
AD-A055 965 

UNCLASSIFIED 

ADA 
055985 

AEROSPACE CORP  EL SE6UN00 CALIF IVAN A GETTING LABS       F/G 20/<* 
TEMPERATURE CORRELATIONS IN TURBULENT BOUNDARY LAYERS.(U) 
JUN 78  IC MEECHAM F0«*701-77-C-0078 

TR-0078(3606)-l SAMSO-TR-78-90 NL 

END 

8 18 

I 



NATIONAL BUREAU OF STANDARDS 
MICROCOPY  RESOLUTION  TEST   CMAHT 



• "••      II..-.-. I.    I.»      .1. .1 ,|        I     •••!.•, 

Temperature Correlations in 
Turbulent Boundary Layers 

W. C. MEECHAM, Consultant 
Electronics Research Laboratory  , 
The Ivan A. Getting Laboratories < 

The Aerospace Corporation 
El Segundo. Calif. 90245 

* 

9 
7 Jane 1978 

Interim Report 

APPROVED FOR PUBLIC RELEASE; 
DISTRIBUTION UNLIMITED 

D D C 
><nr?nn nrs\ 

^ 

Prepared for 
AIR FORCE WEAPONS LABORATORY 
Kirtland Air Force Base. N. Ilex. 87117 

SPACE AND MISSILE SYSTEMS ORGANIZATION 
AIR FORCE SYSTEMS COMMAND 

Los Angeles Air Force Station 
P.O. Box 92960, Worldway Postal Center 

Los Angeles, Calif. 90009 

78   07  OS 128 



This interim report was submitted by The Aerospace Corporation, 

El Segundo,  CA 90245, under Contract No.  F04701-77-C-0078 with the 

Space and Missile Systems Organization,  Deputy for Advanced Space 

Programs,  P.O.  Box 92960,  Worldway Postal Center,  Los Angeles, 

CA 90009.    It was reviewed and approved for The Aerospace Corporation 

by A.  H.  Silver, Director,  Electronics Research Laboratory.    Lieutenant 

Dara Batki, SAMSO/YCPT, was the project officer for Advanced Space 

Programs. 

This report has been reviewed by the Information Office (OI) and is 

releasable to the National Technical Information Service (NTIS).    At NTIS, 

it will be available to the general public,  including foreign nations. 

This technical report has been reviewed and is approved for publica- 

tion.    Publication of this report does not constitute Air Force approval of 

the report's findings or conclusions.    It is published only for the exchange 

and stimulation of ideas. 

Dara Batki,   Lt,  USAF 
Project Officer 

ALJto. 
Robert W.   Lindemuth,  LtCol, USAF 
Chief,  Technology Plans Division 

FOR THE COMMANDER 

uEONARD E.  BALTZELL,  CofT USAF 
Asst.  Deputy for Advanced 

Space Programs 



I UNCLASSIFIED 
»jCUWITY CLASSIFICATION OF THIS gAgt (When Pale Entered) 

\* REPORT DOCUMENTATION PAGE 
2. GOVT ACCESSION NO 

TEMPERATURE CORRELATIONS IN 
"JURBULENT BOUNDARY LAYERS* 

AUTHOBQ) 

William C./Meecham (Consultant) m H 

• •   PERFORMING ORGANIZATION NAME AND ADDRESS 

The Aerospace Corporation 
El Segundo,   Calif.   90245 

M.    CONTROLLING OFFICE NAME AND ADDRESS 

Air Force Weapons Laboratory 
Kirtland Air Force Base,  N.  Mex.    87117 

14.   MONITORING AGENCY NAME i ADDRESS/" dlllerent /ran Controlling Olllce) 

Space and Missile Systems Organization 
Air Force Systems Command 
Los Angeles,   Calif.   90009 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

1. RECIPIENT'S CATALOG NUMBER 

/ ) 

tYPE OF REPQRT A PFBmO COVEREO 

Interim ' 

- truuu v. 

til 
R SPORT NUMBER 

TR-0078(3606)-1- 
BBIITRRS^R^WHIWT Uu&SlrXC) 

•E*uixfi-n-c-#vi%v' 

10.   PROGRAM ELEMENT, PROJECT, TASK 
AREA » WORK UNIT NUMBERS 

BfPOST n*TB 

7 June #78 
D.Nwum eF PAaea*- 

35 '   ' 
IS.   SECURITY CLASS, (el thle 

Unclassified 

ISa.   DECLASSIFICATION/OOWNGRAOING 
SCHEDULE 

I«.    DISTRIBUTION STATEMENT (ol thle Report) 

Approved for public release; distribution unlimited. 

