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ABSTRACT

We discuss an algorithm for computing the stationary
probability vector of an infinite-state Markov chain whose

transition probability matrix has a block-partitioned struc-

ture. Such matrices arise in a wide variety of queueing
models as well as generalized random walk problems. Tradi-

tionally ,  the analytic approach to this type of problem has
been through complex variable methods. We present an alter-

nate and unified treatment of this problem and obtain an

algorithm which utilizes only real arithmetic computations.

In addition, most of the intermediate steps of the algorithm
have useful probabilistic interpretations .

We obtain an adequate number of the initial compon-

ents of the invariant vector by using a purely probabilistic

argument. Higher components are evaluated by matrix—itera-

tive methods. The first and second moments of the stationary

distribution are also found in computationally tractable
forms. The APL program used to implement the algorithm is

listed and several numerical examples are presented .

KEY WORDS

Computational probability,  Queueing theory , Markov chains ,
steady-state queue length , block-partitioned stochastic
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f GLOSSARY

A - the irreducible stochastic matrix 
~ 
As,.

- a sequence of nonnegative mxm matrices whose sum
is stochastic and irreducible.

A*(z) - the matrix generating function 
~~
A
~
z”.

A~ (z) 
- the matrix obtained by differentiating the matrix
A*(z) entrywise , v times with respect to z.

Ak’ — Ak(I~
Al)

1.

{B
~
}

0 
- a sequence of nonnegative matrices satisfying

B0e + 
~ 
B,~e = e where B0 is n~n and Bk is nxm

for k~l.

- (xOBk + xlAk) (I~~ l
)

d - the invariant probability vector of the matrix L.

- the mean vector 
[
~~L(z)] 2=1!

e — a vector (of appropriate dimension) each of whose
components is 1.

E~ — the mean recurrence time for the state (0,j).

G — G(z)

_ _ _
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G(k) - the matrix {G~~ 1 (k) } where G~~~i (k) equals the

probability that starting in state (i+l,j), i~ O ,

the level i is reached for the first time ir

state (i,j’) in exactly k transitions.

G(z) — the transform matrix ~ G(k)z
k satisfying the

k=O
functional equation G(z) = 

~ 
zA
~G
’
~(z).

G — the ~natrix {G~~~ u }  where ~~~~~~~~~ for 1~ j, j’~ m.

- the stationary probability vector of G.

H — H(z) 1 1
.

11(k) — the matrix {H~~.i(k) }~ where H~~ 1 (k) equals the

probability that starting in state (1,j), the
level 0 is reached for the first time in state
(0,j’) in exactly k transitions.

H(z) - the transform matrix ~ H(k)z
k.

- the mean vector [
~ 

H(:~~~~ 1e.

I - the mxm identity matrix.

i — the “level i”, where i~ l, consisting of the set of
states {(i ,j), l~ j~m} in the infinite Markov
chain P.

K — K(z) z=l

— — — —-.------.-—. -
~~~~

.....,-~~- —

___ —~~~~~~----~~~~~~~~ --~~~~~~~~~~~~~~~~~~~



K(k) — the matrix (K
3~~1 

(k) ) where K)~~I (k) equals the

probability that starting in state (l,j), the
Markov chain returns to level 1 for the first
time in the state (l,j’) in exactly k transi-
tions .

kK(z) - the transform matrix L K(k)z

L — L(z) z=1 

k=O

L(k) — {L~~ 1 (k)} where L~~ 1 (k) equals the probability
that starting in state (0,j), the Markov chain
returns to level 0 for the first time in the
state (0,j’) in exactly k transitions.

L(z) — the transform matrix ~ L(k)z
k.

k=0

P — the transition probability matrix of the infinite~
Markov chain having the particular structure of
interest.

X(z) - the vector generating function ~ x,~,z
V .

v=l

~
(n) (z) - the vector obtained by differentiating the vector

X(z), n times with respect to z.

x - the invariant probability vector of the matrix P.

u(z) — the appropriately normalized right eigenvector
of the matrix A* (z), corresponding to the Perron—
Frobenius eigenvalue.

~
(n) (z) - the vector obtained by di f f e rentiating the vector

u(z), n times with respect to z.

v(z) - the appropriately normalized lef t eigenvector of
the matrix A*(z), corresponding to the Perron-
Frobenius eigenvalue.

L _ _ _ _ _  _ _ _ _ _  _ _ _ __ _ _ _
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~
(n) (z) - the vector obtained by differentiating the

vector v(z), n times with respect to z.

B - 

~~
vA

~ e.

6(z) - the Perron-Frobenius eigenva lue of the matrix
A*(z) .

6 (n) (z) - the n-th derivative of 6(z) with respect to z.

A(x) — a diagonal matrix with the elements of x along —
the diagonal.

— the invariant probability vector of the matrix K.

- the mean vector
[
~
_ 
K(z)] z=1!’

p - the mean vector
[a~ G(z)] z=l!~

- the invariant probability vector of the matrix A.

II — the matrix {fl . ., } where fi b ,  =

p - the quantity ~~~

I
_ _ _ _ _
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1. INTRODUCTION

We are concerned wi th a class of in fini te Markov

chains with stationary transition probabilities , having a

transition matrix P of the following form :

B0 B1 B2 B3 B4 .

C0 A1 A2 A3 A4 . . .

0 A0 A1 A2 A3 . . .
(1) P =  ,

0 0 A 0 A1 A2 . . .

0 0 0 A0 A1 .

where the matrices A~ , yb , are square substochastic

matrices of order m. The matrices B~ , vbl , are nxm , while

B0 is nxn and C0 is mxn. The state space of this Markov

chain is the set ((0 ,j), l~j~ n and (i,j), i~ 1, l~ j~m}.

The matrix A = 

~ 

A~ is stochastic and

(2) C0e + 
~ 

A~e =

v l

B0e + =

where e = (1,l , . . . ,1) ’ . We shall derive an algorithm to 
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compute the steady—state probability vector x =

of the matrix P, where is an n—vector

and 
~~~~ 

k~1, are rn-vectors. This amounts to solving the

infinite system of linear equations

(3) x P = x , x e l ,

or equivalently,

(4) 
~.o = x0B0 + x1C0

k+l

~0
Bk + 

~ ~.vAk÷l_v, 
for kbl.

v 1

We define the probability generating function vector X(z),

0~ z~ l, as

(5) X(z) = 

k=l~~
k+l

= 

~o ~ Bkz
k + ~ 2k ~k l  k l  v 1

and the generating function A*(z), 0~ z~ l, of the sequence

of matrices (An) as

( 6 )  A*(z) = ~~A~ z” .

If we interchange the order of summation in the second

term on the right of Equation (5), we have

‘ I-
_ - -~~~~~~ - - ~~~~~~ - _
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~~(z) = ~ Bkz
k + Z

l 
~ ~~ z v 

~
k 1  y l  k v-l

= x0 + z 1 X(z)A~ (z) -

and therefore

(7) X(z)[zI_A*(z)] = z 
~~~~~ ~ Bkz

k _ zx1A0.k=1

It is trad itional to attempt to derive the vector from

Equation (7) by using complex variable methods, based on

an application of Rouch~ ’s theorem. In practice , however ,

this method may lead to highly unstable numerical computa-

tions. We shall derive the vector x0 using a purely pro-

babilistic argument. It should be stressed that our

approach will utilize only real-arithmetic algorithms and

so avoids many of the numerical problems associated with

the complex variable methodology . Our discussion reviews

and generalizes a number of earlier results , used in the

analysis of specific queueing models [24,25,27].

Markov chains of the type (1) appear as the em-

bedded Markov chains in a large number of queueing models.

Computing the vector x is a crucial step in the numerical

evaluation of many quantities and probability distribu-

tions of relevance to the theory of queues. A list of sub-

stantially different queueing models , which are amenable to

the present analysis is given in Section 8.

_ _ _ _ _ _ _ _ _ _  _ _ _
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2. THE FIRST PASSAGE TIMES FROM LEVEL jJJ~ TO LEVEL i

Consider the first passage times from the set of

states j±j = { (i +l , ,j ) ,  jc(l ,...,m)} to the set of states

i = {(i,j),jc(l ,...,m)}, ill. The set i will henceforth

be referred to as level i. Let ~~~~~~~~~~~~~~~~~ kbl , be

the conditional probability that, starting in the state

(i+l ,j), the process reaches the level i for the first

time in the state (i ,j’) after exactly k transitions.

Define the sequence of matrices {G(k),kbl) such that G(k)=

{G~ 3 .(k)}. This sequence of matrices defines completely

the first passage time distributions from states in the

level i+l to the level i. These matrices were studied in

great detail by NeutsE2l ,24]. We now review a number of im-

portant results from these papers, which are needed in the

sequel.

The matrices G(k),kbl , are most conveniently stu-

died by considering the matrix of transforms G(z), defined

by

(8) G(z) = ~ G(k)z
k, for 0~ z~ l.

k=l

By using a standard f i rst passage argument, it is shown

that G(z) satisfies the matrix functional equation4
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(9) G(z) = ~~zA~G~~(z).

In [21] it is shown that Equation (9) uniquely

determines the sequence of matrices {G(k),kbl ). For the

process eventually to reach level i from any state in i+l,

the matrix G=G (1-) must be stochastjc. The following

theorem is proved in [21], assuming certain irreducibility

conditions, which are general ly satisf ied in applications

and which we shall not repeat here.

Theorem 1: Let n be the invariant probability vector of

the irreducible stochastic matrix A , i.e., the unique solu- -

tion to the equations

(10) 1 T A = 1 T  and r e = l .

Also let ~ = Then the equation

(11) G = ~~ A~ G V ,

has a minimal nonnegative solution which is stochastic if

and only if p = it B ~1. The matrix G is then also the

unique nonnegative matrix satisfying that equation.

Remarks:

a) For what follows , we assume the above mentic - - ed

irreducibility conditions hold . 
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b) In the queueing context , p as defined above,

represents the expected number of arrivals during a suita—

bly averaged service time and corresponds to the familiar

traffic intensity.

c) If p~~l , the chain is null—recurrent or transi—

ent and therefore no solution to the equations (3) exists.

In the sequel, only the case p l  is discussed .

d) The matrix G may most conveniently be computed

by modified successive substitutions. This corresponds to

successively evaluating the matrices

(12) a(o) = (I—A 1)

= 

~~~~~~~~~~~~~~~~~~~ 
for kbo .

It was shown in [211, that this sequence is entry—wise

strictly increasing and converges to the matrix G.

For future reference , we introduce the vector ~ of

stationary probabilities corresponding to the stochastic

matrix G and the square matrix G of order m , whose rows

are all identical and equal to the vector a• Since the

irreducible matrix G has spectral radius equal to one, the

matrix (I-G) is singular. It is an important and well—

known resu lt though, that the matrix (I-G+G ) is non-singu-

lar. (see Kemeny and Snell [ill). We shall also need the
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mean vector i~ defined by

(13) p = ~ k G(k)e.
k=1

Theorem 2: The vector p is given by

(14) p = (I-G+G)[I-A+c~—~~(B)G]
”1e

where t~(B) is a diagonal matrix of order m , with diagonal

entries 
~l’ ~2’ ~~~

Proof:

(15) = 

[a~ 
G(z)’] z=i! 

y-l
= [ ~ AyG~ (z)± ~ zA~ ~ Gr (z)G1 (z)G~~~~~~zj~~ 1!L v O  v=]. r=0

r ~-i
= G ÷ ~ A~ ~ CrGJ (l)G~~

r_lI!
t.. v=l r=0

v-i.
= e +  ~~~~ ~ GYP.

v=1 r=0

v—i -

Now ~ A~ ~
‘ 

G~
’(I~ G+G) = ~

v l  r=0 v 1

=

Therefore

(16) (I — (A—G+A (B)G) (I—G4-G ) 
1

1~ = ! ‘
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and after writing I = (I-G+G) (I-G+G )
1
and simplifying , the

desired result follows. Neuts has shown in [24], Theorem

4, that the inverse used in Formula (14) exists. Note that

that 1i
~~ 

equals the expected number of transitions during a

first passage from the state (i+1 ,j) to the level i.

