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ABSTRACT

A theoretical analysis is presented of unsteady :sokid
propellant combustion, particularly combustion stabilityfagd
extinction by rapid depressurization. It is assumed that -

~ the solid decomposes by a pyrolosis law and the gas¢ous prod=

dcts react exothermically following an Arrhenius ldw, For
large values of this non-dimensional activation energy the
gas-phase combustion, turns out to be gquasisteady. Thg-chég
acteristic response time of the solid tolgas-phase\perinrb;
ations turns out to be large compared to the characteristic
residence time in the heat-up zone of the solid, their ratio
being of the order of the non-dimensional activation energy
in the gas~phase., A linear stability criterion ‘has been ob-
tained that gives stable burning for steady burning rates a-
bove and below two limiting valuesjthe width of the unstable
region increases with the activation energy of the pyrolisis
law, and becomes zero for a finite value of that activation
énergy.
that s

A nonlinear stability analysis has been performed

s the existence of a limit cycle for unsteady burn-

ing condiYions; in a part of the cycle the burning is slow

and the .solid responses as a whole to variations in gas phase

burning; dufing other part the characteristic time is short
and the heat\content of the solid is constant. The dynamic

extinction pXocess. has also been investigated.
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NOMENCLATURE

Amplitude of limit cycle, eq.(64).

Preexponential factor, and constant ;f integration (eq.52).
Specific heat.

Constanf of integration (eq.52).

Diffusion coeficient.

Activation energy of the pyrnlisis.,

Y
»

Activation energy of the gas-phase reaction.

Dimensionless activation energy of the‘gas~phas§ reactio?.
Dimensionless heat flux at the surface, see Eq. (14).

Heat of vaporization.

Lewis number.

Burning rate.

Exponent of fuel mass fraction in chemical reaction rate.
Pressure.

Total heat content of the solid (eq. 71).
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)

Total heat content of the solid (eq.67).

wl”

Q Heat released per unit mass of fuel. .

|
A )

R Universal gas constant.

T Temperature.
t Time.
t Characteristic time, see Eq.(43).

u Velocity

Y
-

X Space coordinate.
Y Fuel mass fraction,
y Dimensionless space coordinate.

o Thermal difussivity, and dimensionless parameter ('eq.62).
Y Dimensionless steady state surface temperature, see Eq.(38).

& Dimensionless width of the unstable region. Eq.(57).

€ Dimensionless inverse activation energy.
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© Nondimensional temperature. ff |
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.1
Dimensionless burning rate. r
ot biﬁensionless burning pate (eq. 58).
3 Nondimensional space coordinate.
L Nondimensional pressure history. |
p Density.
T, Dimensionless time, see Eq.(19).
T Dimensionless time, see Eq.(30).
T Dimensi?nle;s time, see Eq.(61). .
w See Eq.(38) and (46).- ,
a
S UBSCRTIPTS i
£ Flame.
:g Gas.,
s Surface.
o Steady state conditions. . 4
1
0 Infinity in the solid.. [




1. Introduction a ;

} _An understanding of the unsteady burning of solid propel-

lants provides insight into such important problems as the pres
surization, depressurization and stability of a solid-rocket

motors. . N

© Typical models used for the analysis are those presented '

in references (1) to 412),

Research in the stability of combustion in a rocket motor; .

has been active over the past twenty years, since irregular

pulses in chamber pressure were observed to develcp6 instead

of the expected smooth pressure-time history. These irregular
Pulses are generally accompanied by more regular, small-ampli-
tude, pressure oscillations, with frecuencies of the order of

the natural vibrationél frecuencies of sound waves in the’ cham-
ber. Combustion instability leads to inefficient operation of

rocket motors and even to mechanical failure of the propellant.

A considerable theoretical effort has been devoted towards
the understanding of this phenomenon. However, there are ,so many
different effects that may influence the stability of a burning
solid as to prevent a consensus on the theoretical description

of the phenomenan. .

An excelleint review of the analyses of the small amﬁiitude
pressure oscillations has been developed by Culick7. These

analyses calculate the admittance function of the burniﬁg surface

which gives the burning rate response to a pressure disturbance,

indicating therefore whether pressure oscillations are am lified
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’Q¥ attenuated. Most of the analyse§ assume the gas phase to be | -
quasisfead&, if the sense that the gas phase adjusts very quick~
, ' ! ! " 1y to changes in conditions whern compared to the response of the
{ P solid, and differ mainly in the assumptions used to \

calcu}ate
-the heat transfer from thé gas to the solid phase., However,as
Culiek points out, the majority of the results lead to the

same two-parameter form of the admittance function, with different
definitions of the two parameters. A stability béundary in the
space which coordinates the two parameters entering the admittance

'L function, is defined as the curve where the admittance funection

Ry
"

¢ becomes infinite, so that a small pressure change causes a large
fluctuation in burning rate. Points above this stability boundary

v é produce unstable solutions and points below this boundary provide
stable steady solutions.

Interest in the response of a burning solid to an .externally
applied pressure vardation stems from the possibility of extinction
by a rapid pressure decayﬁ. This dynamic extinction process is

useful in order to design solid propellant rockets with step~

restart capabilities, of interest in connection with space appli-
3 cations.

0
-

Neariy all the theoretical models developed to explain dy-
‘ ) namic extinction® ¥

invoke some kind of quasisteady ap-
proximation for the gas-phase. However, as pointed out in ref-
erencé (12) some of these analysesg—ii have interpreted incor-
qectiy this assumption by implying that the heat feebback from

the flame to the solid is a steady state function of the instan-
taneous pressure only.

L3

The present paper is an attempt towards analyzing unsteady
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processes in solid propellant burning by means of asymptotic

techniques based on the assumption that the nondimensional

A A

activation energy of the‘gas-phase reaction is large. Atten- v
tion. i's paid both to the problem of the stability of the

steady state and to the response of the burning propellant to

an externally imposed pressure variation.

