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ABSTRACT

A theoretical analysis is presented of unsteady So Lid

propellant combustion, particularly combustion stability _and

extinction by rapid depressurization. It is assumea that

the' solid decomposes by a pyrolosis law and the gaseous prod-;

ucts react exothermically following, an Arrhenius law. For

large values of this non-dimensional activation energy the,

gas-phase combustion, turns out to be quasisteady.. The -char

acteristic response time of the solid to gas-phase perturb--

ations turns out to be large compared to the charadteristic

residence time in the heat-up zone of the solid, their ratio

being of the order of the non-dimensional activation energy

in the gas-phase. A linear stability criterion has been ob.-

tained that gives stable burning for steady burning rates a-

bove and below two limiting values;the width of the unstable

regio: increases with the activation energy of the pyrolisis

law, and becomes zero for a finite value of that activation

energy."A nonlinear stability analysis has been performed

that s s.the existence of a limit cycle for unsteady burn-

ing condi ions; in a part of the cycle the burning is slow

and the so id responses as a whole to variations in gas phase

burning; du ing other part the characteristic time is short

and the heat content of the solid is constant. The dynamic

extinction p ocess. has also been investigated.
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A Amplitude of limit cycle, eq.(64).

B Preexponential factor, and constant of integration (eq.52).

c Specific heat.

C Constant of integration (eq.52).

D Diffusion coeficient.

E Activation energy of the pyrolisis.

E Activation energy of the gas-phase reaction\.

El Dimensionless activation energy of the gas-phase reaction.

I Dimensionless heat flux at the surface, see Eq.. C14).

L Heat of vaporization.

L Lewis number.

m Burning. rate.

n Exponent of fuel mass fraction in chemical reaction rate.

p Pressure.

q Total heat oontet of the solid (eq. 71).
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q Total heat content of the solid (eq.67),.

Q Heat released per unit mass of fuel.

R Universal gas constant.

T Temperature.

t Time.

t Characteristic time, see Eq.(43).c

u Velocity

x Space coordinate.

Y Fuel mass fraction.

y Dimensionless space coordinate.

u Thermal difussivity, and dimensionless parameter (eq.62).

y Dimensionless steady state surface temperature, see Eq.(38).

6 Dimensionless width of the unstable region. Eq.(57).

C Dimensionless inverse activation energy. /

0 Nondimensional temperature. • -,qs

A Thermal conductivity. b ................. .. .....
t
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f Dimensionless burning rate.

> p' Dimensionless burning iate (eq. 58).

-Nondimensional space coordinate.

Nondimensional pressure history.

p Density!

TI. Dimensionless time, see Eq.(19).

L Dimensionless time, see Eq.(30).
T Dimensionless times see Eq.(61).

6 See Eq.(38) and (46).

S U B S C R IP T S

f Flame.

g Gas.

s Surface.

0 Steady state conditions.

Infinity in the solid..
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S1. Introduction

An understanding of the unsteady burning of solid propel-

lants provides insight into such important problems as the pre-s
surization, depressurization and stability of a s6lid-rocket

motors.

Typical models used for the analysis are those presented
in references (1) to ((12),

Research in the stability of combustion in a rocket motor,
has been active over the past twenty years, since irregular

pulses in chamber pressure were observed to develop6 instead
of the expected smooth pressure-time history. These irregular

pulses are generally accompanied by more regular, small-ampli-
tude, pressure oscillations, with frecuencies of the order of

the natural vibrational frecuencies of sound waves in the'cham-
ber. Combustion instability leads to inefficient operation of'

rocket motors and even to mechanical failure of the propellant.

A considerable theoretical effort has been devoted towards
the understanding of this phenomenon. However, there are.so many

different effects that may influence the stability of a- burning
solid as to prevent a consensus on the theoretical description

of the phenomenon.

An excellent review of the analyses of the small amplitude,

pressure oscillations has been developed by Culick These

analyses calculate the admittance function of the burning surface

which gives the burning .rate response toa pressure disturbance,

indicating therefore whether pressure oscillations are am; lified
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qr attenuated. Most of the analyses assume the gas phase to be

quas-isteady, in the sense that the gas phase adjusts very quick-

H ly to changes in conditions when compared to the response of the

solid, and differ mainly in the assumptions used to calculate

-the heat transfer from the gas to the solid phase. However.,as

Culick points out, the majority of the results lead-to the

same two-parameter form of the admittance function, with different

definitions of the two parameters. A stability boundary in the

space which coordinates the two parameters entering the admittance

function, is defined as the curve where the admittance function,

becomes infinite, so that a small pressure change causes a large

fluctuation in burning rate. Points above this stability boundary

'produce unstable solutions and points below this boundary provide

stable steady solutions.

Interest in the response of a burning solid to an externally

applied pressure variation stems from the possibility of extinction

by a rapid pressure decay3. This dynamic extinction process is

useful in order to design solid propellant rockets with Stcj"-

restart capabilities, of interest in connection with space appli-
cations.

Neariy all the theoretical models developed to explain dy-

namic extinction 9 I1 invoke some kind of quasisteady ap-

proximation for the gas-phase. However, as pointed out in ref-

erence (12) some of these analyses have interpreted indor -

rectiy this assumption by implying that the heat feebback from

the flame to the solid is a steady state function of the instan-

taneous pressure only.

