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Preface

The design of Harp was completed in 1975; construction of a

prototype proceeded far enough to validate the engineering

aspects of the design and assure us that the speed goals had been

met, but not to a complete running Harp system. We nevertheless

feel that this description of its design and philosophy and the

performance results of careful simulation may be of interest to

others.

R.R. & S.S.
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I. Introduction

The real-time operation of algorithms that arise in speech and vision research is

often limited by the speed of the low-level signal handling algorithms, which in turn

are typically limited by the computation time of a critical inner loop. To speed up the

execution times of these algorithms, dedicated special purpose hardware or very fast

auxilliary processors have been used to implement the critical code. In signal

processing problems, and especially with the FF1, good results have been obtained

with a special machine architecture relying heavily on instruction-cycle overlap

(pipelining) and on multiple parallel arithmetic units capable of performing certain

complex operations, notably the FFT butterfly multiply, very efficiently [FDP] (SPS-

41] [AP-120B]. These processors are almost invariably both expensive to build and

difficult to program, due to their complex structure and parallelism. Their

computational power on suitable tasks has nevertheless made them useful.

At Carnegie-Mellon University we are investigating artificial intelligence

algorithms which, although they deal directly with input or generated signals, do not

fall entirely within the realm of conventional TMsignal processing . Floating point and

complex arithmetic are not usually required, and while the FF1 is used in some

problems, most algorithms cannot consistently utilize such special features as

butterfly-multiply hardware efficiently. Low precision integers may be used for most

computations; often only small bit fields are manipulated, as in vision tasks where

pixels may be as small as 4 bits. When signal processing is done, multiple precision is

as satisfactory as floating point. Considerable logical manipulation and decision-making

capability are also called for. We have designed a new processor, Harp, which suits

the needs of our research and is considerably more general-purpose in its orientation

than the signal processors.

L. ~~~~~~~~~
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Harp Page two

Harp has the following design goals, some of which are in keeping with the

signal-processor approach, some not:

A. Extremely high speed (under 40 ns cycle).

B. Low cost ($5000-$10,000 parts).

C. Programming simplicity: transparent pipeline and parallelism.

0. Large number of high-speed registers.

E. Separate instruction and data memories for overlapped access.

F. General-purpose capability (minicomputer-like instruction repertoire).

G. 16-bit data and instructions for minicomputer compatibility.

H. Large high speed second-level memory (4K - 64K).

I. Extensive diagnostic capability.

Software tools were used extensively during the design of Harp. A simulator,

debugger, and assembler, were built very early in the design phase of each proposed

architecture. These tools were used to code 8 representative algorithms (summarized

in Section VII) to give the designers programming experience and performance

• information. A number of complete design iterations resulted before Harp was

• committed to hardware.

II. Architecture

Harp is an auxiliary processor to a host PDP-11. It is a NpureN 16—bit machine:

instructions, data paths, and ALU are all 16 bits wide; there are no byte ” instructions

or packed data representations.

The Harp processor operates from two sma~t, very high Speed memories--the

data and instruction working stores. There are no data registers or accumulators in

4.
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I UNIBUSI I
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Figure 1: ~4S Dia2ram of Harp

the conventional sense. The data working stores have a 13 ns cycle time, providing

the processor with a 1.2 Gbps (bUlion bits per second) data bandwidth.

The working store sizes -- 64 words of data, 64 to 256 words of instructions --

were determined by the number of address bits available in an instruction and by

physical size limitations caused by signal propagation delays. Because Harp is

designed to run small code fragments these small working stores are usually

satisfactory. The enforced separation of data from instructions, though it seldom

occurs in general-purpose machines, does not impact programming style, and gains

considerable speed by overlapping code and data memory accesses.

The processor itself operates in the usual pipelined instruction overlap fashion

(see Figure 2). Instruction execution is divided into four stages: 1) instruction fetch

2) operand fetch 3) execution 4) result store. Total execution time is 133 ns, with the

four stages 9verlapped to permit a new instruction fetch every 40 ns. Thus the

Instruction rate is 25 Mips (million instructions per second). 

