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ABSTRACT

We discuss an algorithm for computing the stationary
probability vector of an infinite-state Markov chain whose
transition probability matrix has a block-partitioned struc-
ture. Such matrices arise in a wide variety of queueing
models as well as generalized random walk problems. Tradi-
tionally, the analytic approach to this type of problem has
been through complex variable methods. We present an alter-
nate and unified treatment of this problem and obtain an
algorithm which utilizes only real arithmetic computations.
In addition, most of the intermediate steps of the algorithm
have useful probabilistic interpretations.

We obtain an adequate number of the initial compon-
ents of the invariant vector by using a purely probabilistic
argument. Higher components are evaluated by matrix-itera-
tive methods. The first and second moments of the stationary
distribution are also found in computationally tractable
forms. The APL program used to implement the algorithm is

listed and several numerical examples are presented.

KEY WORDS

Computational probability, Queueing theory, Markov chains,
steady~state queue length, block-partitioned stochastic
matrices.
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{An}n=0

A* (z)

A% (2)

{B,}

V=0

GLOSSARY

the irreducible stochastic matrix } A,.
v=0

a sequence of nonnegative mxm matrices whose sum
is stochastic and irreducible.

the matrix generating function Z szv.
v=0

the matrix obtained by differentiating the matrix
A*(z) entrywise, v times with respect to z.

-1
Ak(I-Al) .
a sequence of nonnegative matrices satisfying
Bye + vlevg = e where B; is n¥n and By is nxm
for k21.

1

(XoBy + X;Ay) (I-A7) .

=0
the invariant probability vector of the matrix L.
the mean vector [—g—L(z)] Y

dz z=1= .
a vector (of appropriate dimension) each of whose

components is 1.

the mean recurrence time for the state (0,3).

G(z)|z=l.




G (k)

G(z)

H(k)

H(z)

=

raPR TSR T R

the matrix {ij.(k)} where ij.(k) equals the

probability that starting in state (i+l,j), 120,

the level i is reached for the first time ir

state (i,j') in exactly k transitions.

the transform matrix |
k=0

functional equation G(z) = ] zA,G'(2).
v=0

G(k)z"® satisfying the

the matrix {ij-} where ij,=gj., fof 254, '3,

the stationary probability vector of G.
H(z)|z=l.

the matrix {Hjj.(k)}, where Hjj,(k) equals the

probability that starting in state (1,3j), the
level 0 is reached for the first time in state
(0,3') in exactly k transitions.

the transform matrix ) H(k)zX.
k=0
d
the mean vector [HE H(zﬂ guls
the mxm identity matrix.

the "level i", where i2], consisting of the set of
states {(i,j), 12j2m} in the infinite Markov
chain P.

K(z)|z=l
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K (k)

K(z2)

L(k)

L(z)

X(z)

E(n)(z)

| %

u(z)

E(n)(z)

vi(z)

J
probability that starting in state (1,j), the
Markov chain returns to level 1 for the first
time in the state (1,3j') in exactly k transi-
tions.

the matrix {ij.(k)} where K-j.(k) equals the

the transform matrix Z K(k)zk.
k=0

L(z)|z=l'

{ij.(k)} where Lj-.(k) equals the probability

that starting in state (0,j), the Markov chain
returns to level 0 for the first time in the
state (0,j') in exactly k transitions.

the transform matrix ) L (k) zK.
k=0

the transition probability matrix of the infinite’

Markov chain having the particular structure of
interest.

the vector generating function | §vzv.
v=1

the vector obtained by differentiating the vector
X(z), n times with respect to z.

the invariant probability vector of the matrix P.

the appropriately normalized right eigenvector
of the matrix A*(z), corresponding to the Perron-
Frobenius eigenvalue.

the vector obtained by differentiating the vector
u(z), n times with respect to z.

the appropriately normalized left eigenvector of
the matrix A*(z), corresponding to the Perron-
Frobenius eigenvalue.
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!(n)(z)

|

§(z)

s (n) (z)

A(x)

| s

=

E]

the vector obtained by differentiating the
vector v(z), n times with respect to z.

o

sze.
SEg e

the Perron-Frobenius eigenvalue of the matrix
A*(z).

the n-th derivative of §(z) with respect to z.

a diagonal matrix with the elements of x along
the diagonal.

the invariant probability vector of the matrix K.
d
the mean vector[dz K(zﬂ i 2

d
the mean vector [E G(z)} z=18-

the invariant probability vector of the matrix A.

jl-

the matrix {njj,} where Mjqe = m

the quantity ng.
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1. INTRODUCTION

We are concerned with a class of infinite Markov
chains with stationary transition probabilities, having a
transition matrix P of the followind form:
r =
Bo By By B3 B4 S

CO Al Az A3 A4 Sl

(1) P =

L 4

where the matrices A,,, v20, are square substochastic
matrices of order m. The matrices By, v21l, are nxm, while
Bg is nxn and Cy is mxn. The state space of this Markov
chain is the set {(0,j), 1l<jsn and (i,j), i21, 1l2jsm}.

