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FOREWORD

The research concentrated on one major topic of investigation:
statistical properties of inventory models. The analysis deals with comparing
the operating characteristics of several important stockage rules when the
underlying demand distribution parameters are estimated from a limited sample
of historical data (say, 13, 26, or 52 observations). Particular attention
is given to the frequently observed case where the probability of zero demand
occurring within any time period is significantly large (say, half of the
historical observations indicate zero demand), but the positive levels of
demand are not necessarily small. The overall context of the analyses is
a large-scale inventory system containing thousands of individual items, and
thus, the computational burden of implementing the stockage policies must be
recognized in the comparison of different stockage rules. The research approach
encompasses applied Markovian probability analysis and computer simulation
analysis containing sophisticated statistical autoregressive time series methods.
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DECISION CONTROL MODELS IN OPERATIONS RESEARCH

1. Background of the Inventory Research Program

Over the past two decades, mathematical analysis of inventory stock-
age models has made great progress, and real-life implementation of in- :
ventory systems based, at least in part, on the results of this modern re-
search has taken place. But typically practitioners have applied theoret-
ically derived formulas to actual situations in which the model's under-
lying assumptions are far from being met. A critical divergence between
the model's assumptions and the reality occurs with regard to the amount
of knowledge the systems' designer has about the underlying demand dis-
tributions. With rare exceptions (some of which are cited in the Refer-
ences), theoretical inventory models assume that the probability distri-
bution of an item's demand is completely specifiable. In the most sophis-
ticated theoretical inventory models, heavy reliance is placed on this
assumption in deriving an algorithm for computing an optimal policy (1, 15,
20, 25, 26, 27). Many other theoretical analyses (2, 10, 12, 21, 28) make
gross assumptions that permit stating inventory formulas that require only
a few parameters of the demand distribution; but even then, these approxi-
mate analyses assume that the small number of parameters are known with
certainty. When practitioners utilize such models, they typically employ
standard statistical procedures to estimate the parameters in the approx-
jmation formulas, and pay little if any attention to modifying the estimates
due to the special nature of the application. At present, there is a sig-
nificant knowledge gap concerning the nature of the systematic performance
and prediction biases that are introduced when these statistical estimates
are substituted for parameters in inventory models.

The seriousness of the problem stems in part from the fact that in
most real situations, only a very limited amount of past data on demand
is available, and frequently such data contain a large proportion of zero-
demand observations. For example, in a 26 week history of demand for an
ftem, perhaps no demand occurred during 10 of the weeks, and in the re-
maining 16 weeks, the demand values displayed wide variation (such as, 30,
100, 7, 245, etc.). We currently have no scientific understanding of what
stockage rules perform acceptably well in such an environment, and how
much accuracy we have in our estimates of future system performance based
on the past data. The following scenario will clarify further the context
for the work currently under support.

Consider an inventory manager who must design a system of replenish-
ment rules for the stockage of possibly thousands of items. Assume that,
without too much difficulty, the manager can specify the parameters of the
criterion function, so that there is a direct way of determining whether
one system is better than another, provided that the relevant associated
operating characteristics for each system can be obtained. For example, |
assume that the manager knows the costs of holding inventory, making re-
plenishment decisions, reviewing the stock status of an item, etc. Also
assume that the manager is able to articulate the objectives or costs
relating to stockouts; to illustrate, the manager may specify a cost at-
tached to a unit of demand that cannot be filled, or perhaps the manager




1. Background of the Inventory Research Program (continued)

may set a limit on the probability of a stockout, or possibly target ful-
filling a certain fraction of total demand.

In designing the system, the manager must select a class of decision
rules, and preferably, pick optimal policies from the selected class. To
illustrate, the complete economic preference function of the manager may
imply that if the probability distribution of demand is known, then an
optimal policy is of an (s,S) form: when inventory on hand plus on order
falls below s , place an order so that, as a consequence, inventory on
hand plus on order equals S . The research of Veinott and Wagner (1)
shows how to compute optimal values for (s,S) in this circumstance, and
the research of Wagner, 0'Hagan, and Lundh (2) : tests out various numerical
approximations that, since the publication of that paper, have turned out
to be implementable in practice. But if the manager faces considerable
uncertainty about each item's demand distribution, because there is only
a limited number of past observations on demand, it is by no means obvious
how to proceed. In fact, the decision process for systems design becomes
much more complex than the mere selection of parameter values for (s,S).

