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I. INTRODUCTION
1

There has been renewed interest recently in a possible transition

• from a mixture of ammonia and hydrogen to metal1 ic NH4. Chemically ,

the transition can be expressed by the reaction

2NH
3 

+ H
2 

+ 2NH4 (1)

In a calculation made some years ago, Bernal and Massey2 (BM) con-

cluded that such a transition would occur between 60 and 140 kbar.

Stevenson1, however, concluded that the transition would not occur,

at least not below 1 Mbar. (The compact metallic phase that would

then form is unrelated to the low density metallic phase considered

here , namely, the “funny sodium” form.)

The fundamentally correct approach to determine phase transition

pressure P.~ is to plot Gibbs energy G versus pressure P for each

phase and define P~ as the pressure at which the two curves cross.

This follows from the thermodynamic argument that dG < 0 for P,T

constant so that the only place both phases can be in equilibrium is

where dG = ~
3
• A second approach is to plot internal energy U vs

volume V for each phase and then define P~ as the common tangent.

Since dG = 0 implies dU = TdS - PdV for constant P and T, P = -dU/dV

if the TdS/dV term can be ignored, then the common slope of the U

‘D. J. Stevenson, Nature 258, 222 (1975).
2M. J. M. Bernal and H. S. W. Massey, Mon. Not. R. Astr. Soc . 114 ,
172 (1954).

3M. W. Zemansky, “Heat and Thermodynamics ,” McGraw-Hill (1943) , p.
320.

1



vs V plot is the common pressure of the C vs P plot and the two

approaches are equivalent.

A number of different methods are frequently utilized to determine

G (or U). Typically, the differences between these various methods

consist of different approximations to the potentials and/or different

requirements on the system wave functions. Wh en one of the phases is

metallic these considerations involve a decision about the “exchange”

term (see below) , both whether and how to include this term. Both BM

and Stevenson include this effect: BM by using Hartree-Fock theory,

Stevenson by using the Kohn-Sham-Slater “average exchange” which

supposedly includes exchange and correlation effects in a local but

self-consistent approximation. Since the latter procedure tends to

give a lower metallic energy than straight Hartree-Fock, it is some-

what curious that Stevenson ’s NH
4 
energy values are higher than those

of BM. Both calculations use a “sphericized” NH4
+ ion. Stevenson

claims4 this causes him to be about 0.1 ev high . From a rapid

skimming of Chapters 10 and 11 of ref. 5, this author would have

*expected this to make a bigger difference. Both calculations use a

rigid r0, the radius of the smeared out protons in the sphericized

model. A flexible r0 would allow lower energy (this would be more

J. Stevenson (private communication) (Letter to Curtis Seiph,
Oct. 1976).
5J. C. Slater, “Quantum Theory of Molecules and Solids, Vol. 1,”
McGraw-Hill (1963).

* Note added in proof: The comments in ref. S are not applicable here:
Slater ’s molecules fill the space; the NH~~ ions do not. Thus,
sphericizing makes little difference. We thank Dr. Stevenson for
pointing this out.

2
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import ant at high pressures and correcting would tend to give G vs P

a less steep slope).6

Since Ste’Ien3on’s paper’ gives only a bare outline of his

• calculation , whereas the BM paper2 gives a relatively complete outline

of their calculation (including a tabulation of the effective potential

and of the core wave functions) we have attempted to repeat the BM

calculation. The plan of the present report is as follows : In the

next section we discuss what is meant by “exchange”. In section III

the Fock equations are derived and then the principal equation of BM

is obtained from the Fock equations - details of these der ivations

are given in the Appendices. Section IV summarizes our initial

attempts to obtain BM’s [3 vs V curve (without exchange). Section V

summarizes our work with exchange included. A summary of the entire

report is given in Section VI.

II.  EXCHANGE

Exchange is a quantum-mechanical term arising from the Pauli

exclusion principle; there is no classical analog. (One can, however ,

give a physical interpretation to the exchange term; such an inter-

l~ . J. Stevenson , Nature 258 , 222 (1975).
2M. J. M. Bernal and H. S. W. Massey, Mon. Not. R. Astr. Soc., 114,
172 (1954).
6Stevenson (ref. 4) estimates this correction to be about 0.03 ev/ion
i.e., negligible.
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pretation can be used to approximate the exchange term leading to

Slater “local” exchange , etc. Since SM do not use this approximation

we shall not comment further on it here.) Since we are dealing with

electrons (spin = 1/ 2) the complete (spin and space coordinates) wave

function must be anti-symmetric. This is consistent with the require-

ment that the probab il ity of two fermions occupying the same state

should be zero.

The essence of the origin of the exchange term can be illustrated

by the follow ing simple example: consider two electrons with the

same spin but represented by two different functions f and g. The

anti-symmetric wave function for the system is then

‘~(l ,2) = f(l)g(2) — g(l)f(2) (2)

where (1) stands for the x ,y, z coordinates of the first electron,

The coulomb operator part of ft~*I{1idtdt gives:

f~y * (1 2) (e2/r 12)’1’(l,2)dT1dt2
= 2fg*(2)(e2/r 12)g(2)dt2ff

*(l)f(l)dTl -

2fg*(2) (e2/r 12)f(2)dt2ff
*(l)g(l)dT1

.~~~ 
—

~~ 
—

~~

where r12 r1 
- r2; dummy variables have been interchanged as

appropriate.

7For the general, N-particle case, ~‘ would be the N-particle determinant:

±‘l (l) f1 (2) . • f 1 (N)

= f 2 (l) f2 (2) ~ . f2 (N)
• I

• S

~~~~ ~~~~ 
• , i fN (N)

4
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In det ermining ground-state energy via the variational procedure

we add Lagrange multipliers to effectively make all the functions

independent and vary, say , f*(l) In the equat ion for f( l )  the two

terms above become

2f(l)fg*(2)(e 2/r 12)g(2)dT2 — 2g( l) fg *(2)(e 2/r12)f(2)dt 2
The first term is clearly the direct coulomb term and represent s the

potential energy of the electron associated with coordinate 1 in the

field of electron 2. The second term is the “exchange” term .8

Computationally, the significant thing to notice is that in the direct

coulomb term the entire 2-space integral multiplies the function f

for which we are trying to obtain a solut ion , whereas , in the exchange

term, f is inside the 2-space integral. The exchange operator is

thus a non-local operator, i.e., the exchange operator in the

equation for f(l) is different from the exchange operator in the

equation for g(l).

III. DERIVATION OF PRINCIPAL EQUATIONS

A. Outline of the Derivation of the Pock Equations

We desire the minimum of

E = <YIHI~1’>/ 41’v> (3)

81n the case of N electrons f would be replaced by u., g by uj and
each term would be summed over all j  including j  = I. The exchange
term would include only those u~ for which the spin is the same as
the u~ spin. This last distinction did not arise in our simple
example as we took both electrons to have the same 

spin.S



where ‘1’( , ~~~~~~~~~ 
.
~~~

) = det[$1(~~
)]; ~ contains both space and spin

coordinates.
&

N N N N,
H = ~ (-4~

2/2m) V~ + ~ U (~1) + 1/2 ~ ~e2 / I~ l - (4)
i=l ~ i=l i=lj 1

The three terms in H are , respectively, kinetic , nuclear , and electron-

electron interaction.

It would thus appear that the evaluation of eq. (3) is a form-

idable task: there are N kinetic energy operators, N nuclear operators,

and N(N-l)/2 electron-electron operators; the determinant of [q j(x
5
)]

appearing on the left and right of H has NI terms , each term containing

N •(x~ factors. Orthogonality relations and recognition of dummy

variables make the task tractable.

The orthogonality conditions are

= 

~km (5)

The denominator of eq. (3) then become; simply N!. The first two

terms in H contain only one-variable operators ; in App . A we show that

they give :

(..42/2m)~~~fq). 
* 

~~l~~l~~j (~1)dr 1 (A)

and

j
~
l 
f4~*()U (

&
~)~,(

_&
~)d (B)

respectively; ~ contains space coordinates only. The third term in

H acts on two coordinates; in App. B we show that this gives:

6



~
‘(~ 

k~~r1 I 2  i~~~(~~~) I 2  
dt 1dT 21r1 — r2 1

- ~ (spin 1, spin 2) f ~k (r l)~~~ ( 2)~ k (r 2)~ L (r l) dt 1dt 2 }
k’j ~~ I

(C)

The first integral in (C) is called the “direct” term; the second is

called the “exchange” term.

We now want

S E = O  (6)

SE = 
3~ l* 1 + 

94* ~~2
* + ... + a:N* ~~N* + (complex conjugate)

(7)

These functions cannot all be varied independently since we want

any variation to preserve the orthogonality conditions (eq. (5)).

