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I. INTRODUCTION
1

There has been renewed interest recently in a possible transition

from a mixture of ammonia and hydrogen to metallic NH4. Chemically,
the transition can be expressed by the reaction

2NH3 + H2 > ZNH4 1)
In a calculation made some years ago, Bernal and Massey2 (BM) con-
cluded that such a transition would occur between 60 and 140 kbar.
Stevensonl, however, concluded that the transition would not occur,
at least not below 1 Mbar. (The compact metallic phase that would
then form is unrelated to the low density metallic phase considered
here, namely, the '"funny sodium'" form.)

The fundamentally correct approach to determine phase transition
pressure Py is to plot Gibbs energy G versus pressure P for each
phase and define P, as the pressure at which the two curves cross.
This follows from the thermodynamic argument that dG < 0 for P,T
constant so that the only place both phases can be in equilibrium is
where dG = 03. A sccond approach is to plot internal energy U vs
volume V for each phase and then define P, as the common tangent.
Since dG = 0 implies dU = TdS - PdV for constant P and T, P = -dU/dV

if the TdS/dV term can be ignored, then the common slope of the U

1p. J. stevenson, Nature 258, 222 (1975).

2M. J. M. Bernal and H. S. W. Massey, Mon. Not. R. Astr. Soc. 114,
172 (1954).

3M. W. Zemansky, '"Heat and Thermodynamics," McGraw-Hill (1943), p.
320.
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vs V plot is the common pressure of the G vs P plot and the two

approaches are equivalent.

A number of different methods are frequently utilized to determine

G (or U). Typically, the differences between these various methods
consist of different approximations to the potentials and/or different
requirements on the system wave functions. When one of the phases is
metallic these considerations involve a decision about the "exchange"
term (see below), both whether and how to include this term. Both BM
and Stevenson include this effect: BM by using Hartree-Fock theory,
Stevenson by using the Kohn-Sham-Slater "average exchange' which
supposedly includes exchange and correlation effects in a local but
self-consistent approximation. Since the latter procedure tends to
give a lower metallic energy than straight Hartree-Fock, it is some-
what curious that Stevenson's NH4 energy values are higher than those
of BM. Both calculations use a '"sphericized" NH4+ ion. Stevenson
claims4 this causes him to be about 0.1 ev high. From a rapid
skimming of Chapters 10 and 11 of ref. 5, this author would have
expected this to make a bigger differencef Both calculations use a
rigid ry, the radius of the smeared out protons in the sphericized

model. A flexible r, would allow lower energy (this would be more

4p. J. Stevenson (private communication) (Letter to Curtis Selph,
Oct. 1976).

3J. C. Slater, '"Quantum Theory of Molecules and Solids, Vol. 1,"
McGraw-Hill (1963).

* Note added in proof: The comments in ref. 5 are not applicable here:

Slater's molecules fill the space; the NH,* ions do not. Thus,
sphericizing makes Tittle difference. We thank Dr. Stevenson for
pointing this out.
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important at high pressures and correcting would tend to give G vs P
a less steep slope).6

Since Stevenson's paper1 gives only a bare outline of his
calculation, whereas the BM paper2 gives a relatively complete outline
of their calculation (including a tabulation of the effective potential
and of the core wave functions) we have attempted to repeat the BM
calculation. The plan of the present report is as follows: In the
next section we discuss what is meant by "exchange'. In section III
the Fock equations are derived and then the principal equation of BM
is obtained from the Fock equations - details of these derivations
are given in the Appendices. Section IV summarizes our initial
attempts to obtain BM's U vs V curve (without exchange). Section V
summarizes our work with exchange included. A summary of the entire

report is given in Section VI.

II. EXCHANGE
Exchange is a quantum-mechanical term arising from the Pauli
exclusion principle; there is no classical analog. (One can, however,

give a physical interpretation to the exchange term; such an inter-

Ip, J. Stevenson, Nature 258, 222 (1975).

2M. J. M. Bernal and H. S. W. Massey, Mon. Not. R. Astr. Soc., 114,
172 (1954).

6Stevenson (ref. 4) estimates this correction to be about 0.03 ev/ion
i.e., negligible.
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pretation can be used to approximate the exchange term leading to
Slater '"local" exchange, etc. Since BM do not use this approximation
we shall not comment further on it here.) Since we are dealing with
electrons (spin = 1/2) the complete (spin and space coordinates) wave
function must be anti-symmetric. This is consistent with the require-
ment that the probability of two fermions occupying the same state
should be zero.

The essence of the origin of the exchange term can be illustrated
by the following simple example: consider two electrons with the
same spin but represented by two different functions f and g. The
anti-symmetric wave function for the system is then

¥(1,2) = £(1)g(2) - g(1)£(2) (2)

where (1) stands for the x,y,z coordinates of the first electron, efc.7

The coulomb operator part of IW*HWdrldrz gives:
[¥7@,2) (e*/r),)¥(1,2)dT,dT,
= 2[g"(2) (e*/7,,)8(2)dr, [f (E()dT, -
2[g" (2) (e*/7) ) £(2)dT, [ (1)g(1)dT)

>

-
where Tip =1 ;}; dummy variables have been interchanged as

appropriate.

TFor the general, N-particle case, ¥ would be the N-particle determinant:
£, £,@) o0 £,(N)

¥(1,2...,N) = | £,(1)  £5(2) s 4 0 £,(N)

(1) £4(2) o0 0 £,
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In determining ground-state energy via the variational procedure
we add Lagrange multipliers to effectively make all the functions
independent and vary, say, £*(1). In the equation for f(1) the two
terms above become

2£(1) [g" (2) (e*/7;,)8(2)dT, - 28(1) [e*(2) (e*/r)£(2)dT,
The first term is clearly the direct coulomb term and represents the
potential energy of the electron associated with coordinate 1 in the
field of electron 2. The second term is the '"exchange" term.8
Computationally, the significant thing to notice is that in the direct
coulomb term the entire 2-space integral multiplies the function f
for which we are trying to obtain a solution, whereas, in the exchange
term, f is inside the 2-space integral. The exchange operator is
thus a non-local operator, i.e., the exchange operator in the
equation for f(1) is different from the exchange operator in the

equation for g(1).

III. DERIVATION OF PRINCIPAL EQUATIONS
A. Outline of the Derivation of the Fock Equations

We desire the minimum of

)/ ¥l 3)

8In the case of N electrons f would be replaced by u:, g by uj and
each term would be summed over all j including j i The exchange
term would include only those u; for which the spin is the same as
the uj spin. This last dlstlncllon did not arise in our simple
example as we took both electrons to have the same spin.

e . —————— e e e e




where W(f}, f},...-ih) = det[¢i(§})]; §3 contains both space and spin
coordinates.
N N N N/
H= J (A%/2m)V2 + JU(R) + 1/2 ] Je¥/|¥, - T 4)
s i . i bk 1 2
i=1 i=1 i=1j=1

The three terms in H are, respectively, kinetic, nuclear, and electron-
electron interaction.

It would thus appear that the evaluation of eq. (3) is a form-
idable task: there are N kinetic energy operators, N nuclear operators,
and N(N-1)/2 electron-electron operators; the determinant of [¢i(§;)]
appearing on the left and right of H has N! terms, each term containing
N ¢(§) factors. Orthogonality relations and recognition of dummy
variables make the task tractable.

The orthogonality conditions are

[op K)oy (X)dTy = & - (5)
The denominator of eq. (3) then becomes simply N!. The first two
terms in H contain only one-variable operators; in App. A we show that
they give:

N e - -
(42/zm)jzlf¢j ()9, %6; (F))dr (A)

and

N * - -l ks
321 Jo; UG 6 (F)dry 8)

-
respectively; r contains space coordinates only. The third term in

H acts on two coordinates; in App. B we show that this gives:




N N =12 =
L
k=1 2= l?l = i_ﬂzl

¢*-‘¢*-¢-\¢A
8 femin n ey bl ) ) dt,dt,}

-h -
|r1 . r2|
©)
The first integral in (C) is called the "direct" term; the second is
called the "exchange' term.

We now want

SE

]
o

(6)

3E
a0, *

6E =

81 * + 322* Sbo* + ...+ 5%5; 8by* + (complex conjugate)
(7

These functions cannot all be varied independently since we want

any variation to preserve the orthogonality conditions (eq. (5)).

Using the method of Lagrange undetermined multipliers (effectively

making each 6¢i* independent) we can consider a particular 6¢i* as an

arbitrary variation; 6E = 0 then leads to the requirement that

dB o . .
= 0. This gives
(3¢i*) g

- @2/2m)V,%0; (7)) + UE)Y; () + Zj*ij¢j(;})

N (212 »
ve2{[ )7 [ lflﬁz%;L— dt,14; (1))

J=1 |;1‘r2
N K¢ e
- 1/s(spin 1, spin §) [f Y fr23¢1(r2) dryles (Pl =0 (8
j=1 |7,-F, |
7
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(There is a similar equation for each ¢i') We note that there is
considerable confusion in the literature as to whether one can

diagonalize the Aij in the non-closed-shell case (see App. C); we
shall assume that we cannot and proceed to derive the BM equation

(their eq. (I)) on that basis.

