS : (MEM 3 1) level concept , and looks
SEARCHING FOR MEM31 IN SCRIPT for it first .

$VE HACCIDENT

- -•

~

•• - _ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-_-- - -_ ---- - - --- - --~~ 
—

~~~~
- --_--

— 1142 —

TRYING INFERENCE •rYPE IMRES ON TRE5 It attempts an immediate
result inference on TRE5 ,
which is looking for a
doctor to come to the scene
of the accident .

PATTERN BACKBONE MATCHED This works .
ON DERIV ED PATTERN :

((ACTOR &~IEDIC 1 IS (‘LoC’
VAL (‘PROX’ PART &ACCLOC))))

SUCCESSFUL MATCH ON DERIVED PATTERN
LOCATED AT TRE5
BOUND SCRIPT VARIABLE : APPLY binds up variables for
&ACCLOC TO LOCO “accident—location”
&MED IC 1 TO HUM 1 “doctor at the scene”

COMPONENT SCRIPT $AMBULANCE OF APPLY notes that the imbedded
$VEHACCIDENT ACCESSED concept refer s to $A M B U L A N C E . . .

FINDING TOPLEVEL CDS: (MEM26) APPLY begins looking for the top
SEARCHIN G FOR MEM26 IN SCRIPT concept , and locates it at

$VEH ACC IDENT TRE9 .
PATTERN BACKB ONE MATCHED AT TRE 9
CHECKIN G GLOBAL TIME

ASSERTION IN MEM26
POSSIBLE REFERENCE FOUND: APPLY concludes that “Hall”
HUM2 IS HUMO must be the “New Jersey man .”
LOCATED AT TRE 9

APPLIER RUNTIME : 12123 APPLIER APPLY goes for the next input .
GCTIME : 0

FREE : 52814 FULL : 1 388
MERGING TOKEN S ( ( HUM 2 . HUMO ))
GETTIN G NEW INPUT

!(TOK)
merging HUM2 with HUMO TOK combines the properties of

these two tokens.

I (PA R SER )
Frank Miller , 32, of 593 Foxon Rd , PAR SER an alyzes the next sentence
the driver , was taken to Milford as...
Hospital by Flanagan Ambulance.

CONCEPT :
GN272 =
((ACTOR (#ORGANIZATION . . .an ambulance organization

ORGOCC ($AMBULA NCE ) transport ing (PTRAN S) a
ORGNA H E ( FLANAGAN ))  person to a hospi tal organ izat ion.

< :> ( ‘PTRANS ’ ) OBJECT GN330
TO ( ‘PROX ’ PART
(# OR GAN IZATION ORGOCC ($HOSP ITAL )

ORGNAM E (MI LFORD )))
FROM ( N I L ) )  

-~~~~~~~~~~~~ •~~~~--~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- —



— 143 —
TIME (T 1M 13)
MODE (M OD5 ))

GN33O = This person is “Frank Miller.”
(#PERSON GENDER (‘MASC’ )

FIR STNAME (FRANK )
LASTNAME (MILLER)
AGE (32 )
RESIDENCE
(#LOCALE STREETNUMBER (593)

STREETNAME (FOXON/ ROAD )
STR EETTYP E ( R OAD))

DREL ((<=> ($DRIVE DRIVER GN330)))
REF ( D E F ) )

PARSING TIME : 70370 GCTIME : 10216

IC TOK)
top level PARSER atom is: GN272 TOK assigns tokens as usual .

processing PP:
(#O R GAN IZA TION ORGOCC GN35 1

ORGNANE GN353)
creating new token: ORGO

processing PP:
(#PERSON GENDER GN276

FIRSTNAM E GN277
LASTNAME GN278 AGE GN283
RESIDENCE GN285
DREL GN291 REF GN293)

creating new token : HUM3

processing PP:
(#LOCALE STREETNUMBER GN286

STREETNA ME GN287
STREETTYPE GN288)

creat ing new token : LOC 1

processing script : TOK notes that Miller is
( $DR IVE DRIVER GN330) playing the part of

SCRIPTROLES addition : “driver.”
(DRIVER $DRIVE HUM3)

processing PP:
(#ORGANIZATION ORGOCC GN344

ORGNAME GN3146)
creating new token : ORG1

top level TOK atom for
GN272 is MEMJ44

-_ a’—’ —n t~ —,~—’=.—-~~~ ’—--.——--- •—



—--~~~~~ - - -~~~~~~~~-~~~~~~ - - - • • • - - . —_ ‘_ — • • • • • • - •- - -~~~~~~~~ - •~~~~~ — - —

— 1414 —

I (APP LY)
NEW INPUT : MEM44

SETTING SCRIPT ROLE APPLY uses this information to
(DRIVER $DRIV E HUM 3) bind roles in $DRI VE and

IN $VEHACCIDENT $VEHACC IDENT .
BINDING SCRIPT ROLE IN $DRIVE
SCR IP T V AR IABLE BOUND

&DRI VER 1 TO HUM 3

FIND ING TOPLEVEL CDS : ( MEM 44 )
SEA R CHIN G FOR MEM44 IN

SCRIPT $VEHACCIDENT
PATTERN BACKBONE MATCHED AT TRE55 APPLY f inds the new input at
CHECKING GLOBAL TIME ASSERTION TRE55

IN MEM 1414
LOCATED AT TRE55

BOUND SCRIPT VARIABLE :
&HOSPORG TO ORG1 APPLY binds the roles
&HURTGRP TO HUM3 “hospi tal” . “group of hurt
&AMBORG TO ORGO people” and “ambulance.”

APPLIER RUNTIME : 11 895 APPLIE R
GCTIME : 0

FREE : 1496 1 FULL : 1365 APPLY asks for next input .
GETTING NEW INPUT

I (PARSER )
He was treated and released . This sentence is analyzed

as two separate concepts.
CONCEPT :
GN362 = First , the occurrence of
( ( CON (( ACT OR GN4 08 the “treatment” Script
($TREATMENT (a sense of “treated”

DOCTOR GNJ4O8 specific to accidents),
PATIENT GN 14 15))

TIME (TIM 16) MODE ( MOD6 ))
LEADTO causing an improvement in
(( ACTOR GN4 1 5 someone ’s state of physical

TOWARD (‘PSTATE ’ VAL ( 3 ) )  health .
LEAVING (‘PSTATE ’ VAL ( N I L ) ) )

INC (NIL )
TIM E (NIL )
MODE ( N I L ) ) )
MODE (NIL ) )

GN 14 15 = This is “he” .
(# PERSON GENDER (‘MASC’ ) REF ( DEF ) )
GN1408 = and the unnamed person who
(NIL )  did the treating .



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 145 —

CON CEPT :
GN441 = The second concept refers to
((ACTOR GN45O <=> (‘MTRANS’) someone’s telling someone else
MOBJECT that “he” can leave from
(( ACTOR GN 1462 <=) ( ‘PTRANS ’ ) somewhere .

OBJECT GN4 62 TO (NIL )
FROM (NIL )  INST (NIL ))
MODE ( MOD8 ) TIME (TIM 19))

TO (‘CP’ PART GN462 )
FROM ( ‘CP’ PART GN4 5O )
INST
(( ACTOR GN450 <=> ( ‘SPEAK ’))

TIME (NIL )  MODE ( N I L ) ) )
MODE (MOD7 ) TIME (TIM18))

GN450 = This is the communicator
( NIL )

GN462 = This is the “he” who can
(~ PERSON GENDER (‘MASC’) REF (DEF)) leave.

PARSING TIME: 62726 GCTIME : 7184

!( TO K ) TOK processes “he was
top level PARSER atom is GN362 treated” . . .
processing PP:
(#PERSON GENDER GN366 REF GN367 )
creating new token : HUM 4
top level TOK atom for GN362

is MEM52

I ( APPLY )
NEW INPUT : MEM52 APPLY breaks this up

into “there was
FIN DIN G TOPLEVEL CDS~ (MEM53 MEM 59) t reatment” and “ someone
SEARCHING FOR MEM5 3 IN SCRIPT improved in physical state. ”

$VEHA CCIDENT
PATTERN BACKBONE MAT CHED AT TRE57 It finds “treatment” at
CHECKING GLOBAL TIME ASSERTI ON TRE5 7 , noting that “he”

IN MEM5 3 must be the person that was
POSSIBLE REFERENCE FOUND: hurt .
HUM 14 IS HUM 3
LOCATED AT TRE57

COMPONENT SCRIPT $HOSPITAL OF The $HOSPITAL part of the
$VEHACCIDENT ACCESSED accident Script is now active.

SEARCHIN G FOR MEM5 9 IN SCRIPT
$VEHA CCIDENT

L .  - -



— 1146 —

PATTERN BACKBONE MATCHED AT TRE58 APPLY find s “physical state
CHECKING GLOBAL TIME ASSERTION improved , ” and checks on the

IN MEM59 size of the improv ement with
RUNNING PATTERN—SPECIFIC a pattern function.

FUNCTION (PFTRE58 )
POSSIBLE REFERENCE FOUND: APPLY identifies “he ,” as

HUM 4 IS HUM3 before ,
LOCATED AT TRE58

APPLIER RUNTIME : 16119 and sends for another input .
APPLIER GCTIME : 3992

FREE: 14673 FULL : 13143
MERGING TOKENS ((HuM4 . HUM3))
GETTING NEW INPUT

l (TOK )
merging HUM 4 with HUM 3 TOK gets rid of “he ” ,

top level PARSER atom is: GN414 1 and processes “he was
processing PP: released .”
(#PERSON GENDER GN366 REF GN367 )
creating new token : HUM5
top level TOK atom for GN1441

is MEM68

I ( A P P L Y )
FINDING TOPL EVEL CDS : ( MEM68 ) APPLY searches for new
SEARCHI N G FOR MEM68 IN SCRIPT input , and finds it at

$VEHACCIDENT TRE5 9 .
PATTERN BACKBONE MATCHED AT TRE59
CHECKIN G GLOBAL TIME ASSERTION

IN MEM68
POSSIBLE REFERENCE FOUND : Again “he” is identified ,

HUM 5 IS HUM 3 since people who have been
LOCATED AT TRE59 treated may leave the

hospital .
RUNNING PATTERN FUNCTION (RFTRE5 9) Since the patient has been

allowed to go after being
treated , APPLY can make an

BINDING VARIABLE &NVAL2 TO —3 inference about how badly
he was hurt. This was not
mentioned , so a default
val ue of “ slightly injured”
is assumed .

• The inference about how badly the person was hurt is made by a function
invoked when the pattern for the patient’s leaving the hospital is
instantiated . This function essentially asks the following questions.
Has a “val ue” for the hurt person’s injury been seen? (That is, does a
value on his HEALTH scale appear in the binding list (ALIST)?) If’ not ,
assume “slight” injury , since this episode was about emergency room
treatment .



‘-“ ‘~~~~~~~~~~~~~~~~~~~~~

— 147 —

( DEFPROP RFTRE5 9
(LAMBDA NIL

( COND
((ASSOC (QUOTE &NVAL2 ) ALIST ) NIL )

CT (TERPRI NIL )
(PR INTSTR (QUOTE “BINDING VARIABLE

&NVAL2 TO —3”))
(SETQ ALIST
(APPEND (LIST ( CONS ~& NVAL2 ) — 3 ) )  ALIST ))
(SAVE SCRIPTCNTXT ))) )

EX P R )

APPLIER RUNTIME : 10581 APPLIER APPLY asks for another input .
GCTIME : 0

FREE : 4406 FULL : 1319
MERGING TOKENS ((HUMS . HUM3))

GETTING NEW INPUT

!(TOK)
merging HUM5 with HUM3 Again , “he” is discarded .

I (PARSER )
The passenger was extricated from PARSER interprets this sentence ,
the vehicle by the Branford Fire in the accident context , as an

instance of an organization
CONCEPT : removing a person from inside
GN493 = a car .
(( ACTOR (#O R GAN IZA TI ON

ORGOCC ($FIREDEPT )
• OR GNAM E ( BRANFORD )

REF ( DEF ) )
<=> (‘PTRANS’) OBJECT GN532
FROM (‘INSIDE ’ PART

(#STRUCTUR E
FUNCTION (‘VEHICLE’)
REF ( D E F ) ) ) )

MODE (M0D9 ) TIME (T IM22 ))

GN532 = The person is “the passenger .”
(#PERSON DREL ( ( < :>

( $DRI VE PASSENGER G N 5 3 2 ) ) )
REF ( D E F ) )

PARSING TIME: 441418 GCTIME : 31439

I ( TOK )
top level PARSER atom is: GN1493
processing PP:
(#ORGAN IZAT I ON ORGOCC GN563

~RGNAM E GN565
REF GN566 )

creating new token : ORG2



— - -_ — - — - - • _•--_ - - - --—_----
~
-, - -- — -—- -‘•

_ -- ,--- —.-----•- V•_ -

— 1148 —

processing PP:
(#PER SON DREL GNIt97 REF GN 1499 )
creating new token : HUM6
processing script : TOK sees the reference to the

($DRIVE PASSENGER GN532) “passenger.”
SCRIPTROLES addition :

( PASSENGER $DRIVE HUM6 )
processing PP:
(# STRUCTU RE FUNCTION GN55 14 REF GN55 5)
creating new token: STRU CT 2
top level TOK atom for GN 1493 is MEM86

I (AP P LY )

NEW INPUT : MEM86

The new sentence represents a “jump ” in the story . since we have been
reading about the injured man , and this returns to the man who died .
Predictions about an emergency squad assisting police and ambulance
after an accident were made when SAM read about the crash. These
predictions , however , were not immediately fulf i l led . As a result ,
although they are still in the search list , the immediate predictions
associated with events instantiated since then (e. g., ambulance and
treatment) will be looked at first .  Here’s the state of “deep” memory
as th is Conce ptual ization is processed . Note how far down the search
list the relevant pattern , TRE11 , is.

TO~ — 
APPLY

I CDTOKENS : I SCRPTCNTXT :
(ORG2 HUM 6 STRUCT 2) (( $VEHACCIDENT

(TRE62 TRE59 TRE58 TRE56 TRE57
I TOKENS : TNE6 TRE 7 TRE 9 TRE 11 TRE5 1 TRE52
(ORG2 HUM 6 STRUCT2 HUM3 TRE5 ’4 TRE55 TRE2 TRE 14 TRE 5 INV 2

ORGO ORG 1 LOC 1 HUM 1 LOCO INV 3 CRA5 CRA 9 TRE 1 TRE5O TRE78
HUMO POLITO PHYSO STRUCTO CRA 4 ACC 1 ACC2 CRA5O CRA 5 1 CRA52
LINKO ) CRA53 CRA 11 CRA 12 CRA2 1

CRA22 CRA 13 CRA2 C R A 3 ) ) )

APPLY starts on the new Conceptualization.

SETTING SCRIPT ROLE APPLY picks up on the
(PASSENGER $DRIVE HUM6) processing note about “the
IN $VEHACC IDENT passenger , ”

BINDING SCRIPT ROLE IN $DRIVE but notes that
REFERENCE SPECIFIED: HUM6 IS HUMO this role is already bound .

FINDING TOPLEVEL CDS : ( MEM86 ) APPLY searches for the new
SEARCHING FOR MEM86 IN SCRIPT input , f inal ly  finding it

$VEHACC IDENT at TRE 11.



~ ‘ — ~~~~~~~
-—---—---

~~~~~

— 1149 —

PATT ERN BACKBONE MATCHED AT TR E 11
CHECKING GLOBAL TIME ASSE RTI ON

IN MEM86
POSSIBLE REFERENCE FOUND: APPLY notes the reoccurrence
STRUCT2 IS STRUCTO of “the vehicle ” and “the
HUM 6 IS HUMO passenger ”
LOCATED AT TRE 11
BOUND SCRIPT VARIABLE : and binds up the role for
&O RG 1 TO ORG2 “ emergency service

organization. ”
COMPONENT SCRIPT $AMBULANCE OF APPLY notes it is back in

$VEHACCIDENT ACCESSED the $AMBULANCE part of
$VEHACCIDENT .

