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COMPUTATIONALLY EFFICIENT ESTIMATORS

FOR THE BAY ES RISK

Lynn D. Wilcox

ABSTRACT
\

_~ \
A computationally efficient estimator for the Bayes risk is one

which achieves a desired accuracy with a minimum of computation . In many

problems , for example speech recognition , point evaluations of the class

conditional densities are computationally costl y. Density evaluations are

the single mos t important factor contributing to the computationa l effort

In Bayes risk estimation , thus the amount of computation required by a

Bayes risk estimator is defined as the average number of conditional den-

sity evaluations it pE.r cortrlr . The accuracy of a risk estimatcr is de-

fined by its variance . ~~~~~~~~ 
‘

~~ 

~ 
C

Existing estima tor s for the Bayes risk , namely tie error count esti-

mator and the poster ior estimator , require for each samp le X ., j=l ,2. . .N ,
J

evaluation of the class conditional dens i ty f ( X ~) for each class

m=l ,2. . .M, a total of N M  density evaluations . For problems such as speech

recognition , where the number of classes M is large and density evalua-

tions costl y, these est imators are impractical from a computat ional aspect.

A new class of estimator s of the general form ~(T) is proposed . An

estimator R(T) is defined by associating with each class m a 
•
subset T of

the M classes. For two classes , only the error count and posterior estima-

tors belong to this class . For more than two classes , sever.al new esti-

mators for the Eayes risk are included.

Estima tors requiring fewer density eva l uations are derived from the

class of estimators of the general form ~(T) as follows . A scalar para-

L~~~~~~~~~~VV ~~~~~~~~~~~~~~~~~ V~~~~~~~~~~’
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meter ~ determines the sets Tm(~
) of classes tha t are ~cw-close ” to each

class m, hence an estimator ~(cr) of the general form ~ (T) . As ~ varies ,

the sets T
1
(a) ,.. .,T

M
(a) vary and a family [R(c~) 0 � ~ < Ormax) of risk

estimators is achieved . Each estimator in the family is characterized

by the average number of density evaluations it requires and its variance.

The optima l estimator from the family [R(cy) : 0 � ~ < 
~max

3 is de-

fined as that estimator with maximum computational efficiency , where the

computational efficiency of an estimator is the inverse of the product of

the average number of density evaluations it requires and its variance .

The optimal estimator requir es the least amount of computation to achieve

a given accuracy , or, symmetrically, achieves the greatest accuracy with

a minimum of computation .

In practice , the true optimal estimator cannot be determine d since

this would in effect require knowledge of the true risk R. Thus a technique

whereby the first n of the total N samples are used to approximate the

optima l estimator is proposed. The n samp les should contain enough infor-

mation on the closeness of the classes to determine an almos t optimal

estimator . The last N-n samp les arc used in the approximate optima l esti-

mator to obtain an accurate estimate of the risk with a minimum of compu-

tation.

- -

V — I
V 

V . •~~~~~~C 
V ?

’ :
~~~~~~~~~~ S

V 

~~~~~~~~~~~~~~~~~~~~~~~



A U N C L A S S I F I E D
S E C U R I r Y  C L A S S I F I C A T I O N  O~ T H I S  P A G E  (Ithan Data E n t e r e d)

REPORT DOCUMENTATION PAGE 
~IE F O RE  COMPLET IN G FORM

I. R E P O R T  NUMBER 2. GOVT  A C C E S S I O N  NO. 1 R E C I P I E NT ’ S C A T A L O G  NUMBER

~rosn-TI~. ‘~ 3 - : 3 2 ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4. TITLE (an d Ss.bIItIa) 5 T Y P E  OF RE P O R T  A PERIOD Z 0 C ’ E R E O

COMP UTATIO NALL Y E F F 1C I E~ T EST IM4 T O RS FOR THE In terim
BAYES R I SK 6 P E R F O R M I N G  ORE . REPORT N U M B E R

EE7 3~~
7. AUTHOR(S) 8. C O N T R A C T  OR G R A N T  N U M B E R ’ ,)

Lynn 0. Wi lcox and Ru i J. P . de Fiqueiredo AFOSR 75-2777 /

9. PERFORMING O R G A N I Z A T I O N  NAME AND A DDRESS 10. PROGRAM ELEMENT . PROJE CT , TA SK
A R EA  & WORK UNIT NUMBER S

Rice Universi ty
Department of Electrica l Eng i neer i ng 61 1 02F 2304/A2
Houston , Texas 77001 I

II . CONTROLL ING OF F I C E NAME AND A D D R E S S  2 . REPORT DATE

May 1978
Air Force Office of Scient ifl c Research/NM ¶3. NUMBER O~ PAGES

Boil ing AF B , Washington . DC 20332 37
14. M O N I T O R I N G  A G E N C Y  N A M E  & A OO RESS ( I 1 diif,ran t trom Contt~ II,r,g )t C , c i )  IS .  S E C U R I T Y  C L A S S .  (of thIs report

UNCLASSIF I ED
I5
~~

. D E C L A S S I F I C A T I O N  DO W N G R A D ’ N Q
SCHEDULE

16. D I S T R I B U T I O N  S T A T E M ENT (of th i s  R e p o r t j  
-

Approved for publ ic release; d i str ibution unlimited .

IT. D I S T R I B U T I O N  ST 4 E N T  (of ‘ abstract  r.nter.d itt Block 20 . If d Ifferent (to,,, R ep o r t )

¶ 9  S U P P L E M E N T A R Y  t ES

19 KEY WORDS (Contin... on reee,.,.. s,de if n.cess.,ry and Identify by block rn~mber)

Pattern recognition; Bayes risk; error estimation

20, A B S T R A C T  (Contfnu. on reve rsa aIde If neceaaa’y and Identdty by block nUmber)

A compu ta ti ona l l y efficient estimator for the Bayes risk is one which
achieves a desired accuracy with a mini mum of computation . Ex isting
estimators based on error count or the risk function require , a t each
samp le of the test da ta set , point eva l uation of the class conditiona l
density for each of the classes. In problem s such as speech recognition ,
wher e the num ber of c lasses  i s  la rg e and poin t eva l uat ions of the dens iti es
comp lex , these estima tors are impractica l from a computationa l aspect.

FORM
1 J A N 73 

- UNCLA SS I F IED 
________ 



I

UNC LASS IF lED
S E C U R I T Y  C L A S S I F I C A T I ON OF T H I S  PA G E ~ IC?,en Data Entered)

20. A b s t r a c t

A new fam i l y of o s t i n a t ~ rs ‘- ‘ “i ~~~~ r i s k  is def ined .
Com putat iona l f o rms f ’~r ~s t ’~~

j
~ s n ~ho ~a~~i 1  reduce the number

of densities tha t must be ova i~ ated i t  each test sample. Thu s
a computationa ll y e ff icie n t oSt~~ma t o r  -‘n’~

.’ be Chosen from the
family.

‘‘I

U N C L A S S I F I E D



~ ‘
~~~~~~~~~~~~~~~~~~~~

‘ -

TABLE OF CONTENTS

Page

1.. INTRODUCTION TO THE RESEARCH TOPIC 1

1.1 Introduction 1

1.2 Review of Previous Work 3

1.3 Approach and Development in the Present Work 6

2. BASIC CONCEPTS ASSOCIATED WITH THE BAYES RISK 10

3. PROPOSED NEW ESTIMATORS FOR THE BAYES RISK 14

3.1 Introduction 14

3.2 Estimators Based on Unrestricted Samp ling 14

3.2.1 Remarks on Error Count and Posterior 15

Estimators

3.2.2 A General Form for Bayes Risk Estimators 17

3.2.3 A Parameterized Family of Estimators for the

Bayes Risk 26

3.2.4 Computational Requirements for Estimators in

the Family 31

3.2.5 Variances of Estimator s in the Family 40

3.2.6 Examples 43

3.3 Estimators Based on Stratified Sampling 45

3.3.1 A Parameterized Family of Bayes Risk Estimators 46

3.3.2 Var iances of Estimators in the Family 48

3.3.3 Computational Requirements for Estimators in 51

1 ’ the Family

- V - . ..~~~~~~~~



-

~~~~~~~~~

V —V- ,

~~~~

- 

~~

- ‘

~~~~

—

~~~~

—-

Page

4. OPTIMAL ESTIMATORS 53

4.1 In t roduct ion  53

4.2 Computationa l E f f i c i ency : A Cr i te r ion  for the Optimal

Estimator 55

4.3 An Algorithm for Maximization of the Computational

Eff ic iency  57

4.4 Comparison of the Optimal Estimator with the Error Count

and Posterior Estimator s 63

4.5 Approximation of the Optimal Estimator 68

4.6 Examples . 75

5. CONCLUSIONS 80

5.1 Summary of Results 80

5.2 Recommendations for Further Research 83

BIBLIOGRAPHY 85

APPENDIX A-i

A. Data From Examp le 1 A-i

B. Data From Examp le 2 B-l

L - .~~~~ . - ‘ --



II

1

CHAPTER 1

INTRODUCTI ON TO THE RESEARCH TOPIC

1.1 Introduction

The task of a pat tern recognit ion system is to decide to which of

M c lasses a g iven pa t te rn  belongs . The decision is made on the basis of

a set of measurements X taken on the pattern and is specified by the de-

cision rule 6(X). The performance of the system may be characterized by

the probability that it makes a classification error . The decis ion rule

which minimizes the probability of classification error is called the

Bayes rule and t1~e resulting minimum probability of classification error

the Bayes risk.

The Bayes risk represents the optima l performance of a pattern

recognition system for a given set of measurements X. As such it may be

regarded as the intrinsic difficulty of the problem , or the confusability

of the M classes. Suppose one wanted to compare the difficulty of two

speech recognition tasks . The number of words in each vocabulary would

be one criterion . However , one should also consider the confusability of

the words in each vocabulary, as measured by the Bayes risk for each

task.

In this thesis , we study estimators for the Bayes risk in terms of

the amount of computation they require and the ir accuracy . It is assumed

that the class conditional densities f1
(x),. ..,IM

(x) and priors ~~

are known so that attention may be focused on the actual forms for risk

estimators. The results will also appl y asymptoticall y if the unknown

densities are estimated on training data which is independenc of the

_ _  - -
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test data used in the risk estimators , provided the density estimates

ar e asymp to t i ca l ly unbiased and con si~ ent .

In many problems , point evaluations of the class conditional dens i-

ties are computationally costly. For examp le , in speech recognition

[23 , 1], the class conditional density f (x) would be the probability

that the output phone str ing x was caused by the m
th 

word in the vocabu-

lary. Evaluation of f (x) involves determining all phonetic realizations

of the m
th 

word , and for each phonetic realization , all segmentation and

classification errors that would result in the output phone string x.

In estimation of~the Bayes risk , density evaluations are the single most

important factor contributing to the computational effort. Thus the

amount of computation required by a Bayes risk estimator is defined as

the average number of class conditional density evaluations involved in

the estimation procedure .

• Existing estimators for the Bayes risk , name ly the error count

estimator [oJ and the posterior estimator [11], require for each sample

X~ , j=l ,2. . .N in the test data set , evaluation of the class conditiona l

densities f
l

(X .),...,f
M

(X .), a total of NXM density evaluations . Thus

for problems such as speech recognition , where the number of classes M

Is large and density evaluations costly , these estimator s are impractical

from a computational aspect.

We propose several new estimators for the Bayes risk. In particular ,

a family CR(S) : 0 ~ ~~‘ < 
~max~ 

of unbiased and consistent risk estimators ,

indexed on the scalar parameter o’, is defined. The parameter ~ deter-

V 
mines , for each samp le X~ , the classes t for which the class conditional

density f~ (X
3
) mus t be evaluated in forming the estimator ~t(or). In 

--
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general , ~ (c~) may be computed with fewer density evaluatic’ns than the

NxM required by the existing estimators. Bayes risk estimators are

evaluated in terms of their computationa l efficiency , defined as the

inverse of the product of their variance times the average number of

density evaluations they require. An estimator with maximum computa-

tional efficiency is considered optimal. The optimal estimator has the

property that a minimum of computation is required to achieve a given

accuracy .

1.2 Review of Previous Work

The usual test data for estimation of the Bayes risk is a samp le of

measurements or observations X and the ir true classifications or labels

e. This type of samp le will be referred to as unrestricted £31 , 19],

since the statistician has no control over the label of a samp le. There

are two existing forms for Bayes risk estimators: the error count

estimator and the posterior estimator . The error count estimator [19 , 6]

is simp ly the proportion of samp les X whose classification by the Bayes

rule disagrees with its true classification 0. The posterior estim..itor

was first suggested by Chow [3], later formalize d by Fukunaga and Kessel

[11) and discovered independentl y by Lissack and Fu [27]. It is the

sample mean of the risk function evaluated at the samp le points. It is

interesting that the posterior estimator ignores information on the

class labels , yet has a lower variance than the error count estimator [11].

Another sampling technique called stratified samp ling is often

possible [31]. As opposed to unrestricted sampling , the statistician

chooses a prior i a class label and samples observations X with that label.

By choosing the number of samples per class appropriatel y ,  the variance

L... • ~~~~~~~ ~~ •.~~ 
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I
of a given estimator may be reduced. Neyman [31] determines the optimal

number of samples per class by minimizing the variance of the estimator .

Highleytnan [19J app lied the stratified sampling technique to the error

count estimator . He did not choose the optima l sample sizes , but rather

chose the number of samples per class as proportional to the prior pro-

bability of that class. He shows that even this heuristic choice achieves

a reduction in the variance of the error count estimator .

Moore , Whitsitt and Landgrebe [30] later applied stratified samp ling

to the posterior estimator . They show the heuristic . samp le size is not

opt imal , but the optima l samp le sizes are impractical since they depend

on unknown variances. Stratified samp ling with sample sizes propor-

tional to the priors also reduce the variance of the posterior estimator .

Moore , Whitsitt and Landgrebe [30] give the interesting result that

V while for unrestricted samp ling , the nosterior estimator has smaller

variance than the error count , this is not necessaril y true when a

stratified sample is used , even with the op tima l choice of sample sizes.

Both the error count and posterior estimator s for the Bayes risk

require knowledge of the class conditional densities f (x), m=1 ,2. . .M.

When these densities are unknown , one way to proceed is to estimate the

densities and use the estimates in the estimators as if they were the

true densities. Cover and Wagner [4J call these two-step procedures.

When the test data used for the risk estimator must also be used to

estimate the densities (i.e. when the test data is the same as the train-

ing data), the question of data use must be considered. If the samples

used in the density estimates are also used in the risk estimator , an

optimistic bias in the resulting estimate for the Bayes risk is observed.
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.If the data set is large , an alternative is to partition the data and use

part to estimate the densities and the rest in the estimator . Highleyman

[19] tr ied to optimize this partition but Kanal and Chandrasekaran [25]

questioned his assumptions . The leave-one-out technique of Lachenbruch

and Mickey [26] attempts to remove bias by estimating the densities on

• all but one samp le and using the deleted sample in the estimator for the

Bayes risk. Each sample in turn is left out and the resulting risk

estimate is the average of the one-point estimates . An excellent discus-

sion of these and other methods of data use is given in Toussaint [37]

and Kanal [24]. ‘

Several density estimates have been considered for use in Bayes risk

estimators. Lissack and Fu [27) and Fukunaga and Kessel [12) assume a

• parametric form for the densities (exponential family and Gaussian

respective ly) and estimate the parameters. Fukunaga and Kessel [12],

Fralick and Scott [9], and Whitsitt and Landgrebe [39] USe Parzen

estimators [32] . Fukunaga and Kessel [is) and Fukunaga and Hostetter

[13] consider nearest neighbor techniques for direct estimation of the

risk function used in the posterior estimator . Lissack and Fu [27]

apply Loftsgaarden and Quesenberry [29) nearest neighbor density esti-

mates to obtain estimates for the class posterior probabilities. A good

discussion of results when various combinations of estimator form , data

use and density estimates are tried is given in Whitsitt and Landgrebe

[39J . 
V

Computational difficulties in Bayes risk estimators arise from the

fact that for each sample X , the conditional density fm(X) of the sample X

given class m must be evaluated for all classes m=l ,2. . .M. Whitsitt and

-- -~~ ~~~~~~ —•~~~~~~~~~~ -~~~ -V
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Landgrebe [39) consider this problem when the densities are estimated

with Parzen estimators using a Gaussian kernel . They propose an edited

• Parzen estimator for the densities f (x). Rather than averaging the

kerne l over all data points with class label m , the average is taken over

only those data points labeled in which are the k nearest ne ighbors to the

point X.

Any density estimate which requires nearest neighbors may be simpli-

fied by algorithms which find nearest neighbors effic :iently. These in-

clude condensed nearest neighbor rules by Hart [18J and Swonger [36J , a

branch and bound algorithm by Fukunaga and Narendra [14] and preprocessing

H 
techniques by Fisher and Patrick [8], Yunk [40], and Friedman et a. [10).

The above techniques achieve reduction in computation by s imp l i f y ing

• the evaluation of the conditional densities f (X) at the data points. In

this thesis , coniputationall y efficient estima tors are achieved by reducing

the number of densities which must be evaluated at a given samp le point .

Thus rather than evaluate f
~
(X) for all classes m=i ,2. . .M at the point X,

we might only evaluate f (X) for in in a subset of the total classes. This

is profitable in prob lems such as speech recognition where the number of

classes M is large and computation of conditional densities comp lex [23, 1].

1.3 Approach and Deve l opment in the Present Work

A new class of Bayes risk estimators of the general form R(T) is

proposed. The estimator R(T) is defined on the basis of sets T11, ...

where T is a set of classes associated with class in. Subject to mild
m

restrictions , any choice of the sets T1,... ,T~ results in an unbiased ,

consistent Bayes risk estimator . Both of the existing estimators , name ly

the error count and the posterior , belong to the class of estimators of
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the general form. R(T) .

In order to obtain risk estimators which require fewer class condi-

tional density evaluations , we restrict the set T of classes associated

with class m as follows . A scalar parameter cx determines the set of

classes T (cx) that are ‘b’-close ” to class m , that is, a sample X whose

true classification 0 is in is likely, as determined by cx , to be classified

as 1,, whenever classes i and in are “~y-close ”. As cx varies , the set of

classes T
1
(cr),.. .T

M
(o’) vary and a family of risk estimators

[R(cx) : 0 � cx < c x ) ,  indexed on the parame ter V CY is achieved.

The definitIon of the sets T
1
(cx),. ..T

M
(cx) allows the estimator R~ty)

to be forme d with fewer class conditional density evaluations . Thus

rather than evaluate the conditional density f~,(X.) at each sample X~ ,

3=1 ,2.. .N for each class ~~l ,2. . .M , the estimator R(o’) requires evalu-

ation of f
L
(X.) for only those classes ~ in a subset 

~e 
(cx) of the total

.3 3
classes [1 ,2.. .M), whenever the joint density f

0 
(X.)n0 of the sample

3 j
and its class label e . is grea ter than a. The subset 

~e 
(cx) is the set

3 3
of classes tha t are “~a~-close ” to each class that is ‘b’-close” to the class

labe l e . of X ., .
.1 3

The amount of computation required by the estimator R(cx) is expressed

by NxC(o’), the average number of conditiona l densities that must be

evaluated , where N is the sample size and C(a) is the average number of

conditional densities per sample used in forming R(cx). The error count

and posterior estimators require all M conditional densities per sample ,

a total of MxN density evaluations . Thus if a’ is such tha t C(cx) is much

smaller than M, the estimator R(cx) would be computationall y preferable to
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either of the existing estimators .

The accuracy of an estimator ~(cx) based on N samples is given by its

variance V(cr)/N. Thus the larger the sample size N, or the smaller the

coefficient of variance V (cx), the more accurate the estimator . The esti-

mator in the family f~~(cx) : 0 � cx < a’max) with the smal lest coefficient

of variance V(cx) has the property tha t it requires the least number of

samples N to achieve a given accuracy . However , the size of the sample

is not sufficient to characterize the amount of computation required by an

estimator in the family [~~(cx) : 0 � cx < amax), s ince the average number

of density eva1ua~tions per sample C (cx) required by each estimator mus t be

considered.

We define the computational efficiency CC(cx) of an estimator

as the inverse of the product of its variance and the average number of

density evaluations it requires , thus C~ l/V(a)xC(cx). The optimal

estimator R(cy*) from the famil y [f~(cx) : 0 � cx < c x )  is determined by

choosing cx t: maximize the computational efficiency CC(cx). The optimal

es timator R( cx ) has the property that it achieves a given accuracy with

a minimum of comput;ition [16 , 17], or symmetricall y, that for a given

*amount of computation , R(cx ) is the most accurate estimator for the Bayes

r isk R.

In practice , the optimal estimator could not be determined in this

way since this would in effect require knowledge of the true risk R.

Thus a technique is proposed whereby a subset n of the total N samples

is used to approximate the optima l estimator . The number n of samples

should contain enough information on the closeness of the classes to

determine an almost optimal estimator . The remaining N-n samples are

_V. V
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• used in the approximate optimal estimator to obtain an accurate estimate

of the r isk wi th  a minimum of computat ion .

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ . • . V _ _ _ _ _ _
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CHAPTER 2

BAS IC CONCE PTS ASSOC IATED W ITH THE BAYES R IS K

A general p a t t e r n  recogni t ion  system may be modeled m a t h e m a t i c a l l y

in terms of a p robab i l i t y  t r ip le  (Cl , F , P ) ,  an obse r v a t i o n  random vari-

able X, and a labeling random variable e. Let Cl be the space of

patterns w , F a sigma field of subsets of Cl and P a probability measure

defined on F. The patterns u. E Cl are to be classified into one of M

classes , where the classes H
1
,H2

. .it~ are a disjoint partition of Cl. If

a pattern ‘.i. € Mm we say w is in class in.

The random variable e : Cl - [1,2.. .M) specifies the class of a

pattern w , so tha t e(~)  = m whenever w € H .  e is referred to as the

class labe l or simply the label of a pattern. The prior probability

of the ~
th 

class is given by

= P[H ] = ~[ $=m]. (2-1)

In practice , the patterns w E Cl are not actuall y observed. Rather ,

one observes a set of measurements made on w . The random variable

X : Cl -. S C R
d 

specifies the measurements X(w) = x E S made on a pa t t ern

w. Assume the conditional density of X given 8=m exists and is continu-

ous and denote it by f (x). Then the unconditional density of X, or

the mixture densi ty is given by

V M
f (x )  = it f~,(x) . (2-2)

Vt

Also , the posterior probability of class m , the probability tha t 0=m

given the observation X(w)=x is 