B. Derivation of Eq. (I) of BM from the Fock Equations

As far as the labelling of core-electrons is concerned the BM
model treats metallic NH4 as if it were '"funny sodium'; thus the 11
electrons are taken to be in a 1s22s22p®3s configuration. The 10-
electron ion problem is first solved separately (including exchange
terms). The resulting ls, 2s, 2p '"core" functions are then taken as
fixed and an equation like eq. (8) is written for the 3s (valence)
electron.

Since we are writing an equation for ¢; = wSS’ i.e., for a

function with & = 0, there is no need to include the 2p term in

ZAij; this term is automatically orthogonal to wSS due to having a
different % value. We also take Xii ® = Egge We substitute
- ~
¢J (rl) b (UJ (rl)/rl)yﬂ,j (61 ’¢1) 9
where Ylj is a spherical harmonic (a similar substitution is made for

wSS(f;)) and write Vo(rl) for U(;i), with

vo(rl) 5 7/1‘1 - 4/1‘0 rl i T

- 11/r1 2T
as per BM. The tilde signifies that these functions are not yet in

atomic units. As shown in App. D we obtain:




A2 dzu(rl) = e Zeff(rl) -

e e
1s,2s,2p (r )u( )
-e® ] 8(spins)[f —3—1—2 Yg;* (85,6,)dr,d(cos8,)d¢,]
3 17} - %l

>< ;j(rl)Ylj(el’¢1) = e (rl) ls~ls(r1) 25 Zs(rl) : (10)
It is legitimate to let the zj above run only over ls, 2s, 2p (no 3s):
originally this sum included w3s but for metallic NH, there is only
one ¢35 function (just one electron in outer shell); thus the st term
in the direct coulomb terms is exactly cancelled by the wSS term in
the exchange terms.

We next put this equation into atomic units (see App. E).

: 2
= _E_Effl + Vo(r)u(r) + _EE££££l u(r)
dr? T
1s,2s,2p uy (rdury)
-2 1 8(spins)[ [ =2 Y5 (6,6;)dryd(cosd;)d¢; ]

j I;a - -7
X uy(©)Yg5(6,4) = €5.u(r) - Aqup () - Apgupg(@) . (1)

Vos zeff’ €2g9 and the A's are now in Rydbergs.

The final step is to manipulate the exchange term to obtain a
purely radial equation. This is done in App. F. A key point here is
that we are dealing with closed % subshells; this makes ij2;(61,¢1))(
ng(9»¢) invariant under rotations, i.e., dependent only on the angle

between r and f}. We obtain:




L el

[-d?/dr? + V(T) - ess]u(r) + Alsuls(r) + XZsUZS(r) =

1s,2s,2p T a
= ') -9~
2 22 {r% 1founl(rl)u(rl)r1 dr; + rp“j;?unz(rl)u(rl)r1 % ldrl}ung(r)
(12)
with
V(r) = V,(r) + ZZeff(r)/r

and

Vo(r) = -14/r - 8/ro T f_ro

= -22/r -

in atomic units. Eq. (12) is eq. (I) of BM. We have also obtained
the identical final form following Fock.9
There are two (apparently both typographic) errors in BM's eq.
(I):
-2-1 . p s = -1
1 r in their last integral should be T .
(2) the (22 + 1) factor in their J  should bl 3,

The factor 2 multiplying V and € in BM's eq. (I) is due to their

expressing these entities in Hartrees (1 Hartree = 2 Rydberg).

V. Fock, Z. f. Phys. 81, 195 (1933).

1OA number of other references have eq. (12) as we've written it

(without the (2% + 1) factor in the exchange term). This would
appear to be a typographic error in the BM paper: For an a value of
3.68 a.u., BM get a ground state E (including exchange) = -7.5 ev.

We obtain -6.90 ev. using the correct expression and -9.65 ev. using
the (2% + 1) factor. The much smaller discrepancy between our
(correct factor) value and their value indicates that they probably
used the correct factor in their actual computation.

10




IV. RESULTS - OUR CALCULATION IGNORING EXCHANGE
In this section we describe our (unsuccessful) attempts to
reproduce BM's curve I: ground-state energy vs 'a'" (the Wigner-

Seitz radius) with exchange ignored.

A. Calculation with the Lagrange Multipliers Als and AZs Set Equal

to Zero
Without exchange and with A;g and Ayg set (arbitrarily) to zero,
eq. (I) of BM is:
[-d?/dr? + V(r)]u(r) = eu(r) , (13)
with boundary conditions:
u(0) =0 (14a)
du(r)/drla =0 (14b)
The computer program "WAVEB" is used to solve eq. (13). This
program, based on the Numerov technique, is outlined in App. G.

Results11 for the two values of "a'" used are shown in Table 1.

TABLE 1. GROUND-STATE ENERGIES WITHOUT EXCHANGE

Ms = A5 =0
a e(ev.) €(ev.)
(a.u.) This calc. BM
3.68 2.74 -1.26
4.80 -2.11 -4,37

1
: All BM energy values listed in this report are estimated from their
Figure 1.

11




Our Ae between the two '"a'" values is 4.85 ev, not even close to the BM

value of 3.11 ev. (see their Figure 1, curve I).

B. "Expectation' Value

Our next step was to orthogonalize the u(r) determined in
section A to uls(r) and uZS(r) using a Schmidt procedure and to then
find the "expectation'" value:

e = (ut(n)]-a%/dr® + V(r) |ut(x)) (15)
The computer program '"'DSPLSW", based on a spline routinelg; is used
to evaluate the numerical derivative involved herels. The computer
program "EINL'" evaluates eq. (15). Three comments on these programs
are in order:

(1) An attempt to avoid taking any derivative through expansion
of ut(r) in terms of u, ujg, and Uy would involve considerable
algebra plus values for €15 and €y

(2) In using DSPLSW, du< (r)/dr|, is found graphically.

(3) The uZS(r), written as PZs(r) in BM's notation, is not
orthogonal to their uls(r). It is straightforward but tedious to
show that one obtains the same u® (r) whether or not one first

orthogonalizes Uyg to upg.

12ye are indebted to Ray Scanlon for furnishing this program and for
discussions related to its use.

131ntegration by parts allows us to write
a a a
[ ut(a*ut/dr?ydr = ul(dut/dr)| - [ (dut/dr)dr .
0 o

The boundary conditions u(0) = 0, (du*'/dr)la = 0, make the first term
vanish; thus, only the first derivative of ut+ is needed.

12
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Results for the same two "a'' values employed in Section A, above,

are shown in Table 2.

TABLE 2, '<§> WITHOUT EXCHANGE
(See Eq. (15) of the Text)

a <§> (ev.)

(a.u.) This Calc.
3.68 1.11
4.80 -2.71

Our Ae between the two '"a'" values is approximately 3.8 ev, again not very

close to BM's Ae of 3.1 ev.

C. No-Exchange Calculation Including Ay4 and Aog
From the failure of the two previous approaches to reproduce the
BM no-exchange-term curve, it appeared one should include Als and AZs

and use a '""3-dimensional" search technique (for A A, , and €);

1s’ "2s
i.e., we are now solving:

[-d%/dr? + V(r)]u(r) = eu(r) - AUs (™) = Ay, (1) (16)
with conditions
<u|uls> = <u|u25>. =0 a7)
in addition to the boundary conditions expressed by eqs. (14a) and
(14b). We use the computer program 'TWAVE". The bulk of the 3-
dimensional search logic is contained in a subroutine utilizing a
""Rosenbrock" technique.14 A narrative description of the TWAVE

program is given in App. H.

14The Rosenbrock-search subroutine used here was written by Ray Scanlon.
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Results for the two values of '"a'" previously used are shown in

Table 3.

TABL: 3. NO-EXCHANGE CASE

a € (ev.)
(a.u.) Our 3-d Calc.
3.68 1.62
4.80 ~2463

Our Ae is 4.25 ev., not very near BM's Ae of 3.11 ev. At this time
we have no explanation as to why our Ae as calculated here differs so
much from that of BM.

For completeness, ang since the u(r) of eq. (16) is needed as
starting input for the iterative solution including exchange
(discussed in the next section) we've calculated € without exchange
for a number of values of "a.'" These results and those of BM are
listed in columns three and four, respectively, of Table 4; our no-

exchange results are also compared with those of BM in the upper part

of Figure 1.