APPLIER R UNTIME ’ 15381
AP PLIER GCTIME : 3932

FREE : 14175 FULL ’ 1299
MERGING TO KEN S

( ( HUM 6 . HUMO)
(STRUCT2 . STRUCTO ))

GETTING NEW INPUT

I ( TOK ) TOK abolishes the redundant
merging HUM6 with HUMO tokens.
merging STRUCT2 wi th  STRUCTO

I ( P A R S E R )  Because this  is an accident
No charges were made. story , PARSER analyzes

“ cha rges” as referring to
CONCEPT ’ the prosecution Script .
GN575 =

((ACTOR GN582 <=>
($P R OSECUT ION CHARGER GN582 There is no reason for a

PROSOBJ (N I L )  charge in thi s case , and
CHARGEE ( N I L ) ) )  no one to be charged ,

TIM E (TIM2 3) MODE ( MOD 1O ))

GN582 The en t i t y  that didn ’t make
(NIL )  a charge , however , is

unkn own .
PARSING TIME : 272814 GCT IME : 3767

I ( TOK )
top level PARSER atom is: GN575 TOK processes this input .
top level TOK atom for GN575 is MEM93

I ( APPLY )
NEW INPUT : MEM93

_ _ _ __ _ _ _ _  ~~~~~~ - -—-~~~~~~~ -
_ • - •-~~ --~~~—— ~~~~~~~~~~~~~~~~

-——- 
~~~~- - ‘



— 150 —

The MODE atom in the Conceptualization received by APPLY specifies
tha t a prosecution was not initiated . The relevant pattern , INV 3, was
predicted when “ a man died ” was read . Because inputs referring to the
in j ured man were subsequently seen , this prediction was pushed back in
the search list. INV3 has the form “police decide not to start
prosecution :”

The Input :

MEM93 :
( ( ACTOR ( NIL )  <=>

($PROSECUTION CHARGER (NIL )
PROSOBJ (NIL )
CHAR GEE ( N I L ) ) )

TIME (TYM E 1 14) MODE ( MOAD 14 ) )

MOAD 14:
(‘TS’ ‘NEG’)

The “Equivalent ” Pattern:

INV3 : This pattern is looking
(( ACTOR &POLORG <=> (‘MBUTLD’) for “ police decided not

MOBJECT INV 14 to prosecute ” .
TO (‘CP’ PART &POL ORG)) )

INV 14: Here is “no prosecution .”
( ( < = > ( $PRO SECUTION

CHARGER &POLORG
CHARGEE &CHARGEE
PROSOBJ &PROSOBJ))

MODE ( MMO DE 3))

Recognizing this input will require a mental—ACT inference on
APPLY ’ s part:

FINDING TOPLEVEL CDS: (MEM93) APPLY searches for the new
SEARCHING FOR M~ 493 IN Conceptualization .

SCRIPT $VEHACC IDENT
Eventually it gets to INV 3 .

TRYING INFERENCE TYPE MTACT ON INV3 The top—level match fails
PATTERN BACKBONE MATCHED AT INV4 but there is a mental—ACT

inference available. APPLY
extracts the MOBJECT of
INV 3 and redoes the match.

CHECKING GLOBAL TIME ASSERTION
IN MEM93

SUCCESSFUL MATCH ON DERIVED PATTERN This works.
LOCATED AT INV 3

.- -  - - — - -~~~~~~~~~~~ - “ -‘- ~~~‘ --



‘I

— 151 —

COMPONENT SCRIPT $POLICE OF Now we are in the
$VEH ACC I D ENT ACCESSED police—investigation

part of $VE HACC IDENT .
APPLIER RUNTIME : 16704

APPLIER GCTIME : 4001 ‘

FREE : 3987 FULL : 1283
GETTING NEW INPUT

I ( PARSER )
Patrolman Robert Onofrio investigated PARSER interprets this as
the accident.  a policeman executing his

investigation Script .
CON CEPT:
GN637 =
( ( ACTOR GN65 14 <:>
($INVEST I GATION MAIN (NIL )

INVESTIGATOR GN654
INVOBJECT

( ( < = >  ( $V EHACCIDENT ))  PARSER has been told that
TIME (NIL )  REF ( D E F ) ) ) )  this is a motor—vehicle

TIME (T 1M27) acc iden t .
MODE (MOD11))

GN6 54
(#PERSON OCCUPATION (‘POLICEMAN’)
F IRS TNAME (ROBERT )
LASTNAM E ( ONOF RI O ) )

PARSING TIME : 27478 GCTIME: 3143 14

!(TOK)
top level PARSER atom is: GN637
processing PP:
(# P ERSO N OCC U PAT ION GN64 1

FIRSTNAME GN6142
LAS TNAME GN6 14 3)

creating new to-ken : HUM7
pr oces~ in~ sc r ipt : ($V EHACCIDENT )
to~ level TOK atom for GN637 is ME2I100

I (APPLY)
NEW INPUT: MEM100 APPLY searches for ‘he last
FINDING TOPLEVEL CDS ’ (MEM 100 ) sentence ,
SEARCHIN G FOR MEM 100

IN SCRIPT $VEHACCIDENT
PATTERN BACKBONE MATCHED AT INV 2 ~ettirig an initial match at
CHECKING GLOBAL TIME ASSERTION INV2. It checks to see that

IN MEM100 the reason for the
RUNNING PATTERN—SPECIFIC investigation (here, the

FUNCTION (PFINV2) accident) makes sense ,

LOCA TED AT IN V2



-~ -•- •• - - - • - - - - --- ---- -‘---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 152 —

BOUND SCRIPT VARIAB LE :
& INVEVNT TO MEM1 O3
&POLSTAFF TO HUM7 The last input has now been

absorbed .
APPL IER RUNTIME : 18080

APPLIER GCTIME : 3972
FREE : 3791 FULL : 1255
GETTING NEW INPU T

6 . 2 . 2  Building the Story Representation

At this point , all the story inputs have been exhausted . For an
ordinary story in simple narrative format , APPLY would have been linking
each input event into the story representation as it was recognized .
Newspaper stories , however , do not use narrative mode , and may refer to
the same event several times in the course of a s tory .  In our example ,
we read about a man who was killed , then some things about a man who was
injured , then a reference to an emergency squad extricating the dead man
from the wreck. As a practical means of avoiding backtracking in cases
like these , the Script Applier delays the instantiation (or
“realization”) process , but keeps track of’ the patterns that were
matched by a story , and the episodes these are part o f .

APPLY , using its record of the episodes of’ $VEHACCIDENT that were
referenced , now proceeds to instantiate these episodes for inclusion in
the final representation for the story. This process has several
important sub—processes. First , when APPLY a t tempts  to realize a
pattern from an episode , it may encounter a Script variable not
explicitly mentioned by the s tory.  When this happens , it goes to TOK
for a token having the appropriate propert ies.  (TOK was given the
properties of all variables at Script ac t iva t ion  t ime . )

Next .  when an episode Maincon , in terference or resolution is
encountered , APPLY attaches an indication of the place where these
events occurred . This setting information is used by the summarizer.
When an interference is seen , APPLY notes the fact , and searches for a
resolution elsewhere in the story representat ion . F ina l ly ,  when the
mainpath causal chains throug h the episodes have been instantiated ,
APPLY calculates the appropriate causal relations among the episodes.
The log to follow contains examples of all these processes.

COMPUTER OUTPUT COMMENTARY

I ( APPLY
BUILDING STORY REPRESENTATION

FOR (TEXT . C l )
APPLY begins by instant iat ing

MAKING STORY SEGMENT FOR SUBSCENE the “ crash” scene from
$CRASH 1 IN $VEHACCIDENT $VEHACCIDENT

!( TOK ) At APPLY ’s behest , TOK creates
creating new token~ LOC2 tokens for the (unspecified)



- -

— 153 —

origin and destination of’ the
!( APPLY ) $DR I VE t he crash interru pted .
GOT TOKEN LOC2 FOR &ORIG1

I (TOK )
creat ing new token: LOC3

I (APPLY )
GOT TOKEN LOC3 FOR &DEST 1

DEFINING SETTING FOR EVNT4 APPLY creates the setting
“near Route 69” for the

!(TOK) crash event.
creating new token: LOC’4

I ( APPLY
GOT TOKEN LOC 14 FOR &ACCLOC

RUNNING PATTERN FUN CTION (R FC R A 5 ) APPLY assumes that the car
BINDING VARIABLE &NVAL1 TO —6 in the accident was “badly

damaged .”

MAKING STORY SEGMENT FOR SUBSCENE Now APPLY realizes the episodes
$TREAT 1 IN $VEHACCIDENT in which police , ambulance and

medical examiner come to the
scene.

l(TOK)
creating new token : HUM8 This is the unnamed person who

saw the accident ,
I ( A P P L Y )
GOT TOKEN HUM8 FOR &ONEO

!(TOK) and the police department he
creating new token: ORG2 called .

I C  APPLY )
GOT TOKEN ORG2 FOR &POLORG

“A man died” is recognized as an
INTERFERENCE ENCOUNTERED: EVNT14 “interference” in $VEHACCIDENT .
DEFINING SETTING FOR EVNT 114 The setting for the interference
DEFINING SETTING FOR EVNT 17 and the episode Maincon .

MAKING STORY SEGMENT FOR SUBSCENE
$TREAT2 IN $VEHACC IDENT

INTERFERENCE ENCOUNTERED: EVNT2O “A man was hurt” is also seen to
DEFINING SETTING FOR EVNT 2O be an interference.

I ( TOK ) Tokens are created for :
creating new token : STRUCT 3

UAPPLY) the ambulance
GOT TOKEN STRUCT 3 FOR &AMBULANCE 



— 1514 —

(TO K )
creating new token : LOC5

I(APPLY) the emergency room
GOT TOKEN LOC5 FOR &TRELOC

I C  TOK )
creating new token: HUM9

!(APPLY) and the emergency—room
GOT TOKEN HUM9 FOR &DOCTOR 1 doctor .

INTERFERENCE RESOLVED: The treatment resolves
( EVNT2O EVNT26 ) the hurt  person ’s problem.

DEFINING SETTING FOR EVNT26

MAK ING STORY SEGMENT FOR SUBSCENE Finally,  APPLY realizes
$INVEST 1 IN $VEHACC IDENT the investigation

DEFINING SETTING FOR EVN T33 episode.

CONNECTIN G STORY SEGMENTS APPLY interconnec ts the
EVENT GRAPH : four Script episodes it
( ( EVNT1 EVNT2 EVNT3 EVNT4 EVNT7) instantiated , displays
(EVNT8 EVNT9 EVNT 1O EVNT11 EVNT13 the mainpath portions

EVNT 17) of each episode , and
( EVNT 18 EVN T 19 EVNT23 EVN T24 EVN T25 dumps the story

EVNT 26 EVNT 28 EVNT 29 EVNT 3 O) representat ion.
(EVNT31 EVNT32 EVNT33))

DUMPIN G STORY REPRESENTATI ON

Let’s look at some of the data st ruc tures in the story
representation. First , there is the variable I STORY , which gives global
access to the memory representation .

!STORY : (SEQ SCL AB3 )

SCLAB3 :
SCRIPTNAME $VEHACCIDENT Situation
MAINCON EVNTI4 Story Maincon
SCENECONS (EVNT 4 EVNT 17 EVNT 33) Episode Maincons
INTERFERENCE ((EVNT2 O EVNT26) Interference/resolution

(EVNT 1I 4 ) )  events
ENTRYCON EVNT1 First event in the story

EVNTII: The Maincon is the crash
VALUE (( ACTOR STRUCTO itself

<:> (‘PROPEL’)
OBJECT PHYSO
TIME (TIME5 ))

TOP SCLAB3 The story label
LABEL $CRASH 1 The episode
SCRIPTID CRAI4 The Script pattern
LOCALE (EVNT5 ) The setting



- .  — -. - ‘— — ‘ - .--- 
~~~~~~‘•- - -— ~~~-~~— •~~~~--- - “I

— 155 —

PATHTYPE MAIN Pathvalue and
PATHVALUE DEF pathtype
LA STEVENT (E VNT 3 ) Predescessor
NEXTEVENT (EVNT 2O EVNT 1 14 EVNT7 ) Successors
CAUSATI ON (RESULT RESULT RE SULT ) Causal type

EVNT 5 : Maincon sett ing :
VALUE ((ACTOR LOC4 IS (‘LOC’ “near Route 69”

VAL (‘PROx’ PART LINKO))))

EVNT114 ’ One result of the crash
VALUE ((ACTOR HUMO ISTOWARD is that someone died .

(*HEALTH* VAL (— 10)))
TIME (TIME 1 7) )

TOP SCLAB 3
LABEL $TREAT 1
SCRIPTID TRE1
LOCALE (EVNT 15)
PATHTYP E IMMBAK INF This is a “back” inference
PATHVALUE INT from “pronounced dead ,”
LASTEVENT (EVNT I4 ) and an INTerference.
NEXTEVENT (EVNT 17)
CAU SATI ON (INITIATE )

EVNT2O’ Another result is that
VALUE ((ACTOR HUM3 ISTOWARD somebody was injured .

(‘PSTATE’ VAL (—3)))
TIME (TIME 1 7 ) )

TOP SCLAB3
LABEL $TREAT2
SCR IPTID TRE 5O
LOCALE (EVNT21)
PA THTYPE IMMBAKINF This is a “back” inference
L’THVALUE INT from “examined”
LASTEVENT (EVNT14) and an INTerference.
NEXTEVENT (EVNT 1 9)
CAUSATI ON (INITIATE )

EVNT26: This is the resolution for
VALUE ((<=> ($TREATMENT EVNT2O: treatment.