Using the method of Lagrange undetermined multipliers (effectively

making each 64j ’
~ 
independent) we can consider a particular 54~~ as an

arbitrary variation; 6E = 0 then leads to the requirement that

()
~~~~~~~~ 

= 0. This gives

- €?i2/2m)V1
2$
1(~~) + U(~1)4 1(~1) +

+ e2 {(~~~’ j  

I,~(~~ I2 
dT2]~~

(
~~

)
~=1 1r1-r21

- ~~6(spin i , spin j )  [ J 1 ~~2~~ 1(1’2) dt 2 ]4~~(i~1)} = 0 (8)
Iri-~2I

7



(There is a similar equation for each 4 ] .) We note that there is

considerable confusion in the literature as to whether one can

diagonalize the in the non-closed-shell case (see App. C); we

shall assume that we cannot and proceed to derive the SM equation

(their eq. (I))  on that basis.

B. Derivation of Eq. (I) of SM from the Fock Equations

As far as the label l ing of core-electrons is concerned the SM

model treats metallic NI!
4 as if it were “funny sodium”; thus the 11

electrons are taken to be in a ls 22s 2 2p 63s configuration . The 10-

electron ion problem is first solved separately (including exchange

terms). The resulting ls, 2s , 2p “core” functions are then taken as

fixed and an equation like eq. (8) is written for the 3s (valence)

elect ron.

Since we are writing an equation for 
~~~~~~ 

i.e., for a

function with L = 0, there is no need to include the 2p term in

this term is automatically orthogonal to *3~ 
due to having a

different 9.. value. We also take A ... = - c35. We substitute

= (ii~ (r1)/r 1)Y~~ (O 11~ 1) (9)

where Y9,~ is a spherical harmonic (a similar substitution is made for

and write V0(r1) for U(~1) ,  with

V0 (r1) = - 7/r 1 - 4/r0 r1 <

= - ll/r1 r1 > r 0

as per SM. The tilde signifies that these functions are not yet in

atomic units. As shown in App. D we obtain:

8



,~2 d2u(r1) - .. e2Zeff(r l)
- — 2 + V0(r1)u(r1) + u(r 1)
2m r r1

ls,2s,2p u.(r )U(r )
— e2 

~ cS(spins)[f 2 2 YLj
*(02,42)dr2d(cos02)d42]1r 1 — r2 1

X ~~~• (r1)Y~, . (O i,4i) = C
35

U( r
1) — A

15
U
15

(r
1) 

- X25
U
2 (r1) . (10)

It is legitimate to let the above run only over is, 2s , 2p (no 3s):

originally this sum included but for metallic NH4 there is only

one ~I)3~ function (just one electron in outer shell); thus the term

in the direct coulomb terms is exactly cancelled by the term in

the exchange terms.

We next put this equation into atomic units (see App. E).

d2U(r) 2Z ff (r)
- _______ + V0(r)u (r) + e u(r)

dr 2 r

ls,2s,2p u. (r1)u(r 1) *— 2 ~ ~S(spins)[ f 
~ ~~ , 

YL~ (0 l~4~l )drld(cos8l )d4 l]
3 1r 1 —

X ~~~~~~~~~~~ = c35u(r) — X15u15(r) — A25u25(r) . (11)

V0~ Zet~V E~~ , and the A ’ s are now in Rydbergs .

The final step is to manipulate the exchange term to obtain a

purely radial equation . This is done in App. F. A key point here is

that we are dealing with closed 9.. subshells; this makes

YLj (O a~ ) invariant under rotations, i.e., dependent only on the angle

between ~ and 
~~~~ 

We obtain :

9



[-d 2/dr2 + V(r) — c35]u(r) + A15u15(r) + A
25u2 (r) =

ls,2s,2p r a
2 

~ 
Cr
~~~~fu n9,(r i)u(r i)r

i
9,dri + r9,fu 9,(r1)u(r1)r1~~~~dr1)u~~(r)

(12)

with
V(r) E ‘/0(r) + 2Zeff~~

)jr

and
V (r) = -14/r - 8/r0 r <

= -22/r r > r 0

in atomic units. Eq. (12) is eq. (I) of SM. We have also obtained

the identical final form following Fock.9

There are two (apparently both typographic) errors in SM’ s eq.

(I) :

(1) r
9,
~~ in their last integral should be r1

2
~ ~~~ .

(2) the (29, + 1) factor in their should be1° 1.

The factor 2 multiplying V and c in SM’s eq. (I) is due to their

expressing these entities in Hartrees (1 Hartree = 2 Rydberg).

Pock, Z. f. Phys. 81, 195 (1933).
10A number of other references have eq. (12) as we’ve written it

(without the (29.. + 1) factor in the exchange term). This would
appear to be a typographic error in the SM paper; For an a value of
3.68 a.u., SM get a ground state E (including exchange) a -7.5 ev.
We obtain -6.90 ev. using the correct expression and -9.65 cv. using
the (2t + 1) factor. The much smaller discrepancy between our
(correct factor) value and their value indicates that they probably
used the correct factor in their actual computation.

10
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IV. RESULTS - OUR CALCULATION IGNORING EXCHANGE

In this section we describe our (unsuccessful) attempts to

reproduce BM’s curve I: ground-state energy vs “a” (the Wigner-

Seitz radius) with exchange ignored.

A. Calculation with the Lagrange Multipliers A15 and A2~ Set Equal

to Zero

Without exchange and with A15 and A2~ set (arbitrarily) to zero,

eq. (I) of SM is:

[-d 2/dr2 + V(r)]u(r) = cu(r) , (13)

with boundary conditions:

u(0) 0 (14a)

du(r)/dr l a = 0 (l4b)

The computer program “WAVEB” is used to solve eq. (13). This

program, based on the Numerov technique, is outlined in App. G.

Results’1 for the two values of “a” used are shown in Table 1.

TABLE 1. GROUND-STATE ENERGIES WITHOUT EXCHANGE

A15 = A25 = 0

a c(ev.) € (ev.)
(a.u.) This calc. SM

3.68 2.74 -1.26

4.80 -2.11 -4.37

11
A1l SM energy values listed in this report are estimated from their
Figure 1.

11



Our t~c between the two “a” values is 4.85 ev , not even close to the SM

value of 3.11 ev. (see their Figure 1, curve I).

B. “Expectation” Value

Our next step was to orthogonalize the u(r) determined in

section A to u15(r) and u25(r) using a Schmidt procedure and to then

find the “expectation” value:

c <uL(r)I _d 2/dr
z + V (r)luL(r)> (15)

The computer program “DSPLSW”, based on a spline routineU, is used

to evaluate the numerical derivative involved here’3. The computer

program “EINL” evaluates eq. (15). Three comments on these programs

are in order:

(1) An attempt to avoid taking ~~~ derivative through expansion

of u L(r) in terms of u, u15, and u25 would involve considerable

algebra plus values for and

(2) In using DSPLSW, du~ (r)/dr~0 is found graphically.

(3) The u25(r), written as P25(r) in SM’ s notation, is not

orthogonal to their u15(r). It is straightforward but tedious to

show that one obtains the same u~~(r) whether or not one first

orthogonal izes u25 to u15.

‘2We are indebted to Ray Scanlon for furnishing this program and for
discussions related to its use.

13lntegration by parts allows us to write

I u~ (d2uL/dr Z)dr = ut(du1/dr)I - r(du~,dr)
2dr .

The boundary conditions u~(0) = 0, (duL/dr)ta = 0, make the first term
vanish; thus, only the first derivative of u~- is needed.

12
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Results for the sane two “a” values employed in Section A , above ,

are shown in Table 2.

TABLE 2. WITHOUT EXCHANGE

(See Eq. (15) of the Text) -

a <
~~
)  (ev.)

(a.u.) This Calc.

3.68 1.11

4.80 —2.71

Our ~e between the two “a” values is approximately 3.8 ev, again not very

close to BM’s i~c of 3.1 ev.

C. No-Exchange Calculation Includin.g A15 and

From the failure of the two previous approaches to reproduce the

SM no-exchange-term curve , it appeared one should include A15 and

and use a “3-dimensional” search technique (for A1 ,  A2 ,  and c);

i.e., we are now solving:

[-d 2/dr2 + V(r)]u(r) = cu(r) - A15u15(r) - A25u25(r) (16)

with conditions

KululS> = KuIu2s> 
= 0 (17)

in addition to the boundary conditions expressed by eqs. (l4a) and

(14b). We use the computer program “TWAVE”. The bulk of the 3-

dimensional search logic is contained in a subroutine utilizing a

“Rosenbrock” technique)4 A narrative description of the TWAVE

program is given in App. H.

14The Rosenbrock-search subroutine used here was written by Ray Scanlon.

13

____ - - --—• ———-- ———— —-- .  _____________________________



Results for the two values of “a” previously used are shown in

Table 3.

TABL~ 3. NO-EXCHANGE CASE

a c (ev.)
(a.u.) Our 3-d Calc.

3.68 1.62

4.80 -2.63

Our 1~c is 4.25 ev., not very near SM’s t~E of 3.11 ev. At this time

we have no explanation as to why our ~c as calculated here differs so

much from that of SM.

For completeness, an~ since the u(r) of eq. (16) is needed as

starting input for the iterative solution including exchange

(discussed in the next section) we’ve calculated c without exch...nge

for a number of values of “a.” These results and those of BM are

listed in columns three and four, respectively, of Table 4; our no-

exchange results are also compared with those of SM in the upper part

of Figure 1.