We consider a one-dimensional model in which a condensed
material gasifies by a rate-controlled surface process and then
reacts in the gas phase. This gas ﬁhase reaction is described
by an Arrhenius law, and we consider the limit in which the
nondimensional activation energy is large. The quasisteady
assumption is used to. describe the gas-phase, so that we may
use the results obtained by Williams3 and Buckmaster et aItS,
when analyzing the quasisteady burning of a solid in the limit
of high activation energy. These analyses yield the burning
rate and the heat feedback to the solid as functions of the
pressure and the flame temperature, and these relations are
then used tc analyze the unsteady response of the condénsed
éhase. It is found that the characteristic response time of
the solid is large,of the order of the nondimensional activation

energy, so that the temperature profiles are quasisteady in

first approximation and the transient term is a perturbation of =~

the quasisteady solution which may be calculated from the gqua-
sis%eady profiles. In this way a differential equation is
derived which describes the evoiution with time of the burning
rate as a function of the nondimensional surface temperature,
the nondimensional pyrolisis activation energy and the pres-
sure-time history. The analysis of this equation yields the
stability condition of the steady state solution, It is found

that burning conditions are stable outside a range of values of
steady burning rates. The amplitude of this unstable range

o




A o .va.u_.u.ﬁuj

M i
AN P
[+ <]
-
]

increases with the activation energy of the pyrolisis, and becomes
zero for a finite value of that activatiocn energy. It turns out
that instability is related to the fact that the total heéat con-

RN NLSTIR I,

tent of the solid is a decreasing function of the burning rate

s under steady conditions.

Then, the existence of non-linear oscillations for condi-
tions corresponding to instability under stéady conditions is
investigated. However, the equation obfaiﬁed for the burning
' rate shows that, as the unstability boundary is crossed, the

time derivative becomes infinity revealing that during part of

..

the oscillation period there is a characteristic time much shorter
than the one corresgonding to unsteady resﬁonse of the solid. The
previously obtained equation is conveniently modified, and then’
it is found that the nonlinear oscillations due to instability

are amplified until - they reach a limit cycle that is character-

ized by two inter&als of time; one of then is long and during

it the temperature profiles in the solid are quasisteady, in

tye other the characteristic time is much shorter and the solid
has no time to change its heat content. The amplitude of this
limit cycle increases with the activation energy of the pyrclisis.
For values of this .activation energy close to the cne that
corresponds to the disdppearance of the unstability region, the
amplitude of the limit cycle becomes zero, and the period of

this cycle decreases, disappearing the difference between the

two time inteovals, now the variation of the bﬂrning rate with

time is smooth and in the Iimit tends to be sinusoidal.

The dirferential equation describing the quasisteady .
evolution of the burning rate with time is then used to obtain
-
the response of the .solid to a pressure decrease and a possible

criterion for dynamic extinction is obtained.
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The formulation of the problem presented here and some of
its preliﬁinary ideas were presented in a previous ‘Interim
Scientific Reportls, and for a better understanding have been

included again in this final report.
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2. Formulation

We consider a one-dimensional model with. the solid occu-

pying the half space x < 0 and the gaseous phase the region

X > 0. For convenience, the origin is fixed at the surface of

the regressing solid. Figure 1 is a schematic representation of

the process and shows the effects accounted for in this study.

Surface gasification is assumed to occur by an irrever-
sible pyrolisis process which is described by an Arrhenius law.
A one step over-all exothermic reaction takes place in- the
(premixed) gas. The present model has been used because it has
been successfull in describing the steady-state deflagration of
geveral propellants. |

A
The equaticn of conservation of momentum reduces to the

‘statement that the pressure is approximately uniform throughout

the region treated but varies with timei, and we will also use
the well justified assumptions that the work assoc’uted with
viscous and external forces is negligible and we «#ill use Fick's
law to calculate the diffusjon velocities.

With thdse assumptions, the conservation equations of.mass,
concentration and energy in the condensed phase and in the gas

phase, become respectively.

3p 3o _u)
ot . ox
3y 3Y 1 2 2Y plyt Eg
LR T S T (pgDg 5% ) = = BpY" exp(= gp) @)
T 3T :1 3 3T 1 3p nyn E& ‘
(o] S — n —— wr— rm———— ) m oem— oo T 3
PETRREE by ¥ (Rg U b 5t “QB P Y exp (g%) (3)
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where all symbols are defined in the nomenclature.

These equations, together with the equation of ‘state should

] u’ Y’. T’ T .

determine p g

g

The boundary conditions are

* T(t, 07) = T(t, 07) = T (5)
T AT = - ‘ |
A ax |s” *.}‘8 ax ls+ . ‘mE.cg )T ¥ I] ®)
Y ) ‘
! pg?g o+ = m(Ys+ 1) (7)
T =T at X+~-» , Y=0 , T= Tf at x *+ = (8)
. «Q

The pyrolisis process is assumed to follow an Arrhenius law
m = B' exp(-E/RT,) (9)

where m is the mass flux relative to the burning surface, and E

the activation energy of the pyrolisis process.

3. Gas-phase analysis

In most studies of unsteady solid propellant burning, the
gas-phase is assumed to be quasisteady in the sense that the ng%i“‘
ponse time in the gas is short compared to the response time of )
the condensed phase. The ratio of these characteristic times is
of the order of the ratio of the thermal responsivities of solid
and gas, which is usually small?, The quasisteady assumption will

not be valid when analyzing the response of a burning solid to

¥




very high freciuency pressure oécillationsi.