DOCTOR HUM 9
• PATIENT HUM3))
• TIME (TIME31))

TOP SCLAB3
LA BEL $TREAT 2
SCRIPT ID TRE 57
LOCALE (EVNT27) This is a inainpath event ,
PATHTYPE MAIN with pathvalue RESolution .
P AT HVALUE RES
LASTEVENT (EVNT25)
NEXTEVENT (EVNT28)
CAUSATION (RESULT)

_ _ _ _ _ _



~ -

— 156 —

Here is the instantiated crash episode:

Episode : (EVNT 1 EVNT 2 EVNT 3 EVNT14 EVNT7 )

EVNT1:
( ( < = >  ( $DRIVE DRIVER HUM3 PASSENGE R HUMO

ORI G LOC2 DEST LOC3
VEHICLE STRUCTO ROUTE L I N K O ) )

TIME (TIME2) )
[There was an instance of the Script $DRIVE , HUM 3

driving , from LOC2 to LOC3 via LINKO]

EVNT2:
((<=> ($DRIVE ‘)RIVER HUM3 PASSENGER HUMO

.)RIG LOC2 DEST LOC3
VEHICLE STRUCTO ROUTE L I N K O ) )

TIME (TIME 3 ) MODE (MMODE2))
[The driver lost control of the car ’ MMODE2 ‘CANNOT ’]

EVNT3 :
((ACTOR STRUCTO <=> (‘PTRA NS’) OBJECT STRUCTO

FROM (‘TOPOF’ PART LINKO))
TIME ( T I ME 4 ))

[The car left  the road]

EVNT 14 :
(( ACTOR STRUCTO <=> (‘PROPEL ’ s OBJECT PiIY SO)

TIME (TIME5 ))
[It  ran into an obstruc tion]

EVNT7 :
( ( A C TOR STRUCTO ISTOWARD (‘PSTATE ’ VAL ( - 6 ) )

TIME (TIME8 ))
[and was demolished]

Here , as an example of what the tokens look like after SAM has
finished with them , are “Miller ,” “Hall” and “Flanagan Ambulance :”

HUMO :
CLASS (#PERSON )
SURNAME (HALL )
PERSN AM E (DAVID )
GENDER (‘MASC’)
AGE (27 )
RESIDENCE (POLITO )
SROLES (($VEHACCIDENT . &DEADGRP)

($DRIVE . &PASSGRP1))

HUI’13:
CLASS (#PERSON)
SURNAME (MILLER )
PERSNAME (FRANK )
GENDER (‘MASC’)
AGE (32)

—



- _ - -- ~~~ — • -- -
_ ---~~~~

— 157 —

RESIDENCE (LOC 1)
SROLES ( ($VEHACC IDENT . &HU R TG R P )

( $DRIVE . & D R I V E R 1) )

OR GO:
CLASS (#ORGANIZATION )
ORGNA ME (FLANAGAN )
ORGOCC ( $AMBULANCE )
SROLES ( ($VEHA CC IDENT . & A MBO R G ) )

Finally, we show another “interesting” event , the Maincon of the
investigation episode. This event is marked as being of special
importance because of the SCORECARD property:

EVNT33: [Onofrio decides not to prosecute]
VALUE ((ACTOR HUM7 <=) (‘MBUILD’)

MOBJECT ((<=> ($PROSECUTION))
MODE (MM ODE3) )

TIME (TIME319)
[M~1ODE3 (‘NEC’)]
TOP SCLAB3
LABEL $INVES T1
SCRIPTID INV3
PAT HTYPE MAIN
PATH VALUE NOM
LASTEV ENT ( I N V 2 )
SCORECARD ARREST

HUM7 :
CLASS (#PERSON )
SURNAME ( ONOFR I O)
PERSNAME (ROBERT )

• GENDER (‘MASC’ )
TITLE (PATROLMAN )
OCCUPATION ( ‘POL ICEMAN ’)
SROLES (($VEHACC IDENT . &POLSTAFF ))

_______________________________________________ V — - ‘ • —~ • • —  ~~~~~~~~~~~~~ — —- — -



— 158 —

6.3 Answer ing Quest ions

To suggest the quality of the understanding SAM achieved in reading
this story, we now give an annotated log of a question—answering run
based on the story representation SAM built. The question—answering
module , QA , is an implementation of Lehnert’s QUALM [iô] designed for
Script—based answer retrieval . As such , it uses the Conceptual Analyzer
and PP—Memory in exactly the same way as the understanding configuration
of SAM . (The English generator (ENGLSH ) which expresses the answers is
a modification of Goldman’s BABEL [ 1 4 ] . )  Additionally,  it uses many of
the pattern—matching and inference techniques that were developed for
the Script Applier . We indicate these processes below .

COMPUTER OUTPUT COMMENTARY

SAM starts up with QA in
I ( Q A )  control . QA goes to PARSER
GETTING NEXT QUESTION for first question .

I (P A RSER)
Was anyone killed? PARSER analyzes this as a

query (‘?‘) about whether
CONCEPT : an event of kill ing occurred ,
GN 1007 = involving some unspecified
((CON (NIL TIME (TIM3)) (REF (INDEF)) person.

• LEADTO
((ACTOR (#PERSON REF (INDEF))

TOWARD (‘HEALTH’ VAL (— 10))
LEAVING (‘HEALTH’ VAL (NIL)))

INC (NIL )
TIME (NIL )
MODE (NIL ) ))

MODE ( MOD2) )

MOD2 = ‘?‘

PARSING TIME: 147615 GCTIME : 3385

I(TOK ) TOK does its usual job.
top level PARSER atom is: GN 1007
processing PP:
(#PERSON REF GN1O23)
creating new token : HUM1O1
top level TOK atom for GN 1007

is MEM3O 1

I (QA)
NEXT QUESTION: This is the statement of the
(( ACTOR HUM 1O 1 TOWARD question QA will try to

(‘HEALTH ’ VAL (—10))) answer. [MOAD 1 (‘?‘)]
MODE ( MOAD 1 ) )



‘~~~~~~

— 159 —

(QUESTION TYPE IS VERIFY) The question class is “verify,”
( SEARCHING $VEHACC IDENT —SCRIPT i. e . ,  did this occur . QA

STRUCTURE ) searches the story
(NOT FOUND AT SCRIPT STRUCTURE representation from the top

LEVEL) down.
(SEARCHING CAUSAL CHAIN Eventually it begins pattern

STRUCTURES) matching in the causal—chain
(SEARCHING INFERENCES OFF MAIN PATH ) episodes , and their inferences.

PATTERN BACKBONE MATCHED AT EVNT 1 14
( FOUND IN INFERENCE OFF MAIN PATH )

THE ANSWER IS: The conceptual answer. . .
(YES (( ACTOR HUMO ISTOWARD

(‘HEALTH ’ VAL ( — 1 0 ) ) )
TIME (TIME 17 ) ) )

I(ENGLSH) ...and its expression in
YES , DAVID HALL DIED. English .

I (Q A )
GETTING NEXT QUESTION

I ( PAR SER ) The second quest ion is
Was anyone hurt? similar to the f i r s t . . .
CONCEPT :
GN1077 =
( ( C O N (NIL TIME (T i ll s) )

LEADTO
((ACTOR (#PERSON REF (INDEF))

TOWARD (‘PSTATE’ VAL (— 3))
LEAVING (‘PSTATE’

VAL. ( N I L ) ) )
INC ( NI L)
TIME (TIM6 )
MODE ( N I L ) ) )

MODE (MOD4 ))

PARSING TIME : 35230 GCTIME : 3398

I ( TOK )
top level PARSER atom is: GN 1OTT
processing PP:
(#PE RSON REF GN 109 3)
creating new token : HUM 1O2
top level TOK atom for GN1077

is M~ l3 13

I ( Q A )  . . .and is answered the
wEXT QUESTION : same way.
((ACTOR HUM1O2

TOWARD (‘PSTATE ’ VAL . ( — 3 ) ) )
MODE (MOAD 3))

(QUESTION TYPE IS VERIFY )

L ______________________________________



- 160 —

F (SEARCHING $VEHACCIDENT—SCRIPT
STRUCTURE )

• ( NOT FOUND AT SCRIPT STRUCTURE
LEVEL )

(SEARCHING CAUSAL CHAIN
STRUCTURES )

PATTERN BACKBONE MATCHED AT EVNT2 O
(FOUND IN INFERENCE OFF MAIN PATH )

THE ANSWER IS:
(YES ((ACTOR HUM3

ISTOWARD (‘PSTATE’ VAL (—3)))
TIME (TIME 25 ) ) )

I (ENGLS H )
YES , FRANK MILLER WAS SLIGHTLY

INJURED.

I ( Q A )
GETTING NEXT QUESTION

I ( PARSER )  This is a quest ion about the
Why was Frank Miller hurt? event which caused Miller’s

injury .
CONCEPT :
GN 1114 2 =

(( CON (‘?‘)
LEADTO
(( CON (NIL TIME (T IM8 ))

LEADTO
((ACTOR (#PERSON GENDER (‘M.ASC’)

FIRSTNAME (FRANK )
LASTNAME (MILLER ))

TOWARD (‘PSTATE ’ VAL (—3))
LEAVING (‘PSTATE’ VAL (NIL)))

INC (NIL ) TIME (TIM 9)
MODE (N I L ) ) )

MODE ( MOD5 )) )
MODE (N I L ) )

PARSING TIME: 473145 GCTIME: 6810

I ( TOK ) 
-

•

top level PARSER atom is: GN 11142
processing PP :
(#PERSON GENDER GN1 166

FIRSTNAME GN 1167
LASTNAM E GN 1168)

creating new token : HUM 1O3
top level TOK atom for GN 11142

is M~ 4325

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
••

~~•~ • • • ••



— 161 —

I ( QA)
NEXT QUESTION :
(( CO N (‘?‘)

LEADTO
((ACTOR HUM1O3

TOWARD (‘PSTATE’ VAL (— 3))))))

( QUESTION TYPE IS CAUSANT )
(SEARCHING $VEHACCIDENT-SCRIPT

STRUCTURE )
(SEARCHING INTERFERENCE RESOLUTION Because this is a question

PAIRS ) about causality , QA searches
(NOT FOUND IN INTERFERENCE RESOLUTION the interference/resolution

PAIRS ) data attached to the global
(NOT FOUND AT SCRIPT STRUCTURE LEVEL ) story variable.
(SEARCHING CAUSAL CHAIN STRUCTURES )
(SEARCHING INFERENCES OFF MAIN PATH )
(SEARCHING SCRIPTAL WORLD KNOWLEDGE )
(NOT FOUND IN SCRIPTAL KNOWLEDGE )

THE ANSWER IS:
( BECAUSE

((ACTOR STRUCTO <:> (‘PROPEL’)
OBJECT PHYSO)

TIME ( TIME5 )) )

I ( ENG L SH )
BECAUSE AN AUTOMOBILE HIT A TREE .

I ( Q A )
GETTING NEXT QUESTION

I(PARSER ) PARSER interprets this
Did Miller go to the hospital? sentence as a PTRANS of

Miller , by Miller , to
CONCEPT : a hospital .
GN1217 =

((ACTOR GN12140 <=> (‘PTRANS’)
OBJECT GN 1214O
TO ( ‘PROX ’ PART

(#ORGANIZATION ORGOCC ($HOSPITAL)
REF ( D E F ) ) )

FROM (NIL)
INST (N I L ) )
MODE ( MOD7 )
TIME ( T I M 1 1 ) )

GN12 140 =

(#PERSON LASTNAME (MILLER))

PARSING TIME: 55307 GCTIME’ 65614

I ( TOK )
top level PARSER atom is: GN1217
processing PP :
(#PERSON LASTNAM E GN 122 9)

-



— 162 —

creating new token: HUM1 OZ4
processing PP
(#ORGAN IZATION ORGOCC GN 1266

REF GN 1268)
creating new token : ORG 1O 1
top level TOK atom for GN 12 17

is MEM3140

I (QA)
NEXT QUESTION: QA receives the question
((ACTOR HUM 1O14 <=> (‘PTRANS’) statement , a verification

OBJECT HUM 1O14 query .
TO (‘PROX ’ PART OR G 1O 1))

MODE (M OAD7 ) ) )

( QUESTION TYPE IS VERIFY ) QA begins searching the
(SEARCHING $VEHACCIDENT—SCRIPT story representation.

STRUCTURE )
(NOT FOUND AT SCRIPT STRUCTURE

LEVEL.)
( SEARCHING CAUSA L CHAIN STRUCTURES )

Eventually it tries a
TRYING INFERENCE TYPE CONVEY ON EVNT214 Conveyance inference
PATTE Ith BACKBONE MATCHED ON QUESTION on one of the concepts

CONCEPT : in the representat ion ,
((ACTOR HUM3 <=> (‘PTRANS’)

OBJECT HUM 3
TO (‘PROX’ PART ORG1))

TIME (TIM E29))
SUCCESSFUL MATCH ON DERIVED PATTERN which works.

( FOUND IN MAIN PATH )

THE ANSWER IS:
• (YES ((ACTOR ORGO <=> (‘PTRANS’)

OBJECT HUM 3
TO (‘PROX’ PART ORGI))

TIM E (TIME 29 ) ) )

I (ENGL.SH )
YES , THE FLANAGAN AMBULANCE
COMPANY TOOK HIM TO THE MILFORD HOSPITA L



Chapter 7
Re present ing Conceptual Nominals

7.1 Motivation

Script—based understanding is a process of recognizing real—world
events as instances of an action imbedded in a Script . Each
natural—language sentence describing such an event contains references
to conceptual “nominals ,” people , objects , places , and other ent ities
with concrete references. In the Conceptual Dependency system [32],
conceptual nominals are called Picture Producers (PPs) because they tend
to produce an image in the mind of a hearer or reader. “The Eiffel
Tower ,” for example , summons up a visual image of a particular kind of
structure , associated with a particular city. This visual impression
gives us info rmation in addition to other , “static” facts we may know
about the Eiffel Tower , for exam ple , that it is made of steel and has
elevators. Part of the job of applying Scripts is to correctly assign
roles and props to PPs appearing in a text .

In SAM , “ recognition” is a cooperative process carr ied out by the
module which keeps track of Picture Producers (PP—Memory), and the
module which knows about Scripts (the  Script Applier). Identifying an
input is is a two—stage process. First , the Script Applier matches the
constant parts of a Script pattern against the corresponding parts of a
story input , to see if the event is of the right type. Then it examines
the PPs from the input to determine whether they can ful fil the funct ion
def ined by the associated Scr ipt variable. In this process , the Script
Applier continually uses information provided by PP—Memory , particularly
data about PP5 resulting from the internalization of an ELI input .
Comprehension , t herefore , is intimately bound up with the memory
structures that PP—Memory defines for each of its tokens.

Or iginally,  SAM dealt with simple stories about “simple” PPs. It
read about “John and Mary” riding on “a bus ,” to get to “a restaurant. ”
When we extended SAM to get it to read news paper art icles , however , we
ran into the problem that PPs in the world come in a myriad of
varieties , and newspaper writers use a number of techniques to describe
tnem . Consider , for example , the following typical — — but very
complex —— noun group describing one participant in a car accident :
“Frank Miller , 32 , of 593 Foxon Road , the driver .”

How can we deal with this complex ity? Sinc e Picture Producer s are
a part of the Conceptual De pendency system , we applied the same
methodology to them as CD applied to the analysis of verbs. We tried to
find a small number of “primitive” entities , each with a roster of

• optional and mandatory “slots” or cases , into which all surface forms
having the “equivalent” conceptual content could be mapped . The
benefits of having such a representational scheme for PPs would then be
the same as provided by the eleven CD ACTs and their associated
case—frames.



— 1614 -

In analysis, for example the conceptual “frame” provided by each
primitive PP—class would operate as a source of predictions about words
and phrases to be seen further on in the input stream . (The process
which exploits this information is a sub—part of ELI called the Noun
Grou per (NGP ) .  NGP is descr ibed by Gershman in [ 1 3). )

In inference tasks , each PP—class has a characteristic inference
process designed to fill in the gaps in a PP—description . In
particular , reference specification would be speeded up because each new
entity created would carry along the information , immediately available ,
about which kinds of PP5 it Q.~JInQ~ be; and which slots to look at for
contradictions. For example, the PP—class “human” has slots for gender ,
personal name and surname. The first time the PP “John Smith” is bound
to a Script var iable , all three of these slots woul d be filled in. If a
reference to “ a truck” appeared in a subsequent input , the Script
Applier would never consider it for the role “Smith” is bound to, since
it belongs to a different PP—class. “Smith ,” “John” and “he” would be
accepted , because the properties of the associated PP form a subset of
the ones that the Script Applier received for “John Smith.” The process
which does this is called Rolemerge , and was discussed in Chapter 14.

Finally , the generation process would be enhanced because rules
• about “what to say” could be formulated for each PP—class , independently

of’ the others. “Pronotninalization ” of PPs in generation , as an exam ple ,
would simply become a process of’ specifying which subset of slots in the
PP—frame should be expressed each time a surface description is needed .
For example , once the appropriate story representation has been built by
the Script Applier , the token corresponding to “Frank Miller,” above ,
would contain all the information needed to express him as

Frank Miller , age 32 , residence at 593 Foxon Road , New Haven ,
Connect icut , the driver of the car.

The driver , a New Haven , Connecticut man .

Miller , the 32—year—old driver.

He.

(Many other realizations of’ this PP are also possible in SAIl.)