The present paper is an attempt t~wards analyzing unsteady
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processes in solid propellant burning by means of asymptotic

techniques based, on the assumption that the nondimensional

activation energy of the gas-phase reaction is large. Atten-

tion.is paid both to the problem of the stability of the

steady state and to the response of the burning propellant to

an externally imposed pressure variation.

We consider a one-dimensional model in which a condensed

material gasifies by a rate-controlled surface process and then

reacts in the gas phase. This gas phase reaction is described

by an Arrhenius law, and we consider the limit in which the

nondimensional activation energy is large. The quasisteady

assumption is used to. describe the gas-phase, so that we may

use the results obtained by Williams
3 and Buckmaster et a 11 5

when analyzing the quasisteady burning of a solid in the limit

of high activation energy. These analyses yield the burning

rate and the heat feedback to the solid as functions of the

pressure and the flame temperature, and these relations are

then used to analyze the unsteady response of the condensed

phase. It is found that the characteristic response time of

the solid is large,of the order of the nondimensional activation

energy, so that the temperature profiles are quasisteady in

first approximation and the transient term is a perturbation of

the quasisteady solution which may be calculated from the qua-

sisteady profiles. In this way a differential equation is

derived which describes the evolution with time of the burning

rate as a function of the nondimensional surface temperature,

the nondimensional pyrolisis activation energy and the pres-

sure-time history. The analysis of this equation yields the

stability condition of the steady state solution. It is found

that burning conditions are stable outside a range of values of
steady burning rates. The amplitude of this unstable range
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increases with the activation energy of the pyrolisis, and becomes

zero for a finite value of th'at activation energy. It turns out

that instability is related to the fact that the total heat con-

tent of the solid is a decreasing function of the burning rate

under steady conditions.

Then, the existence of non-linear oscillations for condi-

tions corresponding to instability under steady conditions is

investigated. However,, the equation obtaifned for the burning

rate shows that, as the unstability boundary is crossed, the

time derivative becomes infinity revealing that during part of

the oscillation period there is a characteristic time much shorter

than the one corresponding to unsteady response of the solid. The

previously obtained equation is conveniently modified, and then

it is found that the nonlinear oscillations due to instability

are amplified until-they reach a limit cycle that is character-

ized 'by two intervals of time; one of then is long and during

it the temperature profiles in the solid are quasisteady, in

the other the cha-acteristic time is much shorter and the solid

has no time to change its heat content. The amplitude o# this

limit' cycle increases with the activation energy of the pyrlisis.

For Values of this activation energy close to the one that

corresponds to the disappearance of the unstability region, the

amplitude of the limit cycle becomes zero, and the period of

this cycle decreases, disappearing the difference between the

two time inte-,vals, now the variation of the burning rate with

time is smooth and in the limit tends to be sinusoidal.

The dirferential equation describing the quasisteady

evolution of the burning rate with time is then used to obtain

the response of the ,solid to a pressure decrease and a possible

criterion for dynamic extinction is obtained.
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The formulation of the problem presented here and some of

its preliminary ideas were presented in a ,previous 
.Interim

Scientific Report% and for a better understanding have been

included again in this final report.

I

tt
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2. Formulation

We consider a one-dimensional model with, the solid occu-

pying the half space x < 0 and the gaseous phase the region

x > 0. For convenience, the origin is fixed at the surface of

the regressing solid. Figure 1 is a schematic representation of

the process and shows the effect-s accounted for in this study.

Surface gasification is assumed to occur by an irrever-

sible pyrolisis process which is described by an Arrhenius law.

A one step over-all exothermic reaction takes place in the

(premixed) gas. The present model has been used because it has

been successfull in describing the steady-state deflagration of

several propellants.

The equation of conservation of momentum reduces to the

-statement that the pressure is approximately uniform throughout

the region treated but varies with time and we will alsq use

the well justified assumptions that the work assoccted with

viscous and external forces is negligible and we ,ill use Fick'-s

law to calculate the diffusion velocities.

With thise assumptions, the conservation equations of mass,

concentration and energy in the condensed phase and in the gas

phase, become respectively.

ap a(.o u)

at ax

a. + u ax pg ax (p D " )  - Bpnyn exp(" R (2)

at '1 1pQB p Y (3)a (X aa exp* aT)
g at, 91A ax P ax 'ax P at RT

~~9



%at ax ax ax*c--t+ c ,=T ) (1 )

where all symbols are defined in the nomenclature.

These equations, together with the equation of state should

determine pg, u, Y, T, T

The boundary conditions are

+  T
T(t, 0) T(t, 0 (5)s

ax +g = m[cg-o)Ts+ L] (6

P D =y-' m(Y -i) (7)g.gax S+

T T at x- -- , Y=0 , T = Tf at x (8)

The pyrolisis process is assured to follow an Arrhenius law

m = BI exp(-E/RTs ) (9)

where m is the mass flux relative to the burning surface, and .

the activation energy of the pyrolisis process.

3. Gas-phase analysis

In most studies of unsteady solid propellant burning, the

gas-phase is assumed to be quasisteady in the sense that the Zps. --

ponse time in the gas is short compared to the response time of

the condensed phase. The ratio of these characteristic times is

of the order of the ratio of the thermal responsivities of solid

and gas, which is usually small 2  The quasisteady assumption will

not be valid when analyzing the response of a burning solid to
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very high frecuency pressure oscillations .