~~~~~~~~~~~~~~~ ~ -- --~~~--——--- - .--~ - - .
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f (x)n
p (x) = 

f(x) (2-3)

On the basis of the observation X(w)=x, the recognition system

tries to decide the true classification of the pattern w , i.e. the

value of 0(w). This decision may be specified by a behavioral de-

cision rule 6(x) = (6
1(x),

6
2
(x). ..6M(x)), 

where ô (x) is the probabil-

ity that the recognition system classifies a pattern w as belonging to

class in, given the observation x. Thus 6m~
’
~ 

~ 0, m=l ,2,. . .M and

M

m~ l 6m~~~ 
= 1. V

Given a decision rule 6, the probability R(6) that the system makes

a classification error may be written

M M
R( 6 )  

~
‘m~ l 

IT
rn $ 

.~~~ 

ô
i

( f
m(~~~

X
S i~m

(2-4)

m~ 1 ~~i i  
(l-6 (x))f (x)dx

It is well known [2 , 7] that the decision rule 6 which  minimizes  the

*probability of classification error R(5) is the Bayes decision rule 6

where ties are broken at random and

* 1 f (x)n > f
L
(x)rT V~, 

V Vt~-1 ,2. . .M ,
6 ( x ) = {  (2-5)m 0 ~ k~ni ) 

~k~ ’~~~k >

The minimum probability of classification error resu1tin~ from Bayes

decision rule is called Bayes risk and is denoted by R .

The error function C0(x) is defined for $=m , X=x as one minus

the Bayes rule 6 (x),

L _...-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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0 f (x)it > fVt(x)~~. V V t l ,2. . .M , Vt,’min m 
(2-6)

1 ~ k#in 
~ ~~~~~~ 

‘

Then the bayes risk R is -

R m~l 11m ~ ~~(~) f (x)dx . (2-7)

Note that R is just the expectation , over the random var iables X and

6 , of the error func t ion  C8 (X) , so

R = E[e0(x)) . (2-8)

The condi ti~’ona l r i sk  R
~ is the prob a b i l i t y  of c l a s s i f i cat i on

error given class in ,

R = 5 
~in~~~ ~~~~~~ 

(2-9

Thus R is the condi t ional  expecta t ion of the error func t ion  e0(x)

given E~=m .

R = ECe 9(x ) I e = m ) (2-10)

Since

R = E[e0(X)3 E[E[C0(X) le)) (2-il)

we have that

M M
R = m~ 1 ~m Efe 9(x) I e=m ) = m~ i ~J~m (2-12)

The risk function r(x) is the probability of classification error

given the observation X=x. Symbolicall)’,

_ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~ . -
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M M f (X)rT
r (x)  = E e (x)p (x) = 1 ~~~~~~~ (2-13)

m 1  m= 1

Thus r (x )  is the conditiona l expectation of the error function given

X=x,

r(x) = E[e
0(X)IX=

x) . (2 14)

Then the Bayes risk is the expectation over X of the risk function

r(X), since

R = E(C
0
(X)) = EC E[e 0(x)~x)) = E[r(X)) . (2-15)



_______ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~ •~~~~~~~V-V. - .
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CHAPTER 3

PROPOSED NEW ESTII1ATORS FOR THE BAYES RISK

3.1 Introduction

In this section , a general form R(T) for Bayes risk estimators

is defined. Based on the general form, a family of estimators

C R(a’) : 0 � cx < cx ),indexed on a scalar parameter cx , is derived.

A computational form for estimators in the family is given which in

general allows these estimators to be computed on the basis of fewer

density evaluations per samp le. The computationa l requirements of an

es t ima tor R(cx) may be described by the expected number of density

evaluations C(cx) per samp le. The behavior C(cx) as a function of a’,

as well as the behavior of the v a r i a n c e  V(a) of R(a ) are discussed.

Two sampling techniques for estimation of the Bnyes risk are V

considered: unrestricted samp ling and stratified samp l ing . The basic

difference between these samp l ing techniques is that in unrestricted

sampling , the number of samples with a given class labe l is random ,

while for stratified samp ling the statistician chooses a prior i the

number of samples with a given class label.

3.2 Estimators Based on Unrestricted Sampling

For unrestricted samp ling , the data is a set sequence

((x 1e1) , ( x 2 e2 ) , .  . .(X
~
0
N
)) of N independent random vectors identically

distributed as (X,8). The joint density of (X,e) at X=x ,O=in is given

by f (x)TT , whe r e f (x) is the conditional density of X given the

class labe l e=m and is the prior probability of class in. The mar-

• gina l density of the observation X at X=x is f(x), the mixture dens ity .
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The proportion of samples X
3 

whose class labe l e~ is in is random ,

with mean it
in

3.2.1 Remarks on Error Count and Posterior Estimators

The error count estimator R(ec) for the Bayes r i sk  R is forme d

by counting the proport ion of samples X . wh ose clas s i f ica t ion by the

Bayes rule disagrees wi th  the true class label 0 ., . Symbolically,

R(ec) = 

~ j~~l 
e0

3
(x

3
) (3-1)

The error coun t estimator is unbiased , since

E (R(ec ) )  = E[e9 (X) 3  = R. (3-2)

It  is a lso consistent [19 , 6], s ince 
-

V 

VAR [R(ec)) = ~ VAR [C0
(X)) 

R(i-R) 
(3 3)

The error count estimator R (ec) for the condi t iona l r i sk R givenm in

c lass in is

N
R (ec) = 

•
E h

m
(O
j
)
C
m~~
(
j
) (3 4)

Tim

(. 1, O— m
where 1 (8) =

m

~~ (ec) is an unbiased estimator for R since [33] -

E C I (e)C. (X) )
E[ R (ec))  = 

m m 
— = E[e

8(x)Ie=~
) = R

~~~.- 
.~~~~~~ 

V
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Note that the error count estimator R (ec) considers only c l a s s i f i c at ion

err or s made on samp les X~ whose c lass labels  8 =ni. Also,

M
R(ec) = 

m~ l 
Tim

Rm~~~~ 
(3-6)

The posterior  es t imator  R(p )  for the Bayes risk R is the sample

mean of the risk function r(X.) over the samples X . j=1,2...N [11].

Thus

R(p) = ~ .E~ r(X.) = N j~ l m~ l 
C (x.) ~m~~~j~~~m (3-7)

The pos terior e~ tima tor is unbiased , since

E(R(p)) E[r(X)) = R. (3-8)

It is also cons is tent , si n ce

VAR [R(p)) = ~~ VAR (r(X)) = 
~ [ 5  r~ (x)f(x)dx - R2] (3-9)

S

It has been shown [11] that the posterior estimator has smaller

variance than the error count estimator . This follows from the fact

that since 0 � r(x) � 1 -

S r
2
(x)f(x)dx � R - (3-10)

and thus

VAR(R(p)3 ~ R(i-R) 
- 

R ( i - R )  
= VAR[l~(cc)) (3-11)

The posterior estimator R (p) for the cond i t iona l  r i sk  R is

defined by

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~-~~~--
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- Rm (
~~ 

= 

~ j~~ i. 
C (X.)~ rn~~ j~ (3-12)

In contrast to the error count estimator , the pos terior estimator R (p)

considers errors made on all samples X 3 , regardless of their class labels

8.• In fact , the pos terior estimator makes no use of the class labels.

The expectation of R (p) is thus taken with respect to the mixture

density f(x), so

f (X)
E( R (p))  = E [ C . ( X )

f~x) 
)

- f(x)
= 5 e ( X) ~~~~ f(x)dx = C (x) f  (x)dx = R (3-13)

Thus R (p) is an unbiased estimator of the conditional risk R .  Again

M
R(p) = m~l 

TT
~
R (P) . (3-14)

3 . 2 . 2  A Genera l  Form for  Bayes Risk  E s t i m a t o r s

The error coun t estimator for the conditiona l risk R in effect
m

considers only those samp les X . whose class labels 0 . are equal to in.

The posterior estimator for R considers all samples , regardless of

their true classification . This concept may be generalized by associa-

ting with each class in a subset T of the total classes , and forming

an estimator R (T) based on those samples X . whose cia’ss labels 8.m 3 3

are elements of T

Specificall y, for each m=l ,2 .. .M , let T [i1,
i~ . .i )  be a

set of p classes associated with class in, where L, j=l ,2 . . .p~ are

• - members of the set. The sets T , m=1 ,2. . .M may be chosen arbitraril y,

~ 

~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- .-~~~~~ -V•-
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TABLE 3-1

= [1 ,2,3) Q
1 

[1 ,2,33 T
1 

= [1,3) q1 = [1 ,3)

T2 
= [1 ,2,3) Q2 = [1 ,2,3) T2 

[2) Q2 = (2)

T
3 

= [1,2,3) Q3 = [1 ,2,3) T3 
= [1 ,3) Q3 = ( 1,3)

[1 ,3) = [i ,~~,3) T1 = [1) = f i )

T2 
[2 ,3) Q2 = (1,2,3) T2 [2,3) Q2 = [2 ,3)

T
3 

(1 ,2,3) Q3 [1,2,3) T3 
= [2 ,3) Q3 [2 ,3)

= [1,2,3) Q1 
= [ 1 ,2 ,3)  T1 [1 ,2) Q1 

= [i ,2)

[1,23 Q2 
= ~~~~~~~ T2 (1 ,2) Q2 = ~l ,2)

T3 
= [1,3) Q3 = [1 ,2,33 T

3 [3) = [ 3 )

= [1,2) Q1 
= [1 ,2,3) T1 

[1) = [i)

T2 
[1 ,2,3) Q2 

= [1.,2,3) T2 [2) = [2)

T
3 

= [2,3) Q3 = [1 ,2,3) T3 
= [3) Q3 

= [3)

All possible choices of the sets T , in=l ,2,3 subject to

restrictions (ri) and (r2) and the resulting sets Q~ , 
-

m=1,2,3.

• . - .-
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subject to the following restrictions .

(rl) in E Tm 
Vm=l ,2. . .M

(r2) i E T iff in E T. Vi ,m l ,2. . .M

Restriction (rl) requires that each class be assoc iated with itself ,

and restriction (r2) requires that a class i be associated with class

in if and only if class in is associated with class i.

M (M-i)

For M classes , there are 2 2 
different ways to choose the

sets T , m=1,2. . .M, subject to restrictions (rl) and (r2). Table

3-1 lists the 8 choices for the case of M = 3 classes.

The general form R (T) for an estimator of the conditiona l risk

R is defined by considering those samples X~ whose class labels O
.,~ 
are

m T .  Thus
in

N f (X.)

N j~~ 
I
T
(O
j
)C
m (Xj

) 
~VtET

in

(3-15)

1 0 . E T1 j  inwhere I (6 .) =

~l 
~~ 8.~~~T3 in

Subject to t he r e s t r i c t i o n  ( r i ) ,  R (T) is an unbiased es t imator  for

R for any choice of the set T , sincem in

______________________________________________________________________________________ •S  ~~~ __ . _ . _ _ ,  ~~~~~~~~~~~~~~~~~~ ,~~~. - -  ~~~~~~~~~~~~~ - - V
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e (X)f (X)
E[R (T)) = E[I

T 
(8) -