17.   DISTRIBUTION STATEMENT (ol the abmlrmci entered In Bleck 30, II dlllerent Item Report) 

I«.    SUPPLEMENTARY NOTES 

IS.   KEY WOROS (Continue on rereree tide II nocooomty end Identify br Block number) 

\ 

Turbulent Boundary Layers 
Temperature Correlations in Layers 
Temperature Correlations 
Temperature Fluctuation Effects 

^ 20\*BSTRACT (Continue on rereree elde II neeeeeery end Identify or block numfc.r) 

Temperature fluctuation effects are examined in heated turbulent boundary 
layers.    A modified Lagrangian integral procedure is used.    The tempera- 
ture fluctuations are matched at the laminar sublayer by using standard 
heat transfer theory to obtain their value.    It is found that the temperature 
correlations are similar to the velocity correlations.    They are,  of course, 
at maximum near the laminar sublayer, decrease as one passes through 
that layer,  and vanish beyond the boundary layer.    The temperature  

r*-i-< 

DD    F0RM    U7J 
(FACJIMILE1 

I""}- 
UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS PAGE (When Dote Entered) 

Atnospuce ran* «J«i-t »cv s-7« 

78   • 
-1. fiJ 

'    I     •     liSiil.«.i 



UNCLASSIFIED 

\ 

»tCUWITY CLASSIFICATION OF THIS »AOEfWU.« Dmlm I 

i» KEY S5SSS fSSSm!) 

I ABSTRACT (Continued) 

correlation is an integral of the velocity correlations, which are assumed 
in this treatment to be given.    It appears from this theory that they can 
have a small negative correlation at distances of a few local velocity scale 
lengths.    There is a very weak Mach number dependence in the result. 

UNCLASSIFIED ' 
MCUNITV CLA1WFICATICH O" TH» PMWM Data Satan« 

» 
»EP>OSP»Ct   FOBM  4141-2  Rty  1-74 



PREFACE 

The author acknowledges the significant support of Dr.  M.   T.  Tavis 

in this work. 

ucmm t* 
ins             uiti IKHH J^ 
we               MitMOa   a 

mnrtUTNt  

MT  _ _  
iismmw/miuuiun M 

•w.     mu- m/m rait 

A 

«   » 



I 

CONTENTS 

PREFACE     1 

I. INTRODUCTION  5 

II. THEORY  9 

III. DERIVATION OF AVERAGES AND CORRELATION 
FUNCTIONS  13 

IV. DISCUSSION OF RESULTS AND CONCLUSIONS                23 

REFERENCES      27 

APPENDDCES 

A. THE EVALUATION OF THE LAGRANGIAN 
INTEGRAL,   Eq.   (16)         29 

B. DISCUSSION OF INCOMPRESSIBILITY OF 
THE VELOCITY CORRELATION R         31 M 

C. CALCULATION OF THE CONVECTED 
HEAT FLUX q AND T'(ö )     33 

-3- 

i "» PBICKDINO PAOft BUÄ-WDT f IU*D 



i        i       ^ JIIJ-JT--- n 
I.    INTRODUCTION 

Recently, a considerable interest has developed in the temperature 

fluctuations occurring within heated boundary layers.    The specific important 

applications include the effects of such temperature fluctuations, notably 

through attendant density fluctuations, upon laser beam propagation through 

boundary layers.    Primarily,  such problems arise for beams being sent 

through boundary layers occurring about jet planes, flying at considerable 

altitude,  and at speeds near (the ambient) Mach 1.    The density changes that 

affect laser propagation can be caused, of course,  either by the temperature 

fluctuations,  considered here, or by pressure fluctuations; the latter effects 

have been treated elsewhere    by techniques similar to those used in this 

paper.    We assume in this work that the temperature effects dominate, and, 

we neglect the pressure fluctuation effects. 

Usually work on heated boundary layers has been directed toward 

finding rms temperature fluctuations (among other quantities) at the most. 

Here for the laser propagation problem,  and for other problems as well, 

the temperature correlation function is needed.    For simple rms values of 

the temperature fluctuation it would be possible to use some variation of 

mixing-length methods.    But of course for the correlation function much 

more information is needed.    Our approach here (involving beginning with 

the usual equations of motion for the fluid) uses an approximate Lagrangian 

integration procedure in order to obtain the required results. 

|      raaCEDlNO p 
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The basic procedure to be followed consists of beginning with the 

energy equation for fluid flow.    In that equation we shall gener,   ly neglect 

the effects of thermal conduction within the heated turbulent boundary layer, 

with the exception of the region very near the wall bounding the layer; in 

this (laminar) sublayer and regions contiguous to it, there is heat generated 

by the viscous action,  as a result of the very high velocity-shear occurring 

very near the wall.    This heat generation,  given quantitatively by the dissipa- 

tion function,  is included in the problem as part of the heat flux occurring 

within the boundary layer.    In addition,  there is a rapid deceleration of the 

fluid near the wall through viscous action; since this process is hot adiabatic, 

there is some irreversible heat generation, also to be included in the heat 

flux.    And, finally,  in problems of this type the wall temperature is in general 

different than the ambient temperature.    In the application cited above, it is 

considerably higher than the external atmospheric temperatures.    In our 

treatment, this heated wall is also taken into account.    This effect can,  again, 

be included as part of the heat flux within the boundary layer. 

The boundary layer near a flat plate or wall is initiated at the leading 

edge and grows slowly as one progresses downstream (in the x-direction). 

In our treatment, we assume (as is usual) that the layer growth rate is slow. 

