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of the staff, graduate students, and faculty of many University depart—

• ments and laboratories. This report is based on research accomplished

- in cooperation with the Department of Computer and Information Science.

The research contract was administered and monitored by The Ohio State

- 
University Research Foundation.

- 
Appendix I, referred to in this report , consists of program listings

, of three simulation programs which are not included herein. The reader

- may obtain the program listings by writing to the first author of the

- 
report.
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1. INTRODUCTION

a In the previous technical reports (1,2,3], we presented the functional

design of a database computer known as the DEC. The present report attempts

to determine the hardware performance of the DBC and compare it to existing

database systems. A first—order analysis of the DBC hardware as depicted in

- 
Figure 1 proceeds as follows: The mass memory (~*1) logic is designed to pro—

• cess an entire cylinder in one revolution. Because a cylinder generally con—

sists of between 20 and 40 tracks, and because conventional systems process one

track at a time, we can expect a performance improvement factor of between 20

and 40 over conventional systems. Furthermore, since the structure loop can

I - - 
be processing a current request while the mass memory is processing a previous

request, a perfortnanc~ i~iprovement factor of 2 can be expected over systems

- which store structural information and raw data on the same storage medium.

• Furthermore, the high degree of pipelining of the DBC components and clear de—

lineation of front—end general—purpose processing and back—end special—purpose

database management may allow at least a performance improvement factor of 2.

Thus, the proposed database computer is likely to have a raw hardware processing

a - power which is 80 to 160 times that of existing software—oriented systems.

• The above analysis falls short of predicting what the absolute performance

figures are likely to be under various load conditions. And in the absence

- 
of reliable performance data on conventional systems, the relative figures do

not give us any clue as to the likely performance of the DEC. In this report,

we therefor e have made an attempt to answer some fundamental questions such as:

• What is the probable response time of the DEC for a user access request? Wha t

ii the throughput of the DBC? How do response time and throughput depend on

the v*rioua parameters of the DBC components? Can the track information

L .~~~~~~~~~ —_ ---_---- -.---.— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.~~~~~~ ~~~~~~~~~_ . . _m- -~~~~~ 
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U 
processors (TIPs) in the mass memory (MM) retrieve all the relevant information

- 
in one disk revolution as anticipated? What is the effect of the look—aside

buffer on the performance of the structure memory (SM)?

In order to answer these questions, we examined two lines of approach.

- First, one could use analytical tools based on queueing theory to analyze the

flow of information within the DBC. Second, one could use simulation tech—

- 
niques to study the behavior of the DBC under various input conditions and for

various values of the DBC design parameters. It would be ideal if both the

approaches could be pursued to a point where meaningful results are obtained.

We could then proceed to compare the results of the two approaches and obtain

a high degree of confidence in our performance predictions, if the results agree.

In the case of the nBC, however, the complexity of the problem at hand

and the limitations of queueing theory made it altogether difficult, if not

- - impossible, to obtain meaningful theoretical results. Thus, the employment of

• simulation techniques became the only feasible approach. The simulation effort

that was undertaken was restricted to a consideration of the questions raised

earlier in our discussion. No attempt was made to validate the DBC design in

~
j I terms of the verification of the various algorithms proposed in the previous

. reports. Such ar~ attempt, which would require a full—scale logic simulation

• of the DBC, is not intended for this first 3tudy of the DBC performance.
- 

The organization of the remainder of this report is as follows: In the

next section we propose a simulation model of the DEC. In Section 3, we present

the results of the simulation and their interpretation. In the last section,

- we make some general remarks on the performance of the DBC and the limitations

of the current design.

2. A SIMULATION MODEL OF THE DBC

As illustrated in Figure 1, the DEC consists of two loops of processors

~ I l
‘a

_ _ _ _ _ _ _ _  _ _ _ _ _ _ _  _ _  _ __ _—— - — — — — - — -~~ — -—
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and memories, namely, the structure loop and the data loop . The simulation

model depicts a sequence of events that takes place between the time a user

• request enters the DBC and the time the response data for the request is sent

- - out of the DBC. There are two possible sequences of events that can take place

for a request. First, the request can be sent directly to the mass memory (MM)

without being processed by the structure ioop components. This is the case

when the user issues the retrieve—by—pointer , delete—by—pointer or retrieve—

within—bounds command . The second course of events involves processing by the

structure loop components followed by processing by the data loop components.