~~~~

m 
VtET

in

M C (x)f (x)f.(x)TT.
= 

i~ l $ ‘T (I) in 
E f (x)nVt 

dx
S in VtET Vt

E f .(x)ri . 
(3—16)

jET
= 5 £~~~~~f (X) dx

VtET
in

V 
C
m ( f m (X)dx 

= R

A general estimator ~(T) for the unconditional risk is formed

as -

M
R(T) = 

~~~~~ 
flm u

(T)

N M C (X.)f (X.)-rr -

N j~ 1 m~l ‘T 
(O s ) 

fVt
(X .)rr 

01 
(3-17)

tET
in

By linearity of the expectation operator , R(T) is unbiased for

an y choice of the se ts  T , m= 1 , 2 . . . M  ( subjec t  to ( r i ) ) .  By re-

striction (r2), ‘T ( 0 )  = ‘T (m). 
thus from (3-17), ?((T) may be written

m 0

N f(X .)rr
R(T) = 

~~ .~~~~~ 

E em (x j ) 
•
~~ 

f (X .)-rT~, 
(3-18)

m e LETm

The general form R(T) is also consistent for any restricted choice

of the sets T , r n l ,2. . .M. This follows because
In

L ‘~~~~~~~~~~~~~ V -
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f (X)n
VAR( ~(T)) = 

. VAR[
m€~8

C
m(X) 

LET
:

V t V t

(3-19)

- 2
C (x)f (x)rr

= 
N ~i~l~i ~ ~~~T 

f (x)n~~ 
f .. (x)dx-R

2)

- i LET
in

Note tha t when each class in is associated only wi th itself , that

is when T = [ i n)  Vin=l ,2. . .M, the general estimator R(T) is just the

error count estimator P~(ec), since in this case

‘ 
~(T) = 

~ j~~~ m~1 
IT

(O
j
) C

m(Xj)

1 
(3-20)

= 

~ ~~~~~ 

e0 (x .) = f(ec)
.1

• When each class m is associated with all other classes , that is when

T = [1,2.. .M) Vm=l ,2 . . .M then the posterior estimator R (p) is obtained ,

since

N M C (X.)f (X.)TT
R(T) = 

N j~ 1 m~l 
IT

(&
j) M

(3-21)
N M C (X.)f (X.)rroh j m ]

N j=1 m=1 f(X .)

The number of different estimators for the Bayes risk specified

M(M-l) -

by the general form â(T) in (3-18) is 2 2 
, the number of differ-

ent ways to choose the sets T , m=1 ,2. . .M, subject to the restrictions

(rl) and (r2). If the number of classes M = 2, only two estimators

may be obtained , namely the error count and posterior . For H > 2,

~

V-

~

-

~

. •V .—~~~~~ - .- - ——
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the general form R(T) specifies several new estimators , depending

on how the sets T , m 1 ,2. . .M are chosen. Let us first consider howm

to choose the sets T , m l ,2. . .M so that an estimator R(T) with

minimum variance is achieved.

It was shown in section 3.2.1 that the posterior estimator R(p)

has smaller variance than the error count estimator ~(ec). The fol-

lowing theorem generalizes this result by showing that the choice of

the sets T ,m=l ,2,...M which minimizes the variance of the estimator

R(T) is T = [1 ,2.. .M3 V m 1 ,2. . .M. But ~(T*) is just the posterior

estimator ~(p),~~thus the posterior estimator has the smallest variance

of any estimator of the general form I~(T).

Theorem 3-1

Let R(T) be the general estimator for the Bayes risk given by

equation (3-18), with the sets T , in=l ,2.. .M chosen arbitrarily.

Let ~(T~) be the general estima tor with the sets chosen as

Tm 
= (1,2.. .M) Vm=l ,2.. .M

Then VAR (~~(T )) � VAR (R(T))

Proof

I (X)rr
Let r

T(X,0) 
= Z C (x) 

~ 
f
m
(X)Ti 

(3-22)
in 

0 LET

Then from equation (3-19)

VAR [((T)) 
~ 

VAR[r
T(X,8))  . (3-23) 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~~~~
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The conditiona l expectation of rT
(X,O), given X ,is r(X), the risk

function . To see this ,

H
E(r

T
(X,8)IX) = 

i~ l 
r
T(X ,i)p. (X)

M

i~ l 
E C

~
(X) f

m~~~
itm p.(X) . (3-24)

mET . E f ,(X)TT ‘
LET

in

f .(X)n .
Now p.(X) = ~~~~~

-
~~

- ‘ from equation (2-3),

M - M
and by restriction (r2),.E1 E = E Thus from (3-24),

1 mET , ~ iET
1.

M C (X)f (X)rr f .(X)rr .
E[rT(X,8)IX) rn~l iET 

f(X)

H f (X)ri
= 
m~ l 

C (X) = r(X) . (3-25)

~ *Also since R(T ) = R(p),

* 1
VAR (R(T )) = 

~j~
-,j VAR [r(X)) (3-26)

Now the variance of the conditional expectation is less than the total

variance , since by [34]

VAR[E[r
T
(X,8)t x))

= VAR (rT(X,8)) - E(VAR[rT
(X,0)1X))

� VAR [rT(X,8)) . (3—27)
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Thus VAR [~~(T*)) = ~~ VAR (r(X))

= 
~ 

VAR [E[r
T(X,8)IX)) � ~ 

VAR [r
T
(X,6)) = VAR [R(T))

If the sets T , m=l ,2. . .M are chosen to minimize the variance of
in

~V *the estimator R(T), the resulting estimator is R(T ) = R(p), the pos-

terior estimator . Another consideration in the choice of the sets

T , m=1,2. . .M is the amount of computation required by the estimator

R(T).

From equation (3-21), ~(p) requires at each samp le X1, j=l ,2...N

the comput a t ion of the condi t ional dens ity f
L
(X.) for each class L=l ,2. . .M,

a total of MXN conditional density evaluations . In problems such as

speech recognition [ 2 3 , 1], where the number of classes M is large and

evalua tion of the conditiona l densities comp lex , the amount of computa-

tion required by the posterior estimator f&(p) is considerable. Thus

we consider choosing the sets T , m 1 ,2. . .M in such a way that ~(T) may

be computed on the basis of fewer density evaluations per samp le.

For now le t us disregard the fact that the error function C (X.)

mus t be de termined a t each point X. and for each cl ass m E T8 . Then
3 j

from (3-18) the densities exp licitl y required in the estimator â(T) at

the point X . are f (X.) for all classes t. in T , for al l  in in T . De-
j m

fine the sets Q ,  m=l ,2. . .M associated with given sets T , m=1 ,2.  . .M

as the union over q in T of T . 
-

in q

-, •~~~~~~~~~~~~
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Definition 3 1 U T 
, 

in 1,2 H
qET~~~

Table 3-1 gives the sets Q ,m=l ,2. . .M resulting from each choice of

the sets T ,m=l ,2. . .M. Thus R(T) for a given choice of sets T re-

quires explicitl y the evaluation of f
L(XJ

) V-t E for each sample

* .1
X~ ,j=l ,2 . .

Example 3-1 Suppose ~(T) is based on one sample (X
1
8
1
) and that

= 1. Then if T
1
=[1,2) T2

=[l,2) and T
3
=[3).

f
1(X1)rT1 

• f (X1)rr 2R(T) = C1(x 1) f
1
(X1)rT1+f

2(X1)r12 
-i- C

2(X 1) 11(X1)n1+f 2(X1)rT2

Since Q . = T. Vi and 3 ~ Q1, f~ (X1
) is not used explicitl y in R(T).

Of course , the error func tion 8
8
(X) is an imp lici t function of

all the conditional densities f
L(X) , -t = 1,2 . .  .M , and from (3-18)

C (X.) mus t be computed Vm E T
9 

. In the next section , the set of
3 

3
classes T associated with class m will be chosen in such a way that

in

in E T8 , may be de termined on the basis of the densities
3 3

E ‘
~ 8.  

expl ic it ly req uired by the estimator R(T). Thus esti-
3

mators requiring fewer density evaluations are achieved.

*
This analysis assumes we must always compute f6 (X.), even though this

i 
~e ( x )

is unnecessary when Q 8 
(8 ) since we would be evaluating 1 by 

~ 
~

8
However , f9 (X~) will always be needed to compute C

~
(X .).
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3.2.3 A Parameterized Family of Estimators For the Bayes Risk

In section 3.2.2, it was shown that any choice of the sets T

associated with class in would determine an unbiased , consistent esti-

mator for the Bayes risk of the general form R(T), provided the sets

T , m 1 ,2. . .M, satisfy restrictions (rl) and (r2). In this section ,

we restrict the choice of the sets as follows . A scalar parameter

cx ~~0 defines the set T (cx) of classes ‘b-close ” to class m. Basically,

class i is ‘b-close” to class in if the Bayes rule is likely (as deter-

mined by cx) to classify a sample X whose true class label 8~’m , as class

i. As a’ varies~ the sets T
01

(cx) vary and a family [~~cx) : 0 � cx < a ’ )

of unbiased estimators is achieved. The definition of ‘b-closeness ”

allows the estimator R(a’) to be computed with fewer density evaluations

per sample.

Let a’ � 0 be a scalar and define T ( cx ) ,  the set of classes a’-close

to class in by

Definition 3-2

T (cx) = (i I 3 x ~ f . (x)IT . > cx and f (x)TT > c x ) ,  for m=l ,2. . .M.

It follows from the definition that i E T
~
(a’) if and only if m E T.(cx),

thus restriction (r2) is met automatically for all cx. Restriction (rl),

that in E Tm(a’)Vm=l ,2..~
N is met by restricting 0 �a ’ <a ’ , where

we define cx as follows .
max

Definition 3-3 cx = loin max f (x)rT ..max 
~~~~~~~~~~~~ xES

A given a’, 0 ~ cx < a’ does not uniquely de termine the sets

T (a’),m’l ,2...M since it is possible tha t cx ~~ a’ ’ but

T (cx)=T (a’’)Vm=1 ,2.. .M. Let ,a’~ . . .a’~ be the set of a ’s that in-
‘s in o 1 K 

~~~~~~~~~~ -
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f
2
(x)n2 

-

f (x)it
~

max V -

-cx
t

3

a -t
2

I
at

1

a’ — —
t
0

cx 0’ 0’ 0’
q0 to q

1 
t

2 
q2 

t
3

Figur e 3-1. The po in t s  .. .a~ which induce changes in the
0 3

sets T and points cx . . .a’ which induce changes
in q0 q2

in the sets Q
~
.

- . . - _ _ _ _ _ _ _ _
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TABLE 3-2

O
~
r<•cy

~ 1~ 
T1(cx) 

= [ 1 ,2,3) Q1(cx) = [1 ,2,3)

T
2 (cx) 

= ( 1 ,2,3) Q2(
cx) = [ 1 ,2 ,3)

T
3
(cx) = [ 1,2,3) Q3

(t~’) = [1 ,2,3)

0’
~ 

T
1
(cx) = C 1,2) 

V 

= ( 1,2,3)
1 

T
2
(a) = [1 ,2,3) Q2~

a) = f 1,2,3)

T
3
(o) = [2,3) Q3

(c~) [1 ,2,3)

• °‘
~~ ~~~~~~~~~~~~ 

T
1@) 

= (1,2) Q (a’ )  = (1 ,2)
2 3 1

= [1 ,2) Q2 (cx) = ( 1 , 2)

T
3
(cx) = [3) Q3

(cx) = (3)

cx �cx<o’ T
1
(o’) = Ci) Q1(cx) = (1)

T
2
(cx) = [23 Q~(a’) 

= [2)

T
3
(cx) = [3) Q

3
(cr) = [3)

Sets T (a’) and Q (cx) for all 0 � cx < a’ .
01 in max

______________ — ~~~~~ __~__V __•~__~•=fl—, — _
~
_
~
_ ._ ~V__ _~ ~~~~~~~ 

_ _ _ ___V 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ _ V _ ._~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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duce changes in the sets T
~ 

for some in, defined recursive ly as follows .

Definition 3-4

Let a
~ 

0

Do i 0  by 1 while < a’max

Let cx be the smallest value of a’ > a’ such that
t. . t .
i+l 1

T ) 
~ T(a’~ 

) for some m=l ,2. . .M.
~ i+l i

End .

Let cx be the largest value so defined.
tK

Figure 3-1 shows three joint densities and the values
o 1

a’ , a and a’ •. Table 3.2 shows all possible sets T (cx), m=l ,2,3 that
t t max UI
2 3

are defined. The K+l values cx~ ‘~~~ 
. . .cx~ determine the K+l possible sets

T ea’). Note that K ~ ~~~~~~ 5: that the number of possible sets T
m 

de-

H (H— 1)

fined by a’ is much less than the number of 2 
2 

that were possible in

section 3.2.2.

The parameter a’ determines for each m=1 ,2 . .  .M , the sets T (cx) of

classes a’-close to class m. An unbiased estimator R (a) for the cond i-
m

tional risk R based on samp les X . whose labels 8, are elements of T (a’)in 3 3 in

is defined from the general estimator R
~
(T) in (3-15) as

i
N f ( X )

R
~
(cx) = 

N j~ 1 
1T (~)(8j) Cm (Xj) E fL(X .)n 

(3-28)
UI 

LET (cx) ~

The estimator R(a) for the unconditional risk R determined by the sets

T (0’) m l ,2. . .M resulting from cx is , as in (3-18)

N f( X .)n
R(a) = N 

~~ ‘sET6 (cx) 
C (X~) 

~~~~~~~~~~ 

. (3-29) 

.-~~~~~~~~-----~~~--~~~~~~~~~~--~~~~~~ -- - ~~~~-- -
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• f
1
(x)rr

1 f
2
(x)rr

2

/ _ _ _ _ _ _ _ _  

f 3 (x)n 3
max

I

Figure 3-2. For all cx < cx , 1 E T
2
(cx) and 2 E T1

(cx) ,
thus the error count estimator is not in
the famil y fR(cx) : 0 � cx < for

these densities. 

~~~..L . - ------~~~---- —— ~~~~~~~~~~~~~~~~~~~~~
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As a var ies between 0 and a’ , a family of unbiased , consistentmax

estimators [~.(cx ) : 0 � cx < cx ) is obtained. Each cx does not deter-max

mine a unique form of an estimator since each cx does not uniquely

dete rmine the sets T (a’), m l ,2.. .M. In fact , the family

C R(cx ) : 0 � cx < c x  3 contains at mos t MJM- 1) 
+ 1 differen t estimators .max 2

However , the value of the parameter cx is important in determining the

densit y evaluat ions  required by the estimator

When a ’ = 0 , the estimator ~(0) is equivalent to the posterior

estimator R(p), of eq. (3-7), in the sense that estimates of the risk

resulting from ~ither estimator are identical and their variances are

the same . However , as a member of the family [~~ (a ’)  : 0 � a’ < c x )  it

is possible (if the conditiona l densities have finite support) that R(0)

may be computed with fewer density evaluations .

If ~ cx < a’ such that T (a’ ) = [m), m=l ,2.. .M then R(o’ ) is
e max in c e

equivalent to the error Count estimator R(ec) of (3-1). Thus the pos-

terior estimator is always equivalent to a member of the family

[R(cx) : 0 ~ cx < ~~~
) while the error count may or may not be. For the

c lass dens i t ies  in f igure  3 2  the error count  e s t ima to r  would not be

allowed in the family since V cx < a’max ’ 1 E T
2
(cx) and 2 € T

1
(cx).

3.2.4 Computational Requirements for Estimators in The Family

The computational requirements for an estimator in the famil y will

be given by the expected number of class conditiona l dens ity evaluations

it requires per samp le. As in section 3.2.2, let us first consider the

number of density evaluations explicitl y required by the estimator R(cx),

disregarding the fact that the error function C (X.) mus t be computed

for ea~h samp le and for each class m E T
6 (a). Then from equation
j 
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(3-29), at each point X,~ 
the densities f,t(X

~
) for all classes Vt E Tm(a’)~

for all in E T
9 

(cx) must be computed. As in definition 3-1,- let the

3
sets Q~ (cx) , m=1 ,2. . .M be

Q,~(cx) = U T (cx) . (3- 30)
q~T(a’)~~

in

Then for each san&p le X~ , j 1 ,2. . .N, ~
(cx) requires exp licitl y the con-

ditional densities f
L

(X .) V Vt E Q8 (a ’) .
3 j

Define the modified error function C ( X ,Q 9 ( c x ))  for m E T8(cx) as

Definition 3-5 -

= 0 f (X)rr > f,~,(X)i-r,~, V Vt E Q~(a’), L~m

1 3 k E Q8
(p’) ~

~k~~~~k
> f (X)r T

Then the modified error function may be evaluated on the basis of only

those conditional densities f1 (X), Vt E Q8(cr ) explicitl y required at X

by R(a’).

The followir1g theorem shows that the modified error function is

equal to the error function whenever the joint dens-ity of a sample X

and its labe l 8 is greater than cx.

Theorem 3-2

For the random vector (X ,O), if in E T0
(cx) and if f

8
(X)1T

8 
> cx

then em~~
Q o (0’~~ 

= e ( X ) .

Proof

e ( , Q 0 (~)) = 1 ~ ~~(X) 1 since if 3 k E Q8
(Q’) ? 

