
NAVAL OCEANr
EI~ D

DA T E

I ___________________ Eli.,

I 8 7 8
DDC

S

10 ~
L L3~ $ 2 2

.i 2 0L 140g~ •~~——
• ‘11111.25 IIII~~r ~~~~~~~

NATIONAL BUREAU OF STANDARDS
MICROCOPY At904.UTION TEST CN~~T

F -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—‘-—- --.
~ —~ ~~~~~~~

r
— 

:~
. ~~

• Technical Document 138

FUNCTIONAL DESCRIPTION
OFAVALIDATION TOOL

FOR CMS- 2 SOFTWARE
RN Goss

1 February 1978

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

NAVAL OCEAN SYSTEMS CENTER

I SAN DIEGO, CALiFORNIA 92152

78 O6 ’R fl 15~
-1



‘p
NAVAL OCE AN SYSTEMS CENT ER . SAN DIEGO. CA 92152

A N  A C T I V I T Y  O F  T H E  N A V A L  M A T E R I A L  C O M M A N D
RR GAVAZZI 1 CAPT, USN HL BLOOD

Commander Tøchnjcel Director

ADMINISTRATIVE INFORMATION

The work was performed by the Computer Systems Architecture Branch of the
Naval Ocean Systems Center (formerly the Naval Electronics Laboratory Center) under
proj ect number F6 12 12 (NELC Z291), program element 62766N.

Released by Under authori ty of
RR Eyres JH Maynard , Head
Tactical Computer Systems Command Control-
Architecture Division Electronic Warfare

Systems and Technology
Department



UNCLASSIFIED
SECURITY CLA5SIFICAfl ON OF IHIS PAG E (JS.w Ow. Ent.r.,~ __________________________________

D
~~~~~~~~~~~~~

I
~~~~~~

ATIh
~ 

DA f ~~~~ 
READ INSTRU CISONS

‘ “U ~~~~~~~~~~~~~~~~~~~~ U ~~~~~~~~ ‘ “~~~~~~ BEFOR E COMPLETUIG FORM
1. REPORT HUMS i&/ ~~~ - / — / .~~~~~ 2. GOVT ACCESSION NO 3. IPIENT S CATALOG NUMIER

NOSC Technical oc iynt I~8 ~T~i i  
___________________________

T I T L E  (aed SubISU.) — -  

~ 
‘7. ~~~~~ I PERiOD COVE RED

JUNCTIONAL ~ ESCRIPT1ON OF A ~ ALIDAT1ON TOOL FOR I T.. ‘ 
,. /

~~MS-2 SOF1WAkE . -
~ 

/

- - 

~_~__J C~~PE*FO,, 1 ,. U~~~. ~~~~ P~ JU~~I UU~~~—~~~.’

7. AUTHOR(s)  ___________________________ S. CONTRACT 0* GRANT MU MMER (s)

RN Goss 

~~~~
S. PERFORMING ORGANIZATION NAM E AND ADDRESS tO . GRAM ELEMENT. PROJECT , TASK

ORK UNIT NUMSERS
Naval Ocean Systems Center / F6 1212 ELC Z291)

I I. CONTROLL ING OFFICE NAME AND ADDRESS 12. —— ~~~~~~

Naval Ocean Systems Cente r 1 Feb~~~~ ~~~
San Diego , CA 92152 ‘3. NUMSER oF PA~~Z

~~~~ 
I

14: MONII’ ORING AG ENCY NAME & ADORESS(St dSff . , .nt Ira. , Cont,elSft,5 OWe.) IS. SECURITY CLASS. (of thIs

UNCLASSIFIED

11.. DECLAI$IFICATION/ DOWNGRADINO
SCHEDULE

11 DISTRISUTION STAT EMENT (of this RIp or t)

Approved for public release ; distribution is unlimited.