This is the case when the user issues a retrieve—by—query, delete—by—query,

load—records or replace—record command .

2.1 The Simulation Model of the Structure—Loop Components

Let us now describe the events that take place for reques ts that involve

processing by the structure—loop components. Such requests have either queries

or records as arguments and are received first by the database command and con—

-- 
~~

- -• trol processor (DBCCP ) as depicted in Figure 1. A query, when specified as an

argument, is decomposed into its constituent query conjuncts. Each conjunct is

treated as an independent J2 ~ by the DBCCP for processing by the structure—loop

~ 
I components. The priority with which such jobs are scheduled for processing is

specified by the user request. Within each priority class, jobs are processed

on a first—in—first—out (FIFO) basis. In case a record is specified as the ar-

gument, record processing by the structure—loop components is also considered

an independent j~~ by the DBCCP.

When a job is scheduled for processing by the structure loop, the DBCCP

sends the keyword predicates of a query conjunct (or the keywords of a record)

to the keyword transformation unit (law). We shall refer to these predicates

and keywords as tasks. The tasks are placed in an input queue by the KXU, and
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— processed sequentially . When a task has been processed by the KXU, it is sent

to the structure memory (SM). At the structure memory it is placed in another
-

~~~ queue for processing by the processing elements. The output from the structure

- 
memory for each task is sent to the structure memory information processor (SMIP) .

The SMIP acts as a sink for the outputs of all the tasks of a given job. The

output from the SMIP is usually much smaller (in terms of the number of bytes)

• than the 3tz~ of the input stream. The output of SMIP is sent to the index

transformation unit (IXU ) for further processing. We shall consider the SMIP

output for a job as a single entity as far as the IXU processing is concerned .

In Figure 2, we have summarized the above discussion. We have also in—

dicated the major parameters of the structure—loop model. Access commands that

- - are received by the DBC hay e an average inter—arrival time of QTime. In the

absence of any data on the arrival pattern of DBC requests , we assume that the

inter—arrival time has an exponential distribution. Access commands are divided

- 
into two categories - those tha t require structure—loop processing (i.e., query—

- - based and record—based commands) and those that do not require structure—loop

• processing (i.e., pointer—based commands) . The distribution of access commands

- is assumed to be the following:

— Query—based Commands: 50%

- 

— Record—based Commands: 20%

- 
— Other (that do not require

structure—loop processing) : 30%

The rationale for the above distribution is as follows : First , the DEC is

- 
designed to accept commands which refer to data by their contents. Therefore,

• it is reasonable to assume a high proportion of query—based commands . Second,

- the simulation model assumes that DEC loading operations would be relatively

infrequent under normal conditions. This means that record—based commands such

as load—records and insert—records will be significantly smaller in number than

the query—based commands .

- - - - - - --—- - 
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A command spends an average of DTime in the DBCCP before it is split into

jobs and sent into the pipeline consisting of the KXIJ, SM, SMIP and IXU . Each
- 

command generates on the average, ANumb jobs. Each job has an average of PNumb

- 
tasks. Both the quantities are assumed to be normally distributed.

- I ! The keyword transformation unit (KXU) is primarily a processing engine.

We model the KXU by a FIFO queue and a delay unit labeled KTime in Figure 2.

-. - The determination of the structure memor’ processing time for a keyword predicate

[ 1  is more complex. The processing time depends on the number of buckets that have

to be searched in order to find the directory entries of keywords satisfying the -

predicate. Since the physical blocks of a bucket are generally uniformly dis—

• - tributed across the memory units of the structure memory, the number of accessea

• to the SM for a bucket is assumed to be 1. Thus, the number of accesses for a

predicate is equal to the number of buckets to be searched. We assume this num-

ber to be normally distributed with an average of BNumb and a standard deviation

of 2 x BNumb x KTlme.

- - In computing the total processing time in the SM, one must take into account

1 • not only the search time, but also the time to transmit the index terms out of

I 
- the processing elements. We recall [2] that index terms are transferred from

the processing elements to the SMIP: the transfer rate BSped (bytes per second)

of the SMPEBUS, the average number of index terms INumb per keyword directory

- entry and the average number of keywords per bucket KNumb . The transfer time

of index terms of keywords satisfying a keyword predicate is then given by the

- following expression:

Transfer Time — BNumb x INumb x KNumb/BSped

- I The total SM processing time for a keyword predicate, then, is the sum of

the search time and the transfer time. The index terms for the predicate are

- assumed to be collected by the SMIP at a rate commensurate with the rate at

• which they can be retrieved from the SM. The time taken by the SMIP to perform

£ II _________________________ _________________________ _____
~~~~~~~