The matrix A = EO A, is stochastic and

(2) Coe + ] A,e =e¢,
Bpe + )} B,e =g,

where e = (1,1,...,1)'. We shall derive an algorithm to




compute the steady-state probability vector x =

(50,51,52,...) of the matrix P, where X0 is an n-vector
and xx, kzl, are m-vectors. This amounts to solving the

infinite system of linear equations
(3) X P =x, xe=1,

or equivalently,

(4) Xy = X0Bg *+ x;Cg

k+1
% = XgB + I XMy, for k21.
\):

We define the probability generating function vector X(z),

0£zs<1, as

X zk
l—k

I
o~ 8

(5) X(z)
k

® k+1
Bkzk O 2 ) X,Ak+1-v,
k=1 v=1

M - &
= k]

and the generating function A*(z), 02zX1, of the sequence

of matrices {Ap} as

(6) A*(z) = J A 2",

If we interchange the order of summation in the second

term on the right of Equation (5), we have

D e e



X zV z zk-v+lAk-v+l-51A0

X(2)
17 k=v-1

© k —l
X B,2" + z
X0 1

k=1 k v

I~ 8

= x Z B zk + z-l X(z)A*(z) - x.A,,
=0 k=1 k e =170

and therefore

A,

(7) X(z) [2I-A*(2)] = z x4 ] Bkzk - 2XA,
k=

1
It is traditional to attempt to derive the vector X9 from
Equation (7) by using complex variable methods, based on
an application of Rouché's theorem. In practice, however,
this method may lead to highly unstable numerical computa-
tions. We shall derive the vector X9 using a purely pro-
babilistic argument. It should be stressed that our
approach will utilize only real-arithmetic algorithms and
so avoids many of the numerical problems associated with
the complex variable methodology. Our discussion reviews
and generalizes a number of earlier results, used in the
analysis of specific queueing models [24,25,27].

Markov chains of the type (1) appear as the em-
bedded Markov chains in a large number of queueing models.
Computing the vector x is a crucial step in the numerical
evaluation of many quantities and probability distribu-
tions of relevance to the theory of queues. A list of sub-

stantially different queueing models, which are amenable to

the present analysis is given in Section 8.




2. THE FIRST PASSAGE TIMES FROM LEVEL i+l TO LEVEL i

Consider the first passage times from the set of
states i+l = {(i+1,j), je(l,...,m)} to the set of states
i={(i,j),je(l,...,m)}, i2l. The set i will henceforth
be referred to as level i. Let Gj4:(k),153,j'<m, k21, be
the conditional probability that, starting in the state
(i+1l,j), the process reaches the level i for the first
time in the state (i,j') after exactly k transitions.
Define the sequence of matrices {G(k),k21l} such that G (k)=
{ij-(k)}. This sequence of matrices defines completely
the first passage time distributions from states in the
level i+l to the level i. These matrices were studied in
great detail by Neuts([21,24). We now review a number of im-
portant results from these papers, which are needed in the

sequel.

The matrices G(k),k21l, are most conveniently stu-

died by considering the matrix of transforms G(z), defined

by

(8) G(z) = ] G(k)zK, for 0szs1.
k=1

By using a standard first passage argument, it is shown

that G(z) satisfies the matrix functional equation




o

(9) G(z) = ] zA G (2).
v=0

In [21] it is shown that Equation (9) uniquely
determines the sequence of matrices {G(k),k2Zl}. For the
process eventually to reach level i from any state in i+l,
the matrix G=G(1l-) must be stochastic. The following
theorem is proved in [21], assuming certain irreducibility
conditions, which are generally satisfied in applications

and which we shall not repeat here.

Theorem 1l: Let = be the invariant probability vector of

the irreducible stochastic matrix A, i.e., the unique solu-

tion to the equations

(10) ftA=g5 and une=]l,

Also let 8 = ] vAe. Then the equation
v=1

(11) G = ] AGY,

has a minimal nonnegative soluticn which is stochastic if
and only if p = = g S1. The matrix G is then also the

unigue nonnegative matrix satisfying that equation.

