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COMPUTATIONALLY EFFICIENT ESTIMATORS

FOR THE BAYES RISK
Lynn D. Wilcox

X ABSTRACT
\)

A computationally efficient estimator for the Bayes risk is one
which achieves a desired accuracy with a minimum of computation. In many
problems, for example speech recognition, point evaluations of the class
conditional densities are computationally costly. Density evaluations are
the single most important factor contributing to the computational effort

A
in Bayes risk estimation, thus the amount of computation required by a
Bayes risk estimator is defined as the average number of conditional den-
sity evaluations it performe. The accuracy of a risk estimator is de-

fined by its variance. ™— (. ' : (L

Existing estimators for the Bayecs risk, namely the error count esti-
mator and the posterior estimator, require for each sample Xj, j=1,2...N,
evaluation of the class conditional density fm(Xj) for each class
m=1,2...M, a total of N-M density evaluations. For problems such as speech
recognition, where the number of classes M is large and density evalua-
tions costly, these estimators are impractical from a computational aspect.

A new class of estimators of the general form ﬁ(T) is proposed. An
estimator ﬁ(T) is defined by associating with each class m a subset Tﬁ of
the M classes. For two classes, only the error count and posterior estima-
tors belong to this class. For more than two classes, several new esti-
mators for the FBayes risk are included.

Estimators requiring fewer density evaluations are derived from the

class of estimators of the general form ﬁ(r) as follows. A scalar para-




meter o determines the sets Th(a) of classes that are 'w-close" to each
class m, hence an estimator ﬁ&r) of the general form R(T). As o varies,
the sets Tlﬂr),...,Tuﬁy) vary and a family {ﬁ«x) : 0ga< amax] of risk

estimators is achieved. Each estimator in the family is characterized

by the average number of density evaluations it requires and its variance.
The optimal estimator from the family {R(a) : 0sa< amax} is de-
fined as that estimator with maximum computational efficiency, where the

computational efficiency of an estimator is the inverse of the product of

the average number of density evaluations it requires and its variance.

The optimal estimator requires the least amount of computation to achieve

% " a given accuracy, or, symmetrically, achieves the greatest accuracy with
-

- a minimum of computation.

! \\\EQ‘In practice, the true optimal estimator cannot be determined since

this would in effect require knowledge of the true risk R. Thus a technique
whereby the first n of the total N samples are used to approximate the i
optimal estimator is proposed. The n samples should contain enough infor-
mation on the closeness of the classes to determine an almost optimal
estimator. The last N-n samples are used in the approximate optimal esti-
mator to obtain an accurate estimate of the risk with a minimum of compu-
tation.
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CHAPTER 1
INTRODUCTION TO THE RESEARCH TOPIC
1.1 Introduction

The task of a pattern recognition system is to decide to which of
M classes a given pattern belongs. The decision is made on the basis of
a set of measurementg X taken on the pattern and is specified by the de-
cision rule 5(X). The performance of the system may be characterized by
the probability that it makes a classification error. The decision rule
which minimizes the probability of classification error is called the
Bayes rule and tﬁ% resulting minimum probability of classification error
the Bayes risk.

The Bayes risk represents the optimal performance of a pattern
recognition system for a given set of measurements X. As such it may be
regarded as the intrinsic difficulty of the problem, or the confusability
of the M classes. Suppose one wanted to compare the difficulty of two
speech recognition tasks. The number of words in each vocabulary would
be one criterion. However, one should also consider the confusability of
the words in each vocabulary, as measured by the Bayes risk for each
task.

In this thesis, we study estimators for the Bayes risk in terms of
the amount of computation they require and their accuracy. It is assumed
that the class conditional densities fl(x),...,fn(x) and pridrs nl,...nM
are known so that attention may be focused on the actual forms for risk
estimators. The results will also apply asymptotically if the unknown

densities are estimated on training data which is independent of the




test data used in the risk estimators, provided the density estimates
are asymptotically unbiased and consis ent.

| In many problems, point evaluations of the class conditional densi-
ties are computationally costly. For example, in speech recognition
(23, 1], the class conditional density fm(x) would be the probability
that the output phone string x was caused by the mth word in the vocabu-
lary. Evaluation of fm(x) involves determining all phonetic realizations
of the mth word, and for each phonetic realization, all segmentation and
classification errors that would result in the output phone string x.

In estimation ofkthe Bayes risk, density evaluations are the single most
important factor contributing to the computational effort. Thus the
amount of computation required by a Bayes ;isk estimator is defined as
the average number of class conditional density evaluations involved in
the estimation procedure.

Existing estimators for the Bayes risk, namely the error count
estimator [6] and the posterior estimator [11], require for each sample
Xj, j=1,2...N in the test data set, evaluation of the class conditional
densities fl(Xj),...,fM(Xj), a total of NxM density evaluations. Thus
for problems such as speech recognition, where the number of classes M
is large and density evaluations costly, these estimators are impractical
from a computational aspect.

We propose several new estimators for the Bayes risk. fn particular,
a family {ﬁ(a) :0<sa< amax] of unbiased and consistent risk estimators,
indexed on the scalar parameter o, is defined. The parameter o deter-

mines, for each sample X the classes 4 for which the class conditional

j’
density fL(xj) must be evaluated in forming the estimator ﬁ@r). In




general, ﬁ(a) may be computed with fewer density evaluaticns than the

NxM required‘by the existing estimators. Bayes risk estimators are
evaluated in terms of their computational efficiency, defined as the
inverse of the product of their variance times the average number of
density evaluations they require. An estimator with maximum computa-
tional efficiency is considered optimal. The optimal estimator has the
property that a minimum of computation is required to achieve a given
accuracy.

1.2 Review of Previous Work

The usual tést data for estimation of the Bayes risk is a sample of
measurements or observations X and their true classifications or labels
8. This type of sample will be referred to as unrestricted [31, 19],
since the statistician has no control over the label of a sample. There
are two existing forms for Bayes risk estimators: the error count
Aestimato; and the posterior estimator. The error count estimator [19, 6]
is simply the proportion of samples X whose classification by the Bayes
rule disagrees with its true classification 8. The posterior estimator
was first suggested by Chow [3], later formalized by Fukunaga and Kessel
[11] and discovered independently by Lissack and Fu [27]. It is the
sample mean of the risk function evaluated at the sample points. It is
interesting that the posterior estimator ignores information on the
class labels, yet has a lower variance than the error count éstimator (11].

Another sampling technique called stratified sampling is often
possible [31]. As opposed to unrestricted sampling, the statistician
chooses a priori a class label and samples observations X with that label.

By choosing the number of samples per class appropriately, the variance




of a given estimator may be reduced. Neyman [31] determines the optimal
number of saﬁples per class by minimizing the variance of the estimator.
Highleyman [i9] applied the stratified sampling technique to the error
count estimator. He did not choose the optimal sample sizes, but rather
chose the number of samples per class as proportional to the prior pro-
bability of that class. He shows that even this heuristic choice achieves
a reduction in the variance of the error count estimator.

Moore, Whitsitt and Landgrebe [30] later applied stratified sampling
to the posterior estimator. They show the heuristic sample size is not
optimal, but the;optimal sample sizes are impractical since they depend
on unknown variances. Stratified sampling with sample sizes propor-
tional to the priors also reduce the variance of the posterior estimator.
Moore, Whitsitt and Landgrebe [30] give the interesting result that
while for unrestricted sampling, the posterior estimator has smaller
variance than the error count, this is not necessarily true when a
stratified sample is used, even with the optimal choice of sample sizes.

Both the error count and posterior estimators for the Bayes risk
require knowledge of the class conditional densities fm(x), m=l ;2. ..M.
When these densities are unknown, one way to proceed is to estimate the
densities and use the estimates in the estimators as if they were the
true densities. Cover and Wagner [4] call these two-step procedures.

When the test data used for the risk estimator must alsé be used to
estimate the densities (i.e. when the test data is the same as the train-
ing data), the question of data use must be considered. If the samplas

used in the density estimates are also used in the risk estimator, an

optimistic bias in the resulting estimate for the Bayes risk is observed.




/

.If the data set is large, an alternative is to partition the data and use
part to estimate the densities and the rest in the estimator. Highleyman
[lé] tried to optimize this partition but Kanal and Chandrasekaran [25]
questioned his assumptions. The leave-one-out technique of Lachenbruch
and Mickey [26] attempts to remove bias by estimating the densities on
all but one sample and using the deleted sample in the estimator for the
Bayes risk. Each sample in turn is left out and the resulting risk
estimate is the average of the cne-point estimates. An excellent discus-
sion of these and other methods of data use is given in Toussaint [37]
and Kanal [24]. *

Several density estimates have been considered for use in Bayes risk
estimators. Lissack and Fu [27] and Fukunaga and Kessel [12] assume a
parametric form for the densities (exponential family and Gaussian
respectively) and estimate the parameters. Fukunaga and Kessel [12],
Fralick and Scott [9], and Whitsitt and Landgrebe [39] use Parzen
estimators [32]. Fukunaga and Kessel [15] and Fukunaga and Hostetter
[13] consider nearest neighbor techniques for direct estimation of the
risk function used in the posterior estimator. Lissack and Fu [27]
apply Loftsgaarden and Quesenberry [29] nearest neighbor density esti-
mates to obtain estimates for the class posterior probabilities. A good
discussion of results when various combinations of estimator form, data
use and density estimates are tried is given in Whitsitt and.Landgrebe
[39].

Computational difficulties in Bayes risk estimators arise from the
fact that for each sample X, the conditional density fm(X) of the sample X

given class m must be evaluated for all classes m=1,2...M. Whitsitt and




Landgrebe [39] consider this problem when the densities are estimated
with Parzen estimators using a Gaussian kernel. They propose an edited
Parzen estimator for the densities fm(x). Rather than averaging the
kernel over all data points with class label m, the average is taken over
only those data points labeled m which are the k nearest neighbors to the
point X.

Any density estimate which requires nearest neighbors may be simpli-
fied by algorithms which find nearest neighbors efficiently. These in-
clude condensed nearest neighbor s ulne by Hart [18] and Swonger [36], a
branch and bound ;lgorithm by Fukunaga and Narendra [14] and preprocessing
techniques by Fisher and Patrick [8], Yunk [40], and Friedman et a. [10].

The above techniques achieve reduction in computation by simplifying
the evaluation of the conditional densities fm(X) at the data points. In
this thesis, computationally efficient estimators are achieved by reducing
the number of densities which must be evaluated at a given sample point.
Thus rather than evaluate fm(X) for all classes m=1,2...M at the point X,
we might only evaluate fm(x) for m in a subset of the total classes. This
is profitable in problems such as speech recognition where the number of
classes M is large and computation of conditional densities complex [23, 1].

1.3 Approach and Development in the Present Work

A new class of Bayes risk estimators of the general form ﬁ(T) is

proposed. The estimator ﬁ(T) is defined on the basis of sets T ik

e

where Tm is a set of classes associated with class m. Subject to mild
restrictions, any choice of the sets Tl""’TN results in an uabiased,

consistent Bayes risk estimator. Both of the existing estimators, namely

the error count and the posterior, belong to the class of estimators of




the general form.ﬁ(T).

In ordef to obtain risk estimators which require fewer class condi-
tional densiﬁy evaluations, we restrict the set Tm of classes associated
with class m'as follows. A scalar parameter o determines the set of
classes TmGy) that are 'w-close" to class m, that is, a sample X whose
true classification 6 is m is likely, as determined by a, to be classified
as i, whenever classes i and m are 'w-close'". As o varies, the set of
classes Tle),...TM(a) vary and a family of risk estimators
{R@@) : 0 s < amax}’ indexed on thé parameter «, is achieved.

The definitfon of the sets Tl(a),...TM(a) allows the estimator ﬁ(a)
to be formed with fewer class conditional density evaluations. Thus
rather than evaluate the conditional density fL(xj) at each sample Xj,
j=1,2...N for each class 4=1,2...M, the estimator ﬁ(a) requires evalu-

ation of fL(Xj) for only those classes 4 in a subset Qe (o) of the total

j
classes {1,2...M}, whenever the joint density fe (X.)rre of the sample Xj
TR
and its class label Gj is greater than . The subset Qe (o) is the set
j

of classes that are 'w-close'" to each class that is 'w-close'" to the class
label 6, of X,.
J J

The amount of computation required by the estimator ﬁ(a) is expressed
by NxC(x), the average number of conditional densities that must be
evaluated, where N is the sample size and C(a) is the average number of
conditional densities per sample used in forming ﬁ(a). The error count
and posterior estimators require all M conditional densities per sample,

a total of MXN density evaluations. Thus if o is such that C(a) is much

smaller than M, the estimator ﬁ@y) would be computationally preferable to




either of the e#isting estimators.

The accﬁracy of an estimator ﬁ(a) based on N samples is given by its
variance VG&$/N. Thus the larger the sample size N, or the smaller the
coefficient of variance V(a), the more accurate the estimator. The esti-
mator in the family {ﬁ@y) : 0 < amax} with the smallest coefficient
of variance V(o) has the property that it requires the least number of
samples N to achieQe a given accuracy. However, the size of the sample
is not sufficient to characterize the amount of computation required by an
estimator in the family {ﬁ(a) 0= & < amax}’ since the average number
of density evaluations per sample C(x) required by each estimator must be
considered.

We define the computational efficiency C€(x) of an estimator ﬁ@a)
as the inverse of the product of its variance and the average number of
density evaluations it requires, thus C€ = 1/V(a¢)XC(x). The optimal
estimator ﬁ(a*) from the family {R(@) : 0 < & < amax} is determined by
choosing a* to maximize the computational efficiency C€(x). The optimal
es timator ﬁ(a*) has the property that it achieves a given accuracy with
a minimum of computation [16, 17], or symmetrically, that for a given
amount of computation, ﬁ(a*) is the most accurate estimator for the Bayes
risk R.