~~~~~~ 
>

then 3k E [1,2.. .M) 
~ 

fk
(X)ri

k > f ( X) n . We will show that ~~ (X) = 1 ~

- . e (X,Q
8(~

)) 1 by contradiction. For suppose ~~(X) = 1 and

- - ~~~~~~~~ --~~.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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f
1
(x)rr

1

f
3 
(x)rr

3

0’ . ~~~~~ — — —  ... . —.— —— —— — — —

/

‘ 7

(X 1,81=l) (X2 , 82=l) x

T
1(a’) 

= (1,2) ~ 1 (cx) ( 1 , 2 )

T
2(a’) 

= (1 ,2) = [1,2)

T3
(ci) = [3) Q

3
(cr) = [3)

Figure 3-3. Modified error function equals true error function
for samp le X 1 since f~ (X

~
)na > a , but since

1 1
f
8 

(X )n ~ cx the true error function must be
2 2 82

used for samp le X2 .
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= 0. Then f (X)rr > f VtO()~ Vt V -t E Q
8~a’) 

bu t 3 k ~

such tha t f
k
(X)TIk 

> f
~
(x)n

~
. But since 8 E T6(a’) 

and T8
(cx) C

8 E Q8
(cx) ~° 

~~~~~~ 
> fm~~~

Um 
� f8(X)rT8 > c x .  Thus k E T6(a’) and since

T6
(a) C Q 8 ( c x ) ,  k E Q8(cx) , a contradiction.

Example 3-2 Consider the three class densities in figure 3-3 and the

sets T (cx) and Q~ (cx) associated with the given a-. Since 6
1 

= 1

and T
1
(a’) = [1,2), the functions e

1
(X

1
), e

2
(X

1
), ~1

(X
2
) and e

2
(X
2
) must

be determined. Since f
1

(X
1
)rr

1 
> cx , ~1

(X 1,Q1
(cx)) = e1

(X
1

) = 1 and

e
2

(X 1,Q1(a’)) 
= C

2(X 1) = 0. However , Vfor the samp le X2, C2
(X 2,Q1

(cx )) = 0

but e
2

(X
2) 

= 1. ~Since f 1(X2 )rr 1 � a’ , the conditional dens ity f.(X2)

mus t be computed.

Define the indicator function for the event f
9
(X)ri6 > a’ as 

V

Definition 3-6

ç 1 f8(X)n
8 > a ’

16
(X ,a-) =

0 f (X)110 
� cx

Then as a corollary to theorem 3-2 , we have

Corollary 3-2 If in E T
8
(a’) then

16(X ,a’) e (X,Q8(~)) 
= 1

6 (X ,a’) C (X) .

By corollary 3-2 , a computational form for the estimator R (cx) is given by

N
ci~( c x )  = .

~~~~~ 

E [i
~ 

(X .,cx) ~ (X .,QQ (a’)) +
~~ m(T8

(cx) . 3  m 3

j 
. 

(3-31)
f (X .)u

- 1
e 

(X~~a’)) ~~~(X .) )  ~ 10

j LET (ci) ~

Note that while the estimator R(a’) itself depends on cx only through

the sets T (ci), in=l ,2. . .M , the computational forts cR(cx) uses a’ directly

- — -“~~~~~~~~~~~~~~~~
_ 

~~~~~~~~~~~~~~~~~~~~—— -- - —•- - --
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to determine which densities need to be evaluated. For if (X8~) is such~

that f0 (X .)1T8 
> cx then only those densities f

LO~
’) for Vt E Q6 (ci) must

. 3  3

be computed , since by theorem 3-2 , the modified error function

e (X ,Q8 (a’)) is equa l to the true error function C (X.), for in E T
8 

(cx) .
m j  i n )

If f
9 

(X .)rT
0 

� cx then all densities fVt(X ) Vt=1 ,2. . .M must be computed.
i

i
i 

j

The total number of density evaluations required by ~R(cx) is thus

J
E

1 
18 (X.,cx) 1Q 9 (ci)I + ( 1  - 19 (x.,cx))M , (3-32)

where 1Q 8 (a’)J is the number of classes in the set Q8 (cx). The express-
j 

V
. j

ion above depends on the actual values of the samp le [(x181),(x282),...

(X
N
O
N
)). What we are reall y interested in is the expected number of

density evaluations required in cR(a), which is just the expectation of

(3-3 2).

Let C(a’) be the expected number of density evaluations per samp le

required by cR(0’). Then

C(cx) E[19
(X ,a’) 1Q 8 (°’)I + ( 1 - Ie (X ,a-))M)

= 
L~~l ~ 

[IVt(x ,c
~
) 

~~~~~~ 
+ (1 - lVt (x,cx))MJ fVt (x)flL dx

L~ l ~~~~~ ~ 
IVt(xp) fVt (x)nVt dx

+ M ~J’ (1 - IVt (x ,a’))fVt(x)IIL dx] . ( 3-3 3 )

Let

UVt(a’) 5 (1 - IVt (x ,cx ) ) f Vt (x)rr
L 

dx
S

(3-34)

S f,~,
(x)rTL dx

xES
- 

L
(X)

~~1. a’

I
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Then (3-33) may be written as

H
C(cr) = Vt~it IQ Vt (ci)l (nVt-UVt(a’)) + MIJL(ci)J (3-35)

The total expected number of dens ity evaluations required by cR (ci) is just

NxC(a’), the expected number per sample times the number of samples.

Consider now the behavior of C(a-) as a function of a’. It is clear

that for each m=l ,2...M , IT (a’)I, the number of classes in the set T (cx),

is non-increasing in cx. The points (~~~ , given by definition
o 1 K

3-4 are the values of a’ which cause a decrease in 1T
01
(cx)I for some

m=1 ,2.. .M. Figure 3-4 shows the behavior of IT ca)I , m 1 ,2,3 for the

class densities given in figure 3-1.

Recall that the sets Q (ci), !Tv~l ,2 ,. . .M , were defined in terms of

the sets T (cx), m=l ,2. . .M as Q~
(cx) U T ( c x ) ,  nt=l ,2. ..M. Thus

10 qET
10~’) 

q

I Q~~a)~~, the number of classes in the set Q~(o’), is also non-increasing

in a for each m l ,2.. .M. Analogous to the points ci~ . . , we

define the points ci , ci ,...ci that induce change: in the sets
q0 c;1 q

~

recursively as -follows .

Definition 3-7

Let cx = 0 .

Do i=0 by 1 while a’ < a’
q. max

Let cx be the smallest value of cx > cx such that

Q~
(cx ) 

~~ Q~ (cx ) for some m=l ,2. . .M.q .

End .

Let a’ be the largest value so defined. 

- _
-~. -.

- 
•. ~~~~~~~~~~~~~~~ - - -
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C (a’)

-o

I I I I

a’ cx ci a- cx
t t t t max

1 

a-

Figure 3-6. The expected number of density evaluations
per samp le C(a’) as a function of a’.
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Then the values cx , cx . . .a’ are those values of cx which cause a de-
q0 q

1 q
~

crease in IQ~
(ci)I for some in. Also , it is clear that for each j=0,1.. .j

cx • = cx~ for some i 0,l.. .K. In figure 3-1 , the points a- , cx and
q
~ 

q0 q1
- cx are given, and Table 3-2 shows the sets Q~ (cx) in=1 ,2,3. Figure 3-5

shows the behavior of IQ~ ( cx) J m=l ,2,3 for the class densities in figure

3-1.

From (3-34), it is clear that UL
(cx) , V t 1 ,2. . .M is a non-decreasing

function of a’. Rewriting the expression (3-35) for C(a’) as

M
C(ci) = 

~~ 
U~,(a’) (M 

- IQ Vt(°’~ I~~ 
TT ,.JQL

(c Y ) I  (3-36)

V 
we see that for a’ � a- < a’ , C(a ’) is non-decreasing , since

VVt= l ,2. . .M , U,(ri) is a non-decreasing and IQL (a ’)J is constant .  Figure 3-6

shows a schematic drawing of C(a’) as a function of cx for the densities

in figure 3-1.

3.2.5 Variances of Estimators in The Family

Next consider the variances of estimators in the family

[~~(cx) : 0 � cx < c x ) .  A given cx defines the sets T
~

(cx), in”l ,2. . .M and

hence an estimator ~ (cx) of the general form R(T). From the variance of

R(T) given by (3-19), we may write

f (X)n
VAR[R(a’)) = ~ VAR ( E C (X) 

E f (X)rr
mET8 

(cx) 
LET ~~ 

Vt Vt

• ( 3-3 7 )

M f (x)IT 2
= ~ [~ ~ 5 ( E ~~~~() 

— 

~~ 
~~~~~~~~~ f .(x) dx - R2) .

S mET.~cx) 
LET (a-) 

Vt
m

Let the coefficient of variance V(a’) be defined by



______________________________________________ -• V . ’ V ~~~~ -

r~~w . . -. - . .

41

V 
V(cx )

p

p

V.

—0

_ _ _

1

cx cx a’ ci a’t t
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V(ci) = N X VAR[R(ci)) (3-38)

When c i 0, R(o) is equivalent to the posterior estimator

Theorem 3-1 shows that the variance of the posterior estimator is

smaller than the variance of any estimator expressed in the general

form, thus as a corollary we have ,

Corollary 3-1 V(o) � V(a’) V 0 � cx < a-max ’

If there exists an cx < ci such that T (a’ ) = (m ) V m 1 ,2. . .M , thene max m e

R(cx ) is equivalent to the error count estimator . Thus by (3 3),

V(a’e) 
= R (l-R). By corol]ary 3-1 , V (o) � V(ci).

Now V(cx) depends on cx only through the sets T (a’), m’=l ,2. . .M (see

(3-37)). Since the points ci~~ ci~~ .. .ci~~ induce changes in these sets ,
o 1 K

V~cx) is a step function of a- with discontinuitie s at these points.

Figure 3-7 give s a schematic thawing of V(a’) for the densities in figure

3-1.

Examples indic at- t h it V(a’) is a non-decreasing function of ci.

Consider the esti~ .itor K ~~~ for the condition al risk R given in (3-28).
In - In -

The variance of Rm(~~

f 
2(x) 2

VAR[R (cx)) ~ [ 5 C (x) m 

~ (x)i-r 
dx - R ) . (3-39)

S qET~ (cx) q q

Define the coefficient of variance V (a’) for ~~~~(a’) 
as

V (ci) = N X VAR (R (cx)) . (3-4Q)

Then Vm (ci) is a non-decreasing function of ci since , as a- increases , the

number of classes in T (a’) in nnn-increasing and hence ~ f (x)u
qET

10
(cx) q q

is non-increasing .

-— ——— -- — — - — - —  — — - .V - —.. —.—
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The covariance of the estimators R (a-) and &Vt(a’) is given by

cov[~10
(cx), RVt (cx)) =

(3-4 1)

1 ii. $ C (x)C~,(x) 
f ( x)f

L
(x)f .(x) 

dx -R RN jET (cx)flT
L

(cx) ‘ S E f (x)i-r E 
~~~~~~ 

in -t
UI qET~(a) 

q q 
rETL(

o’)

where E ( )= 0
iET (a’)flTL

(cx)

when the intersection of T
10
(ci) and T,~

(cr) is empty , i.e. T (cx)fl’rL(ci) 
= 0

Let C~~(ci) = N x COV[~~~(a-), RVt (cx)) (3-42)
V. N

be the coefficient of covariance . Since R(cx) = E it ~ (cx), the co-
m”l m m

efficient of variance V (o’) for R(a-) may be expressed in terms of V
10
(a’)

and C Vt~a’~ 
as

H
V( cx) 

nn~i ~m
2 
V (a’) + m~ 1 -t~m 

itmit C (o’) . (3-43)

Now V m=i ,2. . .M, V (cr) is non-deereasing in a’ and V (O) � V (cx),

V 0 � cx < c x  . However , from (3-41), C (a’) achieves its minimum valuemax m-t

of _RinRL when T (cx)flT~,(a-) 0, which would occur for large values of a’.

Thus if the increase in the conditiona l var iances V (cx) dominate the

possible decreases in C
L(cw), as cx increases one would expect the co-

efficient of variance V(ci) to increase.

3.2.6 Examples

Some examp les are given in the appendix. In example 1, there are

five equally likely classes. The class conditional densities are

Gaussian with standard deviations equal to one and means 0, .75, 7, 8, 9.5.

Page A-i gives a sketch of the densities as well as the true conditional
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and unconditional risks . Page A-2 gives the values of ci~~ ,cx~ .. .ci~~
o 1 10

.ci~ and the sets T(cx
~ ~~ QUI

(a’ 
~~ 

m=l ,2.  . .5 which they d~-
o 1 5 i i

termine. Page A-3 gives , for the points at , the expected number of

density evaluations C(cx) and the coefficient of variance V(a’) for those

densities . Note that C(ci) decreases to a minimum of 2.6 at cx~ . The
6

sets T ( c x
~ 

) ,  tn=i ,2. . .5 on page A-2 are seen tc be the natural grouping
6

of the classes. The increase in C (ci) for cx > ci~ is due to the fact
6

that while the sets T (a-) and Q (a’) are getting smaller , for larger a’

it is becoming less likely tha t a samp le X has the proper ty that

f0(X)it9 > cx. When f9(X)it8 
� a-, all dens ities f1 (X) ,L=l ,2. . .5 mus t be

computed to determine the error function , so the smallness of the sets

Q~ 
(ci) becomes irrelevant .

The variances V~cx) are clear ly non-decreasing in ~~
‘ . For a- 

~ 
a’

6
they are approximately the same . For cx > cx~ , the variances about

6
double at each decrease in some set T . Page A-4 shows the covariance

Tn

matrix for the conditional risk estimators R (cx), RVt (cx ), m ,-t l ,2. .

for a ’ = cx~ , ci and cx . Note that the increase in variance as a
0 8 10

increases seems to be due mostl y to the variance increase in R (a),

rather than to changes in the covariance of R
~
¼) and f~~(a’).

Page A-S shows the behavior of the dis t inct estimator s R(ci
~~

) for

various sample sizes where larger variances for larger ci ’s are re-

flected. For 
~~~~~~~~ 

the estimator k(cr
~~
) is equivalent to the posterior

estimator R(p). For ~~~~~~ R(cx ) is equivalent to the error count
10 ~lO

estimator .

In example 2, the t ive classes have unequal pr iors given by .1 , .3,

V 
-- V
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.2 , .19 , .21. The class conditional densities are normal with means

0, .5, 6, 10, 11 and equal standard deviations of 1. The densities

are sketched on page B-l and the true conditona l and unconditiona l

risks are given. Page B-2 gives the values a’~~ cx~ . . .cx~ cx .. .cx
o 1 8 q

0 q3

and the resulting sets T and 0 . Note that the error count estimator
fl~

is not included in the family [R(a’) : 0 � a’ < a’max3’

Page B-3 gives C(cx) and V (a’) for the points a’
~ 

, i 0 ,...8. The
1

expected number of dersity evaluations per sample C(ci) decreases to a

minimum of 1.94 at ci . Again the variance V(cx) appears to be in-
‘ 

t 8
creasing in cx .

V 
Page B-4 shows the behavi~’r of R(a-) for ~~~~~ 

i0. . .8. R(ci
~~
)

is equivalent to the posterior estima tor . The error count estima tor

is Lnclud cd for reference .

In chap ter 4, the problem of choosing an op t imal estima t or fr om

the family fR(cx) 0 ~ a ’ < a-max) is discussed. Considerations of opti-

mality will involve the variance V (a-) of the estimators and C(ci), the

expected number of density evaluations per sample.

But first , the technique of stratified samp ling will be discussed

in terms of a family of risk estimators.

3.3 Estimators Based on Stratified Sampling

Stratified sampling is a classic Monte Carlo technique for reduc ing

the variance of an estimator for an integral £31 , 19 , 39, 16J . Basicall y,

one partitions the region of integration and samp les independentl y from

each partition . In this case , the integral to be estimated is

_____________ -‘ - .V V . - - .ft VVVV r r , i r , r rw&n~~ m~~:. 



~ ~~~ -- - --- V ~~~~~~~~~~~ -~~~~

46

H
R = iT 5 C (x)f (x)dx.

- 
m=1 m

5 
in in

The summation represents a natural par tition of the integral. Thus rather

than samp ling (X,O) where e is random , the class 8_—m , is fixed a priori

• and observations are sampled independently from the distribution of X

given in , for m=1 ,2.. .M.

Let the stratified sample of size N be denoted by [x11, X12 . . .x1 ),

(X21,X22 .. •X 2n )~~ ~~ l’~~12~ ~~4a~)) where N ~~~~~~~ The samples 

1

X.., i=1 ,2...M, j=l ,2. . .n . are independen t, and the distribution of X . .,

j=1,2. . .n~ is identical to that of X~~. The density of X . is given by

f.(x), the conditiona l density of X given class i. The statistician is

free to choose the n imber of samp les from class i , i 1 ,2...M in any way

such that l
1
n~ = N. Op t ima l and heuris tic choices of these samp les sizes

will be discussed in section 3.3.2.

3.3.1 A Paratnetsrized Family of Bayes Risk Estimators

A family of estimators for the Bayes risk R based on stratified

sampling is defined as [sR(a’) : 0 � a’ < c x ) .  The scalar parameter ci

determines the set of classes T (cx) that are ‘b-close ” to class in ,

m=1,2. . .M as in section 3.2.3. The stratified estimator SR (a’) for the

conditiona l risk R is based ox-i samp les X . . for I E T (c i) ,  j=1 ,2. . .n. and
in 13 m 1

is given by

it . 
f
i -

- 

f ( X ..)
SR
m
(O!) = 

iET a’) 
11 . j~~l 

C~ (X~~ ) 
~ f (~( ~~~ 

- 
(3 44)

in ” LET (ci) 
13

SR ccx) is an unbiasi.~d estimator for R since
in in

f (X.)
E[SR (ci)) -

~ E it ECe (X.) ~
i~r ~~ I Z fl (X4 )TTVtLET (cr)~

’
• UI

- V V _- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~V__
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f (x)f .(x)dx
= E IT

1 ~ 
C ( x) m 

f (x)ry 
= $ C

~
(x)f

1~
(x)dx = R

m (3-45)
3. (ci) LET (a ’)  S

in

The est imator SR(ci) for the unconditional risk R is defined

M
SR(ci) = 

m~l 
IT SR (a-)

(3-46)
n.N TI. 1 f (X. .)

= m~l iET (cx) fl~ j~ l e10~~c~~) 

LEr (cx) L h 3
~~~