When the gas-phase is considered to be quasisteady, the ana-

lysis is greatly simplified since the conservation equations are

uncoupled. All the time derivate terms may be neglected so that

equation (1) reduces to p u = m. In addition the dp/dt term in

equation (3) may be neglected. Under these conditions the g'as-phase

equatons may be solved in the limit of high activation energy of the

gas-phase reaction. This quasisteady solution has been derived by

Williams3 in the case of Lewis -number unity and by Buckmaster et-
15al , for arbitrary Lewis number, Le.

Rather than repeat those analyses we will only state the result

needed in the following sections. The reader is referred to reference

3 and 15 for details. The analysis in re4erence (is) considers Le cons'

tant but arbitrary. In the limit of high activation energy, it is

found that the reaction term is only significant in a thin flame

where T is close to Tf. In terms of the nonlrmensional variables

x
0 CgT/Qg = =/o(m/)dx (10)

the solution outside of the flame sheet becomes simply

o = o - 1 t 1 exp() Sfor < C f 1

= - exp{L e( - fof)) ii

for € > f- (12)
Y~ 0

where tf, the location of the flame sheet, is given to leading

order by

C= in (/1) (13)

7
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The parameter

d6 (14)dE I

is the dimensionless heat conducted out of the gas at the'interface.

The effect of the solid and the pyrolisis are concealed in l, An

overall energy balance in the gas phase, provides a relationship

between 60, Of and 1.

1 = 1 e f (15)

Since the flame sheet must lie in the gas, equation (13)

provides limitations in the possible values of 1

0 < 1 I +e s - Of < I (16)

When 1 0 the flame sheet moves to infinity and no heat reaches

the condensed phase from the flame,, When 1 1 the flame sheet

approaches the surface and all the heat generated at the flame goes

to the solid.

Solutions for 1 0 and 1 + I are presented in reference (15)

Th! reaction zone is located in the vicinity of ",f where

-f) is of order 6f.7E' 2. The parameter E' is the nondimensional

activation energy E =E c /RQ. In the reaction zone the te~bpeba-

ture differs from the flame temperature by a small quantity of order

T 2 R/E To leading order, only the reactive and diffusive'terms
f *g
are important in this zone. Solution of the energy equation with

the appropriate matching conditions to the frozen solution Loutside

of the flame sheet, prov.cdes the burning rate eigen-value.

In this way an expression for the burning rate is obtained
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Involving the pressure and the flame temperature, namely

M 2r(n+l)eBO 2n+21Ein+1 1/2 exp(- E2- f2p /(17)
f 2 Of

For large activation energy the effect of the exponential

term is dominant so that the square root term may be taken as

constant when analyzing small changes in the flame temperature.

Equation (17) coincides with< the Denison-Baum formula5 .

4. Condensed Phase Analysis

The characteristic time in the condensed phase is short
2

compared 'with the characteristic time in the gas phase . Therefore,

the condensed phase should not be considered quasisteady. However,

a brief description of the quasisteady solution will be presented

before considering the unsteady analysis.

In terms of the nondimensional variables for the solid

'-TM m c

0 T -T y -- x(8
so 08

S2
meaSt (19)

Eq. (4) may be written

ae ae a'2-- II - 2 ('20)
a1 y . Y ty

aT a.a

The subscript o refers to the initial,

steady condition. The boundary condition (6) may be written, I
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by using Eqs. ('14) and (i5) as

I C(Tso-T) T - cT + Q - L + cO (TT (21)

y- c( s- . g f.sso

To solve the quasisteady problem, we may neglect the time

derivative term in Eq. (20). The solution to Eq. (20) is simply

0 = 08 exp (py) (22)

so that from Eq. (21).

c T = cT + Q - L (23)

This equation can also be obtained by an overall energy

balance and shows that the flame temperature is constant in a

quasisteady process. For a given T , Eq. (23) gives the value of

Tfo which can be used in the Ikison-Baum formula, Eq. (.7,,), to

calculate m. The pyrolisis law, Eq. (9),yields Ts, so that Eqs.

(ii), (12) and (22) describe the complete temperature profile.

Figure (2) shows the burning rate m under steady conditions;

as a function of pressure for a fixed value of TO and therefore

of Tfo. This curve is calculated by using Eqs. (17) and (23).

The surface temperature T is a parameter along the curves

of figure (2), since it is related to thi burning rate mo through

the pyrolisis law. However, Ts is limited by the inequalities (16)

so that only a portion of the curve applies. At P. the flame

sheet has moved off to infinity. At P the flame sheet has reached
s

the surface.
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We. will now analyze the evolutioi- with: time of an initially

steady temperature profile during an unsteady process. After some

manipulations, Eqs. (20) and (21) provide the following relations-

hips

6 -1 dy = c T f C- Tf

ay s '6 a so- To '(4

where use has been made of Eq. (23). The left hand side of the

preceding equation represents the difference between the heat

flux existing during an unsteady process and the one existing if

the process was quasisteady. We will consider unsteady processes

that result in changes of order unity in the burning rate with

respect to the one existing under quasisteady condiTions. Equa-

tion (17) shows that in the limit of high activation energy of

the gas phase reaction, small changes in the flame temperature of

order RT2/Eg, produce variations of order unity in the burning

rate. Therefore, the right hand side of Eq.(24) is small, so

that the heat conducted to the solid during an unsteady process

differs by a small quantity from the heat conducted if the process

-was quasisteady.