In practice, the optimal estimator could not be determined in this
way since this would in effect require knowledge of the truc‘risk R.

Thus a technique is proposed whereby a subset n of the total N samples
is used to approximate the optimal estimator. The number n of samples
should contain enough information on the closeness of the classes to

determine an almost optimal estimator. The remaining N-n samples are




. used in the approximate optimal estimator to obtain an accurate estimate

of the risk with a minimum of computation.
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CHAPTER 2

BASIC CONCEPTS ASSOCIATED WITH THE BAYES RISK

A general pattern recognition system may be modeled mathematically
in terms of a probability triple (Q, F, P), an observation random vari-
able X, and a labeling random variable 6. Let Q be the space of
patterns w, F a sigma field of subsets of Q and P a probability measure
defined on F. The patterns w'E Q1 are to be classified into one of M
classes, where the classes HI’HZ"'HM are a disjoint partition of Q. If
a pattern u € H, we say @ is in class m.

The random variable & : Q — {1,2...M] specifies the class of a
pattern w, so that 8(w) = m whenever w € Hm. 6 is referred to as the

class label or simply the label of a pattern. The prior probability

of the mth class is given by

no= P[Hm] = P{ &=m]. (2-1)

m
In practice, the patterns w € Q are not actually observed. Rather,
one observes a ;et of measurements made on w. The random variable
X:0Q—~5S G Rd specifies the measurements X(w) = x € S made on a pattern
w. Assume the conditional density of X given O=m exists and is continu-
ous and denote it by fm(x). Then the unconditional density of X, or
the mixture density is given by
M

f(x) =X

m,f,(x). (2-2)
quy **

Also, the posterior probability of class m, the probability that 6=m

given the observation X(w)=x is
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fm(x)nm
P, (¥) = i (2-3)

On the basis of the observation X(w)=x, the recognition system
tries to decide the true classification of the pattern w, i.e. the
value of 6(w). This decision may be specified by a behavioral de-
cision rule §(x) = (Gl(x),é (x)...6M(x)), where 6m(x) is the probabil-
ity that the recognition system classities a pattern w as belonging to

class m, given the observation x. Thus 6m(x) 20, m=1,2,...M and

M
) =
1 S0 - 1.
Given a decision rule 8, the probability R(8) that the system makes

a classification error may be written

S

M M
R(S) =L T é‘ ém 8. ()£ (x)dx ‘
|
(2-4) !
M "
=m§=:1 nm u (1-6m(x))fm(x)dx

*
1t is well known [2, 7] that the decision rule & which minimizes the

*
probability of classification error R(8) is the Bayes decision rule § ,

where ties are broken at random and

1 £ (x)m_ > £, (x)n vV 1=1,2...M, 4#m
* L
8 (%) ={ it (2-5)
0 2 k#mn 2 fk(x)nk > fm(x)nm
The minimum probability of classification error resulting from Bayes
decision rule is called Bayes risk and is denoted by K.

The error function Ce(X) is defined for €=m, X=x as one minus

*
the Bayes rule 6m (x),
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0 £ (x)m. > f,(x)m V 4=1,2...M, 4#m
TR S S (2-6)
1 3 kfm > fk(x)'rrk > fm(x)rrm

Then the bayes risk R is

M

R = mgl nm

g&m(x) £ (x)dx 2-7)

Note that R is just the expectation, over the random variables X and

8, of the error functicn Se(x), so
R = E{ee-(x)] . (2-8)

The conditional risk Rm is the probability of classification

error given class m,

R = .g € (x) £ (x)dx . (2-9

Thus Rm is the conditional expectation of the error function ee(x)
given G=m.
R, = E[ee(x) |e=m} . (2-10)
Since
R = E{€ ()} = E{E[€ (X) [e}} (2-11)
we have that
M M
R= L n E{€ (X)|em] = T

L TR (2-12)

The risk function r(x) is the probability of classificafion error

given the observation X=x. Symbolically,




13

M M £ (x)rrm
r(x) = L € (0)p (x) = £ & (x)

s (2-13
-l ' £(x) y

Thus r(x) {s the conditional expectation of the error function given
X=x,

r(x) = E{€ (x)|x=x} . (2-14)
Then the Bayes risk is the expectation over X of the risk funct;on

r(X), since

R = E{€ (0]} = E{E{€ (x)[x]] = E[xr ()] . (2-15)

3




CHAPTER 3

PROPOSED NEW ESTIMATORS FOR THE BAYES RISK

3.1 Introduction
In this section, a general form ﬁ(T) for Bayes risk estimators

is defined. Based on the general form, a family of estimators

{ﬁ@z) :0<sa< amax},indexed on a scalar parameter «, is derived.

A computational form for estimators in the family is given which in

general allows these estimators to be computed on the basis of fewer

density evaluations per sample. The computational requirements of an
.

! estimato; ﬁ@y) may be described by the expected number of density
evaluations C(¥) per sample. The behavior C(¥) as a function of «,
as well as the behavior of the variance V(o) of ﬁ«r) are discussed.

Two sampling techniques for estimation of the Bayes risk are
considered: unrestricted sampling and stratified sampling. The basic
difference between these sampling techniques is that in unrestricted
sampling, the number of samples with a given class label is random,
while for stratified sampling the statistician chcoses a priori the
number of samples with a given class label.

3.2 Estimators Based on Unrestricted Sampling

For unrestricted sampling, the data is a set sequence

((Xlel),(xzez),...(XNGN)} of N independent random vectors identically

distributed as (X,6). The joint density of (X,0) at X=x,6=m is given
by fm(x)nm, where fm(x) is the conditicnal density of X given the
class label €=m and Ry is the prior probability of class m. The mar-

ginal density of the observation X at X=x is f(x), the mixture density.
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The proportion of samples Xj whose class label Bj is m is random,
with mean 1 _.
m

3.2.1 Remarks on Error Ccunt and Posterior Estimators

The error count estimator R(ec) for the Bayes risk R is formed
by counting the proportion of samples Xj whose classification by the

Bayes rule disagrees with the true class label ej. Symbolically,

Rlec) = jgl &g (X)) (3-1)

J

Z |

The error count estimator is unbiased, since
.‘ ~
E{R(ec)} = E[€,(X)] = R. (3-2)
It is also consistent [19, 6], since
VAR{fz(ec)} = % VAR{ce x)} = Mé_—@l (3-3)

The error count estimator Rm(ec) for the conditional risk Rm given

class m is

-~ N )
R (ec) = i ¢ ¢ (9.)em(xj) (3-4)
m N ey W]
j=1 ﬂm
1, 6=m

where I (8) =
i { 0, 6#m

ﬁm(ec) is an unbiased estimator for Rm since [33]

E{1 (0)€ (X))

L
m

E{R (ec)} = = E{e; () |e=m) = R (3-5)
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Note that the error count estimator Rm(ec) considers only classification’

errors made on samples Xj whose class labels 6j=m. Also,

~

R(ec) = T m R (ec) - (3-6)

The posté:ior estimator ﬁ(p) for the Bayes risk R is the sample

mean of the risk function r(Xj) over the samples Xj j=1,2...Nn [11].

Thus
N N M
2 =1 ik £ (X Om i
: j
The posterior eStimator is unbiased, since
E(R(p)]} = E{r(x)} = R. (3-8)
It is also consistent, since
A el 1 1 2 2
VAR(R(p)) = § VAR{r ()} = 5 [ ] r (0 E(x)dx - R7] (3-9)
S

It has been shown [11] that the posterior estimator has smaller

variance than the error count estimator. This follows from the fact

that since 0 < r(x) < = ﬁ
2 R
J r“(x)f(x)dx < R - : (3-10)
S

and thus

vAR(R(p)] < 3—%’—“1 . 5%)- = VAR{R(ec)) (3-11)

R_
= <

The posterior estimator ﬁm(p) for the conditional risk Rm is

defined by
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a N
1
Ry = § & 5m<xj>__1_in(1;x;) (3-12)
3

In contrast to the error count estimator, the posterior estimator ﬁm(p)
considers errors made on all samples Xj’ regardless of their class labels
Gj. In fact, the posterior estimator makes no use of the class labels.
The expéctation of ﬁm(p) is thus taken with respect to the mixture
density PF(x), so

: £ )
E{R_(p)} = E{em(x)f—(xT}

. £, -
= ‘g em(x)f(x) f(x)dx = . € (f (x)dx = R_ (3-13)

Thus ﬁm(p) is an unbiased estimator of the conditional risk Rm. Again

X M &
R(p) = Z, M R (p) . (3-14)

3.2.2 A CGeneral Form for Bayes Risk Estimators

The error count estimator for the conditional risk Rm in effect
considers only those samples Xj whose class labels Gj are equal to m.
The posterior estimator for Rm considers all samples, regardless of
their true classification. This concept may be generalized by associa-
ting with each class m a subset Tm of the total classes, and forming
an estimator ﬁm(T) based on those samples Xj whose class labels 6
are elements of Tm'

Specifically, for each m=1,2...M, let 'I‘m = {il,i

2"'ip } be a

m

set of p_classes associated with class m, where i,, j=1,2...p are
m 2 J m

members of the set. The sets Tﬁ, m=1,2...M may be chosen arbitrarily,
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TABLE 3-1

I §1.2.3) 9, = {1,2,3} L, = {1,3} g, = {1,3}
T, = {1,2,3} q, ={1,2,3} |1, ={2} q,=1{2]

T, = {1,2,3) @ ={1,2,3} | 13 = {1,3} q;={1,3]

r, ={1,3} q-{123} |7 =01} q=0)
£, = (2,3] Q, = {1,2,3} | 7, = {2,3} @, ={2,3]

3
T, = {1,2,3} @y ={1,2,3} | 1, = {2,3} @, = {2,3]

T, = {1,2,3}) @ ={1,2,3} | T, = {1,2] q ={1,2]
T, = (1,2} g ={1,2,3} | 1, = {1,2] q, ={1,2]
DR SR Q = {1,2,3) | 15 = (3] Q, = (3]

T, = {2,2) q ={1.23}] 1 = {1} q, = {1]
T, = {1,2,3) q, ={1,2,3}] T, = {2} qQ, = {2]

T, = £2,3) Q = {1,2,3} | 75 = {3} Qy = {3]

All possible choices of the sets Tm, m=1,2,3 subject to
restrictions (rl) and (r2) and the resulting sets Qm,_

m=1,2,3.
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subject to the following restrictions.

(rl) m € Tm Vm=1,2...M

(r2) 1i € 'I‘m iff m€ Ti Vi,m=1,2...M
Restriction (rl) requires that each class be associated with itself,
and restriction (r2) requires that a class i be associated with class
m if and only if class m is associated with class 1i.

M(M-1

For M classes, there are 2 ¢ different ways to choose the

sets Tm, m=1,2...M, subject to restrictions (rl) and (r2). Table
3-1 lists the 8 cboices for the case of M = 3 classes.

The general form ﬁm(T) for an estimator of the conditional risk

Rm is defined by considering those samples Xj whose class labels Gj are
in T . Thus
m
; AN £(X.)
P =wgh T CP%%Y T RO,
2€T -
m
(3-15)
L. @, e Tm
where L (6.) = { J
m J 0 6, €T
j m

Subject to the restriction (rl), ﬁm(T) is an unbiased estimator for

Rm for any choice of the set Tm’ since
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Cm(x)fm(x)

5 fL(X)n
€T
m

E{R_ (D)} = E{ITm(e>

1

Em(x)fm(x)fi(x)ni

r £,0)m
ter_ A

M
= .5 £ I, (1) dx

m

i}éT fi(x)ni (3-16)
m

£ Em(x)fm(x) % fL(x)nL
LETm

dx .

J € ()f (x)dx = R

.S

8

A general estimator R(T) for the unconditional risk is formed

as

iZ] mm
N M € (X )t (X, )n
ek T TR £
“wHEak T Y T e s
> ter © )

By linearity of the expectation operator, ﬁ(T) is unbiased for
any choice of the sets Th, m=1,2...M (subject to (rl)). By re-

striction (r2), IT (%) = IT (m), thus from (3-17), R(T) may be written
m 0

N 1 N g fm(x.)nm
R - X, -
L N ng meg m( J) L £, (XM, NN
J o

The general form R(T) is also consistent for any restricted choice

of the sets Tm’ m=1,2...M. This follows because
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AR[R(T)} = { ——fm£§32———}
VAR[R(T)} = % Lvarf z e 2 T mn
mGT &ETm X L
(3-19)
6 (x)f (x)n
1 2
= LI I g -2 T T ¢ (x)dcp")
N i=1 Tk (x)n i
~ e iy

Note that when each class m is associated only with itself, that
is when Tﬁ = [m} Vm=1,2...M, the general estimator R{T) is just the
error count estimator R(ec), since in this case

N M
iF1 of1 Tr g G (X))

==

' R(T)

(3-20)

1
Z |-

N
j§1 eej(xj) = R(ec}

When each class m is associated with all other classes, that is when

= {1,2...M} ¥m=1,2...M then the posterior estimator ﬁ(p) is obtained,

since
N M € (X.)f (X. )n
a il “L_J_.m
R(T) = N jgl (6.)
L§1f¢(xj)"a
(3-21)
, N M oe (x)f (X “
o L1 S A Ay W
j=1 m=1 f(Xj)

The number of different estimators for the Bayes risk specified

MQ-1)
by the general form ﬁ(T) in (3-18) is 2 s , the number of differ-

ent ways to choose the sets T , m=1,2...M, subject to the restrictions
(r1) and (r2). If the number of classes M = 2, only two estimators

may be obtained, namely the error count and posterior. For M > 2,

D ——————
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the general form ﬁ(T) specifies several new estimators, depending

on how the éets Th, m=1,2...M are chosen. Let us first consider how
to choose the sets Tm, m=1,2...M so that an estimator ﬁ(T) with
minimum variance is achieved.