-5-- - --5- - -——--
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i Stage 1: s Stage 2: I Stage 3: , Stage 4:
‘ i
I I I

Fetch Next PC ‘Auto +- Fetch Operands I Execution (ALU) Store
)fE >1

Address Calculation

Instruction Decode1<
I I I I 1

0 40 80 120 133
Time in Nanoseconds

Figure 2: Haro Pioeline Timing

Cost and generality constrained the design of the Harp arithmetic unit. It is

limited to a 16 bit two’s complement general purpose function generator and a single,

separate (and slower) multiplier. The algorithms listed in Section VII show that

execution speed is not limited by the instruction set.

The working store contents can be transferred to or from a large buffer memory

via a block transfer mechanism. The transfer rate of 0.8 Gbps (20 ns per word) avoids

bottlenecking the fast processing of Harp. Buffer memory is expandable from 41< to

641< and is double-ported, one port permitting high speed transfers to the Harp

working stores, the other compatible with a POP-Il UNIBUS.

No single-word direct access to buffer memory is provided for several reasons:

1) this memory is interleaved, and the delay for initiating access is five times greater

than the average transfer time; 2) allowing access an a cycle-to-cycle basis would

have slowed Harp’s execution rate considerably; 3) two words of working store are

taken up by addresses for each reference to buffer memory.
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The block transfer machanism is used to overlay programs too large to fit in the

available instruction memory. Block transfers are fast enough to make frequent

overlays acceptable in many situations: a 64-word transfer takes less than 1.5 us.

Since Harp is intended to operate in conjunction with a host computer, no input

or output capability is provided other than the buffer memory connection to the

UNIBUS. The UNIBUS bandwidth is sufficient for most I/O to real-time devices and

mass storage. Since the relatively slow POP-I 1 coordinates these transfers to the

buffer memory, no hardware interrupt capability is included in Harp.

III. Instruction ~~

Two-address instructions are advantageous in high speed processing, since one

such instruction can accomplish as much as two or three single-address instructions.

Including two-address or “2-op ” instructions in the 16 bit Harp instruction words,

however, forced a tightly-packed coding of address and opcode fields. Careful

consideration of the algorithms to be implemented on Harp led to two helpful

observations: 1) only a few kinds of double operand instructions are used in a given

loop, a lthough the instructions themselves vary from algorithm to algorithm (see details

in Figure 4) 2) indexed addressing with some kind of auto-incrementation is very

useful for the vector-oriented operations. These considerations led to the

unconventional instruction format shown in Figure 3.

The upper two bits of the instruction word, if nonzero, indicate a two-op

instruction. The three possible nonzero combinations select one of three op-code

registers: OPA, OPB or OPC. Th. contents of the selected register then determines

the particular two-op instruction from among 19 implemented functions. Thus a 

5--• -~~~-S - - -  _ _
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I I ~~~ Address Two-O~s

Ø .
~ Operation Code Address j  One-Ops & Block Transfer

0 0 J condition Branch Address J Branch

Figure 3: Harp Instruction Formats

program is limited to only three double-op instruction types at a time, but the

programmer can select which three by loading the op-code registers.

The operand address fields contain 7 bits: 6 to directly address the 64 locations

in the data working store, and one addressing mode bit. The mode bit selects one of a

pair of available modes as determined by the ADRM register (see Appendix 8). There

are two index registers, Xl and X2, with auto-increment and auto-decrement capability.

These registers may also be modified by some of the branch instructions for simplified

loop control.

If the upper instruction word bits are zero, Harp decodes the instruction to

determine whether it is a single-op, branch, register load/store, or block transfer. The

16 single-op instructions are similar to POP-il instructions. Arithmetic and logical

operations set the N, Z, C, and V bits in the PS register which are used by the

conditional branch instructions, again following the POP-il conventions. There are

instructions for loading and storing the 8 state registers (OPA, OPB, OPC, ADRM, Xl , X2,

PS, PC) including a literal load.

Th. block transfer instructions move data between the buffer memory and the

working stores and optionally interrupt the POP-li. A two word descriptor in working
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store provides, a buffer  memory star t address, a working store start address, and a

block lbngth.