The process does not change appreciably, in regions of interest,  in the 

downstream direction.    The derivatives of important quantities within the 

flow field are much greater in the  normal direction (the z-direction) than in 

the x-direction.    For such a flow,  the velocity fluctuations a.e approximately 
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statistically homogeneous in planes parallel to the wall.    Further,  even for 

flows approaching Mach 1, it is well known that the velocity fluctuations, 

which are particularly important in the treatment here,  are at relatively 

small Mach number:   the rms velocity is considerably below the mean flow 

velocity, typically no more than 10% of that velocity.    Thus, for the fluctua- 

tions, one can treat the problem as incompressible.    We carry that assump- 

tion here but,  of course,  allow temperature variations to produce attendant 

density variations.    In effect, we are adopting the familiar assumption that 

the dynamics of the process are but slightly influenced by compressible 

effects.    It will be seen in the development that the temperature fluctuations 

under our assumptions can be determined from the velocity fluctuations by 

an integration process.    We do not attempt here to solve for velocity 

fluctuations; we suppose that they are given. 

In this treatment, we assume that the total convected heat flux is a 

given quantity and that quantity will be determined from familiar fluid 

mechanics theory. 

The needed velocity correlations are taken from statistically 

homegeneous and isotropic flows (notably wind tunnel experiments), but the 

correlations are weighted with the rms velocity fluctuations at the measuring 

points for the velocity field.    The scale for the correlation functions is 

proportional to the distance from the wall so long as one lies within the 

boundary layer and is 6, the displacement thickness of the boundary layer, 

outside that layer. 
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We proceed to calculate the temperature space-correlation (and its 

variance).    We must be given the turbulence intensity level in this treatment. 

A separate calculation (using standard methods from heat transfer theory) 

is made to obtain the convective heat flux, just above the layer 6   . 

-8- 

^^^HBB j> 



1' •"'- 

n.    THEORY 

A sketch of the boundary layer problem is shown in Fig.   1, where the 

average velocity u depends only on z,  following our parallel flow assumption 

for the turbulent boundary layer.    For this problem, the free stream velocity 

is u and 6 is the displacement thickness of the boundary layer defined by 
> 

»   =  *J£  [ö„ -ü(z)]dz (1) 

The average temperature,  also a function of z alone, is T(z).    The tempera- 

ture of the wall is T   .    The laminar sublayer is of thickness 6   .    In Fig.   1, 

the heating effect of the dissipation and the imperfect temperature recovery, 

confined to regions near the sublayer, is shown to cause an increase in the 

average temperature.    The ambient value of the temperature,  T   ,  is shown 

for z large.    The temperature T     is assumed here to exceed the ambient 

value though,  of course, if it were less than that value the treatment would 
2 

be the same.    The energy equation for compressible fluid flow is given    by 

pCP 15?   = T5t    + v * (kVT*) + "** (2) 

where the dissipation function * is given by 

* 

+ (uz  +Wx)    -4(V-  "•> <3) 



'^Sf//////////W- 
•oo 'w 

Figure 1.    Thermal Boundary Layer.    The relative 
size of 6    and 6 is exaggerated, s "" 
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with 

u   =  (u   , v   , w  ) 

and where subscripts x, y, and z indicate partial derivatives here and later. 

We also use the corresponding component notation for other fields later. 

For incompressible flow Eq.  (2) reduces to (for approximately constant 

thermal conductivity k) 

DT 2    * 
pcp ^ = k* T    + »*• <4> 

where * is given by Eq.  (3) without the last term.    In these equations,  p, 

assumed here to be approximately constant, is the density, C    is the specific 

heat at constant pressure, per unit mass,  and u is the viscosity of the fluid. 

Further,  D/Dt is the material derivative given by 

DT*/Dt  =  8T*/8t + u*.  VT* (5) 

or,  for incompressible flow,  if convenient, we can write 

DT*/Dt = 8T*/8t +V  •   (u   T ) 

The change in density is assumed small in our work.    In Eq.   (4),  strictly 

speaking, for incompressible flow there is but one specific heat.    However, 

we assume here that there is a response of the medium to the temperature 

changes set in near the wall.    The appropriate specific heat is that at 

constant pressure,  for such a slight variation from incompressible flow. 

-11- 
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The dissipation function is,  as suggested earlier,   small throughout 

most of the boundary layer and may be neglected there.    In the region 6 

near the wall,  because of the very high shear-velocity,  there may be an 

appreciable generation of heat.    Accordingly, we treat the region just outside 

the viscous sublayer and take into consideration the heat generated within 

that layer when calculating the total heat transfer through the boundary layer. 

Furthermore, we neglect (for either air or water) the very slight heat con- 

duction term,  which is small compared with the convective effects,  outside 

the sublayer 6   .    In dimensionless form, we know that the heat conduction 

is of order the viscous dissipation.    For large Reynolds number flows being 

considered here,  these two effects are in general small except for special 

regimes:   specifically, the heat conduction is of order the convective effect, 

near the laminar sublayer 8   .    The result of these considerations is that our 

governing equation becomes 

DT*/Dt  = 0 (6) 

Thus,  there is no change in temperature (no heat exchange) following the flow. 

Under the stated assumptions, Eq.  (6) may be expected to apply everywhere 

outside 6    — through the boundary layer and out to regions beyond the layer. 