17. DISTRISUTION STATEMENT (of U.. .b.b. cS .nt. ,.d Sn Dlock 20, U dlflsea.e Ira., R.Pa.I)

IS. SUPPL EMENTA RY NOTES

IL KE Y WORDS (C.nf lnu. a. rav r.. .id. U .ia....av a.d fdsnfi~ $~ Mock n.a.b.r)

Software engineering
Software validation
CMS-2 programming language

20. AS$TRACT (C.niSma. a. ,., *a. .S~. SI __ •~~~NS~ 53’ *2s 1 s~~ S~ )
L_..~ -

~~~ This document sets forth the requirements for a set of computer programs yielding info tmation about tests

s made on CMS-2 software. This set of programs is called a validation tool. A validation tool , dependm g on

the needs of the invest igator , can be made as sophisticated as required at the expense of additional memory
and running time. The validation tool propo sed here is primarily for static analysis.

~3 / 2)
~~~~ 

c~u4
DO ,~~~~., ,, 1473 £0I TiON O9~~~~OV 1S ~ ° ‘°‘-~ .I’~ UNCLASSIFIED

SECU CLAS FICAT,OSI OP twIl P4 ( (~~u.f ~~is..

•
~~ 

~~~~~~~~ _

#‘w O

II - -~~~~~~~~~~~~ - 1 T T ~~~

F

CONTENTS

1.0 GENERAL. . .page 3

1.1 Purpose of functional description... 3
1.2 Project references. . - 3

2.0 SYSTEM SUMMARY. . . 3

2.1 Background... 3
2.2 Objectives. . - 5
2.3 Existing methods and procedures... 5
2.4 Proposed methods and procedures. . .6
2.4. 1 Summary of Improvements... 6
2.4. 1.! Dynamic analysis... 7
2.4.2 Summary of impacts. . . 7
2.4.2 .1 Equipment impacts. . . 7
2.4. 2.2 Software impacts. . . 7
2.4.2.3 Organizational impacts. . . 7
2.4.2.4 Operational impacts. . . 7

3.0 DETAILED CHARACTERISTICS... 8
5 1

3.1 Specific performance requirements... 8
3.1.1 Accuracy and val idi ty . . . 9
3.1.2 Timing. . . 10
3.1.2.1 Preprocessing and postprocessing phases. - . 10
3.1.2.2 Data collection phase. . . 10
3.2 System functions... 10
3.2 .1 Preprocessing. - . 10
3.2.2 Data collection. . . 10
3.2.3 Postprocessing. .. 10
3.3 Inputs/Outputs. . . 11
3.4 Data characteristics. . . 11
3.5 Failure contingencies. . . 11

4.0 ENVIRONMENT.. . 12

4.1 Equipmen t environment.. . 12
• 4.2 Support software environment. . . 12 . .

4.3 Interfaces. . . 12 ~~~~~~~~~ ~~

4.4 Securi ty . . 12 iris
a • —

~

5.0 COST FACTORS... 12 ‘“ ‘ ‘

.U _

5. I Nature of the costs. - - 1 2
5.2 Consequences of further development... 13

it.r •~ r~’
U~ii’ ; . *~~‘1. i(.. I’

I
-

I
_ _ _

6.0 DEVELOPMENTAL PLAN.. . 13

6.1 Management policy. . . 13

r

‘C

I

2