-- 
‘
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

i__ --—



- --- — — — — - — - — - ~~ 
- - .- ---—---—•- -- - -----— — - — - _—_-- __••_— - -w— ____ •__ ”

-r--—- . ~~~ —----— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.4— -——

- -

intersection is parameterized by the variable Tsmip. Finally, the time taken

by the lxii to decode the index terms relevant to a query conjunct (i.e., a job)

j is given by the constant Tixu.

j - 2.2 The Simulation Model of the Data—Loop Components

Either after a query conjunct (or a record) is processed by the structure—

- I j loop components or when a user command does not need to be processed by the

. structure loop components, the conjunct (or the record) in the user command

is sent to the mass memory (MM). The mass memory processes the command and
- transmits the output (i.e., data elements) to the security filter processor

(SF?) which after a delay sends them to the DBCCP for onward transmission to

the user.

- - 
In Figure 3, we have shown the model used for simulating the MM and the

- SFP. User requests which have been pre—processed by the structure loop or ‘I

I which do not require such pre—processi-ng are placed in an output queue by the

-~ 
* 

DBCCP. In this queue, the requests are known as MM orders. The MM maintains

a f ixed number of hardware queues. Orders pending outside the MM are placed

in one of the queues according to the queueing discipline chosen for the MM

implementation. We shall discuss three strategies for the placement and move—

ment of orders in these queues.

2.2.1 Three Queueing Disciplines

The first discipline is the well—known FIFO discipline. In this case,

I 
. - each of the hardware queues (called the seek queues) contains orders on a par—

- ticular disk drive. An order pending outside the MM is moved into one of these

V seek queues on a first—come—first—served basis if there exists a queue which

is empty or which contains orders for the same disk drive as the one referenced

~ 
by the pending order. If there is no such queue, the order waits outside the

MM until one is av ailable. Orders within a seek queue are moved on a first—

II
_ _ _ _ _ _ _  ---.4-- _ _ _ _ _  --- -4

----.4----- — - . 4- - - -
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—S in—first—out basis. Each order requires a cylinder seek. When the cylinder

seek has been completed , the order is moved into another queue for the track

information processors (TIPs). This queue is called the TIP queue. When an

order in the TIP queue has been serviced by the TIPs, then the next order

waiting in the TIP queue is considered for service by the TIPs. A timing dia—

-
~ - gram depicting the watt times and service times for an 1*1 order is shown in

L Figure 4.

The second discipline, which we define as the MAU—first discipline, differs

- 

from the FIFO discipline in the following way: Orders in the seek queues are

not moved on a first—in—first—out basis; when an order at the head of a seek

queue is moved to the TIP queue as a result of a seek completion, other orders

- - on the same cylinder which exist in the seek queue are also moved to the TIP

queue. This is done by linking all orders on a given cylinder within a seek

queue. The projected advantage of this discipline over the FIFO discipline is

tha t the MM will save a few cylinder seeks by “batching” all the orders on a

cylinder.

I The third discipline, which we call the MAU—first—file—next—drive—last

{ (MPD) discipline, moves orders within the seek queues in the following manner:

As in the case of the MAli—first discipline, orders on the same cylinder are

moved as a group to the TIP queue. In addition, when a new seek is to be in—

itiated on the disk drive , preference is then given to an order which references

the same file as the last block of orders moved out of the queue. The pro—
- 

jected advantage here is as follows: A file is normally allocated contiguous

cylinders on a disk drive. Th.ref ore, by giving preference to’orders on the

— same file over orders on different files, it is conceivable that the disk arm

- movement can be sharply reduced.