-12- 
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IE.    DERIVATION OF AVERAGES AND CORRELATION FUNCTIONS 

We begin by writing the field quantities in terms of their averages and 

fluctuations about those averages. 

T     =T" + T;u     =u + u (7) 

with, by definition, 

<T>  = <u>  = 0 

By incompressibility we see tiiat 

Y" • a    =y.u  = y.u  = 0 (8) 

The overbar indicates the (time) average; we assume that the process is 

statistically stationary.    Substituting Eq.  (7) into Eq.   (6) and averaging the 

resulting equation, we find that 

8T/8t + V- (ÜT + ÜT) (9) 

Note that the heat flux q convected in the normal direction,  away from 

the wall, is given by 

q/CpP w^ (10) 

One can see this relation by considering the followir %:   If a parcel of fluid 

with slightly higher temperature is transported upward, that is with w 

-13- 



_— 

positive, there will be an increase in heat in the  upper region, and 

conversely.    Thus, the net heat flux flowing upward is proportional to wT. 

We again substitute Eq.   (7) into Eq.  (6) and subtract Eq.  (9) to find 

the fluctuation relation, using Eq.   (8). 

T + (^ + u). VT   =   -   V. (uT- uT) (11) 

Equation (11) states that the material derivative of the temperature fluctua- 

tion (the time rate of change of that fluctuation following the flow) is equal 

to the two terms on the right side.    Of those terms the first is considerably 

larger than the second, involving as it does the average temperature rather 

than the fluctuation; we neglect the second term here.    Before attempting to 

integrate this equation,  some discussion is necessary.    Begin with a parcel 

of fluid at constant temperature, that is, with no fluctuation; such constant 

temperature boundaries occur at the wall and in the free stream.    This 

parcel of fluid then diffuses by what amounts to a random walk into the 

boundary layer,  arriving at the point of interest.    This diffusion path is 

nearly horizontal but of course not exactly so.    The vertical distance 

through which it diffuses in time Tn is of order Az, 

(Az)2   = Af       w(t)dt)  > * (w')2 TD tQ (12) 

where t   is the characteristic time for the turbulence process and the prime 

as usual indicates the rms value of the vertical velocity fluctuation. 

-14- 
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The characteristic time for the turbulent process is known to be approximately 

tQ  =6/w' 

The distance Az, which is required here for the diffusion process,  is quite 

complicated.    Near the wall the distance is essentially z,  the distance from 

the wall,  and the fluid which arrives consists mainly of hot elements of 

fluid.    On the other hand, near the edge of the boundary layer, that is,  z 

near 6, the diffusion distance is something like ft-z and the fluid that arrives 

comes mainly from the cold, free stream.    Finally, no fluid with temperature 

fluctuation arrives at points outside the boundary layer,  so that there the 

diffusion time may be taken as zero.    We use for the distance over which the 

diffusion occurs, the convenient, approximate expression 

-2 -2 -2 Az        • •       + (8   - z)     ,  z < 6 

,  z> 6. (13) 

Combining the simple expressions, we obtain for the time over which the 

diffusion occurs, the result 

TD  = |[z-2 + (6 - z)"2] fiw'l"1,  z< 6 (14) 

and T_ = 0 for z > 6. Using the incompressibility condition on u and the 

parallel flow assumption, we can write for Eq. (11), neglecting the term 

-V- ÜT, 

DT/Dt =  -wT (15) 

-15- 
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where the subscript indicates differentiation; now, we formally integrate 

that equation to find 

T 
r D 

T(r) = - T    I        w[x - u(z)t, y, z; t - T[dr (16) 
ZJo 

We suppose that the parcel of fluid began in a region where there was no 

temperature fluctuation.    In integrating along the path of the fluid as shown 

in Eq.  (16) we have dropped the velocity fluctuation in the argument of 2 

since it in general is much smaller than the mean flow used there.    Dropping 

the velocity fluctuation has the effect of integrating the function w along a 

line parallel to the x-axis rather than following the actual path taken by the 

fluid particle.    This,  of course, introduces some error in the result (see 

Appendix A).    The various accumulated errors in the treatment will be 

handled by introducing a multiplicative constant,  which will be adjusted in 

order to give the proper heat flux near the laminar sublayer. 

We proceed to construct the temperature correlation function.    To do 

this, we write Eq.   (16) at the point r'   rather than r as here,  then do the 

same at the point r' '.    Multiplying the resulting equations together and 

averaging,  we obtain 

T(r',  r")«<T(r') T(r")> 

X R33[x - ü(z') (t + t') +ü(z')t\ y;  z',  z". t] 

16- 



In Eq.  (17) we used the parallel flow assumption,  that the velocity correlation 

is statistically homogeneous in planes parallel to the wall.    As a consequence, 

the correlation is a function of the difference arguments in the x" and y~ 

directions.    That correlation is defined by the relation 

R   (r\  r") =<u.(r') u (r")> (18) 
J J 

where we employ the notation 

r = r" - r' (19) 

We also changed one variable of time integration from t" to t = t" - t'. 