The second equality of Eq.(24) indicates that the variation

with time of the heat content in the heat up zone of the solid
2

is small of order RT /Eg. When this heat content decreases, the

solid appears from the gas phase as a heat source, and therefore

the flame temperature increases.

/R2
It is necessary to wait times of order E g/RT to produce

changes of order unity in the heat content of the heat up zone in

the solid. The characteristic response time of the solid is

therefore long compared with the characteristic residence
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time in the heat up zone.

1Thi Denison-Baum formula, Eq. (17), yields

Tffo (P-)on/2exp L o g
Tf 0 R o 2~

which in the limit of high values of Eg/2RT 2 becomes

11 E (T-T ){ exp{ fo
-=exp {, 9 f(27)-

7r 2RT 2

fo

where

(P )n/2 (28)

0

Let's define a small parameter c, as

c 2RT2

C fo (29)
c Eg(Tso-TC)

and introduce as nondimensional time variable

T = CT 1  (30)

Equation (27) may be used to express Eq. (20) and the

boundary condition (24) in terms of the new tire variable T, as

C + - 2 (31)

y

Dy C 1n (32)

DIs 10:l



The value of the surface temperature may be written in

terms of the burning rate p, through the pyrolisis law, Eq.(9),

resulting:

= - ln i+l
s Y1- n (33)

where
Ts RTso% =-RO TW = E (34)

Introducing the expansions

0 e0 + so + ... (35)

P 0 + + ''" (35')

in Eqs. (31) and (32) the following equations defining 00 are

obtained

Do D2,O0 DO
y P 0 Os (36)

Whose solution is the quasisteady solution

00 =Os0 exp(P y)  (37)

Integrating eq.(31) with boundary condition (32) the following

integral condition is obtained:

• O

dy -p n (38)

o iSC
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On using the first approximation for e, the integral in

the left hand side may be calculated, thus obtaining

d 0 s) 0
~) = -11 In,

4' V10 0 'if

where Oso/vo represents the total heat content of the solid

under steady state conditions. Now the pyrolisis law is usedj to relate the surface temperature to the burning rate, obtaining:

(y-1)(-0ln.-0 ) 0  i ( O) (00)

dT yw-y+l+o(y-2)inp 0 +w 2n V 0 if

which describes the evolution with time of the burning rate

during an unsteady process, in terms of two parameters y and

w. For a quasisteady evolution dV 0 /d vanishes and therefore

110  = n.

The value of the burning rate, 110, obtained from Eq.(40),

may be used in the pyrolisis law to deduce the surface temper-

ature history, and through Eq.(37) the complete temperatube

profile.

5. Stability Analysis.

In this section an analysis is presented of the stability

of the steady deflagration of a solid which undergoes an

Arrhenius type gas phase reaction with large activation energy.

The pressure is considered to be constant, so that 1r=1.

The burning rate of the steady solution is m , so that initially

po

'C
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'=. Let's assume that at T=O a perturbation changes the Value

of the burning rate so that i+0=t'. Eq.(40) shows that

dul P1 (41)'

Therefore the stability of the steady state solution depends
on the value of the parameter 1 . If this parameter is greater

Y-1t
than one, the solution is stable, being unstable when it is smaller

than one. In the stable case the perturbations decrease exponen-

tially. The parameter

Y-1 E(T so-T )
-2 5 (4+2)

YW RT2so

is identical with the parameter A used by Denison and Baum when

analyzing the unstable burning of solid propellants. These

authors develop a linearized analysis of the response of a burning

solid to a pressure disturbance using a model which parallels the

one used in the present analysis. The difference however, is that

in our analysis we retain the nonlinear effects that were line-

arized in reference (5). In figure (1) of their paper, Denison-

Baum show the stability boundary which separates regions of

stable from regions of unstable burning. Two parameters A and a,

define the stability of a given solution. The parameter a is

essentially identical to our parameter c, and in that figure (1)

we observe that for a + 0 the solutions are stable for A < I and

unstable for A > 1. Therefore our stability criterion coincides

with the one of Denison and Baum.

The inatability of the one-dimensional deflagration may be
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clearly interpreted, when the activation energy of the pyrolisis-

is large (w small). Let's assume that at a certain time a per-

turbation causes the burning rate to increase (decrease) with

respect to its steady value. Since the activation energy of the

pyrolisis is large, the surface temperature will remain nearly

constant. -However, the width of the heat up zcne in the solid.

will decrease (increase), so that the total heat content of the

solid will decrease (increase). The variation of the thermal

energy of the solid produces an increase (decrease) in the flame

temperature, as may be seen from Eq. (24), which will further

increase (decrease) the burning rate. This selfaccelerating

behaviour results in instability of the one-dimensional defla-

gration. When the activation energy of the pyrolisis is not

large, there are two effects which control the response of the

burning solid to a perturbation in the burning rate. When the

burning rate increases the width of the heat up zone decreases

and thd surface temperature increases. The decrease in width

tends to decrease the heat content of the solid thus producing

instability, and the increase in surface temperature tends to

increase the heat content of the solid thus producing stability.

The stability of the solution depends on which of these two

effects dominates.

