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INTRODUCTION
Ultrasonic measurements at very high pressures give us the
unique opportunity of obtaining the elastic properties of crystalline

solids experiencing extremely large elastic deformations, which cannot

be attained by other more conventional techniques. At best conventional

stress-strain measurements in crystalline solids indicate elastic
strains of the order of one percent; in sodium chloride the linear
strain at a hydrostatic pressure of 270 kbar is nearly eleven percent.
Methods of continuum mechanics brought to bear on high pressure
problems were inspired by Bridgeman's pioneering experimental work.
Murnaghan2 did the early theoretical work, inventing the finite strain
method and using it to third order elastic constants for the equation
of state. Birch3 was another early worker using a somewhat different
though valid formalism. A treatment giving the fourth order elastic
constants for single crystals using lattice dynamics was given by
Ghate4. The present treatment derives both the equation of state and
the velocity in terms of the fourth order elastic constants by methods

of continuum mechanics.

The methods used here are based on the tensor formalism developed

. 1
in Green and Zerna.

1Green, A. E., W. Zerna, Theoretical Elasticity, Oxford at the
Clarendon Press, 1954.

2Murnaghan, F. D., Finite Deformations of an Elastic Solid, Dover
Publications, Inc., New York.

3Birch, F., "The Effect of Pressure Upon the Elastic Parameters of Isotropic

Solids, According to Murnaghan's Theory of Finite Strain," Jour. Appl.
Phys. 9, 279, 1938.

4Ghate, P. B., "Fourth Order Elastic Coefficients," Jour. Appl. Phys.
35.2, 337, 1964.
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The experimental techniques for obtaining high '"quasi-hydrostatic"
pressuresS and for making high pressure ultrasonic interferometry
measurements6 were described in detail elsewhere and are shown
schematically in Figure 1.

The direct experimental data obtained from ultrasonic interfer-
ometry consists of the frequency intervals Afp and Af; (for dilata-
tional and shear modes respectively) for maximum destructive interfer-
ence of the first echo of the ultrasonic echo train as observed on the
cathode ray tube. Here the respective velocities are given by (Af)/(2d)
where d is the specimen thickness. The isotropic velocities were
obtained through the use of the Decker equation and the frequency inter-
vals in the universal identity relating the adiabatic density deriva-
tive of the pressure and the dilatational and shear isotropic velocities
Vp and Vg respectively at all hydrostatic pressures: & /3,4 = vp S
(4/3)Vg2.

DERIVATION OF VELOCITIES FOR THE THEORY OF SMALL DEFORMATION SUPERPOSED

ON FINITE UNIFORM DEFORMATION

Using the notation of Green and Zerna1 and conforming to the exper-
imental situation we apply a uniform hydrostatic deformation to the
unstrained body B, which becomes B in the new (pressurized) state. To
the body B we apply an infinitessimal deformation (the ultrasonic wave)

at time t, and represent this configuration as B' (Figure 2).

1Green, A. E., W. Zerna, Theoretical Elasticity, Oxford at the
Clarendon Press, 1954.

SKendall, D. P., P. V. Dembowski, T. E. Davidson, Rev. Sci. Inst.
Vol. 46, No. 5 (1975).

6Frankel, J., J. F. Rich, C. G. Homan, J. Geoph. Res. Vol. 81, No. 35,
6357-6363, 1976.
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Taking the moving coordinates to coincide with a fixed rectangular
system (x,y,z) in the strained body B (Eulerian formulation) we have

0; = x 0 =y 03 = 2z (strained body) (1)

The rectangular axes which define points in B, are taken to
coincide with the axes (xl,xz,st.

The constant extension ratio Aj;, (the strain parameter) is given

by
A1=L=L=_z_ (2)

i R AR
By taking the body (working) coordinates in the deformed body
(i.e. the working coordinates move with the mass points of the body)
and using the définition of the metric 8ij from the equation

ds? = 85 dol 4o’ we have the metric tensor of the undeformed body

1/x,2 0 0 S 0 0
gij = TS S E S LR
0 0 1/x,2 0 0 A2
and g = 1/>\1s

Here the sub or superscripts refer to the covariant or contra-
variant tensor representations. g is the determinant of Bij- In the
same representation the metric tensor Gij of the deformed body B is