~~~~~~~~~~~~~~~
--

~~~~~~~~~~—~~~--~~
-.•

1.0 GENERAL

1.1 PURPOSE OF FUNCTIONAL DESCRIPTION

This functional description is written to provide requirements for a set of computer
programs yielding information about tests made on CMS-2 software . This set of programs,
called a validation tool, is intended to be placed at the disposal of those charge d with
qual ity assurance of CMS-2 software planned for inclusion in Fleet tactical combat systems.
Since the validation tool is not destined for the Fleet , it does not interface with other
system software in the usual sense and is not normally available to the users in the Fleet.
Hence , this functional description must be understood in terms appropriate to the intended
use of the tool.

1.2 PROJECT REFERENCES

A report , item 2 below, has been written simultaneously with this functional de-
scription to amplify the rationale on which it is based. It should be read in conjunction
with this document.

I . Project request. “Command Contro l Distributed System Design and Validation
Processors.” Research and Technology Work Unit Summary .

2. Naval Ocean Systems Center Technical Document 139, Issues and Perspectives in
the Validation of Tactical Software , by RN Goss, 1 February 1978.

3. User’s Handbook for AN/UYK-20(V) Computer , vol IV , Change 4, Sperry-
Rand Corp. May 1976.

4. User’s Reference Manual for Compiler , Monitor System-2 (CMS-2) for Use With
AN/UYK-7 Computer , M-5035 , vol II, FCDSSA, CA, Nov 1973.

5. CMS-2Q Programmer’s Reference Manual , M-50 12 , revision 5 , vol 1, II , III ,
FCDSSA, CA , I Sept 1977 .

2.0 SYSTEM SUMMARY

2.1 BACKGROUND

The problem addressed in this document is that of ensuring adequate testing of soft-
ware destined for tactical combat systems in the Fleet. Competent testing is, of course, a
maj or desideratum for such software and needs no rationalizing. Enough has been written
on the present unsatisfactory state of software certification to make unnecessa ry any re-
hearsa l of its shortcomings here .

+ 3

One of the thorniest questions that the quality assurance investigator must come to
terms with is how much testing to do. Ideally, he would like to be able to say that a
program which he has certified will operate exactly as it is supposed to under every conceiv-
able circumstance ; it is, of course , impossible in nontrivial situations to try out all the
alternatives. Such an ambitious undertaking would be tantamount to a formal proof in the
logical sense.

The fact that a program is an algori thm , or perhaps a succession of algori thms, has
inspired hope in some quarters that rigorous proofs may be a distinct possibility for vali-
dating programs, and claims of progress in this direction have been made. Whether formal
analysis will be practical for quality assurance of Navy systems has yet to be convincingly
argued; in any event , it is years in the future.

In the meantime , we must rely on the only live option we have — the verification of
the action of a program through partial testing. If tests in sufficient number and variety are
successfully executed, it is felt that the program does, in fact , meet its objectives. This is,
out of necessity, a tentative infe rence. The possibility of errors undetected by the tests al-
ready made always exists. The goal must be to minimize that possibility by means of test
strategies that efficiently filter the potential sources of problems.

Clearly, if a given program is more than trivial , it is unlikely that tests devised in an
armchair environment are going to cover all the contingencies that may arise when a pro-
gram is executed in the field. Because the mental equipment of the human being is not
habituated to threadin g through exhaustive combinatorial processes, he is not in a position
to anticipate what courses an intricate program may take . His tests , more often than not ,
will leave large areas of the progra m unexplored and others overtested.

To remedy the foregoing, several efforts are under way to enable the test engineer
to plan his work rationall y. Validation tools, as the products are called , do not take the
place of tests nor do they deal with the content of tests as such. They do furnish infor-
mation to the investigator about what he has and what he has not tested. Armed with this
information , he is able to make his testing more effective and more efficient and with great
potential savings in time and cost.

The principle on which these tools are based is that the set of paths which can be
traversed in a given program can be identified and dealt with systematically. A program in
fact , can be interpreted as a directed graph—the mathematical theory of which has been
vigorously developed over the last two decades. It is not a formidable problem to distinguish
the arcs of a graph or to insert probes—special instructions for reporting when each arc is
passed over—to count the numbe r of traversals. The nodes correspond to branch points.

The primary data are thus execution counts. For a branch we can tell how many
times each alternative was carried out and for a loop how many times it was cycled through.
From the primary data , summaries and statistics can be derived and on these bases the