For Eq.  (17) we know that the scale of the correlation function in space is of 

order M~ 6,  and in time is of order t  ,  given by Eq.   (12).    It is seen, then, 

that the integral is controlled by the integration of the time dependence in 

the x-argument.    The time dependence in the time argument itself has a 

much larger scale.    Using that fact we can integrate Eq.  (17) and obtain the 

result 

T 
T(r\ r") =T , T  „  2-K2f*R„(i, y; %'. z") d| (20) 

"     " z       z     ü(z")     •/-»     33 

where R^ may be taken to be the simultaneous (z-directed) velocity correla- 

tion.    In Eq.  (20), there is no x-dependence for the temperature correlation 

until the separation between the measuring points in the x-direction exceeds 

(the erroneous x-scale) ÜTD~ ÜM/w'.    Thus,  the scale in the x-direction 

17- 
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would be considerably greater than the scale in the other directions.    This, 

as is pointed out in Appendix A, is a result of the approximation made in 

Eq.   (16).    Further as pointed out there,  a multiplicative constant is introduced 
2 

by the approximation, inserted in Eq.  (20) and called K  . 

In order to proceed with the calculation, we need the correlation R,,; 

we make the plausible assumption that it is approximately given by 

R33<£'' l") " w'<z') w'(z") R*3(r) (21) 

* 
The R.. is the normalized,  second-order velocity correlation for incompres- 

sible, homogeneous and isotropic turbulence.    These correlations have been 

much measured experimentally.    It is seen that the proposed velocity correla- 

tion for this problem is a weighted,  statistically homogeneous correlation, 

the weighting being taken at the measuring points for the correlation function. 

There is a question as to whether an incompressible flow field may be 

represented using such weighting functions.    It is shown in Appendix B that 

this is possible.    By our parallel flow assumption the rms velocities, being 

average quantities, depend only on z.    From the theory of homogeneous 
3 

and isotropic turbulence   we know that the normalized correlation can be 

written 

(22) «s •-*#•* •*••«••«)•, 
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R33 • !tä) * Ä-'' (u) (' - 4) <»> 

with 

f' flü .   fjgj f   Qty     6(r/M) 

where M is the integral scale of the turbulence, and f is the longitudinal 

correlation.    Referring again to Ref.   3,  the transverse correlation is 

related, to the longitudinal 

1/r *=£ + i(£)f/ <24> 

Consider M,  the scale of the turbulence.    Near the wall,  the scale is 

given by the distance from the wall.    For the two-point correlations con- 

sidered here the scale must be given by the lesser distance.    As we proceed 

through the boundary layer, finally the scale approaches the thickness of the 

boundary layer and outside that layer we can expect that any disturbances 

which remain will retain the scale of the boundary layer thickness.    We 

accordingly choose for the function M, the following form 

M"2(E\  «") = (*')'* + U")"2 + 6"2 (25) 

19- 



Substituting from Eqs.   (22) and (23) in Eq.   (20) and defining the 

normalized coordinates, we obtain 

p = r/M, ? = x/M, Tl = y/M. C = z/M (26) 

where x, y, and z are the difference arguments defined above, we find 

Eq.   (27) 

T 
T(r\  r")   = ?,?"„   2_ K2 w'(z') w'(z") M(z',  z") 

"     ~ Z       Z      ü(z") 

X 2 
/ 

^£d£_ 

jpra/iw 
f(p) + §«•*•(' -$ 

(27) 

AT + c* 

In order to determine the constant K we adjust the temperature fluc- 

tuation at the laminar sublayer to equal the value obtained using heat transfer 

theory found in Appendix C,   Eq.  (C13).    To do so, let t' equal r" equal 6   . 

We see from Eq.   (13) that for such small values of z 

A  2      .2 Az    st 6 (28) 

Then T   / 6    may be approximated by T     - T  .    We obtain for the mean z      s r w        • 

square temperature fluctuation, the form 

./2, 
T     (6s) = (Tw- T-J    K 

2     2   w'<6s> 
u. 

(29) 
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nr     iiainc thp nominal value fw   fA Wü_l = 0.05 fRof    7\ 

T'(« J = (T     - T  ) K(0.05)1/2 oI/2 (30) s w        °° 

Here, or is the integral 

or = f    £(5)d?  =0.5 (31) 

the numerical value for this integral is obtained below from a large Reynolds 

number calculation for the longitudinal correlation function f.    As suggested, 

we compare this result with that obtained from heat transfer theory given in 

Eq.   (C13).    The result for K is 

K =0. 16 (M   x)"1/5 (32) 
00 

The rms temperature fluctuation throughout the layer is, 

/ \ 1/2 -1/5 

T'(z')=0.12T  ,(«') AzfiLlilL Mi (33) 
\TI(Z')/        V   -V 

from Eq.   (27), where x    is im and x is measured from the beginning of the 

boundary layer. 