14
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this caic.

\ I Ground state energy neglecting exchange
II Ground stat e energy including exchange

5

\
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0 energy
N atom I

(ev.)

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Volume/N atom (10~~”cm
3)

-10 -r ,

20 30 40 50 60 70 80

Figure 1. Calculated energy-volume relations at 0°K for metallic ammonium .
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TABLE 4. A1vIMONIUM RESULTS

a Vol/N a9m No exchange (ev.) With Exchange (ev.)
(a.u.) (l0 24cm ) This cale. SM This calc. SM

2.24 6.98 38.82 >10. 2.610 >3.

2.56 10.41 22.23 >7. -3.226 —1.0

2.88 14.83 12.60 >5. -5.573 -4.20

3.36 23.55 4.670 0.95 -6.721 -7.05

3.68 30.93 1.619 -1.26 -6.898 -7.52

4.00 39.72 - .337 -2.63 -6.886 -7.60

4.48 55.81 -1.830 -3.95 —6.717 —7.32

4.80 68.64 -2.627 -4.37 -6.584 -6.95

5.12 83.31 —3.136 —4.70 -6.431 -6.65

5.44 100.0 -3.468 -4.75 -6.282 -6.35

V. OUR CALCULATION INCLUDING EXCHANGE

A. Procedure

In this section we are concerned with the solution of eq. (12)

with the right-hand side included; u(r) must also satisfy the boundary

conditions expressed by eqs. (14a) and (14b). We follow the procedure

as outlined by SM. To start the iterative process we first use the

solution obtained ignoring exchange for u(0)(r)) namely, the solution

to eq. (16) obtained using TWAVE. The u(r) obtained using TWAVE is

first orthogonalized to u15(r) and u25(r) and then normalized. This

UL(0) (r) function is then used to calculate the exchange term g(r).

We then solve eq. (12) with A1~ = A2~ 
= 0.

- 
16



[-d2/dr 2 + V(r) - clu (k+1)(r) = ~(~)
(r) (18)