It was shown in section 3.2.1 that the posterior estimator R(p)
has smaller variance than the error count estimator R(ec). The fol-
lowing theorem géneralizes this result by showing that the choice of
the sets Tm,m=1,2,...M which minimizes the variance of the estimator
R(T) is Ti ={1,2...M} Vm=1,2...M. * But ﬁ(T*) is just the posterior
estimator R(p),ithus the posterior estimator has the smallest variance
of any estimator of the general form ﬁ(T).

Theorem 3-1

Let ﬁ(T) be the general estimator for the Bayes risk given by

equation (3-18), with the sets Tm’ m=1,2...M chosen arbitrarily.

% o0
Let R(T ) be the general estimator with the sets chosen as

*
T - {1,2...M}] vVm=1,2...M

Then VAR{R(T")]} < VAR{R(T)}

Proof:
S fm(X)rrm
rp(X,0) = mET . ¥ fom, (3-22)
0 LETm
Then .from equation (3-19)
VAR{R(T)} = % VAR x, (X,0)) . (3-23)

S s e cmaco
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The conditional expectation of rT(X,B), given X ,is r(X), the risk

function, To see this,

M
E{r (X,0)|X} = [T, rp(X,i)p  (X)

<

“f T oo B am . (3-24)
mETi z fL(x)nL
L€t
m
£, Xm,
Now pi(x) ey 77 from equation (2-3)?
M - M
and by restriction (r2),i§1 z = mgl ¥ , Thus from (3-24),
IS mE T, i€T
i m
M € (X)f (X)m f.(X)m,
2 m m m i i
B{r (x,0) X} = i iET T L 00m  £(X)
m 4CT
m
M fm()()ﬂrn
-~ 2 Ba® T T - (3-25)
A % o
Also since R(T ) = R(p),
-~ * l
VAR{R(T )} = 5 VAR{r (X)} (3-26)

Now the variance of the conditional expectation is less than the total

variance, since by [34]

vAR{E{r (X,)|x]]
= VAR{rT(x,e)] - E{VAR{rT(X,B)IX}]

< VAR{r (X,0)] . (3-27)
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P 1
Thus VAR{R(T )} = = VAR{ r (X)}
= % VAR[E{rT(X,B)IX]} < % VAR[rT(x,G)} = VAR{R(T)]}

If the sets Tﬁ, m=1,2...M are chosen to minimize the variance of
the estimator §(T), the resulting estimator is ﬁ(T*) = ﬁ(p), the pos-
terior estimator. Another consideration in the choice of the sets
Tm’ m=1,2...M is the amount of computation required by the estimator
R(T).

From equation.(3-21), ﬁ(p) requires at each sample Xi, j=1,2...N

the computation of the conditioral density fc(xj) for each class 4=1,2...

L3

a total of MXN conditional density evaluations. In problems such as
speech recognition (23, 1], where the number of classes M is large and
evaluation of the conditional densities complex, the amount of computa-
tion required by the posterior estimator ﬁ(p) is considerable. Thus
we consider choosing the sets Tm, m=1,2...M in such a way that R(T) may
be computed on the basis of fewer density evaluations per sample.

For now let us disregard the fact that the error functioﬁ Sm(Xj)

must be determined at each point Xj and for each class m € Te . Then
A

from (3-18) the densities explicitly required in the estimator R(T) at

the point X, are f,(X.) for all classes{ in T , for all m in T, . De-
j 173 m ej

fine the sets Qm, m=1,2...M associated with given sets Tﬁ, m=1,2...M

as the union over q in Tm of Tq.
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Definition 3-1 Qm = y T ,(m=1,2...M :
q€T # |

Table 3-1 gives the sets Qm,m=1,2...M resulting from each choice of
the sets Tﬁ,m=1,2...M. Thus ﬁ(T) for a given choice of sets Th re- K
quires explicitly the evaluation of fL(xj) Vi € Qe for each sample
j
i
{

*
Xj,j=1,2...N 5

Example 3-1 Suppose ﬁ(T) is based on one sample (xlel) and that

6, = L. Then if T1=[1,2} T2={1,2} and T3={3}.

£,xm, e £,(X))m,
£, X+, (X, 2717 £ (x)n (X,

R(T) = €, (X))

Since Qi = Ti Vi and 3 ¢ Ql’ f3(X1) is not used explicitly in §(T).
Of course, the error function Ce(X) is an implicit function of
all the conditional densities fL(X)’ 4 =1,2...M, and from (3-18)

Cm(xj) must be computed Vm € T In the next section, the set of

g,
J
classes Tﬁ associated with class m will be chosen in such a way that

8m(x,), m € Te , may be determined on the basis of the densities
: j
fL(Xj)’L € Qe explicitly required by the estimator R(T). Thus esti-
j

mators requiring fewer density evaluations are achieved.

*

This analysis assumes we must always compute fe (Xj), even though this
] fo.x,)

is unnecessary when Qe ={0,] since we would be evaluating 1 by R

However, fB (X

) will always be needed to compute € (X.).
j..'l m*)
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3.2.3 A Parameterized Family of Estimators For the Bayes Risk

In se;cion 3.2.2, it was shown that any choice of the sets Ih
associated with class m would determine an unbiased, consistent esti-
mator for the Bayes risk of the general form ﬁ(T), provided the sets

Tm, m=1,2...M, satisfy restrictions (rl) and (r2). In this section,

we restrict the choice of the sets as follows. A scalar parameter

o 20 defines the set Tmﬁw) of classes 'w-close" to class m. Basically,
class i is 'w-close" to class m if the Bayes rule is likely (as deter-
mined by @) to classify a sample X whose true class label 6=m, as class

)

i. As o varies, the cets TmGN) vary and a family {ﬁcy) t: 0o < T
of unbiased estimators is achieved. The definition of 'w-closeness"
allows the estimator ﬁ@y) to be computed with fewer density evaluations
per sample.

Let ¢ 2 0 be a scalar and define TmGy), the set of classes a-close

to class m by

Definition 3-2

= 1 - = 2
T (@) {i |3 x3 £,00m, > @ and £ ()M > al, for m=1,2...M.

It follows from the definition that i E‘Rncy) if and only if m € Tiﬁr),
thus restriction (r2) is met automatically for all . Restriction (rl),
that m € Tm@r)Vm=1,2...M is met by restricting 0 € a < A where

we define o ax 28 follows.

Definition 3-3 « = min max f (x)nc.
M jelewm wes

A given @, 0 s o < o ax does not uniquely determine the sets

Tmoa),m=1,2...M since it is possible that « ;fa' but

t t

T (@)=T_(@’)¥m=1,2...M. Let o, ,0, ...@_ be the set of a's that in-
m m to 1 K
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Figure 3-1.

&b ¢ | L S

The points a, .. which induce changes in the
o 3

sets Tm and points aq ..l which induce changes

o 2
in the sets Qm.
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TABLE 3-2

Oxyx<y

T, @) ={1,2,3}

Q () = {1,2,3]

t -
1
T, (@) = {1,2,3} Q@) = {1,2,3]
T, @) = {1,2,3] Qy(™) = {1,2,3]
o, w<a T, (@ = {1,2)’ Q, (@ = {1,2,3}
1 2
* ok e = (3,29 Q@) = {1,2,3}
T,0) = {2,3] Q@) = {1,2,3]
atzmt3 T, @) = {1,2 Q@) ={1,2
T,(@) = {1,2] Q@) = {1,2]
Tyle) = (3] Q (@) = {3]
Ve P ey | T1@) = {1} Q, @) = {1}
T,() = {2} Q, (@) = {2}
T, (@) = {3] Q) = {3}

Sets Tm(a) and Qm(a) for all 0 < o < o

ax’
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duce changes in the sets TA for some m, defined recursively as follows.

% Definition 3-4
Let o, = 0
o
Do i=0 by 1 while ati < amax
Let at be the smallest value of a > at such that
i+l : i
Tmﬁyt. ) # Tmcyt_) for some m=1,2...M.
H‘_ 1+1_ i
End.

Let at be the largest value so defined.

K
Figure 3-1 shows three joint densities and the values o, o,
o 1
 ,a and o . Table 3-2 shows all possible sets T (@),m=1,2,3 that
| t2 3 max m
are defined. The K+1 values @, o .ol determine the K+1 possible sets
! o 1 K
Tmﬂr). Note that K < 2 2-1 , so that the number of possible sets Tm de-
MM-1)
fined by @ is much less than the number of 2 = that were possible in

section 3.2.2.
The parameter o determines for each m=1,2...M, the sets Tm(a) of
classes a-close to class m. An unbiased estimator Rm(a) for the condi-

tional risk Rm based on samples X, whose labels Gj are elements of Tm(a)

j

is defined from the general estimator ﬁm(T) in (3-15) as

fm(xj)
fL(xj)”L

N
~ g l e
R @) =5 L, ITm(a)(ej) &%) 5 (3-28)

LET&G&)

b

The estimator ﬁ(a) for the unconditional risk R determined by the sets

Tméa) m=1,2...M resulting from o is, as in (3-18)

R(@) = g 5 ev( ) 0 (3-29)
o = - o X -
N jE1 m'*y Tt (Xom,
m€TejQu) LET&(O) 437
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f1<x)n1 fz(x)n'2

max

Figure 3-2. For all o < . S e Tz(or) and 2 € Tl(a),

thus the error count estimator is not in
the family {R(@) : 0 s @ < "’max] for

these densities.
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As a varies between 0 and amax’ a family of unbiased, consistent
estimators {RGN) : 0o < amax} is obtained. Each o does not deter-
mine a unique form of an estimator since each o does not uniquely
‘determine the sets im(a), m=1,2...M. In fact, the family
[ﬁ@y) : 0sa< amax} contains at most Miﬂéll + 1 different estimators.
However, the value of the parameter o is important in determining the
density evaluations required by the estimator ﬁ@m).

When @ = 0, the estimator ﬁ(O) is equivalent to the posterior
estimator ﬁ(p), of eq. (3-7), in the sense that estimates of the risk
resulting from éither estimator are identical and their variances are
the same. However, as a member of the family {ﬁ(a) ¢ Qs & < Qmax] it
is possible (if the conditional densities have finite support) that ﬁ(O)
may be computed with fewer density evaluations.

iIfda <« such that T (@ ) = {m}, m=1,2...M then ﬁ@r ) is

e max m> e e
equivalent to the error count estimator ﬁ(ec) of (3-1). Thus the pos-
terior estimator is always equivalent to a member of the family
{ﬁ@m) : 0 sa< amax} while the error count may or may not be. For the
class densities in figure 3-2 the error count estimator would not be

allowed in the family since V o < qnax’ e Tz(a) and 2 € Tl(a).

3.2.4 Computational Requirements for Estimators in The Fomily

The computational requirements for an estimator in the family will
be given by the expected number of class conditional density evaluations
it requires per sample. As in section 3.2.2, let us first consider the

number of density evaluations explicitly required by the estimator ﬁ@z),

J

and for each class m € Te (@). Then from equation

] 3

disregarding the fact that the error function Em(x ) must be computed

for each sample X

..

#
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(3-29), at each point Xj the densities fL(Xj) for all classes 4 € Tm(a),

for all m EiTe (@) must be computed. As in definition 3-1, let the

]
sets Qm(or), m=1,2...M be

@ = U T(@) - (3-30)
=z q€T, (@) 1

Then for each sample Xj, §=1,2..-N, ﬁ@y) requires explicitly the con-

ditional densities f,(X.) V4 € Q. (@).
JiEny Bj

Define the modified error function 6m(X,Qer)) for m € Teoi) as |

Definition 3-5

€, (X,Qp(@) = { 0 £ (M > £, (0, V4 €Qy®), tém

1 3 k€ Qe(a) 3
£,00m > £ (Om

Then the modified error function may be evaluated on the basis of only
those conditional densities f&(x), 1€ Qe(a) explicitly required at X
by R(@)-

The following theorem shows that the modified error function is
equal to the error function whenever the joint density of a sample X
and its label 6 is greater than o.

Theorem 3-2

For the random vector (X,0), if m € Te(a) and if fe(X)ne > a

then Cm(X,Qe(a)) = Cm(x).
Proof
Cm(X,Qe(a)) =1=¢€ (X) =1 since if gk € Qe(a) ) fk(x)ﬂk > fm(X)ﬂm

then 3k € {1,2...M] 2 £ (X)7, > fm(X)nm. We will show that € (X) =1 =

Cm(X,Qe(a)) = 1 by contradiction. For suppose em(x) = 1 and
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QA decnoas [on cn co oo co wo o f o

OO CEE— S C— G C— . GE—  G—

|
|
|
-

(x2)92=1)

(X,,8,=1)
T, (@) = {1,2} Q@) = {1,2}
T,(@) = {1,2} Q, (@) = {1,2]
T @) = {3] Q@) = {3}

Figure 3-3. Modified error function equals true error function
1 since fe (Xl)ne > o, but since

for sample X

(X.)n. < o the true error function must be

f
62 2 62

used for sample X

1

2

1
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8m(X,Q907)) = 0. Then fm()()nm > fL(X)nL v4iE Qecx) but 3 k € Qeaz)
such that fk(x)nk > fm(X)nm. But since 6 € Te(a) and Te(a) (o= Qe@x),

8 € Qecr) so fk(x)nk > fm(X)nm 2 fe(X)ne > . Thus k € Teoz) and since
Te(a) (== Qe(a), k € Qe(a), a contradiction.

Example 3-2 Consider the three class densities in figure 3-3 and the
sets Th@y) and Qmaz) associated with the given a. Since 61 =0, =1

2
and TIGJ) ={1,2}, the functions Gl(Xl), Cz(xl), 81(x2) and 82(X2) must

be determined. Since fl(Xl)n1 > a, El(xl,Qloy)) = Cl(Xl) =1 and
82(X1,Q101)) = 62(X1) = 0. However, for the sample X,s EZ(XZ,QIGQ)) =0
but 62(X2) = 1. *Since fl(XZ)nl < o, the conditional density fb(xz)
must be computed.