Corollary 1: The inner product ~ p is given by

(17)

Proof: Since (1-p)g ~i = (1-p)a (I-A+G— ~~(B)G]~~~e and

= ( l—p) ~~, it follows that (l—p )~~ p = = 1.

Corollary 1 provides a powerful accuracy check on

our numerical computations as well as having its own pro-

babilistic significance , i.e., 
~ 

p equals the “average”

number of transitions required to go from level i+1 to

level i.

1-

-- _ •_ ~~~~~~~~~~~~~~~ - -

- —~~~~-- - - _ -- - -~~~~~- - _ -~~~~~-~~~~-
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3. THE FIRST PASSAGE DISTRIBUTIONS FOR LEVELS ,~~~ AND 1

Let us define L~~ 1 (k) to be the conditional proba-

bility that starting in state (0,j), the process returns

to level 0 for the first time in state (0,j’) after

exactly k transitions. Let {L(k) ,k~1} be the sequence of

matrices L(k)={L3~~s (k)}~ which completely defines the dis-

tribution of the first passage times from level 0 back to

level 0. We analogously define the sequences of matrices

(11(k) ,kbl } and {K(k) ,kbl} as the first passage distribu-

tions from level 1 to level 0 and from level 1 to level 1,

respectively. In the context of queueing theory {H(k) ,kbl}

corresponds to the densities of the number of customers

served during busy periods starting with one customer . We

define the corresponding matrix generating functions as

follows:

(18) L(z) = 

k—i 
11(z) = 

k~l

K(z) = 

k=l 
for 0~ z~ 1.

It follows by standard f i rst entrance arguments ,

that the following equations hold:

9

— - — --
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(19) L(z) = zB0 + ~
i
zBvG

v_ l
(z)H(z)

11(z) = zC0 + 
v~ i

z l
(
~~

= z[I - ~~

- v l

K(z) = zC0 ~ z
X’B~ ~ zB~G~~

1
(z) + ~ zA~G’~~

1(z)
r=0 v l  v 1

= zC0(I—zB 0) ~ zB~G’~~
1
(z) + ~ zA~GV l

(z).
v 1  v 1

To show that the inverse in (19) exists , we see that

~ ZA yG~
’
~
’•1
(Z) ! ~ A~G~~

’1e ~ (A-AU)!. But under the

assumed irreducibility conditions , which normally hold in

practice , the matrix (A-A0) is strictly substochastic . By

Corollary 2 .2 in the appendix in Karlin and Taylor (10], we

have that the matrix 
~ 

zA~G~~~~(z), 0~ z~ l, has spectral
v l

radius less than one and therefore the desired inverse

exists. Note that the matrices L=L(1-), 11=11 (1—), K=K(1—)

are all stochastic , whenever G is stochastic. For example

this is verified for H as follows. Since C0e = A0e, the

vector He may be written as

He (I — ~~~~G 1 ~~e,
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but clearly Equation (11) implies that ~~~~~~~~~~~~~~~~~~~
and therefore He = Ge =

We define the invariant probability vectors d and

~ of the matrices L and K as follows :

(20) dL(1) = d a n d d e = l ,

KK(l) = K and K e = 1.

In the sequel , we shall derive explicit expressions for

the mean vectors d*, h* and K *  defined by

(21) = L’(l)e, h* H’(l)e , ~~* = K’(l)e.

Theorem 3: Provided the vector ~ VB~J e is finite , the mean
v l

vectors h*, d* and K * are given by

(22) = (I_
V~ l

AvG
V_ l

)_l{!+
[~~l

Av
_
VLA vG

V_ l
+J2

(V_l)A v~~

(I-G+~ )~~~p

= !+
~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

L 

- -1
(I-G+G) u,

and
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= + C0 (I—B 0) ~~é + 
fCQ IB 0)_1[~~~BV~~~~ B~G

v_ i

+
v~ 2

(V_l)B v~~] 
+ 

~~~~~~~~~~~~~~~~~~~

+ ~ (v-1)A~G~ (I-G+G)~~~p.v 2  J
Proof: If we differentiate H(z) with respect to z we

obtain

H’ ( z) = C0 + ~~AvG
’1 (z)H(z) + 

~~~~~~~~~~~~~~~~~~~~

v-2
+ ~ ~~~ ~ Gr ( z ) G , ( Z ) G

v r_2
( Z ) H ( Z )

r=0

Letting z tend to 1- yields

H’ (1) = H + 
~ A~G

’1 H’(l) + ~ A~ 

V~ 2 
GrG, (l)G v—r—2H.

‘=2 r=0

Therefore we have

v—2
(23) = H’ (l)e = + ~ A,~,G”~~h* + ~ A,~ ~ GrP.

v=1 v 2  r=0

Now
v—2 . 

-

~ A~, ~ Gr(I_G+G) = ~v 2  r=0 v=2

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0

_________ - 

-- -.---
~~~~~~~~~

_--
~
--- - -~~~~ - - -  —
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Substituting into (23) and solving for h* yields the

desired result.

Similarly ,

- _ [
~ 

L(Z~~ z=1 = B0 + ~~BvG
V_ l

H + 
v~ l~~~~~~~~

’ (1)

v-2
+ ~ B~ ~ GP’~G’ (l)G’~~~

’2H,
v 2  r=0

which implies

v—2
= L’ (l)e = + ~ B~,G~~~h* + ~ B,~, ~ GrP

v l  v 2  r 0

and finally

= + ~~1
B~G
’
!* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(I—G+G )~~~p .

The formula for K * is proved analogously and the details

will not be shown here.

We see that the formula for K * involves the inverse

of the matrix (I—B 0). If the matrix (I-B 0) were singular

there would exist a relabeling of the rows and columns of

such that it may be written in the form

1B6 o )
B0 = 

[B~ B~~1j

Clearly , a subset of the states (0,l),...,(0 n) would form
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an irreducible class and the infinite matrix P would then

be reducible. In the irreducible case under consideration ,

the matrix (I-B 0) is necessarily nonsingular. 
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4. THE STATIONARY PROBABILITY VECTOR OF THE MATRIX P

Let x(i ,j) be the limiting probability that

immediately following a transition , the Markov chain is in

the state (i,j). In the positive recurrent case under dis-

cussion the quantities x(i ,j) form an infinite probability

vector x , which we will write in the partitioned form (x0,

The system of equations (3) has a unique solu-

tion with all x(i ,j)>0 if and only if p-< l.

Using classical arguments  in the theory of Markov 
-

renewal processes, we shall derive explicit expressions for

the vectors and x1.

Theorem 4: The vectors and are given by

d k(24)

Proof: If we consider each transition in the infinite

Markov chain P as a discrete time step, then the times

between successive visits to the states (0,1),...,(0,n)

and the states visited , define a Markov renewal process

with n states. The sojourn times in this n-state Markov

renewal process are lattice random variables and the tran-

sition probability matrix of the process is given in an

15
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equivalent form by the matrix of generating functions L(z).

There is a classical theorem , see e.g. Hunter [9], p. 196,

in the theory of Markov renewal processes that states that

the mean recurrence time E~ of a particular state (0 , j )  is

given by

(25) E . = ~~ ~~ d~ d* , for 1~ j~ n,

where d~ and d* are the v-th components of the vectors d

and d* respectively.

The mean recurrence time in this finite state

Markov renewal process is none other than the expected num-

ber of transitions between successive returns to the state

(0 ,j )  in the infinite state Markov chain P. Clearly, we

see that the stationary probability x (0,j) is given by

(26) x (0,j) = = 
d j , for l~ j~ n,

~ 
d~ d~

v=l

or in vector notation ,

d

To derive an explicit expression for x1, we consider the

Markov renewal process defined by the times between suc-

cessive visits to the states (l,1),...,(l,m) and the states

visited . The transition probability matrix for this process

_
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is given in an equivalent form by the matrix of generating

functions, K(z). Using a completely analogous argument ,

we see that Equation (24) for holds.

Since the matrices L and K are known in terms of

matrices which may be computed explicitly, Formula (24)

yields the vectors and in a tractable form. Knowing

that the vector x must satisfy Equation (3), we must show

that the following relationship between and 
~l 

hold .

Corollary 2: The vector is related to the vector x1 by

the following equality :

(27) = x0B0 + x1C0

=

Proof: By a lengthy , but straightforward calculation given

in Appendix I.

We see that Equation (27) provides us with yet

another accuracy check on our numerical computations.



~ - - - - _~
- —- —- -

5. THE DERIVATIVES OF THE PERRON-FROBENIUS EIGENVALUE

In deriving the moments of the stationary distribu-

tion, we will need explicit expressions for the derivatives

of the Perron-Frobenius eigenvalues and the associated

eigenvectors of the matrix A*(z) , defined in (6). In this

section , we derive the necessary recurrence relations need-

ed in the computation of these derivatives.

For z~ l, the matrix A*(z) has a uniquely defined

Perron-Frobenius eigenvalue 6(z). Let u(z) and v (z) be

the corresponding right and left eigenvectors , respectively,

such that th2 normalizing conditions

(28) v(z)u(z) = v(z)e = 1,

v(l) = it , and u(l) =

hold in addition to the defining relations

(29) [A*(z)_6(z)I]u (z) = v(z) [A*(z)_6(z)I] = 0.

We denote by A~ (z), the matrix obtained by differentiating

each entry of A* (z), v times.

Theorem 5: The derivatives 6 (n) (1) , ~
(n) (1) , (1) , nb0 ,

may be computed recurs ively for each n for which A~ (1) is

finite . The recursion formulas are

18
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( 3 0 )  ~
(0) 

(1) = 1, (1) = e, v~
0
~ (1) = it

o (1) = itA~ (l)e = p

U~~
’

~ (1) = (I—A+fl )  [A~~(l)—6~~~ (l)I]e

-= (I—A+fl)~~~B — p e ,

(1) = ¶ [At (1)_6 W (1)1] (I-A+n)~~

= iiA~~(l)(I—A+ I1 )~~ —

and for n12
n (f l . v)

(31) ~(n) (1) = ~ (~~)irA~ (l)u (1)

n-i (n-v) (v )
— 

~~ (1) 6 ( 1)
v=l

( ) —l n () (fl v )n (1) = ~~~~~~ ~(~~[A~~(1)—6 (l)I]U (1)

- [
~ 

( n )v ( :) ( 1)u (?i
~ 1e

(1) = 
n~l 

(~~ )~~~( V )  (l)[A~~~~(l)_6~~ i~~I] (I-A+n)~~
v~ 0

where H is the square matrix of order m, whose rows are all

identical and are equal to the vector it .

Proof: The values corresponding to n=0 are obvious. By

differentiating n times in Formula (29), we obtain
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(32) n (n—v)
~

‘ (
~

) [A~ (z)—6~~~ (z)I] u (z) = 0.

Premultiplying (32) by v (z), letting z tend to 1 and

rearranging terms leads to

n n—i (n—v) (~ )(33) 
(n) (1) = ~ (~ )~ A~ (l)U

(n—v).(l)_ 
~ 1TU (1) 6 (1)

y 1  v l

Letting z tend to 1 in Equation (32) and rearranging terms

leads to

(34) (I-A)u~~~ (1) = 

v=l 
[A~~l)-a

(’) (l)Iju~?i~~

which is a singular system of equations . Adding HU~~~~ (l)

[it u~~~~(l)]e to both sides and noting that (I-A+fl)~~~e =

we obtain

(n-v)
~~(11) (1) = (I—A÷ 11 ) ~~~~~~~~~~~~~~~~~~~ (1)IJu (l)

+ ~ ~
(n) (l))e.

In order to determine ~ (“) (1) in terms of earlier terms of

the recurrence, we differentiate n times in the normali zing

condition v(z)u(z)=1, and let z tend to 1 to obtain

(36) ~ ~
(n) (1) =

_ _   - -6. _ ____ _ — ______- ——-—- - - —--
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Note that for n=l, u~~~ (1) = 0, and

(37) ~
(n) (l)u(l) = ~

(n) (l)e 0.

Substitution of (36) into (35) yields the stated formula

for ~
(n) (1). The vectors (1) are obtained by differ-

entiating the second equation in (29) n times and setting

z=l. We get

n l  (nt-v)
(38) ~

(n) 
~~ (I—A) = 

v 0  
(
nl

) v ( V )  
(l)(A ~~~~(l) — 6 (1) 

I)~

but since (l)fl = [v~~~ (l)e]-ir = 0, we have

n—i ( f l—~~~)(1) = 

v=0 
( f l ) v ( v)  

(l){A ~~~ (1) - 6 (1) ~~
]

(I—A+H)~~- .

Setting n=l , we obtain the stated explicit formulas.
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6. THE MOMENTS OF THE STATIONARY DISTRIBUTION

In the next section, we shall develop a recursive

algorithm to compute further components of the vector x.

As a criterion for truncation in the infinite system of

equations xP = x, we will use the moments of the stationary

distribution. We presently derive complicated yet tractable

expressions for these moments.

If we let z tend to 1 in Equation (7), we get

(39) X(1) (I—A) = 

~ok~ l
Bk — x1A0.

Adding X ( l ) J I  = (X(l)e) it = (l-x 0e)7r to both sides of Equation

(39) and recognizing that ¶ (I-A+fl)~~ = it , we have

(40) X(l) = 

[
~~JB k - XiAOJ 

(I-A+n)~~ + (l-x
0e)n.

We see that we may calculate the vector X(l) in terms of the

data and the known vectors and x1. This gives us an

accuracy check on the numerical computations of the addi—

tional components of the vector x. Having computed the vec-
k

tors 
~2’ ~~~~~ ~k’ 

the sum v~~l ~~ 
should be entrywise close

to X (1). By evaluating the n-th derivative ~
(n) l , we

22
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obtain it~~
1X~~~ (1) the n-th conditional factorial moment of

the stationary distribution given that immediately following

a transit ion the process is in state (i ,j )  , for some ibl.

The quantity X’ (l)e is the n-th factorial moment of the sta-

tionary distribution .

(1) (2)Theorem 6: The vectors X (1) and X (1) are given by

(41) XW (l) = 
~
-
~~
(l)[I-~~~

kAk]+ 0k~ l
k

+ _0
k~l 

k 
- X1AO} 

(I-A+H)~~

÷ (X~~
U (l)e)ir

where

(42) X (1)e = 
2 (1-pJ [2~ O~~~

kBk! + 2
~ Q~~~

Bk~~~~ 
(1)

+ _0
k~2

( 
~~k 

+ 2xo~~~
kBku~~~ 

(1)