For simplicity, we assume (without great error) that the mean 

temperature,  the turbulent velocity fluctuation, and the mean velocity do not 

-21. 



vary greatly in going from z' to z", then the normalized temperature 

correlation function, found by dividing Eq.   (27) by the square of Eq.   (33), 

is 

T(>',  >'j        f 
[TW       L 

pdp 

/, 

= It(Tl2 + C2) + C2 I2(T12 + C2) 

f(p) + |  f •fsj 
(34) 

where 

-••/ 

pdp 

A2"'2 
fir + c 

yP
2 - Ti2. c2 ̂ •1*1 

h - zj _£dp_ 

^ 
2     T.2      ,.2 

77~F ^p •" -£ [-§'1 
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IV.    DISCUSSION OF RESULTS AND CONCLUSIONS 

The standard deviation of the temperature (the rms fluctuation) given in 

Eq.  (33) has a constant chosen to match the expected standard deviation of the 

temperature near the laminar sublayer,  as found using heat transfer theory. 

This is discussed in Appendix C.    We see from Eq.  (33),  again near the sub- 

layer,  that the temperature standard deviation is 

T'(6s) = 0. 027(Tw - Tj(M„ f-j (35) 

with a nominal value used for the turbulence intensity and T„/(Z')AZ replaced 

by T     - T .    This result is approximately a few percent of the temperature 

contrast.    The Mach number dependence is very weak, probably quite diffi- 

cult to find experimentally.    The dependence on distance downstream from 

the leading edge likewise is very weak. 

The normalized temperature correlation is given in Eq.  (34).    It seems 

plausible that the x-dependence of the correlation,  not found from the present 

analysis,  will be essentially similar to the dependence in the y-direction. 

We propose replacing T)    + C    m Eq.  (34) by a    defined by 

cr2 = (x2+y2 +z2)/M2 (36) 

where,   recall,  M is the local scale of the turbulence,  approximately the 

distance from the wall when close to the wall,   and 6 is the displacement 

23- 
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thickness of the boundary layer as one moves out into that layer.    Then the 

normalized correlation may be written following Eq.  (34) 

T(J7''£2)=II(CTZ> + C2I2(CX2) <37) 

[T'(z )f        l Z 

To calculate these integrals we need to know the normalized longitudinal velo- 

city correlation f.    This function,  for the large Reynolds number flows of 

interest here,  could be taken from experiments; however,  we must differen- 

tiate the function once in constructing the required integrals.    That makes the 

process somewhat more difficult.    Therefore,  we have chosen to take the 

function f from recent large Reynolds number calculations.    The longitudinal 

correlation function of Hogge and Meecham has proper continuity and dif- 

ferentiation is not a problem.    The results of the computation of the two in- 

tegrals I. and I, are presented in Fig.  2.    Specifically,  for the two measuring 

points at the same height z   from the plane,  the correlation function is just 

I..    It is interesting to note that there is a small negative lobe in normalized 

value of about -0. 2 at a distance in the x-y plane of 2 to 3 local correlation 

lengths.    This arises from the known negative lobe of the transverse velocity 

correlation,  on which this integral is dependent.    If we look at the correla- 

2 2        2 tion in the vertical direction, that is x = y = 0,  we need l.(Q   ) + C I»(C   )•    Again, 

it appears that a negative correlation will develop,  according to our results, 

though it is not large. 

The density fluctuation, which is needed for optical propagation through 

the heated boundary layer,  may be obtained from the ideal gas law.    Recall 

24- 



wi^mm^wnium i_yy" 

3 

0 

0.4 
0        12       3 5       6       7       8 

.' 

Figure 2.    Plot of Integrals I. and I, 
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that the variations are at constant pressure,  therefore,  it follows that 

p/p(z ) = -T/T(z ) (38) 

Here,   p(z') is the local average value of the density and p is the density fluc- 

tuation.    It is easily seen that the normalized density correlation function is 

given by 

<P(£,)p(r;)>_T(r/,  r*) 
72.  #7 -'2-  " 

P    (z ) T'-(z') 
(39) 

Again,  we assume that the intensity of the temperature fluctuation and mean 

values of the temperature vary but slightly in going from z   to z" in regions 

of interest.    The normalized density correlation is the same as the normalized 

temperature correlation.    Further,  the rms value of the pressure and tempera- 

ture are related from Eq.  (38) by 

pVJ/pV) = TV )/"(«') (40) 
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APPENDIX A.    THE EVALUATION OF THE LAGRANGIAN 

INTEGRAL,  Eq.  (16) 

It is seen in the, body of the text that we attempt to evaluate a Lagrangian 

integral, that is, an integral of the velocity fluctuation following the flow. The 

exact form of that integral can be written 

fTD  f       /*TD rTD 
T(r) = -Tz(z)y       wk-y       (Ü + u) d£, y - J       vdt, 

/*TD 1   ~ z - /       wdt; t-T dt, 

J        /*T°    J 
u = u z -   /        wdt] (Al) 

where 

/-TD rTD rTD 
u = u x -   /        (TT + u) dF, y -   /        vdt, z - /        wdf;t - ? (A2) 

and similarly for v and w.    Such a Lagrangian integral is clearly extremely 

complicated.    There is a continued implicit dependence upon the Eulerian 

space variables x, y, z, and the time t.   In Eq. (16), we broke off that ex- 

tended implicit dependence by neglecting, in the arguments,  the velocity 

fluctuation u. 

We attempt here to find the qualitative effect of that approximation.    The 

most important such effect can be seen in Eq.  (A2).    By neglecting w in the 

argument of the function TT, we neglect changes in the vertical position which 
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may cause large changes in the value of the average flow velocity experienced. 