Define the indicator function for the event fe(X)ne > o as

Definition 3-6

1 . X)), >«
Ie(X,a) = { 9 ®
0 fs ()()1'1e S o

Then as a corollary to theorem 3-2, we have

Corollary 3-2 If m € Teﬁy) then

Ig(X,0) € (X,Q,@)) = Ig(X,0) € (X).

By corollary 3-2, a computational form for the estimator ﬁ(a) is given by

N
~ 1 - .
gt mGT: @) “ej(}\j > e"‘(xj’qej(a)) §
i ' ‘ (3-31)
fm()(j)mm
-1 (xj,a» 8m(xj>] R NCAL
i ‘CETm(or) ¢ -

Note that while the estimator ﬁ@z) itself depends on o only through

the sets Tm(a), m=1,2...M, the computational form cR(a) uses o directly
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to determine which densities need to be evaluated. For if (xjej) is such’
that f, (X,)T, > a then only those densities f,(X.) for 4 € Q, (¢) must
ej j Gj 473 Oj

be computed, since by theorem 3-2, the modified error function

Cm(Xj,Qe (@)) is equal to the true error function Em(xj), for m € Te @).

J
) 4=1,2...M must be computed.

J
If fej(xj)nej < a then all densities fL(X

The total number of density evaluations required by dﬁ(a) is thus

j

N
& Iej(xj,a) Ioejml L Iej(xj,a))m ; (3-32)

where lQe.Gu)l i? the number of classes in the set Qq (@). The express-
ion aboveJdepend; on the actual values of the sample {(xlel),(xzez),...
(XNON)}. What we are really interested in is the expected number of
density evaluations required in cﬁ@a), which is just the expectation of
(3-32).

Let C(@) be the expected number of density evaluations per sample

required by cﬁ(a). Then

C@) = E{Ig(X,a) [Qg@)] + (1 - I (X,0))M]
M
= 2 g (1 x0) [Q @] + (1 - L(x,0))M) £, () dx
M
= Z; L@ J 1,(x0) £, (x)m, dx
S
+M { (1 - L) 0om, dx] . (3-33)

U (@) = g (1 - I (x,0)) £, (x)mr, dx
(3-34)
=[ £,00m, dx

x€S
BfL(x)nL <o
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Then (3-33) may be written as
M
c@) = Illo @) (my-u @) + My, ()] (3-35)

The total expected number of density evaluaticns required by cﬁ(a) is just

NXC(x), the expected number per sample times the number of samples.
Consider now the behavior of C(@) as a function of . It is clear

that for each m=1,2...M, [TmQJ)I, the number of classes in the set Th@:),

N given by definition
o 1 K

is non-increasing in a. The points @

3-4 are the values of o which cause a decrease in |Tmom)| for some
m=1,2...M. Figufe 3-4 shows the behavior of I’I‘m(o)l, m=1,2,3 for the
class densities given in figure 3-1.

Recall that the sets QmQy), m=1,2,...M, were defined in terms of

the sets T (@), m=1,2...M as Qm(a) = U T (@), m=1,2...M. Thus
m
q€T, (@)

Ichr)l, the number of classes in the set Qm(a), is also non-increasing

in o for each m=1,2...M. Analogous to the points @ 5 A o0, We
) 1 K

define the points o , o ,...x that induce changes in the sets QmQy)
9, 9 q;

recursively as follows.

Definition 3-7

Let o =0
9
Do i=0 by 1 while o <«
9y max
Let o be the smallest value of o > & such that
q. q
i+l i
(o ) #Q (@ ) for some m=1,2...M.
% 941 T 94

End.

Let uq be the largest value so defined.
J
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Figure 3-6. The expected number of density evaluations
per sample C(>) as a function of a.
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Then the values o , o'q ...aq are those values of o which cause a de-
o 1 J

crease in lQm(a)‘ for some m. Also, it is clear that for each j=0,1...J

o =a_  for some i =0,1...K. 1In figure 3-1, the points o« , @ and
qj ti qO q1

aq are given, and Table 3-2 shows the sets Qm(a) m=1,2,3. Figure 3-5
2

shows the behavior of IQm(a)l m=1,2,3 for the class densities in figure
3-1.
From (3-34), it is clear that UL(CV), 4=1,2...M is a non-decreasing

function of @, Rewriting the expression (3-35) for C(x) as

M
C@) = 42, U, @) @1 - [Q @)D+ m o @] (3-36)
we see that for o <o <a , C(@) is . non-decreasing, since
q. ;
i i+l
vi=1,2...M, U, (@) is a non-decreasing and 'QL(Q')' is constant, Figure 3-6
shows a schematic drawing of C(¢) as a function of o for the densities

in figure 3-1.

3.2.5 Variances of Estimators in The Family

Next consider the variances of estimators in the family

{(R@) : 0 sa< o }. A given o defines the sets T (@), m=1,2...M and

ax

hence an estimator R(x) of the general form fi(T). From the variance of

f{(T) given by (3-19), we may write

R} =Lvae{ £ € (o —mom
VAR{ R (& = = VAR X
N m % f,(X)m
mETe(a) LETm(or) L L
(3-37)
M £ (x)n 2
=l[ZnI( Y € (x) m L )f(x)dx-Rz}
i f ) >
N i iy mETi(or) m LGTE(") L(x)nl, i

Let the coefficient of variance V(@) be defined by
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V(@) = N x VAR{R(a)]} (3-38)°
When o=0, ﬁ(o) is equivalent to the posterior estimator ﬁ(p).
Theorem 3-1 shows that the variance of the posterior estimator is
smaller than the variance of any estimator expressed in the general

form, thus as a corollary we have,

Corollary 3-1 V(o) < V(@) V0 saoa< amax'

If there exists anao < « such that T (@ ) = {m} V m=1,2...M, then
e max m e

ﬁ(ae) is equivalent to the error count estimator. Thus by (3-3),

VGze) = R(1-R). By corollary 3-1, V(o) < V@ye).

Now V(o) depends on o only through the sets TmQy), m=1,2...M (see

(3-37)). Since the points ¥ s @ 0 induce changes in these sets,
o 1 K
V(@) is a step function of o with discontinuities at these points.
Figure 3-7 gives a schematic drawing of V(o) for the densities in figure
3-1.
Examples indicate that V(@) is a non-decreasing function of «.

Consider the estimator Rm(a) for the conditional risk ﬁm given in (3-28).

The variance of ﬁm(a) is
2
fm (x) 2

{ jem(x) = 3 dx - R_}. (3-39)
= q€T (@) 9

Z |-

VAR{ Rm(a)} = (x)nq

Define the coefficient of variance Vmﬁy) for ﬁmGy) as

V(@) = N x VAR{R ()} - (3-40)
Then Vmﬁz) is a non-decreasing function of o since, as ¢ increases, the

number of classes in T (¥) in non-increasing and hence b f (x)m
m q q
q€T, (@)

is non-increasing.
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The covariance of the estimators ﬁmﬁy) and ﬁLGy) is given by
i

| COV{R (@), R, (@)} =

'
)

(3-41)

fm(x)fL(x)fi(x) )

AR m J e (08 (x) dx -R R
m 4

i€T (a)NT, (o) *g z f (x)m % f (X))
e qer, @ ¢ 9 rer, @)

1
N
r

where DR R ) =0
1ETm (o )ﬂTL (@)
when the intersection of TmQy) and ILQX) is empty, i.e. TmQa)ﬂILQy) = ¢

Let C @) =Nx cov{R (@), ﬁL(a)} (3-42)
13

=

R (@), the co-

be the coefficient of covariance. Since R(x) = Zl R

m=

efficient of variance V(x) for ﬁ@w) may be expressed in terms of Vmey)

and Cm{ﬁy) as

=

M
V@) = 2 nt V@) + (3-43)

>

1t Tl S
Now V m=1,2...M, Vm(a) is non-decreasing in @ and Vm(O) < Vm@y),

VO<a<co . However, from (3-41), C ,(@) achieves its minimum value
max mi

of -RmRL when Tm(a)ﬂTL(a) = ¢, which would occur for large values of o.
Thus if the increase in the conditional variances Vm(a) dominate the

possible decreases in Cm{py)’ as o increases one would expect the co-

efficient of variance V(@) to increase.

3.2.6 Examples

Some examples are given in the appendix. In example 1, there are
five equally likely classes. The class conditional densities are
Gaussian with standard deviations equal to one and means 0, .75, 7, 8, 9.5.

Page A-1 gives a sketch of the densities as well as the true conditional
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and unconditional risks. Page A-2 gives the values of at o :

o t1 th

@ ,a ...x and the sets Tmozti), Qm(“ti), m=1,2...5 which they de-

o N1 %
termine. Page A-3 gives, for the points o the expected number of
i
density evaluations C(2) and the coefficient of variance V(@) for those

densities. Note that C(x) decreases to a minimum of 2.6 at a, . The
6
sets T Q:t ), m=1,2...5 on page A-2 are seen tc be the natural grouping
6
of the classes. The increase in C(x¢) for a > o, is due to the fact
6

that while the sets Tm(a) and QmQ:) are getting smaller, for larger o
it is becoming less likely that a s;mple X has the property that
fe(X)TT6 > . Wh;n fe(X)n9 < @, all densities fL(X),L=1,2..{5 must be
computed to determine the error function, so the smallness of the sets
Qm(a) becomes irrelevant.

The variances V(¢) are clearly non-decreasing in ¥. For o < Ut 5
6
they are approximately the same. For o > e the variances about
6
double at each decrease in some set Tm. Page A-4 shows the covariance

matrix for the conditional risk estimators ﬁmoy), ﬁLGr), m,4=1,2...M

for o = at - at and at . Note that the increase in variance as a
o 8 10 =
increases seems to be due mostly to the variance increase in Rmoy),

rather than to changes in the covariance of ﬁm(u) and §£02).

Page A-5 shows the behavior of the distinct estimators RQJt ) for
i
various sample sizes where larger variances for larger o's are re-

flected. For a=x, , the estimator l'{(at ) is equivalent to the posterior
= o 3 o
estimator R(p). For a=x, R@Yt ) is equivalent to the error count
10 10
estimator.

In example 2, the five classes have unequal priors given by .1, .3,

T TR—
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.2, .19, .21. The class conditional densities are normal with means
0, .5, 6, 10, 11 and equal standard deviations of 1. The densities

are sketched on page B-1 and the true conditonal and unconditional
o 1 8 B %

)

E c risks are given. Page B-2 gives the values O, @, O

:

: and the resulting sets Tm and Qm' Note that the error count estimator

is not included in the family {ﬁ(a) : 0 s < amax}'

Page B-3 gives C(z) and V(@) for the points at , i=0,...8. The
1

expected number of density evaluations per sample C(w) decreases to a

minimum of 1.94 at at . Again the variance V() appears to be in-
. 8
creasing in .

Page B-4 shows the behavior of R(x) for'a%yt 5 1=0:.8 R(crt )
' i o
is equivalent to the posterior estimator. The error count estimator

is included for refereunce.

In chapter 4, the problem of choosing an optimal estimator from
the family {ﬁ@y) : 0 < amax} is discussed. Considerations of opti-
mality will involve the variance V(o) of the estimators and C(x), the
expected number of density evaluations per sample.

But first, the technique of stratified sampling will be discussed
in terms of a family of risk estimators.

3.3 Estimators Based on Stratified Sampling

Stratified sampling is a classic Monte Carlo technique for reducing
the variance of an estimator for an integral [31, 19, 39, 16]. Basically,
one partitions the region of integration and samples independently from

each partition. 1In this case, the integral to be estimated is
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M
R= T W ,,SF € _(x)£_(x)dx.

The summatién represents a natural partition of the integral. Thus rather
than sampling (X,0) where © is random, the class 6=m, is fixed a priori
and 6bservations are sampled independently from the distribution of X
given m, for m=1,2...M.

Let the stratified sample of size N be denoted by {X X

1n )

oo CEE
11°712 1

M
(X515%59++ X5y )"“(xm’xm“'anM)} where N = .TL.n_. The samples
2 i=1 i
xij’ i=1,2...M, j=1,2...ni are independent, and the distribution of xij’
j=1,2...ni is identical to that of ki' The density of Xi is given by
fi(x), the conditional density of X given class i. The statistician is
free to choose the nmber n, of samples from class i, i=1,2...M in any way
1
such that iélni = N. Optimal and heuristic choices cf these samples sizes

will be discussed in section 3.3.2.