Gy e 6 = 8;: ; G=1 (4)

where § is the Kronecker delta.
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The Deformed State (Under Finite Deformation)

The strain invariants are

L 2 By 4 ot s
11 = SAI 12 = 3%1 I3 = Al (5)
and the strain tensor elements become
sl (Bi: = ez} = 1 i
vis =7 ©i5 " 85) "7 850 -3 D (6)

The strain invariants (Eq. 5) are independent of the coordinates,

they are constant for a given deformation. At this point we invoke

Murnaghan's theorem (p. 61 of reference 2) for isotropic elastic media:

"A deformable medium is isotropic if, and only if, the strain energy
density is a function of the three strain invariants I, I,, Ig".
We can now express the strain energy density W in terms of 11,

I, I3 and after some manipulation (as given in reference 2) and
using the principle of virtual work we can obtain the components of
the stress tensor of the body under finite deformation.

R UL Y P
22 33 11

““ =17 =1
le " T13 5 123 -0 (7)
where oW
o = 2N y=_2 W p=z/§§ .
/3 311 JT; 312 3 (8)

It should be noted here that since Gij = 6ij the unit reference
area is taken in the deformed coordinates. Equations (7) therefore
represent the physical components of the stresses and in particular

Tllis the hydrostatic pressure in our experiment (111= -P).

2Murnaghan, F. D., Finite Deformations cof an Elastic Solid, Dover
Publications Inc., New York.
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The Perturbed State

We are now in a position to derive similar quantities for the
perturbed case B', the displacements due to the ultrasonic wave.
In this new configuration the displacements can be written as the
sum of the initial uniform displacement of the body-; and that of
the perturbation é‘w.;(el,ez:es:t) * E;(Gl,ez,es,t) where € is a
constant so small that the squares of € and its higher powers may be
neglected compared to €.

The covariant base vectors of the coordinate system O; at points

> +‘+ -+ > +
P' of B' are denoted by Gj + €G; =T j+v ;+ €w; where r is the

’ ’
location of point P,, and the commas indicate differentiation with
.th :
respect to the i coordinate.
To the first order in € the perturbed metric tensor G'ij (the

perturbed state is usually denoted by primed quantities) of the

deformed body referred to base vectors of body B is:

za_u _3_1.\_,._3_\! iu_"a_w
3x dy 9x 9z  9x
£ &
ay 9z dy
2 3%
<>
W = mem = mmEm
and wj; = u wy =V wz = W
6
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The perturbation in the strain invariants is

V. = 2,7 du , 9v . 3w

1 1 x dy az)

I', = 4\," (39- + §l’. + i‘-"-
2 1 % oy az) k30

ou  Jdv . Iw

I', = B pE g g A

3% My e Ay * 32

The perturbation components of the stress tensor are given by

(see ref. [1] p. 119).

11 Jdu v . Ow
T Cll-a—x-*' C12 (a—y-"-a';)

22 v du ., aw
1 = —_— — —
L E Cll' oy £ (Bx ¥ az)
33 _ 3
3% 2oy B¥ e Cyy QU & (11)
T.12

=C44-a_u+g_;.)

23 Vv , 9
T = C Gt —
44%32 3‘;)
31 dw . du
T* = C44(‘a—x + -a—z-) Qa2)
Where
11 1
Cip = -t v 20"+ 8Bt 2002 4 aoap ¢ 4EA,® + 8RS
Ciz = -Ay% + p + 2A0;" + 8BA,® + 20A;% + 8DA;° + 4EA\® + 8FM,®
e
C44 = 3(C11-C12) (13)
And
A =2 W b wil 2N £ o i LN
VI3 31,2 /Iz 31,2 /I3 315%
2 2 2
Dwat, N, fe.t. SN p=i- | (14)
/T3 91,015 /T3 31501 /T3 3131,

lGreen, A. E., W. Zerna, Theoretical Elasticity, Oxford at the
Clarendon Press, 1954.




