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Introduction

It has been recognized for many years that liquid propellants (LP)
offer several advantages over solid propellants when applied to guns
(References 1 through 8). Advantages which have become generally
accepted include elimination of the cartridge case, high loading
densities, reduced storage requirements, vulnerability reduction and
increased flexibility in vehicle design due to weight and volume
redistribution.? Because of these advantages much research and

hardware development has been done at the BRL and at other places, in-

cluding extensive test programs, which have in turn uncovered several
problem areas. One of the concerns over the years has been the
repeatibility of the pressure-time curves in the chamber, and occasional
high pressure values that could exceed design limits of the casing.]0
It is apparent that several variables may be involved and that the
liquid propellant is extremely sensitive to small changes in conditions
at ignition and in the LP chamber. It was the attempt of this work

reported here to provide more information on the ignition phase of the :

LP gun system operation.

The pyrotechnic igniter, which exhausts hot, high pressure gases
i
into the LP is considered the prime candidate for causing variations ;

in propellant decomposition, since it has not been greatly controlled

in the past. The igniter itself is a solid capsule upstream of an :

orifice that decomposes very rapidly, sending the products of combus-

, tion through the orifice into the liquid propellant. These products

1 are known and the conditions at injection are somewhat controlled.
The phase of ignition that is very crucial and one that needs further

) investigation is the moment the gases exit the orifice, the subsequent
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penetration until propellant ingition. From tests, this important phase
of ignition lasts about 500 microseconds. But, during this time, the
gas bubble has penetrated the liquid by several centimeters, and the
shape and surface area have been developed which dictates decomposition
rate. High pressures occur in the chamber during this period and it
has been observed that the gases shear the liquid into many droplets.
It is important to understand the conditions of the bubble at the
instant of ignition of the LP because of its affect on the decompo-
sition rate and therefore pressure variations with time in the chamber.

Experimentally, an apparatus was used to provide high igniter
chamber pressures and several orifice designs to investigate the
effects on control of the injection. A high speed camera (on loan
from the BRL) was used to provide a visual determination of the gas
bubble formation, penetration depth and rate, gas-liquid entrainment
and shock wave propagation. Tests were run to determine the sensitivity
and effects of geometry (orifice size and shape), upstream initiation
pressure, and the repeatability of tests.

Analytically, the gas bubble formation was mathematically
modeled to simulate the sequence of events as the high pressure gaseous
products penetrates the liquid propellant. The model includes the gas
bubble formation, gas-liquid interactions, penetration depth and rate,

plus the effects of pressure waves.
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Analytical Effort

The mathematical model developed under the g:rant consists of
two separate models, 1, a simple model based on the equations of state
of the gas and liquid, which will be designated Model I, and 2) a
more sophisticated model based on linear continuity and the momentum
equations (Model II). Model I utilizes estimates of the ga§ volume as
a function of time, while Model II predicts the bubble shape, pressure,
velocity distribution, and densities as functions of time and distance
downstream in the chamber. References 12 through 16 were helpful
in these developments.

The basic volume equation for Model I is

Vo = Vg *Y

where Vg is the volume of the gas and VL is the volume of the liquid.
The volume of the gas is calculated using the real gas equation of
state and the compressibility factor, Z, because of the high pressures
involved. The volume of the liquid is expressed in terms of the
bulk modulus, which is assumed to vary linearly with the pressure.
Assuming choked flow and a constant mass flow into the chamber, the
mass of the gas is known as a function of time. Equation (1) is
then solved numerically for the chamber pressure at any time, t.

If the effect of the pressure wave is neglected, VO is the total
volume behind the wave front as it moves downstream and in front of the
wave as it reflects from the far end of the chamber.

In Model I the shape of the gas bubble is assumed to be a prolate

spheroid with various ratios of major diameters (see Figure 1). The
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proper ratio will be estimated from experimental results.

In Model II, the variable x is the distance downstream in the
chamber and t is the time. It is desired to determine r, the radius of
the bubble, as a function of x and t. Other quantities currently
determined include velocities, pressure, and densities. The velocity
is assumed parabolic over the cross section. This results in four
velocity parameters (two for the gas and two for the liquid) which
vary with x and t. The pressure and densities of the liquid and gas
are also assumed to vary with x and t alone. The boundary of the
1iquid and gas is currently assumed perfect with no mixing, vapor
pressure, or gas bubbles. The temperature is assumed constant
throughout the chamber and for the length of the time considered

For the eight dependent variables mentioned above, eight
equations are needed. These consist of the state, continuity, and
momentum equations for both the gas and the liquid, plus two boundary
conditions at the gas-liquid interface.