3.3.1 A Paramcterized Family of Bayes Risk Estimators

A family of estimators for the Bayes risk R based on stratified
sanpling is defined as {ék(a) : 0 sa< amax}' The scalar parameter «
determines the set of classes Tmoz) that are 'w-close" to class m,
m=1,2...M as in section 3.2.3. The stratified estimator §km01) for the

conditional risk Rm is based on samples Xij for i € TmQJ), j=1,2...ni and

is given by

. R ST 1

= = e "
SRm(a) iETE“J) n, jgl m(Xij) 5 fL(xi') pi
m* LET_(@) J
ékmcz) is an unbiascd estimator for Rm since
(SR @} = = (e o)
E{SR (@)} = ., B (X.)
m ierm(a) i m i Z f{.(xi)"L

LETmQu)
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s fm(x)fi(x)dx 3
= ieT):(a)ni g m(x) T fL(x)”{, = é Cm(x)fm(x)dx = Rm y (3-45)
m

LGTm (@)

The estimator S‘i{(c!) for the unconditional risk R is defined

-~ M ~
SR(a) = m)=:1 m SRm(a)

(3-46)
n d
M w., i £ 4x. )
= 2w F O B E @& )—z—b
m=]l m . n, j=1 "m “ij by f,(X..)m
LGTm(oz) i LGT;n(cx) A e
and is unbiased by linearity of the expectation operator. Also, since
M ‘ M
L1 €T (@) iff m € T @), E, r =5 L , and thus SR(@) may be
N g i€T (@) m<T, (o)
written i = :
’ Mo " £L(R M
SR o > € (X, : - 3-47
@) i=1 n, j=1 m‘l‘z(or) m( 1_]) z f.{,(}‘i'hTL o ( )
e LET_(a) J

When =0, SR(0) is equivalent to the siratified posterior estimator

SR(p), where SAR(p) is given as in [39] by

n,
0 M m i
SR(p) = ;%, ——ni 55 T (XD
(3-48)
Mo, "iM £ (X, m
- i . m'ij’ m
i#) n, %1 o1 Sa®iy) ™
L5 Kypmy

Also, if 3 a, < Loax such that Tm(ore) = {m} ¥m=1,2...M then ?R(ae) is
equivalent to the stratified error count estimator Sk(ec), where SAR(GC)

is [39],

nm x

.’JI =]
(=

w1 =

SR(ec) = &1 m sk &%) (3-49)

i
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3.3.2 Variances of Estimators in The Family

The variance of the estimator §k0&)

{‘ } M Tl’i { e fm(xi)ﬂm
VAR{SR(2)} = I, = VAR kRl r f,(X)n
i m€T, (@) ter @ v
M ﬂiz { " o fm(x)n i
- 5 4 ( I (x) ) f,(x)dx
if1 "y 5 ueT, @) " Lerz(a)f{’(X)nL 1
m

(3-50)

c I : fm(x)ﬂmfi(x)dx 2]

- L € (%) 1 ¥
m s f,(x)m

2 S mET, (@) ter_ @) £V

A heuristic choice of the number of samples n; from class i is to let n,
be proportional to the prior probability m; of class i, thus n, = Nni.
Even though this choice is not optimal, the estimator ék@z) based on

the stratified sample has smaller variance than the estimator ﬁ@y)

based on unrestricted sampling. To see this, with n, = Nni, the variance

of SR(@) is given by

VAR{SR(2)] =
1 M fm(x)nm s
v L "i-_l: ( 4 4 ; b EE P CTRR S
b Ler (@)
(3-51)
M f (x)nm f.(x)dx 2
m m 1
- i§1 ni ( £ mETzcy) Cm(x) = fL(x)nL ;
i LETmQN)
M M
By Jenson's inequality [7], and the fact that igl r = gl &
mET, (@) " €T (@)

we have that
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2
M £ OON £, (x)
.o [ = e (o—2—=ni
i1 1 m b3 f, (x)m

S m€T, (@) er @ LI,

M [ £.00m £ (x) dx 2
= .0 n. T € (x) ] (3-52)
i=l 1 (@) m 5_‘ (h)TT
3 T, LeT_(@) t
b f (x)n
M i€T (o) |
m A2 2 |
.5 ‘gem(x)fm(x)nm = L(x)%dx] -t A;
LET (o)
m
Thus,
VAR{ SAR(of)} <
. 2
M f (x)m
1 m m 2
B B Te o S T ) £ (x)dx - R")
N "i=1l i m z f,(x)n i
S mETi(a) UETm(O) Z {4
A (3"53)
= VAR{R(@}]} .

An optimal choice L39, 31] of the number of samples from each

class is to choose ;s i=1,2...M to minimize the variance of the esti-~

mator SR(@). Let

I fm(x)nm -
o, ey =J ¢ % R g M ML
& OOn i
§ meT, (@) LET_@) Ll
(3-54)

f (x)n f. (x)dx

N O SR AN ¢ SRS
s mET, @) s R

LETm (@)




Then

E M
VAR{SR@)} = .Z, n ° —— . (3-55)

For a given @, the optimal choice of n,, i=1,2...M is found by solving

the constrained minimization problem (N1 );

2

1 n

M 0.203)
Py i

minimize L, .7 ——

1=4 .

i
(N1)

M
subject to igl Ky N

It is shown in [39, 31] that the solution to (N1) is

nioi(a)

n, =N k- T i=1,2...M _ (3-56)
i 5 1% @
151 %

*
Thus the optimal choice of the sample sizes n.=n.o, i=1,2...M agrees with

the heuristic choice n, = Nni, i=1,2...M only when oi(a) = O(x) Vi=l,2...M.
Of course, the problem with using the optimal choice is that knowledge
of Qiﬂr), i=1,2...M is assumed, and if we knew this we would probably know
the true risk R. Since choosing n, i=1,2...M proportional to the prior
probability of class i causes the stratified estimator §kcw) to bhave
smaller variance than the unrestricted estimator ﬁ(a) anyway, we will
assume in the sequel this heuristic choice of sample sizes.

As in unrestricted sampling, examples indicate that the variance
of ékcm) is non-decreasing in o. Moore, Whitsitt and Landgrebe [30]
give a 2-c1ass.examp]e where the stratified posterior estimator has

smaller variance than the stratified error count estimator. However, for
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for their example, the error count estimatcr would not be included in

the family {SR(@) : 0 s o < amax}'

In fact, it is not clear (as it was with unrestricted sampling)
that the variance of the estimator S’Rm(a) of the conditional risk Rm is

non-decreasing in . For in this case

. 1 - fmz(x) dx
VAR{SRm(a)] - { . € (x) R (3-57)
g€T @) 4 19
m
A £ (), (x)dx 2
s T z L [ J € (x) }
% i m % f (x)m
1€Tm(a) S qETm(a) q q

For completeness, the covariance of the conditional stratified estimators

SRm(cx) and SRL(Q)“ is

cov{ S'km(q'), s‘RL(a)} = (3-58)

fm(x)fL(x)fi(x)dx

I £ ()n 3 f_(x)n
qETm(oz) q q réTl () * r

Z |-
~

il [ I E',m(x)CL(.\:)
iETm(a)ﬂTL(a) S

f (x)f, (x)dx £, (x)E, (x)dx
. L
- B gn) ~Femeimnee [ 800 oo
= q€Tm(01) q 9 = rETL(or) . ¥

which is zero when Tm(a)nTL(a) = &

3.3.3

Computational Requirements for Estimators in The Family

As for unrestricted sampling, a computational form for the strati-

fied estimator SR(x) is defined
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n
Moo, i
CSAR(a) = Z == .}; > (I,(X, Q) [ (X-.,Q-(a))
i i=1 n, J ]2 mETiﬁﬁ) ST O EN mij’ti
(3-59)
fm(xij)nm
Q- L0 gy 0) —g R
LET (@) © M
m
where Ii (xij,a) = { 1 fi(xij)ni >,
<
0 fi(xij)ni o
The expected number of density evaluations per sample required in
cgkoz) is SC(@), where ¢
i o
sc@) =y .E m U, @ -[q@] +m, |, @]). (3-60)
With the heuristic choice n, = Nni, i=1,2...M, we have that
M
SC@) = 5 U@ - Jo ;@) +my lo,@] - e

Thus SC(a) is equal to C(a) (see 3-36)), so that the expected number of
density evaluations required by the stratified estimator cék@m) is the

same as the number required by the unrestricted estimator cﬁ@r).
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CHAPTER 4

OPTIMAL ESTIMATORS

4.1 Introduction

Two families of unbiased, consistent estimators for the Bayes risk
have been proposed: {ﬁ@:) :0sa< amax} for unrestricted sampling and
[ék(a) s B sa < amax} for stratified sampling. Given a sampling tech-
nique, the problem now is to choose an estimator in that family which
is optimal for our purpose. We will restrict attention to the family

{RQI) : 0 a< amax}' Extension to stratified sampling is obvious.

There are two major considerations in the optimality of an estimator.

One is its accuracy, by which is meant some measure of the concentration

of the estimator about the true risk R [34]. We take as the accuracy

of the estimator ﬁ@y) its variance VAR{ﬁ(a)} = !ﬁzl, where V(o) is ‘the
coefficient of variance defined in section 3.2.5 and N is the sample
size. Thus the smaller the coefficient of variance, or the greater the

sample size, the greater the accuracy. By the Central Limit Theorem

[22], each estimator ﬁcw), 0 ca < amax is asymptotically normal with

Vi)

mean R and variance N

Thus, at least asymptotically, all information
about the accuracy of an estimator in the family is contained in its
variance.

The other consideration in the optimality of an estimator is the
amount of computation it requires. In many problems L39S 23],

point evaluations of the conditional densities used in risk estimators

are costly. Thus the amount of computation required by an estimator ﬁ@w)
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is taken as the expected number of density evaluations NXC(x) necessary to

obtain the e;timaCe, where C(x) is defined in section 3.2.4 as the expected
number of density evaluations per sample and N is the number of samples.
The estimator in the family {R(@) : 0 s o < amax} with the smallest

coefficient of variance V(o) has the property that it requires the least
number of samples to achieve a given aécuracy. However, when density eval-
uations are costly, the size of the samﬁle is not sufficient to character-
ize the amount of computation required by an estimator ﬁ(a), since the
average number of density evaluations‘CQz) it requires per sample is also
a factor. Thus rather than the optimality criterion of mi »imum variance

! we choose the criterion of maximum computational efficiency CE€(w). The
estimator ﬁ(a*) with maximum computational efficiency has the property that

it requires the least amount of computation to achieve a given accuracy

(16, 17]. |

Because of the behavior of the computational efficiency CE€(x) as a
function of o, maximization may be carried out over a finite number of

* 3 3 . :
points. An algorithm to determine o to maximize the computational effi-
ciency CE(x) is presented.
: : - * . 3 . 3

The optimal estimator R(x ) is compared with the existing error count

and posterior estimators. It is shown that the more accurate the estimate

of the risk, the greater the computational savings will be by using the

optimal estimator.

Since in practice it is not possible to maximize the computational

efficiency analytically, a technique whereby n of the total N samples are

used to approximate the optimal estimator is presented. The n samples

should contain enough information on the gross properties of the densi-
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ties, such as the closeness of various classes, to closely approximate the
optimal estimator. The remaining N-n samples are used to obtain an accu-
rate estimate of the risk with minimum computation.

4.2 Computational Efficiency: A Criterion for the Optimal Estimator

The computational efficiency CE(xy) of an estimator R(w) is defined as
the inverse of the product of the amount of computation it requires and

its accuracy. Since the accuracy of the estimator R(x) is taken as its

. \'A . ’ .
variance —é%l, and the computational requirements as NXC(x), its average

number of density evaluations, we have

Definition 4-1

1
V@@)xCa) -

The optimal estimator in the family {ﬁ@y) 0= < amax] is defined

Ce(x) =

~A %
as that estimator R(x ) with maximum computational efficiency. Thus

Definition 4-2

A A %
The optimal estimator in the family {R(z) : 0 < @ < amax} is R(@ ),
*
where ¢ is such that

max Ce(x) = Cﬂ(or*) X (4-1)
Osy<oh

ax
. Lo * : .
The optimal estimator R(x ) has the property that it achieves any
given accuracy with a minimum of computation. More precisely, let the

* a, % *
sample size Na be chosen such the estimator R(x ) based on Na samples ob-

*
tains accuracy a. That is, let Na be such that

Yl . g, (4-2)

Let R(x) be any other estimator in the family with sample size N chosen

to obtain the same accuracy a.
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Thus N is such that

V(@
e (4-3)
' A *

Then the amount of computation required by R(@ ) based on Na samples

is less than that required by ﬁ(a) on N samples, i.e.

* *
N XC(x ) < NxC(¥) . (4-4)

*
- N )
a

‘ A Lk
The above is merely the statement that o , Na solve the constrained

minimization problem (M1)

minimize - NXC (o)
M1) 0<N
. O<a <o
max
subject to 2532 = a.
- Thus we have
Theorem 4-1
* *
Let @ be such that CC(x ) = max Ce(x)
Osa< o
max

* *
and let N, = !ﬁf—l .

* %
Then o , Na solve the constrained minimization problem (Ml).
Proof:
*
By definition of «
*

CE(x ) 2CE(x) V Osor<amax. (4-5)
By the definition 4-1 of CE€(x) we have

* * ;

V(@ )xC(a ) s V(@)xC@) V Osa<bhax . (4-6)

* * *
By definition of Na’ we may write V(¥ ) = a Na’ thus from (4-6)

* *
a NaxC(or ) < V@@)xC(@) V Osa<a - (4-7)
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If N, are such that !ﬁll = a then V(x)

aN. Thus from (4-7)

N:xC(a*) < NXC(@) V a,N D V—lg‘ll s (4-8)

5 W
By symmetry, the optimal estimator R(x ) also has the property

~ *
that for a given amount of computation b, R(@ ) achieves the greatest

* * b
accuracy. Thus @ and Nb = — 5 solve the constrained minimization
Cl@)

problem (M2).

minimize V)

M2) 0<N N
O<o<a :
max

subject to NXC(x¢) = b .

4.3 An Algorithm for Maximization of The Computational Efficiency

a * &
The optimal estimator R(x ) from the family {R(@) : 0 s @ < amax}

is determined by finding q% to maximize the computational efficiency
CE(@). Because of the behavior of the coefficient of variance V(@) and
the expected number of density evaluations per sample C(x), it is only
necessary to consider those values of o that induce changes in the sets

T (@) for some m=1,2...M, namely o ,@ ...« of definition 3-4, to
m to t1 tK

*
determine @ . This result is proved in the following theorem.

Theorem 4-2
max Ce€(x) = max CS@t). i
Osa<a i=0,1...K i :
max . :
Proof:
From section 3.2.5, V(o) is constant ¥V a 3 at sa < o, . From section
: : < i+l
3.2.4, C(o) is non-decreasing Vo da, soa <a . Thus

& f+1
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1 . A ;|
CE(x) = V@)XC@) is non-increasing V o 3 o Sa < @,
gt i+l
Therefore,
max CE(x) = CB(at ) (4-9)
at g.r<o-t i
i i+l
Finally
max CE(x) = max max CE(x)
Osa<a i=0,1...K o <o<q
max E, t.
1 i+l
= max Cﬂ(o:t ). (4-10)
E i=0,1...K i

Since it has been observed that the coefficient of variance V(@) is
non-decreasing in @, we state the following corollary. In this case,

CE(a) may be maximized over « ,aq ...aq of definition 3-7, the subset
o 1 J

of o, ,a, ...x_  which induce changes in the sets QmG)) for some m=1,2...M.

t t
o 1 K
The convenience is that in general J < K, thus maximization may be

carried out over fewer points.