* 2.2,2 The Distribution of Order Type and Parameters

Let us now describe the para meters involved in the simulation of the data 

.4 
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— loop components. The distribution of order type is assumed to be as

} ~~ lI follows:

352: Retrieve—by— Query
5%: Retrieve—by—Pointer

- 5%: Retrieve—by—Query—with—Pointer
- - 5%: Retrieve—within—Bounds

3 . 20%: Insert—Records
10%: Delete—by—Query
5%: Delete—by—Pointer

I 15%: Replace—Keywords

( P Note that the simulation model can accon~nodate any distribution or order

types. We have chosen the above distribution as one that is likely to be

I . encountered in an environment where updates (i.e., deletions, insertions

and replacements) and retrievals have the same probability of occurrence.

- 
The average seek tia. in which the access arm is moved from one cylinder

to another within the same file is assumed to be 15 milliseconds. When

— - 
the access era has to be meved from one file to another , the average seek

- 

• tim. is ass 4 t be 35 milliseconds . The rotation time for the disk

drives is assuaed to be 20 milliseconds.

S 
The variable parameters are as follows: The average inter—arrival

I 
~ t im. of *1 orders ii MTiae. The number of hardware seek queues maintained

by the MM controller is given by QNo. The number of active files (i.e.,

• the number of files referenced by the MM orders) is likely to be smaller

- -  than the total number of files resident in the mass memory and is given

I ~ by FiLet. The t ime taken by the security filter processor to massage the

• 
data elements retrieved by the mass memory is modelled by the parameter

PTime (average processing time).

i
t 2.2.3 The Simulation of the Track Information Processors

- S

- In performing the simulation of the MM, it was assumed that a re-t--.

7 
trieval , deletion or insertion order can be processed by the TIPs in

- one revolution and that a replace—record order can be processed in two

~~ 

- . _.4.4~~~~~~~~~~~~~~ . _ .  _ _ _  _ _ _
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revolutions. However, this assumption is based on the ability of the TIP.

to store all the relevant data elements in their local buffers and on the

ability of the IOBUS (see [3]) to transfer all the data elements out of
. 4

the TIP buffers within one revolution. In order to examine how good these

Ii. assumptions are, a second—level simulation was carried out. This simulation

- - process will now be described.

• The simulation model of a TIP is shown in Figure 5. This model depicts

only the retrieval process, since the retrieval process is most likely to

cause the local TIP buffer to overflow resulting in extra revolutions for
I its completion. The local buffer consists of two modules. Each module can

be accessed by either of two processors, namely the drive interface proces—

sor (DIP) and the controller interface processor (CIP). Each module consists

- 

of a set of sequentially accessed segments.

The logic that is simulated by the model may be summarized as follows:

- 
Records on a track are read by the drive interface processor in a sequential

manner. Before a record is read, the DIP attempts to gain access to one of

the two buffer modules . If both are full , or if one is being emptied by the

CIP and the other is full, the DIP discontinues processing for the rest of
. L..

the current revolut ion and resumes processing when the record reappears un—

I i  der the read head. When both modules can be access, the DIP gains access

to the module which has the larger number of empty segments.

* The parameters of the TIP simulation can now be discussed. The load

Is Ltip on the TIP is characterized by the percentage of records on each track
i !

that satisfy the retrieval criterion. Based on this percentage, the cia—

ulation model can statistically determine if a record on a track satisfies

the selection criterion (i.e., the query conjunct) or not. The segment

• - size is parameterized by the variable SSize. The length of the record LRec

is another important parameter of the model.

II
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Figure 5: Simulation Model of the Track Information Processor 
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3. SIMULATION RESULTS AND THEIR INTERPRETATION
-5$

The simulation model described in the last section was programmed

1~-. on an IBM 370/168 using the GPSS/360 simulation language [4,5]. The GPSS

programs are given in Appendix I. Because the model (and , therefore, the

• GPSS program) is highly parameterized, the number of distinct cases that

can be formulated is extremely large . The combinatorics inherent in such

modeling makes any “exhaustive” simulation infeasible. Fortunately, it

turns out that a great deal can be learnt by simulating just a small,

i’ ‘judiciously ’ chosen, subset of all the possible cases involved. In the

following section, we discuss the experiments and results of the structure

loop simulation. Then in Section 3.2 we discuss the experiments and re—

cults of the structure loop simulation.