A special set of instructions dispose of the output of the separate multiplication

processor , which performs 16xi6 bit multiplications and retains the 32-bit product.

Instructions are provided to store the two halves of this result in data memory and to

add them to data memory (to accumulate a double-precision inner product). The

multiplication processor operates in parallel with the central processor but receives

instructions and operands from it. The 16x16 multiply takes 80 ns to complete, so a

program must execute at least one instruction after the MUL before accessing the

product.

Though Harp is a pipelined machine, the pipe is invisible to all instructions

except explicit state-register references. Branch Iookahead hardware avoids delay

while allowing natural instruction sequencing. Programmers need not be concerned

with such complications as “clearing the pipe on a branch” which plague most signal

processors.

IV. Engineering Considerations

Harp is implemented with 10K series ECL integrated circuits in the processors,

working stores and their control [MECL]. Approximatel y 400 ECL chips are mounted on

8 double-sided 9 x 12 inch PC boards. The “backplane” is square shaped instead of

f l a t , with sockets for two PC boards on each of the four sides; the boards plug into

this “core” in a cross configuration so that the component side of each board is

accessible at all times. This radial construction technique keeps inter-board

communication delay very short, and during servicing provides access to all chips 

- - S ~~~~~~~~~~~~~~ 
-S
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simultaneously without the need for extender boards. Although the cross consumes

considerable packaging volume, it is rackmountable at 17 x 17 x 12 inches.

Double-sided PC construction was chosen over wire-wrap because of cost,

signal fidelity, and reproducibility. Multilayer PC, with its higher prototype turn-

around time and expense is not justified by the present circuit density.

Memory chips of sufficient size and speed for the buffer memory are presently

least expensive in TTL, so this memory and the POP-i 1 interface are implemented with

TTL. The buffer memory chips and their control circuitry are mounted on PC boards

adjoining the cross. There is room to expand the memory to 641< words (16 boards)

while keeping the memory bus length to the ECL converters under 12 inches. Cables

connect to the POP-li interface and control circuitry. This 100 chip TTL circuit is

wire-wrapped in the prototype.

The prospect of having several Harps in our environment encouraged diagnostic

capability to ease the hardware maintance burden. Since most of the machine failures

are expected to be hard static faults rather than high speed timing problems,

considerable work has gone into a nardware diagnostic system and its software

support package. All of these involve the POP-I I as an interrogater and data

collector. The machine clock may be stopped and Harp may be single-stepped by POP-

11 software. Between cycles, afl registers and inter-board data and control signals

may be examined by the POP-Il without affecting the state of Harp; the working

stores can be accesed through the Harp processor while Harp is halted.

Lower-level diagnostics exercise the buffer memory, working stores, processor,

and control at levels sucessively deeper within Harp. Combined with the accessibility

of inter-board signals, these should allow location of faults at the register level.
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V. Software

Harp is fully supported by an extensive collection of system software, inc luding

a symbolic assembler, an unusual graphics-based debugging package, a complete

simulator , and a set of POP-il routines for Harp control.

The Harp display-oriented debugger runs on the POP-i 1 and uses a graphic

display terminal to maintain a picture of the instruction memory (decoded), the data

memory, and the state registers; it has facilities for tracing programs and modifying

memory in Harp. The debugger can be used with either the simulator or the actual

hardware.

A package of BLISS-i 1 routines and macros allows the PDP-l 1 program to

access all Harp memories and to control execution of Harp. These routines are the

basic facility for inner loop execution on Harp.

VI. General-Purpose Capabilities

The designers of Harp began with a view of creating a “functionally specialized

architecture ” for the problems encountered in speech and vision research. As we

progressed it became clear that the only relevant common characteristics of the tasks

are 1) fairly large amount of processing on each datum, and 2) small items, usually 4 to

12 bits of precision. The first observation is expressed in the size of data working

store -— 64 words is large if considered as “registers”, but small for a “main memory”;

as “working store”, it is well matched to Harp’s tasks. The second led to the choice of

small (16 bit) integers as the data type. The resulting design looks not at all like a

“specialized” processor, but more like a clean vertically microcoded minicomputer with

residual control. Notably, at least one recent signal processor design is billed by its

builders as basically a “high performance minicomputer” (LDVT].
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We expect Harp to be so cost-effective that it will be attractive whenever more

processing power is needed on a POP-I I system or similar minicomputer.