and is unbiased by linearity of the expectation operator . Also , since
H 

V

I E T
~
(a-) iff in E T.(cx), 

~~~ 
= 

i~ l E , and thus Si(cx) may be
jET (a’) mET.(a’)

written UI

M it ~i f CX . .)rr
SR(cx) 

~~ ~ mET (cx) 
C
ni~~ij

) 

LET a’ 
~3 47)

When a=O , SR(O) is equivalent to the s~ratified posterior estimator

SR(p), where ~
‘k(p) is given as in £39] by

n .!4 i t.  1

SR(p) = 
i~ 1 ~~ j~ l r(X1~)

(3-48)

H it . ~j M f (X. . )n
1 .~ m ij m- J - — .E E C ( A ..)i~~1 Ti j—1 m=l in 13 M

Also, if ~ ci < cx such that T (cx ) = Cm) Vm=l ,2. . .M then SR(a’ ) ise max m e  - e

equivalent to the stratified error count estimator SR(ec), where SR(ec)

is £39],

n

SR(ec) = i~l C.(Xi j) • (3-49)

—— - S•~ ._ ~~ , • — ,-, .,~~~_. ~~~ . :- ~~ - -V•.---
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3.3.2 Variances of Estimators in The Famij~

The variance of the estimator SR(a)

M 2 
f (X .)n

VAR[SR(ci)) 
~~ 

—i VAR [ E C (x .) 
~ 

f
L

.) TT
-t

3
1 m(T.~ci) LET cci)

2 2M it . f (x)rt
= 

i~ l 
...l ~ ,

‘ 
~ ~ C ( x) m 

~ ~x)it ~ 
f.(x)dx

1 S mET.(a) 
LET (cx) -t -t

(3-50)

f (x)rr f .(x)dx 2
- [ $ ~ C ( x)~ - 

m 

~ (x)T 
] )

S mET .(a-) - 

LET (a’) -t •
~

A heuristic choice of the number of samp les n . from class i is to let n .
1

be proportiona l to the prior probability T~~ of class i , thus n . = NrT~~.

Even though this choice is not optima l , the estimator SR(a) based on

the stratified sample has smaller variance than the estimator R(a-)

based on unrestricted samp ling . To see this , with n . = NrT ., the variance

of s (cx) is given by

VAR [SR(a’)) =

M f (x)n 2

~ ~i~~1 
~~~ 5 ( E C ( x) 

~ f
m
~~~~~

) f .(x)dx
S mETJa’) LET 

~~ 
L

(3-51)
H f (x)TT f .(x)dx 2

- 

i~ l 
tT~ [ 

s mET.(cx) 
C ( x) 

LET ci) 
‘~~ 

~ 
) .

By Jenson ’s inequality £7], and the fact that .

~~~~~ 

1 =
1 

mET.(cx) ~~ iET (ci)

we have that

.1
—~~~~~~ — • V —~~~ V-V•.—— V 

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -- ~~~~~~~~~~~~ -—~~ - - - . — - -— — ~~~—--
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H f (x)n f.(x) 
2

i~ l 
ii • ~~ mET.(ci) 

C ( x) 
LE~~~~~~-t~~~

u2

N f (x)it f.(x) dx 
2

~~~~~ 
IT. 

‘~

‘ 

E ~ (°‘) 
C (x) 

m 
(x)n (3-52)

3. ET(cx)
V in

E f.(x)it
H 1ET (ci)’

= 

~m~ i ~ 
C (x)f (x)rr 

~ 
]
2

LET (a ’ )

4

Thus ,

VAR [SR(ci)) �

N f (x)rr 2

~ T 
C (x) E 

~~~~~~~~~~~~~~~~~ 

f (x)dx - R
2
)

in 
LET ( c i)In

-‘ (3-53)
= VAR[R(cx))

An opt ima l choice [39 , 31] of the number of samp les from each

class is to choose n ., ir4,2. . .M to minimize the variance of the esti-

mator SR(cx). Let

f (x)rt 
2

a
1
2 (cx) = 5 ( E (x) m 

~ 
) f .(x)dx

S mET.(ci) ET~(a’) 
L~

X TT
-t

(3-54)

2
f (x)iT f.(x)dx

V 

- 

- 

S mET.(ci) 
C (X) 

E c x L L  
. 
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Then

M
vARfSR(a’)) = 

i~ l 
Ti

2 ~ . (3-55)

For a given ci, the optima l choice of n , i=l ,2. . .M is found by solving

the constrained minimization problem ~ l);

H 
2 
a.

2
~cx )

minimize ~ 
3-

1 i  1 n~3-

(N 1)
M

subject to .E n . = N
4 1 1  1

It is shown in [39, 31] that the solution to (Nl) is

rx.O .(a’)
1 3 .

n . = N . — , i=l ,2. . .M (3-56)
£

Thus the optimal choice of the sample sizes n.=n .~~, i 1 ,2.. .M agrees with

the heuristic choice n . = Nit ., i=l ,2. . .M only when a . (c i )  = cccx) Vi= l ,2. . .M.

Of course , the problem with using the optimal choice is that knowledge

of o~~c x ) ,  i l ,2.. .M is assumed , and if we knew this we would probab ly know

the true risk R. Since choosing n .., 1=1 ,2.. .M proportiona l to the prior

probability of class i causes the stratified estimator SR(a’) to have

smaller variance than the unrestricted es timator R(a’) anyway , we will

assume in the sequel this heuristic choice of sample sizes.

As in unrestricted samp ling, examples indicate that the variance

of SR(ci) is non-decreasing in a’. Moore , Whitsit i and Landgrebe [30]

give a 2-class example where the stratified posterior estimator has

smaller variance than the stratified error count estimator . However , for

I.. ~~~~~~~~~~~~~~~~~~~~~~~~ — - — -  -
~~
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for their examp le , the error Count estimatcr would not be inc l uded in

the family [S1((cx) : 0 � cx <

In fact , It is not clear (as it was with unrestricted samp ling)

that the variance of the estimator SR (ci) of the conditional risk R is
in in

noi~-decreasing in cx. For in this case

f ~ (x) dx
VAR [SR (cx)) = -

~ C ,f C~(x) ~ 
I (x)r T 

(3 57)
S qET

10
(a’) 

q q

f (x)f.(x)dx 2
c 10 1

- E n~ t ~ C (x1 f (x)r ~iET
10
(a’) S qET (cx) q q

For comp leteness , the covariance of the conditional stratified estimators

SR~~ci) and SRL~
ci)
~ 

is

COV[SR (~i-), SR t,(ci)) = (3-58)

f (x)f (x)f (x)dx
C 

iETrn(a’)flT-t
(ci) 

[ ~ C10
(x ) C ( x) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

f (x) f .(x)dx f (x)f.(x)dx
- 5 C (x) 

m 
f (x)~ ~ 

C (x) f (x)~S qET~ (cx) q q S r(T~,(a’) 
r x 

V

which is zero when T (a’)flT
L

(cx) 
~

-

3.3.3 Computational Requirements for Estimators in The Fami ly

As for unrestricted samp ling , a computational form for the strati-

fied estimator SR(o-) is defined

-V - ~~~~~~~V V - — ~~~~~ ~~~~~~~~~
V_V -— ~~~~~~~~~~~~~~~ ~~~~~~
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n .

cS~ (ci) = 
i~ l 

~~~ mET.(cx) 
(I
~
(X
~j

cx) 
~~~~~~~~~~~~

(3-59)

f (X. .)u
+ (1 — I

~
(x
~~~

ci)) C
m (X

ij
)) 

E
LET (cx) 13

where I~ (X .~~1cx) = 1 f .(X..)n- . > cx ,

0 f .(X..)i-r . �~~1 13 1

The expected number of density evaluations per sample required in

cSR~ci) is SC~ci), where

SC(cx) = 

~ i~ l ~~ (U.(ci)(M -1 Q 1(a’)I ÷ it . JQ.( cx)
~
) . (3 60)

With the heuristic choice n . = Nit., i=l ,2...H, we have that1 1

M
sC(a’) .l1~ U ,(cx) (N — lQ.(cx)~ ) + rr1 IQ~(a’ )I  . (3 61)

Thus SC(ci) is equa l to C(cx) (see 3-36)), so tha t the expected number of

density evaluations required by the stratified estimator cSR(a’) is the

same as the number required by the unrestricted estimator C~~ (c x) .  



CHAPTER 4

OPTIMA L ESTIMATORS

4.1 Introduction

Two families of unbiased , consistent estimators for the Bayes risk

have been proposed: CR( o’ ) : 0 � cx < c i )  for unrestricted samp ling and

C SR(cx) : 0 � cx < c x )  for stratified sampling . Given a sampling tech-

nique , the problem now is to choose at-i estimator in that family which

is optima l for our purpose. We will restrict attention to the family

C R(a’) : 0 � cx < ci
ax)• 

Extension to stratified samp ling is obvious .

There are t~’o major considerations in the optimality of an estimator .

One is its accuracy , by which is meant some measure of the concentration

of the estimator about the truC risk R [34] . We take as the accuracy

of the estimator R(ci) its variance VAR [~~(ci)3 = ~~~~~~~ where V(cx) is -the

coefficient of variance defined in section 3.2.5 and N is the samp le

size . Thus the smaller the coefficient of variance , or the greater the

sample size , the greater the accuracy. By the Central Limit Theorem

(2 2] , each estimator £ (ci), 0 � a ’ < a’max is asymptotically norma l with

mean R and variance ~~~~~~~~~ Thus, at least asymptoticall y, all information

about the accuracy of an estimator in the fami l y is contained in its

var iance .

The other consideration in the optimality of an estimator is the

amount of computa t ion  it requires. In many problems [39, 1 , 23),

point evaluations of the conditional densities used in risk estimators

are costly . Thus the amount of computation required by an estimator R(cx) 
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is taken as the expected number of density evaluations NXC(cx) necessary to 
-

obtain the estimate , where C(cx) is defined in section 3.2.4 as the expected

number of density evaluations per samp le and N is the number of samp les.

The estimator in the family [R(cx ) : 0 � cx < ci ) with the smallestmax

coefficient of variance V(a’) has the property that it requires the least

number of samples to achieve a given accuracy . However , when density eval-

uations are costly, the size of the sample is not sufficient to character-

ize the amount of computation required by an estimator ~~(ci), since the

average number of density evaluations C(cx) it requires per- samp le is also

a factor . Thus rather than the optim ality criterion of m3’imum variance

we choose the criterion of maximum computational efficiency Ce~a’). The

*estimator R (cr ) with maximum computational efficiency has the property that

it requires the least amount of computation to achieve a given accuracy

[16 , 17].

Because of the behavior of the computational efficiency Ce(a) as a

function of ci , maximization may be carried out over a finite number of

*
points. An algorithm to de termine cx to maximize the computational effi-

ciency Ce(a’) is presented.

*The optima l estimator R(ci ) is compared with the existing error count

and posterior estimators. It is shown that the more accurate the estimate

of the risk , the greater the computational savings will be by us ing the

optimal estimator .

Since in practice it is not possible to maximize the canputational

efficiency anal ytically, a technique whereby n of the total N samp les are

used to approximate the optimal estimator is presented. The n samples

should contain enough information on the gross properties of the densi-

L ~~~~~~~--. ___-- ~~~~~~~~~~~~~~~.
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ties , such as the closeness of various classes , to closel y approximate the

optimal estimator . The remaining N-n samp les are used to obtain an accu-

rate estimate of the risk with minimum computation .

4.2 Computational Efficiency : A Cri terion for the Op timal Estimator

The computational efficiency Ce(ci) of an estimator R(cx) is defined as

the inverse of the product of the amount of computation it requires and

its accuracy . Since the accuracy of the estima tor R(cx) is taken as its

variance ~~~~~~~~ and the computational requirements as NXC(cx), its average

number of density evaluations , we have

Definition 4-].

CC(cx) = V~a’)xC~ci)

The optima l estimator in the family (~ (~) : 0 ~ ci < ci a )  is defined

as that estimator R(ci ) with maximum computational efficiency . Thus

Definition 4-2

Th
: 

optimal estimator in the family [~ (~) : 0 ~ cx < a’max~ 
is

where ci is such that

max Ce(cx) = CE~4i*) . (4-1)
O�a’<cxmax

~ *The optimal estimator R(ci ) has the property that it achieves any

given accuracy with a minimum of computation . More precisel y, let the

sample size N be chosen such the estimator R(cx*) based on N samp les ob-

tains accuracy a. That is , let Na 
be such tha t

V (a’
*

) 
= a. (4-2)

- - 
Let R(ci) be any other estimator in the family with sample size N chosen

to obtain the same accuracy a.

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Thus N is such that

* *Then the amount of computation required by R(a ) based on N
a samples

is less than that required by R(ci) on N samples , i.e.

* *N X C(ci ) � NXC (cx) . (4-4)

*
- * * V(a )The above is merely the statement that a’ , N = solve the constraineda a

minimization problem (Ml)

minimize V NxC~cx)
(Ml) 0�N

0~a < c x
max

subject to = a.

- Thus we have

Theorem 4-1

* *Let ci be such that CC(ci ) = max Cc-(ci)
O�ci< ci

in ax
* V(cx*)and let N =
a a

* *Then cx , Na solve the constrained minimization problem (Ml).

Proof:

*By definition of ci

ce(ci*) � Ce(ci) V O�a’<a . (4~5)

By the de finition 4-1 of Ce(~) we have

* *V(cx )xC(cx ) � V(ci)xC(a) V O�a’~~ . (4-6)

By definition of N
a~ 

we may write V(ci*) = a N*, thus from (4-6)

a N XC(cw ) � V(ci)xC(a’) V O�a’<cx . (4-7)
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If N ,cx are such that V(cx1 = a t~ien V(cx) = aN. Thus from (4-7)

N*xc(a’*) � NxC(cx) V a’,N ? = a. (4-8)

* 
-

By symmetry, the optimal estimator R(ci ) also has the property

~ *
that for a given amount of computation b , R(a’ ) achieves the greatest

* * b
accuracy . Thus cx and N

b 
= - 

* 
solve the constrained minimization

C(ci )

problem (M2). -

minimize
(M2) 0�N N

O�ci<ci’ 
-

max

subject to NXC(ci) = b .

4.3 An Al gorithin for Maximization of The Computational Efficiency

The op t imal estimator R(cx ) from the family [ft(ci) : 0 � ci < a )

is determined by finding ci to maximize the cori’putational efficiency

Ce~cx). Because of the behavior of the coefficient of variance V(ci) and

the expected number of density evaluations per sample C(a-), it is only

necessary to consider those values of a’ that induce changes in the sets

T (ci) for some m=l ,2.. .M , namely cx~ ~~ . . .ci~ of definition 3-4 , to
m o K

*determine ci . This result is proved in the following theorem .

Theorem 4-2

max Ce(~) = max C~ (cx )

O�ci<ci i=0,1.. .Km ax

Proof:

From section 3.2.5 , V(a’) is constant V cx ? cx � cx < cx~ . From section
- - - 

t
i

s i+l

3.2.4, C(ci) is non-decreasing V a’ ci < ci
, 

. Thus

- 
i i+1

I
-- -__ 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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Ce~a’) = 
V~a’)xC~ci) 

is non- increasing V cx 3 ci
~ 

� cx < ci
~

Therefore ,

max CC(ci) = C~~(ci ) (4-9)
cx ~~y < ci 

t
i

t . t .

- 
1. 1+].

Finally

max Ce~a) = max max CC~a)
O�ci<cx i=O ,l .  . .K cx �a’<ci

max t. t .i+l

= max Ce(a’
~ 

). (4-10)
i=O ,1. . .K I

Since it has been observed that the coefficient of variance V~ci) is

non-decreasing in a ’, we state the following corollary. In this case ,

V CC(ci) may be maximized over ci ,ci . . .cx of definition 3-7 , the subset
q0 q

1 
q
~

of ‘~~~ . . .cx
~ 

which induce changes in the sets Q
~~
(a) for some m 1 ,2.. .M.

o I K

The convenience is that in general J ~ K, thus maximization may be

carrie d out over fewer points. 
-

Corollary 4-2

If V(cx) is non-decreasing in a- then

max ce(cx )  = ina~ CC(ci )

O~ cx~cx i=0,l. .max

Proof:

Follows since C~a’) and V~a’) are non-decreasing on o~q 
� ci <

Thus the problem of maximizing the computational efficiency CC(cx) is re-

duced to finding the points ci~~ , ci~~ . . .a ’
~~ 

and eva luating CC(a’) at these
o I K

points. We now describe a convenient method to find 
~~ 

,a~ . . .a ’~~ and
o 1 K

.1

~

----- . .

~

--

~ 

.. - _ _ _ _ _ _ _ _ _ _ _ _ _ _
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d 
f
3(

x)it
3 

-

33.

d
12~

d23 _

~~~
_

~~~
_

~~~
_

13

d .. -~~ T
13 t . 1. 2 3

_ _ _ _ _ _ _  ~1 _ _ _ _ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _

- cx
~ 

123 123 123

- 

d13 12 123 23

4

d cx 12 12 323 1
2 

___________ __________ __________

d 12 a’ 1 2 3

__________ 

t
3 

__________ __________

d ci - - -33 max

Figure 4-1. The points drs~ 
r=l ,2,3 ,s=r . . .3 which sp lit classes

r and s, their assoc iation with c, .. .cx and the
0 3

sets T . -

in

- -——

~ 

- - -~~.- -~~~~ --  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -
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the resulting sets T(ci
~~
), m=l ,2.. .M , i=O ,l. . .K.