&

When the gas-phase is considered to be quasisteady, the ana-
lysis is greatly simplified since the comnservation equations are

uncoupled. All the time derivate terms may be neglected so that

equation (1) reduces to pyu = m. In addition the dp/dt term in
5 equation (3) may be neglected. Under these conditions the gas-phase
equations may be solved in the limit of high activation energy of the
i _gas-phase reaction. This quasisteady solution has been derived by
Williams3 in the case of Lewis number unity and by Buckmaster et-

a11§, for arbitrary Lewis number, Le.,

>
Rather than repeat those analyses we will only state the resulx;-
needed in the following sections. The reader is referred to reference
3 and 15 for details. The analysis in reference (15) considers Le cons |
k tant but arbitrary. In the limit of high activation energy, it is

found that.the reaction term is only significant in a thin flame
where T is close to Tf. In terms of the nonlimensional variables

X
o = ?gw/gg g = [ (m/a)dx * (10)

the solution outside of the flame sheet becomes simply

==
i

8 - 1+ 1 exp(E)

8
‘ B . for § < Ef (11)
Y=1- exp{Le(E - €f» : :
9=6f
for E > & S Ty
Y=o £ : NEH I

-

o
where Ef, the location of the flame sheet, is given to leading

order by

£g = 1n (4/1) © 1)

«
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The parameter

[

"
Q-IO-
Vi

(1%)

is the dimensionless heat conducted out of the gas at the interface.
The éffect of the solid and the pyrolisis are concealed in 1l: An
overall energy balance in the gas phase, provides a relationship
between es, Bf and 1.

1=1+06_-6; (15)

Since the flamé sheet must lie in the gas, equation (13) N
provides limitations in thé possiblé values of 1

0<1=4+6, ~0g<1 (16)
When 1 + 0 the flame sheet moves to infinity and no heat reaches
the condensed phase from the flame. When 1 + 1 the flame sheet
approaches the surface and all the heat generated at the flame goes
to the solid.

Solutions for 1 + 0 and 1 + 1 are presented in reference (15)

Thz reaction zone is located in the vicinity of s wkere
(¢ - Efﬂ is of orde? G;XE'z. The paraméter ﬁ' is the nondiménsional
activation energy E' =‘Eg0g/RQ. In the reaction zone the tempera-
ture differs from the flame temperature by a small quantity of order
T%R/Bg. To leading order, only the reactive and’diffusive~terq%;\“
are important in this zone. Solution of the energy equation with B
the appropriate matching conditions to the frozen solution outside

of the flame sheet, prov.udes the burning rdte eigen-value.

In this way an expression for the burning rate is obtained
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Involving the pressure and the flame temperature, namely

-
3 .

m = |2r(n+1)apein*2 it |1/2

E' . n
exp(- S)pn/? (1)
20 ; .
£
For large activation energy the effect of the exponential
) . term is dominant so that the squaré root term may be taken as

constant when analyzing small changes in the flame temperature.
Equation (17) coincides with: the Denison-Baum formulas.

4, Condensed Phase Analysis

The characteristic time in the condensed phase is. short .
compared with the characteristic time in the gas phase2. Therefore,
the condensed phase should not be considered quasisteady. However,
a brief description of the quasisteady solution will be presented
before considering the unsteady analysis.

In terms of the nondimensional variables for the solid

’T—T°° m c ’ ]
A yEoamx (18)
§0 ® .
nlc
- -n_
P el ! n (19)

—— tu— == : (20)

The subscript o refers to the initial,

steady condition. The boundary condition (6) may be written,
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by using Egqs. (1%) and (15) as

S SO ©

O | S - - - .
T oe(T_ ~T ) [ET“ Fng.+ Q-1+ ces(Tso TmiJ (21)
To solve the quasisteady problém, we may neglect the time

derivative term in Eq. (20). The solution to Eq. (20) is simply

« . 8= 0 exp (ny) ' (22)

so that from Eq. (21).

cglee = T, + Q- L (23)

o

This equation can also be obtained by an overall energy
balance and shows that the flame temperature is constant in a
quasisteady process. For a given T_, Eq. (23) gives the value of
Tfo which can be used in the Dnison-Baum formula, Eq. {(17), to
calculate m. The pyrolisis law, Eq. (9),yields T,» so that Eqs.
(141), (12) and (22) describe the complete temperature profile.

Figure (2) shows the burning rate m under steady conditions;
as a function of pressure for a fixed value of T_ and therefore

of Tg . This curve is calculated by using Eqs. (17) and (23).

The surface temperature Ts is a parameter along the curves
of figure (2), since it is related to thes burning rate m, through
the pyrolisis law. However, TS is limited by the inequalities (16)
so that only a portion of the curve applies. At P, the flame
sheet has moved off to infinity. At PS the flame sheet has recached

the surface.
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We: will now analyze the evolutiom with: time of an initidlly
steady temperature profile during an unsteady process. After some
manipulations, Egs. (20) and (21) provide the following relations-
:hips

6 e e, Tg =T
96 LL) g fo °F ,
— - ue = f"/, ——— dy = .._-«:—-.- (21‘_)
Y s s % 3Ty e T.,-T,

where use has been made of Eq. (23). The left hand side of the
preceding equation represents the difference between the heat
flux eXkisting during an unsteady process and the one existing if
the process was quasis{eady. " We will consider unsteady processes
that result in changes of order unity in the burning rate with
respect to the one existing under quasisteady conditions. Equa-
tion (17) shows that in the limit of high activation energy of
the gas phase reaction, small changes in the flame temperature of
order RT%/Eg, produce variations of order unity in the burning
rate. Therefore, the right hand side of Eq.(24) is small, so
that the heat conducted to the solid during an unsteady process
differs by a small quantity from the heat conducted if the process
was quasisteady. ,
The second equality of Eq.(24) indicates that the variation
with time of the heat content in the heat up zone of the solid .
is small. of order RT%/Eg. When this heat content decreases, the
solid appears from the gas phase as a heat source, and thereforve

the flame temperature increases.