+ 

~~~~~~~~ 
(1) — 2x1A0u

(U (1)

- x1A0u~
2
~~(l) + X(l)e6 (2)(l)}

— X(l)uCt) (1)

and

_ 
—-- --~~~ -~~~~~-_ -
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~ (2) (1) = 

[
~
(i)

~~~~
k(k_l Ak 

- 2X (1) (1)

+ 2xO~~~
kBk + 

~ok~2
k l)B

k} 
(I-A+fl)~~

+ (x~~
2

~ (1) )

where

(44) CUe = 
3(1-p) {3x

w (i)e6~
2
~ (1)

+ 3X(i)UW (1)6
(2) (1) + X(1)e6~

3
~ (1)

+ 
~ 
k(k-l)B~e + 6x0 ~ 

kBkU~
1
~ 
(1)

k=2 k=l

+ 3
~ ok~l

Bk~~
2) (1) + ~oJ3

k k_u (k_2)B
ke

+ 3xo~~~ k(k~i)Bku
W (1)

+ 3x0 ~ 
kBku~

2
~ 
(1) + 

~ 
Bku~

3
~ 
(1)

- 3~ l:o:
(2) 

(1) - xlA Qu
(3) (l) I

- x~~~~ (l)uW (1) - X(l)u~
2
~ (1).3—  — — —

Proof: The lengthy derivations are shown in Appendix II.
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Note that although the formulas for the conditional

fac torial moments are complicated, they involve only known

quantities and are in a computationally tractable form.
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7. AN ITERATIVE METHOD FOR THE COMPUTATION OF THE

COMPONENTS OF THE STATIONARY VECTOR ~

We recall that the components of the vector x

satisfy the equations

k+l
(‘b) = ~~~~ + 

~v
Ak+l_v , for kbl.

We see that if the matrix A0 is nonsingular , the vector

~k+1’ 
k~l, may be found by solving the appropriate equation

in (45). Neuts has shown in [27], that in the case where A0

is singular , the vectors xk÷l ,  k~ 1, may , in principle , still

be computed recursively if the rank of the matrix

is equal to the rank of the matrix [A0(I_A 1)
h 1

2. This

recursive procedure , however, is , except in very special

cases, numerically highly unstable.

We suggest computing the vectors ~~ , kbl , using the

following block Gauss-Seidel iterative procedure .

(46) 
~~~~~ 

=

~~ (n+l) = bj ç + ~ ~~~~~~~~~~~~~ 
+

where = (x oBk+x lAk) (I-A1)
1 and A~ = A~ (I-A1)~~~.

26
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Note that the vectors are now known quantities. Note

also that in the recurrence relationship for ~~ , we use the

most recent iterates of x~ , v=2 ,.. . ,k-l. Using the moments

that we have computed in the last section, we first truncate

the inf inite system of equations , (46), at some index k* ,

where k* is the smallest integer not less than ji + 3a. (ii

and ~ being the mean and standard deviation of the queue

length following departures , respectively.) We continue the

iterations until the condition

(4 7) max Xk(fl) — xk(n—l) < l0~~
2~ k~ k* — J

is reached. At this time we check to see if an adequate

number of components have been computed . This amounts to

computing e , where

(48) c l —
k=0

If c > 10~~ we increase I~ by 1 and continue with the itera—

tions. When all of the conditions for stopping have been

reached , we utilize an accuracy check on the components of

the vectors xk , 2~~k~k ’ , where k ’ is the number of components

computed. From Equation (5), we have

(‘~~) X(l) =

where X(1)  is known explicitly.
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8. APPLICATIONS

A. The MX/G/l Queue

We consider a single server queue with a general

service time distribution and arriva~1s of random group

sizes, which occur at the epochs of a Poisson process. It

is well-known that the successive queue lengths immediately

following departures in such a queue (denoted by M’~/G/l)

form a Markov chain of type (1) where the matrices are all

scalars. In this case, the f irst two rows are identical

and the entry av corresponds to the probability that there

are v arrivals during the service of one customer. For the

scalar case,

I = G = G = A = l , a n d 8 = p = ~~~~ ,

where A is the mean arrival rate, ~ is the mean group size

and ~ is the mean service rate. Formula (14) for p then

simplifies to

1
= 1—p ,

which is the classical formula for the mean number of ser-

vices during a busy period .

28
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B. Two Queues in Series with Finite Intermediate

Waitingroom

The following queueing model has been studied by

several authors [18 ,19 ,35]. A system of queues consists of

two units. Customers arrive at a first unit (I) according

to a homogeneous Poisson process of rate A. The service

times in unit I are independent , identically distributed

random variables with common distribution function H(-). We

also assume that H() has a positive finite mean .

Upon completion of service in unit I, all customers

go on to a second unit (II) via a finite waitingroom. We

assume that there cannot be more than k customers in unit II

and in the waitingroom at any time . If upon completion of

service in unit I a customer finds the waitingroom full ,

then the unit one “blocks until a service in unit II is com-

pleted . At that time he is allowed to enter the waitingroom .

We assume that the service times in unit II are

independent, identically distributed random variables with a

negative exponential distribution . The service times in

unit II are also stochastically independent of those in unit

I and of the arrival process. If we look at the number of

customers in the system immediately following a service in -
uni t I , we have an embedded Markov chain P of the type (1)

and state space {(i , j )  ibO , l~ j~ k+l} where i is the number
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of customers in the system , who have not yet completed ser-

vice in unit I and j is the number of customers in the
system, who have completed service in unit I, but not yet

in unit II. The states for which j=k+l correspond to

blocking .

In this model , m=n. The specific form of the

matrices A~ and B~ , vlO , is complicated , but is readily

deduced from Formulas (3 )  - (18) in [181 . It should be

noted that most of the analysis depends only on the pre-

vailing special structure of the matrix P and not on the

complexities of the precise definitions of the matrices A~

and B~ . 
- s

C. A Single Server Queue with Versatile Markovian Input

In (301, Neuts defined a general class of Markovian

point processes, which generalize the classical Poisson pro-

cess and also renewal processes of phase type [23]. Such

point processes are useful in modelling a large number of

qualitative features of arrival processes. Among these are

group arrivals , randomly fluctuating arrival rates and inhi—

bitory phenomena.

In his thesis [ 3 4 ] ,  V. Ramaswain i has extended the

theory of the simple M/G/l queue to a single server queue-

ing model having this versatile Markovian point process as
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its input and general independent , identically distributed

service times.

Although the detailed definition of the matrices A~

and B~ is again highly involved and will not be repeated

here , the queueing model studied by Ramaswami has an

embedded Markov chain of the type (1). Once the vector x

has been evaluated , which may be done by using the tech-

niques proposed here, one can then draw upon the detailed

results in [341 to compute a large number of other qualita-

tive queue features , such as the steady—state distributions

of the virtual waiting time and the queue length at an arbi-

trary point in time.

D. Queues with Exceptional Services

Consider a queueing situation in which there are

occasionally “exceptional” services. For example , the ser—

~‘ice mechanism may occasionally break down, after which

there may be a certain amount of time needed for repair

before a service can be performed . We can consider the

breakdown and repair time combined as forming an exceptional

service. In order to formulate this model , we shall need

some of the basic properties of phase type distributions

(PH-distributions) and renewal processes of phase type (PH-

Renewal Processes), which were introduced by M.F. Neuts [22,

23]. Only the basic definitions of PH-distributions will

--

~
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be reviewed here. The interested reader is referred to the

cited references for further details.

Consider an (m+1)-state Markov chain on the inte-

gers {l,...,m ,m+l}, whose matrix P of stationary transition

probabilities is of the form

IT T01 -

P =

L~~~~ 

‘-i

where T is an mxm matrix and T° is a column vector with m

components. We shall assume that the probability of

absorption into the state m+1, starting from any given ini-

tial state, is equal to one. This implies that (I-T)~~

exists. The vector of initial probabilities of the I4arkov

chain will be denoted by (cz ,clm+i) and here we may assume

that

A probability density (rk} on the positive integers

is of phase type, if and only if there exists a f in ite sto-

chastic matrix P of the type (1) and a vector a of initial

probabilities , such that {rk} is the density of the time

till absorption into the state m+l . If {rk} is of phase

type , then it is easily seen tha t

rk = aT k T0 , for k~l.

Since the density {rk} is determined by a and T, we call the 

~~~ . - r_ -. ... _ 
~~~~~~~~~~~~~~~~~~~ -



pair (a,T) a representation of the density {rk}.