with
ls ,2s ,2p r 2,

B(k)(r) = -

~~~~~ 

2 {r’9,
~~f 

ufl9,(x)u.
.
(k)

(x)x dx

+ r f u fl2,(x)u 
(k) 

(x)x 9,
~~dx }u~9,(r) (19)

The u(r) found by solving eq. (18) is then orthogonalized to u15 (r)

and u25(r) and then renormalized. This uL(k)(r) is substituted into

eq. (19) and the resulting g(k)(r) is used as input to eq. (18) to

obtain u(k+l)(r). This process is - continued until “convergence” is

obtained. We have used four cycleS in most cases; convergence

appears to be obtained in three cycles. Convergence here is in the

sense that the orthogonalized and normalized u*~(k+1)(r) u 1
~(~)(r)

and the unorthogonalized u(k+l)(r) a u(k)(r). The (unorthogonalized)

u(r) solution of eq. (18) does not appear to be converging to u~- Cr),

i.e., orthogonalization remains significant no matter how large k

becomes.15

The operations above are performed in the computer program

“COMBINE”: orthogonalization and renormalization are done in sub-

routine RENOM using a Schmidt procedure; g(r) as given in Eq. (19)

is evaluated in subroutine XCHNG; eq. (18) is solved in MAIN of

COMBINE using a Numerov technique similar to that of WAVES (see

App. G).

lS~~ is not at all clear that this procedure of solving eq. (12) with
A15 = A25 = 0 and then orthogonalzing the resultant u(r) to u15 and
u25 is valid; we comment on this at some length in App. I.

17

- - -  - _ _ _ _ _ _ _  - -  - -  2-

-~~~~~



B. Results (Including Exchange)

Columns five and six of Table 4 give our results and those of BM

for various values of “a” for the exchanged-included case; these results

are also compared in the lower part of Figure 1. Our values are

roughly 0.5 ev. above BM’s over most of the important part of the

volume range (20 to 60 on the horizontal scale of Figure 1).

BM calculated total energy by adding the mean Fermi energy 6F

to the ground-state energy including exchange. The mean Fermi energy

was calculated on a free-electron basis following Mott)6 Since our

ground-state curve is some 0.5 ev. higher than SM’s and since our CF

is identical to theirs, our total (internal) energy U will also be

some 0.5 ev. above theirs. Our values for U are compared with those

of BM in Table 5.

To obtain the difference in energy between metallic NH4 and the
1

NH3 - ~ H2 mixture we follow SM (see their eq. (3)).

[NH4, metal] = [NH3, gas] - A,? + (c + CF)o (20a)

where A.~, is the proton affinity of NH3.

1 1
[NH3, crystal] + ~ [H2, crystal] = [NH3, gas] - ‘H - ~~ D(H2) - B

(20b)

where ‘H is the ionization energy of atomic hydrogen, D(H2) is the

dissociation energy of H2 and
1

S = B.E.(NH3, crystal) + ~ B.E.(H2, crystal) , (20c)

l6j~,j•p• Mott and H. Jones, “Theory of the Properties of Metals and
Alloys ,” Oxford (1936) . (Dover (1958) , pp. 54 ,55) .

18



TABLE 5. AMMONIUM RESULTS

U vs V

Vol/N atom Total energy, U (ev)
(l0_2’~ cm

3) (ev) This calc BM

6.98 5.963 8.573 >4.
10.41 4.565 1.339 >2.
14.83 3.607 -1.966 -0.59
23.55 2 -650  -4 .07 1 -4.40

30.93 2.209 -4.689 -5.31
39.72 1.870 —5.016 -5.73
55.81 1.491 -5.226 -5.83
68.64 1.299 -5.285 -5.65

83.31 1.141 -5.290 -5.51
100.0 1.011 -5.271 -5.45

CF = (3/ S)E max
= (3/5)(3/~)

2/3(~
Z.~2/2m)(N/~)

2/3, using eq. (19) ,  Chap II , ref. 16.

N/~2 = (# of electrons)/(unit volume) = 3/4iTa3

CF = (3/l0)(9?r/4)2~
’3
O~
2/ma2), the expression used by BM.

Then, CF = (l.lO)(27.2)/a2 = (29.92)/a 2

U = Ground state energy (including exchange) + CF

‘6N. F. Mott and H. Jones, “Theory of the Properties of Metals and
Alloys,” Oxford (1936). (Dover (1958), pp. 54,55).

19
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the sum of the respective binding energies. The desired mixture

energy is then
1

[mixture] = [NH3, gas] - ‘H - ~~~ D(H2) - B - £12 (20d)

where the positive quantity C12 is the reduction in energy (per NH3
molecule) due to mixing the two molecular crystals (our notation

differs somewhat from SM’s). The various entities in eqs. (20a) -

(20d) are depicted in Figure 2; this picture is consistent with eq.

(3) of Stevenson1 (Stevenson’s B includes our £12).

Following SM, we take the various binding energies (B and £12)

as being negligible. Eqs. (20a) and (20d) then give:

[NH4, metal] - [mixture] = (C + c~)~ - A~ + ‘H + D/2 (21)

SM obtained a minimum Li for the metal some 0.86 ev. above the minimum

for the mixture; we obtain - 1.4 cv. for this difference. Our total17

(internal) energy curve is compared with SM’s in Figure 3. (Stevenson’s

metallic and mixture curves are also shown.) The zero of energy for

Figure 3 is that of infinitely dispersed NH4~ ions and electrons:

U(zero pressure) . = A~ - ~~ - D/2 - B - £12 . (22)

This is consistent with SM’s Figure 1 and with Stevenson’s Figure 1.

(As above, the B and £12 terms may be neglected.) Stevenson obtains

the mixture curve from
P

U(P) = U(0) - f P’(dV(P’)/dP’)dP’ . (23)
0

~D. J. Stevenson , Nature 258, 222 (1975).
‘7Ground-state energy (with exchange) plus Cp.

20



NH3 
A

NH4 ~~~~~~~ e ‘H

[NH4,metal] 
(C+C~ )~

NH3 H

I D/2
NH~
_____ ____ _____ — _____________ ½H

B.E.(NH3) + ½B.E.(H2)[NH3,crystal] I
__________ _____ — ½[H2,crystal]

£12
[NH3— ~~~

Figure 2. Schematic energy picture.
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1
V(P) = V (NH3,P) + ~ V(H2,P) (24)

where V (N}13,P) and V(H2,P) are the molecular volume-pressure relations

of ammonia and hydrogen solids, respectively. Stevenson obtained

V (NH3,P) by interpolating between the experimental18 equation of state

at low pressure (P < 20 kbar) and the theoretical equation of state

at high pressure (P > 2 Mbar) calculated19 from Thomas-Fermi-Dirac

theory. V(H2,P) is taken from Ross’s analysis2° of the Livermore

shock data.

There are three differences between our metallic NH4 U vs V

curve and SM’s curve:

1. Our equilibrium point is shifted considerably toward Stevenson’s

value of — 95 x io 24 cm3/N atom (5.35 a.u. radius). We obtain — 76.7

(4.99 a.u.) whereas BM obtained21 47 (4.23 a.u.). At small volume (high

pressure) our curve tends to agree with SM’s; at very large volume

(low pressure) our curve approaches Stevenson’s.

2. At the respective equilibrium volumes our internal energy is

about 0.5 cv. higher than SM’s. BM obtained -5.84 cv.; we obtain

-5.35 cv. (Stevenson has -5.36 cv.). The 0.5 cv difference between

our curve and SM’s exists over a sizable part of the volume range.

W. Stewart, J. Chem. Phys. 33, 128 (1956).
l9~• E. Salpeter and H. S. Zapolsky, Phys. Rev. 158, 876 (1967).
20M. Ross, J. Chem. Phys. 60, 3634 (1974).
21Given in their text; their Figure 1 indicates approximately 52 (4.38 a.u.)
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3. Over a considerable part of the range of interest our curve

has a smaller slope leading to smaller pressure at a given volume.

We agree with Stevenson (Ref. 1) that SM’s transition pressure

(Pt) estimate is invalid due to their not obtaining an NH3 - ~~
- H~

equation of state. SM, using only the mixture equilibrium point,

estimate P~ to be 100 kbar with a range from 60 to 140 kbar based on

an 0.5 cv. uncertainty in A~
22.

In computing the Gibbs energy (G = U + PV - TS; T taken as zero),

the differences (#2 and #3 as listed above) between our U vs V and

SM’s tend to cancel and we obtain essentially the same G ( P )  curve as

they do. At low pressure our curve tends to approach Stevenson’s

(see Figure 4).

VI. SUMMARY AND CONCLUSIONS

This technical report is primarily concerned with the SM

calculation for metallic NH4. Our calculation, being essentially a

repeat of SM’s, suffers from the same deficiencies , namely:

1. The calculation is essentially atomic. (Probably minor.)

2. Sphericized NH4~ ion. (Probably minor.)

3. Rigid r0 (radius of hydrogen “shell”).

‘D. J. Stevenson, Nature 258, 222 (1975).
220ur total energy curve (U vs V) for the metal would lead to P~ — 135
kbar using the SM procedure; we emphasize again that this procedure
is invalid.
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4. Rigid core states (is, 2s, 2p), merely renormalized for

different values of “a”.

5. Approximation made in using B?’Ps iterative procedure for

solving their eq. (I) with exchange (our eq. (12)).

6. Free electron calculation for the Fermi level . (Probably

significant, particularly at the higher pressures.)

The major deficiency in the SM paper~is associated with their attempt

to calculate the transition pressure; they do not have a curve for the

NH3 - j  H2 mixture!

As outlined in Section IV, our attempts to duplicate SM’s curve I

(ground-state metallic energy without exchange) were unsuccessful.

Our attempts included: Simply solving SM’s eq. (I) (our eq. (12)) with

exchange ignored and with A15 = A25 = 0 (Sec. IV.A.); orthogonalizing

the resultant u(r) to u15 and u25 and then finding an “expectation”

energy (Sec. IV.S.); including A15 and A2~ using a Rosenbrock technique

(Sec. IV.C.). Comparison between the latter calculation and SM’s is

summarized in columns three and four of Table 4 and in the upper part

of Figure 1.

Attempts to match SM’s calculation including exchange were more

successful
23; results are summarized in the last two columns of

Table 4 and in the lower part of Figure 1. We emphasize that the

validity of SM’s mathematical approach (solving our eq. (12) with

23We have, however, not really duplicated SM’s results; the differences
may be primarily a reflection of the approximately two decades of
development in electronic computers which took place between the
two calculations.
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A15 = A25 = 0 and then orthogonalizing in combination with an iterative

process) has not really been established.

Total internal energy U is given by the sum of ground-state

energy (with exchange) and mean Fermi energy. Our U (V) curves as

well as SM’s and Stevenson’s are shown in Figure 3. We find the

internal energy at the equilibrium volume to be about 0.5 cv higher

than that obtained by BM, i.e., ours is very close to Stevenson’s

value of -5.36 cv. We note that Stevenson uses a proton affinity

value some 0.46 cv smaller than BM’s’; this would tend to make

Stevenson’s U(V) curve correspondingly higher than SM’s. We used the

BM proton affinity value. Stevenson’s equilibrium radius (for the metal)

is 5.35 a.u.; BM’s is 4.23 a.u. We obtain 4.99 a.u., i.e., shifted

outward considerably toward Stevenson’s value. The approximately

0.5 cv difference between our metallic U(V) and BM’s exists over a

sizable part of the volume range. Our U (V) has a smaller slope than

SM’s over a sizable part of the volume range; this leads to smaller

pressure at a given volume.

In computing the Gibbs energy the last two differences tend to

cancel and we obtain essentially the same G(P) curve as SM. At very

low pressure our curve tends to approach Stevenson’s (see Figure 4).

Stevenson”4 seems to feel fairly strongly that the desired

transition will not take place and has suggested
4 
that SM may have

1D. J. Stevenson, Nature 258, 222 (1975).
4D. J. Stevenson (private communication) (Letter to Curtis Seiph,
Oct. 1976).
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made a computational error. Our repeat of the SM calculation indicates

one cannot explain the difference between Stevenson’s NH4 curve and

BM’s (see Figure 4) solely by computational error on the part of SM.24

As an argument in support of his results over SM’s, Stevenson cites4

the fact that his equilibrium volume is much larger than SM’s; our

calculation shows that, within the BM approach, one can shift the

equilibrium volume considerably without making an appreciable change

in G(P). It is extremely difficult to estimate “error bars” for the

curves in Figure 4 (or Figure 3); they may be as large as 1-3 cv. In

our opinion, while a transition from the NH3-½H2 mixture to metallic

NH4 in the funny sodium form is possible, it appears unlikely, par-

ticularly below about one Mbar.*

J. Stevenson (private communication) (Letter to Curtis Seiph,
Oct. 1976).

24This assumes that the BM is, 2s, and 2p wave functions are essentially
correct; we did not recalculate these. We note that Stevenson did
his calculation twice; once with the SM cores, once with another set -
the difference in equilibrium U was only 0.04 cv.; difference in
equilibrium radius only 0.17 a.u. Thus, recalculating the core wave
functions is unlikely to change our results.
*Note added in proof: Discussion with Dr. Stevenson indicates that
funny sodium is just not a good candidate for the metallic form of
NH4 (assuming his mixture curve to be reasonably good, the volume
would have to change drastically to get a common U vs V tangent). It
is more probable to go to an arrangement such as H’s forming an “fcc”
lattice with N sitting in the “body-center” ppsition or possibly to a
metallic state formed by the overlapping in f-space of the molecular
energy bands. Stevenson estimates the required pressures to be in the
Mbar (and above) range. After discussion of our results (see, in par-
ticular, the last paragraph of this report) Stevenson indicated that
SM may have an error in their physics (e.g., use of the free-electron

can lead to significant error).

28
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APPENDIX A

DERIVATION OF THE ONE-VARIABLE-OPERATOR

INTEGRALS OF THE HARTREE-FOCK EQUATION

Explicitly, the N-electron wave function ‘# of the main text is

4l(x1) 
~~~~~

~~~~~ ~2
(x 2) 

~2
(
~N
)

(A-l)

N~~l~ ~N~~2
)

with 4~~~(~~~~
) 41(~~)s~(t~ ). c~ j (~~~ ) is a purely spatial function.

s~(~~) can be either cL(cy~) or B(a~) where

= 1, if the spin-coordinate is up.

= 0, if is down.

= 0, if is up.

= 1, if is down.

The orthogonality condition (eq. (5) of the main text) written

explicitly for space and spin is

1~~~~~ m T 5 k 5m~~
) = 5km~~ ‘~m 

(A-2)
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6km is a condition to be imposed on the spatial functions; 6
~k’~m 

is

insured by the ~~~ def initions given above.

Consider Hkinetic of eq. (4) of the main text; this one-variable

operator acts on det [
~.~(i~)]. (Since we deal here with a one-variable

operator, and since the operator does not affect the spin, we can

ignore the spin coordinate; in Appendix B, where we deal with a two-

variable operator, we explicitly include the spin functions.) Now

consider just one term of Hkinetic, namely V~ : ignoring the purely

multiplicative factor this operator , acting on det [4~~~(’~~
)] gives

of 
~a
(cfl

~ 
(A-3)

For each value of j the square bracket contains (N-1)1 terms, each with

(N-l) factors: a = l,2, ”,N (a 
~ 

j ) ;  b = 2 ,3,” ~,N. Combining this

with det*[q~~(~~)] and using the orthogonality conditions we see that

____ 
one of the N I terms of det* “matches” (gives a non-zero integral)

any particular term of (A-3), i.e.,

•;(~,)[correct permutation of

mat ches

V~~~(~
’
1) [~articular permutation of 4~a

(
~~

) 1 j

This leads (for alone) to

(N_l)!~~~f4.
*(~~)V~q

J (ç)dT1 . (A—4)
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- I

We obtain similar expressions for V~, ~~~~~ V~. Since the variable

acted on in (A-4) is the variable of integration, each of V~, V~, etc.,

will give the same result. Thus (dividing by the N! of the denominator):

- 

. <!kinetic l’#)’/’ ~ I’1’>~ 
= -(K2/2m)~~ J4~~(?1

)V~+.(~,)dr
1 (A-5)

This is (A) of the main text.

A similar treatment of H gives (B) of the main text.nuclear

p
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APPENDIX B

DERIVATION OF THE TWO-VARIABLE-OPERATOR

INTEGRALS OF THE HARTREE-FOCK EQUATION

The third term of eq. (4) of the main text, the electron-electron

interaction He&_e~
) is a two-variable operator. Consider just one term

of this operator , namely l/ l~
’l

_
~~ l , operating on det [4~~~(i~~)]. This

gives

N N

k~1 J~ 
- 

~ -~~~~ 

2 sk(~l
)sZ(~2

)IPemutat1ons of

1 2 (B—i)

For each choice of k,2.. in the double sum, the square bracket contains

(N-2) I terms, each with (N-2) factors: a = l,2,3,~ ,N (a / k,94;

b = 3,4,... ,N. when we multiply by det*[$i(,~)], two of the N! terms

in det* will “match” any particular term of (B-i), i.e.,

