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ABSTRACT

Inference of high-dimensional grammars such as tree grammars and
web grammars is discussed. The k-tail inference procedure for finite-state
grammars is extended to the case of regular tree grammars. The behavior of
the k-tail procedure with variable values of k is studied. The derivation
diagram of context-free web languages is introduced. A “semantic teacher”
is used for the inference of web grammars. Application examples in picture

J':

and scene analysis are presented.
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INTRODUCTION

The use of formal linguistics in modeling
natural and programming languages and describing
physical patterns and data structures has recently
received increasing attention. Grammar or syntax
rules are employed to describe the syntax of languages
or the structural relations of patterns or data. In
order to model a language or to describe a class of
patterns or data structures under study more realis-
tically, it is hoped that the grammar used can be
directly inferred from a set of sample sentences or a
set of sample pattems (or data). Grammatical
inference is the problem of learning a grammar based
on a set of sample sentences. Potential appli-
cations of grammatical inference incliide areas of
pattern recognition, information fetrieval, pro-
gramming language design, translation and compiling,
graphics languages, man-machine communication, and
artificial intelligence.

‘Nmkm%htlo%-‘uiﬂg

In (1-3), inference of nonstochastic and
stochastic string grammars was surveyed and a
heuristic inference procedure for tree grammars was
proposed in (4). In this paper, the k-tail pre-
sented. An inference procedure for transition
network grammars was proposed in (4). In this
paper, the k-tail inference procedure for finite-state
grammar (5) is extended to the case of regular tree
grammars. The behavior of the k-tail tree grammar
inference method for varying values of k is studied.
A web grammar interpretation of Winston’s structure
learning is discussed and .an inference procedure for
context-free web grammars is suggested.

K-TAIL INFERENCE METHOD FOR REGULAR
TREE GRAMMARS

The kqtail inference method for finite-state
string grammars requires an integer parameter k as
input along with the presentation of (positive)
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Approved for pudblie
re
distribution unlh.lt.d.l _




AIR FORCE OFFICE OF SCIENTIFIO RESZARCE (AFS0)
ROTICE OF TRANSMITTAL T0 DDQ

This technical report hay been reviowed and i

ayproved for publ:c rulease IAW AFR 190-18 (M)«
Distribution is unlimited,

A. D. BLOSE

Teehniocal Information Oofficer 4




training samples (5). Sublanguages S, are created
where

Sw = [ x/wx is a string in the (positive) training

set and
TIxI<k )

{x| is the length of x. Equivalent S, sets are then
combined to form the ith sublanguage. A rule,
Aj > tA, is produced if there is a string w such that
Sw is the ith sublanguage and Syy is the jth sub-
language. The rule A; =t is produced if there is a
string w such that Sy, is the ith sublanguage and wt
is in the training sample. For strings, the exactness
of the grammar produced for any given training set
can be adjusted by varying k from O up to the
length of the longest string in the training set. The
inferred languages vary correspondingly from some-
thing close to the universal language to the pre-
sentation itself. Thus, any method restricted tok = 1
will infer grammars which generate languages which
are very “loose” in their fit of the sample set.

It is possible to extend the k-tail method for
finite-state string grammars to regular tree grammars.
The method is as follows:

Step 1.  Form the following collection:
Ce=[(T.72 ... Tm) Ity 75 .. T,

is a tree in the training set
and |1g) < kfor £=12,...m )

where
t is a tree with a single special frontier node.
71,73, ... Tmare any trees that can occur in
positions 1,2, ... m.
tTy7; . . . Ty is the tree formed by concatenating
Toat the £'" position of the special frontier node
olt,
ITg| is the depth of 7p + 1
m is the number of descendants of t and is not
fixed to any particular integer.

Note that t, the empty tree, is possibly a member of
Ce.

Step 2.

The collection Cy of tuples of trees can be
partitioned into subcollections of m-tuples where m
is a fized integer for all elements of each subcollec-
tion.