It is necessary to wait times of order Eg/RTZ to produce
changes of order unity in the heatcontent of the heat up zone in
the solid. The characteristic response time of the solid is

therefore long compared with the characteristic residence




time in the heat up zone.

Thé Denison-Baum formula, Eq. (17), yields

£ n+1 (f_)n/zexp Fe e
o P 2RT__ ~ ZRT,|

which in the limit of high values of Bg/ZRT%o becomes

where

Let's define a small parameter e, as

2
c 2RT
fo
e = & E (T__-T_)
g 80 =

and introduce as nondimensional time variable

1'7'-

(26)

(27)

(28)

(29)

(30)

Equation (27) may be used to express Eq. (20) and the

boundary condition (24) in terms of the new time variable v, as

(31)

(32)
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The value of the surface temperature may be written in
terms of the burning rate u, through the pyrolisis law, Eqg.(9),
resulting:

- lnu+i

- L
es 1-wlnu (33)
where
T RT
X 50
Y = m— w = - (34)
T, ’ E
Introducing the expansions
6 = 6, + €0, + ... (35)
= l . 1
u L toen, o+ .. (351)

in Eqs. (81) and (32) the following equations defining 90 are

obtained
2‘
90 970 20
Mo -2 = ’"‘23 == Yo%s (36)
oy 3y 9y |s

Whose solution is the quasisteady solution
8, = 04 exp(uyy) (37)

Integrating eq.(31) with boundary condition (32) the following
integral condition is obtained:

¥

o] . .
38 4y = - 13 ‘
5 5. 4y = -# 1ln _ (38)
- CO
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On using the first approximation for 6, the integral in

the left hand side may be calculated, thus obtaining

u .
sO, _ _ -0
it (uo ) = Holn 3 (39)

where Oso/u0 represents the total heat content of the solid
under steady state conditions. Now the pyrolisis law is used

* to relate the surface temperature to the burning rate, obtaining:

1 du, (Y-i)(1~wlnuo)ug Wy
s = - - - 55 In (—) (40)
art Ym~y+1+w(7-2)1nuo+w ln Mo T

Y
%

which describes the evolution with time of the burning rate
during an unsteady process, in terms of two parameters y and
w. For a quasisteady evolution duO/dT vanishes and therefore
By = T
The value of the burning rate, uo, obtained from Eq.(4%40),
may be used in the pyrolisis law to deduce the surface temper-
ature history, and through Eq.(37) the complete temperature

profile.

5. Stability Analysis.

In this section an analysis is presented of the stability
of the steady deflagration of a solid which undergoes an

Arrhenius type gas phase reaction with large activation energy.

<

The pressure is considered to be constant, so that w=1l.

The burning rate of the steady solution is m, s SO that initially

£

T N S e, P

'
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Ho=1’ Let's assume that at t=0 a perturbation changes the value
of the burning rate so that uo=1+u'. EqQ.(40) shows that

du! un ' .
3% =T yu " (41)

Therefore the stability of the steady state solution depends
on the value of the parameter %%T . If this parameter is greater
than one, the solution is stable, being unstable when it is smaller

than one. In the stable case the perturbations decrease exponen=
tially. The parameter

y-1 E(T__-T )
2" 82 = A (42)

2
Yw RTS

is identical with the parameter A used by Denison and Baum5 when
analyzing the unstable burning of solid propellants. These
authors develop a linearized analysis of the response of a burning
solid to a pressure disturbance using a model which parallels tﬁe

one used in the present analysis. The difference however, is that

in our analysis we retain the nonlinear effects that were line-

arized in reference (5§). In figure (1) of their paper, Denison-
Baum show the stability boundary which separates regions of
stable from regions of unstable burning. Two parameters A and «a,
define the stability of a given solution. The parameter a is
essentially identical to our parameter e, and in that figure (1)
we observe that for a -+ 0 the solutions are stable for A < 1 and
unstable for A > 1. Therefore our stability criterion coincides

with the one of Denison and Baum.

The instability of the one-dimensional deflagration may be
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ciearly interpreted, when the activation energy of the pyrolisis
is large (w small). Let's assume that at a certain time a per-
turbation causes the burning rate to increase (decrease) with
respect to- its steady value. Since the activation energy of the
pyrolisis is large, the surface temﬁerature will remain nearly
constant. -However, the width of the heat up zcne in the séli&
will décrease (increase), so that the total heat content of the
soXid will decrease (increase). The variation of the thermal
energy of the solid produces an increase (decrease) in the flame
témperature, as may be seen from Eq. (24), which will further
increase (decrease) the burning rate. This selfaccelerating
behaviour results in instability of the one-dimensional defla-
_gration. When the activation energy of the pyrolisis is not
large, there are two effects which control the response of the
burning solid to a perturbation in the burning rate. When the
burning rate incéreases the wiath of the heat up zone decreases
and thé surface temﬁerature increases. The decrease in width
tends to decréase the heat content of the solid thus producing
instability, and the increase in surface temperature tends to
increase the heat content of the solid thus producing stability.
The stability of the solution depends on which of these two

effects dominates.

If the reference pressure Po is,such that 7 is differ-

ent from one, the perturbation of the steady solution will be
=T + u' ~ R X

Yo

and Eq.(40) will show that

- F(ow' (43)

jall =%
]
i
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where F(m) is the first factor on the left hand side of Eq.(uo)"
with 7 = Ko An alternative form of writing (#3) is, from-
Eq.(39)

1
d(esoluo) du _ " "
~dyp T (u3')
0 CAupET .