First, the manager must decide how much past demand data to actually
use. If the manager suspects that the underlying forces causing the demand
for an item shift from time to time, the manager may want to ignore data
that are older than some number of periods, which then must be specified.
Since the system is to operate over an indefinite future, the manager also
must determine how often to update the rules, that is, how often to discard
old historical data and recompute the replenishment policies' parameters.
For example, the manager may choose to revise the policies every six months
and, at each revision, utilize the past six months' data.

Second, since the manager does not know the form of the demand distri-
bution, the manager must either guess at the form, then statistically esti-
mate the distribution's parameters for each item (possibly using a prior
distribution), and finally compute policies assuming that the estimated
distributions are in fact the true distributions; or the manager may choose
to use an "approximately optimal” form for the replenishment policy (such
as let s equal a number of mean demands plus a multiple of the standard
deviation of demand, and S=s+0 , where 0 is the familiar Wilson square-
root lot size formula that requires knowing only the mean demand), and then
select statistical estimators for the parameters required by this policy
form. This enumeration does not make apparent the full design decision
possibilities because, within each option, the manager has many alternatives
from which to choose. To complete the scenario, suppose that the manager g 1
does make a particular selection from among all these many options.

Third, the manager must decide before implementing the system whether .
the design parameters are well set. For example, if the designer sets the




1. Background of the Inventory Research Program (continued)

reorder level s = a - (mean demand) + b - (standard deviation of demand),
then appropriate values for a and b must be chosen. Since the manager
may realize that several approximations have been compounded in the design
of rules, the manager may hesitate to rely solely on theoretical probabil-
ity distribution analysis that is based on complete knowledge of the demand
distribution. Most likely, the manager will employ retrospective simulation,
that is, the manager will reuse the limited amount of past data from which
the mean demand and the standard deviation of demand were estimated to ad-
Just the values of a and b so that the resultant statistical estimate
of the criterion function is at an optimal value. (Actually, the manager
probably will set the same values for a and b over a large number of
{tems, and so will perform the adjustment process via retrospective simu-
lation by using an aggregate objective function.) The manager also will
estimate several operating characteristics of importance, such as average
1?¥$ntory on hand, the probability of a stockout, the fraction of demand
filled, etc.

To summarize the scenario, we see that the system's designer must se-
lect in concert the number of historical observations to use, the frequency
for repeating the reestimation process, the form of the replenishment rule,
the statistical estimators to produce the demand parameters required by the
rule, and the design parameters of the rule. The manager makes all of these
choices based at least in part, on simulating how the proposed system would
have performed in the past (and in doing so, typically uses the same limited
data for both estimation and prediction?. In all the discussion to follow,
we employ the term system's design to mean the entire composite of these
many choices.

The nature of the currently supported research program is to examine

1. How good are the manager's statistical estimates of the system's
future performance for selected choices of the system's design? Similarly,
how good are theoretically based estimates of future performance?

2. Under what circumstances do certain "approximately optimal" policies
perform better than others? Are some policies statistically more robust than
others?

3. How do the statistical estimates of the system's future performance,
as well as the performance characteristics themselves, depend on choice
parameters such as the number of historical observations to use and the
frequency of reestimating the policy's demand parameters?

Special attention is to be given to systems in which the demand
distributions display a high frequency of zero demand (the positive
levels of demand, however, need not be anywhere near zero).

Except under extremely special assumptions, it is not possible to
derive computationally practical formulas for the exact statistical

e —




1. Background of the Inventory Research Program (continued)

distributions associated with the above questions. The best hope for
increasing our ability to answer the research questions above in a wide
variety of situations is to derive more workable numerical approximations.
With that objective in mind, we have built under the previous and present
research grants a computer simulation model that yields the actual oper-
ating characteristics and the corresponding properties of statistical
estimators of these operating characteristics for inventory systems that
contain uncertainty about the demand distributions.