Ci=Cyo VCti V... UCyy

where
Cio = [ €] if t is in the training set, otherwise

Co=¢

Ctl - ((‘n)l"" ﬁl‘mhu‘"‘iﬂ“mlﬂd
|f| | < k]

C‘z =[(1y,79) hT‘ 7, isa tree in the training set
and ;- | < kand :jry] Kk ) (Note here

that the subscript indicates the
78 podﬂt’ilf&nompbsmmuli‘tgg
WU A oJ .‘u y

T

@ is not

® necessarily always the same tree nor is it
the same tree as 7, in Cy,.)

Cm=l(r.72,... 1) It7y75 ... 1;,,
intreelpthemmngaetand
Irgl< k for £=1,2,...m]

Thus, C, is a collection of tuples of trees and Cy;
is a collection of i-tuples of trees where i is a fixed,
specified integer.

Each of these collections defines all of the
i-tuples of k-tail trees that are in the training set with
root attached to the tree, t, at its special frontier
node. The collections are separated in this way
because an i-tuple and a j-tuple where i # j cannot
be generated by the same rule. Thus, we will now
demonstrate the procedure that should be applied
to each of the subcollections.

Step 3. -

The next step is one which is not necessary
in the case of strings. It is necessary here because
a node can have several descendants and it may be
that only certain ordered combinations of des-
condants are allowed. Thus, each subcollection of
ituples of trees, Cyj, must be further divided into
subcollections of i-tuples, each of which can be
expressed as the cartesian product of i sets of trees.
Thus, Cy; may be written: :

Ctl =Cti| UC“: | UCtm
where
Cjj = (1,72, ... ) iy €8);, T2 €8j3,...]

Chij= (1. 1) 1,72, .. . Tm) €S, x

Sj,x...xsji]

That is, each C(ij is characterized by i sets, i
(R =1,2,...i), of trees from which the 2th member
of an i-tuple must be selected. These SjQ sets are
sublanguages of trees and may be regarded as a set
of trees generated by a particular nonterminal of
the tree grammar. The difficult part of this step
is to find those sets S;o which efficiently characterize
the Ctij. First of all, the resulting grouping is not
unique. One possible grouping would be that in
which each C,. has one element. This would not
beaaoodcml,abeauuuchqijwinrmhina
grammar rule. Thus, this choice would result in a
large number of rules. Since there are a finite number
of elements in Cyj, there are a finite number of
groupings and each of these can be tried. It is not
necessary that the Cijj be disjointed. A particular
grouping would be optimum if it introduced a
minimum number of new Sjp sublanguages.

Now the rules for the grammar can be cons-
tructed. Equivalent Sjo sublanguages are combined
and a nonterminal is assigned corresponding to each
distinct sublanguage. Now a rule Ajg-vx AmApy ...

or

~Anm is produced if there is a tree t such that:
'J";’ '

B T L
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1. Ajg is the nonterminal corresponding to the
sublanguage Sjg.

2. There exists a Cyj; that contains the sub-
language Sjp in the 2N position of its
specification.

3. txisatree with x concatenated at the gth
position of t.

4. There exists a C¢xmn Which is specified by
the sublanguages Sqy.Sn3, . . - Snm.

S. An1,An3, - - - Anm are the nonterminals cor-
responding to the s'" ,Snz go 0 Snm
sublanguages, respectively.

6. Eithe:{éx\ : is a tree in Sjp where ac€ Sp;,
B€Sn,...A€Spmor | > k.

A rule Ajg —* x is produced if conditions 1, 2 and 3
above are satisfied and tx is in the training set.
To illustrate consider the following example:

Example 1:
Consider the following regular tree grammay:
1) s-$ 3) B-b
a
(2 B-b L%
(5) B-b
The training set is the following:
1) /\ p)] )\ 3) s
b b b b l/\b
b/\b . b/\;
) ) ¢) s (6) H
/\ b b/\a

b b b b

) b/s\b (8) /S\b &) /S\b
Rl
/\ /\b a/ \b l/\

Now assume k = 1 and construct the grammar as
follows:

Step 1:

(Note: Greek letters are used here to specify
the distinct trees which were all represented by t in
the explanation above.)