14
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Figure 1. Calculated energy-volume relations at 0°K for metallic ammonium.
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TABLE 4. AMMONIUM RESULTS

a Vol{§4atgm No exchénge (ev.) Wi?h Exchange (ev.)
(a.u.) (10 4%cm®) This cale. BM This calc. BM
2.24 6.98 38.82 >10. 2.610 >3,
2.56 10.41 22.23 >7. -3.226 ~1.0
2.88 14.83 12.60 . >5. -5.573 -4.20
3.36 23.55 4.670 0.95 -6.721 -7.05
3.68 30.93 1.619 -1.26 -6.898 -7.52
4.00 39.72 - .337 -2.63 -6.886 -7.60
4.48 55.81 -1.830 -3.95 -6.717 -7.32
4.80 68.64 -2.627 | -4,37 -6.584 -6.95
5.12 83.31 -3.136 -4.70 -6.431 -6.65
5.44 100.0 -3.468 -4.75 ..-6ﬂ282 -6.35

V. OUR CALCULATION INCLUDING EXCHANGE
A. Procedure

In this section we are concerned with the solution of eq. (12)
with the right-hand side included; u(r) must also satisfy the boundary
conditions expressed by eqs. (14a) and (14b). We follow the procedure
as outlined by BM. To start the iterative process we first use the
solution obtained ignoring exchange for u(o)(r), namely, the solution
to eq. (16) obtained using TWAVE. The u(r) obtained using TWAVE is
first orthogonalized to uls(r) and uzs(r) and then normalized. This
ul(o)(r) function is then used to calculate the exchange term g(r).

We then solve eq. (12) with Als =\, = 0.

2s

16




[-d?/dr? + V(1) - e}u(k+1)(r) = -g(k)(r) (18)

with
1s,2s,2p r
= -2-1 '}
g(k)(r) = -ng 2 {r | {)unl(x)uikk)(x)x dx
2,2 -2-1
+ 7 I;unz(x)ultk)(x)x dx}ung(r) (19)

The u(r) found by solving eq. (18) is then orthogonalized to up ¢ (1)
and u, (r) and then rencrmalized. This u‘kk)(r) is substituted into
eq. (19) and the resulting g(k)(r) is used as input to eq. (18) to
obtain u(k+1)(r). This process is 'continued until "convergence" is
obtained. We have used four cycles in most cases; convergence
appears to be obtained in three cycles. Convergence here is in the
sense that the orthogonalized and normalized u¥(k+1)(;) % ulrk)(r)
and the unorthogonalized u(k+1)(r) = u(k)(r). The (unorthogonalized)
u(r) solution of eq. (18) does not appear to be converging to ut (1),
i.e., orthogonalization remains significant no matter how large k
becomes.15

The operations above are performed in the computer program
""COMBINE": orthogonalization and renormalization are done in sub-
routine RENOM using a Schmidt procédure; g(r) as given in Eq. (19)
is evaluated in subroutine XCHNG; eq. (18) is solved in MAIN of
COMBINE using a Numerov technique similar to that of WAVEB (see

App. G).

151t is not at all clear that this procedure of solving eq. (12) with
Als = A2s = 0 and then orthogonalzing the resultant u(r) to u;¢ and
uy¢ is valid; we comment on this at some length in App. I.

17




B. Results (Including Exchange)

Columns five and six of Table 4 give our results and those of BM
for various values of "a'" for the exchanged-included case; these results
are also compared in the lower part of Figure 1. Our values are
roughly 0.5 ev. above BM's over most of the important part of the
volume range (20 to 60 on the horizontal scale of Figure 1).

BM calculated total energy by adding the mean Fermi energy ep
to the ground-state energy including exchange. The mean Fermi energy
was calculated on a free-electron basis following Mott.16 Since our
ground-state curve is some 0.5 ev. higher than BM's and since our e
is identical to theirs, our total (internal) energy U will also be i
some 0.5 ev. above theirs. Our values for U are compared with those
of BM in Table 5.

To obtain the difference in energy between metallic NH, and the
NH3 - %‘Hz mixture we follow BM (see their eq. (3)).

[NHy, metal] = [NH;, gas] - Ap + (e + eg), (20a)

where Ap is the proton affinity of NH;.

[NH;, crystal] + %‘[Hz, crystal] = [NH3, gas] - Iy - %‘D(Hz) - B
(20b)
where IH is the ionization energy of atomic hydrogen, D(Hz) is the
dissociation energy of Hz and

1
B = B.E.(NHs, crystal) + E'B.E.(Hz, crystal) , (20c)

16N,F. Mott and H. Jones, "Theory of the Properties of Metals and
Alloys," Oxford (1936). (Dover (1958), pp. 54,55).

18
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TABLE 5. AMMONIUM RESULTS

UvsV

Vol/N atom € Total energy, U (ev)

(10~2" cn®) (ev) This calc BM

6.98 5.963 8.573 >4,

10.41 4.565 1.339 >2.
14.83 3.607 -1.966 -0.59
23.55 2.650 -4.071 -4.40
30.93 2.209 -4.689 -5.31
39.72 1.870 -5.016 -5.73
55.81 1.491 -5.226 -5.83
68.64 1.299 -5.285 -5.65
83.31 1.141 -5.290 -5.51
100.0 1.011 -5.271 -5.45

ep = (3/5)Epax

N/Q = (# of electrons)/(unit volume) = 3/4ma’

2/:”(f‘nz/maz), the expression used by BM.

eg = (3/10) (91/4)
Then, € = (1.10)(27.2)/a% = (29.92)/a®

U = Ground state energy (including exchange) + €

16N, F. Mott and H. Jones, "Theory of the Properties of Metals and
Alloys,'" Oxford (1936). (Dover (1958), pp. 54,55).

19
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| the sum of the respective binding energies. The desired mixture
b energy is then
[mixture] = [NH3» gas] - IH - %‘D(HZ) - B - €12 (20d)
where the positive quantity €12 is the reduction in energy (per NH3
molecule) due to mixing the two molecular crystals (our notation
differs somewhat from BM's). The various entities in eqs. (20a) -
(20d) are depicted in Figure 2; this picture is consistent with eq.
(3) of Stevenson1 (Stevenson's B includes our 512).
Following BM, we take the various binding energies (B and 612)
as being negligible. Eqs. (20a) and (20d) then give:
[NH,, metal] - [mixture] = (e + €g), - Ap + Iy + D/2 (21)
BM obtained a minimum U for the metal some 0.86 ev. above the minimum
for the mixture; we obtain ~ 1.4 ev. for this difference. Our total17
(internal) energy curve is compared with BM's in Figure 3. (Stevenson's
metallic and mixture curves are also shown.) The zero of energy for
Figure 3 is that of infinitely dispersed NH4+ ions and electrons:

U(zero pressure) = A_ - -D/2 -B-c¢

mixture P Iy Ky

12 =

This is consistent with BM's Figure 1 and with Stevenson's Figure 1.
(As above, the B and €12 terms may be neglected.) Stevenson obtains
the mixture curve from

u() = u() - IPP'(dV(P')/dP')dP' . (23)
o

Ip, J. Stevenson, Nature 258, 222 (1975).
17Ground-state energy (with exchange) plus €p.
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Figure 2. Schematic energy picture.
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1
V(P) = V(NH,P) + E‘V(HZ,P) (24)

where V(NHS,P) and V(HZ,P) are the molecular volume-pressure relations
of ammonia and hydrogen solids, respectively. Stevenson obtained
V(NHz,P) by interpolating between the experimental18 equation of state
at low pressure (P < 20 kbar) and the theoretical equation of state

at high pressure (P > 2 Mbar) calculated!® from Thomas-Fermi-Dirac

theory. V(H,,P) is taken from Ross's analysis20

of the Livermore
shock data.

There are three differences between our metallic NH, U vs V
curve and BM's curve:

1. Our equilibrium point is shifted considerably toward Stevenson's
value of ~ 95 x 10-24 cm3/N atom (5.35 a.u. radius). We obtain ~ 76.7
(4.99 a.u.) whereas BM obtained2l 47 (4.23 a.u.). At small volume (high
pressure) our curve tends to agree with BM's; at very large volume
(low pressure) our curve approaches Stevenson's.

2. At the respective equilibrium volumes our internal energy is
about 0.5 ev. higher than BM's. BM obtained -5.84 ev.; we obtain

-5.35 ev. (Stevenson has -5.36 ev.). The 0.5 ev difference between

our curve and BM's exists over a sizable pari of the volume range.

185, W. Stewart, J. Chem. Phys. 33, 128 (1956).

19g, E. salpeter and H. S. Zapolsky, Phys. Rev. 158, 876 (1967).

20y, Ross, J. Chem. Phys. 60, 3634 (1974).

2lGiven in their text; their Figure 1 indicates approximately 52 (4.38 a.u.)
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3. Over a considerable part of the range of interest our curve
has a smaller slope leading to smaller pressure at a given volume.

We agree with Stevenson (Ref. 1) that BM's transition pressure
(Pt) estimate is invalid due to their not obtaining an NH; - 5 H2
equation of state. BM, using only the mixture equilibrium point,
estimate P, to be 100 kbar with a range from 60 to 140 kbar based on
an 0.5 ev. uncertainty in Apzz.

In computing the Gibbs energy (G = U + PV - TS; T taken as zero),
the differences (#2 and #3 as listed above) between our U vs V and
BM's tend to cancel and we obtain essentially the same G(P) curve as

they do. At very low pressure our curve tends to approach Stevenson's

(see Figure 4).