2. Summary of Results
This section summarizes the results that have been obtained. A
detailed account of the results is contained in the following reports.

MacCormick, A. (1975), Statistical Problems in Inventory Control,
ARO and ONR Technical Report 2, December 1974, School of
Organization and Management, Yale University, 244 pp.

Estey, A.S. and R.L. Kaufman (1975), Multi Item Inventory System

Policies Using Statistical Estimates: Negative Binomial Demands

« 1iial 0224 istical R vom! nan
Variance/Mean = 1), ARO and ONR Technical Report 3, September
|

, School of Organization and Management, Yale University,
85 pp.

Ehrhardt, R. (1975), Variance Reduction Techniques for an Inventory

Simulation, ARDO and ONR Technica) Report 4, September 1975,
School of Organization and Management, Yale University, 24 pp.

Kaufman, R. (1976), Computer Programs for (s,S) Policies under
Independent or Filtered Demands, ARO and ONR Technical Report S,

choo) of Organization and Management, Yale University, 65 pp.

Kaufman, R. and J. Klincewicz (1976), Multi-Item Inventory System
Policies Using Statistical Estimates: Sporadic_Demands (Variance/

Mean = 9], ARO and ONR Technical Report 6, School of Organization
an nagement, Yale University, 58 pp.

Ehrhardt, R. (1976), The Power Approximation: Inventory Policies
Based on Limited Demand Information, ARO and ONR Technical

ggport*7. School of Organization and Management, Yale University,
PP.

Klincewicz, J.G. (1976), Biased Variance Estimators for Statistical

Inventory Policies, ARD and ONR Technical Report 8, School of

rganization and Management., Yale University. 24 Pp.




2. _Summary of Results (cont inued)

Klincewicz, J.G. (1976), Inventory Control Using Statistical Estimates:
The Power Approximation and Sporadic Demands {Variance/Mean = 9).
ARO and ONR Technical Report 9, School of Organmization and Manage-
ment, Yale University, 52 pp.

Klincewicz, J.G. (1976), The Power Approximation: Control of Multi-
item Inventory Systems with Constant Standard-deviation-to-mean
Ratio for Demand, ARO and ONR Technical Report 10, School of
Business Administration and Curriculum in Operations Research

' and Systems Analysis, University of North Carolina at Chapel Hill,
47 pp.

Kaufman, R.L. (1977), (s,S) Inventory Policies in a Nonstationary
Demand Environment, ARO and ONR Technical Report 11, School of
Business Administration and Curriculum in Operations Research
and Systems Analysis, University of North Carolina at Chapel Hill,

155 pp.

Ehrhardt, R. (1977), Operating Characteristic Approximations for the
Analysis of (s,S) Inventory Systems, ARQ and ONR Technical
Report 12, Schoo) of Business Administration and Curriculum in
Operations Research and Systems Analysis, University of North

Carolina at Chapel Hill, 109 pp.

Schultz, C., R. Ehrhardt, and A. MacCormick (1977), torecasting
Operating Characteristics of (s,S) Inventory Systems, ARD
and ONR Technical Report 13, School of Business Administration
and Curriculum in Operations Research and Systems Analysis,
University of North Carolina at Chapel Hill, 73 pp.

Software nge!qpment. Several useful computer programs have been con-
structed to assist in the research. Using the method in Veinott and Wagner
(27), one program calculates optimal infinite horizon (s.S) policies. The
routine accepts as demand distributions, Poisson, Negative Binomial, and
compound Negative Binomial. 1t not only computes an optimal policy, but
also calculates the associated expected cost, set-up cost, holding cost,
penalty cost, replenishment frequency, and stockout frequency. This program
also will calculate these same operating characteristics for an arbitrarily
specified (s,S) policy (such as an approximately optimal policy).

A second program that is available accepts a stream of actual dem

ands,
and computes an optimal (s,S) policy for that stream. The methodology is
analogous to that used in the above routine. This program facilitates look-
ing at situations where the demands need not be identically and independently g




2.  Summary of Results (continued)

distributed. For example, the demands may result from (s,S) replenishment
policies being used by the organization's customers, and the computer program
includes a subroutine that can generate demands in this fashion.