Corollary 4-2

If V() is non-decreasing in o then

max CE() = max &0 o i
0so<a i=0,1...J 9
max

Proof:

Follows since C(x) and V() are non-decreasing on aq <o <~qi+1.
i

Thus the problem of maximizing the computational efficiency CE€(x) is re-

duced to finding the points a0 @ and evaluating CE(x) at these
o 1 K '

points. We now describe a convenient method to find I and

o 1 K

GO W V) Sy
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Figure 4-1. The points drs’ r=1,2,3,s=r...3 which split classes

r and s, their association with Gy -0y and the
o 3

sets T .
m
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the resulting sets Tmﬁzt ), m=1,2...M, i=0,1...K.
i

Let drs be the value of o which splits classes r and s, defined as

follows.

Definition 4-3

drs = max min {fr(x)ﬂr,fs(x)ﬂs}
XE€S

r=1,2...M, s=r, r+l...M.
Note that for o < drs’ r € Tsﬁy) and s € Tr(a).' This follows since if

a < zzg min {fr(x)nr’ fs(x)ns} then'd x € S such that fr(x)nr > o and

fs(x)ns >a. For a 2 drs’ r ¢ Ts(a) and s ¢ Lroy). Thus drs is the
smallest value of o that splits classes r and s, in the sense that
Vo 2 drs’ r ¢ Ts(a) and s ¢ Trﬁx). Figure 4-1 shows three joint den-

sities and the values of d12’d’3 and d,.,.

23
For simplification, assume that the points drs’ r = 1,2...M=1,
s = r+l...M are distinct. Then the values o, ,o0 ...x and o may
tl t2 CK max

be obtained from drs’ r =1,2..M, s = g,etl..-M as follows.

Definition 4-4

Order the values of drs in increasing order as follows

d =0
rs
oo
Do i=0 by 1
dr s = min d
i+l i+l r,s s
3d >dS
rs r.s,

Stop if Tia = Sin1

End.
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Theorem 4-3
o, = dr.s i=0,1 K
i i
Ynax dr s
. K+17 5K+l
Proof:

By induction.

R
n
(=%
"

0 by definition.

L}
(=%
-

Suppose o, -5
i ii

By definition, d

is the smallest value of o > d

such

Trt15Kk+1 Sk
that s £ T (@) and r ¢ T (@). Since d = o by the induct-
k+1 3 k+1 Skt1 £ S, tk
ion hypothesis, dr 4 is the smallest value of o > o, such at
k+1 k+1 k

T (@ # T (¢, ) for some m (namely m=r, .,s ). Thus d . =
m n tk k41’ " k+1 1Skt l
o

k1.

Also, by definitions 3-3 and 4-3, o

[}

MAX )M x€s

min d
1<b<M e

min max fL(X)nL

=d .
TR+1° KR+l

The sets Tm(at ) m=1,2...M, i=0,1...K may also be determined from

1

the ordered values drs

by the ‘ollowing corollary.
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Corollary 4-3

Tm(ato) ={i|3=x>3 £,09m; > 0 and £ (MW > 0}

De i=0 to K-1.

- L
Tm(at' ) = Tm(at.) v mr m#si
i+l i
Tr,(at; ) = Tr,Qyt.) i (delete S; from Tr,Gyt_))
i i+l i i i i
Ts Qyt ) = Ts (at ) - r, (delete r from TS-GJt.)).

i i+l i i i i
Figure 4-1 shows the values dlZ’ d13, d23 and d33 and their corres-

(03 = 2 i =
pondence to ato...atK, LI and the sets Tm( ci), m=1,2...M, i=0,1...K.

Assuming that the values drs’ r=1,2...M, s=r, r+l...M have been

computed from definition 4-3 and placed in increasing order in corres-

-

pondence with at ’Qt ey as in definition 4-4 and theorem 4-3, an
o 1 K

*
algorithm to determine o to maximize the computational efficiency CE€(x)

is as follows.

Algorithm A

Let o, = 0.
o

1) For m=1,2...M let

Tm(ato) ={t|3x> £ o > ato,fL(x)nL > ato}

2) For m=1,2...M let

@ ) = U T (@ ).
Qﬂl tO qum(at ) q tO
o
», 1
3) Compute ce—(clto) > C(Qto)xV(O/to)

t

4) Max = Ce(at ¥ s a* =
’ o o
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Do for i=1 to K.
5) For m=1,2...M let

Tm(at.) = Tm(at. ) ¥ m#ri,si
i i~1

"
-
<
N
1
lat

T (@, )
8 %3 -

6) For m=1,2...M let

@, )= U T )
R " oft e ¥ * i
i
) i 1
7) Ccumpute CE€ = C(at )xV(at )
i i

8) It Caéyt ) > Max then
i

Eiy
1

Max = CE(, ), & o
i
Note that if V(o) is non-decreasing in a, by corollary 4-2, steps

7) and 8) need only be done for those i such that 3 m such that

Qmﬁrt ) # chzt ). Thus C€(x) need only be evaluated at those values
i i-1

O O oo which induce changes in the sets QmQu), =l 2. ..M.

o %1 9

4.4 Comparison of the Optimal Estimator With the Error Count and

Posterior Estimators

. % X
We first compare the optimal estimator R(x ) to the posterior

estimator ﬁ(p), defined in section 3.2.1, on the basis of relative com-

putational efficiency. The posterior estimator requires for each sample

Xj, j=1,2...N, the evaluation of all M conditional densities fL(xj),

L=1,2...M, a total of NxM density evaluations. The variance of the
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posterior estimator is, from (3-9)

VAR{R(p)]} = VAR[r ()} (4-11)

N
Let the coefficient of variance V(p) be
V(p) = VAR{r(X)} . (4-12)

Then the computational efficiency CE(p) of the posterior estimator is

Ce(p) = ;m",(p) . (4-13)

The computational efficiency of the optimal estimator relative to

*
the posterior estimator, RCE(x ,p) is defined by

*
e’ p) = o) o VGR) (4-164)

- Cep) c@yxv™)

The following theorem states that the computational efficiency of the
optimal estimator is greater than or equal tc that of the posterior
estimator.
Theorem 4-4
*
RCE( ,p) 21
Proof:
The estimator R(0) in the family {R@) : 0 ca < amax} is equivalent to

i(p) in the sense that

R(0) = R(p). (4-15)
Thus ﬁ(o) and R(p) have the same coefficient of variance

V(0) = V(p). (4-16)

However, it may be the case (if the conditional densities have finite
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support) that R(0) may be computed with fewer than M conditional den-

sity evaluations per sample. Thus
Cc(0) < M. (4-17)
From (4-16) and (4-17), we have
V(0)xC(0) = V(p)xC(p) (4-18)

and by definition of computational efficiency,

CE(0) =2CE(p). (4-19)
By definition 4-2 of a*
Ce@™) 2CE@) VO sa< e (4-20)
Thus
ce@’) =Ce(p), (4-21)
and finally
fee@” p) = ce@”)
P =GEay 2 - (4-22)

The computational efficiency of the optimal estimator relative to

. * . :
the posterior, RCE(x ,p) has the interpretation that if the sample size
NP for the posterior estimator and N, for the optimal estimator are
chosen so that both estimators have the same accuracy (variance), then

3 3 s * . :
the posterior estimator will require RCE(x ,p) times the number of density
evaluations required by the optimal estimator.

To see this, let the sample sizes N, and NP be chosen so that

* ,
-v—}(‘lg—l = y—\(lR)_ . (4-23)
* “p
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The amount of computation, expressed as the average number of density

3 3 : 3 s *
evaluations, required by the optimal estimator is N, XC(x ). The number
of density evaluations required by the posterior to achieve the same

accuracy is NPXM. From (4-23), we have that

N M = — x M = LMy o™y
P Vi ) Vi )XC(x )

(4-24)

*
ce * ¥ *
= é—é%).l (N*XC(O' )) = ma(a’ ,P) (N*XC(O' )) .

*
The posterior estimator requires RCE(x ,p) times the number of den-
sity evaluations required by the optimal estimator to obtain the same
s : . o *
accuracy. Thus by using the optimal estimator R(w ), we have saved our-

*
selves, on the average, 8(x ,p) density evaluations, where
* * *
8@ ,p) = (RCE(@ ,p)-1) C(x IXN . (4-25)

From (4-25), it is clear that the more accurate an estimate of the risk
desired, that is, the larger N, the greater the savings in computation
*
&@ ,p).
. g Ak
The optimal estimator R(a ) compares even more favorably to the error
count estimator ﬁ(ec), defined in section 3.2.1. The variance of the

error count estimator is, from (3-3),

VAR[R(ec)]) = Mrlq'—kl . (4-26)

Since the error count estimator requires evaluation of the conditional

density fL(x ) for each sample Xj, j=1,2...N and for each class 4=1,2...M,

J

the computational efficiency of the error count estimator CE€(ec) is given
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by

1

C€(ec) = WR(I-R)

(4-27)

The computational efficiency of the error count estimator is less

than that of the posterior. From (3-11), we have that

V(p) < R(1-R) - & < R(I-R). (4-28)
Thus
1 1
Ce(ee) = merimy < Wmvey = CEP) - (4-29)

The computational efficiency of the optimal estimator relative to

the error count estimator, RCE(» , ec), is given by

ce@’y . MXR(1-R)_

*
RCE(x ,ec) = e x (4-30)
Ceteed ot povia )
From (4-29) and theorem 4-4 we have
* *
RCE(@ ,ec) > RCE(x ,p) 21 . (4-31)
If the error count estimator ﬁ(ec) is a member of the family
{ﬁ@r) s o< amax} and if V(@) is non-decreasing in o, we have
%
V(@ ) < R(1-R) . (4-32)

In this case, a lower bound on the computational efficiency of the optimal

estimator relative to the posterior estimator is

MXR(1-R) _ _ M
Cl@ )XR(1-R)  C(a)

KE@,e) 2 (4-33)

; %*
Thus if (4-32) holds, the error count estimator requires at least M/C(a )

times the number of conditional density evaluations required by the opti-
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mal estimator to obtain the same accuracy.
The number of density evaluations saved by using the optimal

*
estimator rather than the error count, S(o ,ec) is

* ; * *
8 (@ ,ec) RCE(x ,ec)-1) C(x XN,

M

*
Cl@ )

2 ( -1) C@ )N, (4-34)

M-C@@ )N,

Thus the more accurate an estimate of the risk desired (the larger N,)
the greater savings. Also, the smaller Cﬁy*) relative to the total
number M of classes, the greater the savings. One would expect

M>> C(a*) for a large number M of classes which tend to form several
small clusters.

4.5 Approximation of the Optimal Estimator

The optimal estimator ﬁQy*) in the family {(Rp) : 0 ca< amax} is
determined by finding a* to maximize the computational efficiency CE(x).
However, if we had enough information to maximize the computational effi-
ciency analytically, we could evaluate the Bayes risk R analytically. We
propose that a subset of the data, say {(xlel),(xzez),...(xnen)}, where
n < < N, be used to approximate the optimal estimator. The remaining N-n
samples are used in the approximated optimal estimator to obtain an accu-
rate estimate of the Bayes risk efficiently.

Recall algorithm A is section 4.3 for finding a* to maximize the
computational efficiency C€(w). In order to use this algorithm, we need

to know the points drs’ r=1,2...M, s=r, r+l...M. and the value of the
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computational efficiency at these points. Since in practice these values
are not known, we propose they be approximated on the basis of the n
samples {(xlel)...(xnen)} as follows.

An approximation to the computational efficiency C€(x) at any given
o is formed as

il

S 1y (4-35)
V()xC(x)

where Q(a) and C(a¢) are unbiased estimates of V(a) and C(x) given by

M - ~
C@) = 2, g @] @y - Uy @)+ M, @) (4-36)
where
Bl 3 _1- n ) fL(X)TTL
U@ =1 T (-1, (0 ———‘—f(xj) (4-37)
and
g (X.) f (X.)m
~ e N b m' j m- j° m
Gj LETm(cx)
(4-38)
) (.l ; . Cm,(xk) fm(xk)nm )]2
n k=1 & f, (X )n
mETek(a) LGTm(a) LKk

The points drs’ r=1,2...M, s=r,r+l...M might be approximated by

‘er = 1::3);!1 min [fr(xj)nr,fs(xj)ns}. (4-39)

Once the values ’a'rs, r=1,2...M, s=r,r+l1...M have been ordered and

¢ * Oy ...&t as in theorem 4-3,
(o] 1 K

~
put into correspondence with the points «
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Figure 4-2. Estimates 812 and‘z12 of d12 based on one sample
(X1,91=1). '312 underestimates d12 which results

in sets Th that are smaller than the true sets Tm.

The overestimate 312 solves this problem.
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algorithm A may be performed by substituting the approximated values for
the true values. As a result, a value 3* which maximizes the approximate
computational efficiency CE is obtained.