Taking a volume element of width dx, the unsteady continuity
equation can be derived which results in the following equation (see
Figure 1).

9A

3A A
P 3t

3p U ap. .
tAgp tex t (b 35x *Usg) dA=0

Here, p is density, A is cross sectional area, U is velocity and Ub
is velocity at the boundary. Considering a momentum analysis of the

same element under unsteady flow conditions produces
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Here, p is pressure uis viscosity, and £is the radial coordinate.
Substituting the assumed parabolic velocity distribution into
equations (2) and (3) for both the gas and the liquid gives four partial

differential equations. Two additional equations are obtained from

equations of state.

For the gas

P = pRIZ
and for the liquid

B = T

where the bulk modulus, 8, is assumed to vary linearly with pressure.
Two additonal equations are obtained by making the velocity and shear
stress continuous at the gas-liquid boundary. Suitable initial
conditions and boundary conditions at the entrance to the chamber
complete the formulation of the problem.

The system of eight equations described above are highly nonlinear,
first-order partial differential equations. To solve these, the
method of lines was employed.]7 First, finite differences with respect
to t were taken, producing a set of eight ordinary equations in
terms of the independent bariable x. There equations were then solved
by a standard Runge-Kutta technique. The resulting penetration depth
and rate are shown in Figures 2 through 9.

The model currently assumes negligible gas-liquid entraimment,
and temperature variations. It also does not provide for radial
pressure waves or the effects of solid particles that may be injected
into the LP. The model exhibits a particular problem of x=0. The
solution is sensitive to the gas velocity of the entrance and an

idealized model gives a singularity of the gas-liquid interface at x=o.

LL;



In Model II, the shape of the bubble remains almost cylindrical
in shape as x and t vary. In order to more accurately predict the
shape of the bubble, it is believed that the momentum equation in the
radial direction should be considered in addition to the equations
already used. This involves introducing a radial velocity component.
In order to maintain x and t as the only independent variables, the
momentum equation in the radial direction will have to be integrated
with respect to the radial coordinate, & . This could be accomplished
by assuming a distribution of the radial velocity component over the
cross section, leaving certain parameters as functions of x and t.

At the gas-liquid interface, the radial velocity component will be
equal to the time derivative of r.

Inclusion of the pressure wave was obtained into the model via
the momentum equations, which were integrated in the x-direction in
the usual Runge-Kutta fashion. If the wave front was encountered,
the pressure change across the front was taken into account. This
phenomenon was primarily encountered between 125 and 250 micro-seconds

when the wave front was again traveling downstream.

—
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Experimental Effort

The experimental effort included the design, construction and testing

of an apparatus for the simulation of the ignition phase. Figure 12

illustrates the primary injection cylinder. A mechanically sheared

.diappram allowed control of the start of the gaseous injection into

the 1iquid chamber for photographic purposes. Several materials were
tested for use in the diaphram for repeatability. Aluminum disks were
finally selected for the greatest repeatability. As the diaphram is
sheared, the pieces and plug will necessarily have to have a cavity to
fall into, thus increasing the volume above the plug, and reducing
the pressure. By using different pin lengths, the pressure prior to
diaphram rupture was controlled up to about 28000 psia, which was suf-
ficient for a controlled design injection pressure of 200000 psia.
Ballistics type piezoelectric pressure taps were used to monitor the
pressure in the cylinder at all times during the injection sequence.
During a test, a nigh speed camera was used to observe bubble shape,
injection distance and rate, and gas-liquid entrainment. Of primary
interest was the sensitivity of geometry, gas type, injection velocities
and upstream pressures on repeatability of the cavity formation. A
square cross sectional liquid chamber was used to simplify the photo-
graphy, although reflecting waves off this shape gave results somewhat
different than what would occur for the cylindrical shape of a gun
chamber. Future work could include piezocrystal monitoring of the
square and round shapes to determine if there is any significant
variations in results. If this is indicated, then a round section with

appropriate optics could be developed for photographic purposes.
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The experimental apparatus (shown in Figure 10) included a gas
regulator, air filter, 0il lubricator, solenoid switch, piston, 1/2 inch
high pressure cylinder, water tank and gas supply system. The piston
was made of cold roll stainless steel and was provided with two teflon
o-rings to reduce gas leaks. The diaphrams (.048 and .078 inch)
were designed to rupture at prescribed pressures, although in operation
the rupture was controlled by a plunger at the end of the piston. The
orifices were aut frombrass (Imm & 2mm). Grease was used to block the
orifice prior to each run to eliminate water seepage into the ullage
upstream of the orifice. The water tank was of rectangular shape
8 x 1.25 x 1.25 inches and designed to withstand 2000 psia. Two piezo-
electric crystals were used to measure pressure in the tank and one was
placed in and fed into a four channel vertical amplifier oscilloscope
containing a time base and delay generator. A polaroid camera was
attached to the oscilloscope for impressions of pressure variations. A
high speed camera was used to capture the injection sequence and had the
capability of 11,000 frames per second, f of 1.9, zoom lense and usable
distances of 4 to 100 feet. f of 4.0 was used for all tests and
provided good resolution. The light source included two 1000 watts
tungsten hallogen spotlights and three 500 watts super flood #2
photoflood bulbs. These 1ight sources were kept about 1 foot from
the tank. In order to get maximum light, one spot light and one super
flood 1ight were kept in between camera and tank. One spot light and
two superfiood 1ights were kept behind the water tank. Precaution was
taken to prevent excessive light entering into camera, by shielding it