A simulation model was constructed to analyze statistical policies.
The program was originally written to simulate the base-case system and
has since been modified to study nonstationary (cyclic) demand distributions.
Both simulation programs employ variance reduction techniques and sophisticated
statistical analysis of output data. Each simulation tabulates point estimates
and standard errors for average period-end inventory, stockout quantity,
replenishment frequency, and total cost per period. For the statistical
policies, the simulations also calculate forecasts of these quantities at
each policy revision.

Base Case Studies. Each study utilizes multi-item systems comprised
of 72 items representing for each demand distribution (Poisson, Negative
Binomial with variance-to-mean ratio 3, Negative Binomial with variance-
%o-Tean ratio 9) a full factorial design using the parameters specified in

able I.

TABLE I
System Parameters

Factor Levels Number of Levels
Demand distribution Poisson, Negative

Binomial

(0?/u = 3, 9) 1
Mean demand 2, 4, 8, 16 4
Unit holding cost 1 1
Unit backlog penalty cost 4, 9, 99 3
Replenishment setup cost 32, 64 2
Replenishment leadtime 0, 2, 4 3




2. Summary of Results (continued)

The initial phase of base-case research focused on the Normal
Approximation, an approximately optimal policy depending on only the
mean and variance of demand. A new policy rule, the Power Approximation,
was then derived using asymptotic theory and regression analysis. Table
Il summarizes the performance of these policies in several multi-icvem
systems. Note that both policy rules are quite close to optimality in
these systems. The Power Approximation outperforms the Normal Approximation
quite consistently with the greatest differences occurring in items with
either high demand variance or large unit penalty cost.

Table 111 shows how the policy rules perform when statistical estimates
are used in place of the actual demand means and variances. The figures
displayed inTable 1Il are absolute increases or decreases in cost components
over optimal values with percentage differences in parentheses. The best
overall results are obtained with the Power Approximation. For example,
when the Statistical Power Approximation was computed using 26 periods of
data, the average total cost per period for the entire system rises 5.1%
when variance/mean = 3, and 11.5% when variance/mean = 9. If as many as
52 periods of data are used, then the degradation is only 6.3% when
variance/mean = 8, Realizing that if we were to define “"optimal policies”
for an environment of partial information about the underlying demand dis-
tribution, some degradation over optimal (s,S) policies would occur, these
results are encouraging. That is, controlling an inventory system using
approximately optimal formula driven by statistical estimates from a limited
history of demand in many cases ought to be satisfactory. A notable excep-
tion to this generalization arises when the penalty cost is high (that is,
the targeted stockout probability is low, of the order .01). For example
when a demand history of 26 periods is utilized, a 18% degradation occurs
when variance/mean = 9.

Several studies focused on the situation where the probability of zero
demand occurring within any time period was significantly large, but the
positive levels of demand were not necessarily small. The performance of
the Power Approximation and the Normal Approximation were examined. The
Power Approximation yielded lower expected total costs than the Normal
Approximation under conditions of full information. When statistical in-
formation was used to set (s,S) policies, however. the relative performance
of the Power Approximation and the Normal Approximation was observed to be a
function of mean demand: for items with low demand (u=8,16), the Normal
Approximation was preferred.

The potential for improving statistically-derived policies was examined
in a study of the use of biased estimates of the demand variance. Significant
savings were found only for inventory items with small mean demand (u=2)
and large unit penalty cost (p/h=99). For these items, total cost was re-
duced by approximately 42 when the variance estimator was biased upward.
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TABLE 111

Average Costs per Period for a 72-Item tepative Binomial Syatem:
Comparison of Statistical Control with Optimal Control Given Full Information

COST COMPONENT

e S

Pover
Anproxication

Normal
Apprevirmation

VARIANCE/MEAN =3

Power
Approximation

Normal
Approximation

(2) Revision Intervnl

13 Yeriols

Revisinn Historv Laa~th 13 Perieds

INVENTORY 121 (6.2) -61 (-3.2) * T (1.3)

BACKLOG * 529 (77.6) 880 (129.0) * 221 (64.4)

REPLEN ISHMENT -3 (-0.4) 44 (7.0) * 16 (2.2)