Let d be the value of ci which sp li ts classes r and s , defined asrs

follows .

D e f i n i t i o n  4-3

ci = max rain [f (x)rT ,f (x)n 3rs r r 5 5
xES

r 1 ,2. . .M , s=r , r+ 1. . .M .

Note that for a- < d , r E T (a-) and s E T (a’). 
- 

This follows since if

cx < max mm r~~~~~r ’ f(x)u ) then 3 x E S such that f (x)rr > ci and
xES

f (x)rr > a .  Foi-~ a- � d , r ~ T ( c i )  and S ~ T ( a ’) .  Thus d is the
V S S rs a r rs

smal les t  value of a’ that splits classes r and s, in the sense that

V a ’  � d , r ~ T (a) and s ~ T (a’). Figure 4-1 shows three joint den-

sities and the values of d12,d 13 and d23
.

For simp lification , assum e that the points d , ~ = 1,2.. .M-l ,

s r+1. . .M are distinct. Then the values ci ,ci . .  .ci and ci may
t
1 

t~~ t
K 

max

be obtained from d , r = 1,2.. .M , s r ,r+l .. .M as follows .
rs V

Definition 4-4

Order the values of d in increasing order as follows
rs

d = 0
r s

0 0

Do i=O by 1 
-

d = rain d . -r j÷i
S
~ +1 r , s rs

~d >d
rs r.s .

I - i

Stop if r
~+1 

= 5
~+i

End .

— hV ,~ ..— .~~~~~~~~~~~~~~~~~~~~~~ V VA
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Theorem 4-3

a = d  i=0,1...Kt r .s .
i i i

a’ = d
max r

K÷l~
sK+l

Proof:

By induction .

cx = d = 0 by definition .
t r s
0 0 0

Suppose a’~~ = d 
s 

i 1 ,2.. .k < K.
i i i

By definition , d is the smallest value of a > d suc h
rk+l sk+l r

k
s
k

that 5k+l ~ T (a) and rk+l ~ T CO). Since d = ci
~~ 

by the induc t-
r ki-l rk

sk k

ion ~-iypothesis , d is the smallest value of ci > cx~ such at
r
k+l

sk+l k

T~~a’) ~ 
T(ci~ ) for some m (namely nl=rkl l , sI÷l ). Thus d

r s
k k+ l k+ l

a’tk+ 1.

Also , by definit io~~- 3-3 and 4-3 , ci = ra in max f (x)rt
max 

l�-f.~M xES 
-t

= min d = d
1�-t�N r

K÷l
,sK+1

The sets T(a
~~~
) mrl ,2. ..M , i=O ,l. . .K may also be determined from

the ordered value s d
rs 

by the r :)fl o~:ing corollary.

—~~~~~~~ -~~~~ -~~~ _ _ _ _-

~~

-

~~~

. .
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Corollary 4 3

T(a’
~~
) = [i ~ x 3 f.(x)n . > 0 and 1m~~~~m 

> o)

Do i 0  to K-l.

T(a’
~ 

) = T ( c r
~~
) V m/r ., mis .

1+1 1

T ( c i  ) = T ( a ’ )  - S
i 
(delete 3~~ from T ( a ’ ))

1 i+1 i 1 ]_ 1

T ( c x
~ 

) = T ( c i
~~

) - r . (delete r . from T ( c x
~~

) ) .
i i+1 1 I~ 1 1

Figure 4-1 shows the value s d12
, d13, d23 

and d33 and their corres-

pondence to at 
.. .cx~ ‘ 

cx and the sets Tm
(ci

t 
)~ m~’l ,2. . .M, i~’O,l.. .K.

o . K  i

Assuming that the values d , r.l ,2. . .M , s=r , r+l . . .M have been

computed from definition 4-3 and p laced in increasing order in corres-

pondence with ci~~ ,ci~ . . .ci~ 
as in definition 4-4 and theorem 4-3 , an

o I K

algor ithm to determine ci~ to maximize the computationa l efficiency Ce(ci)

is as follows .

Algor ithm A

Le t cx
~ 

‘- 0.
0

1) For m—l ,2. . .M let

Tm(a’t
) = [-~ 

x 3 f ( x )n > ci
~ 

~~~~~~~~~~ > cx
~~3

2) For m=l ,2. . .M let

) = U T
q(a’t 

)~
o qET~ (ci~~) o

3) Compute Ce.
~
ci
~~
) 

: 
C
~
a
~~

)xV
~

cx
~~
)

4) Max = ce(ci~ 
),  ci = ci~~

- 0 0
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Do for i=1 to K.

5) For m 1 ,2 . . .M let

T(a ’
~~~
) = T(a’

~ 
) V m~r .,s .

i—I.

T ( c x ) = T ( a ’  ) -

1 1 i~

T ( c x
~~
) = T ( c x

~ ~ 
- r .

- 1 1 1

6) For m=1 ,2 . . .M le t

U T(a
~~
)

i qET~1(a’~ ~ 
q

i

7) Compute ce = 
C
~
a
~~

)xV( a
~~~
)

8) if > Max then

Max Ce-(ci
~~
). a”

Note that if V (cy ) is non-decreasing in a ’- , by co ro l l a ry  4-2 , steps

7) and 8) need onl y be done for those i such that m such that

) 
~ 
Q~

(ci
~ 

). Thus CC(ci) need onl y be evalua ted at those values

i—i

cx ,cx . . .o which induce changes in the sets Q~~( c x ) ,  m=1 ,2.. .M.
q q1 qj

4.4 Comparison of the Op t imal Estimator With the Error Coun t and

Posterior E3tirnator s

*
We first compare the optima l estimator R(o’ ) to the posterior

estimator ~(p), defined in section 3.2.1 , on the bas is of relative com-

putationa l efficiency. The posterior estim ator require s for each samp le

V X~ , j=l ,2. . .N , the evaluation of all M condition al densities

-(~=l ,2.. .14, 
a total of NxM density evaluations. The var iance of the 

- 
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posterior estimator is, from (3-9)

VAR[R(p)3 = 
VAR{r (X)) 

(4-11)

Let the coefficient of variance V(p) be

V(p) = VARf r (X)) . (4-12)

Then the computational efficiency CC(p) of the posterior estimator is

CC(p) = 
MxV (p) 

(4-13)

The computational efficiency of the optimal estimator relative to

the posterior estimator , ~~C(ci
*
,p) is defined by

*

R~ C(ci
*
,p) 

CC(p) 
MXV (p) 

* 
(4-14)

Cccx )xV(ci )

The following theorem states that the computationa l efficiency of the

opt imal estimator is greater thami or equal to that of the posterior

estimator .

Theorem 4-4

� 1

Proof:

The est imator R(O) in the famil y f~~(cx) : 0 �a ’ < c i )  is equivalent to

R(p) in the sense that

R( 0) = 
~(p)

. (4-15)

Thus ~(0) and 
~
(p) have the same coefficient of variance

V(0) = V(p). (4-16)

However , it may be the case (if the conditional densities have finite

- V -V - -- —-- ~~~-- ~~~~ , ~~~~~~~~~~~~—.
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support) that ~(O) may be computed with fewer than M conditional den-

sity evaluations per sample. Thus

C(0) � M . (4-17)

From (4-16) and (4-17), we have

- 

V(0)xC (O) � V(p)xC (p) (4-18)

and by definition of computational efficiency ,

ce(o) � CC(p). (4-19)

*By definition 4-2 of cx

CC(cr *) � CC(a’) V 0 s ci < a’max~ 
(4-20)

Thus

V 
Ce(ci*) �Ce(p)  (4 -2 1)

and finall y

~K~e(a
*
,p) ~~~~~ � 1. (4-22)

The computational efficiency of the optimal estimator relative to

*
the posterior , %~~~~(a ’ ,p) has the interpretation that if the samp le size

N for the posterior estimator and N
~ 

for the optimal estimator are

chosen so that both estimators have the same accuracy (variance), then

*
the posterior estimator will require ~~C(ci ,p) t imes the number of density

evaluations required by the optimal estimator .

To see this , let the sample sizes N
~ 

and N be chosen so tha t

V(a*) 
. (4-23)

N

-_  
•V _~~~~~ _ .~,_  ~_._ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~. ——
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The amount of computation , expressed as the average number of density

*evaluations , required by the optima l estimator is N
~XC(a’ 

). The number

of density evaluations required by the posterior to achieve the same

accuracy is N XM . From (4-23), we have that

V(p)XN
* V(p)xM *NXM = 

* 
X M = -  

* 
(N
~
XC@ ))

V(ci ) V(cx )xC(cx )

(4-24)

= ~~~~~~ (N~XC(ci~ )) = 5~~C(ci
*
,p)(N

*
xC(cx

*))

*The posterior estimator requires S~~C(a ,p) times the number of den-

sity evaluations required by the optima l estimator to obtain the same

~ *accuracy . Thus by using the optimal estimator R(ci ), we have saved our-

selve s , on the average , 8(a~*,p) density evalua tions , where

* * *8(cx ,p ) = (~~C(cx ,p)-l) C(cx )xN~ . (4-25)

From (4-25), it is clear that the more accurate an estimate of the risk

desired , that is , the larger N
~
, the greater the savings in computation

*
The optimal estimatot R(cx ) compares even more favorably to the error

count estimator ~(ec), defined in section 3.2.1. The variance of the

error count estimator is , from (3-3),

VARCã(ec)) = 
R(i-R) 

(4-26)

Since the error count estimator requires evaluation of the conditiona l

density fe,(Xj) for each sample X~ , j=l ,2. . .N and for each class L=l ,2. . .M ,

the computationa l efficiency of the error count estimator Ce(ec) is given
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by

ce(ec) = 
MxR(l-R) (4-27)

The computational efficiency of the error count estimator is less

than that of the posterior . From (3-11), we have that

� R(l-R) - < R(l-R). (4-28)

Thus

- CC(ec) = 
?~

-
~ .(l R) 

< MxV( ) 
= CC(p) . (4-29)

The computational efficiency of the optimal estimator relative to

the error coun t estimator , S~CC(a”~, cc), is given by

RCC(ci*,ec) 
MxR(1-R) 

(4-30)
C(ci )XV(ci )

From (4-29) and theorem 4-4 we have

* *
~1CC(cx ,ec) > RCE-(a’ ,p) � 1 . (4-31)

If the error count estimator ~(ec) is a member of the family

(R(cx ) : 0 � ci < c i )  and if V(a’) is non-decreasing in a, we have

V(cx ) � R(l-R) . (4-32)

In this case , a lower bound on the computational efficiency of the optimal

estimator relative to the posterior estimator is

~ MX R( 1-R) 
= 

M 
(4-33)

C(o’ )XR(l-R) C(cx >

Thus if (4-32) holds , the error count estimator requires at least M/C(cx
*)

times the number of conditiona l density evaluations required by the opti-

- 
.- — . J
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mal estimator to obtain the same accuracy .

The number of density evaluations saved by using the optima l

*
estimator rather than the error count , &(cx ,ec) is

* * *S(a’ ,ec) = (~~e(~ ,ec)-1) C(ci )XN~

- 

� ( —
~~~ 

-1) C(cx
*)xN

* 
(4-34)

C(cx )

= (M~C(a*))N
*

Thus the more accurate an estimate of the risk desired (the larger N~
)

the greater savings . Also , the smaller C(cx ) relative to the total

number M of classes , the greater the savings . One would expect

V M > > C(a ) for a large number M of classes which tend to form several

small clus ters.

4.5 Approximation of the Optimal Estimator

The optimal estimator R(cx ) in the famil y [ ~~~(a ’)  : o � ci < c x )  is

determined by finding ci to maximize the computational efficiency CC(ci).

However , if we had enough information to maximize the computational effi-

ciency analytically, we could evaluate the Bayes risk R analyticall y. We

propose that a subset of the data , say [(x 1e 1) , ( x 2 e2 ) , . . . ( x e ) ) ,  where

n < < N, be used to approximate the optimal estimator . The remaining N-n

samples are used in the approximated optimal estimator to obtain an accu-

rate estimate of the Bayes risk efficientl y.

*
Recall algorithm A is section 4.3 for finding a. to maximize the

computational efficiency Ce(ci). In order to use this algorithm , we need

to know the points drs~ 
r=l ,2 . . .M , s=r , r+l . . .M. and the value of the

- .~~~~~~~~~~~~~~~ ~~--~~~~~ . -~~~~ -V
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computational efficiency at these points . Since in practice these values

are not known, we propose they be approximated on the basis of the n

samples [(x 101). . .(xe)) as follows .

An approximation to the computational efficiency CC(cx) at any given

a is forme d as

C&(cx) = , (4 35)

V (a.) XC (ci)

where V(ci) and e(cr) are unbiased estimates of V(cx) and C(ci) given by

M

~ (a) = 
d 1 ~~~~~ 

(cx)I (ii,~, 
- U~,(cx )) + MU~ (cx) (4-36)

where

1 ~ 
f~,(X .)rr ,~,

— .E~ 
(l_I

L
(X ..a.)) f(X .) 

(4-37)

and

ii e (x .) f (X .)n

~~ 
- - - ~

--
~~~~~~~~~~~~~ E m j  m j m

- 
n-i j=1 mET

9 
ccx) 

~E T c i~~~~~~~~
(4-38)

C .(x~) 
~m~~k~~m 

2
- 

~ n k~1 mET9 ~~~)

The points drs~ 
r=l ,2.  - .M , s=r ,r+1. . .M might be approximated by

~rs 
= max mm 

~~~~~~~~~~~~~~~~ 
(4-39)

l�j� n

Once the values 
‘

~~ , r=l ,2. . .M, s=r ,r+1 . . .M have been ordered and
rs

put into correspondence with the points 
~~~~~

, 
~ t

l ~~~~~~~~ 

as in theorem 4-3,
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Figure 4-2. Estimates and ‘
~ l2 of d12 

based on one samp le

(X1,81 l). 
~
‘
l2 

underestimates d
12 

which results

in sets T tha t are smaller than the true sets T

The overestimate a
12 

solves this problem .
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al gorithm A may be performed by substituting the approximated values for

the true values. As a result , a va lue cx which maximizes the approximate

computational efficiency C~ is obtained.

However , the following difficulty arises. Algorithm A determines

the sets 
~m
(
~ t~~ ’ m=l ,2. . .M, i 0 ,l. . .K as in corollary 4-3. But since

� d r=l ,2.. .M,s=r ,r+l. . .M (4-40)rs rs
a

the sets T(ci
~ 

) ,  m=l ,2. . .M , i 0 ,l. . .K which result from corollary 4-3

using the approximated values drs 
and have the pr operty that

C T~ (~~~•
). (4-41)

Thus the approximated set T(ci
~ 

of c lasses  t
~~~~~ -close ” to c lass m is

smaller than the true set T
~~~

’
~~
) of classes I

~~~~ ~- clos&’ to class in.

Figure 4-2 shows this behavior for 2 classes , with approximated

with n=l samp le x1, e1 = 1.

The result of this is that if the estimator cR(~ ) ,  in computa t ional

form , is used with the approximated sets T (cr), m=l ,2.. .M , a biased

estimate of the risk results. The reason is that in its computationa l

form , cR(~) uses the modified error function e (X,Q0(5) for in E

whenever f9
(X )n

9 > cx . Although by theorem 3-2 it is true that

V m E T9(ci), 
C (X) = C ( X ,Q e G3)

(4~4~) I -

whenever f
8(X)ii9 > ~

~~II_ . ‘ — -~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .— --— -
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it is not true in general that

V in E T
0(~

), C
m

(X) =

(4-43)

whenever f
9
(X)rT9 

> ~~

since Q
9~~
) may be smaller than Q

9
(~~).