with a black sheet. All of the lights were positioned at 45° angle with
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the tank.

For pressure measurements peizo-electric crystals in the high
pressure cylinder were calibrated at 500 psia per unit. Crystals
in the tank (upstream) were calibrated at 100 psia per unit. A
single sweep mode was used per crystal. On the time scale, one unit
was one second. The total length of travel of the beam was about
7 units, hence, from the instance the beam was triggered, it took
about 7 seconds for the beam to go from one end to another. The
solenoid switch and camera motor was thus started within these
seven seconds.

Figure 14 shows a typical pressure-time trace from the
oscilloscope; this one from test case #1. Trace (1) represents the
pressure in the cylinder while trace (2) represents that of the liquid
chamber. For this case, the cylinder pressure increases rapidly
from its initial pressure of 250 psia to 1450 psia just prior to
diaphragm rupture. A time lag is shown from the diaphragm rupture
time to the increase in chamber pressure.

A frame by frame analysis provided the information for calculating
the depth and rate of penetration for the cases run and are plotted

in Figures 19 and 20.
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Figure 13.

Photograph of Test Stand
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Pressure-time curve from Oscilliscope

Figure 14.
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Figure 15.

Photograph of Penetration >equence

Test Case #1

P
25

Time = 0.5 msec
Disp.= 0.324 inch
vel. = 54.06 ft/sec
Time = 1.0 msec
Disp.= 0.649 inch
Vel. = 54.06 ft/sec
Time = ) L msec
Disp.= 0.865 inch
Vel. = 37.5 ft/sec
Time = 2.0 msec
Disp.= 1.08 inch
Vel. = 34.45 ft/sec
Time = 2.5 msec
Disp.= 1.24 inch
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Time = 3.0 msec

Dist.= 1.40 inch

Vel. = 27.07 ft/sec
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[ Pcylinder initial =600 psia
Pcylinder final =2,600psia
I ptank initial =14.5 psia
Ptank final =280 psia
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T 2 1.0 56/64 1.641 112.33
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Time = 0.5 msec
Dist.: 0.967 inCh
Vel. = 161.17 ft/sec
Time = 1.0 msec
Dist.= 1.641 inch
Vel. = 112.33 ft/sec
Time = 1.5  msec
Dist.= 1.934 inch
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Time = 2.0 msec
Dist.= 2.168 inch
Vel. = 39.23 ft/sec
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Vel. = 29.22 ft/sec

Figure 16. Photograph of Penetration Sequence
Test Case #2




28
-
l Test #3
‘ Pcylinder initial =500 psia
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- 5 3.33 52/32 3.1 37.31
6 4.00 56/32 3.35 30.00
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Figure 17.

Photogra -h o~

Test Case #3

"oaalration Scquance
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Time = 0.67 msec
Dist.= 1.197 inch
Vel. = 149.63 ft/sec
Time = 1.33 msec
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Vel. = 97.25 ft/sec
Time = 2.00 msec
Dist.= 2.45 inch
Vel. = 59.73 ft/sec
T?me = 3.33 msec
Dist.= 3.11 inch
Vel. = 37.31 ft/sec
Time = 2.67 msec
Dist.= 2.81 inch
Vel. = 44 .94 ft/sec
Tine = 4.0 msec
Dist.= 3.35 inch
Vel. = 30.00
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Figure 18.

Photograph of Penetration Sequence
Test Case #4
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Conclusions

Simulation of the penetration sequence for gaseous injections
into liquid propellants provided greater understanding of the
significants of geometry and flow conditions on gas bubble formation,
penetration depth and rate. Comparisons of test data and the simulation
model indicated that the model is good to excellent in predicting the
penetration depth and rate of the injection for the first 500 micro-
seconds. The shape of the bubble obtained experimentally approached
closely to the prolate spheroid assumed for model I. The excellent
agreement between the test data and simulation program also provided

support for the assumptions made for the program.
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