~~~~~~~~~~~~~~~~~~~ 
[correct permutation of

and

~~~~~~~~~~~~~~~~~~~ 
[correct permutation of

match

___________ -~ - . . _
a~~~~ 

5k(al)5&(a2) [particular permutation of
1 2’

as far as spatial functions are concerned. For the spin functions:

5k’ s& can be any cx,~ combination for the first of the two matching

terms; in the second matching term s9 must equal 5k in order to have a

non-zero value; this is readily seen to imply that, for this term,

electrons 1 and 2 must have parallel spins. Thus, i/t~j -~ I gives
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(N-2)!~~ {f 
I k~~l) I l L(12)I dt dt

k94 
~~~~~~~~~~~~~~~ 

1 2

~~l k ~~2 k ~~i) L(T2) 
(B-2)

- S(spins) f dT1dT2
}.

So far, we’ve considered only i/l~~-~~I; there will be a total of

N(N.-l) operators:

l/1r1-r21, 1/ ) r l -r 31, , i/ J ~ 1—f ~~, l/J~~-1~ I, ”~ , l/Iç-~~~1 I.

in each l/Iç-~~, are also the variables of integration in that
particular case; thus, each operator gives the same result. Then

(dividing by the NI of the denominator and replacing the e2/2

multiplicative factor) we obtain (C) of the main text. (We’ve

interchanged ~~~ , ~ in the second integral of (B-2); this is clearly

allowable due to the form of the operator.)
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APPENDIX C

CAN THE A MATRIX APPEARING IN THE

FOCK EQUATIONS ALWAY S BE DIAGONALIZED?

There is considerable confusion on this point in the literature.

Reitz25 states that one can always choose solutions such that A is a

diagonal matrix (emphasis added). Reitz is dealing explicitly with the

crystal case. Slater, in his derivation of the Pock equations for the

atomic case26, appears to show that a unitary transformation of the

one-electron functions 4j(~~) can be made which will diagonalize A

(Section 17-1); however, in Section 17-5 (for non-closed shells) of

ref. 26 Slater states that one cannot diagonalize A. In the crystal

case27 Slater seems to indicate, in Section 1-2, that one can diagonalize

A.

Without pursuing the matter further it would appear that the

crucial factor is whether one uses a single determinantal function

(A diagonalizable) or whether one needs more than one determinantal

function (A not, in general, diagonalizable).

25J. R. Reitz in “Solid State Physics,” ed. Seitz and Turnbull, Vol . 1,
p. 1, Academic Press (1955).

26j. C. Slater, “Quantum Theory of Atomic Structure ,” Vol. 2, McGraw-
Hill (1960).

C. Slater, “Quantum Theory of Molecules and Solids,” Vol. 4,
McGraw-Hill (1974).
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APPENDIX D

DERIVATION OF THE BERNAL-MASSEY EQUATION:

FIRST STEPS IN OBTAINING THE RADIAL EQUATION

In spherical coordinates

= (1/r2)3/ar(r2a/ar) + (1/r2)[(1/sinO)

)( ~/ae(sinoa/ae) + (1/sin2e)a 2/a4 2) (D-l)

We know28 that the square bracket of (D-l) operating on 
~Lm gives

Since 9~ = 0 here, we may drop this term.

Eq. (8) of the main text then becomes

- 42 Y0 d
2u(r1) 2 

Zeff (rl)
2 m r 1 dr1

2 + V0(r1) —u (r1) +e r1
2 u(r1)Y0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ j~~2 2~~0~~2’2~ dt2]~~ Cr1) (D-2)1r1-r2 1r2
u(r l) — uls(rl) — u25(rl)

= C3~ r1 
~0 - A 15 r1 

Y0 - A2~ r1

Since the terms have no angular dependence and as all are normalized

with the same factor l/v’4~, we may simply factor out the Y0; factoring

out h r 1 as well and substituting for as per eq. (9) of the main

text, we obtain eq. (10) of the main text. The direct coulomb term

has been replaced by an averaged term Zeff(r l)/r l.

28L. Schiff , “Quantum Mechanics,” McGraw-Hill (1949). See eqs. (14.21)
and (14.22), Chap. IV.
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APPENDIX E

DERIVATION OF THE BERNAL-MASSEY EQUATION:

TRANSFORMING TO ATOMIC UNITS

Let

r = a0p

with
a0 = li/me2 = 1 Bohr radius

1i2/2ma02 = 1 Rydberg

Also let

V 0(p1) = ‘/0(r1)

u(P) = u (r)

Zeff(P l) = Zeff(r l)

After all these substitutions have been made and the entire equation

multiplied by 2ma0
2/4~

2, replace p1 and p2 with r and r1 respectively.

This gives eq. (11) of the main text.
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APPENDIX F

DERIVATION OF THE BERNAL-MASSEY EQUATION:

MANIPULATION OF THE EXCHANGE TERM FOR CLOSED t-SUBSHELLS

Due to the rotational invariance in eq. (11) of the main text we

can always (in the integration over r1) choose the polar axis to be in

the r direction.

r~ = (r 2 + r1
2 

- 2rr1 cosy)½. (F-l)

For r1 < r ,
d - r = r[l + (r1/r) 2 - 2(r1/r)cosy)½

~ /~ç =rX ,

y with X~~ ~~P~~(cosy)(r1/r)~~.

(ref. 28 , eq. (14.10) ) (F-2)

Similarly, for r1 > r ,

= 
~~
. Z P& .(cosI) (r/r l) L . (F-3)

For j standing for is , the r1 < r part of the exchange integral in eq.

(11) of the main text is then

[
~ r~ Ouls u 1 ~(i

/r) ~10
P -(c05Y)dcc0s-Y) 

~~~ ~~,~~d4 1] (F-4)

using Y15 = l/v’~ i . Inserting P0(cosy) = 1 into (F-4) and using

(ref. 28, eq. (14.15)),

. 
28L. Schiff , “Quantum Mechanics,” McGraw-Hill (1949).
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J P L(cosy)PR
_ (cosy)d(cosy) = ( 2/ [ 2 9 +l ] )6 ,,L. , (F-5)

the is exchange term (for r1 < r) in eq. (11) becomes

- (2/r) 
~~~~~ 

(r1)u(r1)dr1]u15 (r) . (F-6)
r1-

For r1 > r we have

u1 (r
1
)u(r1)(l/r1)dr1]u15(r) . (F-7)

r1 r

There will be similar expressions for the 2s term.

For j standing for 2p

p..

~ 
Y
~m
(ei,~ i)Yim(e,~) 

= (3/41r) cose1 cosO
m= -L

+ (3/8ir)sinO1 sinO[e ~~~~ + e~~~
4 4

~O)

= (3/4ir)[cos01 cosO + sinS1 sinS cos(+-+1)]

(3/4 1r)cosy = (3/41T)P1(cosy) . (F-8)

The 2p integral in eq. (11) is then (for r1 < r)

[ hr  (r1)u(r1) ~ (r 1/r) L dr1 J (3/4ir)P 1(cosy)
r1=0 ~ L = 0  y=0

2ir
x PL..( cosy)d(cosy) J d 4 ]

Using (F-5), the 2p exchange term (for r1< r) becomes

(-2/r 2) [ f u2~ (r1)u(r 1)r 1dr1]u2~ (r) , (F-9)

_ _-  

- _ _



and (for r 1 >

a u2 (r1)u( r1)
-2r[ j  

p 
2 . 

dr1]u2~ (r) . (F-b )
r1=r r1

Collecting eqs. (F-6) through (F-iD) , the entire exchange term can be

written

-2 ~ {r
_ L_ l j u nL (r l)u(r i)r i

Ldrl
ls,2s,2p o

+ rUf
a~~

p.(r1)u(r1)r1
_L_l

dr1}u
~~(r) . (F-il)

Inserting this into eq. (ii) of the main text and rearranging somewhat

we obtain eq. (12) of the main text.
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APPENDIX G

THE NUMEROV TECHNIQUE AND COMPUTER PROGRAM “WAVES”

I. Basis of the Numerov Process and a Narrative Description of “WAVEB”

We note that “MAIN” of the computer program “COMBINE” is very

similar to “WAVEB”; the differences are discussed in Part IV of this

Appendix.