The physical components of perturbation in stresses, A

can
be obtained by the contravariant transformation rule, and to the

first order in € and referring to the B' configuration we have

¢'TS o o'ts , qms 2 orn s (15)
ao™ e
Using (12) we have

t'll = (Cqp + 2111) %% + C12(%¥ + %%

TR 2T11)'%¥ ® CIZC%% ¥ %%9

£33 « (o) + 20Ty 3+ €1p QY + T ae)
t12 . (g, 111)(%‘5», o

125 = (Cyy + rll)e%% + 359

8l = g, + Tll)(%¥ 3 %%

The equation of motion, with £1'T as acceleration components, become

TS

From (17) and (16) we have (after some manipulation)

1 11y g2, , 1 11, 3% , 3%v  3%w ., _ 3%
7 Cppfyprin ) Vit (Gt 16T oy o)~ Pt
1 11,02, , 1 114 3% , 32w _, 3%u 52y
= (C11-Cy,*2T )V°V + 5 (C11#Cqo*2T ) ( + + ) =

z 1z z (Cn*r2 3y?  dydz  9xdy at?
1 Megs. .1 1, .8% 2% _ 9 32w
= (Cy1-Cy,+2T )V W + = (C,,+C, . +2T ) 3 - S

8 116z ' ¢ €11ty 9z2  3xdz ayazl a2

(18)




Vectorially adding above with W= 1u + Tv + %w we have

L

: 2t yy@ww) =pow (19)

Woae o &
117C12%2T VW + o (Cy¢C))

This is the equation of motion of body B' in terms of perturbation

(w) of displacement of body B.

Taking the divergence and curl of (19) we have

wE-w o= —2g) L@ -0
C11+2T att
VY xw) = (—2P ) & @ x ) (20)
C1y-Cppr2ttt 7 ae?
THE UNIVERSAL IDENTITY
From (16) we have
u J9v  ow
1Y o el o83 (c11+2c12+2111) (ox * 3y * 32) (21)
let t'u = t'22 = t'33 = - A (Pressure) = - AP (22)
o, W, M, -4 (olune) | _
= y Unperturbed
Volume
hence %g = - AE (23)
(23) and (22) with (21) give
dP AP
PRl T et A (24)
dp AE + 0 Ap 3
Hence from (24) and (20) eliminating Cip» C12’ 111 we have
Yralyer, 9_11 (25)

P 3 S dp

(25) is the universal identity7-

7Truesdell, C., Handbuch der Physik, Ed.S. Flugge, Vol III/3, Springer
Verlag Heidelberg, New York.
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From (20) we have the velocities

(C11+2T11 1/2

Vp = ‘“‘;;‘——ﬂ Dilatational Velocity
(26)
Cy3-Crpearil /2 ;
Vg = (—————) Shear Velocity

2p

Where Cy,, 111 etc. can be computed in terms of derivatives of W with
respect to strain invariants from (13), (14) and (8).

APPLICATION WITH FOURTH ORDER ELASTIC CONSTANTS

The Velocities

In this section we assume that the elastic strain energy for the

material under consideration can be expanded up to fourth order terms

in strain invariants. The strainsgnvariants defined by Murnaghan2

are slightly different than those of Green and Zernal. For the sake
of easy comparison we give the transformation, denoting those of

Murnaghan by a superscript c,

15 = 2 (1,-3)
I = 7 [0, -204-9)] (27)

Iy = 5 (g1 & (1)-3) - (1,-3)]

e s c, (a+2m) -c® _ e £
W= §{A+2u) I 2u I2 * S I1 2m1112 +n 13

[N 2 2
(o s Cc c¢C (o
+ 16q(I)  + 16r (IS )(I3) +16s (ITI5) + 16t (I3 ) (28)

1Green, A. E., W. Zerna, Theoretical Elasticity, Oxford at the

Clarendon Press, 1954.
2Murnaghan, F. D., Finite Deformations of an Elastic Solid, Dover
Publications Inc., New York.

10
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Where A,u Lame's second order elastic constants
2,m,n (Murnaghan's) third order elastic constants

q,T,s,t Fourth order elastic constants
(Factor 16 is for convenience only)

Substituting equation (27) into (28) we have

(1;-3)?