VI. SUMMARY AND CONCLUSIGNS

This technical report is primarily concerned with the BM
calculation for metallic NH4. Our calculation, being essentially a
repeat of BM's, suffers from the same deficiencies, namely:

1. The calculation is essentially atomic. (Probably minor.)

2. Sphericized NH4+ ion. (Probably minor.)

3. Rigid r, (radius of hydrogen "shell").

Ip, J. Stevenson, Nature 258, 222 (1975).

220y total energy curve (U vs V) for the metal would lead to P, ~ 135
kbar using the BM procedure; we emphasize again that this procedure
is invalid.
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4. Rigid core states (1s, 2s, 2p), merely renormalized for
different values of "a'.

5. Approximation made in using BM's iterative procedure for
solving their eq. (I) with exchange (our eq. (12)).

6. Free electron calculation for the Fermi level. (Probably
significant, particularly at the higher pressures.)
The major deficiency in the BM paper 'is associated with their attempt
to calculate the transition pressuré; they do not have a curve for the
NHz - %-Hz mixture!

As outlined in Section IV, our attempts to duplicate BM's curve I
(ground-state metallic energy without exchange) were unsuccessful.
Our attempts included: Simply solving BM's eq. (I) (our eq. (12)) with
exchange ignored and with Als = As = 0 (Sec. IV.A.); orthogonalizing
the resultant u(r) to uig and Uyg and then finding an "expectation"
energy (Sec. IV.B.); including xls and Apg using a Rosenbrock technique
(Sec. IV.C.). Comparison between the latter calculation and BM's is
summarized in columns three and four of Table 4 and in the upper part
of Figure 1.

Attempts to match BM's calculation including exchange were more
successfulzs; results are summarized in the last two columns of
Table 4 and in the lower part of Figure 1. We emphasize that the

validity of BM's mathematical approach (solving our eq. (12) with

23ye have, however, not really duplicated BM's results; the differences
may be primarily a reflection of the approximately two decades of
development in electronic computers which took place between the
two calculations.

26
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kls = Aps = 0 and then orthogonalizing in combination with an iterative
process) has not really been established.

Total internal energy U is given by the sum of ground-state
energy (with exchange) and mean Fermi energy. Our U(V) curves as
well as BM's and Stevenson's are shown in Figure 3. We find the
internal energy at the equilibrium volume to be about 0.5 ev higher
than that obtained by BM, i.e., ours is very close to Stevenson's
value of -5.36 ev. We note that Stevenson uses a proton affinity
value some 0.46 ev smaller than BM's'; this would tend to make
Stevenson's U(V) curve correspondingly higher than BM's. We used the
BM proton affinity value. Stevenson's equilibrium radius (for the metal)
is 5.35 a.u.; BM's is 4.23 a.u. We obtain 4.99 a.u., i.e., shifted
outward considerably toward Stevenson's value. The approximately
0.5 ev difference between our metallic U(V) and BM's exists over a
sizable part of the volume range. Our U(V) has a smaller slope than
BM's over a sizable part of the volume range; this leads to smaller
pressure at a given volume.

In combuting the Gibbs energy the last two differences tend to
cancel and we obtain essentially the same G(P) curve as BM. At very

low pressure our curve tends to approach Stevenson's (see Figure 4).

Stevenson seems to feel fairly strongly that the desired

4
transition will not take place and has suggested that BM may have

1p, J. Stevenson, Nature 258, 222 (1975).

4D. J. Stevenson (private communication) (Letter to Curtis Selph,
Oct. 1976).

27
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As an argument in support of his results over BM's, Stevenson cites

made a computational error. Our repeat of the BM calculation indicates

one cannot explain the difference between Stevenson's NH, curve and
BM's (see Figure 4) solely by computational error on the part of BM. 24
4
the fact that his equilibrium volume is much larger than BM's; our
calculation shows that, within the BM approach, one can shift the
equilibrium volume considerably without making an appreciable change
in G(P). It is extremely difficult to estimate "error bars" for the
curves in Figure 4 (or Figure 3); they may be as large as 1-3 ev. In
our opinion, while a transition from the NHS—%H2 mixture to metallic
NH4 in the funny sodium form is possible, it appears unlikely, par-

ticularly below about one Mbar.”*

4p, J. Stevenson (private communication) (Letter to Curtis Selph,
Oct. 1976).

24This assumes that the BM 1ls, 2s, and 2p wave functions are essentially

correct; we did not recalculate these. We note that Stevenson did
his calculation twice; once with the BM cores, once with another set -
the difference in equilibrium U was only 0.04 ev.; difference in
equilibrium radius only 0,17 a.u. Thus, recalculating the core wave
functions is unlikely to change our results.

*Note added in proof: Discussion with Dr. Stevenson indicates that
funny sodium is just not a good candidate for the metallic form of
NH,4 (assuming his mixture curve to be reasonably good, the volume
would have to change drastically to get a common U vs V tangent). It
is more probable to go to an arrangement such as H's forming an 'fcc"
lattice with N sitting in the ''body-center' Epsition or possibly to a
metallic state formed by the overlapping in k-space of the molecular
energy bands. Stevenson estimates the required pressures to be in the
Mbar (and above) range. After discussion of our results (see, in par-
ticular, the last paragraph of this report) Stevenson indicated that
BM may have an error in their physics (e.g., use of the free-electron
€p can lead to significant error).

28




16.

18.

19.

20.

25,

26.

27.

REFERENCES*

D. J. Stevenson, Nature 258, 222 (1975).

M. J. M. Bernal and H. S. W. Massey, Mon. Not. R. Astr. Soc. 114,
172 (1954).

M. W. Zemansky, '"Heat and Thermodynamics,'" McGraw-Hill (1943),
p. 320.

D. J. Stevenson (private communication) (Letter to Curtis Selph,
Oct. 1976).

J. C. Slater, '"Quantum Theory of Molecules and Solids, Vol. 1,"
McGraw-Hill (1963).

V. Fock, Z. f. Phys. 81, 195 (1933).

N. F. Mott and H. Jones, "Theory of the Properties of Metals and
Alloys," Oxford (1936). (Dover (1958), pp. 54, 55).

J. W. Stewart, J. Chem. Phys. 33, 128 (1956).

E. E. Salpeter and H. S. Zapolsky, Phys. Rev. 158, 876 (1967).
M. Ross, J. Chem. Phys. 60, 3634 (1974).

J. R. Reitz in '"'Solid State Physics,'" ed. Seitz and Turnbull,
Vol. 1, p. 1, Academic Press (1955).

J. C. Slater, "Quantum Theory of Atomic Structure," Vol. 2,
McGraw-Hill (1960).

J. C. Slater, '"Quantum Theory of Molecules and Solids,'" Vol. 4,

McGraw-Hill (1974).

*The omitted numbers are footnotes.

29

o 2 g




28. L. Schiff, "Quantum Mechanics,'" McGraw-Hill (1949).
29. D. R. Hartree, "The Calculation of Atomic Structures,' Wiley
(1957), Chapter 4.
30. Ray Scanlon, private communication.
30

e vrny wo Py




APPENDIX A

DERIVATION OF THE ONE-VARIABLE-OPERATOR

INTEGRALS OF THE HARTREE-FOCK EQUATION

Explicitly, the N-electron wave function Y of the main text is

o) §,E) 0 &y

52(i1) 52(*}) ey g0 $z(£ﬁ)

(A-1)

dyED oG ot ByEY

with Tpi (%)

sy - . . .
¢i(rj)si(63)' ¢i(rj) is a purely spatial function.

s: () can be either a(5:) or B(J;) where
573 J J

a(a'j) = 1, if the spin-coordinate b'j is up.
=9, if c"r'j is down.
B(b‘j) =0, if a‘J is up.

-ty

=1, if 0. is down.

—

The orthogonality condition (eq. (5) of the main text) written
explicitly for space and spin is

IINCATRCATN N CAERC/ I (A-2)
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Sxp 1s a condition to be imposed on the spatial functions; Gsk,sm is

insured by the a,B definitions given above.

Consider Hkinetic of eq. (4) of the main text; this one-variable
operator acts on det [¢i(;3)]' (Since we deal here with a one-variable
operator, and since the operator does not affect the spin, we can
ignore the spin coordinate; in Appendix B, where we deal with a two-

variable operator, we explicitly include the spin functions.) Now

2.
1

multiplicative factor this operator, acting on det [¢i(f;)] gives

consider just one term of Hkinetic’ namely V ignoring the purely

Zj=lvi¢j(;1)[permutations of ¢a(fL)]j

(A-3)

For each value of j the square bracket contains (N-1)! terms, each with
(N-1) factors: a =1,2,°**,N (a # j); b = 2,3,°**,N. Combining this
with det*[¢2(;i)] and using the orthogonality conditions we see that
only one of the N! terms of det” "matches" (gives a non-zero integral)
any particular term of (A-3), i.e.,

*(T,) [correct i £o"(F

¢j 1 rect permutation o ¢a(rb)]j
matches

Vi¢j(?i)[particular permutation of ¢a(;L)]j :

This leads (for V; alone) to

N
(N-1)1 ]

; j¢j (FIV]6; (F)dT; (A-4)

1
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We obtain similar expressions for V;, Vg,"', Vﬁ‘ Since the variable

acted on in (A-4) is the variable of integration, each of Vi, V;, etc.,

will give the same result. Thus (dividing by the N! of the denominator):

N * 2 -
i)/ <Y - 0w o) G)Te Fpary - es)
This is (A) of the main text.