• The world of Picture Producers that SAM deals with in newspaper
stories can conveniently be divided into three parts: actors , things
and places. Each of these broad classes is subdivided into a small
number of “ primitive” PP—classes. Each primitive class , in turn ,
defines a limited set of slots , called a ~~~~~~~~~~~~~ which an input
may f i l l .  For example , “Frank Miller” belongs to the primitive class of
“ persons” within the class of’ actors. The PP— class #PERSON (a preceding
“#“ designates a PP primitive) has the following conceptframe :



— 165 —

#PER SON :
PERSNAME personal name
SURNAME family name
AGE age
RESIDENCE the place where this person lives
GENDER sex
TITLE a t i t le such as “Mr” or “Premier”
OCCUPATION a long—term occupation , such as

“medical doctor ”
EMPLOYER the organizat ion the person works

for
FUNCTION a short—term function , such as

“driver ”
POLITY a political unit the person serves

in an official capacity
FAMILY a pointer to the person ’s family

group
HUSBAND/WIFE/SON/etc . a pointer to another person related

to this one

Note that some of the slots in a PP—description may contain PPs of
the same or other classes. For example , the RESIDENCE slot may be
filled by a “structured physical object ,” the building where the person
lives . The POLITY slot may point to a political entity such as the
state or nation an official person (e. g.. the President of Liberia)
serves. The EMPLOYER slot is usually filled by a reference to the
organization the person works for. as in “the man from UNCLE” or “the
phone company man .” The HUSBAND/WIFE slot, if filled , contains a
reference to another person having the named relation to this one. For
example , ELI would build the following structure for “John ’s wife Mar y :”

(#PERSON
GENDER (‘FEM’)
PER SNAME (MARY )
HUSBAND (#PERSON

GE NDER (‘MASC’ )
PERSNAME ( J O H N ) ) )

In addi tion to the conceptfram e , each PP in SAM may possess one or
more “ general” properties which are defined by PP—Memory as a part of
its process of internalizing an input from ELI. One of these
properties , REFE RNT , points to the long—term memory structure possessed
by PP—Memory for a PP which is also a permanent token . An example of a
permanent token is “Hua Kuo— feng:”

HUMO :
CLASS (#P ERSON )
PERSNAME (KUO—FENG)
SUR NAME ( HUA )
REFE RNT (IHUM1-lo)

where the permanent token !HUM11O contains additional information such
• as:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-— ~~~~~~~~~
- _ — - - - - - --

~~~~~~~
-

~~~~
• _. •

— 166 —

I HUM 110:
CLASS (#PERSON)
PERSNAME (KUO—FENG)
SURNAME (HUA)
GENDER (‘MASC’ )
TITLE ( CHAIRMAN )
OCCUPATION (‘HEADOFSTATE’)
POLITY ( IP OL 1O5)

Note the reference in I HUM 11 O to the permanent token for “Communist
China :”

I POL 105 :
CLASS (#POLITY ) [ this PP is a primitive

“politica! unit”]
POLTYPE (‘NATION’) [of the “national” variety]
POLNAME (COMMUNIST—CHINA)
POLGOV (‘CP’) [this polity is a Communist

dictatorship)
CAPITAL ( I POL 1O6) [with capital at Peking , a

municipal political unit]

When PP—Memory identifies a permanent token , it copies over all the
information available from the referent onto the new token it has just
created.

Other “general” PP properties are syntactic ones computed by
PP—Memory which refer to the expression of the PP either as seen by the
Analyzer or realized by the Generator. For example , the SURFSLOTS
property identifies the PP—slots which were explicitly filled by an
input . For “Hua Kuo—Fen g , ” this would be:

HUMO :
SURFSLOTS ( CLASS PERSNAME SURNAME)

The SURFSL OTS property is used in formulating answers to questions such
as “Who is Hua Kuo—Feng?” Properties used by the Generator include: (1)
REFDEF , which tells whether the token is to be expressed definitely, as
in “the Eiffel Tower;” (2) NODET, which tells when a determ iner is not
to be used , as in “Mt Everest;” and ( 3)  SURFIRST , which tells it whether
the SURNAME of a person is to be expressed before the PERSNAME , as is
the case for Oriental names. This information exists in PP—Memory as a
part of the lexical information associated with its permanent tokens.
“Hua Kuo—Fen g ,” therefore , would look like this , after internalization
by PP—Memor y :

HUMO ’
CLASS (#PERSON )
PERSNAME (KUO—FENG)
SURNAME ( HUA )
GENDER (‘MASC’ )
TITLE ( CHAIRMAN)
REFE RNT ( I H U M 11 O)
OCCUPATION ( ‘HEADOFSTATE ’)
POLITY ( I P O L 1 O5)

• • • • - • ••• • -_ -__•—---——--—.—_- • — _
~~- 

— - - - — • --— — --- --_-_- - • _ -
~~

_ _ -
~
— • -



- •

— 167 —

SUR FSLOTS ( CLASS PER SNAM E SURNAME )
SURFIR ST (T )

We give the details of the PP—classification used in SAM in
succeeding sections. We should note , however , that the representational
scheme , while practical , has several shortcomings. ~or one thing , it is
by no means complete . (A more detailed system for representing physical
objects is given , for example , by Lehnert [18], which is useful for
certain kinds of low—level Inferencing tasks . )  Furthermore , it is
untidy. We have found it convenient to define special—purpose PPs for
various Script domains. A fur ther  cr i t ic ism is that  our classification
is anti—hierarchical . We know , for example , that people are physical
objects too , and both actors and things can be said to define a kind of
“place.” Neither of these facts appears directly in our classification .
We can only answer the first two objections on pragmatic grounds. The
scheme has been found useful for doing the “com plete” job of
understanding , from analysis to response . across a wide variety of
knowledge domains.

The third aspect of the representation scheme , however , is a
deliberate one. We built it in because of our observation that PP5 fit
into Scripts , not because they inheri t  features from abstract classes ,
as in a “semantic memory ,” but because of how they ~~~~~~ there. In
Scripts , actors “do” things , they “manipulate ” objects while acting , and
the doing always goes on in a wel l—defined “ somewhere. ”

This view of representation is an “episodic” one , which we believe
is characteristic of human memory , as well. As a simple example of
this , consider how a person is likely to construc t an answer to the
question “What are the fifty states of the US?” (This exam ple , and the
episodic/semantic memory dist inction , are discussed in detail by Schank
in [31].) Typically, a person would reply by consulting a remembered
image of the US, and trying to f i l l  in the empty spaces . Al ternat ively ,
he might consult his episodic knowledge of the “What states have I been
in on trips?” variety. It seems very unlikely that people have a memory
node labelled “States of the US ,” with an attached list , which they
access when a question like this is asked .

We have already suggested how a good way of representing PPe has
important advantages for the analysis and generation processes in SAM .
From the point of’ view of SAM ’s memory and inference mechanisms , we were
in teres ted in a classification of PPs which would faci l i ta te  ( 1)  f inding
out what function it was serving in an a Script ; and (2) identifying an
already-bound PP no matter how the story described it. The PP—classes
- ised by SAM , therefore , highlight two important kinds of slots,
corresponding to indicators in the surface form of what might be a given
PP’ s ( 1 )  

~Wl~~iQn and ( 2 )  ~ag (unique name). Consider , for example , the
‘rw ’ ur~ ~.LI would bui ld  for:

- • .  . - •



P

— 168 —

“Frank Miller , 32, of 593 Foxon Rd , the driver ”

(t’IPER SON PERSNAME (FRANK )
SURNAME (MILLER)
AGE (32)
GENDER (‘MASC’ )
FU NCTION ( ‘DRIVER ’ REF ( D E F ) )
RESIDENCE (#LOC ALE

STREETNUMBER (593)
STREETNPLME (FOXON ROAD)
STREETYPE (R OAD )))

The PP—concept for this person has two tag-pointers (PERSN AME and
SURNA M E ) ,  one function—pointer (FU NCTION ) , and secondary AGE , GENDER and
RESIDENCE slots.

~~ discuss persons , and the other primitive PP—classes , in
succeeding sections. In each case we will concentrate on how each class
fits into one or more Scripts , and what kinds of inferences each class
organizes in a Script context.

7.2 Actors

Active entities in Scripts are more complete realizations of the
ACTORs of Conceptual Dependency. CD representation is centered on the
idea of ACTORs performing various ACTs , symbolized by the two—wa y
dependency relation ACTOR~~~ ACT . Previous work in CD (e. g., [32]) has
concentrated the ACTs , since the existence of a small set of ACTs could
be exploited in analysis to define a conceptual “frame” for a thought ,
usual ly der ived fr om the surface ver b ; in inference , with a
characteristic inference process tied to each ACT; and th generation ,
with a discrimination net per ACT for selecting a surface verb and case
frame. With the application of Scripts to newspaper stories, howev er ,
we found a serious need for ways of representing the PPs underlying
multi—component noun groups , of which those describing ACTORs are the
most complicated .

What kinds of ACTORs do newspaper stories refer  to? ACTORs seem to
fit into two broa d classes , animate entities and physical fortes. These
classes are subdivided , in SAIl, into :

Class of ACTOR Example

Animate Actors :
( 1)  persons Mao The—Tu n g
(2 )  groups John and Mary
( 3 )  organizations The New York Times
(Ii ) polities California

Physical Forces:
( 1 )  simpl e forces gravi ty
( 2) mechan ical forces a car ’s engine
(3) complex forces Hurr icane Emma

I..
____  .4



~
- -.- • • 

— 169 —

7 . 2 . 1  Persons

The most familiar type of ACTOR is , of course , a ~~rson. The
Scripts a person participates in can be distinguished from one another
0 the basis of settir~g.

One importan t setting is the home. Here we have simple Scripts for
act ivi t ies  such as eating , gett ing dressed , preparing for bed , etc .
More compl ex Scripts are associated with a person ’s job , that is , with
the “office” setting . Examples include typing , ziv ing reports , running
machinery ,  going on a coffee break , etc . Stories often refer to a
person ’ s role in a Script of this kind , as in “John , the bank teller”
(by  f u n c t i o n) ,  or “Dea n Applegate ” (by  t i t l e) .  Often the person is
being characterized as an “agent” of a family, organization or polity ,
as in “IBM sent a customer engineer to Brooklyn .” A third class of
Scripts that a person has a role in arc those Transactions in which he
engages as a member of the public , as in “John had breakfast at
Tiffany ’s.” Such Transactions include not onl y interactions with
commercial organizations such as restaurants and hotels’ but also, as
we explained in Chapter 3, with service and governmental  organizations
such as the Sanitation Department and the IRS.

The Script Applier , in understanding a st.ory, has to identify each
reference to a PP that occurs in a text , and to create a token for a
Script variable which a story hasn ’t expl ic i t ly  bound.  For persons ,
“ident i f icat ion” involves determining the person ’ s tag and Script
function . A person ’s tag is given by the PERSNAME (with associated
GENDER) and SURNAME slots on the token(s) created for it. The Script
Applier doesn ’t consider that it completely “knows” the person until it
has a f i l ler  for at least one of these slots. ror  example , in a story
beginning “A New Je rsey man was killed in an accident , ” the token for
the d ead man initially contains only information about his RESIDENCE.
In reading subsequent inputs , the Applier will still be looking for this
person ’s tag , and thus will be able to accept ’ “ David Hall was
pronounced dead at the scene. ” Once the tag has been determined , the
system assumes that further references to the tag will form a subset of
the originall y defined slots. Thus , we may read about “Hall” (CLASS
SURNAME) or “he” (CLASS GENDER REF).

When instantiating a story episode , the Applier may need to create
a oken for a person only implicitly referenced by the story. When this
happens , it causes PP—Memory to create a token of the appropriate
function In reading “John went into a restaurant and ordered a
hamburger ,” a token for the unnamed “waiter ” will be created which looks
like this:

HUM 1 :
CLASS C#PERSON )
SCRIPTROLES ((&RV ~AITER . $RE ST A U R A N T ) )
GENDER (‘MASC’)
ELEX (WAITER )
SLEX (MOSO)

The definition of “waiter” includes the information that this token
filled the variable role &RWAITER in $RESTAURANT . In cases where the

-



~~- • —~~~~-.• - - —-• —~~--,~~~.- . -

— 170 —

person f i l ls  mult iple  roles in a story, SCR IPTROLES is u pdated
accordingly. For example, “David Hall” may simultaneously fill the
“driver” role in $DRIVE and the “dead person” role in $VEHA CCIDENT. In
this ease , HUM 1 would get the property:

SCRIPTROLES ((&DRIVER . $DRIVE )(&DEA DGRP . $VEHACC IDENT ) )

The ELEX and SLEX properties give the output generators ( here , for
English and Spanish) a base lexeme with which to express this token : as
“a waiter” and “el muso ,” respectively. (Note that the selection of
GENDER could just as well have been “feminine.” The Script function is
sexless.) Sometimes there is no explicit function word for a Script
variable. For example, all the ELEX contains for the person who
discovers a caz crash and calls the police is “someone .”

7.2.2 Groups

Single persons cooperating closely to perform a Scriptal activity
make up a group . Each member of a group can perform any of its
characteristic activities , and the notion of “control” or “leadership”
within the group is understated . A professional sports team (e.  g . ,  the
Yankees) , a police squad (e. g., t he SWAT team) , representatives of
authority (White Houie spokesmen), and persons engaged in a conversation
are examples of groups . Groups often act as agents of controlling
organizations. For example , “the police department sent the riot
squad .” In many cases there is a Script which is closely associated with
the group. The Script may be a “simple” one , as in “Patrolman Jones and
his partner walked the beat ,” or it may be a Transaction , as in “John
and his girl friend went to the movies.”

The conceptframe associated with a group is:

#GROUP:
TYPE what kind of a grou p is it
GRNAME the group ’s name
NUMBER how many members
MF~4BER defines one member of the group
RESIDENCE t he place where the group lives
GROCC the Script the grou p does
E2IPLOY ER t he ent ity t he grou p works for

Groups are specified in inputs in a number of different ways. The
commonest way is by naming its M~4BERs :

“John arid Mary”
(#GROUP

ME~4BER (#PERSON PERSNAME (JOHN) GENDER (‘MASC’))
M~1BER (#PERSON PERSNAM E (MARY) GENDER (‘FE2’1’)))

After PP—Memory finishes with this , we have:

~

• • -

~ 

- — ---~~~~~—--~~~~~~~~- -— —.~~_-.----- ——-.—.•- 



GROUPO :
CLASS (#GROUP )
MEMBER (HUMO HUM1) [John and Mary)
NUMBER (TWO )

PP—Memory will always try to make an inference about the number of the
group , since this is useful for reference specification . For example , a
further reference to this group in ELI output might be:

“b oth”
( #GROuP

REF ( DEF)
NUMBER (2) )

A more complicated group is formed by a family. A typical ELI
representat ion for one might be:

“John Gavin and his wife Mary”
(#GROUP

MEMBER (#PERSON
PERSNAME ( JOHN )
SURNAME ( GAVIN )

• GENDER (‘MASC’))

MEMBER (#PERSON
PERSNAME (MARY )
HUSBAND (#PERSON GENDER (‘MASC) REF (DEF))
GENDER (‘FEM’)))

Note that ELI has not made any inference about Mary’s last nam e , or the
referent of “his.” After tokenization , we would have :

GROUP 1:
CLASS (#GROUP)
MEMBER (HUM2 HUM3) [John and Mary]
NUMBER (TWO )
TYPE (‘FAMILY’)
GRNAME ( GAVIN ))

HUM3: [This is Mary]
CLASS (#PERSON )
PERSNAME ( MARY )
SURNAME ( GAVIN )
GENDER (‘FEM’)
HUSBAND (HUM 2)
FAMILY ( GROUP 1 )

Again , PP—Memory attempts to fill in the nam e , type and number of the
group, since the Script Applier may need these properties to specify the
reference , for example, in “the Gavins.” “the Gavin family” and “both
Gav ins. ”

Other ways a group may be specified is by RESIDENCE or FUNCTION.
Suppose we have an initial reference to a family: “Enver and Mrs
Hoxha .” Since these are permanent tokens , we woul d end up with a token



— 172 —

in which the RESIDENCE is the same as the RESIDENCE of its members.