If the reference pressure P0 issuch that fr is differ-

ent from one, the perturbation of the steady solution will be

0 r + j'

and Eq.(40) will show that

d-r
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ihere F(r) is the first factor on the left hand side of Eq.(40)

with f = 10 " An alternative form of writing (43) is, from-

Eq.(39)

d(Osolh) I  di'd 0  =0= d p' (43')

When the stability of other points besides the one that corre-

sponds to w=i is studied, it is necessary to analyze the sign
of the first factor on -the right hand side of Eq(43- Y_* when it
is positive the steady state is stable. As it may be deduced

from Eqs.(38) and (43'), the steady state is stable when the

total heat content of the solid (under steady conditions)

increases as the burning rate is increased; this criterion is

valid for any pyrolisis law.

For the pyrolisis law given by Eq.(33) the stability is

related to the sign of F(ir) in Eq.(43) or the first factor of

the left hand side of Eq.(40). In this factor the numerator

vanishes for the limiting values of 10

110 = exp(l/w) and 00 = 0 (44)

which correspond to 0 tending to infinity (eq.(33)), and5

the burning rate tending to zero respectively.. It -will be

considered that p is outside these limits. The stability

criterion is then given by the sign of the denominator that

vanishes for:

lnp 0 - 2 Vy(y-1/ w (45,)
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For values of p0=w above the larger root or below the lower

root of Eq.(45) the steady state solution is-stable.

There is a certain arbitrariness in the choice of the

value of Po,, (Eq.(28)), that establishes the steady state

solution for w=. For the following analysis it is more

convenient, to choose Tso=2T, . Then from Eq.(38).

2RTMy = 2 W = - (46),
WE

Equation (45) becomes

lnp r (47)0 W

With this choice of the reference value of Tso, the steady

state solution that corresponds to 7=1 is unstable and is

located in the middle of the unstable region (if we consider

inp as the appropiat-. variable).

For values of the activation energy of the pyrolisis.

smaller than a finite value:

E"< 4RT , w > 1/2

there are no unstable states. The thickness of the unstable

region increases as the activation energy of the pyrolisis

increases.

The pyrolisis law, Eqs.(33) and i9), in the new variables

becomes:

I-?- -~-~- - - - - - - - - - - - ---
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Si+wlnu (48)

6. Non lineav stability analysis

The purpose of this section is to show that unstable

steady states produce non-linear oscillations of finite amplitude

around the steady state. Equation (40), however, is not suf-

ficient to describe these oscillations. A small perturbation

around the steady state will start to grow exponentially as

shlows Eq.(43) (F<O). As this perturbation becomes larger, the

linear analysis fails and equation (40) should be used. This

Eq. (40) gives a monotonic.L~crease of p0, and when it gets close

to the value given by Eq.(47) its derivative becomes infinite

,and the present analysis fails.

Let us etain in Eqs.(35 and 35') the terms of order e

and it will be shown that these terms.will introduce a second

order derivative of p in equation (40), which generates oscilla-

tions of p with time. Additionaly, to retain the terms of order

c will make the first derivatives of p finite in its whole

range of variation, and it will be shown that Eq.(40) will be

valid only for some intervals of those oscillations.

Retaining terms of order c in Eq.'(35) and using Eq.(3'7).

0=0 s exp(py) + c01  (49)

where 81 should satisfy the conditions

0 '0 for y 0 and y + -- (50)
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,Introducing Eq.(49) into Eq.(31) and neglecting terms of order
2

,2 the following equation is obtained

dOe d. 1 2
exp(vy)(-- + ye s  7) +, C 1 = C -(51)

The solution of Eqs. (50) and (51) is:

I  (,By + Cy2 ) exp Py (52)

where

B dO _ es d iB = - - - - -
2

ji dT V 2 d'c

1 0 dp
C = - (54)

2 ji d ,

Th-Is solution should also satisfy the boundary condition

(32). As it was done previously, this condition is substituted

by an integral condition obtained by integrating Eq.(31) between

- " and 0, and using Eq.(32).

dy =- hln I 0(+ ) (55)

Where the last term is included because in the gas-phase
2

analysis terms of o:pder c were neglected. By introducing

Eqs.(49), (52), (53) and (54) into (55) the following equation

for is obtained
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dT1dv u dtr Ip

Where 8 is a function of v given by the pyrodisis law (eqs.(37)s I
or (48)), although in principle Eq.(56) is valid for any pyroii-

sis law. If terms of order e are neglected, this Eq. becomes

the same as Eq.(39) or Eq.(40). In principle the term of order C

on the right hand side which has P.ot been calculated and is due

to higher order contributions of the gas phase reattion, is. as

important as the new calculated term (the first one), unless,

as it is in the Pgesent case, the time scale is very small in

regions where the first term should be retained. 'The last term

on the right hand' side represents the influence of higher order

terms that would appear if this procedure would be continued.

6.1. Case for which the instability region is narow

Before considering the more general case, let us study

the case for which w is close to 0.5.

1A (1-6), (57)

6 i'-< I

Then, from equation (47) vhe instability range will be

lni = t 2/

Since we are going to study values of ji located near ox' in the

i i
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instability rangekwe make the change of variables

I + 21 '/W (58)

The point of steady burning corresponds to p 0 w and

we assume this point to be in or near the instability region

I + 2P'/r (59)

Then, equation (56) in the new variables becomes, after using

equation ;(48)

.1/2 d2p_, + 2 3/2,( ,2_ P!__ . +  261/2 ( P'-

dT 2  d '

(60)
+' 0(€6 d~----L) + (62 dp '  + O (c) + 0 ( 2 / 2  d'p-

(C6 dT2 2 d' (61

In this case the significant limit corresponds to a choice

of the new time scale that will be shorter than the previous

one

= 'vrI (61)

and 6 should be small, of order F• Introducing the parameter a:

6 = /2 (62)
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Then, equation (60) becomes:

d 2  ' 2 _) + (ii' P .) 0 ( 6 3 )2  d7

and all remaining terms become negligible. Equation (63) is a

Lienard type equation, that reduces to Van der Pol's equation when

'=0. For i'I>i the steady state solution is stable- since we

are outside the instability region. For tp'1<1 the steady state

is unstable for a small perturbation; however, as the perturba-

tion grows it tends towards a limit cycle of finite amplitude.