+u

&= o]

[(11-3)%-2(1,-3) + 4(1;-3)]

+ L (11-3)3 +m f%—[(11-3)3-3(11-3)(12-3) + 6(11-3)2]

o R

+n (13-1) + (11—3) = (12—3)] (29)

+ q(Il-s)“ + r[(11-3)2(12-3) - 2(11-3)3]
+ sl(1)-3) (15-1) + (1;-3)* - (1}-3)(1,-3)]
+ t[(1,-3)% - 4(1,-3)(1;-3) + 4(1;-3)%]
Using (26), (13) and (5) and some manipulation we have

5\ 72,  sA
e 1.3 . R,
Aty St EUY *1) * 3 - s 411)

PVp

+2m A (A %-1) + ;%; (A1%-1)% + 216q(A{2-1)2(3) - %a (30)
+ 24r(A12-1)2(8A1 - j%J + 8s(\2-1)%2 (22 - XEJ + 8t(4,2-1)2 (7 - f%

and

3mA

3\ 1 1 98 1
cE3e - = Sl 2o ol i zx;'(*12'1)2 +—= (-1

oV
n 2 1 2_q48 2_142 e G

+ 250 2-1)2Q\ - {%o + 126021 - {%a

11
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In the above expression there are two second order, three third
order and four fourth order elastic constants. However, only two
unique combinations of each third and fourth order elastic constants
appear in (30) and (31); these combinations can be easily found by

collecting equal powers of the strain parameter Al. These are

o = (92+n)
Third Order
B = (32+2m)
(32)
Y = (27q + 9T + s + 3t)
Fourth Order
§ = (8lq + 24T + 25 + 7t)

Using (32) the expressions in (30) and (31) become

2, - ).5 3l . % ‘ SA .
Vp p = Al (86) + Al (za + B - 8y - 1668) + Alcir + 3u 3 B + 16y + 86)
1 3\ 1
+ XI e ool A 7°%° 8Y) (33)
T 3.3 3\ .a_3
V.o = A;°(68-107) + A Gy B - 128 + 12y) + Alﬁi- + 2y 2 38
1 3\ 1
Lk i el e £l (34)

The Equation of State

Using (7) and noting that Tll = -Pressure we have the equation

-P =

N| =

(3)+21) il; (A,2-1) + o qu (A 2-1)? + %{- 0 2-1D° (39)

The first two terms on right side of (35) represent Murnaghan's
equation, the additional term is due to fourth order elastic constants,

and plays an important role at high strains.

12




It should be noted that in Equation (35) only one combination of
each order of elastic constants appears. This is the consequence of the
universal identity which has to be satisfied, independently of the
assumed elastic potential. This phenomenon has far reaching consequences,
as will be explained in the sequel, in obtaining the equation of state,
purely from the velocity ratio.

Numerical Results and Discussion

As explained in reference 6, Afp and Afs are obtained experimentally

and are related to Vp and V by Afb = Vp/Zd Af, = Vs/2d where d is the

specimen thickness. A spline function fit was made to these Afp and

Afs and using the universal identity (25) (which is independent of the

elastic constants used) and Decker's equation of states, d was determined

from >

e g dp/di1 (1+4) , (1+4 = 1.054) (36)
1200 (Afp? - 4/30f%)

and Vp’vs computed for all pressures.

The Frankel, Rich, and Homan6 (FRH) and Voronov and Grigorev9 (VG)
velocity data were both analyzed. Since the FRH data starts at 25 kbar
(the 25 kbar point having been determined by matching velocity ratios
of FRH to VG at 25 kbar) only the VG velocity and 3v/3p were used near

zero pressure to give the second order elastic constants A and u, and

the third order elastic constants o and B. Having obtained the second

6Frankel, J., J. F. Rich, C. G. Homan, J. Geoph. Res. Vol. 81, No. 35,
6357-6363, 1976.

8Decker, D. L., W. A. Barrett, L. Merrill, H. T. Hall, and J. D. Barnet,
"High Pressure Calibration: A Critical Review,'" J. Phys. Chem., Ref.
Date 1, 773-835, 1972.

9Voronov, F. F., and Grigorev, S. B., "Influence of Pressures up to 100
Kbar on Elastic Properties of Silver Sodium and Cesium Chloride,"
Sov. Phys. Solid State, Vol. 18, No. 2, 325-328, 1976.

13
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and third order elastic constants from VG alone the fourth order elastic
constants were obtained in two ways, by analyzing the FRH data and the
VG velocity data. In addition to that, one of the fourth order elastic
constants Y, was obtained by fitting the results of the Decker equation
to our formulation of the equation of state (Eq. 35). For the ultra-
sonic data the fourth order elastic constants y and § were computed by
minimizing the integral of the sum of the squares of the differences

between the experimental values of v, and Vg and the theoretical

P
expressions over the parameters y and 8. The results are given in
Table 1.