The treatment here is based on that of Hartree29. The Numerov

process is applicable to linear second-order differential equations.

Consider the equation

u” = f(r)u + g(r) (G-l)

We treat three cases:

(1) No exchange; A i~ = A2s = 0. Eq. (13) of main text .

(2) No exchange; A ’ s included. Eq. (16) of main text .

(3) With exchange ; A 15 = A25 = 0. Eq. (18) of main text.

In all three cases:

f(r) E V(r) - C

For case (1), g (r) = 0 (G-la)

For case (2), g (r) = A15u15
(r) + A 25u25 (r) (G-lb)

For case (3) , g (r) = ~ (_2) {r
~~~

1fu flL (x)u
(k)

(x)x~’dx
ls,2s,2p o

+ r2.fa
uflL (x)u (k) (x)x _2

~
_ 1

dx}unt (r) (G-lc)

R. Hartree , “The Calculation of Atomic Structures,” Wiley (1957),
Chapter 4.
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where u(k)(x) is the u of the previous go-round when we are solving

eq. (G-l) for u(k+l)(r).

Define the “first difference” as

~
SuJ+½ UJ,~1 

- u~ (G-2)

where u~ is a shorthand notation for u(r~) where r~- here represents

the value of r at the j-th point of the r mesh. Define the “second

difference” as

S 2u~ E Suj+½ - 5U
j ½  

= u . 1  - 2u. + u~~.1 (G-3)

A Taylor series expansion of u leads to

= (~r)2[uj” + .j
~

- 62u j” - .
~~~~~~~

. tS”u3”] + O(~r)
8 

. (G—4)

We will ignore the 6”term and the O(~r)
8 term in eq. (G-4). Combining

eqs. (G-l), (G—3) , and (G-4) gives

u3~ 1 = 
( S f

1 )  {u~[2S+i0f~] — u~_1[
S_f

~_1] + g)~ 1 + lOg5 +

3+ 1 (G-5)

with S i2/(~r)
2

An inspection of eq. (G-5) shows that u
5~1 

depends on the u values

of the two “previous” (further left) points j and 5-i. Thus, some other

procedure must be used to determine near r = 0. This “starting”

procedure is based on the expansion

uflL(r) = Ar2~
1 (l + ctr + Br2 + yr 3 + . - )  (G-6)

near r = 0. Substitution of (G-6) into (G-l) and solution in series

allows evaluation of ct, 8, and y in terms of f and g. This is used to

generate u(2) and u(3). (Prom (G-6), u(0) = 0.0.) The explicit

evaluation of a, B, y is given in Part II of this appendix.
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WAVEB may be thought of as a two-part process: the first involves

getting the correct number of nodes; the second involves getting zero

slope at the r = a end of the mesh. Both parts involve a number of

iterations (typically on the order of 30 altogether).

Part one of WAVEB proceeds by an iterative process as follows:

An initial guess is made for C (read in as input data). u(2) and u(3)

are then found using eq. (G-6). The remaining u(r) are then generated

(for j  = 4 to j  = N) using eq. (G-5). An atomic-like function labeled

by quantum numbers n and L must have n-L-l nodes. Once u(r) for j =

l,N is generated, the number of nodes are counted and C ~5 changed to

c+t~C or to c-nc to start the next iteration. From the form of eq.

(G-l) and either eq. (13) or (16) of the main text one sees that e

should be made more positive if there are too few nodes (need more

curvature) etc. The magnitude of the initial t~C step is read in as

data; as subsequent iterations “zero-in” to just produce the right

number of nodes within the prescribed mesh, the size of ~C is reduced.

When the correct number of nodes are found (with the last node

sufficiently close to the r = a point) the program switches to part

two - the slope test. The form of eqs. (G-l) and (13) or (16) indicate

that when

(sl ope) (sign of u(N))

is negative (indicates slope is toward the horizontal axis; less

curvature is required) one should decrease c; when positive, one should

increase C. This process is continued until lAd becomes smaller than

some preset value.
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II. Evaluation of a, B, and y for the “Starting” Procedure

For u35, eq. (G-6) is (for r near r = 0),

u(k+i)(r) = A (k l)(r + ar 2 
+ Br3 + yr ”) . (G-7)

From eq. (12) of the main text,

V (r) V0(r) + 2Zeff(r)/r

= -l4/r - 8/r0 + 2Zeff(r)/r, (r near r = 0).

For the three cases listed in connection with eq. (G-l)

f(r) = -l4/r - 8/r0 + 2Zeff(r)/r - C . (G-8)

Expanding Zeff(r) in a taylor series (for r near r = 0),

f(r) = -14/r + 2Zef~(0) - 8/r0 - C + rZCff(O) (G-9)

where we have used Z(O) = 0.0. Zef (O) and Zef
’ (O) , as well as

and A~5a~~ introduced later, may be evaluated by expanding the

appropriate function (Zeff(r) or u~5(r)) in a Taylor series for the

first three non-zero values of the function and solving the resultant

equations simultaneously. We use the ZCff(r) of SM’s Table I. We

obtain Zeff(O) = 20.1340 and Zef~ (O) = -17.4959; r0 = 1.84 as per SM.

Substitut ing (G-7) and (G-9) into (G-1) we obtain

A(k+l)[2a + 68r + l2yr 2] - g(r)

+ [l4/r + Rd - rzeff (O)]A (k+l)Er + cxr2 + Br 3 
+ yr”] = 0 (G-lO)

with

C + SIr 0 - 2Z ef~(O) (G-ll)
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Case (1): g(r) = 0

Equating coefficients of the various powers of r to zero separately

(keeping terms to order r2 only) , we obtain

a = -7

B = -[14a + RC]/6 (G-l2)

y [Zeff(O) 14B - aR~]/12

Cases (2) and (3)

From (G-6),

u15(r) = A15 (r + a15r
2 

+ b15r
3 

+ c15r”)

u25(r) = A25(r + a25r
2 

+ b25r
3 

+ c25r”)

u2~ (r) = A2~ (r2 + a2~r
3 

+ b2~r” + c2~r
5) . (G-13)

To order r2, g(r) can be written

g(r) = A15M15(r + a15r2 ) + A25M25(r + a25r
2) . (G—14)

For case (2), M~~ is clearly just X~5. In Part III of this appendix

we show that g(r) for case (3) can be written as in eq. (G-l4) with

M = ...21
:
uns (x)u(k) (x) x_ l dx , (G-l5)

for the u(k+l) solution. Mus for case (3) is evaluated in Subroutine

“AUX2” of “COMBINE”. (We note that the u2p function does not appear

in f(r) for r near r = 0.) When (G-14) is substituted into (G-lO) and

the resultant equation is reordered we obtain

A (k+l)E2ct + 14] + {A (k+l)[l4a +68 + Rd]- 
n~i~~~

5M~5
)
~~ (G-16)

+ {A (k+l)[cLRC + 14$ + l2y - Zeff(O)] - 
~ (AnsMnsans)}r 2 = 0

n=l
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Equating coefficients of the various powers of r to zero separately

(keeping terms to order r2 only), we obtain

B = -[l4a + R
~ 

- A~~~1)~~~(Afl5Mfls)]/6 (G-17)

y = [Zeff (O) - aR
~ 

- 14$ + A
~(~+l)~~~

(AnsMnsans)]/l2

III. Evaluation of M~ for Case (3).

Using eq. (G-7) for u(k)(x) and eq. (G-l3) for unL, the first 4

integral in eq. (G-lc) becomes

An&A(k)[l + anLr + b~p.r
2 

+ . . .]

X + aflL x + bnLX
2 + . . .]x[l + ax + $x2 

+ •.  .]xLdx .

(The r L-l and u~p.,(r) factors of (G-lc) have been included in the

expression above.) The lowest—power term is

AnLA (k) JX dX A 2
LA(k)

r2~~
3/(2L+3) . ( G-l 8)

We are interested only in terms of 0(r2) or lower (see eq. (G-16)).

Thus, even for 2. = 0, this first integral term may be ignored.