VII. Performance

The simulated performance of Harp on 8 representative tasks is shown in Figure

5, compared to the performance of tw o conventional computers on the same tasks.

The effectiveness of the Harp architecture and instruction set design can be seen in

Fi gure 4 which shows frequencies of use of various machine features.

XFER % XFER INST BITS OF
ALGORITHM TIME TIME TIME SPACE USED PRECISION
H istogram 204 75 33 41 8 & 19
Dragon 271 90 37 64 16
FFT 36 11 33 63 16 & 32
Temp. Match 145 22 31 26 12 & 28
Fit Boxes 22 5 15 47 18 6 16 & 26
Auto Corr. 1332 201 15 55 12 & 32
Edge Sop. 230 21 9 63 8
Smoothing 116 33 28 34 8

TOTAL 2356 458 19 393
TOTAL W/O
Au to Corr. 1024 257 25

DYN % STAT % DYN S DYN S
ALGOR I THM TWO-OPS USED TWO-OPS IWO-OPS IIULT TIME BRANCHES
Histogram MUL,AOO,AND 40 29 8 4
Dragon MOV ,ADD,CMP 45 48 0 12
FFT MOV,MUL ,ADO 16 24 10 5
Temp. hatch MOV ,MUL 18 19 36 19
F it Boxes MOV,MUL,CMP 23 19 26 17
Auto Corr. MOV ,MUL ,AOO 11. 24 22 32
Edge Sup. hIOV,SUB,CSIP 32 24 0 27
Smoothing IIUL,AOO, SUB 66 29 0 15

TOTAL 22 35 16 25
TOTAL 1.1/0
Auto Corr. 37 16

Figure 4: Harp Statistics
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Algorithm PDP-10 SAIL POP-i 1 ASM HARP

Histogramming: 7.62 5.99 0.172
Dragon (Speech Understanding): 12.39 9.84 0.2 19
Butterfly Multiply for FFT: 1.49 2.50 0.029
Template Matching (14x40 Multiply): 25.04 17.96 0.114
Autocorrelation with Hamming Window: 126.36 130.79 1.054
Edge Suppression: 14.93 6.73 0.178
Picture Smoothing or Texture: 20.66 9.11 0.103
Matrix Multiplication for 3-0 Graphics: 5.97 5.32 0.018

Figure 5: Comoarative Times

Histogramming is an image understanding algorithm that examines an entire

picture and yields the total number of points at each intensity level. Two data types

are used: picture elements which are 8 bits, and 256 “buckets” for counting picture

elements. The buckets must be at least 19 bits for pictures which are 480 by 640

points.

Dragon is a speech recognition system that uses probability networks to

understand speech. The inner loop involves calculating the probabilities of

transitioning through the network at each time interval. All values are represented as

logarithms so tha t no multiplication is necessary. Sixteen-bit precision is adequate

throughout all calculations.

Template matching, a speech understanding algorithm, compares the parametric

representations of two signals. It multiplies a 1x14 array with a 14x40 array to give a

1x40 array. Maximum input precision is 12 bits , so 28 bits are adequate for

calculations and output.

The graphics algorithm Box Fitting retrieves points in a sparsely represented

three-dimensional space. The space is broken down into as many as 8 arbitrarily

rotated and located rectangular boxes , each completel y described by a 4x4 

---- —~~~~~~~~~~~~~~~~ —------ - - , —
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transformation matrix. Given a point in 3-space, the list of boxes is searched to find

out whether the point is in a box. If successful, a search is done on 8 sub-boxes, etc.

The 3-space points are 10 bits and the transformation matrices 16 bits but the

intermediate results need 26 bits.