GROU P2:
CLASS (#GROUP )
NUMBER (TWO )
TYPE (‘FAMILY’)
MEMBER (HU M I4 HUM5 )
RESIDENCE (POLIT2 )

POLIT2 :
CLASS (#POLITY)
POLTYPE (‘NATION’)
POLNAME ( ALBANIA )

The group inferences that PP—Memory has made would then be used by the
Script Applier to solve the reference problem raised by “the Albanian
party:”

GR OUP 3 :
CLASS (#GROUP )
REF (DEF )
RESIDENCE (POLIT1) [this is the nation—polity, Al bania]

Groups described by function include:

“an emergency squad”
(#GROUP

REF (It4DEF )
GROCC ( $RE SCUE ))

and :
“a police patrol”
(#GROUP

REF (INDEF )
GROCC ($PATROL )
EMPLOYER (#ORGAN IZATION

ORGOCC ($POL ICE)))

A limiting case of a group is a single person. For example, if we have
read that “John Gavin died ,” and are asked “How many people died?” , we
have a question which is literally about a group:

“How many?”
(#GROUP

REF ( DEF )
NUMBER (‘?‘))

In SAIl, the processes which the Script Applier uses to find a single
member of a previously mentioned group are also used by the
question—answerer to make the group inference needed above.



______________

— 173 —

7 . 2 .3  Organizations

An Qr~afljg,~~~o~ is an assemblage of persons or groups existing to
interact in a certain specified way, via a Script Transact ion , with the
general public . Aside from the characteristic Transaction , an
organization also may hav e a distinguished “executive,” a collection of
characteristic agents, and a well—defined residence. The “police
department ,” for example , has a “chief of police ,” sends “squad cars” or
“riot control teams” to various places , and lives in “ the station
house .” The token created by PP—Memory for the permanen t token “Branford
Police Department” would be:

ORGO:
CLASS (#ORGANIZATION ) [the police department]
ORGOCC ($POLICE )
OR GNAME (BR ANFOR D)
EXECUTIVE (HUM6 )
RESIDENCE (STRUCT2 )

HIJM3: [executive of the organization]
CLASS (#PEESON )
TITLE (POLICE CHIEF)

STRUCT2 : [its residence]
CLASS (#STRUCTURE )
TYPE (‘BUILDING’)
PARTOF (POLIT 3)

POLIT3 : [where the residence sits]
CLASS (#POL ITY )
POLTYPE (‘MUNIC ’ )
POLNAME (BRANFORD )

The conceptfram e for organizations is:

#ORGANIZATION :
ORGNAME organ izat ion name
ORGOCC pr imary Transact ion
EXECUTIVE controll ing person or group
RESIDENCE where the controller “lives”
STAFF pointer to an agent of the

organization
EMPLOYER pointer to the organization

or pol ity controll ing it

The most important feature of an organization , from the Script
point of view , is its “occupation ,” or ORGOCC, The ORGOCC, which is
always a Script , is picked up by PP—Memory and sent off to the Script
Applier in the form of a processing suggestion for a Script context to
be tried for the current input . For example , if we had “A fire broke
out at 293 Elm Street last night. Engine Co No 9 came to the scene,”
the Script $FIREDEPT would be dispatched to the Applier as a candidate
for processing the second Conceptual ization . The typical way texts
first refer to an organization is by OR GNAME , which , if the organization
is a permanent token , implies the ORGOCC:

__________________________________________



—~~ -• -

— 17i~ —

“Leone ’ s”
ORG 1:
CLASS (#ORGANIZATION)
ORGNAM E (LEONE’S)
ORGOCC ($RES TAUR ANT )

Thereafter , a story will typically refer to the organization by its
occupation alone , as in “the restaurant.”

Another reference to an organization in text which requires an
inference is via the EMPLOYER slat on a group or person. A example (ELI
output ) is:

“ an IBM salesman”
(#PERSON
OCCUPATION (‘SALESPERSON’)
GENDER ( ‘MASC’ )
EMPLOYER (IORGAN IZATION

ORGNAME (IBM)
ORGOCC ( $RETAILSALES )))

After internalization , Script Applier would receive two tokens, one for
the person , one for the organization : the first linked to the second
via EMPLOYER , the second to the first (by  PP—Me mory inference) through
the STAFF slot.

7. 2.~ Polities

The highest class of animate actor , and the hardest one to
characterize , is the ~olitv . A polity defines a un it of gov ernment such
as a ci ty,  state or nation , or a supranational body such as the U. N.
The conceptfram e defined in SAM for polities consists of:

#POLITY:
POLTYPE pol ity type
POLNA M E polity name
POLGOV government type
EXECUTIVE controller of the poli ty
RESIDENCE where the controller lives
PARTOF nex t level polity

For example , the token produc ed by PP—Memor y for ( the permanen t token)
“Connecticut” would contain :

POLIT7:
CLASS (#POL ITY)
POLTYPE ( ‘STATE’ )

• POLNAME (CONNECTICUT)
POLGOV (‘DEM’) [the state is nominally a democracy]
EXECUTIVE (HUM?) [pointer to the governor]
RESIDENCE (POLIT8 ) [pointer to the municipality ,

Hartford , where the executive is]
PARTO F (POL I T9) [ pointer to the nat ional unit]



- _

— 175 —

Althoug h polities at first sight may seem to be like
super—org anizations , their most important activities are complex , mostly
non—Scriptal ones having to do with “politics” and “coercion.”
Organizations , by contrast , are always associated with definite
Transaction Scripts , which they use in dealing with the public . We
cannot do more here than to list some of the more obvious properties of
polities, and show how these are reflected in text.

First of all , a polity always has a well—defined residence, where
its executive lives , and a distinct area , populace and set of
organizations which it controls. References to a polity ’s activities
may use the executive or residence in place of the polity itself, as in:

“New York State announced . .
“Albany announced.. .“ -

“Governor Carey announced. . .“
Sometimes the exec utive is a group , as in “the Politburo.” The “chain of
command” thus defined for each polity is the basis for the Agency
Inference discussed in Chapter 5.

A polity ’ s agents are nearly always organizations. These
organizations are of two varieties: ones concerned with the control of
its own area (e.  g . ,  the police or IRS); and those which deal with
other political units (e .  g . ,  the mili tary or diplomatic service) . When
an organization is given as an agent of a polity, the link is provided
through the EMPLOYER slot , as in:

“the Connecticut state police ”
(#ORGANIZATION

ORGOCC ($POLICE )
ORGNAME (STATE )
EMPLOYER (#POLITY POLTYPE ( ‘STATE’)

POLNA ME (CONNECTICUT )))

7 .2 .5  Forces

The last kinds of ACTOR appearing in Scripts are forces . These
ACTORs are “inanimate ,” since they have no intent ions , as such , but
simply act. SAM makes use of three kinds of forces. There are simple
forces , such as gravity. There are forces generated by artificial
mechanisms such as engines. Finally, there are complex forces , large
natural phenomena such as hurricanes and earthquakes.

Simple forces are those capable of making obj ects move , chiefl y
gravity , the wind or waves (“ primary” forces) ;  and the force which is
carried by objects in motion (“ motive” forces) . Each of the primary
forces can naturally be thought of as the ACTOR in a PTRANS
Conc eptual ization , giving mo tive force to the OBJECT PTRANSe d via a
PROPEL Instrument.  For example , we may have: 



- - - -—-_ _ _—  -

— 176 —

“A tree fel l to the ground .”

• ( ( ACTOR (#NATFORCE TYPE ( ‘GRAVITY ’) <~ > (‘PTRANS’)
OBJECT (#PHYSO BJ TYPE ( ‘TREE ’))
TO (#GEOFEATURE TYPE (‘LANDSURFACE’))))

(Here “ ground” has been rendered as a “ geographical feature. ” See
Section 7.~ for further discussion.) Simpl e forces al ways act when their
disabling conditions are removed . For gravity, the disabling condition
is a condition of support .

Mechanical forces are generated by engines and other artifacts
which operate , in most cases, under human control . Control in the case
of a mechanical force , is expressed by the person’s executing a Script.
So , for example:

“John drove the car to Boston ”

((ACTOR (#PERSON PERSNAME (JOHN) <:> ( ‘PTRANS ’)
OBJECT (#STRUCTUR E TYPE ( ‘CAR ’))
TO (#POLITY POLTYPE (‘MUNIC’) POLNAME (BOSTON))
INST ( (<=> ($DRIVE DRIVER “John ” ) ) ) ) )

(Veh icles are treated as “structured” objects, as discussed in Section
7.3.) If we read about a PTRANS/PROPEL Conceptualization involving an
object imbued with mechanical force, we can usually infer a loss of
control. Suppose we have:

“A bus ran into a tree .”

(( ACTOR (NIL )  < = > ( ‘PTRANS ’)
OBJECT (#STRUCTURE TYPE ( ‘BUS ’) ) ) )

LEADTO
(( ACTOR (# STRUCT UR E TYPE (‘BUS ’) <=> ( ‘PROPEL ’)

• ABJECT (#PHYSOB J TYPE ( ‘TREE ’) ) ) )

The inferences from the PROPEL event are , first , that the ACTOR in the
PTRAN S is the bus’s engine , and :

“driver lost control”

( (<=> ($DRIVE DRIVER “ someone” VEHICLE “bus ” ) )
MODE (‘CANNOT’))

Adult language users are aware that the causes of natural phenomena
such as hurricanes and earthquakes are complex and not well understood .
References to them in text treat them as if they were actors . For
example. we might have:

“A massive earthquake struck northern Italy”

((ACTOR (#NATFORCE TYPE (‘EARTHQUAKE’)) <:> (‘PROPEL’)
OBJECT (#POLITY POLTYPE (‘NATION’)

POLNAME (ITALY))) MANNER (“violent”))

• 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



— 177 —

7 .3 Physical Objects

The second main classification of the world of PPs in SAM consists
of physical objects. By “physical object.” we mean art ifacts , things
which have been manufactured by humans for their own use . Thus , we are
excluding volitional entities such as people, and geographical entities
such as mountains , although they too are physical objects. From the
Script point of view , people and other animate entities are more
naturally ccnsidered as possible roles in Scripts, geographical entities
as possible settings for Scripts .

SAM uses a twofold sub—classification of PPs. There are “simple”
physical objects , whose internal structure is of no interest in Scripts ,
and “ structured” physical obj ects , which have par ts which can house
important Script activities.

7.3 1 Simple Objects

Simple objects belong to the PP—class #PHYSOBJ , which has the
conce ptfram e:

TYPE what kind of object it is - •

FUNCTION what its function is 
-OWNER who it belongs to

PRNAME the object’s identifier

Note that we are not saying that “ simple” objects don ’t hav e parts , just
that the parts are never singled out in the Scripts the object is a prop
in.  For example , a fork has a handle and tines , but a person uses one
as a unit . The object “a fork” is specified by TYPE :

“a fork”
PH YSO :

CLASS ( #P1’IYSOBJ)
TYPE (‘FORK ’ )
REF (INDEF )

Objects can also be specified by FUNCTION , as in~

“ a utensil”
PHYS 1~

CLASS (#PHYSOBJ )
FUNCTION (‘UTENSIL’)
REF ( INDEF )

or by PRNAME :

“John ’s Rolex ”
PhYS2 :
CLASS (#PHYSOBJ )
TYPE ( ‘WATCH’)

• PRNAME ( ROLEX )
OWNER (HUMO) This is John
REF (INDEF )



— 178 —

The latter case also illustrates the use of the OWN ER slot . The PRNA M E ,
if filled in for a simple object, ind icates either the manufacturer , as
above , or the place of origin , as in “Irish handkerchief.”

7 .3 .2  Structured Objects

For SAM , an object has structure if’ it has parts which figure
independently in a Script . The most interesting struc tured physical
objects are conveyances and buildings. These have components which are
of interest because scenes of a Script can go on there . The
conceptframe for the PP—class #STRUCTURE is the same as for simple
objects , with additional slots for PARTs and Script ” the structure can
be the SETTING for . For example , a simple repr~ sentation for a
passenger train would be:

STRUCTO :
CLASS (#STRUCTURE )
TYPE (‘PASSTRAIN’)
PART (#STRUCTIJRE TYPE (‘TRAINENGINE’)) —

PART (#STRUCTURE TYPE (‘TRAINCAR’))

This , of course , is grossly oversimplified . For example, we know that
trains typically have more than one oar However , it does get at the
important points about the parts of a train . There is an engine, where
the motive force which moves the train is generated and controlled , and
a passenger car , where various parts of $TRAIN are acted out. (In
practice , PP—Memory would assign each substructure its own token)

The SETTING property is often used to designate different  rooms of
a building by the Script which the room houses. So , for example , “a
bank” would look like :

STRUCT 1:
CLASS (#STRUCTURE)
TYPE (‘BUILDING’)
SETTING ($BANK)
PART (STRUC T2)
PART (STRU CT3) -

STRUCT2
CLASS (#STRUCTURE )
TYPE (‘ROOM’)
SETTING ($WALKUPTELLER)

STRUCT3 :
CLASS (#ST RUCTU RE)
TYPE (‘ROOM ’ )
SETTING ($MAKELO AN )

This bank has distinguished spaces for the tracks of 8BANK in which

4 people deal with tellers or arrange for loans.



— 179 —

7.14 Places

Every PP can be said to define a “place.” Mobile ACTORs carry their
places around with them , while the place associated with a fixed
structure sits still. In addi tion to these , SAM uses several other
kinds of fixed locations. There are “ simple” locations , suc h as
addresses, .~ocations defined by geograpica]. entities such as lakes and
mountains , and the special “ places” associated with roads.

The representation of these kinds of entities, and their associated
inferences , are not as highly developed as those for actors and objects.
The main reason for this is that they are usually not strongly
identified with a Script .

7.14.1 Simple Locales

Abstract references to location are handled in SAM by means of the
primitive PP—class #LOCALE. Most references of this type simply refer
to the place where something is happening in an unstructured way , as in:

“The scene of the accident”

LOCO:
(#LOC ALE REF ( DEF )

REL ((<=> ($ACCIDENT PLACE LOCO))))

or:

(#LOCALE SPEC ( ‘? ‘))

A special case of the simple locale is the address of a person or
organization , when thi s is given in terms of street number , street , etc .
For exam ple , ELI might create the following description :

“Joe Doake s , of 593 Foxon Road ”

(#PE R SON “Joe Doake s”
RESIDENCE (#LOCALE STREETNUMBER (593 )

STREETNA N E ( FOXON ROAD )
STREETTYPE ( STRE E T )) )

PP—Memor y, on receiving this , should make an inference about the
existence of a building (#STRUCTURE) at that address, or in the town or
state the building is presumably in (e. g., “a New Jersey man”). This
inference , however , was not needed to solve the reference problems in
the stories discussed in this thesis.

— - -- — ---_ •- — _- — _—_ ------



— 180 -

7 . 14 2 Geographical Features

A second class of’ generalized places consists of geographical
features both on land and sea. These may be named :

“Mt Everest”

(#GEOFEATURE GEOTYPE (‘MOUNTAIN’)
GEO NAME (MT EVEREST ))

or not:

“ a lake”

(~GE0FEATURE GEOTYPE (‘LAKE’)REF ( INDEF ) )

Note that GEONAME needs to be quite explicit :  we could have “Long
Mountain ” or “Lassen Peak “ Organizations and persons , on the other
hand , have specific naming rules. Sometimes the BEFDEF or NODET
properties have to be assigned by PP—Memory to block the generation of
strings such as “the Lake Michigan” or “Caspian Sea.”

7 . 1 4 . 3  Links

The final class of abstract places comprises the “link s” which
connect towns together . The most obvious examples are the various kinds
of roads. Examples of the PP—class #LIN K include:

“Interstate 9 1”

LINKO :
CLASS (#LINK )
LINKTYPE (‘ROAD’)
LINKNU MBER (9 1)
ROADT YP E (INTERSTATE )

“ southbound tracks”

L INK 1:
CLASS (#LINK)
LINKTYPE ( ‘TRAINTRACK ’)
DIRECTION (SOUTH )

“ship channel”

LINK2 :
CLASS (#L INK )
LINKTYPE (‘SHIPLINK’)

Links typically appear in the VIA slot in PTRANS Conceptualizatio.~s.
For example , we may hav e “John took Route 1414 to Providence.”