A similar treatment of H gives (B) of the main text.
nuclear
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APPENDIX B

DERIVATION OF THE TWO-VARIABLE-OPERATOR

INTEGRALS OF THE HARTREE-FOCK EQUATION

The third term of eq. (4) of the main text, the electron-electron

interaction Hez-ez’ is a two-variable operator. Consider just one term

of this operator, namely 1/|F)-f,| , operating on det [¢i(i3)]. This
gives

) i
N N ¢ )¢ ()

k=1 %=1 |#,-2,

sk(ai)sz(aa)[Permutations of ¢a(§L)sa(6%)]k2
r-
1°2

(B-1)
For each choice of k,% in the double sum, the square bracket contains
(N-2)! terms, each with (N-2) factors: a =1,2,3,"°',N (a # k,%);
b =3,4,"°°,N. when we multiply by det*[$i(i3)], two of the N! terms
in det” will "match" any particular term of (B-1), i.e.,
- * _a s *
¢;(r1)¢z(r2)sk(31)sz(da)[correct permutation of ¢a(¥L)sa(SB)]kz
and
* -l * o * -
¢1(r1)¢k(f})szaﬁ)sk(da)[correct permutation of ¢a(fL)sa(ob)]kz
match
-
¢k(r1)¢g’(f2) &= & = N
——T;E:;gT__— sk(ol)sz(cz)[partlcular permutation of ¢a(rb)5a(°b)]kg
as far as spatial functions are concerned. For the spin functions:
Sks Sy can be any a,B combination for the first of the two matching
terms; in the second matching term sy must equal Sk in order to have a

non-zero value; this is readily seen to imply that, for this term,

electrons 1 and 2 must have parallel spins. Thus, 1/|?;'f;' gives

34
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|6, (F]) 12|69 (F) |2

N-2)133{J T,dt
* _=h * < ? (B-z)
b, (T8, (T,)0, (F)0, (F,)
- 8(spins) [ 2L R 2 g gr y,
T)-T

So far, we've considered only 1/|§1'f}|3 there will be a total of
N(N-1) operators:
- 2 A = aiele . -b - =5 cee - =

1/|1;-%,|, /|7 -F4),° ", l/Ifi-er, l/lrz-rll, i 1/|rN- N-ll'
- - - - . & ¢ .
r;, T; in each l/lri-rj| are also the variables of integration in that
particular case; thus, each operator gives the same result. Then
(dividing by the N! of the denominator and replacing the e?/2
multiplicative factor) we obtain (C) of the main text. (We've

interchanged ii, f} in the second integral of (B-2); this is clearly

allowable due to the form of the operator.)
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APPENDIX C

CAN THE XA MATRIX APPEARING IN THE

FOCK EQUATIONS ALWAYS BE DIAGONALIZED?

There is considerable confusion on this point in the literature.
Reitzz5 states that one can always choose solutions such that A is a
diagonal matrix (emphasis added). Reitz is dealing explicitly with the
crystal case. Slater, in his derivation of the Fock equations for the
atomic case26, appears to show that a unitary transformation of the
one-electron functions ¢j(ﬁ;) can be made which will diagonalize A
(Section 17-1); however, in Section 17-5 (for non-closed shells) of
ref. 26 Slater states that one cannot diagonalize A. In the crystal
case27 Slater seems to indicate, in Section 1-2, that one can diagonalize
Ke

Without pursuing the matter further it would appear that the
crucial factor is whether one uses a single determinantal function
(A diagonalizable) or whether one needs more than one determinantal

function (A not, in general, diagonalizable).

253, R. Reitz in "Solid State Physics,'" ed. Seitz and Turnbull, Vol. 1,
p. 1, Academic Press (1955).

263, c. Slater, '"Quantum Theory of Atomic Structure," Vol. 2, McGraw-
Hill (1960).

27J. C. Slater, "Quantum Theory of Molecules and Solids,'" Vol. 4,
McGraw-Hill (1974).
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APPENDIX D

DERIVATION OF THE BERNAL-MASSEY EQUATION:

FIRST STEPS IN OBTAINING THE RADIAL EQUATION

In spherical coordinates

v; = (1/r%)3/3r(r%3/9r) + (1/r*)[(1/sinb)

X 3/36(sinBd/30) + (1/sin?6)3%/3¢2] (D-1)

28

We know™" that the square bracket of (D-1) operating on Yo gives

'2(2+1)Yzm' Since & = 0 here, we may drop this term.

Eq. (8) of the main text then becomes

: ,ﬁz YO a2 u(r ) 2 Yo eff(rl) ~
T dr? E¥eglEy) = = u(rl) +ez——r'1-—u(r1)Yo

1s,2s,2p ol )S(r Woltoibad .
) 8(spins)[f J- 2 2 b dT2]¢j(r1) (D-2)
u(ry) i uls(rl) %00 u2s (r1) $
= € ———— = - ——— - —
3s 1 0 1s r; 0 2s r 0

Since the Y, terms have no angular dependence and as all are normalized
with the same factor 1/v4mw, we may simply factor out the Yo factoring
out 1/r1 as well and substituting for ¢j as per eq. (9) of the main
text, we obtain eq. (10) of the main text. The direct coulomb term

has been replaced by an averaged term Eeff(rl)/rl.

28L. Schiff, "Quantum Mechanics," McGraw-Hill (1949). See eqs. (14.21)
and (14.22), Chap. IV.
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APPENDIX E

DERIVATION OF THE BERNAL-MASSEY EQUATION:

TRANSFORMING TO ATOMIC UNITS

Let
T = ap
with
ag = fi/me? = 1 Bohr radius
£2/2ma,? = 1 Rydberg
Also let

Vo(pl) = ‘70(1'1)

u(x)

n

ulp)

Zeg£(Py) = Zegg(ry)

After all these substitutions have been made and the entire equation

multiplied by 2ma,?/#i?, replace Py and p, with r and r; respectively.

This gives eq. (11) of the main text.
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APPENDIX F

DERIVATION OF THE BERNAL-MASSEY EQUATION:

MANIPULATION OF THE EXCHANGE TERM FOR CLOSED %-SUBSHELLS

Due to the rotational invariance in eq. (11) of the main text we
can always (in the integration over rj) choose the polar axis to be in
the r direction.

T d

r’ = (r? «+ rl2 - 2rry cosy)%. (F-1)

2 A,
! r
i For T, <'r,
4 r’ = r[1 + (r1/r)2 - 2(r;/r)cosyl
=3 o =
¥ i L R )
Y with X1 = Z Pg'(cosy)(rl/r)m .
P~ za=0
e (ref. 28, eq. (14.10))  (F-2)

Similarly, for ry >r,

L1 % L
- = ?il‘zopz‘(cosy)(r/rl) . (F-3)

For j standing for 1s, the r| < r part of the exchange integral in eq.

(11) of the main text is then

1 T o - Ui ' 1 2T
[z [ wpulr) | (/)" dry [ Poo(cosydd(cosy) —= [ o] (F-4)
¥ r =0 1s 170-20 v=0 VAT §.=0 E
using Y, = 1//4m . Inserting Po(cosy) = 1 into (F-4) and using

(ref. 28, eq. (14.15)),

28;  Schiff, "Quantum Mechanics," McGraw-Hill (1949).
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m™
Y£0p2(cosy)pz,(cosy)d(cosy) = (2/[2£+1])6z2» L (F-5)

the 1s exchange term (for r; < r) in eq. (11) becomes
1

3 o
-2/ f ouls(rl)u(rl)drl]uls(r) : (F-6)

T,=

1
For r, > r we have
a
-Z[rf=ruls(rl)u(r1)(1/r1)dr1]uls(r) : (F-7)
1

There will be similar expressions for the 2s term.
For j standing for 2p
g’ *
m-zl Yin(01,61)Y;n(6,6) = (3/4m) cos®; cosd

+ (3/8m)sind, sino[el (#01) 4 ¢71(0-01)]

= (3/4m)[cosB; cos® + sinB; sind cos(¢—¢1)]
= (3/4m)cosy = (3/4w)P1(cosy) N (F-8)

The 2p integral in eq. (11) is then (for r; < 1) ,
T © o U
[1/r [ u, (x))u(x,) § (r,/7)" dr; [ (3/4m)P, (cosY)
2pt1 ) B 1 1 1
T,=0 L°=0 v=0

2n

X Py +(cosy)d(cosy) j'd¢r] ’
6,0

1

Using (F-5), the 2p exchange term (for r.< r) becomes

1

T
2/ [ ugp(rputrrydr Jugy (o) (F-9)
1
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and (for r > T),

au, (r,)u(r,)
-2r[ f ——ZP—:—-—ldrl]uzp(r) - (F-10)
r1=r 1‘1 .
Collecting eqs. (F-6) through (F-10), the entire exchange term can be
written

-2

r

-2-1 2
) ™ u_,(ry)u(r,)r, dr
1s,2s,2p o e 171 2

1 rlf:unl(rl)“(rl)rl-l-ldﬁ Yupg (1) . (F-11)

Inserting this into eq. (11) of the main text and rearranging somewhat

we obtain eq. (12) of the main text.
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APPENDIX G
THE NUMEROV TECHNIQUE AND COMPUTER PROGRAM '"WAVEB"

I. Basis of the Numerov Process and a Narrative Description of ''WAVEB"
We note that "MAIN" of the computer program ''COMBINE'" is very
similar to "WAVEB'; the differences are discussed in Part IV of this
Appendix.
The treatment here is based on that of Hartreezg. The Numerov
process is applicable to linear second-order differential equations.