3.1 The Behavior o’ the Structure-Loop Components

For studying the behavior of the structure—loop components, we divided

the access comeands r.quiring processing by the structure—loop components

I into three categories: short requests, medium—sized requests and long

requests. The shor t req~~ ,~~ are defined as those requests which involve

I ~ queries with 3 conjunct. (on the average), with each conjunct having 4

predicates (on the average) or those requests that involve records with

3 clustering conditions and 4 directory keywords. The medium—sized re—

guests are defined as those that involve queries with 6 conjuncts (on the

average), with each conjunct having 8 predicates (on the average) or those

requests that involve 6 clustering conditions and 8 directory keywords.

- - Finally, the long req~ests are defined to be requests with queries having
- 

10 conjuncts (on the average) and 14 predicates per conjunct, or requests

with 10 clustering conditions and 14 directory keywords (on an average).

~ 

•1 - .

It is easy to observe that as the requests get longer (in terms of

1. number of predicates and keywords that need to be processed), the load on

Hi

— 
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the structure—loop components also progressively increases. Therefore, it

I - -

became necessary to assume different request arrival rates for the three

. 
categories. In particular, an inter—arrival time of 50 milliseconds was

- 
- 

assumed for short requests; an inter—arrival time of 100 milliseconds was

assumed for medium—sized requests and an inter—arrival time of 200 milli—

- - - seconds was assumed for large requests. These figures were determined by

trial runs in which several different inter—arrival times were tested. For

~ I each category of requests, the smallest inter—arrival time which did not
F 

result in DBC instability was chosen for conducting other experiments. By

DBC instability we mean the indefinite growth of various queues within the

~ 
- simulation program, resulting in its abnormal termination. In subsequent

- - discussions, we shall refer to such an occurrence as “choking”.

Since the structure memory (SM) and the keyword transformation unit (law)

were perceived to be the most critical units of the structure loop, the main

objective of the simulation study was to observe response times for queries,

[ i 
conjuncts and records as a function of the parameters associated with the

structure memory and the keyword transformation unit. The time required

to access a block of memory in the SM and the KXU processing time were both

varied from 1 millisecond to 3 milliseconds in steps of 0.25 milliseconds.

I For each set of values, the simulation program was run with and without

- - enabling the look—aside buffer logic in the SM. This was done in an at-

tempt to determine the effect of the J ock—aside buffer on the response

[ I t imes. Each simulation program run was allowed to proceed for a period of

(simulated ) t ime long enough for the results to stabilize (i.e., long enough

for the effects of the initial conditions to become vanishingly small). This

L TI was done by allowing the simulation program to run for increasing periods of

t ime and by comparing results until they (i.e. , the results) shoved very

I C little change.

[1
- - - ii — 
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1’ -
~ In Figure 6, we have plotted the results for short requests. The util-

ization of the structure memory as a function of the access time is plotted

-: in Figure 6c. The utilization was found to be relatively insensitive

to the KXU processing delay, and depended only on the access
— - . 4 — — 

.4

time of the structure memory and request length. Since the SM is the most

expensive component of the structure loop, it is imperative that we strive

- - 

to maintain a high level of utilization of SM. We observe from Figure 6a,

that the utilization tends to become a constant beyond an access time of 2

- 
milliseconds, indicating that there is very little idle capacity in the SM

L. when its access time is greater than 2 milliseconds. Looking at Figure 6a

and 6b, we find that at about the same access time (i.e., 2 milliseconds),

I ~ the response times begin to climb rather steeply. Clearly, we have to op-

erate the SM with access times below 2 milliseconds if we wish to keep the

structure loop from “choking.”

In Figure 7, we have plotted the results for medium—sized requests.

As mentioned before, for medium-sized requests, it became impossible to

maintain the inter—arrival time at 50 milliseconds. This can be explained

L 
by observing that the processing load presented by a medium—sized request

is approximately four t imes that of a short request. The simulation pro—

- . 
gram was run with an average request inter—arrival time of 100 millisec—

- onds. Comparing the utilization curves f or small and medium—sized requests,

- we f ind that the utilization is conaistently higher for medium—sized requests.