Remarks:
a) For what follows, we assume the above mentic:-ed

irreducibility conditions hold.

-




TR

b) In the queueing context, p as defined above,
represents the expected number of arrivals during a suita-
bly averaged service time and corresponds to the familiar

traffic intensity.

c) If p21, the chain is null-recurrent or transi-
ent and therefore no solution to the equations (3) exists.

In the sequel, only the case p<l is discussed.

d) The matrix G may most conveniently be computed
by modified successive substitutions. This corresponds to

successively evaluating the matrices

(2) . &0y = (I-By)} Ay

Glk+l) = 3 (1-A)) TA,6Y(K), for k20.
v=0
v#L

It was shown in [21], that this sequence is entry-wise

strictly increasing and converges to the matrix G.

For future reference, we introduce the vector g of
stationary probabilities corresponding to the stochastic
matrix G and the square matrix G of order m, whose rows
are all identical'and equal to the vector g. Since the

irreducible matrix G has spectral radius equal to one, the

matrix (I-G) is singular. It is an important and well-
known result though, that the matrix (I-G+G) is non-singu-

lar. (see Kemeny and Snell [11]). We shall also need the

v




mean vector p defined by

(13) = ] k G(ke.

k=1
Theorem 2: The vector p is given by
(14) = (I-G+G) [I-A+G-a(8)G] Te

where A(B) is a diagonal matrix of order m, with diagonal

entries Bl' 82, ceeys B

Proof:

(15)

m*

©

= [ E b A £ PO ZA,,

0 v=]
1

G+ }a, J
=1 r=0

v-1

r=0

= A-G+4 (B)G.

Therefore

(16)

(I - (A-G+A(B)G) (I-G+G) ™

v

i

1

r=0

1

]

3

GY¥(z)G'(z)G

GrGl (l)Gv-r_ljg

] GF(1-G+G) = 7§ Av(I—Gv+vé)
v=1

e,

v-r-l( z)]z-_—_l_e-




and after writing I = (I—G+é)(I-G+éfland simplifying, the
desired result follows. Neuts has shown in [24], Theorem
4, that the inverse used in Formula (14) exists. Note that
that i equals the expected number of transitions during a

first passage from the state (i+l,Jj) to the level 1.

Corollary 1: The inner product g u is given by

(17) g_li:-]—.—}_?.

Proof: Since (l-p)g u = (l-p)g[I—A+é—A(g)é]-lg and

1[1—A+6-A(g)é] = (l-p)g, it follows that (l-p)g yu=1e=1.

Corollary 1 provides a powerful accuracy check on
our numerical computations as well as having its own pro-
babilistic significance, i.e., g u equals the "average"
number of transitions required to go from level i+l to

level i.




3. THE FIRST PASSAGE DISTRIBUTIONS FOR LEVELS 0 AND

|

Let us define L.;., (k) to be the conditional proba-

33
bility that starting in state (0,j), the process returns

to level 0 for the first time in st&ie (0,j') after
exactly k transitions. Let {L(k),k21l} be the sequence of
matrices L(k)={ij.(k)}, which completely defines the dis-
tribution of the first passage times from level 0 back to
level 0. We analogously define the sequences of matrices
{H(k) ,k21} and {K(k),k21l} as the first passage distribu-
tions from level 1 to level 0 and from level 1 to level 1,
respectively. In the context of queueing theory {H(k) ,k21l}
corresponds to the densities of the number of customers
served during busy periods starting with one customer. We
define the corresponding matrix generating functions as
follows:

(18)  L(z) = § L(k)zK, H(z) = J H(k) 2K,
k:l =

k=1

K(k)zX, for 0%z<l.
1

K(z) =
k

I~ 8

It follows by standard first entrance arguments,

that the following equations hold:
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zBy + ) szGv_l(Z)H(Z),

(19) L(z) =
v=1
H(z) = 2Cq + ] zA,G  ~(z)H(z)
v=1
o) \)—1 -1
=z[I - ]} zA G (z)] "Cq,
, v=1
® e © v-1 © v-1
K(z) = zCy ] z By ] zB,G " (z) + ] zA,G'"*(z)
r=0 v=1 v=1
= zCO(I---zBO)-l ) szGv_l(z) + ) zAva-l(z).
v=1 v=1