TOTAL 647 (20.0) 862 (26.6) * 253 (10.8)
(b) Revision Interval 25 Periods,

Revision Historv lonsth 25 Poriods

INVENTORY 54 (2.8) 118 (-6.1) .22 (1.7) 1 (0.1)

BACKLOG 311 (45.7) 597 (87.5) 94 (27.4) 114 (33.2

REPLEN ISIIMENT 8 (1.3) 56  (8.9) 4 (0.6) 22 (3.0)

TOTAL 373 (11.5) 535 - (16.5) 120 " (5.1) 135 (5.8)
(c) Revision Interval S2 Pariods,

Revision Mistorv leneth 52 Periods

INVENTORY 43 (2.2) -131 (-6.8) * -5 (-0.4)

BACKLOG 154 (22.6) 398 (58.4) * 58 (16.8)

REPLEN ISTMENT 7 0.5 57 (9.1) * 82 (2.9)

TOTAL 206 (6.3) 324 (10.0) * % (3.2)
Note: This table shows the absolute increase or decrease ;n the cost corponents

over optimal values with percentage differences in parentheses.

Not available.




S, T

2. Summary of Results (continued)

Operating Characteristic Analyses. An in-depth analysis of the operating
characteristics of optimal, approximately-optimal and statistical policies

was conducted. The characteristics under consideration were the period-average
values of holding cost, backlog cost, backlog frequency, replenishment cost and
total cost. Approximate expressions for the characteristics were derived analyt -
ically from theoretical considerations, and from empirical observations.

The expressions were generalized and their parameters fit to a large number
of observed values of the characteristics using least-squares regression.

The resulting approximations are typically within a few percent of the ob-
served values. Such approximations allow, through interpolation, the cal-
culation of operating characteristics for a wide setting of parameter values,
given a class of probability distributions. They permit a more accurate
determination of parameter snesitivity (including the economic parameters,
shape of the demand distribution, and amount of statistical information
available). Further, they can yield answers concerning multi-location
inventory systems--to illustrate, "What happens to total cost and its com-
ponents if an item is stocked in a single location rather than in several?"

Nonstationary Demand. A detailed analysis of the nature of optimal
policies in a nonstationary environment was undertaken, paying particular
attention to the situation in which demand distributions are independent,
but the mean demand varies in a cyclic manner. The analysis resulted in
a successful adaptation of the Power Approximation to nonstationary envir-
onments where the mean and variance of demand are known for each period in
the cycle. .

Throughout the study, a sixteen-item system was examined for each of
five demand models. In all five models, the mean demand was varied in a
cyclic manner while the variance-to-mean ratio was held constant at 3.
Mean demands were varied by a factor of 3 in Models I and II, and by a
factor of 5 in Models III and IV. The fifth model was the base-case as-
sumption of iid demands, and was used as a point of comparison.

Results are summarized in Table IV where Power Approximation costs in
a 16-item system are compared with optimal costs for the four cyclic demand
models and the stationary model. Notice that the total cost of the approx-
imately-optimal policy is typically within a few percent of the optimal value.

Computer simulation was used to examine the situation in which only a
limited number of past demands are known. Each period's demand mean and
variance were estimated using regression analysis, and the estimates were
used in place of actual means and variances in the computation of modified
Power Approximation policies. Results are summarized in Table V, where costs
under statistical control are compared with optimal costs, for the four non-
stationary models and the stationary model.




2. Summary of Results (continued)

TABLE IV

Average Costs Per Period for a Multi-Item System:
Comparison of Optimal and Approximately Optimal Control
for Several Cyclic Demand Models