This means that if we maintain a constant pressure that would

correspond to a steady state burning in the unstable region, the

burning rate would exhibit an oscillating behavior of finite

amplitude.

If g' is close to the instability boundary, (PI close to
0 0.,

one) the amplitude of the limit cycle will be small and the so-

lution of (63) for the limit cycle will be of small amplitude,

and can be aproximated by:

)1' = Po' + A sen (64)

Then to impose the condition that the secular tqrms of

equation ('63) will vanish, let us multiply eq.(63) by C--, )

and integrate through a cycle:

a s (P- (d )2 dT 0

t"' -) d
to
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obtaining

A 2 (65)

Results (64) and (65) for the limit cycle are valid only for

a small or l'l close to one,
0

When a is large, the solution approaches that which

corresponds to an instability region of finite amplitude,

since from equation (62') 6 will become larger (see also eq.(57)).

Now one may explore the limit a large in eq.(63:), (still

maintaining the limit 6 small).

Rewritting eq.(63) in the form (defining a new- variable q)

a-( 6 (66)
dT 0

P~(6.7)
a dr 3

and analyzing the phase plane corresponding to equations (66)

and (67) for IptI<l and a large (see fig.3a)

a -= - i (68)
d _ t3 31

q is the total heat content of the solid. The meaning
of this new variable and the physical interpretation of the
results are reserved for the next section, where they will
become more clear.

------------- - ------
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it can be seen that if the steady burning point is in the

unstable branch BD, then it will -go out from that point and,

approach the branch AB or CD and from there it would finally

approach the limit cycle ABCD. This limit cycle has an ampli[ tude (correspbnding to points C and A) of:

While we are in branches AB or CD in the stable region, the

solution is given by:I
d - - 3  - )( 6 9 )
dx 3

which is esentially equation (40") corresponding to the ,case in-

which the second derivative of i with respect to time is negli-

gible. Then, the characteristic time is long; 7 is of order a,

In branches BC and DA on the other hand "q" remains approxi-

mately constant, equal to t 2/3, then, the characteristic time

is short of order V*I/a, for the- variation, of p, given now by

equation (67).

In figure 3b the phase plane is presented fop the case

in which ' is in the stable region.

This method for a large fAils when p'I is- §ufficiently

close to i ; then the limit cycle would be given by equations

(64) and (65). Figure 14 presents the results of the numerical,-

integration of equation (63); giving the maximum and minimum

value of V' in the limit cyclefor different values °-of ' and a

. . . .. . . . .. £ ... . . . . . . . . . • . . .. .. . , . . . . .. . . . . . & -_ 0
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6.2 Case for which the instability region is. finite.

To extend this analysis to the case when the instability

range ha-s a thickness of order unity, the method presented on

section 6.1 for a large will be used. Assuming equation (56)
to be valid, and rewritting it in a fornm.similar to that ofequations (66) and (67), the following velations are obtained

L - i In (70)

L-- d(O /i -2) dp 0 s
,q e (71)

v du dT (7

From equations (55) and (70) it can be seen that "q" represents
the total heat content of tho solid. As long as the time r is

of order unity,the first term of the right hand side is small

and, q=s /p, as it happened for the quasisteady solution

(equation (39)). However, if during the limit cycle there isI a period in which Tre (that is TI,, the characteristic time
for heat conduction in the solid, see equations, (1'9) and (30)),

then the total heat content of the solid, q, would be given

by the complete equation (71). Nevertheless, equation (55)

expresses that the characteristic time to tran-fer across the

solid surface the heat needed to change the total heat content

of the solid is of order T. In order words if equation (70)
is rewritten with the characteristic time it becomes:

- 70')dTI
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that means that q remains almost constant during periods of

order T1 ; during this period there is nol time for transfer of

the heat needed to change the total heat content of the solid.i
Figure (5) shows schematically 0 /P as a function of'p,

and by analogy with figure 3a one may assume that the limit

cycle is given by ABCD. In branch AB the process is quasi-

steady and correspondsto making c equal to zero in equation

(71), or using Eqs.(39) or (40). In branch BC q is constant,

and the characteristic time is T 1 , p changes -very rapidly and

there is no time for the heat content of the solid to change,

this process continues until we are well in the stable region

in the point where V has the value that makes under steady

conditions qc =qB Figure 5b shows schematically the way in

which V will change as a function of time.

The previous qualitative results are independent of the

pyrolisis law. We are now going to calculate the maximum and

m-inimum values of p ( A' PC) for the pyrolisis law expressed

by rquation (48).

For point k of figure 5:

exp ( -lnp) 1 (72)(iI 2-w)(I-oinp)

For point C it can be shown that

lnPA -InP



33.-

The solution of eq.(72) depends only on parameter -w and

is presented in figure 6.

For w close to 0.5

wlniA  2 Y--2

that corresponds to the solution of section 6.1 for a large.