Example 4-1

In figure 4-2 , the values and T( ), m=l ,2 were approxima ted
1 -  1

with the samp le X
1
,01 

= 1. If samp le X2,02 
= 1 were used in the compu-

tational form cR(
~~ 

), since f
1

(X
2
)n

1 
> the modified error function

1 1

would be used. But C1
(X 2 , Q 1(~ 1 

)) = 0 while C
1

(X
2
) = 1.

1

Examp les indicate that the sets T ( ~~~), in—~l ,2. . .N , i=O.1. . .K

approximate well the true sets T(cx
~~

), rn=1 ,2.. .M. i=O ,l.. .K (see section

4.6) The ad-hoc method emp loyed here is to overestimate the values

d , i=0,l. . .K + 1 by

d 
~~~~~~~~ii 1 1

~4 -44)

whenever d = 

~~~~~~~~ 
V

The value is illustrated in figure 4-2. Note that in this case ,

Tm (Q’t ) T(& ) m=l ,2 . (4-45)

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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Let cx be the approximated optima l determine d by Algorithm A , with

the appr oximated value s CC (determined from d )  substituted

for the true values. Thus ci and sets T (ci), m=i ,2. . .M determine the

approximate optimal estimator R(ci ).

In determining the optima l o-~ , all conditional densities

f~,(X .) ~=l ,2,...M , j=l ,2...n (4-46)

have been evaluated. Since the posterior estimator R(p) based on n

samp les is a by-product of Algorithm A , and since the posterior estimator

has the smallest variance (theorem 3-1) we may as well incorporate it into

the approximated optimal estimator .

Thus , let the final estimator R(f) be given by

= R( p ) + (N-n) 
(*) (4-47)

where R(p) is the posterior estimator based on the n samp les

.(XO) 3 used to determine and R(c/’) is the approximated

optimal estimator based on the remaining N-n samp les [(x +1e +1
), .

~~N N ~
The final estimator R(f) requires M density evaluations for each

of the first n samp les and an average of C(cr*) for the remaining N-n

samp les . Its variance is given by

VARCR(f)) = ~~ V (p) + 
(N~n)V(&*) 

. 

- 

(4 48)

Thus the computational efficiency CC(f) of the estimator is

CC(f) = 
N 

(4-49)
(nM+(N~n)C(ci*)) ~~~~~~~~~~~~~~~~~

N N

-- -~~ — - —-— ~-- ‘V V
~~ ~~~~~~

_
~~?flfl ~~~~t ~~~~~~~~~~~ -- - _ _ _
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Assume that the n samples contain enough information so tha t the

approximated optimal estimator R(o’ ) is close to the true optimal esti-

*
mator R(ci ). That is , assume

* 1 -
~ 1Ce(~ - ) = * * * = CC(cx ) . (4-50)

~~a. )x C~cx ) V(& )XC ~â )

Also , let us assume the approx imation is close enough so that

Ce( *) ~~CC(p) . (4-51)

Then from (4-49) and (4-51),

� CC(f) � ce(p) , (4-52)

the lower bound CC(p) for CC(f) be ing obtained when n=N and the upper

* *bound CC(cx ) when n 0 . The best case would be when a’ were known

a prior i and n=0.

- - 
The computational efficiency of the final estimator relative to

the posterior estimator , 9CC(f,p) is

C f — CC(f) M V (p)
~~~ ( 

— 

c~~’ 
‘
~ * n 1N-n ’ ~ 

( )
~P1 (nM+(N-n)C(& ~ ‘(P~÷

’
~ ~~~~ ~N N

which is greater than one provided (4-51) holds.

Let us now compare the final estimator to the pos terior estimator

in terms of the number of density evaluations saved. As in section 4.4

let 8(f,p) be the number of density evaluations one would save by using

th. fina l estimator on N samp les rathe r than the posterior based on N

s.spL.s. where N is chosen s~ that both have same accuracy (variance).

Th.

£ 4 !  .~~~ 
‘4

- ( .p )  - I (t#~~-’ ~~ ) 
- (4 54)
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From theorem 3-1 , we have

V( p) � V(&*). (4-55)

Thus frc~n (4-53), (4-54) and (4-55),

3(f ,p) � N(
MXV C(ci )) - n(M~C(&*)). (4-56)

V(& )

From (4-56), the greatest savings result when N is large (an accurate

risk estimate is desired) and n is small. However , it is important that

n be large enough to closel y approximate the optimal estimator to assure

that (4-51) holds .

It can 1— shown that if

a)’-
V~cx ’) � R(l-R) (4-57)

then the average ‘~avings in number of density evaluations by using the

final estimator rather than the error count estimator , 3(f ,ec) for an

estimate of the same accuracy, is bounded below by

&(f,ec) � (N-n)(M-C( )). (4-58)

Of course , it takes a certain amount of work , over and above the Mn

density evaluations , to approximate the optimal estimator using the first

n samples. The aver age number of density evaluations save d by using the

fina l estimator rather than one of the existing estimators must be compared

to this overhead . If the density evaluations are costly and the number

saved is large , a net sav ings in work should be realized .

4.6 Example,~

Consider the five Gaussian classes of examp le 1 described on page A- I

of the appendix. Page A-2 gives for these densities the values d
r~~~~

— -~~~~~~---~~~~~~~~—-—-~~~~~~~~~~
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i=0,1. . .10, their correspondence with ci
t

, i=0,l.. .10 and cx , i=O ,1. . .5,

and the resulting sets T(cx
~~
), 

~m
(
~ t .~~’ 

m=1 ,2. . .5, i=0,l. . .10. The

computationa l efficiency CC(cx
~~
), i=0,l . . .10 is given on page A-3. The

computational efficiency is maximized for cx and CC(ci ) = 20.99. From
6

page A-2 , we have T1 ( c x )  = [ 1 ,2) = T
2

(cx*), T
3
~ci
*
) [3,4,5) = T

4~
a )  =

T
5
(ci ), and Q.(ci ) = T.(cx ) i=l ,2. . .5. These sets represent the natural

clus tering of the classes.

On page A-6 , the computational efficiency of the optimal estimator

*relative to the posterior is given by ~~C~ci ,p) = 1.92. Thus to achieve

the same accuracy, the posterior estimator would require on the average

1.92 times the number of density evaluations required by the optimal esti-

ma tor . The computational efficiency of the optimal estimator relative

*to the error count estimator is c~Ce(ci , ec) = 24.07 , thus the error count

would require 24.07 times the computation of the optima ] far the same

accuracy .

Also on page A-6 are the average number of density evaluations saved

by using the optimal estimator , rather than the error count or posterior ,

for various samp le sizes N
~ 

for the optimal estimator . For examp le , if

the optima l estimator is formed using N
~
=400 samp les , in order to achieve

the same accuracy the pos terior would require on the average 956 more

density evaluations and the error count 23 ,992 more. -

Page A-7 gives the approximated value s d , i=0,l . .  .10 , their
i i

correspondence with o’
~ 

, 1=0 ,1. .  .10 and o , i=O ,1. . .5 and the resulting

sets T(&
~~
), 

~~~~~~~~~~~~~~~~~ 
i=0,l. ..10, where approximations are

based on n=25 samp les. Comparison of the approximated value s with the
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.true values given on page A-2 shows that for i � 6 
~m~~ t ~ 

T(a’
~ 
) for

i i

al l  m 1 ,2 . . .M. Discrepancies for i < 6 are caused by the fact tha t in

the approximation , classes 1 and 4 were sp li t before  classes 2 and 5

and classes 2 and 3 before  c lasses  1 and 3 .

Al though the approximated value s &~~~ , i=0,l .. .10 do -not seem close

to the true values cx~ , i 0 ,l .  . .10 , the computational efficiency CC(&
~ 
)

i i

for the approximated values (page A-8) is only sligh tl y lees than the

computational efficiency CC(ci
~~
) for the true va l ues (page A-3). Thus

if the sets T(&
~ 
) = T (cit 

) ,  m 1 ,2 .. .5 , the est imator R(&
~ 
) is equi-

valent to the estimator 
~~
(&

~~~
) and is almos t as efficient.

From page A-8 , we see that maximizes the approximate computa-
6

a * * *tiona l efficiency CC. Since T (& ) = T (cx ), rn=l ,2. . .5, and CC(& ) 19.49

*

~~CC~ci ) = 20.99, the approximate optima l estima tor R(a’ ) is almost as

a *efficient as the true optimal estimator R(ci ).

On page A-9 , the final estimator is compared with the posterior and

error count estimators.- The final estimator is formed as the posterior

a

est imator R(p) on n 2 5  samp le s and the approximated optimal R(a ) on the

remaining N-25 samp les. If the final estimator uses a total of N=400

samp les , the computational efficiency of the final estimator relative to

the posterior estimator is 1.71. By us ing the f inal estimator rather

than the posterior , on the average 828.93 density evaluations have been

saved in obtaining an equall y accurate estima te of the risk. Thus if the

work Involved in approximating the optima l cx with n=25 samp les is less

than the work involved in evaluating 828.93 densities , the final estimator

_ _ _ _  --~~~~~~~~- .- - - ------ 
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is preferable .

Compared to the error count estimator , if the final estimator uses

N=400 samp les , on the average 23 ,887.05 density evaluation s are saved.

If density evaluations are costly, one would almost surel y prefer the

final estimator to the error count. 
V

Next , consider the five densities described on page B-l. The values

d , their correspondence with the points cx~ , i=0 ,1 .. .8 and cx
r1 .

i=0 ,l. ..3 and the resulting sets T(ci
~ 
) and Q

~~
(ci ) ,  m l ,2. . .M , i 0 ,1. . .8

V j  i

are given on page B-2. Page B 3  lists the values C(ci
~~
), v(ci

~~
) and

CC(ci
~ 
) i=0 ,l. . .8. The value cx =a’~~ maximizes the computational efficiency

i 8

CC(cx) and CC(cx*) = 17.87. On page B-5 , the opt imal estimator is compared

wi th the error count and posterior . The computational efficiency of the

op t ima l estimator relative to the posterior is 1.95 and relative to the

error count is 15.97. The number of density evaluations saved by using

the optimal estimator rather than either of the existing estimator s are

listed on page B-5 for various samp le sizes N
~ 

for the optima l estimator .

On page B-6 are given the points d
r ~ 

i 0 ,l. . .8, their correspond-
i i

ence with i=O ,1.. .8 and & , i=0,l .  . .3 and the sets T (&
~ 
) and 

-

ci

Q
~~

(&
~~ 

), m=l ,2.. .5, i=O ,l. . .8. Note that T(&
t ) = T(ci

t ) 
m=1 ,2 .  . .5 ,

i i I
1=0,1.. .8.

On page E-7 , we see that a’ maximizes the approx imate computational
8

efficiency CC. Thus the approximate optimal estimator R(&*) is equiva-

lent to the true optimal estimator ~~ (ci
*

)  and its computationa l efficiency

ce(&*) a 17.51 is only slightly less than the computationa l efficiency
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*
of the optima l estimator CC(ci ) = 17.87.

Again , the final estimator formed by the posterior R(p) on n=25

samples and the approximate optima l R(cx ) on the remaining N-25 samp les

compares favorably to the error count and posterior estimators. Page B-8

makes comparisons in terms of relative computational efficiency and saved

density evaluations for various samp le sizes N for the final estimator .

Thus if the final estimator is based on N=400 samples , its computational

efficiency relative to the posterior is 1.76, and by using the final esti-

mator rather than the posterior , on the average 665 density evaluations

would be saved for an equall y accurate estimate of the risk. The computa-

tional efficiency of the final estimator relative to the error count

est imator is 14.38 when the final estimator uses a samp le size of N=400.

In order to obtain the same accuracy with the error count estimator , on

the average 11 ,707.5 more density evaluations would be required.
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CHAPTER 5

CONCLUSIONS

5.1 Summary of Results

In this thesis we have studied estimators for the Bayes risk in

terms of the amount of computation they require and their accuracy .

The existing estimators for the risk , name ly the error count and the

posterior , were shown to be inadequate computariona lly, thus several

new estimators for the Bayes risk have been proposed. In particular ,

a family of estimators , indexed on a scalar parameter cx , was defined

in such a way that estimator s in the famil y in general required less com-

putation than the existing estimators. The optimal estimator was chosen

as tha t es t im at or in the fa m i l y with maximum computationa l efficiency ,

and had the property of requiring the least amount of computation for

a given accuracy.

In estimation of the Bayes risk , point evaluations of the class

conditiona l densities are , for many problems , the single most important

factor contributing to the computationa l effort. For this reason , the

amount of computation required for a given Bayes risk estimator was de-

fined as the number of density evaluations involved in the estimation

procedure . The existing estimators , the error count estimator and the

posterior estimator , require for each samp le X ., j=l ,2.. .N, evaluation of

the class conditional density i,~(X~) for each class L=l ,2. . .M , a total

of NxM density evaluations . Thus when the number of classes M is large

or the number of samples N is large (an accurate estimate of the risk is

desired) , the existing estimators were seen to be impractical from a

computational aspect.
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In searching for an estimator for the Bayes risk which could be

computed with fewer density evaluations per sample , a general form R(T)

for Bayes risk estimators was discovered. An estimator of the form R(T)

was defined by associa ting with each class m some set of classes T .

When the number of classes M=2, the class of estimators of the general

form I~(T) consisted of the two existing estimators , the error count

estimator and the pos terior estimator . For more than two classes , the

class of estimator s of the general form contained several new estimators

for the Bayes risk , in addi t ion to the exis t ing es t ima tors .

By restricting the set of classes associated with each class m to

be -those classes T (cx) that are ‘tw-close ” to c lass  m , an estima tor

of the general form was define d which in general required fewer density

eval uations to compute. As the scalar parameter ci varied , the sets of

classes T
l
(ci), ...T

M
(cx) varied and a famil y [R(cx) 0 � a < a’ a 3 of Bayes

risk estimators was achieved. Estimators in the famil y were characteri-

zed by the average number of conditional density evaluations needed to

compute them and by their  variance .

The optimal estimator R(cx ) from the family was defined as that

estimator with maximum computational efficiency, where the computational

efficiency of an estimator was defined as the inverse of the product of

its variance and the average number of dens ity evaluations it required.

It was shown that the optima l estimator R(cx ) required the least amount

of computation to achieve a given accuracy, or, symmetrically, achieved

the greatest accuracy for a fixed amount of computation.

- *It was pointed out tha t in practice , the optimal estimator R (cz )

could not be determined by maximizing the computational efficiency , 

. _ _ _  _ _ _ _  _
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since this in effect would  requi re  knowled ge of the true risk R. Thus

a method was proposed whereby a subset n of the total N samp les was used

to approximate the optima l estimator . The n samples should contain

enough information on the closeness of the classes to determine an almost

optima l estimator . The rema ining N-n samples would be used in the

approximate optimal estimator to obtain an accurate estimate of the risk

with a minimum of conputation.

For both examples given in the appendix , the optima l estimato- was

closely approximated using n=25 samp les. In fact , for e a h  case the

approx imate optimal estimator was equivalent to the true optimal estima-

tor , in the sense that point estimates of the risk resulting from either

would be iden tical. However , the approximate - op t imal estimator would ,

on the average , pe r for m sl ightl y more dens ity evaluations in forming the

estimate.

The technique for approximating the optimal estimator forms as a by

produc t the pos ter ior  es t ima tor based n samp les . Because the posterior

estimator has minimum variance among all estimators considered here , we

defined as our final estimator the posterior estimator on the n samp les

used in approximating the optima l es timator and the approximated optima l

estimator on the remaining N-n samples.

The final estimator was compared to the error count and pos terior

estimators. The comparisons were based on the number of density evalua-

tions that would be saved by using the final estimator rather than one

of the existing estimators in obtaining equall y accurate estimates of

the r isk. Situations for which great cor-iputational savings wou ld be

expected were the following :

~

. . . . .
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1. an accurate estimate of the risk is desired , thus a large

- 

- 
number N of samples is used.

2. the number of classes M is large and the classes tend to form

several small clusters.

5.2 Recommendations for Further Research 
-

In section 3.2.5 , variances for estimator s in the family

0 � cx < cimax) based on unrestricted samp ling were derived. We

discussed properties of these variances and indicated reasons for be-

lieving that as a increased , the variance of the estimator R(ci) should

not decrease. Thus the question: under what conditions does the following

proposition hold?

Propos ition 1.

If O � cx �c i  < c x
1 2 max

then V(a
1
) � V(ci

2
).

Aside from a theoretical interest , propos it ion 1 has the practical

consequence indicated in corollary 4-2. That was that the computational

efficiency could be maximized over the J4-l values cx . . .o’ rather than
q0 q

~

over the larger number K+l of values . . 

~~ 
. Thus to determine the

o K

optimal estimator for examp le 1 in the appendix , the computational effi-

ciency need only be evaluated at J + 1 = 6 points rather than K + 1 = 11

points , and at J + 1 = 4 points rather than K + 1 = 9 points for example

2.

The same question of non-decreasing variances arises in the family

(~ R(cx ) : 0 ~ cx < 3 of risk estimator s based on stratified sampling .

Moore , Wh lts itt an~ Landgrebe ’s examp le t 30), In which the stratified 

- ——~~ ~~-- -.
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error count estimator had smaller variance than the stratified posterior

estimator , shows that an analog to theorem 3-1 is not possible for strati-

fied samp l ing . However , for their examp le , the error count estimator

would not be included in the family. Thus one might still hope to show

that the variances of estimator s in the family [~ R(a) : o < cx < a )  are

non-decreasing as a increases.

Finall y, concerning the choice of the number of samples from each

class i l ,...M to be used in the stra t i f i ed  estimator SR(a). We discussed

two choices , the heuristic on: with proportional to the pr ior probability

of class i, and the choice n . to minimize the variance of the estimator

S~k(cx). In view of chapter 4, a be tter choice wo u l d  have been to choose

** .n~ to maximize the computational efficiency of the estimator SR(a).

V What imp lications would this have , in ter ms of the op t imal es t ima tor for

stra t i f i e d  samp l ing , and could this he useful in practice? 
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A. Data From Example 1.

eq

U-,
—

tr ~x
In

• 0 II

0~.

0’ -~~ •~~~~~ ~D‘.4 ~~ -~~ ~~~ In
in in C) r~ 

eq

~ ‘~? U-i’ ~
U ft ft II

eq e-~ Ui
~~

I N II ft U U

/ e~ m -$ in
~ ~ ~eq

eq
—
- ~~~‘ ~~~‘ -

eq — In .-4 ‘-4 Ui
~4.l - -S -

• C) . ,_ ~~~._, ~_, ‘-, •_,

z z z z z
. 0

r r% rs 0-’ -‘
—. ~ x ~I ~~~ ~~~~ ‘— •.~ 0

— •-. eq ~~~ 
.~ Ui

4-. ~~ 44 ‘~4 ‘.-~
x 

_ _ _ _ _ _ _ _ _ _ _ _

‘-4
‘4..