Now consider the stochastic matrix Q, of order in,

defined by

Q = T + T°A°,

where ~~~ = T~ , for l.~i , jim , and A° = diag (a1,...,a~ ). The

matrix Q is readily shown to be the transition matrix of

the PH—renewal process obtained by instantaneously restart-

ing the chain P after each absorption by perfornring a multi-

nomial trial with probabilities 
~~~~~ 

to select the

new “initial” state. Considering each absorption as a

renewal, it is obvious that the densi ty of the times between

renewals is of phase type and is equal to {rk}.

We can now construct a model of a queue with excep—

tional services. Consider a queue with exponential inter-

arrival times with arrival rate A. We introduce an under-

lying rn-state discrete PH—renewal process as defined above

such that immediately prior to a service completion , a

transition is made in the PH—renewal process. If this

transition does not involve a renewal then the service time

of the next service has the distribution F(x). If the

transition involves a renewal , then the service time of the

next service has the distribution F1(x). In this way , the

exceptional services correspond to renewals in the discrete

~1
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PH—renewal process. If we define 
~n 

to be the phase of the

PH-renewal process during the ~th service and X~ to be the

duration of the nth service then the pair (Jn,Xn) form a

Markov renewal process with transition probabilities given

by

Q~~~(x) = 
~~~n+l J’ X~~x

= T1~F(x) +

We define the matrix Q(x) = {Q
~~~

(x)} = TF(x) + T°A°F1(x).

The successive queue lengths immediately following

departures and the random variables form a Markov chain

of the type (1), where C0 = A0, B~ = An for n=0,l,..., and -

the matrices A~ are defined by

A = 
I e~~~.1 

( A u ) n 
dQ (x).

0

The above model may easily be modified to allow for a

different arrival rate during the exceptional services as

may be the case in certain practical situations.

We see that in this manner a generalization of the

M/G/l arises in which strings of ordinary services are sep-

arated by single exceptional services. The lengths of the

runs of ordinary services are independent, identically dis-

tributed random variables , which may have an arbitrary dis-

tribution of phase type. Mathematically the queue so

- ~~~~~~~~~~~~~~~~~~~ —~~~- _. -_-———-- -_----—---_.— _ _ _ - _ _ _ _ _
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obtained is a particular case of the M/SM/l queue. It is

computationally highly tractable and permits the algorith-

mic investigation of a number of control and optimization

aspects, which we shall discuss elsewhere.

E. Bulk Service Queueing Models

1. Bailey ’s Bulk Service Queue. Consider a bulk

queueing model involving a server , who becomes available at

the epochs of a renewal process with underlying distribution

H(S). Customers arrive according to a Poisson process of

rate A. If k customers are present when the server becomes

available , a group of size min(k ,m) enters service. This

model was solved by N.T.J. Bailey [1] by the use of complex

variable methods.

The successive queue lengths immediately prior to

the beginnings of services form a Markov chain P with the

following structure:

t 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _
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0 a0 a1 a2 a3 ... am I am+1

1 a0 a1 a2 a3 ... am l am+l ...
2 a0 a1 a2 a3 .. . am I am+l . . .

in a0 a1 a2 a3 ... am am+1

in+ l a0 a1 a2 a3 
... am~~~ 

am+1

m+2 0 a0 a1 a2 ... am_ il am

rn+3 0 0 a0 a1

where a~ = f e ~~~~ 
( A u ) 3 

dH (u) , for j10. We see that this
0

matrix may be partitioned into the form (1), where C0=A0

and all of the matrices B~ and An are square matrices of

order m. We also note some interesting consequences of the

fact that the first in rows are identical and given by (a~ }.

We state these results in the followi ng theorem which may

be found in Neuts [25].

Theorem 7. For the Markov chain in Bailey ’s model , the

matrix L ( z )  defined in Formula (18), has in identical rows

which are equal to te first row of G(z), defined in Formula

(8). The vector d, defLned in (20) is given by the first

_____________
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row of the matrix G and the vector d~ , defined in (21), is

given by

=

where p1 is the first component of the vector i. The vector

is given by

—l
= 

~~~~ ~~~‘

and

—1
=

2. Moran ’s Dam with Infinite Capacity. A classical

model , due to Moran [13], for a dam in discrete time with

discretized content, involves a Markov chain P of the type

(1), with the following entries:

C0 = A 0

{A 0} . = a~_1. if j~ i, lii, j~ m

= 0, if j<i

{A V )~~ 
= avm+j_i~

in-i
{B0)~ 0 = 

~ 
av , -

{B
o
}
jk 

= ak÷~~~~ 
k~1, . 

-

(B
~
}
~~

. = avm+m_j~ 
v~ l, 

_ _
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where {ak} is the probability density of the number of

units of water added to the dam per year and m is the maxi-

mum amount of water released at the end of each year . We

assume that the capacity of the dam is infinite.

3. A Bulk Service Queue with a Threshold. The fol-

lowing queueing model also has an em1~edded Markov chain of

the type described in this thesis. Customers arrive at a

service unit according to a Poisson process of rate A .

Services occur in groups, with the group size dependent on the

the queue length according to the following rule. Let there

be i customers waiting at the completion of a service. If

0~ i<L , the server remains idle until the queue length

reaches L and then starts serving all L customers . If

L~i~m , a group of size i enters service and if i?~rn , a group

of size m is served . It is assumed that  the lengths of ser-

vice of successive groups are conditionally independent ,

given the group size.  The successive queue lengths follow-

ing departures form a Ma rkov chain of th e des ired structure.

This model has been studied by several authors [5 , 14 , 17 , 2 5 ] .

4. A Bulk Service Queue Viewed as a Branching

Process. Assume that a server serves groups of size m. If

a~ time t=0, there are i customers we divide this group into

groups of size in , with any remaining customers left alone.

Assume that there are n such groups of size m . We consider
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any arrivals to the queue during the service of any of

these groups as the progeny of that group. The total

number of customers at the end of the service of the n-th

group will form the first generation . If we continue in

this manner then the busy period starting with i customers

will be equal to the time till extinction in this branching

process starting with i customers. This model has been stu-

died by Ezhov and Shakhbazov [6].

F. Queues with Semi-Markov Service Times

Queues with semi-Markov service times have been

studied by several authors including çinlar , Gayer , Loynes,

Neuts and P. Purdue [2 ,7,12,15,27,29 ,33]. One typical

model involves an M/G/1 queue in which there are m types of

customers , operating under the first come—first served dis-

cipline. We assume that the server expends a random length

of time in the change-over from one type of customer to

another. This model has an embedded Markov chain with

state space {( i , j ) ,  ilO , l~ j.~m } where i is the number of

customers in the queue following a service and j is the
type of service that the server is tooled up for immediately

following a service. etails of this model are given in

(27]. Explicit formulas for general M/SM/l queues with

group arrivals are available in (29].
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G. Generalized Random Walks

Consider an infinite Markov chain with state space

{(0,j), l~ j-~n, and (i , j ) ,  ilO , l~ j~m}. We assume that

starting in state (i,j) i�l , l~ j~ m , in one transition , the

chain may only enter the states {(i ,j’) , j ’~ j ,  l~j’~rn, and

(i—1 ,j’), (i+l,j’), l~ j’~.m} . Starting in the state (0,j),

only the states {(0,j’) , j ’~j ,  1~ j’~~’~ and (l,j’) , l~ j’~ m }

may be reached. This model describes a generalized random

walk and has a transition probability matrix P of the form

B0 B1 0 0 0 0 .

C0 A1 A2 0 0 0 .

0 A0 A1 A2 0 0 .

0 0 A0 A1 A2 0 .

0 0 0 A0 A1 A2 .

which is clearly of the type (1). This model has been stu-

died in references ( 33 ,37,39].

The invariant probability vector of this process

may be evaluated using the techniques proposed in this

paper. We also note that the matrix P has a structure,

which is a special case of a general class of Markov chains
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studied by Neuts [261. It is shown there that the invari-

ant vector is of a matrix geometric form .

H. Queues with Fluctuating Input and Service

Consider a queue where the arrival process and/or

the service rate exhibit random variations. This model may

be used to describe changes in work shifts , rush hours ,

interruptions in the arrival process, server breakdowns,

etc. To be specific , we assume that there is an underlying

rn-state continuous parameter irreducible Markov chain which

governs the phases. During any interval spent in phase i,

the arrivals are according to a homogeneous Poisson process

of rate A
~ 

and any service initiated during such an interval

has a duration distributed according to H~~(). This model

was first discussed by Neuts [20]. If we consider the queue

lengths immediately following departure we see that once

-igain , we have an embedded Markov chain of the type (1).

By making Markovian assumptions on the service mech-

anism, it is also possible to consider models for which the

service rate of a customer may vary with the underlying

phase state. This model , usua lly called “The M/M/c queue

in a Markovian environment ,” has an extensive literature

[3,28,31,32 ,38]. It may also be treated by the methods

described in this thesis , although results which identify
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the stationary probability vector as being (modified)

matrix—geometric , provide a more explicit solution , both

from an analytic and an algorithmic point of view.

I. Parity Dependent Service Times

A model which is related to the above “bin ” model is

a queue in which customers are served one at a time but the

service time depends on the parity (residue class) of the

queue. If we consider the residue class of m=3 , we have the

following embedded Markov chain:

0 a10 a11 a12 a13 a14 a15 a16 . . . -

1 a10 a11 a12 a13 a14 a15 a16 .

2 0 a20 a21 a22 a23 a24 a25 .

3 0 0 a30 a31 a~~ a33 a34 .

p = 4 0 0 0 a10 a11 a12 a13 .

5 0 0 0 0 a20 a21 a22 . .

6 0
__~ 

0___~ 0 1 0  0
_~_ 

a 3 0 1 a 31 . .

7 0 0 0 0 0 0 a10

: : : : : :
We see that we may partition this matrix exactly as in the

“bin ” model to obtain a matrix of type (1). This model was

b _ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



studied by Neuts [151. We note that the first row of the

matrix P2 in [151 should consist of the quantities {a~ ),

rather than {bv ]. This also results in some obvious changes

in Section 3 of that paper.

J. A Bin Model

Consider the following “bin ” model. The waiting

room of a queueing system consists of an unlimited number

of bins of size in. As arrivals occur , they are placed into

the bins , filling them one at a time. When the server

becomes available , he serves the last bin that received

input , if it is not full. If all occupied bins are full, he

chooses one at random and serves it. Now suppose that the

service times depend on the number of items in the bin being

served (i.e. the residue class of the queue) . The queue

length immediately following a departure forms a Markov

chain P with the following structure . (For simplicity , we

display the matrix for m=3) .

I
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0 a10 a11 a12 a13 . . 1

1 a10 a11 a12 a13 . .

2 a20 a21 a22 
( 

a23 . . 
I

3 a 30 a 3l a32 a3 3 . . I .

= 
4 0 0 0 a10 a11 a12 a13 . . .
5 0 0 0 1 a20 a21 a22 a23 . . .

6 0 0 0 ( a a a ~~~~I a ~~~~~~~~~~ .

7 0 0 0 ~~o 0 0 1 a 10 . . .
8 0 0 0 0 0 0 a20 . . .

9 0 0 0 ~~0 0 0 a30 . . .

The above matrix is also of the type (1).
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9. THE APL PROGRAM

The algorithms constructed in this paper have been

programmed and implemented in APL. We briefly review the

purpose of each of the APL functions and give a short dis-

cussion of the more important ones. In Section 10, we pre-

sent numerical examples.

The index origin of the workspace is set to zero.

The sequences of matrices {A~ } and {Bn} have been truncated

at some index k. We denote the matrix A= A at the varia-

ble AA. The sequence of matrices {An}~~ 0 is represented by

the three dimensional array A of dimensions (k+1,n,m). The

variables CNOT and BNOT equal the matrices C0 and B0 respec-

tively. The sequence of matrices {B~ }~~ 1 is the three dimen-

sional array B of dimension (k,n ,m) . Note that in the fol-

lowing program , A[k ;;] = Ak and B[k;;] = Bk+l, for k~0.

A. The APL Functions

T I

1~ 
r.~i .~.. 

~~ ). —

I ~~ I
1 I’ j ’

I , : !  r :I : I . I : I l • ’ I • ~~I ’ l ’  ~~~

71 ( ‘ 4 - + / ” ~ I ~~~~~~~ l-~ I~~~ lI

I I  .f-~~ :K 1 I . 1 ? ~
I I I . )  ‘:~ • ~~

•
~

• (~~i ’ 1 F  T l ( . J I~:

[ 1.01 ~. A A  I I I C I . . ~~~~~~~~~ **~~~
T I : y  ..
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Once the set of matrices fC 0,An,Bn,n=Q ,. . - , k )  have been

i n i t i a l i z e d, the f u n c t i o n  RUN is executed . This func t ion

calls all of the main functions in the program and computes

all of the desired quantities of interest. If the value of

p is greater th an  or equal to . 9 9 , the execution is halted .

This function also utilizes all of the accuracy checks pro-

posed in this paper .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ; T7 ; 1 1 ;
i: -r s ; t:~

[1 I
I. ::!] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~ i1. L~~2 ) * 0,5

I: 41 ~: I~~ [ ~
‘ F 4 .~~’i ) U T  C I < 4 0

I.. ) 4 ( ~~ S } / ) f S (~) 1 . 4  (r~~)rl 0x (l4 1
[6:] ~~ F I . ~~0 ; ~~~~~~ 0 ; ~ + • x~~:i ‘MV 

i 
L u I ) r ~~ :~~~F [: (:~~ ; ~~~~~~~~ ; ; :1-f , x~~~i. I~ -1V

[01 ((:1 1 ( : )  >0 1. 1 )/ L  oop
~~

[9] L( :)( :) P~~~:I . l i. r ; ;  TI~~-I ~ L r;:4 F ; ;:J+. x’~1.~”~
[10:1 •( (i’~Y~~) 

> E  i j ’  L U I . I F 2

[11 :1 L O O F 3 ~~~ l< I F )

I:.L2] SI ~..i.I , I:: ’:’ i()
L : [ 3 J  (~ I I .  [~0~]0
[41 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The function XVECT computes the stationary vector x

defined in Equation (3) by using the iterative procedure

proposed in Section 7. We first compute the index Kl which

is equal to the smallest integer greater than ~j+3a where

= X’ (l)e, and a = /~
( 2 )  (l)e+X ’ (1)e-(X ’ ( 1)e) 2. The index

K1 is used as an initial truncation of the vector x. We

next compute the vector b = (b 0,b1,.:. ,bKl) defined in Equa-

tion (46). The ioop START performs the iterative procedure

defined in Equation (46). These iterations are continued

until Condition (47) is met or until a specified maximum

number of iterations is reached . If Condition (47) is met,

we check to see if an adequate number of components have

been computed . This is accomp lished by computing the dif-
‘I Ki

ference i_
k
Z
O ~~

e. If this difference is greater than io~~~,

we increase Xl by one and repeat the procedure .

y ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[1] A T H X ~~1 F U T - 1 C T I O T - l  W I L L  S O L V E  T I l E  M ,~~TR I X

[2] ~~F ( J l - b C T I O l - I ~~ L Fc4t . J~~~r 101-b ~~~~~ (6

£3] 434
[4] Gi4-Ox~ iT!1V4-l~( 14— ( I R )  0 , 1 F  i.1~E )  ~~~~~~~ ; 

;J
[5] L O O F  1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C l 0)t’ 1 1 +‘~2i-~ 3
£6] LooF-2:.,(2<r.’+ox 1 1 t~ 24-4t:r’~~1.-.- i;;]+42+ ,xG)/LOOF-2
[7]
[0] 4((CJ4-MAXrTG)GITS)~~(1.OOO0O0E 8 )(IERR )/LOOP1
[9] -

~~:[
-t- (~~~ :[=i )~P JO 15

[ 10 ]  ‘ ~~ • M 4 X 1 rC i  ; ‘ I~~ ER ~~ T IO N S , THE I9EST A F F R O - I M A T X O H
[11] ‘ OF 6

[12] t]4-~~:[
[131 W X F H  (~ M 4 X I M U M  D I F F E R E N C E  E I E T W E E N  I T E R A T E S  O F : ’  ;ERR

(14] -30
[15] G4-.G1,.(~~(E ,F;:)p((l.~+/r,1)÷f,s2))xs2f-G1~~G

—
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The function SOLVG solves the matrix functional

equation G =~ E~ AVG
V by the iterative procedure given in

Equation (12). i.e.

G(0) = (I—A 1)~~~A0

G(n+1) = (I—A 1) 1[Ao + 
~~

A
~
G
~n)J

The quantity in square brackets is evaluated by Hom er ’s

algorithm for the computation of a polynomial. As is well—

known, this algorithm minimizes both the number of matrix

multiplications and the number of matrix summations required .

We continue the iteration until a specified maximum number

of iterations have been reached or until the condition

T~~ ,j~m fG ij
+1
~~~ ij~~~