In Figure 3 we plot vp and vg as a function of pressure for
inclusion of second, third and fourth order elastic constants. The
experimental results are also plotted.

An interesting observation from Figure 3 is the peak in the shear
velocity as predicted by VG data using fourth order elastic constants.
These elastic constants predict a shear velocity which peaks at about
80 kbar. A peak would be interesting from lattice dynamics consider-
ations using the Born criterion of phase changes.6 The FRH experimental
data does not show such a peak.

In terms of our formulation the results from the VG data agree
very well with the Decker equation (see Y in Table 1 and Figure 4).

The fourth order elastic constants from VG evaluated up to 80 kbar

6Frankel, J., J. F. Rich, C. G. Homan, J. Geoph. Res. Vol. 81, No. 35,
6357-6363, 1976.

14




TABLE 1. Elastic constants obtained in our formulation. The second
and third order constants were obtained from low pressure
velocity data of Voronov and Grigorevg. The fourth order
elastic constants are obtained from present analysis based on
velocities reported in ref. 6. The fourth order constant
under source D was obtained from the Decker equation using

VG values for second and third order elastic constants.

ELASTIC CONSTANTS (x 10'! DYNES/CM?)

Source ., Second Order Third Order Fourth Order

A u a B Y 6
VG 1.5430 1.4699 -54.8724 -30.845 4.4701 18.3613
FRH L L 4 3 6.5206 28.1030
D o U 4 - 4.8716 -

6Frankel, J., J. F. Rich, C. G. Homan, J. Geoph. Res. Vol. 81, No. 35,
6357-6363, 1976.

9voronov, F. F., and Grigorev, S. B., "Influence of Pressures up to
100 Kbar on Elastic Properties of Silver Sodium and Cesium Chloride,”
Sov. Phys. Solid State, Vol. 18, No. 2, 325-328, 1976.

15
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Velocity Comparison

8
[ Yp From FRH
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Figure 3. v, ,vg as a function of pressure taking into consideration
sécond order, third order, and fourth order elastic constants
and comparing with experimental results.
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Equation of State Comparison

Incl. 4t order FRH

Incl. 4tk order VG

Decker

Linear Compression Ratio (A,

/20

Pressure (kbar)

Figure 4. P vs A; is plotted and inclusion of the fourth order
term is found to be necessary to fit the equation of
state.
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P

predict the cquation of state to 270 kbar. The equation of state
obtained from the FRH velocities is also included in Figure 4 as an
internal check since the Decker equation was used to obtain the
velocities. The results from the FRH data differ from the Decker
equation curve by about 5 percent of the change in the linear dimension
to 270 kbar, or on the pressure scale by = 10 out of 270 kbar (4%).
Figures 3 and 4 point up an anomaly: even though the fourth order
elastic constants fit the FRH deduced velocities better to 270 kbar, the
fourth order elastic constants obtained from VG to 80 kbar predict the
equation of state better.

Further work on fifth order elastic constants and use of velocity
ratios is indicated. Figures 3 and 4 strongly indicate that third order
elastic constants are not sufficient in predicting velocities or the
equation of state beyond 80 kbar. The fact that the present develop-
ment not only derives the equation of state to fourth order elastic
constants but enables us to determine them from velocity information
will find application in very high pressure or high compression equation
of state studies.

In deriving the FRH results of Figures 3 and 4 we have used the
Decker equation. However, an independent equation of state can also
be obtained if we have good velocity data in the neighborhood of zero

pressure.

18
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The computation is done as follows: a spline function fit is
obtained to the available data near zero pressure (using interpolating
splines) and the derivatives obtained at P = 0 (i.e. Al = 1). From
(33) and (34) we then obtain A,u,a,B, the second and third order
elastic constants. With these we minimize the integral of the
difference of the squares of the experimentally obtained Afp/Afs, with
respect to Y and § (fourth order elastic constants), and the ratio of
equations (33) and (34) over the required range of pressure (least
square fit). Once Y and 6§ are thus determined the equation of state
is then easily obtained from equation (35). This method has an
additional advantage, that it is not necessary to measure the
deformed dimensions of the specimen.

