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INTRODUCTION

Ultrasonic measurements at very hi gh pressures give us the

unique opportunity of obtaining the elastic properties of crystalline

solids experiencing extremely large elastic deformations, which cannot

be attained by other more conventional techniques. At best conventional

stress-strain measurements in crystalline solids indicate elastic

strains of the order of one percent; in sodium chloride the linear

strain at a hydrostatic pressure of 270 kbar is nearly eleven percent.

Methods of continuum mechanics brought to bear on high pressure

problems were inspired by Bridgeman’s pioneering experimental work.

Murnaghan2 did the early theoretical work, inventing the finite strain

method and using it to third order elastic constants for the equation

of state. Birch3 was another early worker using a somewhat different

though valid formalism. A treatment giving the fourth order elastic

constants for single crystals using lattice dynamics was given by

Ghate4. The present treatment derives both the equation of state and

the velocity in terms of the fourth order elastic constants by methods

of continuum mechanics .

The methods used here are based on the tensor formalism developed

in Green and Zerna)

‘Green , A. E ., W. Zerna , Theoretical Elasticity, Oxford at the
Clarendon Press, 1954.
2Murnaghan, F. D., Finite Deformations of an Elastic Solid, Dover
Publications, Inc., New York.

3Birch , F. ,  “The Effect of Pressure Upon the Elastic Parameters of Isotropic
Solids, According to Murnaghan’s Theory of Finite Strain,” Jo’ir. Appi.
Phys. 9, 279, 1938.

4Ghate , P. B , ,  “Fourth Order Elastic Coefficients,” Jour. Appi. Phys.
35.2 , 337 , 1964.
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The experimental techniques for obtaining high “quasi-hydrostatic”

pressures5 and for making high pressure ultrasonic interferometry

measurements6 were described in detail elsewhere and are shown

schematically in Figure 1.

The direct experimental data obtained from ultrasonic interfer-

ometry consists of the frequency intervals Af~ and ~f5 (for dilata-

tional and shear modes respectively) for maximum destructive interfer-

ence of the first echo of the ultrasonic echo train as observed on the

cathode ray tube. Here the respective velocities are given by (~f )/ ( 2d)

where d is the specimen thickness. The isotropic velocities were

obtained through the use of the Decker equation and the frequency inter-

vals in the universal identity relating the adiabatic density deriva-

tive of the pressure and the dilatational and shear isotropic velocities

and V~ respectively at all hydrostatic pressures: ~~‘9~ad 
= V~ 

2 
-

(4/3) V5
2 .

DERIVATION OF VELOCITIES FOR THE THEORY OF SMALL DEFORMATION SUPERPOSED

ON FINITE UNIFORM DEFORMATION

Using the notation of Green and Zerna1 and conforming to the exper-

imental situation we apply a uniform hydrostatic deformation to the

unstrained body B0 which becomes B in the new (pressurized) state. To

the body B we apply an infinitessimal deformation (the ultrasonic wave)

at time t , and represent this configuration as B’ (Figure 2).

1Green, A. E., W. Zern a, Theoretical Elasticity, Oxford at the
Clarendon Press, 1954.

5Kenda ll , D. P . ,  P. V. Dembowski, T. E. Davidson, Rev. Sci. Inst.
Vol. 46 , No. 5 (1975) .

6Frankel , J . ,  J. F. Rich, C. G. Homan , J. Geoph . Res. Vol. 81, No. 35,
6357-6363 , 1976.
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Taking the moving coordinates to coincide with a fixed rectangular

system (x,y,z) in the strained body B (Eulerian formulation)- we have

01 = x 02 = y 03 = z (strained body) (1)

The rectangular axes which define points in B0 are taken to

coincide with the axes (x 1, x 2, x3) .

The constant extension ratio A 1, (the strain parameter) is given

by
A] =~~~~~~~~~~ =~~~~~~~~~~ =~~~~~~— (2)

xj y1 z1

By taking the body (working) coordinates in the deformed body

(i.e. the working coordinates move with the mass points of the body)

and using the definition of the metric gj .j  from the equation

ds2 = ~~ dO1 dO3 we have the metric tensor of the undeformed body

[1/A 1
2 0 0 1 ~~A 1

2 0 01

g~ ) = f 0 1/A~
2 

~ ~; 
g~ = 0 A 1 0 (3)