} 
< ~~~~~

has been reached . Finally a linear extrapolation is

applied , which sets the final matrix G equal to {G~~ }1 where

~~~ = G
~~~

(n+l) + O 1[G 1j (n+l)-G~~~(n)], for l~ i,j~m.

The quantities 
~~ 

are determined so that the row

sums of G are equa-l to one.

~ F 4-s-rvEcT F - ;M ;P M ;M 1

£1] n T HI S  F UN C T I O N  W ILL CALCULATE THE STATIONARY

[2] ~FF :OEIA~~ILITT VECTOR OF THE STOCHA STIC MATRIH F

[3]
[ 4]  PI4~F-M + .x~~((M F F M )+ ( 1M 1 ) o . l M1f-j+M4 ..FF)—F

[5]  FI4 . - ~~F t ~ ~ ---+/F I
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The function STVECT calculates the stationary pro-

bability vector of an irreducible stochastic matrix P, using

using a method suggested by P. Wachter [36]. We write the

stationary equations uP = it , as

= 0, for i=1,...,m.

where is the Kroneder delta. If we add to both

sides of the i—th equation , we have -

= 

~mi~

Note that the first m-l equations do not involve the quan-

tity 
~~ 

Wachter has shown that the first m-l equations,

m-l

j=l ~ ~~ ji mi = m~.

form a nonsingular system .

In matrix notation, we define I to be the identity

matrix of order m-l , the vector to be the (m-l)-vector

whose i—th component is 
~mj’ 

the matrix P~ to be the matrix

obtained by deleting the last row and last column of P, and

the matrix 
~m 

to be the matrix all of whose rows are identi-

cal and equal to ~~~~~. The above system of equations may be

written as
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where ~~* = ( -711, u 2 , .  . .

The function STVECT solves this system for ur~ and

then computes um by

m- 1
= 1 — 

~~ lT
j
.

j=l

c, MU4-MUVECT;~~
Li] ~ 

T H I S  FU T - I C T I O M  CAL C ULA T E S  THE VECTOR MU
[2] GTXLtI A~~(fG)~~GVECTj STVECT ~
[3] z4(l)ELTAB~~ ’IAG EIETA )+.X G T I L D A
(4]

V
The function MUVECT computes the vector

p = (I-G+G) (I—A+ ~ —~~(~ )G)~~~e.

~7
U] II-’f ( :) * ,~~~~~ 4 1~~p p~ 4oT
[2]

V

c’ L~- LM A TR X ~-1

[j ]
[2]  L4-~~ M O T + ( F I P F : I M E 4 . . p~5 E R I E 5 ) +  X H

V

The functions KMATRIX and LMATRIX compute the

matrices K and L respectively , using their defining Equa-

tion (19).

ç HSTAR 4- .SOLVH ;Z ;C ;T

[1] Z4-(1,j,pA)pOxCI..9
(2]
[3] Z 4 - Z+A [2~~~~]
[4]
[5] HSTAR€AAF- R IME+  X i + T

9

_ _ _  — .— —---——- ~~ ---~ ~~~~~~~~~~~~~~~~~~~~~~~
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V K S T A R 4 - S O L V K Z } ~I~~
Cl] £‘14L~4-BTILr’Ao .XGVECT

[2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[3] K s rA R 4 ~1+(+/cFRxME)+Z+ .x INV ERSMU

V

v E ’ST AR1I..SOLVL ; ~~GTILL’ A

• [1] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[2]
[3] t ,STAR 1f1+ (EPRIME+ . x(HST~~~:4~SOLVH )_ 1flVEF :5MU)+Z

U

The functions SOLVH , SOLVK , and SOLVL compute the

vector h*, ~~ , and d* , respectively . These vectors are

defined in Equation (22).

V t124..rJELTA2

[1] ts9(~FI+ .x (+ /A2 (~A 2M EAT1 )4 . (2XA 1+ , X hu 1 ) HoXu 1

V
~ E’34- r ’E L T A 3 ; !

Li] ~~- ( - f / A 3 +A 3 M E(~I- I )_ ( IJ2x RH o)- ,- rI2xui
[2] r’34-Px -s- ,x (3xa l ÷ .xu2) -s-(3x A2+ .x Ul)+z

The functions DELTA2 and DELTA3 compute the quanti-

ties ~ 
(2) (1) and (1), respectively, using the recurrence

relations given in Equation (31).

9 I J 14 - U 1F R I M
[1] U14 - ( (A i I NV ~~~ X_ AA. . ( f A A ) p P I )+ .x BETA)...RHo

V

9 U 2€ U 2 F - E I I M ; K 1 ; K 9
El]
[2] K24 .-+/A 1IHV+ .x (A9 (r1 2I ..rELTA9 )xx)

[3] U24 .K l+K2_ 2x (V 14~.v1 FFixM )+ ,xU 1
V

L _ _ _ _ _ _ _ _
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v (J3f.(.J3F’ F- ;1M K1 Z
[1]

[2] x1f .~~:L :I:(1 V + ,X (3xA l+ , x U2 )+ (_ 3xRHoxu2)+ (3xA 2+ .x Ul)+z

[ : 3 :] IJ34~K [ ~. .3x(V i .+- ,X U2 )+ (V 24 . .V 2 F R I M)+ ,X Ul
V

9 V14-V 1FRIM

[1] v 14~(F- I.f ,xA l+ ,xA l I l . 1V )_ FHox Px
V

ç V2 4~v2 I F ;: I M ;  z
[1] Z + 2 X R H O XV 1 4 —V 1 F F I M

[2]  V )4..((FI+ ,x A2)~+.(2XVl+ .XA1)..~(t12XPI)+Z)+.XAjINV

9

The above functions compute the successiw- ~eriva—

tives of the Perron-Frobenius eigenvectors , u~~~ (1),

(1) , ( 1) ,  (1) and (1) , respectively. These

derivatives are also defined in the recurrence relations

given in 2c~uations (30) and (31)

V >1lE4 lME~~b K 1 K2 Z
[1]
[2] Ki 4- . ((1-_ + /xT-boT )xx: I :~)+A4.f ,x ((2xu l)+u 2 4..u2FFiIM)

[3] 2€ (+/xMOT+ ,xF~24.E 12MEAl-b )+K l
[ 4 ]  K 2 4_ (2x x1-bOT f ,x (I3 1 (_ E I1ME AN ) .f,x( l+ LJl) )+Z
[5] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[6] X l E 4 ( K 2 + 2 X i~ -~<H0)~-~ 1 i U i F

V

V X1F-~~x1FF ;IM 1(1

[1] Kl4 ~ (X 1E 4. .X LM E A N) X F I

[2] H I F ~-Ki+ ((A 4 .fXN OT+ ,XBl )_ Xi+ ,X (I_ A i ))+ , XA l~~~
V

V

V x2Iz4~x 2 M E A H ; K l ; K2 ; K3 ; T ;z
[1] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[2] K l 4 ~Xl .bO T .f . X ( 3 X I 1 4 2 + , X ( l + U 1 ) ) + ( 3 X B l + . X ( U 2 + 2 X U l ) ) + Z