Let a=¢(the empty tree)

Then Ca = [¢]

Let f=$

Then Cg= [(b,b)] (from sample 1)

Let o= /S (the underline denotes where the

b b

(7y . .. 7j) are concatenated)
Then C.ys [e(b,b,)] (from samples 1 & 2, respec-
tively)

Let &= /\

b
Then Cg = [¢, (b,b)](from sample 1 & 3, respectively)
Let p= §

A
b b
Then Cp = [€, (b,b)] (from saples 2 & 5)
Let n= §
/\
b b
/\
a b

Then C; = [€] (from sample 8)
Let 0= §

\
N
Then Cg = [—(a.b)] (from sample 8)
Let A= §

/\
b
/\
\
a b
Then C) = [€] (from sample 8)
Let u= §

b b
/\
a b
/\
a b
Then C“ = [e, (b,b)] (from samples 8 ¢ 9)
Step 2: \
Ca‘ Cw Ld ¢
C=Cpa = (b))
Cy= C‘)O uc.ﬂ wherg C.,o- [€] and Cyy=
((b,b))
Cs=Cgo Vegowhere Cgg = [€] and Cg =
((b,b)}
Cp= 00 ucpz where CpO = [a] and Cp2=
[(®,b)}
Cn=Cno= €]

R e ——
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Ce=Co2 = [(a,b))
C“ - C“o UC‘Q where C“o - [€] and C“2‘
[(b,b))

Step 3:
Ca0=Ca01 = ¢
Cp2=Cgay = [(T1,12) IT) €B, 73 €B]
where B is the sublanguage of trees = [b]
Cy0=Cr01 = [€]
Cy2=Cp21= (T1,72) |ry €B, 7, €B)
Cs0 =Ca01 = l€]
C82 = Cszl = [(Thfz)lfl €B, 1€ B]
C80 - [E]
Cs2=Cp21=(r1.72) ITy €B, 7, € B]
Cno -~ [e]
C02 = Cozr‘"’[(fl ,1’3) h" €A, T2 € B]
where A is the sublanguage of trees =[a]
Cro = (€]
Cyo = €]
Cuz= C21= [(7y,73)l7, €B, T2 €B]
Now the nonterminals and their equivalent sub-
languages are enumerated

Nonterminal Sublanguzgee
S ¢
A (a]
B [b]
E [e)

Now the grammar rules can be constructed:
From the relation f=a$:

S .= /S
B \B
Note:
1. S is the nonterminal corresponding to the
sublanguage, ¢.4
2. Cog has the sublanguage ¢ concatenated
at its 1st position. (i.c., thefe are no trees of
depth 0 in the training set.)
3. B =08 is a tree with § concatenated in the
Ist position.
4, Cﬁ} is specified by the sublanguages [b]
an \b] , respectively.
5. B and B are the nonterminals corresponding

to [b] and [b].
From the relation y = fb:

el 5
B B
Note:

1. B is the nonterminal corresponding to the
sublanguage, [b].

p 2 CﬁZI has [b] in the 1st position (at depth 2).

3. 7 = fb is a tree with b concatenated in the

Ist position.
4. C, 9 is specified by the sublanguages [b]
and [b], respectively.
5. B and B are the nonterminals corresponding
to [b] and [b].
Also B—b because

is in the training set.
A
b b
Now consider the relation 0 = yab
This yields the rule:
B -’A
A B
Because 1. B is the nonterminal corresponding to [b].
2. C.,z] has [b] in its 1st position.
3. 0 =yab is a tree with b concatenated in its
2nd position.
4. Cg, is specified by the sublanguages [a]
and [b], respectively.
5. A and B are the nonterminals corres-
ponding to [a] and [b], respectively.
The relation A = 0ab yields
A—a

because A is in the training set.
Now notice that the nonterminal E does not appear
on the left-hand side of any rule and can be
ignored. This is because it corresponds to the
sublanguages, [€], which means the tree has ter-
minated without further descendants.