However, the following difficulty arises. Algorithm A determines

the sets i‘m(at ), m=1,2...M, i=0,1...K as in corollary 4-3. But since
i

'ers <d _ r=1,2...M,s=r,r+l...M (4-40)

~ ~

the sets Tm(ort ), m=1,2...M, i=0,1...K which result from corollary 4-3
i

~ .
using the approximated values drs and 3} have the property that
i

%md;ti) e de?ti). (4-41)

~ ~
Thus the approximated set Tm(cvt ) cf classes 'G} -close'" to class m is
i i

smaller than the true set de;t ) of classes 'G} -close'" to class m.
i i

Figure 4-2 shows this behavior for 2 classes, with E&Z &y approximated
1
with n=1 sample xl,el = 1.
The result of this is that if the es timator cﬁ(a), in computational
form, is used with the approximated sets Tm(a), m=1,2...M, a biased
estimate of the risk results. The reason is that in its computational

form, cRé;) uses the modified error function Sm(x,éeé;)) for m € TSGY)

whenever fe(x)ne > ;: Although by theorem 3-2 it is true that

Vm € Tg@), € (X) = € (X,q4@))

(4-42)

whenever fe(X)ne > ¢
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it is not true in general that
Vi € T,@), & (X) = € (X,Q4(@))

(4-43)

whenever fe(}()ﬁe >«

since Eze@) may be smaller than QGG)'

Example 4-1
In figure 4-2, the values a‘t and :I‘m('c;'t ), m=1,2 were approximated
| [ 1

with the sample Xl,el = 1. If sample X,,6, = 1 were used in the compu-

2° 72

tational form Cii(;t ), since fl()(z)T'r1 > ‘&‘t the modified error function
1

would be used. But EI(XZ’QIGLI)) = 0 while 61()(2) = 1.

Examples indicate that the sets %mé:t ), m=1,2...M, i=0.1...K
L

approximate well the true sets 'J.‘m(czrt ), m=1,2...M. i=0,1...K (see section
i

4.6) The ad-hoc method employed here is to overestimate the values

d , i=0,1...K + 1 by
r.s.
irx
dr.e = fr,(x)ﬁr
i i i
(4-44)
whenever :1' = f (X)n
r.s s, s

i1 i i

The value a is illustrated in figure 4-2. Note that in this case,

12

) m=1,2 . (4“05)
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Let &* be the approximated optimal determined by Algorithm A, with

the approximated values CE and &t. (determined from &r's') substituted
i A

for the true values. Thus &* and sets iﬁ(&), m=1,2...M determine the
approximate optimal estimator ﬁ(&*).

In determining the optimal &‘i all conditional densities

gb(xj) 4=10,2, - M, §=1 2 nl (4-46)

have been evaluated. Since the posterior estimator ﬁ(p) based on n
samples is a by-product of Algorithm A, and since the posterior estimator
has the smallest variance (theorem 3-1) we may as well incorporate it into
the approximated optimal estimator.

Thus, let the final estimator ﬁ(f) be given by

RGO =2 Rep) + B2 R@H (4-47)

2z

where ﬁ(p) is the posterior estimator based on the n samples
~% A Ay
{(xlel)_..(xnen)} used to determine o and Rka) is the approximated

Visiee s

optimal estimator based on the remaining N-n samples {(x

(X0}

The final estimator ﬁ(f) requires M density eveluations for each

u+len+1

A~k
of the first n samples and an average of C(x:-) for the remaining N-n

samples. Its variance is given by

R
vaR(R(D)) = Sv(p) + =RVE D) (4-48)
N N ;

Thus the computational efficiency CE(f) of the estimator is

1
= = pe (4-49)
(M (N-n)C (0™ ) 5V (p)+ 2V E™))

N

N2

Ce(f) =
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Assume that the n samples contain enough information so that the
A %
approximated optimal estimator R(¢ ) is close to the true optimal esti-

" *
mator R(e ). That is, assume

e L g . (4-50)
V(@ )xC(x ) V(@ )XC(@ ) .

*
Ce(x ) =
Also, let us assume the approximation is close enough so that

ce™ =cep . (4-51)

Then from (4-49) and (4-51),
Ce@™) = ce(r) =Ce(p), (4-52)

the lower bound CE(p) for CE(f) being obtained when n=N and the upper
bound Ce(a*) when n=0. The best case would be when a* were known
a priori and n=0.

The computational efficiency of the final estimator relative to

the posterior estimator, RCE(f,p) is

ce(n) . MV (p)
RCE(£,p) = - ! e (4-53)
CE® (e -me @) v+ &2y )
N N

which is greater than one provided (4-51) holds.

Let us now compare the final estimator to the posterior estimator
in terms of the number of density evaluations saved. As in section 4.4
let 8(f,p) be the number of density evaluations one would save by using
the final estimator on N samples rather than the posterior ba;ed on NP
samples, where NP is chosen so that both have same accuracy (variance).

Then

28
F ¥ (M (f.p) 1) (Me(B-n)C(a )). (4-54)

———————————



From theorem 3-1, we have

V(p) < V@Y. (4-55)

Thus from (4-53), (4-54) and (4-55),

MXV (p)-V (& )C (@&

x
- Dy - a-c@™). (4-56)
V@ )

8 (f,p) = N(

From (4-56), the greatest savings result when N is large (an accurate
risk estimate is desired) and n is small. However, it is important that
n be large enough to closely approxiﬁate the optimal estimator to assure
that (4-51) holds.

It can b shown that if

V(@ ) < R(1-R) (4-57)
then the average savings in number of density evaluations by using the
final estimator rather than the error count estimator, $(f,ec) for an

estimate of the same accuracy, is bounded below by

8(f,ec) = (N-n)(M-C(a)). (4-58)
Of course, it takes a certain amount of work, over and above the Mn
density evaluations, to approximate the optimal estimator using the first
n samples. The average number of density evaluations saved by using the
final estimator rather than one of the existing estimators must be compared
to this overhead. If the density evaluations are costly and .the number
saved is large, a net savings in work should be realized.

4.6 Examples

Consider the five Gaussian classes of example 1 described on page A-1

of the appendix. Page A-2 gives for these densities the values dr s."
il
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i=0,1...10, their correspondence with at , i=0,1...10 and aq + 1E0. 0L .5
i i
and the resulting sets Th(ati), Qm(ati), m=1,2...5, i=0,1...10. The

computational efficiency CE(at ), i=0,1...10 is given on page A-3. The

i
* *
computational efficiency is maximized for « A and C€(x ) = 20.99. From
: 6
* * * : *
page A-2, we have Tlﬂy )y = {1,2} = Tz(a X T3Qy ) = {3,4,5) = TQGJ ) =

TSGI*), and Qi(a*) = Ti(a*) i=1,2...5. These sets represent the natural
clustering of the classes.

On page A-6, the computational ‘efficiency of'the optimal estimator
relative to the posterior is given by ﬂC&Gy*,p) = 1.92. Thus to achieve
the same accuracy, the posterior estimator would require on the average
1.92 times the number of density evaluations required by the optimal esti-
mator. The computational efficiency of the optimal estimator relative
to the error count estimator is RCE(Q*, ec) = 24.07, thus the error count
would require 24.07 times the computation of the optimal for the same
accuracy.

Also on page A-6 are the average number of density evaluations saved
by using the optimal estimator, rather than the error count or posterior,
for various sample sizes N, for the optimal estimator. For example, if
the optimal estimator is formed using N,=400 samples, in order to achieve
the same accuracy the posterior would require on the average 956 more
density evaluations and the error count 23,992 more.

Page A-7 gives the approximated values ar g i=0,1...10, their
ii

correspondence with &t , 1=0,1...10 and &q , i=0,1...5 and the resulting
& i
sets Tﬁ(ati), Qm(ati), m=1,2...5, i=0,1...10, where approximations are

based on n=25 samples. Comparison of the approximated values with the

e
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.true values given on page A-2 shows that for i 2 6 Tm(o/t ) = T'm(at ) for
‘ i i
all m=1,2..;M. Discrepancies for i < 6 are caused by the fact that in
the approximation, classes 1 and 4 were split before classes 2 and 5
and classes 2 and 3 before classes 1 and 3.
Although the approximated values &t , 1=0,1...10 do .not seem close
i
to the true values o, i=0,1...10, the computational efficiency CE(&t )
i i
for the approximated values (page A-8) is only slightly less than the
computational efficiency CSG}t ) for the true values (page A-3). Thus
i

if the sets 'Tm(&t ) = 2nﬁyt ), m=1,2...5, the estimator ﬁ(&t ) is equi-
i i i

valent to the estimator R(&t ) and is almost as efficient.
i

oS

From page A-8, we see that ¢ =&t maximizes the approximate computa-
6

tional efficiency CE. Since Tm(&*) = Tmﬁy*), m=1,2 .5, and CC(&*) = 19.49
*’C&(a*) = 20.99, the approximate optimal estimator ﬁ@Q*) is almost as
efficient as the true optimal estimator ﬁ(a*).
On page A-9, the final estimator is compared with the posterior and
error count estimators. The final estimator is formed as the posterior
estimator ﬁ(p) on n=25 samples and the approximated optimal ﬁ@Q*) on the
: remaining N-25 samples. If the final estimator uses a total of N=400
samples, the computational efficiency of the final estimator relative to ~

the posterior estimator is 1.71. By using the final estimator rather

than the posterior, on the average 828.93 density evaluations have been

saved in obtaining an equally accurate estimate of the risk. Thus if the

K
work involved in approximating the optimal ¢ with n=25 samples is less

than the work involved in evaluating 828.93 densities, the final estimator
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is preferable.

Compared to the error count estimator, if the final estimator uses
N=400 samples, on the average 23,887.05 density evaluations are saved.
If density evaluations are costly, one would almost surely prefer the
final estimator to the error count.

Next, consider the five densities described on page B-1. The values
drisi, their correspondence with the points ati, i=0,1...8 and aqi,

i=0,1...3 and the resulting sets qngyti) and Qmﬁzti), m=1,2...M, i=0,1...8

are given on page B-2. Page B-3 lists the values C(a, ), V(x, ) and
i i

*
C&Qyt ) i=0,1...8. The value « =at maximizes the computational efficiency
i 8

CE€(x) and C&Gy*) = 17.87. On page B-5, the optimal estimator is compared
with the error count and posterior. The computational efficiency of the
optimal estimator relative to the posterior is 1.95 and relative to the
error count is 15.97. The number of density evaluations saved by using
the optimal estimator rather than either of the existing estimators are

listed on page B-5 for various sample sizes N, for the optimal estimator.

On page B-6 are given the points ar . i=0,1...8, their correspond-
g
ence with &t i=0,1...8 and @ , i=0,1...3 and the sets %h(&t ) and
i 94 i
QmQyt ), m=1,2...5, i=0,1...8. Note that TmG’t,) = Tm(ort Yy m=l 2. .S,
i i i
i=0,1...8.

A% L ’
On page B-7, we see that o =, maximizes the approximate computational
8

~ = AA*
efficiency C€. Thus the approximate optimal estimator R(¢ ) is equiva-
n K
lent to the true optimal estimator R(w ) and its computational efficiency

P
CE€(x ) = 17.51 is only slightly less than the computational efficiency
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of the optimal estimator C&(a*) = 17.87.

Again, the final estimator formed by the posterior ﬁ(p) on n=25
samples and the approximate optimal ﬁ(&*) on the remaining N-25 samples
compares favorably to the error count and posterior estimators. Page B-8
makes comparisons in terms of relative computational efficiency and saved
density evaluations for various sample sizes N for the final estimator.
Thus if the final estimator is based on N=400 samples, its computational
efficiency relative to the posterior is 1.76, and by using the final esti-
mator rather than the posterior, on ﬁhe average 665 density evaluations
would be saved for an equally accurate estimate of the risk. The computa-
tional efficiency of the final estimator relative to the error count
estimator is 14.38 when the final estimator uses a sample size of N=400.
In order to obtain the same accuracy with the error count estimator, on

the average 11,707.5 more density evaluations would be required.

SE
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CHAPTER 5
CONCLUSIONS

5.1 Summary of Results

In this thesis we have studied estimators for the Bayes risk in
terms of the amount of computation they require and their accuracy.

The existing estimators for the risk, namely the error count and the
posterior, were shown to be inadequate computationally, thus several

new estimators for the Bayes risk have been proposed. In particular,

a family of estimators, indexed on a‘scalar parameter a, was defined

in such a way that estimators in the family in general required less com-
putation than the existing estimators. The optimal estimator was chosen
as that estimator in the family with maximum computational efficiency,
and had the property of requiring the least amount of computation for

a given accuracy.

In estimation of the Bayes risk, point evaluations of the class
conditional densities are, for many problems, the single most important
factor contributing to the computational éfforc. For this reason, the
amount of computation required for a given Bayes risk estimator was de-
fined as the number of density evaluations involved in the estimation
procedure. The existing estimators, the error count estimator and the
posterior estimator, require for each sample Xj, j=1,2...N, evaluation of

the class conditional density fL(X ) for each class 4=1,2...M, a total

b
of NXM density evaluations. Thus when the number of classes M is large
or the number of samples N is large (an accurate estimate of the risk is

desired), the existing estimators were scen to be impractical from a

computational aspect.
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In searching for an estimator for the Bayes risk which could be
computed with fewer density evaluations per sample, a general form ﬁ(T)
for Bayes risk estimators was discovered. An estimator of the form ﬁ(T)
was defined by associating with each class m some set of classes Tm.
When the number of classes M=2, the class of estimators of the gereral
form ﬁ(T) consisted of the two existing estimators, the error count
estimator and the posterior estimator. For more than two classes, the
class of estimators of the general form gontained several new estimators
for the Bayes risk, in addition to the existing estimators.

By restricting the set of classes associated with each class m to
be those classes Tm(a) that are 'tv-close' to class m, an estimator ﬁ@y)
of the general form was defined which in general required fewer density
evaluations to compute. As the scalar parameter o véried, the sets of
classes Tl(a),...TM(a) varied and a family {ﬁ(a) O =< amax} of Bayes
risk estimators was achieved. Estimators in the family were characteri-
zed by the average number of conditional density evaluations needed to
compute them and by their variance.

The optimal estimator ﬁ@a*) from the family was defined as that
estimator with maximum computational efficiency, where the computaticnal
efficiency of an estimator was defined as the inverse of the product of
its variance and the average number of density evaluations it required.
It was shown that the optimal estimator ﬁcw*) required the léast amount
of computation to achieve a given accuracy, or, symmetrically, achieved
the greatest accuracy for a fixed amount of compukation.