Referring to Eq.  (Al) it is seen that these in turn cause relatively large changes 

in the x argument of the function w.    This introduces a random fluctuation in 

the x-direction which has been neglected.    A consequence of that neglect is 

that the correlation of the temperature fluctuation in the x-direction assumes, 

incorrectly,  large scales in that direction as was seen in the body.    Further, 

as a result of our inability to deal exactly with the complicated integration 

represented by Eq.  (Al) to (A2),  there will be errors in the amplitude of the 

predicted fluctuation, mostly on the large side,  since we have suppressed 

some of the fluctuating character of the integral in (Al).    As a consequence, 

it was seen in the text that it was necessary to introduce an empirical coef- 

ficient in order to match the known temperature fluctuations near the laminar 

sublayer. 
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APPENDIX B.    DISCUSSION OF INCOMPRESSIBILITY OF THE 

VELOCITY CORRELATION Rj. 

There is a question concerning whether the form Eq.  (22) is a proper 

one for an inhomogeneous, incompressible velocity field.    We know that,  for 

homogeneous turbulence,   Eq. (23) will yield such an incompressible field, but 

the weighting functions appearing in Eq.  (22) complicate the discussion.    Con- 

sider the relation 

Rij^'I.') = -1'2 
8r£ 8r£ *ij " 8rT 8r?)w (Z * (z  )M (z ' z ) 

X f  p'f(p')dp' 

where we use the summation convention:   repeated indices should be summed 

from one to three.    For incompressible flow the divergence of the correlation 
3 

function must vanish;    thus 

w[ Vr''-) = ^Rij(-'-) = 0 {B2) 

It is readily verified that Eq.  (Bl) has this property.    Furthermore,  it is 

easily seen that,  for statistically homogeneous turbulence, where w' and M 

are constant,  Eq. (Bl) reduces to the homogeneous form given in Eq.  (23). 

Finally for the z-component correlation we find the form proposed in Eq.  (23). 

Thus, the correlation Eq. (Bl) is incompressible,  reduces to the homogeneous 
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correlation,  and does yield the simple form proposed in Eq.  (23).    It is seen 

that correlations other than R-, have coefficients involving the turbulence - 

intensity weighting function,  w',  in a more complicated way. 
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APPENDIX C. CALCULATION OF THE CONVECTED HEAT 
FLUX qAND Ti&J 

The basic equation for the calculation of the convected heat flux i» 

q(6   ) = h(T       - T  )      ,       for T      > T M   s *   aw       • aw w 

= h<Tw - TJ        ,      for Taw < Tw 

(Cl) 

essentially Newton's law of cooling.    Here T      is the temperature which 

would be attained by a thermally insulated,  adiabatlc, wall, as a result of the 

heat generation within the laminar sublayer.   The constant of proportionality 

h is obtained from the empirical relation 

h = Pr+^^p+u.C* 0.0288(Re*f1/5 (C2) 

A discussion of this type of heat transfer calculation may be found in Ref. 4. 

The usual calculation is for the heat transfer at the wall (what is needed in 

previous applications).   We use here the same coefficient h,  since the connec- 

tive process needed is in the vicinity of 6  .   This transfer coefficient applies 

to turbulent boundary layerst   Re  > 5 X 10 , the case here.   It will be seen 

that the ratio h/C p (which we need) is but weakly dependent on the parameters 

of the calculation. 

The starred quantities in Eq. (C2) are all referred to a reference tem- 

perature given by 

T* • T4 + 0.1(T    - TJ + 0. 22(T      - T„) (CS) 

.33. 
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The Prandtl number Pr is, for air,  0.71, and the Reynolds number is defined 

u x 
Re* = -^ (C4) 

The stagnation temperature T   is defined by 

1° ,1+X^J.^ (C5) 
CD 

where y is the ratio of specific heats.   A recovery factor giving the effect 

upon the heat transfer of the process of bringing the high speed fluid to rest 

(through viscous action) at the wall is 

t=    *w_-=prl/3 (c6) 

o "    • 

The procedure for the calculation of q is:   first, find the recovery fac- 

tor r and the stagnation temperature T  ; then determine T     , the reference 

temperature T*, the Newton's law constant h,  and finally use Eq. (Cl) to 

find q. 

It should be noted that, for flows such as this, the pressure remains 

essentially constant throughout the boundary layer, for this calculation. 

For our purpose, we can simplify; divide by C  p(Taw) *"d separate out 

the M„ • ua/as dependence, 

fc-T • Pr'2'3*!'5 0.0288(e./v*,-"5e.x-"5 <C7) 
"p^'aw 
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where x is measured from the point of initiation of the boundary layer and we 

use the fact that Pr is nearly constant. 