When the stability of other points besides the one that corre-
sponds to w=1 is studied, it is necessary to analyzé the sign
of the first factor on the right hand side of Eq(43'); when it
is’positive the steady state is stable. As it may be deduced
from Eqs.(38) and (43'), the steady state is stable when the
total heat content of the sglid (under steady conditions)
increases as the burning rate is increased; this criterion is

valid for any pyrolisis law.

For the pyrolisis law given by Eq.(33) the stability is
related to the sign of F(w) in Eq.{43) or the first factor of
the left hand side of Eq.(40). In this factor the numerator

vanishes for the limiting values of Ho

LI exp(1/w) and ﬁo = 0 . (44)

which correspond to QS tending to infinity (eq.(33)), and

[,

the burning rate tending to zero respectively. It will be S

considered that Ko is outside these limits. The stability B
criterion is then given by the sign of the denominator that

vanishes for:

lnp,= - g; Y-2 3 Vy(y-1/ mi] (45)




For values of uo=n above thé larger root or below the lower
root of Eq.(u45) thé steady state solution is-stable.

There is a certain arbitrariness in the choice of the
value of Po’ (Eq.(28)), that establishes the steady state
solution for w=1. For the following analysis it is more

convenient to choose T ,°2T,+ Then from Eq.(38).

: 2RT,

{ Yy = 2 s w = - : (46).
Bquatién (45) becomes

4 lnﬁo =t % Yi-2uw (47)

With this choice of the reference value of Tso’ the steady
state solution that corresponds to w=1 is unstable and is
located in the middle of the unstable region (if we consider

lnpy as the appropiat: variable).

For values of the activation energy of the pyrolisis.
smaller than a finite value:

E'< 4RT s w > 1/2

there are no unstable states. The thickness of the unstable
region increases as the activation energy of the pyrolisis
increases.

*

- The pyrolisis law, Eqs.(33) and (9), in the new variables

becomnes:
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_ 1+wlnu ;

as T 4-wlnu

(u8)

6. Non lineax stability analysis

The purpose of this section is to show that unstabie
steady states produce non-linear oscillations of finite amplitude
around the steady sta*te. Equation (40), however, is not suf-
ficient to describe these oscillations. A small ﬁerturbation
around the steady 'state will start to grow exﬁonentially as
shows Eq.(43) (F<0). As this perturbation becomes larger, the
linear analysis fails and equation (40) should be ased. This
Eq. (40) gives a monotonic.iacrease of ﬁo, and when it gets close
to the value given by Eq.(47) its derivative becomes infinite

-and the present analysis fails.

Let us . etain in Eqs.(35 and 35') the terms of order ¢
and it will be shown that these terms.will introduce a second
order derivative of u in equation (40), which generates oscilla-
tions of p with time. Additionaly, to retain the terms of order
¢ will make the first devivatives of u finite in its whole
range of variation, and it will be shown that Eq.(%0) will be

valid only for some intervals of those oscillations.

Retaining terms of order ¢ in Eq+(85) and using Eq.(37).
= g
0=0 exp(uy) + 891 . (ug)
where 6, should satisfy the Eonditions

1

6, =0 for y =0 and y * - (50)
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+Introducing Eq.(49) into Eq.(31) and neglecting terms of order

62, the following equation is obtained

Y

2

deé au 391 9 91 )
e exp(uy)(gz= + y8_ 37) + ew 5y ¢ 32 (51)

The solution of Eqs., (50) and (51) is:

6, = (By + cy?) exp ny (52)
where
1 des es du .
B=——1—--‘—2""- ' ! (53~)

1 BS du .
C= = == - - . . (§4)
2 y dt

This solution should also satisfy the boundary condition
(32). As it Qas done previously, this condition is substituted
by an integral condition obtained by integrating Eq.(31) between
- «» and 0, and using Eq.(32).

o * ’ »
4 ’{ %% dy = = ¢uln %~+ 0(52) (55)

-0

Where the last term is included because in the gas-phase
analysis terms of oprder 82 were neglected. By introducing
Eqs.(#49), (52), (53) and (54) into (55) the following equation

for n is obtained :
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drju |, . dt :

[

Where SS is a function of u given by the pyroiisis léw (eqs.(37)
or (48)), although in principle Eq.(56) is valid for any pyroli-
sis law. If terms of order ¢ are neglected, this Eq. becomes \
the same as Eq.(839) or Eq.(40). In principle the term of order €
on the right hand side which has not been calculated and is due
to higher order contributions of the gas phase reaction, is. as
important as the new calculated term (the first one), unlebs,

as it is in the present case, the time scale is very small in
regions where the first term should be retained. ‘The last term
on the right hand side represents the influence of higher order
terms that would appea¥ if this procedure would be continued.

6.14.  Case for which the instability region is narow ~

Before considering the more general case, let us study

the case for which w is close to 0.5,
= 1 ‘
w =z (1-68) (57)

§ «< 1
Then, from equation (47) vhe instability range will be

inpg = t 2V§

-
-

Since we are going to study values of u located mear o» in the

e o g e i
- ¢ )
' 26 { Bhaed
+ ——|—21= -uln —~ + 0(e)+0(e” -3 “(56) °
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instability range,we make the chaﬁge of variables
w=1 o+ 2u's (58)

‘ The point of steady burning corresponds to W, = 7 and

we assume this point to be in or near the instability region

(i

o= 1 4+ 2ué/§ . (59)

Then, equation (56) in the new variables becomes, after using
equation (48)

%

2, '
e6?/2 A0y 968/ 2y 25 2y 4

dt dt
?» C (60)
. aZy! 2 ap' 2.1/2 ay!
+ 0(eé ——5—) + 0(86° =) + 0(e) + 0(€S ———3) =0
dT drt dr

In this case the significant limit corresponds to a choice

of the new time scale that will be shorter than the previous

one

T = t/2/¢ o (61)

and & should be small, of order Ye . Introducing the parameter a:

i § = aYe/2 ‘ ‘ (62)

e b
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Then, equation (60) becomes:
d2u‘ 2 du' .
— ta(u'T-1) =/ (0! - wl) =0 S (83)
dt dT,

and all remaining terms become negligible. Equation (63) is a
Lienard type equation, that reduces to Van der Pol's equation when
ué=0. For lu l>1 the steady state solution is stable- since we

are outside the instability region. For Iu |<1 the steady state
is unstable for a small perturbation; however, as the perturba-
tion grows it tends towards a limit cycle of finite amplitude.
This means that if we maintain a constant pressure that would
correspond to a steady state burning in the unstable region, the
burning rate would exhibit an oscillating behavior of finite
amplitude.