investigator will decide what additional testing is required. The infor~nation will guide him
in designing a minimal effective set of tests, and will indicate those parts of the program

S which carry the heaviest tra ffic—that is, parts which should be considere d as candidates for
optimization.

At the expense of additional memory and running time, validation tools can be made
more sophisticated. Depending on the needs of the investigator , a tool can be fashioned to
check almost any aspect of the program structure and to print the results in the desired
format. Certain syntactical information can also be retrieved and used to advantage.
Since such tools tend to generate considerable overhead and , as they get more complicated .

4~

r -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

to spawn validatio n problems of their own , it is important that the test engineer demand
of the tools only those data that return information of value.

it should be emphasized that , like any other tool , a validation tool is an inert instru-
ment. The results obtained by its use depend upon the skill with which it is applied and are
in no sense automatically handed over. Each piece of software to be validated will present
to the test engineer a different problem. He has to discover what the problem is and , taking
into account the time and cost constraints under which he has to opera te , apply his knowl-
edge and resourcefulness to devise tests that exploit the tools to maximum advantage in
order to wring from the raw code the facts he needs.

2.2 OBJECTIVES

Validation tool is the name given to the program or group of program s for which re-
quirements are being developed here . The purpose of a validation tool is to return information
abou t tactical computer software written in CMS-2 , the langu age that has been specifie d for
most existing Navy tactical combat systems. Used in conjunction with independently devised
tests , the tool will be applicable to any compilable program written in CMS-2M , CMS-2Y, or
CMS-2Q language. The nature of the information to be returned will be described fully in
the succeeding paragraphs.

The tool will consist of software which can be merged with or applied to any opera-
tional CMS- 2 compiler to produce an augmented (instrumented) compiler that will run on
any machine the corresponding unaugmented compiler will run on , for example , CMS-2Y
on the AN/UYK-7 and CMS-2M on the AN/UYK-20. Programs compiled by means of the
augmented compiler , called instrumented programs, will retain all the static properties they
enj oy when compiled by the unaugmented compiler. The validation tool , which is not
necessarily written in CMS-2, will be robust with respect to minor changes in the unaug-
mented compiler.

2.3 EXISTING METHODS AND PROCEDURES

The reason for interest in validation tools is that no systematic means of genera ting
test data for the CMS- 2 software mentioned in paragraph 2.2 are now available to the
quality assurance investigator. Present practice consists in the use of one’s best judgment
to determine whether or not a particular program has been adequately tested. The vali-
dation tool does not obviate the exercise of judgment. The problem is that computer
programs, especially those involving command and control , are highly combinatorial , and
require extensive bookkeeping procedures to keep track of the sequences of decisions that
become possible under different aggregates of conditions. Biological evolution has not
adapted the ordinary human mind to deal efficiently with such complexity . Consequently,
the unaided intellect is a poor resource for making certain that highly ramified decision
structures indeed do what they are supposed to do. In the absence of other alternatives,
certification of programs has been up to now strictly a human endeavor. The result has
been to question whether its very function—to forestall unpleasant surprises when the
software becomes operational—has been accomplished.



- - . -  - - -.- —-—--—-.--—- -.- -

2.4 PROPOSED METHODS AND PROCEDURES

The most expedient answer to the problem in paragraph 2.3 and the one with which
these requirements are concerned , is to complement the unique abilities of the human being
for discriminating judg ment with those of the machine for tedious record keeping to yield
computer-aided test generation. The greatest need of the test engineer , once he has written
a series of tests for a program under examination , is to know exactly what has and has not
been covered by the tests. What has been overtested , undertested , or untested? With the
answers to these questions in hand , he can concentrate his attention where it is needed.

Given a software item to be certified under the present proposal , the quality assur-
ance investigator will devise an initial group of tests based upon his best professional judg-
ment. The tests will be programmed to run with the validation tool. At the conclusion of
the run , the investigator wil l have not only the results of the tests but also data on how the
tests have exercised the software under examination printed out according to his directions.
The primary data will be execution counts obtained by means of probes inserted in the soft-