The other limiting value of w corresponds to a large value of

the pyrolisis activation energy, then w tends to zero, and

In A+ -1/W:

Wlni A = -1 + exp(- 2 (73)

This means that for w small

ln)i+tl /4)

and from equation (48):

+0,

Obviously, then, the pyrolisis law is probably not correct,

however, this is an indication that the solid is igniting and

Uextinguishing alternatively in its oscillations.

In Eq.(.72) is probably not well justified to neglect

terms such as O(e2 d3 p) of Eq.(56), that will originate terms
•" -'f or e 2 d 2

of order c in the right hand side of eq(71). This is



justified in the analysis of section 6.1 when the unstability

region is thin. Then, the fast transition regions corresponding

to branches BC and DA of figure 5 will not be appropiately de-

scribed by Eq.(72) with q constant. A different approach will

be needed that will probably c-onsist in calculating more accu-

rately the total heat content of the solid when V and 0s change

rapidly (subject to the pyrolisis law, eq.(48)) and impose the

condition that this heat content does not change in branches

BC and DA.

7. Response of a burning solid to pressure variations

In a previous repprt, ref (16), corresponding to this

grant, an analysis was presented of the response of a solid

to an imposed pressure variation; the evolution with time

of the burning rate was calculated by using Eq.(40) with

the non-dimensional pressure, fr, being a known function of

time defined by Eq.(28). Here we shall only reproduce the

main conclusions obtained in that report, ref. ( 16 ).

It was shown in section 4 that the characteristic response

time of the solid is

Xp Eg(T -T.)t 5 so (74)
220mof 2RT f

Therefore, if the, characteristic time of pressure variation

is small compared with it, the pressuve variation is a step

function. If the time of pressure variation is long compared

to the characteristic time shown in Eq.(74), the response of

I ----the solid may be considered- as a sequence of stationary states.
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In the present analysis only depressurization problems

will be considered, so that ir will decrease from some initial

value % at time 0, to its final value *'F In addition it is

assumed that the initial solution is stable,:

either wI > 7i where 7i exp(- V) (75)

or ..a1 < 72 where I exp(- VI-V2 ) (76)

where ir and Y2 are the values of the pressure that limi-t the

unstable region, Eq.(47 -.

Two possible types of evolutions are possible a) and b)::

a) The unstable region is not crossed' during depreisurizati6n.

This is the case when:

al) The unstable region does not exist

4RT > E

a2) The initial and final values of pressure are both above

the unstable region.

;iT, > F 1>

a3) Both values of pressure are below the unstable region

it2 > f'I > F
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In this case a) the evoldtion of the burning rate, a
given by Eq,(40) is smooth and it tends monotonically to its

:'final steady value7 F = 11F*

b) The unstable region is ceossed during depressuization.
This is-the case when

bi) siuI > lI > as2 >  oF the final steady state is stable.

b2 ) > i > i > r the fin l steady state s unstabte.

In this ease b) Eq.(40) has a singularity at V = 'ahd at a
time such that (T) an the The haracte of the singularity

depends on the value the vat of gthe pressue time function
curve when the instability region is entered at ff=ri When

< W (77)

this sigularity has a node-like chaacte and Eq.(0) is able

to give a transition across the singula oint y On the othe
hand when condition (77) is not satisfid,the singularity'has

a spiral character and the, solution ceases to be valid wh.en 1

approaches wl' since the variation of burning rate with time

is so rapid, that is no longer vali d to assume that the deriv-

ative term is only a perturbation, of -che quasisecady solution.,,

A different type of analysis,(may be similar to that pr sened.

in section 6 of this report), will be required to study the

behaviour of the solution near 1=r 1 " However, since U is

decreasing very rapidly to zero, the condition oposite to (77)1

-may be identified as a criteri6n for dynamic extinction caused
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Iby a rapid depressurization process.

When condition bi is satisfied there is another singular

-. point at P=1T that is always a saddle through which the solu-

tion will exit from the unstable region.

Any perturbation occurring while the value of V is in

the unstable region will grow with time leading to the non-

linear oscillations studied in section 6. It is possible that

t'his study on depresurization is not appropiatel described by

Eq.(40), and should be remade taking into account higher order

-unsteady effects similar to those retained in section 6 when

studying non-linear oscillations.

8. Conclusions

An asymptotic analysis has been developed of the unsteady

burning, of a solBd propellant in the limit of high activation

energy of the gas phase reaction. The analysis shows that the-

ratlo of the characteristic response time of the solid, and

the characteristic residence time in the heat-up zone is of the

order of the nondimensional activation energy of the gas-phase

reaction. This slow response of the solid allows to suppose

that the temperature distribution is in a first approximation

quasisteady, and by integrating the condensed phase energy

equation, an equation is derived whose solution yields the

evolution with time of the burning rate.

It 'is found that for Values of the activation energy of

the pyrolisis sufficiently large:

E > 4RT
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there are, for other parameters fixed, a range of non-dimensional

I pressures, eq.(28), such that

ii

2RT=i
q . V.1-2w < lnwf< 1 VV , 2w=w =

in it,steady burning will be unstable. This criterion corresponds

to that of Denisn.y Baum in the limit of high actvatn energy
Of the gas phase reaction.