Consider the equation

£
"

f(r)u + g(r) (G-1)
We treat three cases:

(1) No exchange; Ajs = A2g = 0. Eq. (13) of main text.

(2) No exchange; A's included. Eq. (16) of main text.

(3) With exchange; A; = Apg = 0. Eq. (18) of main text.
In all three cases:

f(r) =V(r) - € .

For case (1), g(r) =0 (G-1a)
For case (2), g(r) = Alsuls(r) + AZSuZS(r) (G-1b)
For case (3), g(r) = ls,gs’zé-Z){r'z'lf:unz(x)u(k)(x)xzdx

+ rl{:unz(x)u(k)(x)x'z'ldx}unz(r) (G-1c¢)

290. R. Hartree, "The Calculation of Atomic Structures,'" Wiley (1957),
Chapter 4.
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where u(k)(x) is the u of the previous go-round when we are solving
eq. (G-1) for u(k+1)(r).
Define the '"first difference" as

Guj +;i

= Ujp - Y (G-2)
where uj is a shorthand notation for u(rj) where rj here represents
the value of r at the jth point of the r mesh. Define the '"second

difference" as

8%u; = 8u.

j s " Guj_% = uj+1 - Zuj + U1 (G-3)

A Taylor series expansion of u leads to

24. = 2[ . _1_2,"___1_‘0.11 8 =
§%u; = (A1) Cuym + 3 6%u; 70 &Y% ] +o(r)® ., (G-4)
We will ignore the 6*term and the O(Ar)® term in eq. (G-4). Combining

eqs. (G-1), (G-3), and (G-4) gives

By © it tu;[28410£;] - uj_y[5-£; 11 + g;,; + 10gj + gj_y)
(G-5)
with § = 12/(ar)?
An inspection of eq. (G-5) shows that Uj41 depends on the u values
of the two '"previous' (further left) points j and j-1. Thus, some other
procedure must be used to determine u; near r = 0. This "starting"

procedure is based on the expansion

unz(r) = Arl*l(l +ar + Br2 + yr¥ + **) (G-6)

near r = 0. Substitution of (G-6) into (G-1) and solution in series
allows evaluation of a, B, and Y in terms of f and g. This is used to
generate u(2) and u(3). (From (G-6), u(0) = 0.0.) The explicit

evaluation of a, B, y is given in Part II of this appendix.
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WAVEB may be thought of as a two-part process: the first involves
getting the correct number of nodes; the second involves getting zero
slope at the r = a end of the mesh. Both parts involve a number of
iterations (typically on the order of 30 altogether).

Part one of WAVEB proceeds by an iterative process as follows:

An initial guess is made for € (read in as input data). u(2) and u(3)
are then found using eq. (G-6). The remaining u(r) are then generated
(for j = 4 to j = N) using eq. (G-5). An atomic-like function labeled
by quantum numbers n and £ must have n-%£-1 nodes. Once u(r) for j =
1,N is generated, the number of nodes are counted and € is changed to
e+Ae or to e-Ae to start the next iteration. From the form of eq.
(G-1) and either eq. (13) or (16) of the main text one sees that ¢
should be made more positive if there are too few nodes (need more
curvature) etc. The magnitude of the initial Ae step is read in as
data; as subsequent iterations 'zero-in'" to just produce the right
number of nodes within the prescribed mesh, the size of Ae is reduced.

* When the correct number of nodes are found (with the last node
sufficiently close to the r = a point) the program switches to part
two - the slope test. The form of eqs. (G-1) and (13) or (16) indicate
that when

(slope) (sign of u(N))

is negative (indicates slope is toward the horizontal axis; less
curvature is required) one should decrease €; when positive, one should
increase €. This process is continued until |Ae| becomes smaller than

some preset value.
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II. Evaluation of o, B, and y for the "Starting" Procedure

For uzs, €q. (G-6) is (for r near r = 0),

Uike1) B = Agyqy (8 + ar® + 8% + yr) (6-7)

From eq. (12) of the main text,

V(r) = V,(r) + Zzeff(r)/r

-14/r - 8/r, + Zzeff(r)/r, (r near r = 0).
For the three cases listed in connection with eq. (G-1)
£(r) = -14/r - 8/ry + 2Z,¢e(x)/T - € . (G-8)
Expanding Zggg(r) in a taylor series (for r near r = 0),
f(r) = -14/r + Zzef%(O) ~ 8lr, - € # rzef;(O) (G-9)
where we have used Z(0) = 0.0. Zefé(O) and Zef;(OJ, as well as A
and A, a,. introduced later, may be evaluated by expanding the
appropriate function (Zgge(r) or u, (r)) in a Taylor series for the
first three non-zero values of the function and solving the resultant
equations simultaneously. We use the Zeff(r) of BM's Table I. We
obtain Zef;(O) = 20.1340 and ZefE(O) = -17.4959; Z, * 1.84 as per BM.
Substituting (G-7) and (G-9) into (G-1) we obtain
A(k+1)[2a + 6Br + 12yr?] - g(v)
+ [14/r + R, - rZef;(O)]A(k+1)[r + ar? + Br® + yr*] = 0 (G-10)
with

Re = € + 8/1g - 2Z,5£(0) (6-11)
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Case (1): g(r) =0

Equating coefficients of the various powers of r to zero separately

(keeping terms to order r?

only), we obtain
o= -7
B = -[14a + R /6 (G-12)

[Zegs(0) - 148 - aR.1/12

<
i

Cases (2) and (3)

From (G-6),

ups(r) = Aj (r + aj r® + LIPS c1sT")

ups(r) = Apg(r + apr? + bpsT? + cp6T")

- 2 3 " 5
uzp(r) = Azp(r + azpr + bzpr + CopT iy 24 (G-13)

To order r?

» g(r) can be written

g(r) = AjM (r + ajT?) + Ay M, (r + agsT?) . (G-14)
For case (2), M,s is clearly just Ans' In Part III of this appendix
we show that g(r) for case (3) can be written as in eq. (G-14) with

= 22 -1
M= - jouns(x)u(k) (x)x"'dx , (G-15)

for the u(k+1) solution. M ¢ for case (3) is evaluated in Subroutine
"AUX2" of '"COMBINE'". (We note that the Uzp function does not appear
in f(r) for r near r = 0.) When (G-14) is substituted into (G-10) and
the resultant equation is reordered we obtain .
2
A(k+1)[2a * 14] {A[k+1)[14a 6. Re] e nz:l(A'nsMns)}r

(G-16)
2

+ {A(k+1)[GR€ + 148 + 12y - Zef;(O)] - zl (AnsMnsans)}rz Q.
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Equating coefficients of the various powers of r to zero separately

(keeping terms to order r?

only), we obtain
a = -7

B = -[140 + R_ - (k+1) Z (AnsMns )1/6 (G-17)

Y = [Z466(0) - aR_ - 148 + Azi+1)n§1(AnsMnsans)]/12 :

III. Evaluation of Mns for Case (3).

Using eq. (G-7) for u )(x) and eq. (G-13) for Unos the first

(k
integral in eq. (G-1lc) becomes

2 2 oo
AngA [l + angr ¢ bygr® + -]

* el )
X fxL1 e a X + bnzx2 + o+ ]x[1 +# ax + Bx? + **+]x"dx .
o

(The r~%-1 and unz(r) factors of (G-1c) have been included in the

expression above.) The lowest-power term is
2 T 2 12443
A lA(k){)x = Al AT /(20+3) . (G-18)

We are interested only in terms of O(rz) or lower (see eq. (G-16)).
Thus, even for £ = 0, this first integral term may be ignored.