[3] r4~(3xtI2xxi+ ,xu1)+ (1~ +/xTloT)x1~3
[4] K3(~(..xoNE4.,xA [o;;]+.xK2)+ (3xt12xT<1E)+T
[5] X2 F4 ~ ( ( K i + K 3 ) . i . 3 X l _ R H O ) _ ( X l + , X U 2 ) + 4 X i 1 l P + . X~~ 1+3

I 

V

I 
~~~~~~~~~~~~~~~~~~~~~ 4
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V i i2 P 4~x 2 F R I M ~~K 1 ; z
Cl] K 14 - ( X2 E4 > I2 M E A N) X F I
[2] ~~4.XNOT + , xE’2+2xB1
[3] X2F 4 .Kl+ ((Xl+ .x A 2)+Z_ 2xX 1P÷ .x(X .— A l ))+ .XA 1 INV

V

The functions X1PRIM and X2PRIM compute the moment

vectors X’ (1) and (1), respectively. The functions

X1MEAN and X2MEAN compute the quantities X’ (l)e and

X~
2
~ (l)e, respectively , which are needed in X1PRIM and

X2PRIM . All of the above quantities are defined in

Theorem 6.

~ 
AERIME4-ASERIES C

[1] A F F I M E4 -A [ C 4 - ( ( rA ) — l ) [ o ] ;  ]
[2] LOOF - : - , ( 2 . c C -e- O x 1 1 +AF-RIME4-A [c4 .c.-- .1 ;;]+AFRXME+ ,xG)/LOOF

[3] A F R I M E 4 -4 [ l~~~~] + A F - R I M E + . xG
U

V ~(F -FxME4 ~rcsERIES;C

[1] E’PRIME4.BLC4-((pB)—1)[0]~~~]

[2] Loop :4(l (c-fox i 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[3] ~ FR XM E 4 ~5[Q~~~]+BFRIME+ ,XG

V

The functions ASERIES and BSERIES compute the quan-

k v—i k v—l
tities 

~ 
A~,G and 

~ B~,G , respectively, using Hom er ’s
v l v 1

method .

9 AlfA 1MEAlb~~C
[1] A1 ((j+FA ),OxC4-i
12] LOOF- :Al4-Ai+AEc;;]xc
[3] - ÷ ( ( 1 1~t ’ A ) C4 -C+ l ) /L OOF

V

V A2 4- A 2MEA14 C
[1] A24- (14.PA)p0xC4..2
[2] LooP:A24~A2+AEc~~;]xcxc~~1[3] 3C(l+PA ) C4-C+1)/LOOF

V

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _
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V ~i3(- (
~3MEAl-1 ; c

[1] fCi~,PIZ)P OxC(-3£2] L O O F : A 3 3 .A 3 . f A [ c ; ; ] x c x ( c . 1 ) x c ,

[3] - + (  ( i + F ’~~~) ) C4 .- C4 i ) / L OO F-
V

V E~14- B : [Ml ~~~~b C

[1] ~if.(i+rB)rC4-0
[2] LooE :I~l 4 .-z4i-4-Drc ;;]xc÷1
[3]

9

V I~24-~~2 MEAl1 C
Cl] E~2~-(iJ~fE .)pQxC4-1
[2] LoOF-:B2€E~2+E.[C;;]xcxC+1
[3] o ( (i l ~r E ~) , C . C + l ) / L O O F

U

v E34- E .3MEAN ;C

[1] ~3~ (1,1,?B)rOxC~2
[2] L0OP ;~~34-~~3-f~>[C ; ]x Cx ( C + l ) x C + 2
[3] -

~~( (1tf~1’) ) C4-C .f ~~~ )/LOC)F

V

The functions A1MEAN, A2MEAN , A3MEAN , B1MEAN,

B2MEAN and B3MEAN respectively compute the moment matrices

k k

~ 
vA~ , ~

v l  v l

k k

~

‘ v (v—l )A~,, ~ 
v(v—l)B~ ,

v 2  v=2

k . k
v ( v— i )  ( v — 2 ) A

~~, 
v (v— l )  (v—2)B~ .

v 3  v=3

V r’EL.-r4E~.-r’IAG ~~;H

[1] ~ T HI S  FIJNCT XO 4-4 W ILL CREATE A DIAOOHAL MATRIX

(2] ~ 
W I T H  T H E  EL EMEN T S  OF ~ ALONG THE tIXAGONAL

13] tI E tLTA~~~~l. b p E c , (t I 4 ~ (p E c ) , r L ) ? 0
V
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The function DIAG creates the matrix 1I.(8) which is

a diagonal matrix with the elements of the vector ~ along

the diagonal.

B. The Global Variables

- . The following is a list of the global variables.

A - A three dimensional array where AEN;;] = A~ for
n=0,...,k.

k
Al —

v 1

k
A2 — ~ v (v— l )A~,

v 2

k
A3 — 

~

‘ ‘v(v—l) (v—2)A
v 3

k
A4 

o ~~Bn
X1Aon= 1

A1INV — (I—A+fl)~~

k
AA - A =  

~~
Av

v 0

k
AAA — 

~~ 
(v—l)A .,G

v 2

AAPRIME - (I - ~ AVG
V 1 )

v l

k
APRIME - 

~~ 
AVG

V 1

v l

: ~~~~~~~~~~~~~~~~~~~
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B — A three dimensional array where BEN;;] = BN+l,
N=0,. ..,k-l•

k
Bl — 

~~
vB
~

~i=1

k
B2 — 

~~ 
v (v—1)B~

k
B3 — v (v — i )  (~ —2) B

~
v=3

k k
BBB - 

~ (v-l)R ~4G = 
~ 

\)B~~ - (e-Boe)a
v 2  v=l

BETA - i

BNOT - B 0

k
BPRIME - ~ B G ~~

1

v l

CNOT - C 0

CPRIME — C0 (I-B 0 Y 1

D - d

D2 - a (2) i

D3 — 6~~~~(1)

DELTAB - 

~(~)

DSTAR -

L
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ---—-—- 

— -~~~—-- -.-~~~-. .-. -- - . .
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G - G(l)

GITS - The number of iterations require d to compute the
matrix G.

GMU 
~~~~~~~~~~~

GTILDA -G

GVECT -
~~~~~~

H — H(l)

HSTAR _ I l*

I - An mxm identity matrix

INVERSMU -

K - K(1)

KAPPA - K

KSTAR -

L - L(l)

M - The order of the A-matrices.

MAXITG - The maxim um number of itera tions allow ed for the
computation of the matrix G.
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MAXITX - The maximum number of iterations allowed for the

computation of the vector x .

MU - p

N - The order of the matrix B0.

P1 -
~~~~~~

RHO - p

SIGMA — a = /“ (l)e + X (l)e — (x’  ( l )e )  2

TIME - The CPU time used in executing the program .

Ui — (1)

U2 - (1)

U3 — (1)

Vi - (1)

V2 — (1)

x -
~~~~~~

xl — x (l) -

X1E - X’(i)e

X1P — X’ (1)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _  
. .-



- ~~~~~~~~~~~.
~

-- -
~ 

60

X1UIP — X(i)uW (1)

X2E —

X2P — X~
2
~ (1)

XNOT -

XONE 
~~~~~~~~~~~

C. The Structure of the APL Program

We present below a tree diagram representing the

structure of the APL program. We display the order in which

the functions are called as well as where each global varia— 
-

ble is first initialized. A rectangular box represents the

function being called , an oval represents the resultant of

that function and a diamond represents any global variables

which are initialized internal to the function. We assume

that the variables A , AA , B, BNOT , CNOT , M , N , MAXITG , and

MAXITX have already been initialized .

RUN j

- . —— ~~~- . - . -  .,
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4

:

7

8

9

10

11
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[
STVECT I LA~~

EAN
~1 EE3 EE~DC~D E I ~TD

0 _
SOLVG ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[ DIAG
GITS

C

E
~~

24ATRIX 
~~~
4 -

~~~~~~~~~~~-(J~j

[~~
ERIES] [ BSERI~~~

_

I

— - -
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~~~~~~~~~~~~~~ I STVECT J STVECT

cb H

HSTAR

SOLVK

~ 1

—- -—-4
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L
X1PRIM ]—(~l)~~~~

XlM~ AN J ~~~~>-~4lP

I l l  
_ _ _  I

- U2 U2PRIM B2MEAN 1 LB~~
EAN I ~~I1’

~I

U1PRIM 
[ 

DELTA2 
1 

V].PRIM

A1INV 
~EI~~~D ~~

ui. A2MEAN

r>2~~
1M F-E~EE~

X2MEAN
I I _ _

B3MEAN U3PRIM I— (Ju3_)

CB 
~D LDELTA3 J r~

PRIM ~K~V2D

C~~~D 1 V ~~~~~~~~~
IM Kvi D

-. ..
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0
L
XVE

~
T 

J

1-
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10. SOME NUMERICAL EXAMPLES

We demonstrate the use of the algorithm discussed

in this paper by some numerical examples. As we noted in

Section 8, in many applications , the detailed structure of

the sequences of matrices {An} and {B~ } may be quite

involved. In order to avoid cumbersome numerical integra-

tions , we chose to present only simple examples. As such,

their practical significance may be somewhat limited , but

they do illustrate the concepts discussed in this paper.

Consider a queue wi th deterministic service times ,

in which a service time of length c1 is fo llowed by m-l ser-

vices of length c. The next service is again of length c1,

and the pattern is repeated periodically . During a service

of length c1, there are Poisson arrivals of rate and

during services of length c , there are Poisson arrivals of

rate A . It is easily seen that in this case, C0 = A0, and

that the sequence of matrices {B~ } is equal to the sequence

of matrices {An). The mxm matrices An are given by

-4

66
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—A 1c1 n
0 e (A 1c1) 0 0 ... 0

n!

—X c ,~ ~n0 e ~~~ ... 0
n!

-Ac n
A = 0 0 0 e (Xc) ...

e~~~~( X c) ’~ 0 0 0 ... 0
n!

Since A = ~ A~ is doubly stochastic , its invariant proba-

bility vec :: ~ is given by ~ = e’ . The vector ~ is equal

to ~-1c1, Xc , . . . ,  Xc), and therefore

A 1c1 — 
Ac

p = = ~ [ X
1c1 

+ (m-l)Acl = ~~ + m

In the numerical examples , we fu r ther simplif y by

assuming that the arrival rate is constant during all ser-

vices , i.e. A 1=A , and normalize A to be equal to one. The

matrices An are generated by the following program :

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~.‘ I~ 4 1•;~~u! I.-I (~~T I ; T ~. r r; I I ; 7

l i t ]  I. ~~~~~~~~~~~~~~~~~~
L .C’~

I I ~ 
4.. Lr’ , ( M —  1 ) ‘ I C

1 4 ]  ~~~~~~~~~~ \1p ( * L C ’ ) x t • l ~~~
1:5.1 (

~l o ; t ] 4 - ( *  •

I:1~~~I 
I. . ( I ( ,>F : ‘~~~~~~~~.i:. ~~~~~~~~~~~~~~~~~~~ M r ( *  . ) x ( I _ . : * ~ •l ) •~— l b

1;’ I (
~I : b ~~~

)
~~t : l 4 ( * - - ‘.. ( .‘l ) x ( L C l . * l -b) ÷ ~~~

~~~~~ ] 74  7 f b l y C ~l ‘‘;;
U 9 1 ( ( ~ 4 ( 4 ) / L C) (~) F

ii C) .
~ r / ~~ I 4 / 7 ) 4  N~~ 1 i ~~~~~~ ) :1 ,000000E 8 )/LQOF-

I i t  . 1 I~~
4.. I

~I , [ O I (( I ) I4  I l_ ~~1 I  (‘~ ) .. 
~~~~~~~ ~~~~~~~~~ 

-

I 1.2 I 4- lU) ~~,~~ ‘ 4 ) f I  4~~ I ~~ I

[1 . c I ‘ 4  () 0
V

Assuming the parameters LANDA , LAMDA1 , C, and Cl have been

initialized , the nTat rices A~ are generated until the maximum

element in the vector ~ 
- 

~~~~~~~ 
- (n+l)[e - 

v=0 
A ejis

less than i0~~~. That this  is an adequate t runcation has

been shown in N eut s  [24]. The last matrix is added to the

sequence to ensure that the computed matrix A is stochastic.