ware . These data will be summarized according to a number of options from which the
investigator may choose in order to obtain the best representation of the testing profile of
the specific software . He will then be in a position to supplement or revise his first tests.
The process will be repeated until he is sa tisfied that further testing would be redundant or
uneconomical. The exact criteri a will vary from one situation to another , depending upon
the characteristics of the software under analysis.

It is clear that the information provided by the validation tool is not without cost.
The probes, which are transfers of control to auditing subroutines , add to the overhead of
the uninstrumented program and introduce real-time delays at the points where they have
been inserted. These delays may well distort the dynamic properties of the program in cases
where timing is crucial. For this reason, the validation tool in the form proposed here is
recommended primarily for static analysis , ie , testing of those properties of the program
that depend on the formal syntax and structural complexity of the program. The issues
arising out of instrumenting programs for real-time analysis are discussed in paragraph 2.4. I .1.

2.4. 1 SUMMARY OF IMPROVEMENTS

As already indicated , the benefits which the availability of a validation tool will con-
fer are those resulting from a more efficient test strategy. The test engineer will have a
clearer understanding of what tests he needs to design for full coverage of the validation
spectrum. The major beneficiary will be the system user who will have in his hands software
that will be more reliable and predictable.

It is to be stressed that the instrumentation for execution counts will not be present
in the product delivered to the user. The probes are compiled with the user program only
for the benefit of the quality assurance investigator. When he is satisfied that the testing is
complete , the program is recompiled without the instrumentation software ; hence , there is
no degradation whatever in the operational program. The only differences possible between
the original program submitted for quality assurance and the final program approved for the
user would be those improvements suggested by the results of the tests. In such a case,
the test engineer would advise the programmer that the program under consideration had
failed certain tests; the programmer would then make the needed modification and resubmit

6



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - -~~~~~~ - -

the item to quality assurance for retesting. The user would have no reason to know that this
sequence of events had ever taken place.

It is probable , of course , that more thorough testing by quality assurance would
mean more extensive revision of a program before it is certified for use ; this could result
in a delayed delivery date. If such a delay buys a significantly better product , it can by no
stretch of the language be reckoned as adverse.

2 .4 .1.1 DYNAMIC ANALYSIS. Since the real-tim e properties of a program can be
affected by the act of observation , the tester must use care in constructing tests which are
not independent of the real-time environment. The elapsed execution time for any program
can be obtained from before-and-after readings of the computer ’s clock. As for clock read-
ings taken in the course of program execution , it is assumed that their normal purpose is to
indicate the order in which certain critical events occur (which is not otherwise apparent)
rather than the time intervals between events.

2.4.2 SUMMARY OF IMPACTS

The effect of improved test analysis on the software development cycle considered
as a process will be minimal. In fact , it will be virtually nonexistent. It adds no new
function nor does it relocate any existing function in the lineup. in particular , it does not
relieve the programmer of any debugging obligation, because a program is assumed to be in
proper condition for use by the time it reaches quality assurance.

2.4.2. 1 EQUIPMENT LMPACI’S. None.

2.4.2.2 SOFTWARE IMPACTS. No additions to existing application and support
software programs are required. The only modification is in the instrumentation of a
program for analysis at the time of quality assurance. As indicated above , this modification
is temporary; all evidence of the modification is removed before the program is turned over
to the user. The validation tool is a piece of software which occupies a modest amount of
memory on-line during testing and off-line during the preprocessing and postprocessing phases.

2.4.2.3 ORGANIZATIONAL IMPACTS. None.

2.4.2.4 OPERA TiONAL IMPACTS. Since quality assurance takes place before a
program is released for operational use , it has no direct effect on the way the program enters
into the tactics it is designed to support. Its indirect influence can be considerable. If it does
not contribute to a regime in which software troubles are greatly reduced, it will not have
accomplished its purpose . The exact leverage it exerts will vary from case to case and can
not be made specific. since before-and-after comparisons would not serve any useful pur-
pose.

— .— — - — -
~~~~~~~~~~~