The evolution w ath tnme of theo te ufor a fixed
pressure corresponding to instbility has been investigated;

the non-linear equation obtained from the quasisteady temperaturec

distribution is not appropiate to study this evolution because

it gives derivatives of the burning rate with respect to time

that are infinite when the unstablew egion is crossed. This

suggests that during part of the evolution of the buning iate

the appropiate timlewidth should be shorter. Higher order

tehms are then retained when calculating the temperature distri-

bution in the solid and a new equation for the burning rate

evolution is obtained; this new equation contains second order

derivatives of the burning d.ate which g erate oscillations of

the burnrng pate with time This new equation is first solved

in the limit that the instability interval is small; and it is

found that when the width of this interval is of the order of
fourth root of the inverse if the non-dimensional activation

energy of the gas-phase, thei-o is a significative limit in which

all the retained terms are of thi, same order and the expansion,

procedure is justified. Tlien, instability -leads to oscillations

that correspond to a limit cycle that is described by an equation

of the type of Van der Pool equation slightly modified. -When

the width-of the instability region is much smaller than the



above-mentioned limit, the oscillations have a sinusoidal

character, and when it is much larger, two different time

intervals appear during the oscillations period, one in-

terval is large and the other short, corresponding this

last one to a sudden jump in the burning rate. Based on this

last result, the limit cycle is investigated for the case

that -width of the instability region is finite and the cor-

respondipg oscillations are of the form shown schematically

in fig. 5b. During part of the oscillation period the char-

acteristic time is of the order of the characteristic re--

sponse time of the solid and much larger than the char-

acteristic time for heat transfer, the temperature profile

in the solid is quasisteady,. and the burning rate changes

slowly until it reaches the instability region; then, the

characteristic time becomes much bhorter, of the order of

the chaiacteristic time for heat transfer, and the temper-

ature distribution in the solid is no longer quasisteady.

Poweverduring this short time,which is much shorter than

the characteristic response time of the so $d,there is no

time for changing.the total heat content of the solid. In

the intervals BC and DA of fig. 5a the burning rate changes

very rapidly, maintining the total heat content of the solid,

and goes across the unsteady region until it is found in the

oposite stable region a burning rate that would correspond to

a quasisteady temperature distribution in the solid of the

same total heat content.

The expansion procedure indicated in this work is hot

appropiate to describe the structure of the fast transition

regions BC and DA of fig. 5a (for a finite width of the

instability region), because in this regions the problem

in the solid is esentially unsteady, -and any method that would



consider the time derivatives of the temperature as a perturbation

in the energy equation of the soli'd, would not be valid. The,

appropiate method would consist in solving this energy equation

subject to the condition that the total heat content of the

solid is constant, when the burning rate is changing.

The analysis presented in this work makes use of a pyrolisis

law of the form given by eq.(9)(or eq.C'48), in non-dmensional

variables). However, the method only uses this law f&r specific

applications and is in principle valid for any cther law that

would relate the burning rate with the surface temperature.

Instability, as shown in fig. Sa would correspond to an interval

of burnilng rates in which the total heat content of the solid,

under siceady conditions, would decrease as the burning rate

increases.

There are other possible mechanisms, besides the one

examined here, that would prevent the growth of the oscillations

such as three dimensional effects.

The analysis has also been applied to study the response

of a burning solid subjected to a depressurization process,

and assuming that the steady solution at the initial pressure

is stable. For this analysis it was used Eq.(40), that corre-

sponds to quasisteady temperature distribution in the solid.

It is found that for depressurization processes such that

the initial, intermediate, and final pressure, would all cor-

respond to steady stable buxwnng, the variation of burning rate

with time is smooth and monotonous, even foi step-like changes

in pressure, although in this last case the burning rate does

not adjust instantaneously to the new pressure, and approaches

I



it in a long time. The absence of dynamic extinction appears
to coincide with the suggestion of T'ien 1, who considers that

heat losses is the mechanism responsible for dynamic extinction1
Nevertheless, our analysis seems to indicate that there is a

condition that may be identified with the onset of dynamic

extinction if during the process of depressurization the unstable
region is crossed. A mathematical singularity occurs when, during

the depressurization :process, the instability region is entered;
and the character of this singularity depends on fhe slope of

imposed pressure-time curve at the singularity. When fhis -srlope

is larger than a certain critical value defined in Eq. (77), the

singularity has a spiral-like character that originates deriv-
atives of the burning rate with respect to time that are infinite.

This, and the fact that any small perturbation will be amplified

in the instability region, indicate the need of retaining in
some way (which may be similar to the one used for studying

non-linear oscillations) unsteady effects, in the temperature
distribution within the solid when, during the depressurization

process, the instability region is crossed.
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'L.I ST OF F I G U RES

Figure 1 Schematic representation of the combustion process.

Figure 2 Steady state burning rate a, sa function of pressu-re.

Figure 3a Phase plane showing instability and the form in which

the limit cycle is reached whep the instability fe-

gion is thin, a large, and the steady state is unos-

table. Eqs(66) and (67).

Figure 3b Idem, when the steady state is stable.

Figure 4 Amplitude of the limit cycle when the instability

region is thin, for different values of the rteady

burning rate, po, and different values of a. Eq.(63)i-

Figure 5a Total heat content of the soi!d under steady state

conditions as a function Of the burning rate., and'

limit cycle.

Figure 5b Schematic showing the evolution of burning rate

with time, during the limit cycle, when the width

of the instability region is finite.

Figure 6 Amplitude of the limit cycle when the width of the

instability region is finite,. Eq.(72),
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