We ran the program several times with m=5, varying the para-

meters C and Cl.

The results of the first run are shown with a com-

plete listing of the output and the remaining runs are

shown with an abbreviated listing. Also , to conserve space,

we only print 5 digits although APL computes to 18 digits

and all of the accuracy checks hold to 13 digits at least.

—4L - .- .- -_.—-.—.
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ctfl’iF-tJ I (--’4I ~ (:11-1 I n  1 I l L  ~; i I : I ( , l . l 1 : ’ 4 R ( x: i I s-y - I~~Ix ~It i -y - - J:o I-4 oi~
liii: (:~(iEt.1E : L Ii:ll(:,TI-I

~ * 4 * * * * * * * III * A A �. * *

H EU1J~ 4L.S

ri--Ill (‘4F: I- : I V(\L.. F:(’trIF.: L.(’4Hx:’ c~

THE F:I: :4 v n  I~:r rE L..(’4hx:’t’i

Ti--Ill l lF~V~LCE ~ rx Hs—: C’ = 0, i

ri-Ill SE::I:V Idll 1.) ME~: C~ ~

ri-ii ~: ~1~’4 rI:,::E >~ ~

0 1 0 0 0
0 0 1 C) 0
C) () 0 :1. ()

0 C) 0 0 1
1 C) 0 0 0

THE : i - - O W  ¶ ;uMs  OF (‘4 ~~RE~

1 1 :1 1 1.

* A A A * * A A A * A A A A A A A A A ~ * A A A A A A A * A * A * A * -A A A A * A * A A A A A A * A

(ii-4 1 - ( .I r ( ’4 i : r . o l - I  OF ri- ,~:: (‘44.n-~:I: L.I.. f F :T ot.)( - ) i T r I E - i E

i H F: VECr l :) I ; :  F T  .t~ : :

0 , 2  0 . 2  0 ,2  0 , 2  0.,..?

rHE VE (~ iOt : ?Ft (‘4 - I ‘ 
+

1.6 0 . 1  0,1 0.1 0.1.

RHo EC’I IJ( ’I~ .~ II 0 • 4

L .--. - - - , . . . . ..
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ri - ’i -~: M A r E  I I I

0.07:~35 I. 0 ,20922 0. ~~~ 0. 25 1 - 4  0. 1.5409
C) * 00 i€3222 0 • 0000 . ‘

~~~ .1 :1. 0 .  ~o—~’i~; 0 • 00197 i o • ( \J  
-
~ ~ ..‘ ;‘

0.01:1303 0, 00()4 11168 0,0006-17 .1 3 0. 9054 0 • Ofl~~~ I ’ ~~3

0. 0113() 15 C) • 002597:1. 0 * 0039/32 0 .0034092 0 • 9070:1.
0.91275 0 • C) :1. 907-4 0. 020702 C) • 024258 0 • 013218

9 i ‘rLE;:nr I OHi:~ W ERE REOI) I F:EX: i~ Or-~ rE-I ll C C ) M F- UT A T  10(1
01- ruE i-4(~TR :4 ~~ G

THE vEC’r O Fi: C-, II~’

1), 62~. 0. 0657/1  0 • 15579 0 • 2 :25/4 C) • 26ó45

T H E  VEC I flI~ MU Ii~

2 .874 1 . 1 1 1 0  [.115 1+1347 :1,2797

A * * A * * * A * * * * * A A A * A A ft A A * A * A A * A A A ft A A * A A A ft ft A A A ft

** * *-~ A A * * * * *  k * * f t .~ * A * 4 - f t f t f r A A A f t * *  ~~f t A * * A  * f r * k * * f t  
—

~~

(‘41-! (‘44:~c:JI: ’:~’r C E - I E C K  ~~C •fl~~ c:oi lI : IiTA  I F EW! III . ‘T I-I L

M(.’4’TF:II< (r ’ i . , t - ’~ .. 1 4-I L.- \. E C -  r E : ) :  Mu o~~ I:~~H I ) I - .I I :  I~ 1 I. ’C I - ;: U I . .

-
~ I l-I -1 414 : 1’ E-I E~~I~.~’ ~~~ THE: F t . )) . I C) 1 J I l- I C :

- r i - -IE~
- :I’, 4-)I-1E::t r ’ ) I. l I I ( . .I (:’ I (IF ‘T HE: v 4r .C ’ iU ) ; . I .~ ~~ 

()~~H.~ MU Ii; :

1 • 66666666~.~ ..I

-rHE C4I.J -~’T T ’ 4 :I.÷(1....I 1-IO) i’; :

1. • 6666666655

* A A A A ft A ft A A * A A ft A A * A A A A A A A A A A A A A * A A A * * ft A A A A * A A A A
ft A A A A A ft * ft ft fr * A A * ft A k * ft ft A . ~- ft ft A ft A A * A ft A A A * * ft A * A ft * * * ft A A

rHE V E C r U F  r’ -~~~

0. 206:-.’5 0. 065/71. C) • :1,5579 C) • 22574 0,2664 5
TI-Ill V E C tOR  K A L E - -A I.5

0 , 1 10. 5  O ,~~ )~~~~~/ 0 . 2 6 1 . 5 . :  0,i.c’i. 0~~ i 0.:t39.5
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I - i - IL :  V E C  L O R  os ~ II ’ : 
~~

2.874 1,1118 1,115 1,134/  . t , 2 7 9 ,

I—IS’)’ ~‘4E: :r s

- l
• 074 :1. • 1118 1 • 115 1 • 1347 1 .279/

T I - I l l  VE  Cr OF : (‘4F-F’A . ETi—’R I ~

3,0361 5,5253 4,9953 4,4094 .3. /I ~,09

* * * A A A ft A A * A A A ft A * A ft A A A A * * * A A A A ft A A A A * A A * A * A * A A ft A A A A

COMFUTA 1101-I 01— i--il:: E uv(’4 R :t~--’4uI vlEc’ roRs ;-uloT Al-u:’ xol-1E:

A - > t * A A A * A A * A A A A * A A A A * f t f t f t * * * A A * A * A * A A A A * A A A A A A * A * A A A

THE V E C T O R  Xl-lO’I :1. 5

C) • 17175 0. 03946:3 C) • 093473 0. 1354-4 0. 15987

THE : V E CT O I- : ;- (.)I)E .1: 5

C) • 023/ 0 9  C) • 06304 0, u~-11~2i. - .~ C) • 041.245 C) . 02994$

* A * A * ft A * ft A A A * A A A A A A A A A A A A A A A A A A A A A * A * * * A * * A A A * * A A *

I.~.L’ [11 ,. I~~I’:( . ’I I.

~‘I—.:I~~.t F 1 E S  I HE. t~ UMF- t . J T f l 1 : I . (:)t! I I I:  ul L I i-it :. i:*I.JA I I1  III I::~ ,

[ s - I V O L . V E I  II) ~-flh I- - UF I l-li., li-IL . ~ i-’~ ’ I I ) ) -  ~:: I I I ’ )  ( ‘4111 ’ ~- .(:)1- lE. :

i I - 1i .~ ‘14.):’ rOE : ,-~ 1 4:) : -~~I I i : ) u I . . . x :  E L :  F.~0U ( - i T I 1  ( ‘H ’ ~~~) 1  :~

~~1l () ’T’ i i i- - t i~:s ‘lla’r E l l is : u1:I: i :~ ~~i: (~~ u ) T

T H E  t ’4 I IUVE.  4:-luAu’) I E r : 1 < ~~:

C) • I 1 / 5  C) , 039 4 6 3  C) • 0,/ . 347 3  C) • .t 354-1 C) • 15987

ft ft A A ft A A A ft * A A A A A A A A A A A A A * A A * A * A A A A ft A A A A A A A A A A A A ft * A A A

A A A * ft A A A ft A A A A A A A A A A A A A A ft ft * A A A .4 A A .4 A A A A ft ,~ 4 ~ ,~ ft -A * A .4 -A

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  .~~~~~~~- .-.--~~~~~~~~~~~---~~~~~~~~-—~~~~~~~~~~~
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(:‘c:) i.4F - II’T (’4 r I )l-f ElF 1’ I--IL: i--IOMEi-U) E. :n- ’~~ iii::: tA
‘‘E::i,’ T ’  ElF:

f t f t * A A A * * * A A A f t *  ~ f t f t * * * * * f t * A f t  * * f t f t * * f t  A * * * A A * f t A f t A . A * A t. A A f t

ruE: c:’ot-~::’ :r I :~ oT-U’4 L. M E A l - I  CIIJE:UE L ET- It. H5 I i-I T HE

VAR EC) IJ S PHASE’ S A l E- :

0.17104 1,6290 0,92711 0.49448 0.27160

T I--Ill MEA?-l OIJE:UF: LENC; ’T I--I :c s —

0.691382

THE 51’ Al -lEAPt ’ t ’I l vI i ”4-r :Fo i - I  o i l  I-Ill E L J E U E  L E l l & ’r H  ‘~~~:

1 • 2325

A * A A A A A * * A A * f t * A f t * A * A f t * A * A f t A * f t f t * * f t * A A * A A A A * * * A A A A A A

T HE S TA t  I C’T-l i ’4 i - - . i V L C r n i:

A f t  ft * ft **  ft ft * A f t  ft A * A * A f t  * A ft ft ft * * A A f t  A f t  .4 A **  ft ft A A f t  .4 ft ft A f t  A A A f t  A

—,() i::~, F :~::urr: U L t  i i ’  vEc~ T’CiF HA V E :  T. I: r : T !  C E i h i  i. I rF: t

(-4Ut’ TF-IE:SE (:‘(:)~-lF( :) :-tE 1-t ir; (A r t’ (IF- ‘I C) () • 99995’,

TH E  VEE C’’T’OF: X Il-I RAE: ) xT’Iol-III L’ FOE- H I t:, t:~i:vi-u )A~~

0 :l. ,’7i75I.:~~1 :3,9463F . ’2 9,34’73I: 2 j,35441.: 1 i,59537E 1
1 2.370911 $ 6 .3040i-~~ 2 5 .62i3~ 

- 2 -1, 1245i:,,2 2 • 9’/13r 2
¶ 4~~~’, I 5. j 7 9 4 1 ‘ 5 061 31 ‘ ~ , 4 ‘ 3 1  .! 7, $202C 3

5 0 0459’ 4 1 
~ ~~/ I  “ 1 3~~ S • 5 501 ~ 

> , 1 ,137E 5
4 C) I •4 i-  4 1 • 1 7- ‘ 4, 6 364~ 1 / I 31 1- 3 ~ Q’,~~~~j  

E 4
4 . 0 3 )  2 I S 1, (4  i 3 • 3 6 9r 1  I 4 1 3IJ~~ 1

6 9 • 09/1(11 ,( ~ ~~,~39E 3 p 36i-- 4 1 1 I 1 1 ~ 1 ‘—
/ I 4I S ‘ ‘l  39E 4 13 1 0/9~ , 4 ~~~~ 5 , 6996E- ~
13 1 .21351-- . / 5~ 743~~E 5 1.705 ,‘E- 5 5.19.(0I ~‘. —c ,i 207E~~7
9 7, 7(’4 ’~~~L 1 1 . 1  (106i 5 1 , : 3 5 3;E  6 2~ i.333E 3, 7920~ ’13
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11* A A *  A * A A A A *  A f t  ft A A f t  A f t  .I4 A A A  f t A A - A A * *  A f t  WA  A - f t  A - A  A f t

ft A ft ft ft ft ft ft * A A A ft ft A ft A ft A ft ft * ft A A ft ft A A 11 ft A ft ft -1 ft A ft * ft A ft ft A A ft A * ft ft ft

‘ri--I ll ACCUE:ACr CE-IECI< F-R O E-0 5 E E’  IT t  T I-I l l  -:- I- -I E::sIs
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In the first run, Cl is much larger than C. As one

would expect, the conditional mean queue length is largest

immediately following long services and gradually decreases

until a minimum is reached at the beginning of the long ser-

vice. In the second run , C]. is much smaller than C. Here

we note the opposite effect. The queue length immediately

following the very short service is smallest, as is to be

expected . In the last case, C = Cl and we have an M/D/i

queue with p = C. Note that in this case, the mean queue
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length agrees with that given by the classical formula

2
X ’ ( l ) e = p +  p
— — 2 ( l — p )

The small scale implementations of the algorithm ,

selected for inclusion here , do not fully illustrate its

power to handle the high orders of the matrices likely to

arise in practical situations . Examples with m as large as

fifteen were generated to test our APL program and runs

with m as high as fifty , using a well-written FORTRAN pro-

grain, are entirely feasible without requiring prohibitively

expensive processing times , except in cases where p = irB is

very close to one . In the latter cases , the practical

value of steady-state distributions is in fact questionable.
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APPENDIX I

Proof of Theorem 4:

By substituting Equations (24) into (27) we obtain

( 1’) d = L KC0(1B 0 ) .- 
(~~~~~ *) -

Since _____  is a constant, we must first show that
( K K * )

is a left eigenvector of L=L(l). Multiplying L

on the left by KC0(I-B 0)~~
- , we have

(2’) KC0(I-80) L  = KC0(I-B 0)~~
1
B0 ~C0(I-B 0)~~

B~G (I- ~ A~G ) C0~
L’~~1 v l  J

Rearranging the equation KK = K yields

(3’) ~cQ I_B&
_1
~~~BvG