If u is close to the instability boundary, (u' close to
one) the amplltude of the limit cycle will be small and the so-

. lution of (63) for the limit cycle will be of small amplitude,

and can be aproximated by:

+ A sen T ! (64)

Then to impose the condition that the secular terms of .
. ] -
equation (63) will vanish, let us multiply eq.(63) by (%%;)‘“uk
and integrate through a cycle:

27 ‘g
o 5 w21 (5

(o]

¥
o
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obtaining

: A= 2/1-u72 (65)

Results (64) and (65) for the limit cycle are valid only for
a small or luél ¢élose to one-.

When o is large, the solution approaches that which
corresponds to an instability region of finite amplitude,
. since from equation (62) & will become larger (see also eq.(57)).
Now one may explorXe the limit & large in eq.(63), (still
maintaining the limit & small).

‘ —(k
Rewritting eq.(63) in the form (defining a new variable q)():

| @ Doyt - (66)
dt
3
1
L ad . g (X oy (67)
o drt 3

and analyzing the phase plane corresponding to equations (66)
and (67) for |u$l<1 and o large (see fig.3a)

da“ u'_ut
a? — = 2. (68)
dr T-(Fg= - ")

() q@ 1is the total heat content of the solid. The meaning

of this new variable and the physical interpretation of the
1 results are reserved for the next section, where they will
§ become more clear.




? ) 30(0"
i , :

it can be seen that if the steady burning point is in the

uﬁstable branch BD, then it will -go out from that point and

approach the branch AB or CD and from there it would finally

LepbdSnied

! <
R e LR e LG

approach the limit cycle ABCD. This limit cycle has an ampli

tude (corresponding to points C and A) of:

ut =t 2

e fal

While we are in branches AB or CD in the stable region, the

solution is given by:

13 .. . .
o -rd_—; (B - ut) = .u(')-u" (69)
vat 3

which is esentially equation (409 corresponding to the -case im

~gible. Then, the characteristic time is long; T is of order «.

E which the second derivative of u with respect to time is negli-
In branches BC and DA on the other hand "“q" remains approxi¥

mately constant, equal to + 2/?, then, the characteristic time

is short of order Tvi/a, for the variation of p, given now by

equation (67). )

In figure 3b the phase plane is presented for’the case

in which ué is in the stable region,

This method for « large fails when [u;l is Sufficiently
close to 13 then the limit cycle would be given by equations
(64) and (65). Figure 4 presents the results of the numerical
integration of equation (63)3 giving the maximum and minimum

value of u' in the limit cycle for different values of'ﬁé and ¢«
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6.2 -Case for which the instability region is finite.

' ' To extend this analysis to the caseé when the instability
range has a thickness of order unity, the method presented on

‘ Section 6.1 for a large will be uséd. Assuming equation (56)
t6 be valid. and rewritting it in a form .similar to that .of
- equations (66) and (67), the following vrelations arpe obtained
- 44 - -p in & (70)
- B dt w
= - - o ; 2 A
- g ale /vy an e

= q = e = =t (71)

From equations (55) and (70) it can be seen that "q" represents

the total heat content of the solid. As Yong as the time 7 is
SR of order unity, the first term of the right hand side is small

and, q=es/u, as it happened for the quasisteady solution

(equation (39)). However, if during the limit cycle there is

a period in which Ttve (that is T1N1, the characteristic time

YRR TR Y FONEA Y I Y] i R 7YY 1) S AR A et MRS A (g, o
}
[= 7
=
-
=

for heat conduction in the solid, see equations {1¢) and (30)),
then the total heat content of the solid, q, would be given

by the complete equation (71). Nevertheless, equation (55)
expresses that the characteristic time to trancfer across the
solid surface the heat needed to change the total heat content
of the solid is of order t. In order words if equation (70)

is rewritten with the characteristic tuime Ty it becomes:

%

d9 . _ Iy y
dT1 enln = Y70)
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that means that q remains almost constant during periods of
order T3 during this period there is no: time for transfer of

the ‘heat needed to -change the total heat content of the solid.

Figure (5) shows schematically es/ﬁ as & function of yu,
and by analogy with figure 3a one may assume that the limit
cycle is given by ABCD. 1In branch AB the ﬁrocess is quasi-
steady and corresponds to making € equal to zero in eguation
(714), or using Eqs.(39) or (40). In branch BC q is constant,
and the characteristic time is Tys M changes very rapidly .and
there is no time for the heat content of the solid to change,
this process c¢ontinues until we are well in the stable region
in the point where u has the value that makes under steady
ccnditions q.7qp¢ Figure 5b shows schematically the way in

which u will change as a function of time.

The previous qualitative results are independent .of the

pyrolisis law. We are now going to calculate the maximum and
minimum values of y (uA, uc) for the pyrolisis law expressed

by cquation (48).

For point A of figure 5:

(1-vi-20) (d+ulnw) o (/I?Zo? } lnu)‘ - (72)
(1+4Y1-20) (1-wlnp) w

For point C it can be shown that

lnuA = —an:
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The solution of eq.(72) depends only on parameter w and

is presented in figure 6.