We rewrite the second integral term in eq. (G-1c) as

9 a T
rigg(e)lf - [] (G-19)
o (o}

The first integral in (G-19) must be a constant (independent of r);

writing C_, for this constant, this first term of (G-19) becomes

nL

I‘R'Anzrl.’l[l + anR,r + “.]Cnﬁ

using eq. (G-13); we rearrange this as
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A_.C r22+1[1 + a

neCns ngt * 7] 5oy

T

For uzp(2=1), this will be O(r®) and higher: thus uzp can be ignored
here. For 2 = 0 we have

2 -
Anscnsr + Anscnsansr + (G-21)

which must be considered. Using eq. (G-7) for u(k)(x) and eq. (G-13)

for Unos the second integral in (G-19) becomes

AgAG)T L ¢ aggr v o]
T
X [ XX . angx + +++Jx[1 + ox + °--]x_l'1dx .
o

(The rzunl(r) of eq. (G-1c) or (G-19) is included in this expression.)
The lowest-power term is

T
2 22+1 o 2
-AngA )T fo xdx = -AfmA(k)r 2372 (6-22)

which is of O (r®) even for % = 0; thus, this term may be ignored.

Thus, contributions to the ''starting" equation from g(r) come
only from u;g and uy¢ as indicated by (G-21); this gives, for r near
r =20,

2 a
g(r) = -2 ZlAns[f s gy )x1dx](x + a_ 1) (G-23)
n= o ]

verifying eqs. (G-14) and (G-15) for case (3), i.e., for the exchange

case with Als = AZs = 0.
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IV. Difference Between MAIN of "COMBINE'" and '‘WAVEB"

The overall routing of '"COMBINE" is shown in Figure 5. The
discussion in Parts I, II and III of this appendix applies to MAIN of
COMBINE as well as to WAVEB.

Our older system for generating an atomic-like wave function
worked reasonably well on a single-shot basis but isn't good for the BM
problem where we '"recycle", i.e., where the whole iteration is repeated
again with a new g(r). (In this discussion the word "iteration'
refers to a new guess at the energy € for a given g(r); the word
"'cycle'" refers to the set of € iterations for a fixed g(r).)

The specific problem with the older system is the result of several
factors. By the third or fourth cycle '"convergence'" is fairly well
obtained (input u (r) = output u (r)). Under the old system, u(r)
is forced to have an extra node, then energy is decreased somewhat and
€,u(r) are found which give zero slope. After, say, the third cycle,
the input energy for the first iteration of the fourth cycle is just
about right to give zero slope with the correct number of nodes;
however, the old system forces an increase in energy to create an
extra node, i.e., forces one away from the proper u(r).

In the new system the program: (1) Gets the correct number of
nodes. (2) Increases the energy, pushing the last (greatest r value)
node inward until this last node is some preset number of spaces in
from the end of the mesh. (3) Juggles the energy to give zero slope
at r = a. Since the new system needs only 25 - 35 iterations/cycle,

we start each cycle with the original |Ae| . We have also put the
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cycles

Preliminary
Read mesh, potential, etc.
Read ugp (r) from "TWAVE"
Read uj¢(r), upg(r), uzp(r)
Normalize ujg, Uzss U2p
Obtain (u15|u2§>
Read initial €, |A€]

L e

loop

——

N

(VAUXZ Evaluate Mns of (G-15)

-

XCHNG Evaluate g(r) of (G-1lc)

loop

iterations J.

Obtain u(r)
by Numerov process

A

Switching
[_ Proper # of nodes? |
no yes

I Room to‘fit slopezJ

yes

no
I LApply slope tesh
|

L;JAE[ small enough?
no yes

change €
appropriately

L

RENOM Orthogonalize u to ujgq,upg

Renormalize
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Figure §.

Print €, u(r) f—

Block diagram for 'COMBINE."
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DE-DEMIN test (the test for proper exit from the e-iteration loop) on
both the positive Ae and negative Aec sides.

Results of these changes: the first real run of COMBINE using the
old system involved five cycles; the fifth cycle required 292 iterations!
With the new system this cycle obtained virtually the same final €
(differed by 1 in the 7th significant digit) using only 29 iterations.
Secondly, using a starting Ae for this fifth cycle equal to (original
Ae)/10 only shortened the number of iterations by 6; the original Ae
(equal to 0.1 Ry in this case) gave virtually the same final € and
final Ae and produced a small enough final slope; thus the new system

just uses the same starting Ae (of order of 0.1 Ry) for every cycle.

51




——

APPENDIX H
THE "TWAVE" PROGRAM

I. A Narrative Description of '"TWAVE"

The heart of the 3-dimensional search is in Subroutine DRSNIN, a
Ray Scanlon routine based on the Rosenbrock technique. Initial guesses
for Al, Az, and € and the initial step sizes for each are read in as
data. The unnormalized BM u; (r) and uZS(r) functions are read in and
normalized.

DRSNIN contains a sophisticated search procedure. For each
""dimension" the routine first steps in the positive direction, then in
the negative direction if necessary; a success (smaller "object"
function) followed by a failure (larger object function) terminates
the search in that direction. Step sizes are automatically adjusted.
Thus, DRSNIN attempts to minimize the object function which in our
case is

(weight factor)[du(r)/dr|,]* + <?1u1€> 24 ({u|u2€> )

(H-1)

This reflects the boundary conditions: zero slope at r = a; u orthogonal

to u; and Uyee The object function is evaluated in Function (Subroutine)

s
H(X). H(X) calls Subroutine LWAVE which uses the Numerov technique
(see App. G) to find u(r). When u(r) contains the wrong number of
nodes a large number (10000.) is substituted for du(r)/dr|, in the

object function. The program can be run in either of two modes:

(1) Terminates after a preset number of cycles or when the object
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function becomes smaller than some preset value, which ever occurs
first. (2) Terminates after a preset number of cycles. If mode (2) is
used, one gets an indication of the convergence from a simple inspection
of the print-out. It should be noted that, typically, the object

function is evaluated many times within one '"cycle'.

II. Normalization of u(r)
Because of the presence of the Ansuns(r) terms, eq. (16) of the

main text is not a standard eigenvalue equation. Defining

0 = -d%/dr? + V() , (H-2)
g(r) = AJup (r) + AJu, (r) , (H-3)

we may write eq. (16) as
Bu(r) + g(x) = eu(r) . (H-4)

Suppose eq. (H-4) has been solved to obtain €, u(r). Now define
U(r) = u(r)/N (H-5)
with N= <.||u>!§ so that <u|u> =1. Substituting (H-5) into (H-4) we
obtain
du(r) + g(r)/N = eu(r) . (H-6)
If we now define a new G(r):
G(r) = kluls(r) + AzuZS(r) (H-7)
with A;=A/N, so that G(r)=g(r)/N,
Bu(r) + G(r) = eu(r) (H-8)
showing that U(r) satisfies essentially the same equation as u(r),

with the same €, but with new values of Al and Az.
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APPENDIX I

COMMENTS ON THE VALIDITY OF THE BERNAL-MASSEY

PROCEDURE FOR SOLUTION OF THEIR EQUATION (I)

Within the approximations of the BM model (i.e., solving the ion
problem first, then adding wSS(r) = u(r) while keeping the core
functions fixed) the u25(r) equation is

~u35(r) + st(r)UZS(r) - eZSuzs(r)

* Mg, 2s%15(F) = -85 (r) (3-1)
where
Vps (1) V() + 2255, (0)/r
zizf(r) 2 22)4(x) * Zy,(r) + 62y,(1) ,
8,5(r) = glupg,upg) + g(uZS’uZP) s
with

g1 .
g(unlo’unl) = -2{1‘ 3 founz(x)un'o(x)x dx
a
= rﬂ,; unz(x)unvo(X)x-g'-ldx}unz(r) i
b

and V,(r) is the potential due to the nucleus plus the four hydrogen
protons. Eq. (I) of BM (in our atomic units) is
-u''(r) + VSS(r)u(r) - essu(r) + Ass,lsuls(r)

* Az, 25W2s () = -85, (1), (I) of BM
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with
= 3s
VSs(r) E Vo (r) + Zzeff(r)/r 3

3s =
Zeff(r) = zzls(r) * ZZZS(r) & 6zzp(r) ’

PO P S

835(r) = g(u,urq) + glu,upg) + glu,upp) ©
We note that 1
VSs(r) - V() = ZZZS(r)/r . (1-2)

In the BM iterative procedure for determining u(r) and €z, the

""last go-round" equation looks like i
u

[-d2/dr? + V3o (x) - e3sJu" () = -ggd- () (1-3) |

where gj? (r) uses u< (r) instead of u(r). The superscript u means i

"unnormalized"; the superscript . means "orthogonalized, normalized".
Explicitly:
ud (r) = [ur) + aupg (I, (1-4)
N = <u“ + ouy |u + <:tu2&.‘>!i ,
o= - <§u|u2;> . J
The significant differences to note between BM's eq. (I) and our eq.
(I-3) are that eq. (I-3) has the A's set equal to zero and has an
unorthogonalized and unnormalized '"solution u" (u%(r)) different from
the u< (r) used in getting the exchange tefm gsgh(r). (We've
assumed ''convergence', i.e., ud (r) of the jth cycle » ud (r) of
the (j-1)th cycle.)
We adopt the point of view that: if u< (r) is a "proper solution"

to the problem it should satisfy eq. (I) of BM; we first rewrite (I):
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[-d2/dr? + Vi (0 Ju(x) = €5 u(r)