It was pointed out that in practice, the optimal estimator RQ:*)

could not be determined by maximizing the computational efficiency,
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since this in effect would require knowledge of the true risk R. Thus

a method was proposed whereby a subset n of the total N samples was used
to approximate the optimal estimator. The n samples should contain
enough information on the closeness of the classes to determine an almost
optimal estimator. The remaining N-n samples would be used in the
approximate optimal estimator to obtain an accurate estimate of the risk
with a minimum of computation.

For both examples given in the appendix, the optimal estimato- was
closely approximated using n=25 saméles. In fact, for each case the
approximate optimal estimator was equivalent to the true optimal estima-
tor, in the sense that point estimates of the risk resulting from either
would be identical. However, the approximate optimal estimator would,
on the average, perform slightly more density evaluations ih forming the
estimate.

The technique for approximating the optimal estimator forms as a by

‘product the posterior estimator based n samples. Because the posterior

estimator has minimum variance among all estimators considered here, we

defined as our final estimator the posterior estimator on the n samples

used in approximating the cptimal estimator and the approximated optimal
estimator on the remaining N-n samples.

The final estimator was compared to the error count and posterior
estimators. The comparisons were based on the number of dengity evalua-
tions that would be saved by using the final estimator rather than one
of the existing estimators in obtaining equally accurate estimates of
the risk. Situations for which great computational savings would be

expected were the following:
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L an accurate estimate of the risk is desired, thus a large
number N of samples is used.
2. the number of classes M is large and the classes tend to form |

several small clusters.

5.2 Recommendations for Further Research

In section 3.2.5, variances for estimators in the family
{ﬁ&w) : 0<sa< amax} based on unrestricted sampling were derived. We
discussed properties of these variances and indicated reasons for be- ;
lieving that as o increased, the variénce of the estimator ﬁ(a) should
not decrease. Thus the question: under what conditions does the following

proposition hold?

Proposition 1.

If05015a2<am

then V@yl) < V(az).

ax

Aside from a theoretical interest, proposition 1 has the practical
consequence indicated in corollary 4-2. That was that the computational

efficiency could be maximized over the J+1 values o ...« rather than
A 9 9
over the larger number K+1 of values o e Thus to determine the
o K

optimal estimator for example 1 in the appendix, the computational effi-
ciency need only be evaluated at J + 1 = 6 points rather than K+ 1 = 11
points, and at J + 1 = 4 points rather than K+ 1 = 9 points for example
2.

The same question of non-decreasing variances arises in the family

{SR(@) : 0 s < Qmax] of risk estimators based on stratified sampling.

Moore, Whitsitt and Landgrebe's example [30], in which the stratified

.




84

error count estimator had smaller variance than the stratified posterior
estimator, shows that an analog to theorem 3-1 is not possible for strati-
fied sampling. However,'for their example, the error count estimator
would not be included in the family. Thus one might still hope to show
that the variances of estimators in the family [§R(a) + 0 = < amax) are
non-decreasing as @ increases.

Finally, concerning the choice of the number of samples n, from each
class i=1,...M to be used in the stratified estimator éh(a). We discussed
two choices, the heuristic one with hi proportional to the prior probability
of class i, and the choice ni* to minimize the variance of the estimator
SR(@). In view of chapter 4, a better choice would have been to choose

*%

n, to maximize the computational efficiency of the estimator ék(a).

What implications would this have, in terms cof the optimal estimator for

stratified sampling, and could this be useful in practice?
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APPENDIX

Data From Example 1.

A.

T - e | J

mv < ‘< m
9977 = "4 E* 4 (166N (*)°3
1565 = "y =74 (18N )73
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Example 1. Values of o_ , & w. d : w. HEAanv and oaAQn»v

A-2

@ A ey T@ TE) T e e g g g g Q)
0 - o, Qn 12345) 12345 12345 {12345)12345 12345 | 12345 | 12345 | 12345} 12345
o o)
.000001 apm o, 1234 § 12345] 12345 §12345]) 2345 12345 § 12345 ) 12345 | 12345} 12345
1
.000005 amw o, 1234 | 1234 12345 12345} 345 12345 | 12345 ) 12345 | 12345 12345
2
.000027 awb o, 123 1234 12345 | 2345) 345 12345 | 12345 | 12345 | 12345 12345
3
.000122 awb Qn 123 123 12345 345) 345 12345 § 12345 § 12345 | 12345} 12345
4
.000174 aHu o, QA 144 123 2345 3454 3451 123 12345 | 12345 | 2345 2345
5 1
.00062 d o o' 12 12 345 345) 345 12 12 345 345 345
23 t q
6 2
.03652 aum o, 12 12 34 345 45 12 12 345 345 345
7
.06022 d o o 12 12 34 34 5 12 12 34 34 5
45 t q
8 3
.07042 aub @, Qn 12 12 3 4 5 12 12 3 4 5
9 4
.0744 d o o 1 2 3 4 S 1 2 3 4 S
12 €14 9 ¢
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*
Example 1. Values of C(art Y, V (cxrt ) and Cti(oft )
| i i i

*
o a o C(a) V (o) Ce(x)
. - q.
i i
0 o o 5.00 01831 |10.92
t0 qO
.000001 o, 5.00 01831 |10.92
1
.000005 o, 5.0 01831 |10.92
2
.000027 o 5.0 01831 |10.92
s
.000122 a, 5.0 01831 |10.92
/
.000174 o a 4.2 01831 |} 13.00
b5 9
.00062 o o 2.6 01832 | 20.99
s 9,
.03652 o, 3.11 02425 |13.26
7
.06022 o o 3.25 .07588 4.05
s 93
.07042 o o 3.62 .14358 1.92
ty 9
.0744 o o 3.83 22984 | 1.14
%0 95

*Estimates based on 600 samples

**Analytic value is .22926
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*
Example 1. Matrix of covariances [CmLG’)] for o =g, , Q@ , b
| o 8 10

*
(Cpp ()]
.582 -.127 ~.122 -.215 -.077
o, .520 -.103 -.181 -.165
o
(posterior) .35 -.088 .166
.588 -.071
.185
.582 -.127 -.124 -.222 -.184
4 o .520 -.105 -.187 -.071
‘s
.456 -.049 -.069
1.429 -.124
1.038
1.843 -.107 -.114 -.247 -.087
o 1.265 -.076 -.165 -.058
‘10
(error count) 1.339 -.175 ~.062
2.708 -.134
1.038
1.644 -.126 -.110 -.189 -.080
o 1.644 -.110 -.190 -.080
tlo «
(analytic) 1.45 -.166 -.070
2.39 -.121
1.08

*Estimates. based on 600 samples.
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Example 1. Estimators ﬁ@yt ) i=0,1...10 For Various Sample Sizes

i
N=50 N=100 N=200 true
o o o ﬁ@z) ﬁ(a) ﬁ(a) R
| S q.
i i
* 0 (o o .36047 .35832 .36322 .356
t q
o o
.000001 e .36047 .35832 .36322 .356
1
.000005 a, .36047 .35832 .36322 .356
5 3
.000027 @, .36047 .35832 .36322 .356
| 3
.000122 o, .36047 .35832 .36322 .356
4
.000174 o a .36047 .35833 .36323 .356
t q
5 1
.00062 o o .36045 .35829 | .3631¢ .356
t q
5 2
.03652 a, .37872 .36578 | .37265 .356
7
.06022 a o .33585 .38022{ .37872 .356
t q
8 3
.07042 o a .34302 .37835| .38116 .356
t q
9 4
*%. 0744 o, o .28 .35 .365 .356
10 s
* ﬁ&rt ) is equivalent to the posterior estimator ﬁ(p).
o
ok ﬁ@yt ) equivalent to the error count estimator ﬁ(ec).
10




Example 1

Computational efficiency of the optimal estimator relative to the
posterior estimator and the number of density evaluations saved by using
the optimal estimator rather than the posterior, for various sample

sizes N for the optimal estimator.

* *
% RCE(@ ,p) S ,p)

N
100 1.92 239
200 1.92 478
400 1.92 956
600 1.92 1,434

Computational efficiency of the optimal estimator relative to the
error count estimator and the number of density evaluations saved by using
the optimal estimator rather than the error count, for various sample

sizes N, for the optimal estimator.

e ) B ,el)

N*

100 24 07 5,998
200 24.07 11,996
400 24.07 23,992
600 24.07 35,988
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1

1

Basis of n=25 Samples. Also (36',(6?t Yis

i

Example 1. Values of &(&t ), \7(&t ) and CAE(&t ) Approximated On the

Q>

é, & ¢@) V@E) CE@) CE@)
o q.
1 14
0 &t a 5. .01973 | 10.14 10.92
(o) qo
.000306 &c G .01973 | 10.14 10.92
, i
' .014804 &t 5. .01973 | 10.14 10.92
2
.0003063 &t 5. .01973 ] 10.14 10.92
3
.014804 &t 5. .01973 | 10.14 10.92
4
.049186 & a 4.48 .01973 | 11.31 12.24
t q
5 |
.017754 & a 2.78 .01973 | 18.23 19.49
t q
6 2
L0444 7 &: 3.19 .03124 } 10.03 12.61
7
.06319 o & 3.56 .06121 4.59 3.88
t q
8 3
.073341 & o 3.96 .11432 2.23 1.81
t q
9 4
.074388 & & 4.26 .16667 1.41 1.14
Y10 9

| 4
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Example 1.

Computational efficiency of the final estimator relative to the
posterior estimator and the number of density evaluations saved by using
the final estimator rather than the posterior, when the optimal esti-
mator is approximated on the basis of n=25 samples, for various sample

sizes N for the final estimator.

N | RCE(f.p) 3t
ol .5 166.75
200] 1.64 391.36
| 400 1.71 828.93
600 1.74 1,275.39

Computational efficiency of the final estimator relative to the
error count estimator and the number of density evaluations saved by using
the final estimator rather than the error count, when the optimal estimator
is approximated on the basis of n=25 samples, for various sample sizes

N for the final estimator.

N JRCE(f.ec) 8(f,ec)

100 18.78 5,929.63

200 20.49 11,918.14
P

400 21.46 23,887.05

600 21.81 35,866.04
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Data From Example 2.
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Example 2. Values of C(at ), V (at ) and CBQ}C )
i i
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i

*
o o C@) | Vv (@) JCE(x)
94
0 o 5 .02184 9.16
q0
.000000021 5 .02184 9.16
.000000105 5 .02184 9.16
.0000002 5 .02184 9.16
.0000012 5 .02184 9.16
.0006226 aq 4.4 .02184 ) 10.41
i
.0022214 o 2.62 .02205§ 17.31
92
.003592 2.66 .0224 16.78
.0105237 Qq 1.94 .02884) 17.87
3

*Estimates based on 600 samples.




Example 2. Estimators ﬁ(ort

B-

1

4

) i=0,1...8 and ﬁ(ec) for Various Sample Sizes.

N=50 N=100 N=200 true
o O, R@) R@) R(@) R
* 0 aq .21929 .22522 .22067 .233
0

.000000021 .21929 .22522 .22067 233

.000000105 « 21929 .22522 .22067 .233

.0000002 .21929 22522 .22067 .233

.0000012 +211929 22522 .22067 .233

.0006226 dql .21932 22537 .22078 .233

.00222214 aqz .21911 .22414 .21977 .233

.003592 .21915 .22590 .22093 .233

.0105237 aq3 .19653 .21974 .21861 «233
** ec - .16 .22 o0

*ﬁﬁzt ) is equivalent to the posterior estimator ﬁ(p).

o

**R(ec) is not allowed in the family.
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Example 2.

Computational efficiency of the optimal estimator relative to the
posterior estimator and the number of density evaluations saved by using
the optimal estimator rather than the posterior for various sample sizes

N, for the optimal estimator.

N, |sce@’,p) | s@’,p
100 1.95 184
200 1.95 368
400 1.95 736
600 1.95 1,104

Computational efficiency of the optimal estimator relative to the
error count estimator and the number of density evaluations saved by using
the optimal estimator rather than the error count, for various sample sizes

N* for the optimal estimator.

N, RCC(a*,cc) 8(0*,ec)
100 15.97 2,904
200 15.97 5,808
400 15.97 11,616
600 15.97 17,424
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Example 2. Values of é(&t h {I(at ) and C'B(&t ) Approximated On the
i i i
Basis of n=25 samples. Also C&(&t )
i

& @, & C(@&) V@) CE(@) Ce(a)
i 93
.0 &t a 50 .01994 10.03 9.16
o 9 3
.0 &t 5, .01994 10.03 9.16
1
.0000001 &t 5 .01994 10.03 9.16
2
.0000002 &t 5 .01994 10.03 9.16
3
.0000023 &t 5 .01994 16.03 9.16
4
.0157484 at & 4 .46 .01994 11.24 10.29
5 9
.0447042 & & 3.24 .01995 15.47 13.22
t q
6 2
.0124001 &t 2.72 .01921 19.14 16.35
7
.0124051 & a 2.00 .02068 24.18 17.51
tg 9




Example 2.

Computational efficiency of the final estimator relative to the
posterior estimator and the number of density evaluations saved by using
the final estimator rather than the posterior, when the optimal estimator

is approximated on the basis of n=25 samples, for various sample sizes

N for the final estimator.

B-8

N | fCECE p)) o(f,p)
100] 1.46 126.5
200 1.64 304
400} 1.76 665
600] 1.8 1,020

Computational efficiency of the final estimator relative to the
error count estimator and the number of density evaluations saved by using
the final estimator rather than the error count, when the optimal esti-

mator is approximated on the basif of n=25 samples, for var ious sample

sizes N for the final estimator.

N REE(f,ec) | &(1,ec)
100 11.99 3022.25
200 13.45 5913.75
400 14 .38 11707.5
600 14.73 17505.75