For w c¢lose to 0.5

winy, = -2/1-24

that corresponds to the solution of section 6.1 for & large.

The other limiting value of w corresponds to a large value of

thé pyrolisis activation energy, then w tends to zero, and

lnuA+ ~1/w:

e 2
wlny, = -1 + - exp(~ ———Z——) ) (73)
A (1-v -2m)2 1-vi-2uw :

This means that for w small

lnp+i1/w

and from equation (48):
6 =+ 0,

Obviously, then, the pyrolisis law is probably not correct,
however, this is an indication that tlhie solid is igniting and

extinguishing alternatively in its oscillationg.

¥ R i

0 In Eq.(72) is probably not well justified to neglect
3
terms such ag 0(e? %?%) of Bqg.(56), that will originate terms
- 2d<un . . ] . S
of order e"g—y in the right hand side of eq(71). This is
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justified in the analysis of section 6.1 when the unstability
region is thin. Then, the fast transition regions corresponding
to branches BC and DA of figure 5 will not be appropiately de-
scribed by Eq.(72) with q constant. A different approach wili
be needed that will probably consist in calculating more accu~
rately the total heat content of the solid when u and es change
rapidly (subject to the pyrolisis law, eq.(48)) and impose the
condition that this heat content does not change in branches

BC and DA. - '

7. Response of a burning .soclid to pressure variations

In a previous report, ref (16 ), corresponding to this
grant, an analysis was presented of the response of a solid
to an imposed pressure variation; the evolution with time
of the burning rate was calculated by using Eq.(4#0) with
the non-dimensional pressure, T, being a known function of
time defined by Eq.(28). Here we shall only reproduce the

main conclusions obtained in that report, ref., (16 ).

It was shown in section 4 that the characteristic response

time ©f the solid is

N . .
o T o, Tom? (e
o fo

Ap E (T -T,)

Therefore, if the characteristic time of pressure variation
is small compared with it, the pressure variation is a step
funetion. If the time of pressure variation is long compared

to the characteristic time shown in Eq.(7u), the response of

~=-the solid may be considered as a sequence of stationary states.
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In the presént analysis only &epressurizatibn problems

-~

will be cofisidered, so that m will decrease from some initial

value Ty at time 0, to its final value Tpe In addition it is

assumed that the initial solution is stable:

either Ty > "1 where Ty = e*p(% vi-2w) (75)
. - - iAoy :
or w, < T, where T, = exp( =/1 20 ) (76)

where L and v, are the values of the pressure that limit the

unstable region, Eq.(u7).

Two possible types of evolutions are possible a) and b):

a) The unstable region is not crossed during deprebsurization.

This is the case when:
al) The unstable region does not exist

4RT > E

a2) The initial and final values of pressure are both above

¢

the unstable region.

Wy > Ap > T, i« e

a3) BRoth values of pressure are below the unstable region

w, > ", P> W
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In this case a) the evolation of the burning rate, ¥,
glven by Eq.{(40) is smooth and it tends monotonically to its
final steady value"nF = Upe

b) The unstable region is crossed during depressuriiation.‘

~a

This is the case whén

o

b1) > W > T, > the final steady state is stable.

1 2 F
b2) T, > Wy > Wy > T, the final steady state is unstable.
In this case b) Eq.(4#0) has a singularity at ¢ = =« and ‘at a

1
time such that w(t) = Ty The character of the singularity

depends on the value of the shape of the pressure time function

curve when the instability region is entébed at TET, . When

aw 1 (1-/1-20) 'exp(%/i—zm)
) | < — — (77
dr 1 20 Yi-2uw

this singularity has a node-like character and Eq.(40) is able
to give a transition across the singular point. On the other
hand when condition (77) is not satisfied,the singularity ‘has

a spiral characteéer and the solution ceases to be valid when u
approaches Ty since the variation of burning rate with time

is so rapid, that is no longer valid to assume that thé derivs
ative term is only a perturbation of the quasisicady solutlon.\:

A different type of analysis,(may be similar to that presented.

N

in section 6 of this reporﬂ; will be required to 'study the

behaviour of the solutiorn neay u=u However, since u is

1’ .
decreasing very rapidly to zero, the condition oposite to (77)
-may be identified as a criterion for .dynamic extinction caused

1&3
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by a rapid depréssurization process.

When condition bi is satisfied there is another singular

point at W=, that is always a saddle through which the soilu-

& tion will exit from the unstable region.

: Any perturbation occurring while the value of u is in
the unstable region will grow with time leading to the non-
linear oscillations studied in section 6. It is possible that
this study on depresurization is not appropiafel& described by

X EQ.(40), and should be remade taking into account higher order

unsteady effects similar to those retained in section 6 when

studying non-linear oscillations.

8., Conclusions

An asymptotic analysis has been developed of the unsteady
burning of a sold propellant in the limit of high activatien
energy of the gas phase reaction. The analysis shows that the

ﬁ ratio of the characteristic response time of the solid, and
the characteristic residence time in the heat-up zone is of the
'orger of the nondimensional activation enérgy of the gas-phase
reaction. This slow response of the solid allows to suppose
that the temperature distribution is in a first approximation
quasisteady, and by integrating the céndensed phase energy
equation, an equation is derived whose solution yields the
evolution with time of the burning rate. - -
ha
It is found that for values of the activation energy of

the pyrolisis sufficiently large:

E > URT_

i+ et s T ey et e e e e ——— o —————
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there are, for other parameters fixed, a range of non-dimensional
pressures, eq.(28), such that

aF

- % Yi-2w < lnm< % Vi-éw sy W = —

it,steady burning will be unstable. This criterion corresponds

A\]
o s
L
[
=

to that of Denison. y Baums in the limit of high activation energy

of the gas phase reaction.