Further, tests with subtrees from the training
set will show that all the rules have now been found.
The entire production set is shown below:

Mgl ) B—>b
B B A/\B

B—>b A—a
B/B

B-=0»

Note that this grammar generates all of the samples
in the training set and in fact generates a language
larger than the real one. For example, this grammar
would generate the following trees which are not in
the real language:

S S $
b/\b b/ \b b/\b
l/ \b n/ \b a/\b / \

a b
Similarly, for k=2, we have the inferred production set
S~ /S\
B B

Fa

A
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B—b A —a
C—->b
A B

The language generated by this grammar is exactly
that generated by the true grammar.

For k=5, we have the production set

S-’/K S—>9§
N\
E B

€ €

E->b C-’A

C/\C B B
E->b D->b

A D A/\C
C->b E—->b
A—>a B—>b

The language generated by this grammar is exactly
the training set.

The tree grammar inference methods of Bhar-
gava and Fu (6) and Gonzalez and Thomason (7)
are similar in that they both assume recursiveness
whenever there is the slightest evidence of it. It is
in this sense that they are similar to the k tail
method with k=1. In the k-tail method, wlien k=1,
the “loosest” nontrivial grammar is produced. In
many cases, this will be the same grammar as pro-
duced by both methods. The k-tail method will
produce more satisfactory grammars when k > 1
and when the training set is of adequate size.

AN INFERENCE PROCEDURE FOR WEB
GRAMMARS

In his work on language identification in the
limit, Gold (8) noted the importance of correctly
ordering the information sequence. Most other
grammatical inference researchers have also noted
this importance. An interesting demonstration of
the need to carefully select the training sequence is
the work by Winston (9). The purpose of the work
was to develop a system which could learn structural
descriptions of scenes by analyzing specially selected
examples. This work is now formalized and related
to the grammar inference problem.

The basic idea will be to correlate the deriva-
tion diagram of a web grammar with the semantic
net used by Winston. They by following the steps
used by Winston on the semantic net sand finding
equivalent steps for the derivation disgram, the
mathod can be translated into web grammar ter-
minology. The result will be a grammatical inference
procedure for web grammars which can be applied
more generally than in the specific block world con-

- - -

sidered. A brief review of the derivation diagram
of web grammars (10) will be required to support
this discussion.

1. The Derivation Diagram of Context-Free Web
Grammars

Study of the context-free class of web languages
reveals that many of the formal language properties
of string language also hold for the corresponding
web languages. One example is the existence for
context-free web grammars of a structure similar
to a derivation tree for context-free string grammars
(10). The definition of this structure, called a
derivation diagram is now given and an example is
given in Figure 1.

A new, unique relation called the direct des-
cendant relation is introduced. For a pair of nodes
(ny,ny) connected by this relation, n, is called
the direct descendant of n,. n,is called the direct
ancestor of n,. A node ny is called a descendant
of n, if there is a sequence ny...nx such that nj4y
is a direct descendant of n;. n, is called an ancestor
of ny.

Definition 1:

D, a web, is a derivation diagram for a context-

free web grammar G=(V\,VT,P,S) if:
(1) There is one node called the root with no
ancestors whose label is S, the start
symbol of G.
(2) All other nodes have exactly one direct
ancestor and every node is a descendant
of the root.
(3) Every node has a label which is a symbol
in V.
(4) If a node n has at least one descendant
and has label A, then A must be in V.
(5) Ifnodesn,,n,,...,ng are the direct des-
cendants of node n with labels A, ,A,, ...
,Ay respectively, A —> 3 must be a pro -
duction of Pof G where Ng=n, ,n,, . . ..nx
and the A, is the label of the node n; in
B,i=1,...,k.
(6) nj and n; are connected by relation r if
and only if
a) one is the direct descendant of the
other and r is the direct descendent
relation or

b) n; and n; are both direct descendants
of AAA-=f isaruleinP

and .—él——-:——ﬁ— -is

ny nj
a subweb of S or

¢) nj and some node ny are connected
by relation r and n; is the direct

A
descendant of nkthrough the rule A-f
a rule in P and the r between n; and

results from the embedding mapping
? of A.