[0 0 l/A 12J [o 0 A 12J

and g = 1/A~
6

Here the sub or superscripts refer to the covariant or contra-

variant tensor representations. g is the determinant of gj5. In the

same representation the metric tensor G1~ of the deformed body B is

~~~ = G ’3 = 

~i.j 
; G = 1 (4)

where 6 is the Kronecker delta.
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The Deformed State (Under Finite Deformation)

The strain invariants are

= 3A
1
2 1

2 
= 3A 1” 13 = A 1’ (5)

and the strain tensor elements become

~~~
.. 4~ (G 1~ - g1~

) = .
~~ 

6~~ (l - 

~~~2 ) (6)

The strain invariants (Eq. 5) are independent of the coordinates,

they are constant for a given deformation. At this point we invoke

Murnaghan ’s theorem (p. 61 of reference 2) for isotropic elastic media:

“A deformable medium is isotropic if, and only if, the strain energy

density is a function of the three strain invariants I~, I~, I3~.

We can now express the strain energy density W in terms of

121 13 
and af ter some mani pulation (as given in reference 2) and

using the principle of virtual work we can obtain the components of

the stress tensor of the body under finite deformation.

= + 2’VA1~ + p

T 22 = = T 1’

~
l2 

= ~
l3 = = 0 (7)

where 
- ~ = ...i_ ~! p = 2,/V

It should be noted here that since ~~~ = ~~ the unit reference

area is taken in the deformed coordinates. Equations (7) therefore

represent the physical components of the stresses and in particular

the hydrostatic pressure in our experiment (r 11= -P).

2Murnaghan , F. D . ,  Finite Deformations of an Elastic Solid, Dover
Publications Inc., New York.
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The Perturbed State

We are now in a position to derive similar quanti~.ies for the

perturbed case B’ , the displacements due to the ultrasonic wave.

In this new configuration the displacements can be written as the
+

sum of the initial uniform disp lacement of the bodyv and that of

the perturbation c’w, (01102,03,t) + c~ (O11O2,O3,t) where c is a

constant so small that the squares of c and its higher powers may be

neglected compared to C.

The covariant base vectors of the coordinate system O~ at points
4. + + + + 4.

P’ of B’ are denoted by G1 + cG1 = r j ’v , ~~+ c w 1 where r is the

loca tion of point P0, and the commas indicate differentiation with

respect to the 
.th coordinate.

To the first order in c the perturbed metrIc tensor G’~~ (the

perturbed state is usually denoted by primed quantities) of the

deformed body referred to base vectors of body B is:

2!!~ ~~+~iax ay ax az ax

G~~
. = (symm ) — + — = - G (9)

9z ay

2~~~

W = W mC °~
‘
~~m

and w1 u W2 = V  ~3 = w

6
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I
The perturbation in the strain invariants is

I l = 2X1
2 !~!+ 

av~ aw)az

2 = 4A 1
1’ (!. ~. + + (10)ax ay az

au 3v aw
I’ = 2A 1’ (~

— + -
~

— +

The perturbation components of the stress tensor are given by

(see ref. [1] p. 119).

av aw)~
,ll = + C

12 
(.
~— +

22 3v~~~ au aw )r ’ = C  l 2 (~~~~~ j

+ 9v ) (11)= c11 ~~ 
+ C 12 (~! 

-

= C44(.~~ +
Dy ax

T ’ 23 
= C44~~~~+ !!)

Dy

T ’ 31 = C44 (.~~ + !~..) (12)Dx Dz
Where

C11 = -r ’1 + 2AA 1’ + 8BA 1
8 + 2CA~

2 
+ 8DA~

0 
+ 4EA 1’ + 8FA1

6

C12 = -A 1~4 + p + 2AA 1~ + 8BA 1’ + 2CA~
2 

+ 8DA~
0 

+ 4EA 1’ + 8FA 1
6

C44 = 4(C 11_C 12) (13)

And ~~~~~~~~~ 2 D 2W
A
Ii ~ a 1i 2 

‘ a 122 
C = 

~~~~~

D = .~~.... ~~~~~ 
= 

2 D2W 
, F = ~~~ 

a 2w (14)
/i~ DI 2DI 3 ~/rj ar 3ai 1 iç DI 1DI 2

¼reen, A. E., W . Zerna , Theoretical Elastici~y1, Oxford at the
Clarendon Press, 1954.
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The phys ical components of perturbation in stresses, ~,
r5, can

be obtained by the contravariant transformation rule, and to the

first order in c and referring to the B’ configuration we have

~
‘rs 

= 1’rs + 1ins ~~~ 1rm~~0s (15)