Consider an example:   a jet plane flies at an altitude of 28 Kft,  at 

M    = 0.9 with T     = 72°F.    At this altitude T    = -40°FF p    =0.30 atmospheres; 
CO w 00 00 * 

we want to know h at x = 20 ft (we use,  as usual,   English units).    From the 

relations given above we find the intermediate values a    = 1006 ft/sec, 

T    = 488°R,  r = 0.892,   T       = 481°F,   T* = 489°R,  Re* = 4.65 X 107,   v* = o aw x 

4.33 X 10      ft  /sec.    We have,  for Eq.  (C7),  converting to MKS 

h/CpP = 1.52X 10-3Mj/5a«x"1/5 

=  1.40xlO"3aBx"1/5,  in MKS 

(C8) 

We see T    > T     ,   so from Eq.  (Cl) w        aw ^ 

q/C  p = 1.52 X 10~3M4/5amx~1/5(T     - T„)°C - m/s * *}• 00 00 '       M» 00 * 

= 18.6°C - m/s 

(C9) 

Consider a second example,  a nominal wind tunnel experiment, take 

T    = 0°F, M    = 0.8, p    = atmospheric pressure,  T     = 70°F.    We find 
00 '00 *» • • iff 

T    = 519°R, T       = 513°R,   a    = 1053 ft/sec, T* = 507°R, v* = 1. 50 x 10"4ft2/ o aw • 
* 7 

sec; choose x = 3. 7 ft. , then.  Re    = 2.08 X 10   .    We have 

h/C  p = 1.22 X 10"3M4/5a   x"1/5,  MKS (C10) 
P 09 00 
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We see T    > T      ; thus, w        aw 

q/C  p = 12.4°C - m/s (Cll) 

4/5       -1/5 We note from Eqs.  (C8) and (CIO) that the coefficient of MB'   a<x)x     ' 

changes little in these quite different applications; we might for many appli- 

cations of the above type take it as constant. Thus, for such application one 

can use 

q/Cpp = 1. 3 X 10-3M2/5V-1/5(TW - TJ'C - m/s (C12) 

in MKS (and °C). 

Note also that 

^ <wT>~ W'T' (C13) 
P 

if <wT(r_ = 0)> ~ w'T'. There is the possibility that the average is much smaller 

than that product; in statistically homogeneous and isotropic,  incompressible 

turbulence <wT(r_)> • 0,  the whole correlation vanishes though, of course, 

w   and T' do not.    All things considered,  however,   Eq.  (C13) seems plausible. 

So using w' /ue *» 0. 05,  we obtain 

1.3xl0-3
Mi/5aJx/x  )"1/5 

*<V = 6.0SX     ° <Tw - T-> 
(C14) 

= 0. 026 MJx/xo)-1/5(Tw - T.) , XQ = 1 m 
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The maximum temperature fluctuation is a few percent of the temperature 

contrast, as one might have assumed. These results are clearly not valid 

for small Mach numbers or small x. 

I 
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THE IVAN A.  GETTING LABORATORIES 

The  Laboratory Operations of The Aerospace Corporation is conducting 
experimental and theoretical investigations necessary for the evaluation and 
application of scientific advances to new military concepts and systems.    Ver- 
satility and flexibility have been developed to a high degree by the laboratory 
personnel in dealing with the many problems encountered in the nation's rapidly 
developing space and missile systems.     Expertise in the latest scientific devel- 
opments is vital to the accomplishment of tasks  related to these problems.    The 
laboratories that contribute to this research are: 

Aerophysics  Laboratory:    Launch and reentry aerodynamics,   heat trans- 
fer,   reentry physics,   chemical kinetics,   structural mechanics,   flight dynamics, 
atmospheric pollution,  and high-power gas lasers. 

Chemistry and Physics  Laboratory:    Atmospheric  reactions and atmos- 
pheric optics,   chemical reactions in polluted atmospheres,   chemical reactions 
of excited tpecies in rocket pi-imes,   chemical thermodynamics,   plasma and 
laser-induced reactions,   laser  . hemistry,   propulsion chemistry,   space vacuum 
and radiation effects on materials,   lubrication and surface phenomena,   photo- 
sensitive materials and sensors,   high precision laser ranging,   and the appli- 
cation of physics and chemistry to problems of law enforcement and biomedicine. 

Electronics Research Laboratory:    Electromagnetic theory,   devices,   and 
propagation phenomena,   including plasma electromagnetics: quantum electronics, 
lasers,   and electro-optics; communication sciences,   applied electronics,   semi- 
conducting,   superconducting,   and crystal device physics,   optical and acoustical 
imaging; atmospheric pollution; millimeter wave and far-infrared technology. 

Materials Sciences Laboratory:    Development of new materials; metal 
matrix composites and new forms of carbon; test and evaluation of graphite 
and ceramics in reentry; spacecraft materials and electronic components in 
nuclear weapons environment; application of fracture mechanics to stress cor- 
rosion and fatigue-induced fractures in structural metals. 

Space Sciences Laboratory:   Atmospheric and ionospheric physics,   radia- 
tion from the atmosphere,  density and composition of the atmosphere, aurora« 
and airglow; magnetospheric physics,   cosmic rays,   generation and propagation 
of plasma waves in the magnetosphere; solar physics,   studies of solar magnetic 
fields; space astronomy,  x-ray astronomy; the effects of nuclear explosions, 
magnetic storms,   and solar activity on the earth's atmosphere,  ionosphere,  and 
magnetosphere; the effects of optical,  electromagnetic,  and particulate radia- 
tions in space on space systems. 
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