Autocorrelation is a speech algorithm for examining waveforms. The Harp

algorithm performs a Hamming window normalization on the input data prior to the

autocorrelation. This consists of multiplying 12-bit signal values by a window function

to give a 12-bit signal. The algorithm produces correlation figures for 15 different

period intervals along an input waveform. The output values, multiplied and summed

across 200 samples, must be at least 32 bits.

Smoothing is an image understanding algorithm that examines every point in a

picture and smoothes it in relation to its context. The 8 points surrounding the point

to be smoothed are summed; if the sum exceeds a threshold, the point is smoothed out.

Another image understanding algorithm is Edge Suppression, used for thinning out the

edges in a picture by removing extraneous pictur e elements on an edge. Each scan line

is examined, and only local maximum points are retained. Both of these image

algorithms work on picture elements of up to 8 bits in size.

Fast Fourier Transform is the standard signal processing algorithm that

transforms from a time domain to a frequency domain. This particular implementation

does a bit-reversal (re-organizing of data) and a transform of 1024 complex values

using 16 bit integers. 
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APPENDIX A

Instructions

Mnemonic Description

Two-Oo Instructions
ADD Add
ADOC Add with carry
SUB Subtract
SUBC Subtract with carry
RSUB Reverse subtract
RSUBC Reverse subtract with carry
MUL Multiply
MOV Move
MOVN Move negative
AND Logica l AND
BIS Logical OR
NAND Logical NAND (Not-And)
NOR Logical NOR (Not-Or)
XOR Logical Exclusive Or
EQV Logical Equivalence
BIC Bit Clear
IMP Logical Implication
BIT Test bits
CMP Compare

One-Op Instructions
NOP No operation
HALTI Halt and interrupt
TST Test
CLR Clear
COM Complement
NEG Negate
INC Increment
DEC Decrement
ROR Rotate right
ROL Rotate left
ASR Arithmetic shift right
ASL Arithmetic shift left
ADC Add carry
SBC Subtract carry
SXT Sign extend

I
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Block Transfer Instructions
DATA! Read into data memory
DATAO Write from data memory
INSTI Read into instruction memory
INSTO Write from instruction memory
INTDI Read into data memory and interrupt
INTDO Write from data memory and interrupt
INTII Read into instruction memory and interrupt
INTIO Write from instruction memory and interrupt

Branch ructions
BR Branch
BNE Branch if not equal
BEQ Branch if equal
BGE Branch if greater than or equal
BLT Branch if less than or equal
BGT Branch if greater than zero
BLE Branch if less than or equal
BPL Branch if positive
BMI Branch if negative
OH! Branch if higher (unsigned)
BLOS Branch if lower or same (unsigned)
BVC Branch if overf low clear
BVS Branch if overflow set
BHIS/BCC Branch if higher or same (unsigned) / carry set
BLO/BCS Branch if lower (unsigned) / carry set

~~~ Resister Instructions
STn Store register n into data memory
LDnO Load register n from data memory
LOn Load register n from literal

Multiply—fetch Instructions
MACH Add high part of product
MACL Add low part of product
MSTH Store high part of product
MSTL Store low part of product

Loop Control Instructions
AOBI Increment Xl and branch if non-zero
AOB2 Increment X2 and branch if non-zero
SOB1 Decrement X l and branch if non-zero
SOB2 Decrement X2 and branch if non-zero 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
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APPENDIX B

Addressing Modes

The following table lists the meaning of the Addressing Mode Register (ADRM).

This register is divided into two 4-bit fields called the source mode and the destination

mode. Each field selects a pair of addressing modes that a source or destination

operand can choose from. The high bit of the instruction address field selects one of

the pair.

D The low 6 bits directly address the operand.
Xl Tile low 6 bits are added to index register 1 to obtain the address.
X2 The low 6 bits are indexed with index register 2.
Xl ’ The low 6 bits are indexed with Xl , which is then incremented.
X2+ The low 6 bits are indexed with X2, which is then incremented.
X l- The low 6 bits are indexed with X l, which is then decremented.
X2- The low 6 bits are indexed with X2, which is then decremented.

I.
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