DOm Dom

Using (12) we have

= (C 11 + 2111) Du + C12(!.!. +Dy 3z

= (C11 + 2111) Dv 
+ c (~~ +12

11 3w + C12(
Du + (16)t ’33 (C 11 

-

+ 2t ) -
~

-
~~ 

~~~~ Dy

t’12 
= (C~~ + r11 ) (!.Y~ +Dy Dx

= (C~~ + 1l1)(Dv 
+ 

DW
)¶~ Dy

= (C~~ + T l 1) ( ~! +Dx Dz

The equation of motion, with as acceleration components, become

_____ = ~fIr (17)
Des

From (17) and (16) we have (after some manipulation)

~- (C11-C12+2r
1’) V2u + ~~

- (C11+C12+2t
11) (~—.~ 

D2v D2w D2u
+ — +  — )

ax2 ax~’ DxDz 
= 

~

.~- (C11_C 12+2t
l
~ )V 2v + ~~

- (C11+C12+2t
11) ~~~~ + 

D2w 
+ 

D2u 
~ 

— D2v
Dy2 DyDz DxDy - ~ Dt 2

11 
_____ ______

~- (C 11-C 12+2r )V 2w + . (C11+C12+2 
11 D2w D2u D2v 

=r ) (— + + ) p
Dz 2 DxDz DyDz Dt2

(18)

8



Vectorially adding above with ~ = tu + rv + tw we have

~ . (C11
_C

12+21
l1
)v2; + -~

- (C11+C 12+2t~~)V(V w) = p (19)

This is the equation of motion of body B’ in terms of perturbation

(~) of displacement of body B.

Taking the divergence and curl of (19) we have

V 2(V .
~~~~

) = ( “ 11 ) - ~--~- ( V  .
~~

)
C11+2t Dt

V 2 (V x ~ 
= 

~C11
_c~~+2tl1 ~ ~~~~ 2 

(V x ~
) (20)

THE UNIVERSAL IDENTITY

From (16) we have

+ t’22 + t’33 = (C11÷2C12+2T
h 1) (~~ + + ~~

) (21)

let t’~
’ = t’22 = t’33 = - ~~ (Pressure) = - ~P (22)

+ + = - ~ (Volume) = -Dx Dy Dz Unperturbed
Volume

hence ~2. = - (23)
p

(23) and (22) with (21) give

dP i 11
p — = Limit p — = — (C11+2C 12+2T ) (24)

dp A~~+ O  t~p 3

Hence from (24) and (20) eliminating C11, C12, ~~ we have

V 2  = _ v 2 + —  (25)
~‘ 3 ~ dp

(25) is the universal identity 7 .

7rruesdell, C., Handbuch der Physik, Ed.S.Flugge,VoI 111/3, Springer
Verlag, Heidelberg, New York.

9
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From (20) we have the velocities

C11+2r
11 1/2

Vp = ( ) Dilatational Velocity

C11-C1-,+2r 1/
V5 = C ‘‘ ) Shear Velocity

2p

Where C11, ~~~ etc. can be computed in terms of derivatives of W with

respect to strain invariants from (13), (14) and (8).

APPLICATION WITH FOURTH ORDER ELASTIC CONSTANTS

The Velocities

In this section we assume that the elastic strain energy for the

material under consideration can be expanded up to fourth order terms

in strain invariants. The defined by Murnaghan2

are slightly different than those of Green and Zerna1. For the sake

of easy comparison we give the transformation, denoting those of

Mu rnaghan by a superscript c,

I~ = } (I]-3)

I = 
~
. [(‘2—s) — 2(11—3)] 

(27)

= ~
. [(13—1) ~ (

~ l~~~ 
—

P1 = ~.(A+2ii) ~r 
- 2~ :~ 

+ 
(2.+2m) I~ - 2mI~ I~ + n

+ l6q(I~ ) + 16r (I~ ) (I~) 416s (I~ I~) + 16t (I~ ) (28)

‘Green, A. E., W. Zerna, Theoretical Elasticity, Oxford at the
Clarendon Press , 1954 .

2Murnaghan , F. D .,  Finite Defo rmations of an Elastic Solid, Dover
Publications Inc., New York.