-
~
-

3.0 DETAILED CHARACTERISTICS

3.1 SPECIFIC PERFORMANCE REQUIREMENTS

The product to be delivered is a validation tool, an instrumentation of computer
programs to be used in conjunction with perfo rmance tests to yield information about the
execution properties of operational software . This tool will permit compilation in and with
the source language of the software in question when tests are to be made on or by means
of that software . The tool will not normally be present under field conditions. In order to
accomplish its purpose , the validation tool must carry out three sequence functions. First,
it must ascertain the logical and functional structure of the progr~m under test. Second ,
it must recognize the statements which lead to executable object code and must arrange to
record those statements actually executed when the program is run. If called for, clock
readings and information about the program variables will also be recorded at this time.
Third , it must encompass software for processing the primary data (execution counts) and
other recorded data to yield the information desired by the investigator.

The first function will be implemented by a preprocessor. The tool will contain
software which when applied to a program element or system compilab le in CMS-2M ,
CMS-2Y , or CMS-2Q will produce a structural analysis of the program. The structural
an alysis will be manifested by the directed graph (or a suitable spanning subgraph thereof )
representing the program under test in which each sequence (concatenation of one or more
statements , occurring once each in order, with no transfe rs of control ) of the source pro-
gram is represented by an arc , and each decision point by a node. The graph need not be
explicitly drawn as a geometri c figure but may be given in an understandable equivalent nota-
tion.

The second function will also be carried out by the preprocessor. A set of options
will be provided to the user of the validation tool for indicating the particular information
he desires to receiv e in connection with the tests being run. Depending upon his choices,
probes will be inserted into appropriate points of the original program and will be given
suitable identification. Each probe consists of a transfer of control to a subroutine which
counts the times the probe is activated as the program is being run , keeps a record of the
count (and perhaps the contents of specified operational registers), and returns control to
the program.

The input to the preprocessor will consist of the following items:

a. The instrumentation and analysis portions of the validation program .
b. The uninstrumented CMS-2 source text of the program to be examined.
c. The test data.
d. Control commands specifying the options desired by the user of the tool.

The output of the preprocessor will consist of the following items:
a. The source program listing with numbere d statements and deletion of comments

optional.
b. The structural characteristics of the source program with sufficient labeling to

make all correspondences dear.
c. Identification of code segments and their coverage by the validation tool.
d. Identification of the probes and their locations.
e. Listing of input variables and their ranges.
f. The instrumented source code and test data constituting input to the compiler.

8



-~~ —

The printing of items b, c, d, or e just above may be suppressed at the option of the
tester. Item f is not normally available for printout.

The outpu t item f of the preprocessor will be compiled into an instrumented
program, logically and functionally equivalent to the original program but with the probes
added. The additional memory required by the instrumented program will not exceed 35%
of the memory required by the original program. The real time requin~d to run ~he
instrumented program will be at most 35% greater than the time required to run the original
program. The output of the compiler will be run on the appropriate computer and will

4 comprise, as usual , results of the test run and , in particular:

a. The listing of test-case results in a format determined by the tester and
b. Error data, if any, detected by the compiler diagnostics.

The third function will be realized by a postprocessing program which analyzes
and summarizes the data accumulated as a result of activation of the probes. It has no re-
quirement for execution in real time. The tester may be supplied with any or all of the
following items , provided he has requested them in advance:

a. Listing of all named procedures with the number of times each was entered.
b. Listing of procedure s never entered.
c. Listing of all code segments, with the number of times each was executed.
d. The total number of direct code statements and the number executed.
e. Listing of declarativ e statements with the number of times each was called.
f. Listing of statements or code segments never exercised.
g. Listing of statements or code segments not instrumented.
h. Listing of all conditional transfers of control with the number of times each

explicit alternativ e was taken.
i. Listing of all unconditional transfers of control.
j. Listing of variables declared and used.
k. Listing of global variables together with their use and type.
I. Listing of variables which change program control as well as where they are refer-

enced.
m. Listing of parameters declared with their use and type.
n. Listing of input statements with their input data structures, showing (in the case

of variables) the parts of the ranges that were tested and were not tested.
o. Intermediate values of designated input variables at specified points.
p. Listing of VARY operations with maximum and minimum values of loop indices

and the number of times each loop was tested.
q. Clock readings at specified points.
r. Execution times f or  the program tests.
s. Cumulativ e statistics for the system as requested by the tester , comprising at

rn’ ct totals and means for those cases in which such parameters would have meaning.