The evolution with time of the burning rate for a fixed "

£ adtetd
i it b » S

pressure corresponding to instability has been investigated;
the non-linear equation obtained from the quasisteady temperature
distribution is not appropiate to study this evolution because
it gives derivatives of the burning raté with respect to time
that are infinite when the unstable vegion is crossed. This
suggests that during part of the evolution of the burning rate
the appropiate time scale should be shorter. Higher order

terms are then retained when calculating the temperature distri-
bution in the solid and a new equation for the burning‘rate
evolution is obtained; this new equation contains second ogder
derivatives of the burning rate which g perate oscillations of

the 5urnipg rate with time. This new equation is first solved

in the limit that the instability interval is small; and it is
found that when the width of this interval is of the order of
fourth root of the inverse ©f the non-dimensional activation

energy of the gas-phase, thetc is a significative limit in which

all the retained terms are of thig same order and the expansion
procedure is justified. Then, instability leads to oscillations
that correspond to a limit cycle that is described by an equation
of the type of Van der Pool equation slightiy modified. -When

the width of the instability region is much smaller than the
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prve*meﬂfioned limit, the oscillations have a sinusoidal
character, and when it is much larger, two different time
intervals appear‘duripg the oscillations period, one in-
terval is lange,and«the other short, corresponding this
lasf one to a sudden jump in the burning rate. Based on this
last result, the limit éycle is investigated for the case
that width of the instability region is finite .and the copr-
résponding oscillations are of the form shown schematically
in fig. Sb. During part of the oscillation period the chafé
acteristic time is of the order of the characteristic re--
sponse time of the solid and much larger than the char-
acteristic time for heat transfer, the temperature profile
in the solid is quasisteady, and thé burning rate changes
slowly until it reaches the instability regionj then., the
characteristic time becomes much shorter, of the ovder of
the characteristic time for heat transfer, and the temper-
ature distribution in the solid is no longer quasisteady,
However,during this short time,which is much shorter than
the characteristic response time of the solid,there is no

time for changing.the total heat content of the solid. In

the intervals BC and DA of fig. 5a the burning rate changes

very rapidly, maintining the total heat content of the solid,
and goes across the unsteady region until it is found in the
oposite stable region a burning rate that would correspond to
a quasisteady temﬁerature distribution in the solid of the
same. total heat content.

The expansion procedure indicated in this work is %ot -
appropiate to describe the structure of the fast transition
regions BC and DA of fig. 5a (for a finite width of the
instability region), because in this regions the problem

in the solid is esentially unsteady, -and any method that would

I
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consider the time derivatives of the temperature as a perturbation
ip the energy equation of the solid, would not be valid. The
approﬁiate method would consist in solving this energy equation
subject to the condition that the “total heat content of the

solld is constant, when the burning rate is changing.

The analysis ﬁresented in this work makes use of a pyrolisis
law of the form given by eq.(9)(or eq.(48), in non~dimensi§nal
vg?iablesy However, the method only uses this law fdr specific
applications and is in ﬁrinciéle valid for any c¢her law that
would relate the bufning rate with the surface temperature.
Instability, as shown in fig. 5a would correspond to an_interval
of burning rates in which the total heat content of the solid,
undexr siceady conditions, would decrease as the burning rate

increases.,

There are other possible mechanisms, besides the one
examined here, that would prevent the growth of the oscillations

such as three dimensional effects.

The analysis has also been applied to study the response

of a burning solid subjected to a depressurization process,

and assuming that the steady solution at the initial pressure
is stable. For this analysis it was used Eq.(40) that corre-

‘sponds to quasisteady temperature distribution in the solid.

It is found that for depressurization processes such that

the initial, intermediate, and final pressure, would all cor-

S

respond to steady stable burning, the variation of burning rate
with time is smooth and monotonous, even fon step-like changes .
in pressure, although in this last case the burning rate does

not adjust instantaneously to the new pressure, and approaches
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it in a long time. The absence of dyhamic extinction appears

13, who considers that

to coincide with the suggestion of T'ien
heat losses is the mechanism resﬁonsible for dynamic extinétfons
Nevertheless, our analysis seems to indicate that there is a
condition that may be identified with the onset of dynamic
extinction if during the ﬁrocess of depressurization the unstable
region is crossed. A mathematical singularity occurs when, during
the depressurizafféh;prccesg, the instability region .is entered;
and the character of this singularity depends on the slope of
imposed pressure-time curve at the singularity. When this slope.
is larger than a certain critical value defined in Eq. (77), the
singularity has a spiral-like character that originates deriv-
atives of the burning rate with respect to time that are infinite.
This, and the fact that any small perturbation will be amplified
in the instability region, indicate the need of retaining in

some way (which may be similar to the one used for studying
non-linear oscillations) unsteady effects in the temperature

distribution within the solid when, during the depressurization

process, the instability region is crossed.
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Figure 1 Schematic representation of the combustion process,
Figure 2 Steady state burning rate as_a functicn of preéssure,
; Figure 3a Phase plane showing instability and the form in which

the limit cycle is reached when: theé insiability Ye-
_gion is thin, o large, and the steady state is uns- __-.
table. Eqs(66) and (67). .
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Figure 3b Idem, when the steady state is stable.
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Figure 4 Amplitude of the limit cydie-when the instability
region is thin, for different values of the Steady

burning rate, Hos and different values of a. Eq.(63).

Figure 5a Total heat content of the solid under steady state

conditions as a funétion of the.burning rate, and

limit cycle.

i

Figure 5b Schematic showing the evolution of burning rate
with time, during the limit cycle, whén the width

of the instability region is finite.

Figure 6 Amplitude of the limit cycle when the width of the
instability region is finite. Eq.(72),
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