10 
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Where A ,~i Lame’s second order elastic constants

~,m,n (Murnag han ’s) third order elastic constants

q, r,s,t Fourth order elastic constants
(Factor 16 is for convenience only)

Substituting equation (27) into (28) we have

li! — ~ (T— “ 8 ~‘l ’~

+ p ~~~ [(I l
_ 3) 2 _ 2 ( I

2
_3)  + 4(I i—3)]

+ 2. 
~~~~~ 

(I~ —3)~ + m j~ [(I l— 3 )
~~

_ 3 ( I
1

— 3 )  (12 —3)  + 6(I l_3) 2]

+ n -~[(I3_1) + (11-3) - (12-3)] (29)

+ q(11—3)
4 

+ r [(11—3) 2 (12 — 3) — 2( I~_3)3]

+ s[(I~ — 3) (13—1 ) + (I
i

_3) 2 — (11— 3) (12 —3) ]

+ t[(I 2 — 3) 2 — 4(12 — 3) ( I i—3)  + 4(Il
_3)2]

Using (26) , (13) and (5) and some manipulation we have

5A 1 ~ 1 lÀ1
3 5A

4

+ 2m A1(X 1
2-1) + ~~ — (A 1

2 -l) 2 
+ 216q(A 1

2 -l) 2 (3A 1 - 
~
) (30)

+ 24r (A 1
2 -l) 2 (8A 1 — 

~~
—) + 8s(A 1

2 —1) 2 (2A 1 — 
~~~

_) + 8t(A 1
2 —l) 2 (7A 1 —

• and

pV5
2 = ~~ (A1 - ~L) + p (2A1 - ~L) + a—. (A 1

2 -]) 2 
+ ~‘~~l (A 1

2..1)

~~~~~
_— (A~~—1) + 2l6q ~~-. (A 1

2 — l ) 3 
+ l8r (A 1

2—1)2(3A 1 — 
~~~

-_
~ 

(31)

+ 2s(A 1
2-l)2 (X1 — 

~ —) + 12t(A 1
2-l)(A 1 

-

11



In the above expression there are two second order, three third

order and four fourth order elastic constants. However, only two

unique combi nations of each third and fourth order elastic constants

appear in (30) and (31); these combinations can be easily found by

collecting equal powers of the strain parameter A1. These are

CL = (92.+n)
Third Order

= (32.+2m)

(32)
y = (27q + 9r + s + 3t)

Fourth Order
6 = (81q + 24r + 2s + 7t)

Using (32) the expressions in (30) and (31) become

V~
2
~ = A 1

5(86) + A1~~~a + B - 8y - 166) + A 1(~~ + 3p - - + l6y + 86)

(33)
i

V5
2p = A 1

5 (66-lOy ) + A 1~ (~- B - 126 + l2y) + A 1(~~- + 2p - -

1 3A 1+ 6 Y + 6 ó ) +
ç ( - T - P + ~~~a - 8 Y )  (34)

The Equation of State

Using (7) and noting that = -Pressure we have the equation

—P = ~~
. (3X+2p) ~~~~

_ (A1
2—l ) + a -~~~~

__ (A 1
2—1)2 + ~I (A

1
2-1)3 (35)

The first two terms on right side of (35) represent Murnaghan ’s

equation, the additional term is due to fourth order elastic constants,

and plays an important role at high strains.

12
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It should be noted that in Equation (35) only one combination of

each order of elastic constants appears. This is the consequence of the

universal identity which has to be satisfied, independently of the

assumed elastic potential. This phenomenon has far reaching consequences,

as will be explained in the sequel, in obtaining the equation of state,

purely from the velocity ratio.

Numerical Results and Discussion

As explained in reference 6 , ~~~ and Af 5 are obtained experimentally

and are related to V~ and V~ by t~f~ = V~/2d ~f5 = V
5
/2d where d is the

specimen thickness. A spline function fit was made to these and

and using the universal identity (25) (which is independent of the

elastic constants used) and Decker’s equation of state8, d was determined

from ½

d = 
[ 

- 
A 1~ dp/dAl (l+~ ) 1 , (l+~ = 1.054) (36)[ l2p0 (~f~

2 
- 4/3Af 2

) j
and V~,,V5 computed for all pressures.

The Frankel, Rich, and Homan6 (FRH) and Voronov and Grigorev9 (VG)

velocity data were both analyzed. Since the FRH data starts at 25 kbar

(the 25 kbar point having been determined by matching velocity ratios

of FR}( to VG at 25 kbar) only the VG velocity and Dv/Dp were used near

zero pressure to give the second order elastic constants A and p, and

• the third order elastic constants a and B. Having obtained the second

6Frankel, J., J. F. Rich, C. G. Homan, J. Geoph. Res. Vol. 81, No. 35,
6357-6363, 1976.
8Decker, D. L., W. A. Barrett, L. Merrill, H. 1. Hall, and J. D. Barnet,
“High Pressure Calibration: A Critical Review,” J. Phys. Chem., Ref.
Date 1, 773-835, 1972.
9voronov, F. F., and Grigorcv, S. B., “Influence of Pressures up to 100
Kbar on Elastic Properties of Silver Sodium and Cesium Chloride,”
Soy. Phys. Solid State, Vol. 18, No. 2, 325-328, 1976.