This is as it should be , since we have increased the processing load four

times, but reduced the arrival rate only by half. Also, looking at Fig—

I ( ures 6a and lb . we find that the response times for medium—sized requests

are higher than those for short requests. However, the interesting aspect

of the comparison is tha t the response times for medium—sized requests are

only 102 to 352 higher than those for short requests (when the SM access

time is below 2 milliseconds), although we would expect a 1002 increase.

_ _ _ _  
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Figure 6: Simulation Results for Short Requests
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Figure 7: Simulation Results for Medium—Sized Requests

I
— .4 -.4-— -.4—- .4- --— - - -

-.4 .4- -~~~~~~~~ -~~~ - . 4



~ -— -— ~~~~~~~~~~~~~~~~~~~~~~~ - —- ~~-— — - - - -.4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-20-

This phenomenon can be explained by observing that the structure memory was

operating well below its maximum capacity in the case of short requests (as

can be seen from the utilization figures). The idle capacity is absorbed

In the case of medium—sized requests with only a small increase in response

time.

In Figure 8, we have plotted the utilization and response tines as a

function of the SM access time for large requests. For reasons mentioned

before, the simulation program was run with an average request inter—arrival

time of 200 mIlliseconds. In spite of the slower arrival rate, the utiliza-

tion is seen to be significantly higher for large requests than for the small

and medium—sized requests. Also, the response times are significantly high-

er than in the previous two cases. For example, the response time with an

access time of 0.5 milliseconds is 192.86 milliseconds. This exceeds the

response times for short and medium—sized requests with an access t ime of

1 millisecond. The conclusion to be drawn from these observations is that

the structure loop cannot be operated without possible “choking” if the re—

- quests are long and the arrival rate exceeds 5 requests per second or if the

.4 
requests are long and the SM is operated with an access time greater than

1 millisecond.

An important observation that can be made in regard to Figures 6, 7

- - and 8 is that in each case, the response time for a structure memory with

look—aside buffer is much better than for a structure memory without look—

- aside buffer. More specifically, an improvement of 10—20% in response times

may be expected by using the look—aside buffer. (We assume, in the simula-

tion model, that the look—aside buffer is large enough to hold all update

requests that are made to the structure memory during the time a retrieve

- - request is being serviced.)

- .4 We would now like to summarize our discussion thus far. For short and

medium—sized requests, an SM access time of 1.5 milliseconds and a KXU

•
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Figure 8: Simulation Results for Large Requests 

.4 .4 - --~~~~ -‘  - —--.4

. 

.4—-- - - - . 4 -   

—.4—-—----——- .4—-— -.4-— ——-— ——-~~~~~ -- --—---- —  —.4. -



F- W~~~~~~~~~~~~~~~~~~~~~~ ’~~~~~~~~~~~~~~~~ ’ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
~•~~

•_
~ ~~__ ~~.4_.4____~~~~.4

- -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~ .lM~~ 

- —  -

- I  
-22-

- 
.—~~ processing delay of 2 milliseconds per task will yield a response time of

under 200 milliseconds, an SM utilization factor of between 0.7 and .9 , and

- an average throughput of between 20 and 10 access requests per second.

For long requests, the observations indicate that an SM access speed of

under 1 millisecond is necessary for a response time of about 200 milli—
.4 

— seconds and a throughput of 5 requests per aeocnd. In all cases, the use

of a look—aside is recommended.

3.2 The Behavior of the Data—Loop Components

We begin our study of the performance of the data—loop components by

observing that in order to ensure that the data loop does not become a bot—

I tleneck within the DBC, its throughput must match the rate at which orders

are created for it by the structure loop and the DBCCP. We can determine
i j  I

the rate at which orders are likely to be sent to the data loop by con—

suiting the results provided at the end of the last section.

A reasonable starting point is to assume that over a long period of

time, the average request received by the DBC will closely resemble a mcd—

- 
ium—sized request as defined in the last section. Since the structure loop

[3 was seen to be able to handle about 10 such requests per second, the data

loop should be in a position to handle orders generated from these requests

in the same time period. The number of orders generated from each request

.4 t can be determined as follows: Recall from Section 2.1 that 50% of all ac—

cess requests are query—based requests; furthermore, a medium—sized request

has on the average 6 conjuncts1 (if the request is query—based). Since each

conjunct generates at least one mass memory order, the total number of ord—

ers is given by: Probable number of orders generated by 10 requests

j 10 z 0.5 x 6 + 10 x 0.5 — 35. Therefore, the data loop should have a through-

put of about 35 orders per second.