We rewrite the second integral term in eq. (G-lc) as

- 

r2.u~~(r) [( - (G-l9)

The first integral in (G-19) must be a constant (independent of r);

writing C t for this constant, this first term of (G-l9) becomes

+ a~p.r + ‘“]c~2.
- . using eq. (G-13) ; we rearrange this as
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A
2.C 2.r

22.
~~[l + anp.,r + 

~~~~~ 
(G-20)

For u2~ (2.=l). this will be 0(r
3) and higher: thus u2~ can be ignored

here. For 9.. = 0 we have

AnsCnsr + A~5C~5a~5r
2 

+ ... (G-21)

which must be considered. Using eq. (G-7) for u (k) (x) and eq. (G-13)

for u~p.~ the second integral in (G-19) becomes

-A~L
A(k)r

22.
~~
[l + a~p.,r +

..~~ 
+ a~p.,x + ~]x[1 + ax +

(The r2.unt (r) of eq. (G-lc) or (G-l9) is included in this expression.)

The lowest-power term is

_A
~L

A(k)r
29
~ ’f

xdx = _A
~L

A(k)r
22.
~
3/2 (G-22)

which is of 0 (r 3) even for 9.. = 0; thus, this term may be ignored.

Thus, contributions to the “starting” equation from g(r) come

only from u15 and u25 as indicated by (G-21); this gives, for r near

r = 0,
2 a

g(r) = -2 ~ A~5[f u~S (x)u fk)(x)x dx](r + ansr
2 ) (G-23)

n=l o

verifying eqs. (G-l4) and (G-l5) for case (3), i.e., for the exchange

case with A15 = A25 = 0.

• 1
1;
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IV. Difference Between MAIN of “COMBINE” and “WAVES”

The overall routing of “COMBINE” is shown in Figure 5. The

discussion in Parts I, II and III of this appendix applies to MAIN of

COMBINE as well as to WAVEB.

Our older system for generating an atomic-like wave function

worked reasonably well on a single-shot basis but isn’t good for the BM

problem where we “recycle”, i.e., where the whole iteration is repeated

again with a new g(r). (In this discussion the word “iteration”

refers to a new guess at the energy c for a given g(r); the word

“cycle” refers to the set of e iterations for a fixed g(r).)

The specific problem with the older system is the result of several

factors. By the third or fourth cycle “convergence” is fairly well

obtained (input u (r) z output u (r)). Under the old system, u(r)

is forced to have an extra node, then energy is decreased somewhat and

d,u(r) are found which give zero slope. After, say, the third cycle,

the input energy for the first iteration of the fourth cycle is just

about right to give zero slope with the correct number of nodes;

however, the old system forces an increase in energy to create an

extra node, i.e., forces one a~~y from the proper u(r).

In the new system the program: (1) Gets the correct number of

nodes. (2) Increases the energy, pushing the last (greatest r value)

node inward until this last node is some preset number of spaces in

from the end of the mesh. (3) Juggles the energy to give zero slope

at r = a. Since the new system needs only 25 - 35 iterations/cycle ,
- 

we start each cycle with the original lA d  . We have also put the
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- 

Preliminary
Read mesh , potential , etc.
Read u.j (r) from “TWAVE”
Read u15(r), u2s(r), u2p (r)
Normalize uls, u2S, U2p
Obtain (u151u 25)
Read initial C , I A € I

cycles
loop

AUX2 Evaluate M~5 of (G-l5)

XCHNG Evaluate g(r) of (G_lc)]

iterations
loop 

_______________ _______________

Obtain u (r)
by Numerov process

.1.
Switching

L Proper # of nodes?
no yes

Room to fit slope?

no yes
I .1.
I [ Apply slope test

L IAC I small enough? I
- ,  

no yes

H approprjateiy 
1

RENOM Orthogonalize u to
- Renormahize

II,
Print C, u (r) I ~

Figure 5. Block diagram for “COMBINE .”

___________--. __________5

~~~

_ -__
~~~~~
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DE-DEMIN test (the test for proper exit from the C-iteration loop) on

both the positive Ac and negative Ac sides.

Results of these changes: the first real run of COMBINE using the

old system involved five cycles; the fifth cycle required 292 iterations I

With the new system this cycle obtained virtually the same final C

(differed by 1 in the 7th significant digit) using only 29 iterations.

Secondly, using a starting Ac for this fifth cycle equal to (original

Ac)/lO only shortened the number of iterations by 6; the original Ac

(equal to 0.1 Ry in this case) gave virtually the same final c and

final Ac and produced a small enough final slope; thus the new system

just uses the same starting Ac (of order of 0.1 Ry) for every cycle.

Si



APPENDIX H

THE “TWAVE” PROGRAM

I. A Narrative Description of “TWAVE”

The heart of the 3-dimensional search is in Subroutine DRSNIN, a

Ray Scanlon routine based on the Rosenbrock technique. Initial guesses

for A1, A2, and c and the initial step sizes for each are read in as

data. The unnormalized BM u15(r) and u25(r) functions are read in and

normalized.

DRSNIN contains a sophisticated search procedure. For each

“dimension” the routine first steps in the positive direction, then in

the negative direction if necessary; a success (smaller “object”

function) followed by a failure (larger object function) terminates

the search in that direction. Step sizes are automatically adjusted.

Thus, DRSNIN attempts to minimize the object function which in our

case is

(weight factor)[du (r)/drla]2 + <uluis> 
2 + /u lu 2s> 

2

(H-i)

This reflects the boundary conditions: zero slope at r = a; u orthogonal

to u1~ and u25. The object function is evaluated in Function (Subroutine)

H(X). H(X) calls Subroutine LWAVE which uses the Numerov technique

(see App. G) to find u(r). When u(r) contains the wrong number of

nodes a large number (10000.) is substituted for du(r)/drla in the

object function . The program can be run in either of two modes:

(1) Terminates after a preset number of cycles or when the object
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function becomes smaller than some preset value, which ever occurs

first. (2) Terminates after a preset number of cycles. If mode (2) is

used, one gets an indication of the convergence from a simple inspection

of the print-out. It should be noted that, typically, the object

function is evaluated many times within one “cycle”.

II. Normalization of u(r)

Because of the presence of the A~5u~5(r) terms, eq. (16) of the

main text is not a standard eigenvalue equation. Defining

-d 2/dr 2 
+ V( r ) , (H-2)

g(r) E A~u15(r) + A~u25 (r) , (H-3)

we may write eq. (16) as

~u(r) + g(r) = cu(r) . (H-4)

Suppose eq. (H-4) has been solved to obtain e, u(r). Now define

U(r) u(r)/N (H-5)

with N= 411u>½ so that <U I U >=l. Substituting (H-5) into (H-4) we

obtain

~U(r) + g(r)/N = cU(r) . (H-6)

If we now define a new G(r) :

G (r) E X1u15(r) + A2u25(r) (H-7)

with A~=X~/N , so that G(r)=g(r)/N,

~U(r) + G(r) = cU(r) (H-8)

showing that U (r) satisfies essentially the same equation as u(r),

with the same c, but with new values of A 1 and A2.

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



APPENDIX I

COMMENTS ON THE VALIDITY OF THE BERNAL-MASSEY

PROCEDURE FOR SOLUTION OF THEIR EQUATION (I)

Within the approximations of the SM model (i.e., solving the ion

problem f irst, then add ing ~35 (r) u(r) while keeping the core

functions fixed) the u25(r) equation is 4

-u~~ (r) + V25(r)u25(r) - c25u25 (r)

+ A15 25u15(r) = —g25(r) (‘—l)

where

V
2 (r) E V (r) + 2Z~~f(r) /r

Z~~f(r) 2Z 1~ (r) + Z25(r) + 6Z2~ (r) ,

g25(r) g(u25,u15) + g(u25,u2~)

with

g(u
n,o

,unt) _2{r
~~~~

fu nt (x)u
n,o(x)x 2.dx

+ rUJ
a
uflL (x)un ,o (x)x 2._ 1dx}u~~(r) ,

and V0(r) is the potential due to the nucleus plus the four hydrogen

protons. Eq. (I) of BM (in our atomic units) is

-u”( r) + V3~
(r)u(r) - c35u(r) + A3~ 15u15 (r)

+ X35,25u25(r) = -g35(r) , (I) of BM
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with

V3 (r) V~,(r) + 2Z~~f(r)/r ,

Z~~f (r) 2Z 15 (r) + 2Z25(r) + 6Z2~(r)

g
35

(i) = g(u,u15) + g(u,u25) + g(u,u2p)

We note that

V35(r) — V25 (r) = 2Z25 (r)/r . (1—2)

In the BM iterative procedure for determining u(r) and C35, the

“last go-round” equation looks like

[-d 2/dr 2 
+ V35 (r) - c3s]u (r) = -g3~~ (r) (1-3)

where g
3~ (r) uses u~~ Cr) instead of u”(r) . The superscript u means

“unnorinal ized” ; the superscript .~. means “orthogonalized , normalized” .

Explicitly:

u -3- (r) = [u”(r) + au25 (r)]/N , (1-4)

N = <u” + au25lu’’ + au25)
½

a = - <uthfu2s>

The significant differences to note between SM’s eq. (I) and our eq.

(1-3) are that eq. (1-3) has the A’ s set equal to zero and has an

unorthogonalized and unnormalized “solution u” (uU(r)) different from

the u J (r) used in getting the exchange term g3~~(r). (We’ve

assumed “convergence”, i.e., u-~ Cr) of the 5th cycle ~ ~~~ (r) of

the (j-1)th cycle.)