3 .1 .1  ACCURACY AND VAL 1DITY

Since accurate mathematical .. omputation is not an essential part of the validation
tool , an accuracy requirement is not specified. Counts will be reported in decimal integers.
Means , percentages , and other derived sta tistical data will be reported with two decimal

9

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - -



places to the right of the decimal point. Clock readings will be reported in terms of the
accuracy and resolution provided by the computer being used.

3.1.2 TIMING

3. 1.2.1 PREPROCESSING AND POSTPROCESSING PHASES. The timing will
depend upon the information requested by the tester. The validation tool will be designed
so that options available , but not selected by the tester , will be suppressed. Otherwise , the
time requirement is only that imposed by reasonably efficient coding.

3.1.2.2 DATA COLLECTION PHASE. The running tim e of the instrumented pro-
gram shall be at most 35% greater than the time to run the same program without instru-
mentation.

3.2 SYSTEM FUNcTIONS

The validation tool functions in three successive phases each time it is applied to a
source program : preprocessing, data collection , and postprocessing. Note carefully that the
terms “preprocessor” used in paragraph 3.1 and “preprocessing” used here are not precisely
coextensive in their reference. The preprocessor is a program which governs both the pre-
processing and the data collection phases.

3.2. 1 PREPROCESSING

The purpose of the preprocessing phase is to convert a CMS-2 source program into
an instrumented program ready to be compiled with test data to yield test results. Prepro-
cessing takes place before the test program is run.

3.2.2 DATA COLLECTION

The purpose of the data collection phase is to monitor the execution of the tests
in progress in order to capture data during the execution. The primary data will be counts
of the executions of certain sequences. Whenever the sequence is executed , control will be
first transferred to a subroutine which advances a counter identified with that sequence and
then retu rned to the test program If called for , clock readings and information about the
program variables will be recorded at this time also. By its nature , data collection neces-
sarily takes place while the test program is being run.

3.2.3 POSTPROCESSING

The purpose of the postprocessing phase is to process the results of the data collec-
tion phase , and report and summarize the data in a form specified by the tester based upon

10

—



F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -~~ 

—_____ - -

options furnished by the tool. Postprocessing takes place after the test program has been
run.

3.3 INPUTS/OUTPUTS

The CMS-2 source program and the test data will be on cards for input to a standard
card reader for CMS-2 compilers. The CMS-2 monitor will also process input data from
magnetic tape provided it is in card image format. The validation tool must , therefore , be
listed in this format ; if it is written in some language other than CMS-2, then the prepro-
cessor must make the conversion.

Each card will contain a card identification field (columns I through 10) and a state-
ment field (columns 11 through 80). The card identification field should contain the
program identification (columns 1-4). a card sequence number (columns 5-8), and an insert
number (columns 9-10). The statement field may utilize any format that serves the purpose
of the validation tool. A card may contain more than one statement or a statement may
occupy more than one card. The end-of-statement marker is a dollar sign.

Since the validation tool allows the tester to choose the content and the format of
the output within a range of options, a selection algorithm for this purpose must be pro-
vided.

3.4 DATA CHARACTERISTICS

- t The data storage requirements for the preprocessing phase depend upon the lengt h
of the program under test and the volume of test data which will vary from application to
application. The tool should be able to operate on source program s of up to 10000 exe-
cutable statements or to a total of 25000 statements including comments. It should be able
to label and store up to 100 000 paths through the graph of the source code with a binary
indicator for each marking whether the path was executed or not. No data are to be
permanently stored.

The data collection phase must be able to count and record the number of exe-
cutions of each of up to 3 000 code segments. The extra storage required for the instru-
mented program and execution data must not exceed 35% of the storage used by the un-
instrumented program.

The postprocessing phase must contain subroutines for implementing the options
offered to the tester. No data are to be permanently stored by the validation tool; if the
tester desires to maintain archives of test results, he does so independently. Consequently,
there is no growth of data resulting from the use of the validation tool.