“
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There are two kinds of subdiagrams which are
of interest. The first, called the skeleton of the
derivation diagram, is obtained by keeping all nodes
and all direct descendant relations and erasing all
other relations. The result shown in Figure 1(c)
nicely illustrated the basic structure of the derive-
tion. :

The second subdiagram of interest is called a
section. If my is a frontier node of the skeleton
(i.e., has no descendants), let n,, . . . ;m; be a path
to m; from the root node, n,, along only descendant
edges. Let my,m,, . . . ,mg beallof the frontier
nodes. Then a set C of nodes of the derivation
diagram is a crosscut set if C N [n,, . . . ,m;] is a sing-
leton for all 1 <i <k. A crosscut set, C, together

(v

(2)

e mp = o=y

with all of the edges of the derivation diagram
between nodes of C is called a section. Naturally,
only those edges are kept which are connected to
two nodes which are both kept. A section, illus-
trated in Figure 1(d), nicely illustrates the basic
structure of sentential forms.

2. Interpretation of Winston’s System

An example of the type of scene Winston's
system analyzes is shown in Figure 2. The sequence
of examples Winston found necessary to train the
system is shown in Figure 3. Notice that Winston’s
method uses negative samples in the form of “near
misses” as shown in scene 2 and scene 3. The des-
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Figure 2. An Example of an Arch

cription that is finally learned is shown in Figure 4.
It is assumed that all of the concepts illustrated
(except ARCH) have already been learned. Each
sample in the training sequence is constructed so
that it has only one difference from the already
learned description. Scene 2 illustrates that the
supports of the arch must not abut. Scene 3 illus-
trates that A must be supported by B and C. Scene
4 illustrates that a more general object than a BRICK
may be used as a top. !

The description in Figure 4 can be interpreted
as a hierarchical graph model and as a derivation
diagram of a web grammar. As such, it can be
converted to a web grammar. Some of the rules of
this grammar are shown in Figure S. These rules
are created from Figure 5 by generating a rule when
a relationship such as “a—kind-of” or “one-part-is”
is encountered in the diagram. Thus, the grammar
will have a derivation diagram similar to Figure 4.
In this case, the system is leaming one rule. That
is, it is trying to find the predicate which describes
the right side of rule (1). If this predicate can be
learned, it can then be used to analyze higher order
patterns containing it.

Mony important nonterminals in a web grammar
will not occur in recursive rules. These nonterminals
will be important because they represent important

SCENE 1
AN ARCH

1%

semantic concepts which give ‘“‘meaning” to the
structural descriptions. To learn an individual rule
in a web grammar, the system must be able to learn
the most general description possible for each object
most general description possible for each object
on the right-hand side. Assuming the form of the
rule is known (this is generally learned from the
first sample), then learning the exact rule becomes
a matter of finding how much each object may be
genenalized. In this case, the original description
of ARCH might contain the objects A, B, and C;
that is, an exact description of this particular scene.
This description would be of little general use
because no slightly different arch could be identified.
Even the appropriate parse of this scene is not known
because grammars describing it might be ambiguous.

In a general formalism an object like A is
described by properties like orientation and shape.
These properties allow successive generalization to
occur according to what values of a particular pro-
perty are important. The structure which describes
and systematizes the generalization process is called
the property lattice.

Definition 2:

A set of elements C=[cy,c; ,...] is said to
be partially ordered (hierarchical) if there exists
a relation (<) defined on the elements of C which is:

(1) Reflexive: c < c.

(2) Aatisymmetric:

¢y K¢,y and ¢, K¢y impliescy =¢;;

(3) Transitive:

Cy <Cz and Ca <03 implies Cy <63.