U
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.4 This translates into an inter—order arrival time of about 28.5 milliseconds.

A simple summation of the average times involved in the processing of a

- 

J MM order by the mass memory and the security filter processor (SFP) shows

• that the data ioop is incapable of meeting such a requirement. For example,

a retrieve—by—query order needs a minimum of 15 milliseconds for a seek oper—

ation. This is followed by a 20 millisecond processing time by the track in—

formation processors. The SFP takes an additional time of say, 10 milliseconds.

[ ! The total adds up to 45 milliseconds. We have not included any of the waiting

times that may be involved in the data loop (see Figure 4). Thus, a more

-
~ realistic throughput rate would allow the data loop to process orders at an

average of 50 milliseconds per order. In the remaining part of this section,

we shall assume an average inter—arrival time of 50 milliseconds per order.

The first experiment we carried out with the above inter-arrival rate

was to compare the three queueing disciplines proposed in Section 2.2 for the

movement of orders within the seek queues. In Section 2.2 we had anticipated

tha t the MFD discipline would result in minimizing the access times associated

with each request. In Figure 9, we have plotted the data loop response time

as a function of the number of seek queues in the mass memory for the three

queueing disciplines. From these figures, we find that for all the three

disciplines the response time tend s to reach the same value as the number of

seek queues increases. The rate at which the response time declines is dif -

ferent for each of the disciplines. The response time curve fur the MYD dis—

cipline declines rather sharply when the number of seek queues is in the range

2—4 , and thereafter stabilizes at around 100 milliseconds. The response time

- curve for the MAJJ—first discipline and FIFO discipline decline more gently

- and stabilize at around the same 100 millisecond value when the number of seek

queues is increased to 8. This behavior of the three queueing disciplines

would seem to agree with our reasoning in an earlier section. The MFD discipline
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reaches stabilization at a smaller number of seek queues because the average

seek time associated with an order under this discipline is small. As a

result, complete overlap of TIP processing and seek operations can be reached

-~ with a small number of queues. Increasing the number of queues beyond this

. point cannot bring about any further reduction in response time.

- The number of seek queues to be maintained is dictated not only by a

desire to minimize the average response time but also by a desire to minimize

the average waiting time outside the mass memory. In Figure 10, we have plot—

- - 
ted the average waiting time of a mass memory order as a func tion of the number

L . of seek queues. Comparing Figures 9a and 10, we find that although the response

F 
time curve stabilizes around 100 milliseconds when the number of queues is

4, the average waiting time outside the MM attains a value of zero only when

the number of queues is increased to 8. Since it is important that orders do

-- 
not wait in the DBCCP for entry into the mass memory, we favor the higher number

of seek queues.

We now turn to the results of the simulation of the track information

processors (TIPs). One of the primary goals of the simulations study was to

test the hypothesis that a TIP can retrieve all relevant information in one

disk revo1~~ion. In Figure U, we have plotted the average number of disk rev—
( . 4  I

olutions required to retrieve data elements as a function of the retrieval

percentage for various segment sizes and record sizes. These plots show that

for any record size, the smaller the segment size, the better the performance
- 

of the TIP. This may be explained by taking a closer look at the TIP logic.
.4 

- 
Records that satisfy a query conjunct are stored in segments of the TIP

- : 1 buffer. Recall from [3] that these segments are sequentially accessed memories.

-. During the time that a TIP is comparing a record’s keywords with the predicates

of a query conjunct the part of the record which has moved past the read head

is stored in a segment in anticipation of a successful comparison. Now, if the

‘

a 

_ _ _ _ _ _ _ _ _ _ _ _  
_________________



_______________________________________

- - - - .4-—— - -- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
— -

-26-

- --.4

\ /
L

F -

.4 - .4

80 - Average Wait Time
-

~~~ (Outside the Mass Memory)
~~~~ 

60 - 
Asa Function of the

[ Number of Seek Queues
(M-F-D Discipline)

I .~~ 40
I—
.4-

0 20 .