F’— -

~~~
‘• AD AO5b 080 YALE UNIV NEW HAVEN CONN DEPT OF COMPUTER SCIENCE F/S 6M ISCRIPT APPLICATION: COMPUTER UNDERSTANDING OF NEWSPAPER STORIES——ETCH))

JAN 18 R E CULLINSFORO N000IQ—15—C—1111
UNCLASSIFIED RR— 116 NL

~ A f l A~~~
O~ SO8O

•
END
fl~ TE

8 -78

_ _ _ _ _ _ _  U



— 181 —

7.5 Miscellaneous PPs

In addi tion to the above , SAM also makes use of a small number of
“abstract” PP—classes to take care of complex entities which occur in
several different Scripts. The paramount example is “money,” which is
useful everywhere. For example , “five dollars” would be represented as:

(#MONEY TYPE (‘CASH’) AMOUNT (5US))

and “a twenty—dollar traveler’s check” would be:

(#MONEY TYPE (‘TCHECK’) AMOUNT (2OUS)
SOURCE (#ORGANIZATION ORGOCC ($BANK)))

This representation marks the traveler’s check as hav ing been obtained
by execution of one track of the bank Script . A Master Charge card
woul d look like :

(#MONEY TYPE (‘CREDIT’)
SOURCE (#ORGANIZATION ORGOCC ($CREDIT)

ORGNAME (MASTER CHARGE)))

Another abstract PP is a “meal ,” which is characterized by parts,
each one of which is a food of a different kind . So, for a “hamburger
and coke,” we would have:

(#MEAL DRINKPART (#PBYSOBJ TYPE (‘SODA’))
EATPART (#PHYSOBJ TYPE (‘HAMBURGER’)))

The final type of abstract PP used by SAM is the “contract ,” a
high— level agreement entered into by polities. A military treaty is an
example of this PP—class , as is:

“the US—Japan Economic agreement”
(#CONTRACT TYPE (‘ECONOMY’)

MEMBER (#POLrFY “US”)
MEMBER (#POLITY “Japan))



Chapter 8
Finale

“Begin at the beginning “ the King said , very gravely, “and
go on till you come to the end : then stop.”

Lewis Carroll, ~~~~~~~ ~~~~~~~~~ tn ~jofldQr~~ncj.

8.1 Why Did We Do This?

Why have we done what we did? First of all there was the
practical desire to have a working story understander . Before SAM
there had been no systematic attempt to deal with the problems inherent
in understanding “real” stories. Text—processing systems in existence
(e. g., [321 and [142]) were designed to understand isolated sentences or
to establish references between pairs of sentences in some sort of null
context. With SAM on the other hand , the length of the story is not
really a problem . It’s as easy to read ten sentences as two provided
the Script contains sufficient detail.

We have said repeatedly that SAM embodies a theory of context:
what one is and how it can be used in understanding . In the beginning ,
we looked at simple contexts. We started SAM off with simple , made—up
stories, about eating in restaurants and riding in subways. None of
these early stories were of’ a kind that you’d want to tell a friend , or
even a child . Getting SAM to do them , however , taught us what the
essential problems in story understanding were. The techniques we
developed for doing pronominal reference, making causal connections,
using time— and place—setting , and organizing expectations went over
essentially unchanged when we decided to adapt SAM to reading newspaper
stories. So, in a sense, understanding a text about a car accident or a
state visit is no harder than reading about a bus ride. The context is
bigger , but not essentially different.

Because of our experiences with newspaper stories , we are convinced
that SAM is that rarity among Artificial Intelligence programs, an
extensible system . Each Script that we make up for a new domain we want
to do is built in exactly the same way as previous ones. When a new
Script is added to SAM , it is applied just as the others were. The
Script—managing methods we evolved appear to make retrieval of the
Script the system needs reasonably efficient.

This is not to say that SAM is a practical system. It is slow and ,
as is the case with multi—module programs, fragile. It is slow,
however , because it tries to do the job right , to understand every word
it reads , to a depth that makes it possible to generate outputs which a
human would find reasonable and appropriate . Fragility, we feel, will
be an inescapable problem with the advanced Al systems of the future.
In a research effort directed at an area as large as text understanding .
the only reasonable way to proceed is to design a system which consists
of a community of experts , each accessing its own specialized knowledge
base as it tries to contribute to the problem at hand . (This fact has



—~~~~~~

— 183 —
already been discovered in speech— processing research. Consider , for
example , the “knowledge sources” of the Hearsay II system [12) . )

8.2 What Else Coul d Be Done?

8.2.1 A Laboratory for In ference

SAM is an expectation— based understander . Having read som e text ,
it makes predictions about what it will see next. An input , however,
very frequently is not what was expected , exactly. In Chapter 5 we
described a collection of inference processes designed to iron out
discrepancies between “equivalent” concepts. We feel we have only
scratched the surface of this problem here. There is a vast array of
low—level inferences which people seem to make , not even knowing they
make them , as they read things, which a text underatander will also have
to make if it is to arrive at the same conclusions.

As an exampl e, consider the following two sentences :

( 8 . 1)  A passenger train hit a freight train in
northern Mexico.

(8.2) Mary sent a letter to John in northern Mexico.

The question here is, what exactly does the phrase “in northern Mexico”
locate? In (8 .1)  it seems clear that the collision between the trains
took plac e in northern Mexico , although a prudent analyzer would assert
only that “ a freight train” is in norther n Mex ico. In my reading of’
( 8 . 2) ,  we probably shouldn ’t infer any more than that “John ” is in
northern Mexico. When should inferences about locations be made , and
when not? Can we do it on the basis of the primitive ACT involved? For
example , the PPs involved in a PROPEL , as in (8.1), must be physically
near each other —— we don ’t allow action at a distance. On the other
hand , given the existence of telephone , telegraph , radio and the postal
service , it seems dangerous to assert that PPs involved in MTRANS and
PTRANS ACTs , as in (8.2), are anywhere near each other .

Questions like these are part of ongoing research. The point that
needs to be made is that a program like SAM is a natural facility , f irst
for finding out what inferences seem to be needed , then for figuring out
how to get them done. In this sense, SAM has served , and will continue
to serve , as a laboratory ~~~ interenc~e. The program forces the
researcher to face up to a problem he didn’t know was there. Then , when
the metho ds he devises to cope with the problems that com e up become
unwieldy, it forces him to do the job right. This is because SAM is a
complete system . It tries to do the whole job , from natural-language
input to output . Problems tha t can be ignored in a system which works
with hand—coded input , or which never attempts to express its results ,
have sometimes spectacular consequences for a complete system .



~ 
- —

~~
--- -—-

— 1 814 —

8.2.2 A Model of Heading

At each point in the design of SAM we tried to use our intuition as
to how people read stories to decide on how SAM should. Our idea was to
build an understander that was not only effective at what it does, but
also a reasonable model of a person reading stories.

~e have only partly succeeded in this ef fort. SAM understands in a
three—stage process. First, it construc .s an inference—free meaning
representation for a sentence, then it makes whatever inferences it can
about the PPs in the representation , then it tries to find the
Conceptualization in a Script . There is no evidence that people operate
in the same way. Indeed , a person seems to have absorbed the meaning of
a sentence and integrated it into what he knows about the world as soon
as he finishes reading .

If we want to make SAM a better model of a person who is carefully
reading a newspaper , we need (among other things) to integrate the
analysis process more closely with the memory processes responsible for
identifying PPs and applying Scripts. While we cannot completely define
at the moment what “integration” means, there are two places where
closer cooperation seems possible.

First , in the analysis of noun groups, the analyzer and PP—Memory
could interact to try to identify the referent of’ a noun group as the
analysis process is ongoing Suppose , for example, we were reading:

(8 .3)  Chairman Hua Kuo—Feng of the People ’s Republic of
China denounced the Soviet Un ion in the United
Nations.

“ Chairman Hua Kuo-Feng ” form s a natural noun group , based on a name , for
which a referent could be sought . Assuming PP—Memor y has the permanent
token for “Chairman Hua,” it could instruct the analyzer on what it
should expect to see next.  For example , the Chairman ’s “occupation ” may
be ment ioned , either as head of Communist China or of the Chinese
Communist Party. These expectations , arising from an identification of
the PP by PP-memory , would assist the analyzer in the analysis of the
pre positional phrase “of the People’s Republic .”

A second memory interaction could take place when “denounced” is
analyzed. Now we have the “kernal” of a complete Conceptualization:

((ACTOR HUMO <:> (‘MTRANS’)
MOBJECT ((CON ((ACTOR (NIL) <:> (‘DO’)))

LEADTO
((ACTOR HUMO TOWARD (‘ANGER’ VAL (6) ) ) ) ) ) ) )

It might be possible to rule out a number of Scripts with this kernal.
in the case where no Script is active. If an appropriate Script , say ,
$VIPVISIT is available, it could make predictions , based in what it has
already read , about further things to be seen . For example , it might
specify “United States” or “Russia ” for the as yet unspecified ACTOR Hua
denounced . If it had read that Hua was in New York City, it might



_____ 

_ 
__  -

— 185 —

predict “the UN” as a possible place for the “denouncing” to happen .

8.2.3 Scripts and Plans

Script—based processing is by no means the whole story in text
understanding. SAM , as a top— down understander, can only comprehend
what is contained in one of its Scripts , that is, a story about
commonplace activities in a rote , stereotyped knowledge domain . It has
no way to learn new Scripts, and no way to cope with the unexpected .
People , however , operate quite handily in situations where the things
that happen are only partly predictable. They can also read stories
about such situa tions.

One important class of’ story problems which SAM cannot handle are
those which ar ise out of people ’s desires and conf lict s . Here we have
to find ways to inter pret people’s actions in terms of their underlying
motivations The work of Schank and Abelson [314] represents one Al
approach to this problem , based on a small set of very general
procedures called Plans. Plans characterize people’s standard desires
and and their preferred methods for satisfying them . Using Plans it is
possible to make the appropriate connections in stories about people
pursuing goals. An early version of Plan theory is implemented in a
story understander called PAM [141].

It seems clear that a more powerful story understander than any
presently in existence could be built  from some combination of Script—
and Plan—based processing We don’t yet know how to build such an
understander . We can say at least this much , however . What Script
Applying could contribute to such an understander is knowledge of
context’ who the characters are, what the situation is they are acting
in , what things in a story are explained by the Script .

To see how this could help, consider the following story:

(8.14)
Spillane walked into the Cafe Budapest and sat down. While the
waiter was taking his order , the owner , a notorious Mafia
figure , approached them threateningly.

The f i rs t  sentence of course , refers to our friend $RESTAURANT. The
beginning of the second sentence continues on an accepted chain of
happenings , but the part about the menacing approach of the owner is not
explained by the Script . Here we need a higher order of understanding ,
which knows what threats are for, to make sense out of this. and to
predict what may happen next .  What the Script could do for such a
processor is to fill in the context that the story is going on in: a
dining room in a Hungarian restaurant, owned by a person who is also a
Mafioso Because it is a restaurant, rather than an alley , this
und erstander should probably predict that harsh words between the owner
and Spillane are about to be seen . To make this prediction , the
processor would have to know what the referent of “them” is. This is an
answer the Script could provide because of the ordering event it has
already seen . The Script could also supply the information that waiters
are an accepted role in restaurants , and that they are not customarily

-4



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -

— 186 —
threatened by their bosses,

The lesson here, and the message this thesis has consistently tried
to convey, is that the process of comprehension and prediction is
informed at every point by reference to context. In SAM we have tried

- 
- 

to pin down this slippery notion, to give it substance in the episodic
context that Scripts can provide. If we’ve succeeded , we’ve brought the
long—standing dream of a non—human , but human—like intelligence a step
closer to reality.

I



iI7~
Appe ndix 1 -

Representation and Notation

A. 1 .1 Introduction

This Appendix presents a brief discussion of Conceptual Dependency
(CD) meaning representation as it is used in the SAM system. In
addition to the primitive ACTs of CD [32], we describe the types of
causal relations between events [314 ] and the syntax of CD representation
in LISP linear format.

A .1.2 Conceptual Dependency, Br iefly

Conceptual Dependency (CD) is a system for representing the meaning
of sentences in terms of a small number of “primitive” ACTions and
STATEs. The class of sentences which the theory is intended to handle
are those that refer to the “overt” physical and mental activities of
human actors , and the “stative” attributes of these actors which the
actions ca!1 affect. The fundamental assumption that the theory makes is
that cognitive processing of sentences and text is language—free, that
is, the memory processes operate on the meaning of sentences, not on the

F lexical expression of that meaning. Therefore, sentences which have the
same underlying meaning will have the same representation in memory ,
although the lexical strings encoding that meaning are different.

Conceptual Dependency theory constitutes the basic framework for
the computer simulation of human text processing which is the subject of
this thesis. First of all , it provides the representational system
which the analyzer uses to map surface strings into their underlying
“thoughts ,” or Conceptualizations. Secondly, the processes ~~~~ inference
and memory search are facilitated because the elements of the memory
store are stated in the same terms as the input Conceptualizations. The
classes of inference , in particular , bear a well—defined relation to the
primitive ACTs appearing in Conceptualizations. (This point was
discussed Chapters 14 and 5.) Finally, the existence of’ a small class of
primitives simplifies the task of generation , since the selection of the
surface verb is made through a discrimination net tied t.o each of the
ACTs.

CD representation is discussed in detail in [32]. However, since
it is so important for the discussion to follow, a brief description of
the primitive ACTs is given below. Each ACT has a conceptual case-frame
with a required actor slot , and optional object , directional/recipient ,
and instrumental cases.



— 188 —

AT RANS

The transfer of ownership , possession , or con tro l . ATRAN S takes an
actor , object, source , and recipient. “John gave Mary the book” is an
ATRANS with actor “John ,” object “book ,” source “John ,” and recipient
“Mary .” “John got the book” is an ATRANS with actor “John,” object
“book ,” and recipient “John .”

PT HANS

The transfer of physical location . PT RANS requires an actor , object ,
origin, and destination. “John ran to town” is a PTRANS with “John” as
actor and object , and “town” as destination .

MTRAN S

The transfer of informat ion. An MTHANS can occu r between animat e
ent ities or betwee n memory locat ions wit hin a human. Human memor y is
partitioned into three mental locations: the CF (Conscious Processor)
which holds information we are consciously aware of; the IM
(Intermediate Memory ) where information from the immediate context is
held for potential access by the CP; and the LTM (Long Term Memory)
where informat ion is store d permane ntly. MTRANS requires an actor ,
object , so urce , and recipient. Sources and recipients are either
animals or mental locat ions in a human. “Tell” is an MTRANS between
people, “see” is an MTRANS from eyes to the CP, “remember” is an MTRANS
from the LTM to the CP , and “learn” is an MTRANS to the LTI’l.

MBUILD

The thought process which constructs new information from old. MEUILDs
take place within the IM , rece iv ing input from the CF and plac ing out put
in the CF. “Decide ,” “conclude,” “imagine” and “consider” are all
instances of MBUII.D.

PROPEL

The application of a physical force. If movement takes place because of
a PROPEL , then a PTRANS occurs as well as a PROPEL . PROPEL requires an
actor , object, origin , and direction . “Push,” “pull ,” “throw” and
“kick” are all actions which involve a PROPEL.

INGEST

The internal izat ion of an external object into the phys ical system of an
animal. INGEST takes an actor , object , origin , and destination . “Eat,”
“drink ,” “smoke” and “breathe” are common examples of INGEST.

L - _ _ _ _ _ _  _ _ __ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— 189 —

EXPEL

The act of pushing an object out of the body. EXPEL requires an actor ,
object , origin and destination . Words for excretion and secretion are
descr ibed by EXPEL . “Sweat ,” “spit ,” and “cry” are EXPELs.

Many ACTs require an “instrumental” act ion on the par t of the
actor. Instrumental ACTs provide the “means ” by which the more
important ACTs (i. e., the TRANS an d MBUILD ACTs) are accomplished. The
following ACTs are used primarily in instrumental Conceptualizations.
Each of these ACTs requires an actor and object. MOVE requires an
origin and destination as well.

MOVE

The movement of an animal involving some bodypart. hOVE is instrumental
to actions like “kick ,” “hand” and “throw .” It can also occur
noninstruinentally as in “ki ss” and “ scratch. ”

SPEAK

Any voca l act. Humans usu ally perform SPEAKIng actions as instruments
of MTRANSing.

ATTEND

The act of focusing a sense organ toward some stimulus. ATTEND is
almost always instrumental to MTRANS. E. g., “see” is an MTRANS from
the eye to the CF with instrument ATTEND eye to object.

GRASP

The act of securing contact with an object. E. g., “grab ,” “let go” and
“throw” each involve a GRASP or the termination of a GRASP .

A. 1.3 Causal Chains

Causal Chains ([ 28] , 1314]) are sequences of Conce ptual izat ions in
which each Conceptualization is connected to the next one by a causal
relation. The primitive ACTs of Conceptual Dependency have as their
results one or more STATEs. These STATEs can in turn enable other ACTs.
Causal chains , in their full form, cons ist of alternat ing ACTs and
STATES. Conceptual Dependency uses six different kinds of causal links.

1. Result Causation (abbreviated “r”):
relat es an event based on a “physical” CD ACT (e. g., PTRANS ,
ATRANS) to the immediate result of that event. For example:



- 190 -

John ATRANS book to Mary

r

Mary POSS book

2. Enable Causation (e):
relates a STATive Conceptualization to the physical CD ACT it is anenabling condition for. For example:

John IS in New York

e

John PTRANS from New York

3. Reason Causation ( R ) :
relates a “mental” CD act (MTRANS , MBUILD) to a act ion which followsit. For example:

F John MBUILD (Jo hn PTRAN S from New York)

R

John PTRANS from New York

F 
4. Initiate Causation (I):

relates an action to a mental ACT which follows it. For example:

John PTRANS to restaurant

I

John MBUILD (John PTRANS to table)

5. Leadto Causation (L):
connects events in a causal chain which is not fully expanded .Leadto Causation indicates that the intervening events are not beingspelled out. For example:

John PTRANS to restaurant

L

John MTRANS to waiter
(John WANT (John INGEST meal))



— 191 —

6. Cancause Causation (C):
This is a version of Leadto Causation for hypothetical events,
especially causally connected events which appear in the MOBJECT of
an MTRANS. Like Leadto, the explicit causal connections between the
events have not been given:

“John said if he went to a restaurant, he could sit down”

John MTRANS
(John PTRANS to restaurant,

C

John MOVE John to chair)

7. Concatenated Causals:
describe connections between events in which certain intervening
events or states have been left out. Unlike Leadto , the missing
causal links are known. For example:

John PT RANS to table

re

John MOVE to chair

indicates a missing STATE, John’s being at the table.

A .1.14 CD in LISP Format

CD representations are often shown for purposes of exposition as
two—dimensional graphs (see, e. g., 132]). However , to understand how
the various functions in SAM work , and to read the out puts that are
presented , it is necessary to understand how the CD graphs are
represented in linear list format within the program.
Conceptualizations and the PP5 which appear in them are encoded in SAM
in LISP data structures conforming to a well—defined syntax (Note 1).
Giving the syntax , directly, however , isn’t very enlightening. What we
will do instead is to present a series of CD LISP structures of
increasing complexity, pointing out the underlying structural features
as we go along. In each case , we will be showing simulated ELI output ,
before tokenization by PP—Memory . The token—assignment process is
related to the ELI form in a straightforward way , described in Chapter
14 .

1. This discussion assumes some knowledge of the programming language
LISP, which is widely used in Al applications. An elementary
presenta tion of LISP , sufficient for understanding the examples in this
thesis, is given in Winston [145],



- 
‘

~~ —- -

— 192 —

The simplest CD entities are Picture Producers (PPs). As we
indicated in Chapter 7, every PP handled by SAM must belong to one of
the “primitive” PP—classes, and contain a subset of the predefined
“slots” which are characteristic of the class. The PP “John Smith ,”
which belongs to the class #PERSON , is defined by the following list
structure , called a “PP—concept :”

(#PERSON FIRSTNAME (JOIfr~) LASTNAME (SMITH) GENDER (‘MASC’))

In the above , the CAR of the list (called the “form” of the PP—concept)
gives the primitive class , the CDR (called the “modifier” of the
PP—concept) defines the slots of the class which the input has filled .
The Modifier of a PP—concept consists of pairs , each pair being an
( atomic) slotname and a “filler” for the slot. Every slotfiller is a
list structure. Slotfillers come in several varieties. The simplest
kind records essentially “surface” propert ies of a PP , such as FIRSTNAME
and LASTNAME , which are stored , as in the above , just as they appeared
in the input string. Another kind of slotfiller gives a feature of the
PP selected out of a “contrast set ,” one member of which every PP
belonging to the class must contain. A typical contrast set used by SAM
is GENDER , which consists of (‘MASC’ ‘FEM’ ‘NEUT’).

When an atom in a slotfiller is surrounded by “a ,,, it may mean that
the associated property is “primitive ,” that is, not analyzed further in
the repre~entational system . This is the case for the features of the
GENDER class, and also of’ the primitive ACTs of Conceptual Dependency F

(*PTRANS* , ‘ATRAN S’, etc.). The second possibility is that the filler
points to a “feature—cluster” in PP—Memory, defining the Scripts the PP
can have a role in. For example , “a car” defines the cluster :

(#STRUCTURE TYPE (‘CAR’) REF (INDEF))

where the filler ‘CAR’ corresponds to the possible places this PP can
fit In a Script , for example:

~CAR0 :
SCRIPTROLES (($DRIVE . &VE HI CLE )

($AUTOSHOW HOOM . &SALE—OBJ))

In this case, the TYPE slot is a shorthand way of referring to all the
possible functions the PP can have in a story.

Another possible slotfiller is a Script name. This is particularly
the case for PPs of the class #ORGANIZAT1ON , which nearly always have an
associated Script:

“Metropolitan Museum”
(#ORGANIZATION ORGNAME (METROPOLITAN) ORGOCC ($MUSEUM))

A final type of filler is an imbedded reference to another PP. Imbedded
PPs follow the same syntax as other FF5:

- - ---~~~~~-~~~~~~~~~~~~



— 193 —

“John Smith , of New Haven ”
(#PERSON FIRSTNA M E (JOHN ) LASTNA ME (SMITH ) GENDER (‘MASC’ )

RESIDENCE (#POLITY POLNAM E (N E? ,~ HAVEN )
POLTYPE (‘MUNIC’)))

PP—concepts provide descriptions of Picture Producers, but say
nothing about what the PP may be doing in the world . Full
Conceptualizations describe either actual or potential events or states
in which PPs may be involved . As such , Conceptualizations always
contain a CD ACT or STATE ( signalled by “< :>“ or “IS , ” respectively) .
For example, we may have the ACT—Conceptualization :

“John went to New Haven on Friday”
((ACTOR PP1 <=> (‘PTRANS’) OBJECT PP1

FROM (NIL)
TO (‘PROX’ PART (#POLITY POLTYPE (‘MUNIC’)

POLNA M E (N~w HAVEN))))TIME (TIM 1))

PP1: (#PERSON FIRSTNAME (JOHN) GENDER (‘MASC’))
TIM 1 : ((WEEKDAY FRIDAY ))

or the STATE-Conceptualization :

“John was angry”
((ACTOR PP1 IS (‘ANGER’ VAL (—3))))

As with PP—concepts, t he CAR of a full Conce ptual izat ion is calle d
its Form , the CDR its Modifier . In the ACT—Conceptualization given
above , the Form describes the event itself , which is based on a PTRANS ,
and the Modifier places a time modification on it. Both the Form and
Modif ier parts of t he Conce ptual ization cons ist of pairs of slots and
fillers. Additionally, the fillers in a Form may contain references to
PPs , either in list—structure format, or , as in the above, “by name.” In
the PTRANS—event , for example , both the ACTOR and OBJECT slot of the
Form have the same f iller , PP1. If a mandatory slot in the case—frame
defined by an ACT happens not to be filled by a particular input , the
associated filler will be empty (N I L ) .

Certain slots in the Form are filled by full Conceptualizations.
Examples are INSTrumentals, and the MOBJECT of an MTRANS
Conceptualization. Here’s an example containing both cases:

“John told Mary to get out of the car”
((ACTOR PP1 <~> (‘MTRANS’) FROM (‘CP’ PART PP1)

TO (‘CP’ PART PP2)
INST ((ACTOR PP1 <=> (‘SPEAK’)))
MOBJECT ((ACTOR PP2 <:> (‘PTRANS’) OBJECT PP2

TO (NIL)
FROM (‘INSIDE’ PART

(#STHUCTURE TYPE (‘CAR’)
REF ( DEF ) ) ) ) ) ) )

___________________________________ ~14



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~1 914~~

PP1: (#PERSON FIRSTNAM E (JOHN) GENDER (‘MASC’))
PP2: (#PERSON FIRSTNAME (MARY) GENDER (‘FEM’))

Fillers in the Modifier part of a Conce ptual izat ion customar ily
refer to an aspect of the event, and will not contain PP5. If the event
in quest ion is negate d , or only potential, this is indicated through the
MODE slot in the modifier . For example , we may have:

“John can’t go”
((ACTOR FF1 (:> (‘PTRANS’) OBJECT PP1

TO (NIL) FROM (NIL))
MODE (MOD 1 ) )

PP1: (#PERSON FIESTNAME (JOHN) GENDER (‘MASC’))
MOD1: (‘CANNOT’)

Finally, Conceptualizations may contain sub—Conceptualizations
connected together by causal links. In this case, the causal antecedent
is associated with a CONcept slot , the successor with a slot naming the
type of causal relation. For example, we may have:

“John went because he was angry”
((CON

((ACTOR PP1 IS (‘ANGER’ VAL (—3))))
LEADTO

((ACTOR PP1 <=> (‘PTRANS’) OBJECT PP1
TO (NIL) FROM (NIL )) ) ) )

PP1: (#PERSON FIRSTNAME (JOHN) GENDER (‘MASC’)) 