V
~~ = K [I~~~~~A VG

v_l].

Substitution into (2’) yields

(4’) KC0(I-B 0)~~~L = KC0(I-B0)~~~B0 + KC0 = KC0(I—B0)~~

Now since de=l , it remains to verify that
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( 5 ’ )  ~~~I( * = (dd*)KC 0(I~.B0)e

(by multiplying equation (1’) on the right by e).

Using Theorem 3 and multiplying the equation for K * on the
left by K , we have

(6’) ~~~ = 1 + KC0(I-B 0) ~~ + K ICo (I
~
Bo)

~~

[ ~ ~~ — ~ B~
G ’
~~
1 
+ 

~ 
(v _ l)B

~ a] -+ A ,,
v 1  v 2  v l

— ~ A ,,G~~
1 
+ 

~ 
(v—l )A~~ ‘4 (I—G+G) 1’1j

v 2

and similarly

(7’) dd* = 1 + 
~~~~~~~~ 

— 

~~
BVG

’
~~
’ + 

~~
(-v_ l )B

~G]

(I—G+G) 
—l 

+ d~~~~BvG
v 1 
[I~~~~ A vG

v l
J

{e +[ ~ A~ 
- ~ AVG

V l 
+ ~ (v_l)A

~~~
]

(I-G+G )~~~ M~~ 

v l  v 2

The equation dL = ci implies

( 8 ’ )  d = d y B vG
v_l (I_ ~~~AvG

v )
l
co (I_B o)

_l

A
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and therefore dd* can be written as

( 9 ’ )  = 1 + d y B vG
v_ l

[I_~~~A vG
v l J_le

+ ~
Jl

B\~Gv_l [I_JlA VG
v_ 1]_l{cO (I—B 0 ) -l

+

- ~~A V GV l  
+

Comparing (6’) with (9’), we see that (5’) holds if

(10’) [Kc o (I—B o) ’eJ d ~ B~ G v 1[i_ ~ A J G V_ ]]_ l 
= K_ .

~i=1

By a straight forward substitution , it is easily verified

that d~~~ 13vG
v_h [I_

~~~A vG
v l
j

l is a left eigenvector of K.

Rearranging the equations dL=d and KK =K , yields equation (8’)

and

(11’)  K = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~. - - - . . -~~~~~~~- -
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Multiplying (11’) on the right by C0(I-B 0)~~~ and comparing

with (8’) we see that

(12’) d =

for some constant 0. But since de = 1,

(13’) o = [Kc o (I—B o)~~~ej’

Upon substitution into (12’), multiplying on the right by

- 
~~AvG

v
~~T

le and using (11’), we finally

obtain

(14’) [KC Q (I_B O) e]d~~~BvG
v_l [I_

~~~A G v_lJ_ 1e ~e = 1,

and the theorem is proved . 
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APPENDIX II

Proof of Theorem 6:

Differentiating (7) once with respect to z yields

(1”) X ’ (z) [zI_A* (z)J + X(z) [I_A*’(z)) = _0
k~l

k

+ O~~~~~ k 
- x1A0.

Letting z tend to 1-gives

(2”) X ’ (1) (I-A) + x(l) [I-~~~~kAk] ~o~~ 1
Bk +

- 
~ 1A0.

We note that I-A is singular but I-A+fl is non—

singular and X’ (l)fl = (X’(l)e) -r . Therefore (2”) becomes

(3”) X ’ (1) 

{
~~0J1

Bk 
+ _0

k~ 1 ~ 
- ?~iAO 

- ?~(l) [Ik~l
kA1~
}

(I—A+ 11)~~~ + (X~~(l)e)-ii

Differentiating twice in Equation (7) with respect to z

83
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gives

(4”) X ”(z) [zI_A*(z)] + 2X’ (z) [I_A* ’ (z)] — X ( z ) A * ’ (z )

= 2xO~~~
kBkz’~~ ÷ zxo~~~

k (k_uBkz
1
~~
l.

As z - ~~l- we have

(5”) X” (l) [I—Al = x(l)A*l’(l) — 2X’ (1) [I_A*’ (1)1

+ 2xo~~~
kBk + xo k(k

~
1)Bk,

or

(6”) x ” ( 1) = 

{ 
1)
~~~~

k(k_1)Ak
_2X’ (1) [r-~~~

kAkJ

+ 2xo~~~
kBk + xO~~~~

k(k_l)B
k} 

(I-A+n)~~~

+ (X”(l)e) it

To determine X’ (l)e , we multiply (7) on the right by u(z)

and differentiate to give
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( 7 ” )  X ’  (z)u(z) [ Z — i S  ( z )  I + X(z) U ’ (z) [z—S (z) I

+ X(z)u(z) [ 1 — s ’  (z) I

= Qk=l k + zx o~~~ kBkz
k_lu (z)

+ (z) — x1A0u (z) 
— zx1A0u ’ (z)

which implies

(8”) X’ (z)u(z) = z-~~(z) [_Ok l
k _  + zx o~~~~kBkzk_lu ( z )

+ 0~~~~ k 
(z) — 

~~1A 0~~(z )  — zx1A0u ’ (z)

— X (z)u(z) Il— 8~ (z) I — X (z)u’ (z)

Letting z ~~ - 1 yields

(9”) x ’  (l)e 
~~ 

[
~Ok~ l

Bk
~ 

+ 
~~~~~

kBke + _0
k~ l

k_ (1)

— x1A0e — x1A0 u ’ (1) — X(1)e (l—p) — X(l)u ’ (1).

Note that the term in braces equals
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(10”) _0
k~ l

k_ + _0
k.~l 

k_ + _0
k~l

k[
~~~~~~~~~~~

P_J

—x1A0
e — x1A0 [(I_A+T[)

’1~ _pe] — X (l)e(l—p)

= (l_p)[x0 (e_B 0e)_x iA0e] + xO~~~
kBke

+ [~ok~ l
Bk

_
~ l

Ao]1_A÷nr
1
~ 

- X(l)e(l-p)

= _0
k~ l 

k + [X (1)_ (l_x oe)ir]~ 
- X(1)e + (l)ep

= 0
k~ l~~~~ 

+ X(1)~ 
- X (1)e = 0,

by multiplying (3”) on the right by e and simplifying .

Therefore , we may use L’Hopital ’s rule on Formula (8”) to

get

(11”) X’ (z)u(z) = l-6 ’(z) ~2xo~~~ kBkz~~
lu (z)

+ 2xo~~~ Bkz
ku I (z) +

+ 2zx0 ~ kBkz 
1u’(z) + zx0 ~ Bkz

k
u~l (z)

- 2X1A:U’(z) -

— X’(z)u(z) — 2X(z)u ’(z),

which finally yields
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(12”) ~~ (l)e = 2(1-p) + 2~~O~~~~Bk~~’ (1)

+ _O
k.~2 

+ 2
~~~~~

kBku’(1)

+ (1) — 2x1A0u ’ (1) - x1A0u
” (1)

+ X(1)e’S”(l) — X(l)u’(l).

In order to evaluate X”(l)e, we differentiate (7”)

with respect to z to get

(13”) X” (z)u(z) [z—S (z) ] + 2X’ (z)u’ (z) [z— sS (z) I

+ 2X’ (z)u(z) [1—ES ’ (z) ] + X(z)u” (z) [z—6(z)

+ 2X(z)u’ (z) [1—t~(z)] — X(z)u(z)S” (z)

= 2~~o~~~~kBk z
k_

~~~(z )  + ~~~~~ akz
ku l (z)

+ z!~okLk
(k_l)B

kz
k_l

1~
(z) + 2zxo~~~ kBkz

k
~~u~ (z)

+ (z) — 2x1A0u ’ (z) — zx1A0u ” (z),

which, upon setting z=l, simplifies to



-T

(14”) X”(l)e = ~~~ Ix(1)e
~
”(1) - 2X ’ ( 1) e ( 1 -p )

- ~ X ( l ) u ’ (1) ( l - p )  + 2x O~~~~kBke

+ 2xo~~~
Bku’(1) + _0

k~2
k_

+ 2x Q~~~~kBku ’ (1) + XO~~~~
BkU” (1) - 2x1A0u’(],)

- xlAOuh1(l)} - 2X’(l)u ’(l) - X (1)u”(l).

In order to show that the term in braces equals zero, note

that from (10”),

(15”) _0
k~l

k_ + _0
k~l

k_ (1) = x1A0e + x1A0u ‘(1)

+ X(l)e(1—p)-
~~~~~

Bke.

Upon substitution of (10”) and (15”) into the braces and

noting that x1A0e — xO k=l
k_ = - = 0, we

see that the term in braces reduces to 0. Therefore , we can

again apply L’Kopital’s rule to get



- -

(16”) ~“(z)u(z) = 3(1-~ ’(:)) ~
3X’(z)u(z)6”(z)

+ 3X(z)u ’(z)ó ”(z) + X(z)u(z)~~’” (z)

+ 3xo~~~ k(k_1)Bkz
ku(z) + 

~~~~~~~~~~~~~~~~~~

+ 3x o~~~~Bk zku~
l (z )  +

+ 3zx o~~~~k ( k_ 1) B k zk_ 2
u s (z )  + 3zx Q~~~~

kBk 2?
~~

1f(z)

+ 0~~~~k 
(z) — 3x1A0u”(z)

— zx1A0u” (z) — .
~~
. X’(z)u’(z) — X(z)u”(z).

Letting z 1- yields Equation (44) and completes the proof.

The higher factorial moments of the queue length

may in principle be computed in the same manner but the

formulas become uninspiringly complicated and will not be

shown here.
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