3.S FAILURE CONTINGENCIES

The failure of the validation tool will have no direct effect on the performance of
the program or system being tested. Hence, no back-up, failback , or restart provisions need
be made.

I I

j



- - - -  ~~
-.- - - - - -- -. -

~ -—~~~
- .

4.0 ENVIRONMENT

4.1 EQUIPMENT ENVIRONMENT
I

Since the validation tool is intended to be used for tests on software which will
eventually become part of a Navy tactical system , they must be performed on appropriate
equipment , the exact configuration of which is determined by the test environment.

a. The central processor will be the AN/UYK-7 for CMS-2Y and the AN/UYK-20
for CMS-2M. Approximatel y I K of memory is required for the data collection phase of the
tool program during execution of a test. Preprocessing and postprocessing phases can be run
on any available centra l processor that can accept the implementation language of the tool.

b. Tape or disk storage is required for all three phases. The amount of stora ge re-
quired is fixed for any particular application of the tool but will be variable from application
to application depending on the size and complexity of the software being tested , the
numbe r and nature of the tests, and the tool options chosen by the tester. A maximum of
100K cells is estimated for the total required.

c. The validation tool takes no special input or output device. Console input or out-
put is not a requirement , although it could conceivably be a usefu l adjunct when certain
procedures are used repetitiv ely.

4.2 SUPPORT SOFTWARE ENVIRONMENT

The validation tool, whatever its implementation language, is intended to elicit
information abou t the operation of software written for the principal tactical computers in
use in the Navy. To be meaningful , the tests must be carried out in the presence of support
software that reasonably approximates what will be encountered in actual operation.

4.3 INTERFACES

Data transfer as such does not take place between the validation tool and the soft-
ware to which it is applied. The tool acts as an external observer , obtaining whatever infor-
mation it needs through noninterfering probes.

4.4 SECURITY

Since the data used to exercise the software are test data and not data accumulated
as the result of a real operation , security is not an issue.

I

5.0 COST FACTORS

5.1 NATURE OF THE COSTS

The requirements set forth herein are after the fact in the sense they super-
impose a test tool on software that has been already designed and written. Since the test

12

- --4



tool is an item of capital equipment , its cost is onetime and outside the budget of any
particular system. If properly constructed , the tool will be suitable for testing a wide
variety of software.

The application of the tool to any piece of software is a matter for the judgment of
the quality assurance investigator. It will depend , among other things , upon the complexity
and importance of the particular program to be tested as well as the prevailing policy on
the thoroughness of testing. For this reason the testing cost will vary greatly from instant to
instant. How to amortize the initial cost of the tool and how to levy testing charges are
questions outside the scope of these requirements.

5.2 CONSEQUENCES OF FURTHER DEVELOPMENT

If the testing is at all effective , it will have certain cost consequences. The results
of the tests may well indicate that the subject software needs to be reworked before it can
be certified , obviously entailing further costs. The effect of the tool on overall costs
should be a net reduction due to the increased reliability of software that is certified with
the use of the tool.

6.0 DEVELOPMENTAL PLAN

6.1 MANAGEMENT POLICY

Development and implementation of the proposed validation tool should be under
the management of trained individu al s in the Navy Department who can provide close tech-
nical monitoring. Watchfulness is essential because of the anticipated wide use of the tools
once they are available. Many decisions will have to be made on the spot since the tools
are envisioned collectively to he extremely t’kxibk and this implies that their development
must he a flexible process.

The tools themselves will have to he rigorously tested. Tests will be constructed to
verify that the tool is capable of performing each of the functions listed in paragraph 3.1.
Since the user of the tool is allowed a grea t deal of choice in the output he receives, special
attention must be given to the subroutine that accepts and executes the user ’s selections to
make sure that it responds to all (and only) the user’s requests. II . the validation tool is
written in CMS-2. it may be used to monitor its own tests just as if it were a tactical pro-
gram. The expected complexity of the tool will be much less than that of the tactical soft-
ware it is designed to be applied to.

4

I
13

—4