We adopt the point of view that: if u-’ (r) is a “proper solution”

to the problem it should satisfy eq. (I) of SM; we first rewrite (I):
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[-d 2/dr 2 
+ V35(r)]u(r) = c35u(r)

—A
35 25

u
25

(r) — g
35(r) . (1—5)

(We ’ve set A35 15 = 0 as did BM; our numerical work also indicates

is snail.) We now put u £ (r) into the left-hand-side (LHS)

of eq. (1-5) and see if we can obtain the RI-IS :

LHS of (1-5) [-d 2/dr 2 + V3 (r) ]u~~ (r)

= (1,N)E_ d zuu,dr 2 
+ V35u’~]

+ (a/N)[-d 2u25/dr
2 

+ V
35

U
25 ] ,

= (l/N)[e35u
L
~ - g3

J_ ]

+ (aIN)[ (c 25 +V 35 -V25 )u25 -g25 -A 15 25 u15 ]

using eqs. (1-1) and (1-3). With some manipulation we obtain

LHS = c35u~ - (a/N)[c35 - c25]u25 
- g3~ (1—6)

+ (a/N)[(V35 - V25)u25 — g25 
- A 15,25u15]-[(l-N)/N)g3~ 

.

This equals the RI-IS of (1-5) if:

and 

A35 25 = (c*/N)[c35 
- e25]

2. The second line of (1-6) -
~
. 0.
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TABLE 1-1. NUMERICAL EVALUATION OF “EXTRA” TERMS IN EQ. (1-6)

This evaluation is for a = 3.68.

= -0.507, a = 0.302, N = 0.629

1st term on total 2nd
r c35u~ 2nd line of (1-6) [(N-l)/N]g~~ line of (1-6)

0.4 .083 -.147 .030 -0.117

1.04 .245 - .250 .276 0.026

2.08 -.173 -.080 -.025 -0.105

3.04 -.389 -.019 -.034 -0.053

3.68 -.426 -.008 -.017 -0.025

Table I-i gives an indication of the size of the “extra” terms

relative to c35u~ for some selected r values. We see from the

table that the extra terms are small for r ~ 3.0 but are not small

in general; thus, it is not clear that the SM procedure is valid.
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APPENDIX J

COMMENT S ON TRANSLATING U vs V TO G vs P

The important point is that getting the slope (P = -dU/dV) from

published curves of U vs V is difficult to do accurately. People who

do this frequently, feel that , even with the typical 3” x 4” figure from

a journal article, it is better to assign numerical x,y values from the

fi gure and run them through a spline routine than to try to take the

slope from the figure directly.30

TABLE J-l. DETERMINATION OF P,G FROM STEVENSON’S METALLIC

U vs V PLOT (REF . 1)

Volume Pa Pv U G
(S units) (SM units) (Mbar) (ev) (ev) (ev)

13.15 21.85 1.27 17.35 0.11 17.46
13.93 23.14 0.984 14.20 -0.73 13.47
15.0 24.92 0.659 10.25 -1.63 8.62
15.8 26.25 0.494 8.09 -2.10 5.99

16.7 27.70 0.384 6.66 -2.50 4.16
17.5 29.07 0.321 5.84 -2.80 3.04
20.0 33.22 0.192 3.98 -3.44 0.54
25.0 41.53 0.106 2.76 -4.15 -1.39

30.0 49.83 0.080 2.48 -4.65 -2.17
35.0 58.14 0.0406 1.48 -4.96 -3.48
40.0 66.44 0.0218 0.910 -5.104 -4.194
50.0 83.06 0.0144 0.745 -5.300 -4.555

57.1 94.85 0.0 0.0 -5.360 -5.360

aprom DSPLSW 6/28/77

1D. J. Stevenson, Nature 258, 222 (1975).
30Ray Scanlon , private communication.
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The spline routine we use’2 , DSPLSW , fits a cubic function over

segments (preserving cont inuity) . Our first attempts with DSPLSW led

to non-monotonically decreasing (magnitude) slopes. A better choice of

end points and end-point slopes seemed to improve matters.

TABLE J-2. DETERMINATION OF P,G FROM BM’S METALLIC

U vs V PLOT (REF. 2)

Volume pa PV U G
(SM units) (Mbar) (cv) (cv) (cv) 4

13.8 1.65 14.20 0.28 14.48
15.0 1.35 12.65 —1.10 11.55
17.88 0.76 8.55 -2.96 5.59
18.95 0.60 7.10 -3.42 3.68

20.0 0.47 5.90 -3.76 2.14
23.52 0.24 3.54 -4.51 -0.97
26.85 0.167 2.69 -4.92 -2.23
30.0 0.121 2.27 -5.21 -2.94

35.0 0.067 1.45 -5.48 -4.03
40.0 0.048 1.20 -5.66 -4.46
49.0 0.014 0.430 -5.846 -5.42
55.0 _0 010b -0.327 -S.8S0

60.0 -O.0l8~ -0.684 -5.804
70.0 -0.024 -1.029 -5.670

apron DSPLSW 6/22/77
bConputed pressure is negative

2M. J. M. Bernal and H. S. W. Massey , Mon . Not . R. Astr. Soc . 114 ,
172 (1954).

. 12We are indebted to Ray Scanlon for furnishing this program and for
discussions related to its use.
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Selected values of the pertinent entities are given in Tables J-1

through J-4 for Stevenson metallic , BM metall ic , present metallic , and

Stevenson (Ross) mixture , respectively. For the volume entries the

Stevenson (S) units are cm 3 /mol NH ” ; the BM units are (cm 3 IN atom) x

102 k . The U values in Tables J-2 and J-3 differ somewhat from those in

- 
columns three and four of Table 5 due to smoothing of the U vs V curves

by the DSPLSW routine; this is more noticeable at the low volume (high

pressure) end.

TABLE J-3. DETERMINATION OF P,G FROM THE PRESENT

U vs V CALCULATION

Volume pa Ii G
(BM units) (Mbar) (ev) (ev) (ev)

10.414 1.905 12.40 1.50 13.90
14.83 0.895 8.29 -2.07 6.62
17.45 0.523 5.67~ -3.21 2.46
20.40 0.253 3.22 -3.90 - 0.68

23.55 0.132 1.935 -4.253 - 2.32
30.93 0.074 1.415 -4.702 - 3.29
35.20 0.057 1.260 -4.876 - 3.62
39.72 0.041 1.013 -5.015 - 4.00

55.81 0.010 0.342 -5.228 - 4.89
68.64 0.004 0.161 -5.284 - 5.12
76.63 ~O.O00 0.000 -5.293 - 5.29
83.31 _0 001b -0.071 -5.290

100.0 _0 002b -0.120 -5.271

aFrom DSPLSW 6/24/ 77
bcomputed pressure is negative
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TABLE J-4. DETERMINATION OF P,G FROM THE STEVENSON (ROSS) MIXTURE

U vs V PLOT (REF. 1)

Volume pa U G
(S units) (SM units) (Mbar) (cv) (cv) (cv)

8.4 14.0 0.895 7.81 -4.01 3.80
8.94 14.85 0.802 7.43 -4.50 2.93
10.0 16.6 0.533 5.55 -5.24 0.31
11.25 18.7 0.374 4.35 -5.79 -1.44

12.5 20.75 0.319 4.14 —6.26 —2.12
15.0 24.92 0.124 1.925 -6.777 -4.85
17.5 29.07 0.0741 1.345 -7.026 -5.68
20.0 33.22 0.0527 1.092 -7.186 -6.09

25 0 41.53 0.0212 0.550 -7.384 -6.83
30.0 49.83 0.0068 0.210 -7.435 -7.23

aprom DSPLSW 6/27/77

~D. J. Stevenson , Nature 258 , 222 (1975) .

_ _  
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Units Conversion:

atomic units 4-* cm 3

4~ . 
~ 

O.52917A 10’cm 3
Volume = — (a in a.u.) [ . 

~a.u. A

thus, volume (in 
N-~~Om~ 

= 0.62069 x 10_211 (a in a.u.)3 ,

or, volume (in 
N-atom x 10

2k) 0.62069 (a in a.u.)3 .

or, (BM volume 
#) 

= (a in a.u.)3 .
0.62069

Stevenson (5) volume units -
~
--‘- Bernal—Massey (BM) volume units

volume = l0~~~ (BM volume #) 
cm 3

N-atom
3

volume (S volume #) cm
inol NH4

lO 2
~ (SM vol #) 

cm 3 
~6.02xl0

2 3  N-atoms
1

N-atom mol Nil4

= 0.602 (BM vol #) cm 3

mol NH4

thus , the volume in S units = 0.602 (volume in BM units)

dU/dV +-~~ P

dU 
= ~(BM U ev/N-atom) [l.602xl0

’2 cr11
dV ~(BM V x lO_ 21+ cm3/N-atom) ev

r 1 dyne-cm, r 1 Mbar
X L erg ~ L lO l2 dyne/cm2

= (BM slope value) (1.602) Mbar;

thus, (l.602)(slope as from SM) gives P in Mbar, and (0.6O2)(l.602)

)<‘(slope as from Stevenson) gives P in Mbar.
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