COMPARISON WITH AVAILABLE ELASTIC CONSTANTS

The fourth order elastic constants are not yet available in the
open literature. However, Barsch10 has done an extensive review and
analysis for third order isotropic elastic constants. Comparing our
equation (29) to Barsch's equation 5 we get in his notation

n=17/2 C456
m=Cygy - 7/4 C456 37)

L =% (C123 + 2m-n)

10Barsch, G. R. "Relations Between Third Order Elastic Constants of Single

Crystals and Polycrystals,'" Jour. Appl. Phys., Vol. 39, 8, 3780,
1968.
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We evaluated data given by Barsch10 from four different sodium
chloride experiments by substituting (37) for the third order elastic
constants in (32). The results are given in Table 2. Since the
NaCl 2 data falls strongly out of the pattern of the other three, we
compared the o. and R as given in Table 1 with the average of NaCl 1,
3 and 4. The results are in excellent agreement.

Table 1 also shows the satisfactory agreement between the values
of Y and § obtained from different experiments, and the Decker
Equation, as discussed above.

No mention has been made so far as to the nature of the elastic
constants obtainéd. We note two factors (a) the specimen in our
experiment was compressed isothermally; (b) velocity measurements at
the frequencies of our experiment (~ 10MHZ) are adiabatic.

Hence in high pressure experiments we make adiabatic measurements
on a state arrived at by isothermal deformation. (The hydrostatic
pressurization is assumed thermodynamically reversible, which is not

totally true for quasi-hydrostatic systems.) The elastic constants

thus arrived at are known as mixed elastic constants in the literature.

No corrections have been made from mixed to isothermal elastic constants

because the difference for NaCl can be considered small enough to fall

within the uncertainty of the determination.11

10Barsch, G. R. "Relations Between Third Order Elastic Constants of Single

Crystals and Polycrystals,'" Jour. Appl. Phys., Vol. 39, 8, 3780,
1968.

11Barsch, G. R. and Z. P. Chang, "Adiabatic Isothermal and Intermediate

Pressure Derivatives of the Elastic Constants from Cubic Symmetry,"
Phys. Stat. Sol. 19, 139 (1967), and private communication (Chang).
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TABLE 2. THIRD ORDER CONSTANTS FROM FOUR DIFFERENT EXPERIMENTS

AS GIVEN BY BARSCH10 CONVERTED TO OUR FORMULATION

Comparison of Third Order Elastic Constants of NaCl (x 1011 dynes/cm?)

Average of 1,3,4 %Difference wrt

Table 1
a -56.86 -33.53 -55.76 -51.18 -54.27 1.1
B -32.33 -24.16 -32.22 -29.96 -30.76 0.27

10Barsch, G. R., "Relations Between Third Order Elastic Constants of
Single Crystals and Polycrystals,' Jour. Appl. Phys., Vol. 39, 8,
3780, 1968.
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CONCLUSIONS

1. Using fundamental principles we have derived the equation of
state and velocities in terms of second, third, and fourth order elastic
constants, for an isotropic solid.

2. The results imply that a) with sufficiently accurate velocity
data near zero pressure and the velocity ratio measured to high
pressures an equation of state can be determined outside of regions
where phase changes take place, b) with sufficiently good velocity
data near zero pressure or at low pressures a pressure scale cun be
predicted from experimentally obtained velocity ratio information.

3. The mechanism of computation can easily be extended to fifth
order elastic constants.

4. In general wave methods are much more sensitive for the
measurement of elastic properties of matter than static measurements
because of relative sensitivity of velocity measurements to volume
measurements at these pressures.

5. As a last point it is useful to stress the complete generality
and the high pressure predictive powers of the method derived here
together with the velocity ratio concept.

The equations are derived from first principles and apply to any
isotropic solid in a pressure-volume range where no phase changes take
place. These can be carried to fourth and fifth order elastic constants
and the constants can be obtained to any pressure to which the velocity
ratio can be measured. The equation of state derived from these

principles with the fourth and fifth order elastic constants is
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expected to have predictive powers to higher than the measured pressures
; better than any method heretofore developed.

This will be useful in obtaining the very high pressure molecular
equation of state for materials such as rare gas solids. These
molecular resulfs will then be compared with available equations for
the metallic state and the pressure of the molecular-metallic
transition will then be predicted, together with its estimated

‘uncertainty.
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