If C is a partially ordered set and X is any
subset of C, then aef is a lower bound of X ifa
< x for all xeX and a is an upper bound of X if x <a
for all xeX. A lower bound b of X is called the

—

SCENE 2
NOT AN ARCH

SCENE A
AN ARCH

Figwe 3. A Training Sequense for an Areh
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greatest lower bound (g.1.b.) of X if for every a that
is a lower bound of X, a <b. Similarly, an upper
bound d of X is called the least upper bound if for
every e that is an upper bound of X, d <e. A
partially ordered set of C in which any two elements
have a least upper bound and a greatest lower bound
is called a lattice.

In the case of concept lea.:ing here, the
elements of C are called concepts and consist of
subsets of samples containing certain property values.
The partial order relation considered is set inclusion.
The purpose of the learning procedure will be to
find that concept which contains all of the sam-
ples showing allowed property values and none of
the samples having disallowed property values. The
procedure to be used in learning a concept will
be as follows:

(1) Whenever a set of positive samples are
given, then all lower bounds of the set
in the lattice are allowed as the possible
concept. The least upper bound of the
set and all its lower bounds are also
allowed.

(2) Whenever a set of negative samples are
given, then all upper bounds of the set
in the lattice are disallowed as the possible
concept. The greatest lower bound of
the set and all its upper bounds are also
diallowed.

(3) Whenever a new positive sample is given,
then the new allowed part of the lattice
is the set of all lower bounds of the least
upper bound of the new example and
the previously learned least upper bound.

(4) Whenever a new negative sample is given,
then the new disallowed part of the lattice
is the set of all upper bounds of the
greatest lower bound of the new example
and the previously learned greatest lower
bound.

(5) When all of the points in the lattice are
either allowed or disallowed, the correct
concept is the least upper vound of the
allowed part of the lattice and is said
to have been learned.

The purpose of this study will be to see how
the lattice can help in selecting a good training set
and to see how grammars can help in setting up the
lattice. In many practical cases, properties are
neither all independent nor all dependent. In these
cases, ihe property lattice is more nouniform. For-
tunately, the property lattice can be constructed
from the grammar if the grammar is in the right
form as is shown in Figure 6. Note in this case that
a (STANDING TRIANGULAR PRISM)is not allowed
by the grammar so the higher order concepts
(STANDING) and (TRIANGULAR PRISM) are also
not present. How, the number and selection of
samples necessary to learn a concept in this lattice
can be investigated. To generalize to the concept
(PRISM), 2 positive samples (STANDING BRICK)

Givon the Grammon:

(PRISM) —= (BRICK)
(PRISM) —= (LYING)
(BRICK}] —= (LYING BRICK)
(BRICK) —= (STANDING BRICK)
(LYING) —= (LYING BRICK)
(LYING) —= (LYING TRIA PRISM)
(ANY PRISM)
(BRICK) (LYING)

(STANDING BRICK) (LYING BRICK) (LYING TRIA

PRISM)

¢

Figure 6. A Lsttice Constructed From A Grammar

and (LYING TRIA PRISM) must be given. To
generalize only to (BRICK) or (LYING), all three
samples (2 positive and 1 negative) must be given.
To generalize to (STANDING BRICK) only, two
samples must be given.

Thus, by using the grammaticaly formalism
for lower order concepts, such as (PRISM), a more
efficient lattice structure can be set up. If this
lattice is big enough, there is less necessity for a
“near miss” to be so near because samples which
are more different will still have a least upper bound
and greatest lower bound in the lattice. This lattice
structure can help in the selection of proper training
samples for higher order concepts such as (ARCH).

3.  An Inference Procedure

In terms of formal grammatical inference,
Winston’s procedure, as just formalized, can be
stated as follows:

(1) Assume that a given set of properties and
predicate forms are known to be appropriate
from a priori information about the applica-
tion.

(2) Given a sample, get all possible parses of it
with these forms and arrange the parse non-
tcrminals in a property lattice.

(3) Then, by giving a sequence of appropriate
positive and negative samples, and using least
upper and greatest lower bound operations
in the lattice, converge to the correct parse
common to all positive samples and including
no negative samples.