COST COMPONENT STATIONARY MODEL MODEL MODEL MODEL
MODEL I 11 111 1V
INVENTORY R 12 ( 2.9) 5 (1.1) 37 (8.7)] 271 ( 6.3)
BACKLOG 0 (-.2) -1 (-1.0) 0 (-.2) -7 (-6.5)| -7 (-7.0)
REPLENISHMENT | -1 (- .5) : L .5) 11 ( 6.0) 0 (- .2)
TOTAL o4 f) 10 ( 1.4) 6 { .8) 42 ( 5.8) ! 19 ( 2.6)
Note: Table IV shows the absolute change in the cost components over
optimal values with percent changes in parentheses.
TABLE V
Average Costs Per Period for Multi-Item Systems:
Comparison of Statistical Control With
Optimal Control Given Full Information
(Revision Interval 24 Periods, Revision History Length 24 Periods)
COST COMPONENT STATIONARY MODEL MODEL MODEL MODEL
MODEL I I1 111 1V
INVENTORY 28 ( 5.4) 40 (9.2)( 31 (7.2)f 68 (15.8)| 58 (13.4)
BACKLOG 28 (25.9) 24 (23.2) | 26 (25.0){ 27 (26.5){ 20 (19.2)
REPLENISHMENT 2 ( .9) 0 (- .2) ] 4 J A2 % .2 2§ a3)
TOTAL 54 (7.1) 64 (8.6)| 59 ( 7.9)| 106 (14.8)| 79 (10.6)

Note: Table V shows the ahsolute increases in the cost components over
optimal values with percentage increases shown in parentheses.




o

TABLE VI

Average Retrospective Simulation Forecasts for a 72-Item Negative Binomial
System Controlled with Statistical Information About Demand:
Comparison with Corresponding Estimated Expected Values
(Percentage Underestimates)

VARIANCE/KLAN = 9 VARIANCE/MEAN = 3 1
Power Normal Power Normal .
COST COMPONENT Approxiration Approximation Approxiration Approximation

(#) 13-period Revision Interval,
13-period Recvision Kistery,
13-period Forecast Pictorv:

INVENTORY 2.2 2.8 x 1.5
BACKLOG 76.2 82.0 * 66.9
REPLEN ISHMENT 1.6 1.8 * 1.1
TOTAL T G 32.8 % 15.6

(®) 26-period Revisicn TYatervel,
26-period icvision Historv,
26-period rorecast Histcrv:

INVENTORY 1.2 1.6 1.1 0.9 :
BACKLOG 59.3 64.2 37.7 47.1
REPLENISHMENT 1.2 1.2 0.6 0.6
TOTAL 17.1 22.7 7.5 9.3 A |

(c) 52-period Revision Interval, ‘ |
d2-perind nevisicn History,
52-period Forecast History:

INVENTORY 0.7 0.8 e 0.5
BACKLOG 42.1 44.6 * 28.0 ;
REPLEN ISHMENT 0.5 0.6 * 0.3
TOTAL 10.7 14.0 * 5.0

* : Not avatlable.




2. Summary of Results (continued)

A pattern of satisfactory performance emerges for the nonstationary
models. The greatest degradation occurs for Models III and IV which are
the two models with the most extreme variations in demand distributions.

Forecasting Operating Characteristics. A major study was conducted
to find good methods of forecasting operating characteristics of statis-
tically-derived policies. Early efforts in this area focused on the tech-
nique of retrospective simulation. This method produces forecasts at each
policy revision by computing the operating characteristics that have occurred
if the new policy were used on a recently-realized sequence of demands. The
technique is inherently biased because the same demands are used to consStruct
the policy and to forecast its performance. Computer simulation was used to
estimate the magnitude of the bias for a variety of system parameter settings.
Results are summarized in Table VI where percentage forecasting underestimates
are given for total cost and its components in several 72-item systems. Notice
that inventory and replenishment costs are forecast quite accurately. For
example, in the variance-to-mean 9 system utilizing the Power Approximation with
a 26-period revision interval, both inventory and replenishment cost forecasts
are 1.2% below the actual values. This accuracy is not exhibited by forecasts of
backlog quantity and, resultingly, total cost. In the example discussed
above, the backlog quantity forecast is 59.3% below the actual value and the
total cost forecast is a 17.1% underestimate. The biases are especially large
for high penalty cost items.

Attempts to improve upon the retrospective simulation method have focused
in two major approaches. The first approach is to use demand statistics in
previously-developed formulas for the operating characteristics. The second
approach considers several variations of retrospective simulation in which
distribution functions are fitted to the demand statistics and more sophis-
ticated simulation is performed. Results indicate that only modest gains can
be realized by these methods.
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