1 ~~I 2 3 4 5 6 7 8
Number of Queues

Figure 10: Mass Memory Order Wait Time as a Function
of the Number of Queues within the Mass
Memory

— b 5

-
El
1 

.4

-.4 — -.4--— - --.4—- 

-— - --- -.4---.—— --- .4 - -—.4-- --—— - .4 -________________ 
_ _ _ _ _ _ _



_ _ _  - -.4.4 —- - 

T~~~~~~~~~~

’ 
- —I-— 

-: —

Effect of Segment Size on TIP
200 Performance During Retrieva l

- . (Record Size = 1500 bytes (Avg.)

I t 2.00 Effect of Segment Size on TIP
0 Performance During Retrieval

1 2 $75 (Record Size : 2500 bytes (Avg.)

.........::: ..

e5

..

~~

.... ..... .

Effect of Segment Size on TIP
2.00 - Performance During Retrieval

(Record Size : 500 bytes (Avg.)

.4 
‘.75 - 200 bytes (std. dev.))

r 
J 5

.._~~~~~

K b

~~~~~
4 O 3 0

2~~ bYteS~~~~_.....

Retrieval Percentage
.4 a

I . 
‘
~~~ 2.00 Effect of Record Size on TIP
2 Performance for Different Segment Size.

(Retrieval Fraction = 50%)

: 
125 : byte

.4 .4 0 1000 2000 3000 4000
Record Size (Bytes)

Figure 11: Results of Simulating the Track Information
- Processors dur ing Retrieval

j n 
_ _ _ _ _ _ _  

- 
_ _ _

—— .4 - —  ~~~~~~~~ —-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- ~~- — . 4-  -.4— —.4- —S .4.4



.4 
—

--.4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- - - -

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~ ‘_ ~

‘ 
____

(1 
-28-

comparison fails in the middle of a record , then th~ part of the record already

stored in the segment must be discarded. Thiø is done by circulating the

segment (forward of backward) to restore it to its position at the time the

record first appeared at the read head. The segment is essentially unavailable

• for input or output during the recovery process. The larger the segment mem—

ory, the longer it will take to complete the recovery procedure. The non-
.4 

availability of the segment can force the TIP to postpone the processing of

a record by one revolution. Thus, there is reason to believe that a smaller

segment would perform better than a relatively larger segment. This obser—

Li vation is borne out by the simulation result presented in Figure 11.

A further observation can be made is that the number of revolutions re—

quired by the TIPs to process retrieval orders being close to one, if the

retrieval fraction is under 50%. Beyond 50% the performance begins to degrade

significantly. In the light of the fact that a track usually has a capacity

of 20K bytes, it would seem unlikely tha t the retrieval fraction would exceed

- - 50% for most retrieval orders. Thus our initial hypothesis is seen to hold

- for most retrieval orders.

We now simlmarize our discussions of the data loop simulations studies.

It is probable that the data loop, with the current design proposal may not

1~ be able to match the throughput of the structure loop. Two suggestions can

r - be made to remedy the situation. First, the mass memory can be speeded up by
- .4 extending the cylinder content—addressability concept to more than one cylinder

at a time. This involves employing multiple sets of TIP.. The second suggestion

involves slowing down the structure memory by increasing the access t ime of

I the structure memory. The first suggestion involves additional hardware, while

• the second affects the throughput of the DBC itself.

ii
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1 4.

We have presented in this report some of the useful results obtained

1 . from extensive simulation studies carried out on the DBC. The structure

memory is capable of handling medium—sized requests at the rate of 10 re—
- I -j

quests per second . The response time of the structure memory to a query

or a record can be held to below 200 milliseconds by carefully choosing

the access time of the structure memory . In order for the structure loop

- to handle truly large requests, it may perhaps become necessary to employ

random access memories instead of sequentially accessed memories.

The data loop has a throughput of about 20 mass memory orders per

second and an average response time of 100 milliseconds for an order. How-

ever, as was shown in Section 3, this performance may be insufficient to

avoid a bottleneck in the data loop. The performance of the mass memory

-
. may be substantially improved by incorporating a second set of track infor-

mation processors. The design of the mass memory presented in [3] does not

preclude the inclusion of such additional hardware; indeed it can easily be

modified to handle two sets of track information processors instead of the

L - one set currently envisioned.
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