13
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and third order elastic constants from VG alone the fourth order elastic

constants were obtained in two ways, by analyzing the FRH data and the

VG velocity data. In addition to that, one of the fourth order elastic

constants y, was obtained by fitting the results of the Decker equation

to our formulation of the equation of state (Eq. 35). For the ultra-

sonic data the fourth order elastic constants y and 6 were computed by

minimizing the integral of the sum of the squares of the differences

between the experimental values of vp and v5 and the theoretical

expressions over the parameters y and 6. The results are given in

Table 1. 
-

In Figure 3 we plot vp and v~ as a function of pressure for

inclusion of second, third and fourth order elastic constants. The

experimental results are also plotted.

An interesting observation from Figure 3 is the peak in the shear

velocity as predicted by VG data using fourth order elastic constants.

These elastic constants predict a shear velocity which peaks at about

80 kbar. A peak would be interesting from lattice dynamics consider-

ations using the Born criterion of phase changes.6 The FRH experimental

data does not show such a peak.

In terms of our formulation the results from the VG data agree

very well with the Decker equation (see y in Table 1 and Figure 4).

The fourth order elastic constants from VG evaluated up to 80 kbar

óFrankel, J., J. F. Rich, C. G. Homan, J. Geoph. Res. Vol. 81, No. 35,
6357-6363 , 1976 .

14
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TABLE 1. Elastic constants obtained in our formulation. The second

and third order constants were obtained from low pressure

velocity data of Voronov and Grigorev9. The fourth order

elastic constants are obtained from present analysis based on

velocities reported in ref. 6. The fourth order constant

under source D was obtained from the Decker equation using

VG values for second and third order elastic constants.

ELASTIC CONSTANTS (x 1011 DYNES/CM2)

Source - Second Order Third Order Fourth Order

A p a B 6

VG 1.5430 1.4699 -54.8724 -30.845 4.4701 18.3613

FRI-I “ “ “ “ 6.5206 28.1030

D “ “ “ — 4.8716 —

6Frankel, J., J. F. Rich, C. G. Homan, J. Geoph. Res. Vol. 81, No. 35,
6357-6363, 1976.
9Voronov, F. F., and Grigorev, S. B., “Influence of Pressures up to
100 Kbar on Elastic Properties of Silver Sodium and Cesium Chloride,”
Soy. Phys. Solid State, Vol. 18, No. 2, 325-328, 1976.
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Velocity Comparison
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Equat ion of State Comparison
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predict the equation of state to 270 kbar. The equation of state

obtained from the FRH velocities is also included in Figure 4 as an

internal check since the Decker equation was used to obtain the

velocities. The results from the FRH data differ from the Decker

equation curve by about 5 percent of the change in the linear dimension

to 270 kbar, or on the pressure scale by 10 out of 270 kbar (4%).

Figures 3 and 4 point up an anomaly: even though the fourth order

elastic constants fit the FRI-I deduced velocities better to 270 kbar, the

fourth order elastic constants obtained from VG to 80 kbar predict the

equation of state better.

Further work on fifth order elastic constants and use of velocity

ratios is indicated. Figures 3 and 4 strongly indicate that third order

elastic constants are not sufficient in predicting velocities or the

equation of state beyond 80 kbar. The fact that the present develop-

ment not only derives the equation of state to fourth order elastic

constants but enables us to determine them from velocity information

will find application in very high pressure or high compression equation

of state studies.

In deriving the FRI-I results of Figures 3 and 4 we have used the

Decker equation. However, an independent equation of state can also

be obtained if we have good velocity data in the neighborhood of zero

pressure.

18
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The computation is done as follows: a spline function fit is

obtained to the available data near zero pressure (using interpolating

splines) and the derivatives obtained at P = 0 (i.e. A1 = 1). From

(33) and (34) we then obtain X,p,a,B, the second and third order

elastic constants. With these we minimize the integral of the

difference of the squares of the experimentally obtained Af~/~f5~ with

respect to y and 6 (fourth order elastic constants), and the ratio of

equations (33) and (34) over the required range of pressure (least

square fit). Once y and 6 are thus determined the equation of state

is then easily obtained from equation (35). This method has an

additional advantage, that it is not necessary to measure the

deformed dimensions of the specimen.