~~~~~~~~~~~ ~—--—---.-—.---- —- --- -



Appendix 2
Other Example Stories

As SAM evolved , it became capable of handling more and more complex
stories , progressing from simple texts referring to single Scripts,
through stories which accessed several Scripts in a simple fashion , to
edited versions of newspaper articles in which complicated situations
are described . This section presents examples of’ both “made—up” and
“real” stories. Stories (A.1) through (A. L4) were processed by an early
version of SAM just as shown . The remaining stories are typical of what
SAM is currently equipped to read . Some of these texts have not been
parsed by ELI, but the rest of SAM produced the summary and
question—answering results given on the basis of simulated ELI output .

Here is a story making reference to a common Script , $RESTAU RANT ,
in which the Script is stopped midway, or “aborted” :

St’~ry A .1
JOHN WENT TO A RESTAURANT . HE SAT DOWN. HE GOT MAD . HE LEFT .

Long Paraphrase :
JOHN WAS HUNGRY. HE DECIDED TO GO TO A RESTAURANT . HE WENT TO
ONE . HE SAT DOWN IN A CHAIR . A WAITER DID NOT GO TO THE TABLE .
JOHN BECAME UPSET . HE DECIDED HE WAS GOING TO LEAVE THE
RESTAURANT . HE LEFT IT.

Here , SAM has inferred that John got mad because no one came to take his
order , as sometimes happens in restaurants. (A.2) has more complex
examples of “interfering” events which can happen there:

Story A .2
JOH N WENT TO LEONE’S. HE ORDERED A HOT DOG. THE WAITER SAID
THEY DIDN ’T HAVE ANY . HE ASKED FOR A HAMBURGER. WHEN THE
HA MBURGER CAME , IT WAS BURNT. HE LEFT THE RESTAURANT .

Question—Answering :
Q i :  DID JOHN ORDE R A HOT DOG?
A l: YES.

Q2: DID JOHN EAT A HOT DOG?
A2: NO THE WAITER TOLD JOHN THE MANAGEMENT WAS UNABLE TO GIVE
IT TO HIM .

Q3 : WHAT DID THE WAITER SERVE JOHN?
A3 : THE WAITER SERVED JOHN A HAMBURGER.

Q14 ’ WHY DIDN ’T JOHN EAT THE HAMBURGER?
All : BECAUSE THE HAMBURGER WAS OVERDONE .

05 : WAS JOHN ANGRY?
A5: YES.



— 196 —

Q6: DID JOHN PAY THE CHECK?
A6 : NO JOHN WAS ANGRY BECAUSE THE HAMBURGER WAS OVERDONE AND SO
HE LEFT LEONE ’S.

By contrast , (A.3) is a typical boring text about eating in a restaurant
which follows the Script closely

Story A. 3 :
JOHN WENT INTO A RESTAURANT . THE HOSTESS SEATED JOHN . THE
HOSTESS GAVE JOHN A MENU . JOHN ORDERED A LOBSTER. HE WAS
SERVED QUICKLY . HE LEFT A LARGE TIP. HE LEFT THE RESTAURANT.

Short Paraphrase:
JOHN WENT TO A RESTAURANT AND HE ATE A LOBSTER.

Question—Answering :
Q1~ WHY DID THE HOSTESS GIVE JOHN A MENU?
A l: SO JOHN COULD ASK THE WAITER FOR A MEAL.

Q2: WHY DID JOHN GO TO A RESTAURANT?
A2: SO JOHN COULD EAT A MEAL.

Q3: DID THE WAITER GIVE JOHN A MENU?
A 3 : JOHN GOT THE MENU FROM THE HOSTESS.

014: WHY DID JOHN LEAVE THE WAITER A LARGE TIP?
All: JOHN REMEMBERED THE WAITER SERVED A LOBSTER TO HIM QUICKLY.

05: DID JOHN PAY THE BILL?
A5: JOHN PAID THE CHECK.

Under control of the global Script Situation $TRIP , (A.)4) calls up
several Scripts , $BUS , $SUBWA Y and $RESTAU RANT , follow ing a relat ive ly
rare path in one Script because of a strange event in an earlier one :

Story A. l l :
JOHN WENT TO NEW YORK BY BUS. ON THE BUS HE TALKED TO AN OLD
LADY . WHEN HE LEFT THE BUS , HE THANKED THE DRIVER.  HE TOOK THE
SUBWAY TO LEONE’S. ON THE SUBWAY HIS POCKET WAS PICKED. HE GOT
OFF THE TRAIN AND ENTERED LEONE’S. HE HAD SOME LASAGNA . WHEN
THE CHECK CAME , HE DISCOVERED HE COULDN’T PAY . THE MANAGEI~ENT
TOLD HIM HE WOULD HAVE TO WASH DISHES. WHEN HE LEFT THE
RESTAURANT , HE RETURNED TO NEW HAVEN .

Short Paraphrase
(Chinese Translation using Harvard Romanization)~JOHN TZUOH CHAfi NG TWU CHIN CHE DAW NEOU LUE CHIUH LE. TA TZAY
CHARNG TWU CR1 CHE LII. TA GEN I WEY LAO TAY TAY TARN I TARN.
TA TSORNG CHARNG TWU CHIH CHE LII CHIUH CHUH LE. TA SHIER SHIER
SY JI. TA TZOUH DIR SHIAH HUOO CHE DAW LEONE’S CHIUH LE. TA
TZAY DIR SHIAH TIEE LUll CHE LII. I GE PAR SHOOU TOIJ LE CHYAN.
TA TSORNG DIR SHIAH TIEE LUH CHE CHUH CHIUH LE. TA JINN LE

_ —A



— 197 —

LEONE’S. TA CHR LE I DA LI TSAY. TA TSORNG CHAR FARNG NADAW
GE JANQ DHAN. TA FA SHYANN TA BU KEE Yll FU CHYAN. CHAR FARNG
JIAW TA BIH SHIU YAW SHII BEI TZ. TA TSORNG FANG GUAR LII CHU
CHIUH LE. TA TZUOH CHARNG TU CHI CHE DAW SHIN GANG CHIUH LE.