-A35,25u25(r) - Bz(T) . (2=5)

(We've set ASs,ls = 0 as did BM; our numerical work also indicates
<?ls|uu;> is small.) We now put u 4 (r) into the left-hand-side (LHS)

of eq. (I-5) and see if we can obtain the RHS:

i

LHS of (I-5) = [-d2/dr? + VSS(r)]u"' (r)

"

(/N [-a*u/dr? + vy u¥]

2 2
+ (0/N)[-d*uyg/dr? + V3Su25] "

/N [egqu” - g3 ]
G (a/N)[(823+V3$'V25)“Zs'gZS“AIS,Zsuls] s
using eqs. (I-1) and (I-3). With some manipulation we obtain
S = egqud - (@/M)egg - ey Juy, - g5y (1-6)
Y = g (- 4
# (a/N)[(VSS VZS)uZS 82s Als,Zsuls] [a N)/N]g3s 5

This equals the RHS of (I-5) if:

As ASs,Zs = (a/N)[Ess - €Zs]
and =

2. The second line of (I-6) = 0.

56




P-

TABLE I-1. NUMERICAL EVALUATION OF "EXTRA" TERMS IN EQ. (I-6)
This evaluation is for a = 3.68.
€35 = -0.507, o = 0.302, N = 0.629

1st term on n total 2nd
r  egul  2nd line of (I-6) [(N-1)/N]g5,  1line of (I-6)

A A

0.4 .083 -.147 .030 -0.117
1.04 .245 -.250 .276 0.026
2.08 -.173 -.080 -.025 -0.105
3.04 -.389 -.019 -.034 -0.053
3.68 -.426 -.008 -.017 -0.025

Table I-1 gives an indication of the size of the "extra" terms
relative to essu'L for some selected r values. We see from the
table that the extra terms are small for r > 3.0 but are not small

~

in general; thus, it is not clear that the BM procedure is valid.
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APPENDIX J

a .

e Py

pom

COMMENTS ON TRANSLATING U vs V TO G vs P

The important point is that getting the slope (P = -dU/dV) from
published curves of U vs V is difficult to do accurately. People who
do this frequently, feel that, even with the typical 3" x 4" figure from
a journal article, it is better to assign numerical x,y values from the
figure and run them through a spline routine than to try to take the

slope from the figure directly.30

TABLE J-1. DETERMINATION OF P,G FROM STEVENSON'S METALLIC

U vs V PLOT (REF. 1)

Volume pa PV U G
(S units) (BM units) (Mbar) (ev) (ev) (ev)
13.15 21.85 1627 17.35 0.11 17.46
13.93 23.14 0.984 14.20 -0.73 13.47
15.0 24.92 0.659 10.25 -1.63 8.62
15.8 26.25 0.494 8.09 -2.10 5.99
16.7 27.70 0.384 6.66 -2.50 4.16
17.5 29.07 0.321 5.84 -2.80 3.04
20.0 33.22 0.192 3.98 -3.44 0.54
25.0 41.53 0.106 2.76 -4.15 -1.39
30.0 49,83 0.080 2.48 -4.65 -2.17
35.0 58.14 0.0406 1.48 -4.96 -3.48
40.0 66.44 0.0218 0.910 -5.104 -4.194
50.0 83.06 0.0144 0.745 -5.300 -4.555
57.1 94.85 0.0 0.0 -5.360 -5.360

3From DSPLSW 6/28/77

1p, J. Stevenson, Nature 258, 222 (1975).
3ORay Scanlon, private communication.
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The spline routine we usel?

» DSPLSW, fits a cubic function over
segments (preserving continuity). Our first attempts with DSPLSW led
to non-monotonically decreasing (magnitude) slopes. A better choice of

end points and end-point slopes seemed to improve matters.

TABLE J-2. DETERMINATION OF P,G FROM BM'S METALLIC

U vs V PLOT (REF. 2)

Volume p2 PV ] G
(BM units) (Mbar) (ev) (ev) (ev)
13.8 1.65 14.20 0.28 14.48
15.0 1.35 12.65 -1.10 11.55
17.88 0.76 8.55 -2.96 5.59
18.95 0.60 7.10 -3.42 3.68
20.0 0.47 5.90 -3.76 2.14
23.52 0.24 3.54 -4.51 -0.97
26.85 0.167 2.69 -4.92 -2.23
30.0 0.121 2.27 -5,21 -2.94
35.0 0.067 1.45 -5.48 -4.03
40.0 0.048 1.20 -5.66 -4.46
49.0 0.014, 0.430 -5.846 -5.42
55.0 -0.010 -0.327 -5.850
60.0 -0.018: -0.684  -5.804
70.0 -0.024 -1.029 -5.670

3From DSPLSW 6/22/77
bComputed pressure is negative

L 2y, J. M. Bernal and H. S. W. Massey, Mon. Not. R. Astr. Soc. 114,
. 172 (1954).

12ye are indebted to Ray Scanlon for furnishing this program and for
discussions related to its use.
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Selected values of the pertinent entities are given in Tables J-1
through J-4 for Stevenson metallic, BM metallic, present metallic, and
Stevenson (Ross) mixture, respectively. For the volume entries the
Stevenson (S) units are cm®/mol NH"; the BM units are (cm®/N atom) x
10%*. The U values in Tables J-2 and J-3 differ somewhat from those in
columns three and four of Table 5 due to smoothing of the U vs V curves
by the DSPLSW routine; this is more noticeable at the low volume (high

pressure) end.

TABLE J-3. DETERMINATION OF P,G FROM THE PRESENT

U vs V CALCULATION

Volume P2 PV U G

(BM units) (Mbar) (ev) (ev) (ev)
10.414 1.905 12.40 1.50 13.90
14.83 0.895 8.29 3,07 6.62
17.45 0.523 5.67 =%, 21 2.46
20.40 0.253 3.22 -3.90 - 0.68
23.55 0.132 1.935 4,753 - 2.52
30.93 0.074 1.415 -4.702 . 3,99
35.20 0.057 1.260 -4.876 « 5,62
39.72 0.041 1.013 -5.015 - 4.00
55.81 0.010 0.342 -5.028 - 4.89
68.64 0.004 0.161 -5.284 -« 5,12
76.63 ~0.000, 0.000 -5.293 - 5.29
83.31 -0.001 -0.071 -5.290

100.0 -0.002b -0.120 =5.271

3From DSPLSW 6/24/77
Computed pressure is negative
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TABLE J-4.

DETERMINATION OF P,G FROM THE STEVENSON (ROSS) MIXTURE

U vs V PLOT (REF. 1)

Volume pa PV U G
(S units) ~(BM units) (Mbar) (ev) (ev) (ev)

8.4 14.0 0.895 7.81 -4.01 3.80
8.94 14.85 0.802 7.43 -4.50 2.93
10.0 16.6 0.533 5.55 -5.24 0.31
11.25 18.7 0.374 4,35 -5.79 -1.44
12.5 20.75 0.319 4.14 -6.26 -2.12
15.0 24.92 0.124 1.925 -6.777 -4.85
17.5 29.07 0.0741 1.345 -7.026 -5,68
20.0 33.22 0.0527 1.092 -7.186 -6.09
25.0 41.53 0.0212 0.550 -7.384 -6.83
30.0 49.83 0.0068 0.210 -7.435 -7.23

2From DSPLSW 6/27/77

1p, J. Stevenson, Nature 258, 222 (1975).

e e e e
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Units Conversion:

atomic units <> cm?

o
0.52917A 10~ 8cm, 3
{ ‘ o —i 5

a.u. A

ar

Volume = (a in a.u.)®

3

: cm -2y : 3
t e SR R 5 U.
hus, volume (in N—atom) 0.62069 x 10 (2 in a.u.)?,

cm’

or, volume (in
’ ( N-atom

x 10%%) = 0.62069 (a in a.u.)?.

(BM volume #)
0.62069

or, = (a in a.u.)?,

Stevenson (S) volume units <> Bernal-Massey (BM) volume units
3

volume = 1072* (BM volume #) —Sm _ |
N-atom

3
(S volume #) e i -
mol NH4

"

volume

3 23
10-2% (BM vol #) cm [6.02x10 N-atoms]
N-atom mol NH4

3
= 0.602 (BM vol #) —<O___
mol NHy

thus, the volume in S units = 0.602 (volume in BM units)

du/dv <> P
dU _ A(BM U ev/N-atom) [1.602x10'% exgy
dv. A(BM V x 10-%* cm®/N-atom) ev

1 dyne-cm 1 Mbar
X[ erg ] [1012dyne/cﬁz ]

= (BM slope value) (1.602) Mbar;

thus, (1.602) (slope as from BM) gives P in Mbar, and (0.602)(1.602) s
X (slope as from Stevenson) gives P in Mbar. R
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