COMPARISON WITH AVAILABLE ELASTIC CONSTANTS

The fourth order elastic constants are not yet available in the

open literature. However, Barsch1° has done an extensive review and

analysis for third order isot ropic elastic constants. Comparing our

equation (29) to Barsch ’s equat ion 5 we get in his notation

= 7/2 C456

m = C144 - 7/4 C456 (37)

2. = ¼ (C123 + 2m-n)

10Barsch , G. R. “Relations Between Third Order Elastic Constants of Single
Crystals and Polycrystals,” Jour. Appi. Phys ., Vol. 39 , 8 , 3780 ,
1968.
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We evaluated data given by Barsch1° from four different sodium

chloride experiments by substituting (37) for the third order elastic

constants in (32). The results are given in Table 2. Since the

NaC1 2 data falls strongly out of the pattern of the other three, we

compared the ~ and ~ as given in Table I with the average of NaC1 1,

3 and 4. The results are in excellent agreement.

Table 1 also shows the satisfactory agreement between the values

of y and 6 obtained from different experiments, and the Decker

Equation, as discussed above.

No mention has been made so far as to the nature of the elastic

constants obtained. We note two factors (a) the specimen in our

experiment was compressed isothermally; (b) velocity measurements at

the frequencies of our experiment C— 10MHZ) are adiabatic.

Hence in high pressure experiments we make adiabatic measurements

on a state arrived at by isothermal deformation. (The hydrostatic

pressurization is assumed thermodynamically reversible, which is not

totally true for quasi-hydrostatic systems.) The elastic constants

thus arrived at are known as mixed elastic constants in the literature.

No corrections have been made from mixed to isothermal elastic constants

because the difference for NaC1 can be considered small enough to fall

within the uncertainty of the determination .’1

~°Barsch, G. R. “Relations Between Third Order Elastic Constants of SingleCrystals and Polycrystals,” Jour. Appi. Phys., Vol. 39, 8, 3780,
1968.

llBarsch , C. R. and Z . P. Chang, “Adiabat ic Isothermal and Intermediate
Pressure Derivatives of the Elastic Constants from Cubic Syninetry,”
Phys. Stat. Sol. 19, 139 (1967), and private communication (Chang).
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TABLE 2. THIRD ORDER CONSTANTS FROM FOUR DIFFERENT EXPERIMENTS

AS GIVEN BY BARSCH1° CONVERTED TO OUR FORMULATION

Comparison of Third Order Elastic Constants of NaCl (x lO~~ dynes/cm 2)

Average of 1,3,4 %Difference wrt
Table 1

ct -56.86 -33.53 -55.76 -51.18 -54.27 1.1

B -32.33 -24.16 -32.22 -29.96 -30.76 0.27

~°Barsch , G. R . ,  “Relations Between Third Order Elastic Constants of
Single Cryst a ls and Polycrystals,” Jour. Appl. Phys., Vol. 39, 8,
3780 , 1968.
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CONCLUSION S

1. Using fundamental principles we have derived the equation of

state and velocities in terms of second, third , and fourth order elastic

constants, for an isotropic solid.

2. The results imply that a) with sufficiently accurate velocity

data near zero pressure and the velocity ratio measured to high

pressures an equation of state can be determined outside of regions

where phase changes take place, b) with sufficiently good velocity

data near zero pressure or at low pressures a pressure scale c~n be

predicted from experimentally obtained velocity ratio information.

3. The mechanism of computation can easily be extended to fifth

order elastic constants.

4. In general wave methods are much more sensitive for the

measurement of elastic properties of matter than static measurements

because of relative sensitivity of velocity measurements to volume

measurements at these pressures.

5. As a last point it is useful to stress the complete generality

and the high pressure predictive powers of the method derived here

together with the velocity ratio concept .

The equations are derived from first principles and apply to any

isotropic solid in a pressure-volume range where no phase changes take

place. These can be carried to fourth and fifth order elastic constants

and the constants can be obtain ed to any pressure to which the velocity

ratio can be measured. The equation of state derived from these

principles with the fourth and fifth order elastic constants is

22



expected to have predictive powers to higher than the measured pressures

better than any method heretofore developed.

This will be useful in obtaining the very high pressure molecular

• equation of state for materials such as rare gas solids. These

molecular results will then be compared with available equations for

the metallic state and the pressure of the molecular-metallic

transition will then be predicted, together with its estimated

- uncertainty.
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