Question—Answering :
Qi: WHO WENT TO NEW YORK?
A l :  JOHN WENT TO NEW YORK .

Q2’ WHY DID JOHN GO TO NEW YORK?
A2: BECAUSE JOHN WANTED TO GO TO LEONE’S.

Q3: W HY DID JOHN GO TO LEONE ’S?
A 3 : BECAUSE JOHN WANTED TO HAVE SOME LA SAGNA.

014 : HOW DID JOHN GET TO NEW YORK?
All: JOHN TOOK A EUS TO NEW YORK .

Q5. HOW DID JOHN GET TO LEONE ’S?
A5 JOHN TOOK A BUS TO NEW YORK AND THEN HE TOOK THE SUBWAY TO
LEONE ’S.

Q6: WHAT DID JOHN EAT?
A6: JOHN HAD SOME LASAGNA .

07: DID JOHN ORDER LOBSTER?
A7: NO JOHN ORDERED SOME LASAGNA .

Q8: DID JOHN PAY THE CHECK?
A8 NO JOHN DIDN’T HAVE ANY MONEY.

Q9: DID JOHN LEAVE THE WAITRESS A TIP?
A9 : NO JOHN DIDN ’T HAVE ANY MONEY.

QlO: WHY DIDN’T JOHN PAY THE CHECK?
A l O  JOHN DISCOVERED THAT HE DID NOT HAVE ANY MONEY AND SO HE
HAD TO WA SH DISHES .

011 : WHY DIDN’T JOHN HAVE ANY MONEY?
All : BECAUSE A THIEF PICKED JOHN ’S POCKET .

The next example is a sl ightly edi te d vers ion of a train wreck
story from the New Yor k Times :

Story A .5:
A passenger train carrying tourists collided with a freight
train today in northern Mexico. 17 persons were killed and 25
persons were injured .

Summary :
A PASSENGER TRAIN HIT A CARGO TRAIN IN NORTHERN MEXICO ON
TUESDAY. EIGHTEEN PEOPLE DIED. TWENTY-FIVE PEOPLE WERE HURT.



- —- - - -~~~~ -~~~~~~~ - •~~~
-

~~~~~~~~ - - ~~~~~

- 198 —

Question—Answering :
Q l: How many peo ple were injured?
Al TWENTY—FIVE.

02: How many peo ple were kille d?
A2: EIGHTEEN.

03: Why did the people die?
A3: BECAUSE A PASSENGER TRAIN HIT A CARGO TRAIN.

The remaining stories have not been parsed by ELI but the rest of
t he system produced t he out puts shown on the bas is o X’ simulated ELI
output . Story A .6 is an actual account of a motorcycle crash from the
New Haven Register. This story was processed under control of the
Scr ipt Situat ion $VEHACCIDENT :

Stor y A .6 :
Alan L Plucinsk i age 17, of Fairf ield , died Sunday morning in a
motorcycle accident when the cycle he was driving crashed into a
ut ility pole on Dalton Woo ds Road Pluc inski was pronounce d
dead on arr ival at Milfor d Hospital , police said.

Summary :
A CYCLE HIT A POLE NEAR DALTON WOODS ROAD TWO DAYS AGO . ALAN
PLUCINSKI , AGE 17, RESIDENCE IN FAIRFIELD , CONNECTICUT DIED.

The phrase “two days ago” is inserted by SAM because it is arranged , by
convention , to be reading the newspaper on Tuesday , in New Haven ,
Connecticut .

Here is another accident story , this tine about a car falling into
a r iver .

Story A.7 :
Jane Jones died yesterday of multiple head injuries which she
suffered in an accident on Thursday. Her car fell into the
Connecticut River near Route 80.

Summary :
AN AUTOMOBILE FELL INTO THE CONNECTICUT RIVER FROM A BRIDGE NEAR
HIGHWAY 80 FIVE DAYS AGO. JANE JONES WAS CRITICALLY INJURED.
SHE DIED YESTERDAY.

Story A .8 is a final car accident report containing an unexpected event :

Story A.8:
A Pennsylvania man and his wife returning from a Cape Cod
camping vacation were killed in a violent crash on the
Connecticut Turnpike Saturday morning . The victims have been
identified as John Gavin , 147, and his wife Mary , 141 , of
Morr istown , Pa. Both were pronounced dead at the scene by a
medical examiner . Mrs Gavin ’s son 19—year—old son , Grant
Butler . miraculously escaped injury in the one—car accident .



— 199 —

Summary :
AN AUTOMOBILE HIT SOMETHING NEAR THE CONNECTICUT TURNPIKE THREE
DAYS AGO . JOHN AND MARY GAVIN , RESIDENCE IN MORRISTOWN ,
PENNSYLVANIA , DIED. UNEXPECTEDLY , GRANT BUTLER , AGE 1 9, WAS NOT
HURT.

The final example is a slightly edited version of a story about an oil
spill from the New York Times:

Story A . 9 :
A Liberian tanker ran aground off Nantucket Island yesterday ,
the Coast Guard said . The ship broke up and dumped 1 million
gallons of crude oil into the Atlantic .

Qi : What was the tanker carry ing?
Al:  OIL

Q2: Where was the oils pill?
A2: NEAR NANTUCKET ISLAND



- -—

~ 

1?% OO

BI B LIOGRAPHY

1 Ab el~ or R .  P. ( 19 6 9 ) .  Psychological Impl icat ion,  in Abelson , ft .
p .  et . al L (eds.). ~~ri~s of Qo~nitjye ~~~~~~~~~Rand—McNally, New York

2. Bar—Hillel . J. ( 19 6 14 ) .  L,angu~g~ ~~~ t~~�tqri . Addison—Wesley ,
Reading, Massachusetts.

3. Bartlett . H. (1932). ~~me~~e~iflg,j A St~~y ~j i  ~~~~~~~~~~~~ ~~~$o~iAi. Ps~ql~o~~g.y. Cambridge University Press London .

14. Bower, G. H. (1976) Comprehending and Recalling Stories. Div.
3 Presidential Address , Washington : American Psychological
Association , Sept 6. 1976

5. Bransford , J. 0. and Franks, J. J. (1971). The Abstraction of
Linguistic Ideas. tjj~ve ~syc~jo~o~gy, Vol 2, pp. 331—350 .

6. Brown , J. S. . and ft. R. Burton . Multiple Representations of’
Knowledge for Tutorial Reasoning, D. G. Pobrow and A. Collins
(ed.). B~~~e~~n~.atjQfl an~ Un4~~~~~ r~d~ og. Acade mic Press , New York.

7. Charniak , E. (1972). IQ~~r~~ ~ No~~ l of’ Children ’s ~~~~~
Qom~~ehenSiQ.n. (thesis) AITR—2 66 M.I.T. Cambridge , Mass.

8. Charniak , E. (1975). Organization and Inference in a Frame—like
System of Common Knowledge. ~~~~~~~~~~ ~rQm TheQr~t~~~l ~~~ ~fl

~~t~.ira1 L~ng~i~g,~ 
_r~Qe~~ ,ng. Cambridge , Mass.

9. Charniak. E. (1978). A Framed Painting -- Representation of a
Commonsense Knowledge Fragment .  ~~~~~~~~ ~cterjce , Vol .  2, No. 1 ,
(in press)

10. Cullingford , R. E. (1975). An Approach to the Representation of
Mundane World Knowledge : The Generation and Management of
Situational Scripts. A~~ric,a~ Journal o~ co~~ atj~,Q!)a~ Ljngui~~t~~ .
Microfiche #1414.

11 . Cullingford H. E. (1976). The Uses of’ World Knowledge in Text
Understanding . ~toQe~~iJjg~ o~ ~h,e ~j~t~t) ~~terj lat~tQ~a,l C~nfer~ri~~ ~n

~Q~P i Q~
nA].~ Ling~~~ jj~~. Ottawa, Canada.

12. Erman L. D., and V. B. Lesser (1975). A Multi—Level
Organization for Problem Solving Using Many , Diverse , Cooperat ing
Sources of Knowledge. ~~~~~~~ ~~ ~~~ EQ~~

th jl~terna~~QrIaj. ,~Qjri~
CQnje~r~r~~ qn Ac.t~t 

,,c~~~, Ia~~Ujg~x1Qe. Tb iii si. USSR .

13. Gershman, A. (1977). Analyzing English Noun Groups for Their
Conceptual Content. Computer Science Research Report No. 110
Yale University .



— 201 —

114 . Goldman , N. M. (1975). Conceptual Generation . ~~~~~~~
Inforj~~ti~fl ~~~~e~~ing. Ed: Schank. North—Holland , Amsterdam .

15. Hewitt C. (1970) PLANNER: A Language for Manipulating Models
and Proving Theorems in a Robot. MIT Al Memo 168 (revised).

16 Johnson—Laird , P. (19714). Memory for Words , ~~~~~~ Vol. 32,
No. 3.

17. Kintsch , W., and D. Monk ( 19 7 2 ) .  Storage of Complex Information in
Memory ’ Some Implications of the Speed with Which Inferences Can Be
Made. ,jq~r~flaJ~ Qj, .~imeritai. y.ç,~o~~gy , 94.

18. Lehnert , W . (1977). The Process of Question Answering . (thesis).
Department of Computer Science Report No. 88, Yale Un iversity .

19. Minsky , M. (1975). A Framework for Representing Knowledge . flj,~y j~~ogy o.~ Qom~utez 1~~~iQIl . Ed: P. H. Winston. McGraw-Hill ,
New Yor k .

20. Norman . D. A. and Rumelhart , D. E. (1975). oja~jor~ ~n
Cogfl~~~~n. W. H. Freeman and Co., San Franc isco.

21. Quillian , M. H. (1968). Semantic Memory. 5~~ant~jc ~flfQt~~~.iq~
~toQe~~i.,ng. Ed: Minsky . MIT Press Cambridge , Mass .

22. Rieger , C. (l975a) . Conceptual Memory . Qo~~~~tuaJ. ~~rl~~ jQfl
E~Q~~~~tug

. Ed Schank. North—Holland , Amsterdam .

23. Rieger . C. (1975b) . The Commonsense Algorithm as a Basis for
Computer Models of Human Memory , Inference , Bel ief and Contextual
Language Comprehension. ~~~~~~~~~~ ~rQ~ The~~~~.ic~~. ~~~~~ ~~
N u c ~l.. L~ng~~g~ ~~QQ~s8J~flg. Cambridge , Mass .

214 Riesbeck , C. (1975). Conceptual Analysis. CQac~~t~aai InjQcm~t~ton

~joQ~ssjr~~. Ed: Schank. North—Holland Amsterdam.

25. Riesbeck , C. and Schank , B. (1976). Comprehension by Computer :
Expectation—Eased Analysis of Sentences in Context. Research Report
#78. Department of Computer Science, Yale University, New Haven ,
Ct .

26. Riesbeck. C. (1977). Delayed Interpretation Using Processing
Notes. ~r~~e~ging~ Q~t tJ~ Ei.fth ~j~ecfl4.~iQfl~J,. ,~.Qjflt ~ nC~~Qn~e Qf~
~~~~~~~~~ In~~ ..i,tg~Gc~ . Cambridge , Massachus et ts .

27. Rumeihart , 0. E. (1976). Understanding and Summarizing Brief
Stories. In D. LaBerge and S. J. Sainuels (eds). ~~~~ E~~~es~~s
1~ ~~a~jt~g~j ~~~ceQti~n ~jg ~~rnD~~~~ri~cj~. Lawrence Erlbaum
Associates, Hillsdale , New Jersey .

28. Sohank , R. C. ( 1973) .  Causality and Reasoning . Technical Report
#1. Istituto per gli Studi Semantici e Cognitivi , Castagnola ,
Switzerland ,



- .~~~~~~~~ 

— 202 —

29. Schank , R.  C. ( 197 14a) . Adverbs and Belief. ~ing~~. Vol . 33,
No. 1 , pp. 145—67

30. Schan k, R. C. (19714b) . Understanding Paragraphs . Technical
Report #6. Istituto per gli Studi Semantici e Cognitivi.
Castagnol a, Switzerland .

31. Schank . ft. C. (1975a) . Is There a Semantic Memory. Technical
Report #8. Istituto per gli Studi Semantici e Cognitivi ,
Castagnola , Switzerland .

32. Schank , R. C. (1975b) . ~~~~~~~~~ Lnform~tion I~ Qc~s@flg. (ed.)
North—Holland , Amsterdam .

33. Schank , H. C. (1975c). The Structure of Episodes in Memory .

~~~~~~~~~~~~~ ~~d ~~~~~~~~~~~~ S~udJ~~ ~a ~~gnitiv~ ~ci~nce.Eds~ Bobrow and Collins. Academic Press , New Yor k .

314. Schank. B. C. and Abelson , R. p . ( 1 977 ) .  ~~~~~~ ~~~~ QQ~isa~~ U e r ~.~~n~1ng. Lawrence Eribaum Assoc.. Hillsdale , N . J .

35. Schank , R. C. and Colby . K. M (1973) .  ~~m~ut~r ~~~~ o.~Itiougt~ ~~. Language. U. H. Freeman and Co. San Francisco.

36. Schank, R. C. and Yale A.I. Project (1975). SAM —— A Story
Un derstander . Researc h Re port #143. Department of Com puter Science , 

- :

Yale Un iversity ,  New Haven , Ct.

37. Schmidt, C. F., ~~~ ~~ (1976). Recognizing Plans and
Summarizing Actions. ~rpceed~ng.~ QX ~~ Cq~Ce~~~~e Qn ~~~~~~~~~Iat~~~.jge~ce a~~ ~~~ ~j~u~~~tQri ~j ~~~~~~~~ pp. 291-306 , Edinburgh ,
Scotland .

38. Scragg, G. W. (1975). Answering Questions about Processes.
Exp]~orations ~r ~Qgfljtion Eds. Norman and Rumelhart . W. H.
Freeman and Co. San Francisco.

39. Stutzman , W. J. (1976). Organizing Knowledge for English—Chinese
Translation , Erj �Q&c~inA~ Qf 

~~ ~ tXt~i ~nt~~natJ ~~L QQfl~~r~ aQ~ Q~I
CQm~utptjpnaj Lj nguj~.U~~ . Ot tawa , Canada.

140. Tulving , E. (1972). Episodic and Semantic Memory ~~~~~~~~~~~ Qf
M~mQrx. Eds: Tulving and Donaldson . Academic Press, New York.

Ill. Wilensky , ft. (1976). Using Plans to Understand Natural Language.
Er~~i~dJ.na~ Q.f ~~~ n~a&l ~~e~~ j~e ~~ tue. AG~1. Houston , Texas.

142. Wilks, ‘1. (1976). A Preferential, Pattern—Seeking , Semantics for
Natural Language Inference. ~~~~~~~~~ ~~~~~~~~~~~ Vol . 6.

143. Winograd , T. (1972). ~~~~~~~~~~~~ ~~tuz~a2~ Langu~g~. Academic
Press , New York .

- --4



-....~~~~  

— 2 03—

1414-. Winograd , T. (1975). Frame Representations and the
Declarative—Procedural Controversy. R~~~~~~n~gtion ~ng

~~a’icijng . Eds: Bobrow and Collins. Academic Press . New York

145. Winston P. H. ( 1977) .  At j t~j ai ~~~~~~~~~~~~~ Addison—Wesley ,
Reading , Massachusetts.

146. Woods W., ~~~ aL (1972). The Lunar Sciences Natural Language
Information System : Final Report , Report No. 2378 , bolt , Beranek
and Newman , Cambridge , Massachusetts.

- - --