A -2

b D 0 0  b b b b b
•.j -.j C’ U) 0 0 0 0 0 0

0 0 0) 0 0 C) 0 0 0 0 Q
~~
- ~~ U) C) ~— 0 0 0

p.., p.~ IS’., -J ~~ p.., 
~~,

~ -~j  U) p—.

C.
C. 0. 0. C). 0. 0. C)- 0- 0. 0.

U’ -~~~ (.~) IS’.) p- p.-.) ~- p.j ,— • P.-.-
P.~ -~~~ U) U’ U) U) -C .C~ Lfl UI

P...

— — — — — — — — —
Q Q Q Q Q Q Q Q Q Q Q Q

rr rt rt rt rr r? r~ I ?
p-S. 

~Ø ~~ .4 C’ U’ .C- I.. ) P..) 
~
— 0

as as.
‘0

Q Q Q Q Q Q Q
.0 .0 .0 .0 .0 .0 .0

U’ .r:- ~~ i--. o ~~ -— — — — S — — — —
I~-~ P-• p. — — I—-. ~~ p-S — — P.~ p-3

P.) F..) I’.) F’-.) F.) F.) F.) F..) p~ F..) P•
U’ L-’ U) U) U) ~~

~ - ~ - ~ - Q
LI) ‘— fD

as — — — as — — as —

p-S ~~ P.~ — ~
-S — — ~- — 0

~~ p.. ~~ p.,~ ~.)U’ U) U) U.) U’ U) .—.
~ - .C- .~~

- Q Q
U’ LI) ‘.. - (1

— — — — as — — — — p..

P-S p.
~ p.. p.. — P.3

t-. ~~ ,.., r.- r.-. ~, ,..~ Q
U’ U) U) U’ U) U) U.) U) U’ U) U’ -~~ .0

~ - ~~ .C- 4-  4~.- ~
. 

~~
. 

~ ~
_. Q p..

U) U) U’ U) U’ LI) LI) ‘-.~~ -

— — as — 0-
p-S — p.3 P1

F.) tj.) F.-) F.) ~~U) U.) U’ U’ U.) P...) U.) U) U) Cl)
.U~ -~~~ ~~ .C .C- ~~- .C’. .C~ .~- ~ - ~~

- Q p..
U’ U I L/) t.r, LI) U’ LI) U) ‘... ‘ —

as as — S as — S~~~~~a — —
— ‘-3 ‘-3

IS’.) F’..) LI) a
U’ U) U) U) U) U) U’ _ 0-.
4~- .C- ~- ~ - .~~- .C’- ~ - Q Q

U) Lfl U) U) U) U’ LI) U) LI) U) LI) ‘~-‘ I,
5 5 5 5 as

p-S. — P-S I~~ P I-.. p.- — P. p.~ ~~ . SQ
p.-., p.) p.) p.~ P..) p.~ p~~ p..

U) U) U) U’ U) U) .—‘.. 0.
.C.’~ .C~- ~~‘ ~~- .~‘. 

Q
I.)) U) U’ U’ U’ ‘—‘

0-.
P-S p-S P-~ — P-~ P-~ — ~- — ‘- .C) P

F.-) F-.) F..) F.-.) F..) F’.) p.) F.) p.) p.) F..) F..)
U’ U) U.) U) U.) U) p.-
.C~- ~

‘. ~~
. 

~
. Q

U) U’ U) U’ U’ U’ ‘..-~

P... — ‘— .0
p., FS-.) p..) p.) F..) F’~ U)

U’ U) U) LI) U) U) U) U) U) I...) U) ..‘.

~ - ~~
. .j: .- ~ ‘. ~~. ~~- ~~- ~~

- Q
U) U) U’ U’ U’ U) U’ U’ ‘..‘ -

p-_ P — — — .0
F-.) P.) F’.’ p.) P.~ P.) -~~U) U.) U-.) U) U’ U.) U) U) U) —‘*.. C~ 

.~~- .~‘ .L~- .~- .c- .~ - .rs .C-. Q
U’ U’ U’ U) U) U) U’ U’ ‘.....— — S 5 — — — — —-

— .0
F.) P.) F-.) P.) P..) U)

U’ U) U) U) U’ U.) U) U) -~~.C•~ ~ - ~ - .~- ~~
.. .C~- -~~~ ~ - P

U’ Vi UI) U) U) U) U’ UI UI UI U’
as — — — — — — — —



A-3

*
Example I. Values of C(

~~ 
), V 

~~ 
) and Ce(o

~ 
)

i i i

C(o~) V*(oe) Ce(ci)

0 5.00 .01831 10.92
t q
0 0

.000001 5.00 .0183 1 10.92
t
l 

_______ _________ ___________ ________

.000005 5.0 .01831 10.92
t

2 
_________ ___________ ________

.000027 5.0 .01831 10.92
t

3 
_______

.000122 5.0 .01831 10.92
t
4 

_________ ________

.000174 
— 

4.2 .01831 13.00

_____________ 

t
5

.00062 2.6 .01832 20.99

.03652 3.11 .32425 13.26
t

7

.06022 3.25 .07588 4.05
t
8

.07042 0 3.62 .14358 1.92

_____________ 

t
9 

_______ ________ __________ _______

.0744 0’ a 3.83 .22984 1.14
t 10 q5

*Estimates based on 600 samples

**Analytic value is .22926
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Example 1. Matrix of covariances for a =

0 8 10

~ C~~, (a)) 
*

.582 - .127 - .122 — .215 — .077

.520 - .103 - .181 - .165
0

(posterior) .35 .088 .166

.588 - .071

185

.582 - .127 - .124 - .222 - .184

a .520 - .105 - .187 - .071
t

8
.456 - .049 - .069

1.429 - .124

1.038

1.843 - .107 - .1 14 - .247 - .087

a 1.265 - .076 - .165 - .058t
b

(error count) 1.339 -.175 -.062

2.708 - .134

1 .038

1.644 - .126 - .110 - .189 - .080

a 1.644 - .110 - .190 - .080
t

b
(analytic) 1.45 - .166 - .070

2.39 - .121

1.08

*Egtimates.based on 600 samples.

—4
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Example 1. Estimators 
~
(cr
~ 

) i’0,1. ..10 For Various Sample Sizes
i

N=50 N=100 14=200 true

a’ at 
a R(a ) ~ (cr ) ~ (or ) R

____________ ______ 

q
~ ________ _______ _______ ______

* 0 a .36047 .35832 .36322 .356
t q

0 0

.000001 a .36047 .35832 .36322 .356
t
i

.000003 a’ .3604 7 .35832 .36322 
- 

.356
t .)

.000027 at 
.36047 .35832 .36322 .356

3

.000122 a .36047 .35832 .36322 .356
t
4

.000174 a’ .36047 .35833 .36323 .356
q1

.00062 a a .36045 .35829 .36318 .356
q2

.03652 a .37872 .36578 .37265 .356
t

7 
________

.06022 a’ a .33586 
- 

.38022 .37872 .356
q3

.07042 a a .34302 .37835 .38116 .356

_____________ 

t
9 

q~

**.0744 a a .28 .35 .365 .356

* R(a
~~
) is equivalent to the posterior estimator ~(p).

** R (oP
~ 

) equivalent to the error count estimator R(ec).
10



A-6

Examp le 1

Computational efficiency of the optimal estimator relative to the

posterior estimator and the number of density evaluations saved by using

the optimal estimator rather than the posterior , for various sample

sizes N
~ 

for the. optimal estimator .

* *
~~ _!~i!’~ 

8(a ,p)

100 1.92 239

200 1.92 478

H 400 1.92 956

600 1.92 1 ,434

Computational efficiency of the optimal estimator relative to the

error count estimator and the number of density evaluations saved by using

the optimal estimator rather than the error count , for various sample

sizes N
~ 

for the optimal estimator .

1~e(a*,ec)
S

100 24 07 5 ,998

200 24.07 11,996

400 24.07 23,992

600 24.07 35,988 

~~~~~~~~~~~~~~~~~~~~
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A-8

Example 1. Values of C(&
~~

) ,  V(&
~~
) and C

~~
(&
~~
) Approximated On the

Basis of n=25 Samp les. Also

- 

& & t 1 
&q ~~&) V~&) ~2~&) Ce~&)

0 & & 5. .01973 10.14 10.92
t q

0 0

.000306 .01973 10.14 10.92

.014804 &~ 

— 

5. .01973 10.14 10.92

_________________ 

2 
___________ _____________ ____________ ______________ _______________

.0003063 & 5. .01973 10.14 10.92

____________ 

t
3 

________ -_________ ________ __________ ___________

.014804 & 5. .01973 10.14 10.92
t
4 

________ _________ ________ __________ __________

- - 

.049186 & 4.48 .01973 11.31 12.24

.017754 & 2.78 .01973 18.23 19.49
6 q2

.0444 7 3.19 .03124 10.03 12.61
t

7 
________ _________ ________ __________ -__________

.06319 & & 3.56 .06121 4.59 3.88
q
3 

_________ ________ _________ __________

.07334 1 & & 3.96 .11432 2. 23 1 .8 1

__________ 

t
9 

q4 
_________ ________ _________ _________

.074388 & & 4.26 .16667 I.-~1 1.14
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Examp le 1.

- - 
Computational efficiency of the final estimator relative to the

posterior estimator and the number of density evaluations saved by using

the final estimator rather than the posterior , when the optimal esti-

mator is approximated on the basis of n25 samp les , for various sample

sizes N for the final estimator .

__L ~~~~~~~~ 3(f,)

100 1.5 166.75

200 1.64 391.36

400 1.71 828.93

600 1.74 1,275.39

Computationa l efficiency of the final estimator relative to the

error count estimator and the number of density evaluations saved by using

the final estimator rather than the errot co~int , when the op tima l estimator

is approximated on the basis of n=25 samples , for various sample sizes

N for the final estimator . -

N ~~~ (f ,ec) _~~(f ,ec)

100 18.78 5,929.63
S

200 20.49 11 ,918.14

400 21.46 23,887.05

600 21.81 35,866.04
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B. Data From Example 2.

C’)

0-.-
In eq

114

eq 

~~~~

44 11.4 44 *14 144 

~~~~~~-



— - - .----- . - —--~~~~~- - - -  ~
—

~~
----

~~~~

B—2
— — — — — a as —

In In in U) In In In In Ino -4 -4 4. .4 .4 -4 -4 .4. .4
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~~j  eq C’.) C~4 eq c~0’ — 4
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eq <‘4

0’ ‘-~ -~ ‘-~ —4

-~ In In in U) In if) Cr) In
0 -~ -~ 4 -1 .4 -~ .-~‘.-‘ In In In In C’) C’) In In In
In eq eq eq eq eq eq

0’ -~ ‘-~ ‘-~ ~~4 ~4

—~-. If) in I.)) If) If) If)
0 —~ 4. -~~ —~~ 4 -

C’) In In In In In
eq eq ~~~ r.4 ~~j  eq eq eq eq
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Example 2. Value s of C(cY
~~
), V*(o~t ) and C~

(o
~~
)

~~t 1 ~q 
C(o~) v*(~) Ce(c~)

0 5 .02184 9.16
t q-o o

.000000021 ~ 5 .02184 9.16
t
i

.000000105 o- 5 .02184 9.16
t

2
_ _  __  —--

.0000002 5 .02184 9.16
t

3 
________

.0000012 5 .02184 9.16

____________ 

t
4 

_____ ________ _______

.0006226 o~ o’ 4.4 .02184 10.41

_ _ _ _ _ _  

t
5 

—

~~~~~~

- - —  —

.0022214 a’ 2.62 .-02205 17.31

.003592 a’ 2.66 .0224 16.78
t

7 
_____ ______ _________ _______

.0105237 a’ a’ 1.94 .02884 17.87
t

8 q3

*Estimates based on 600 samp les.

-

1

---- - -

~

-

~ 

“-
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Example 2. Estimators i=0,l. ..8 and ~(ec) for Various Sample Sizes.

N=50 N=100 N’’200 true

a’ 
. R(a’) R

-

* 0 a’ .21929 .22522 .2206 7 .233
q
0 

________ ________ _________ _____

.000000021 a’ .21929 .22522 .22067 .233
ti 

_______ _________ _________ __________ ______

.000000105 a’ .21929 .22522 .22067 .233
t

2

.0000002 a .21929 .22522 .22067 .233
t

3

.0000012 a’ .21929 .22522 .22067 .233
t
4

.0006226 a’ .21932 .22537 .22078 .233
t

5 _ —

~~~~

— —  —.5.- . _ _ _ _ _ _ _  ____

.00222214 a’ a’ .21911 .22414 .21977 .233

— 

t
6

.003592 a’ .21915 .22590 .22093 .233

______________ 

t7 
_______ __________ _________ __________ ______

.0105237 a’ 

— 

a’ .19653 .21974 .21861 .233
t
8 

q
3 

_ _ _ _  _ _ _ _  _ _ _ _ _  _ _ _-

- ** ec - - .16 .22 .2

*i(a’
~~~~~~

) is equivalent to the posterior estimator R(p).

**R(ec) is not allowed in the family.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Examp le 2.

Computational efficiency of the optimal estimator relative to the

posterior estimator and the number of density evaluations saved by using

the optima l estimator rather than the posterior for various samp le sizes

for the optima l estimator .

N
~ ~C~ (c~~,p) &(a’

*,p)

100 1.95 
- 

184

200 1.95 368

400 1.95 736

600 1.95 1 ,104

Computatiox ai efficiency of the optimal estimator relative to the

error Count estimator and the number of density evaluations saved by using

the optima l estima tor rather than the error coun t , for var i ous sample sizes

for the optima l estimator .

r~ e(a’
*,ec) &(a’*,ec)

100 15. 97 2 ,904

200 15.97 5 ,808

400 15.97 11 ,616

600 15.97 17 ,424

I-
- - 

- - - -- - -
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B-i

Example 2. Values of ), ~(&~ ) and C’t
~
(&
~ 

) Approximated On the

Basis of n=25 samples. Also

& & C(&) V(&) Ce(&)q
~

.0 & & 5. .01994 10.03 9.16
t qo 0 -

.0 & 5. .01994 10.03 9.16t
l

.0000001 & 5. .01994 10.03 9.16

_____________ 

t
2

.0000002 5. .01994 10.03 9.16
_____________ 

t
3 

_______ ________ _________ ______ _________

.0000023 5. .01994 10.03 9.16

_____________ 

t
4

-

.0157484 &~ & 4.46 .01994 11.24 10.29

.0447042 & & 3.24 .01995 13.47 13.22
q2

.0124001 & 2.72 .01921 19.14 16.35

_____________ 

t
7 

________

.012405 1 & & 2.00 .02068 24.18 17.51
t

8 
q
3

I
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Examp le 2.

Computational efficiency of the fina l estimator relative to the

posterior estimator and the number of density evaluations saved by using

the final estimator rather than the posterior , when the opt ima l estimator

is approximated on the basis of n=25 samp les , for various samp le sizes

N for the final estimator .

_N ~c~çi~T~ ~ (f ,p~)~
100 1.46 126.5

200 1.64 
- 
304

400 1.76 665

600 1.8 1 ,020

Computationa l efficiency of the final estimate’.r relative to the

error count estimator and the number of density evaluations saved by using

the final estimator rather than the etror count , when the optima l esti-

mator is approximated on the basif of n=25 samples , for var ious sample

sizes N for the final estimator .

N Q2~ (f ,ec)~ &(i,ec)

100 11.99 3022.25

200 13.45 5913-75

400 14.33 11707.5

600 14.73 17505.75 

-5 -