(4) Construct the grammar rule reflecting this parse.
An example of applying this procedure to a

Winston-like problem is now given.
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Example 2:

Assume we are given a problem in which the
only objects are rectangular prisms and the only pro-
perties detectable are size, shape, and color. Fur-
thermore, assume that green cubes do not exist. A
lattice illustrating these properties is shown in
Figure 7. The objects, properties, and relations are
summarized below in Table 1.

Table 1 Objects, Properties, and Relations for Example 2

Object Properties Values Relations
Rectangular Size Larger Supported by
Prisms Smaller Larger-smaller
Shape Cube Same color
Rectangular
Prism
Color Red
Green

We now wish to learn the concept of a pyramid.
For illustrative purposes it is assumed that a legal
pyramid can have cubes or rectangular prisms but
supporting objects can only be red in color. That
is only the top object can be green. To being,a
positive sample of a pyramid (shown in Figure 8)
is presented and the pattern is parsed. The parse or
derivation diagram or semantic net resulting is shown
in Figure 9.

Now, by presenting an appropriate -sequcene

0! Ject Lattice

P = (P1, P2)

Pl = COLOR, O = RED, | = GREEN

P2 = SHAPE, 0 = CUBE, | = RECTANGLE

(00,01,11)
(00,01) (00,11) (01,11)
(00) (o1) (i
é

Figurs 7.  Lattics for Properties of Example 2

bk b

Figure 8. An Example of a Pyramid

supports
larger
same color

supports
larger
same color

Figure 8.  Parse of Figure 8

of positive and negative samples, th: teacher must
illustrate the most general object or relation which
is allowed in each position. This 2xample will con-
centrate just on the objects and for the moment
ignore the fact that the relations must be learned
also. The supporting objects in the pyramid can be
any shape but must be red. This is illustrated by
the (00,01) entry in the lattice. This can be
illustrated by three saraples: 00 and Ol as pouitive
sampies and 11 as a negative srinple. The tcp
object can be green. Since a cube cannot be green,
this is illustrated by the (00, O1, 11) entry in the
lattice. This state in the lattice can be learned
by presenting 00, 01, and 11 as positive samples.
Thus, for each individual object, three samples must
be given. But, since these can occur in various
combinations with the other objects, a total of 27
combinations must be presented to completely learn
the definition of the pyramid. The samples are
shown in Figure 10. Note that if the objects can
be considered independent only seven samples need
to be given. These sample. are shown with asterisk«
in Figure 10.

The derivation diagram which is finally learned
is shown in Figure 11. The grammar rule learned is
extracted from this diagram by putting the ancestor
of the *“‘One-part-is” relation on the left-hand side
and the descendants or the right-hand side. This
rule is shown in Figure 12. The embedding of this
rule is somewhat arbitrary.

Several conclusions can be drawn from this
example. First, if there are several properties involved
and these properties take on several values and it is
necessary to learn a pattern containing several objects,
then many samples must be used in training unless

some heuristic assumption is made. Second, if one
part of the pattern can be assumed indepedent of

L
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Sample Code for C o0
CodeforB = 00
Code for A 00
Samples which must be presented:
Positive Samples:
00* 00 00°* 00 O1* 01 01 01
00 00 OiF 01 00 00 Ot O1
00 01 00 01 00 O1 00 01

1nm*1n 1 1
00 00 O1 of
¢o 01 00 O1

Negative Samples:
00* 00 00* 00 00 01 01 01 01 O1
00 O1 11 11110001 11 11 11
11 1100 01 11 11 11 00 O% (1

1t 1 nn
00 0111 1111
11 11 00 01 1i

Figure 10  Treining Samples

Figure 12. The Resulting Grammer Rule

other parts, the number of samples needed to learn
it can be greatly reduced. Third, this method as
shown does niot specify the embedding.

CONCLUSIONS AND REMARKS

This paper presents some preliminary results in
the inference of tree and web grammars. It is hoped
that the preliminary results will stimulate new and
better inference methods for high-dimensional
grammars, particularly concerning the quality of

inference (or the “‘goodness of fit™) and the applica-
bility to real-world problems. A proposal for inferring
web grammar from pictorial patterns can be found
in (10].
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