To show that the inverse in (19) exists, we see that

E zAva_l(z) e < E Ava-lg < (A-Ag)e. But under the
v=1 v=1
assumed irreducibility conditions, which normally hold in
practice, the matrix (A-Aj) is strictly substochastic. By
Corollary 2.2 in the appendix in Karlin and Taylor [10], we
have that the matrix fleva'l(z), 02z<1, has spectral

v=
radius less than one and therefore the desired inverse
exists. Note that the matrices L=L(1-), H=H(1l-), K=K(1l-)
are all stochastic, whenever G is stochastic. For example

this is verified for H as follows. Since Cpe = Ape, the

vector He may be written as

He = (I - ] A\,G"‘l)‘leg,

v=1
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v=1

but clearly Equation (11) implies that G=(I- Z A G )—1A0

v=1
and therefore He = Ge = e.

We define the invariant probability vectors d and

k of the matrices L and K as follows:

(20) 4L(1) =d and d e = 1,

:

xK(1)

X.

K and X e

In the sequel, we shall derive explicit expressions for

the mean vectors d*, h* and k* defined by

(21)  d* = L'(l)e, h* = H'(l)e, k* = K'(1)e.

Theorem 3: Provided the vector Z vB, e is finite, the mean
v=1

vectors h*, d* and k* are given by

oo v_l -1 © o _.l
(22) B = {E= ] KRG %) {§+[VZ A~ 1 AG "+

(v-l)Avé:] :
v=1 1 v=1 v=2 .

(I-G+é)'1£} g

N8

v-l o L+ o] _l w
a* = e+ } B,G _11*+[ ! B,- ) B\)Gv +]
v=1 v=1 v=2

(v-l)BvéJ

e ey

and

R——
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v

+ Z (v-l)Bvé] + 2 Av- z AvGV-l
v=2 V= =

v=2

%1 (v-l)Avé} (1-G+G) 71y,

Proof: If we differentiate H(z) with respect to z we

obtain

H'(z) =Cp + ] 26" HH(z) + ] zA,G L (2)H" (2)
v=1 v=1

© V=2 e
+ Lza, I 626" (206 " 2 (2)u(z).
=2 r=0

Letting z tend to 1- yields

oo

® vad s
H' (1) =@+ Y e tamsln, I oferinie” =%,
=] v=2 r=0

Therefore we have

oo o v=-2
(23)  h*=H'(le=e+ JAG It + Ja, § cfy.
v=1]1 v=2 r=0
Now
@ v=2 , % S T, | ~
I A, I 65(1-6+G) = [ A (1-¢""l+(v-1)G)
v=2 r=0 v=2

= § A 3 Ava-1+ ) (v-l)Avé.
= =] v=2
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Substituting into (23) and solving for h* yields the

desired result.
Similarly,

[chE L(zﬂ z=1 = Bg * E BvG\’—IH + ) Bva—lH' (1)

v=1 v=1
o v=2 .
+ ITa, §1 dfev(ie" " a,
v=2 r=0
which implies
p v=-1 P v=2
d* = L'(l)e=e+ ) BG "h*+ JB J GFu
p— —_— —_— — v —_—
v=1 v=2 r=0

and finally

fne" g (v-l)B\,é]
=1 v=2

The formula for x* is proved analogously and the details

will not be shown here.

We see that the formula for k* involves the inverse
of the matrix (I-Bo). If the matrix (I-B;) were singular
there would exist a relabeling of the rows and columns of

By, such that it may be written in the form

Bo = .
m
)

Clearly, a subset of the states (0,1),...,(0,n) would form
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an irreducible class and the infinite matrix P would then
be reducible. In the irreducible case under consideration,

f the matrix (I-B;) is necessarily nonsingular.




4. THE STATIONARY PROBABILITY VECTOR OF THE MATRIX P

Let x(i,j) be the limiting probability that
immediately following a transition, the Markov chain is in
the state (i,j). In the positive rgcurrent case under dis-
cussion the quantities x(i,j) form an infinite probability
vector x, which we will write in the partitioned form (xg,

X1¢X5,...). The system of equations (3) has a unique solu-

tion with all x(i,j)>0 if and only if p<l.

Using classical arguments in the theory of Markov
renewal processes, we shall derive explicit expressions for

the vectors x;, and Xx;.

Theorem 4: The vectors x; and x; are given by

(24) X, =

Proof: 1If we consider each transition in the infinite
Markov chain P as a discrete time step, then the times
between successive visits to the states (0,1),...,(0,n)
and the states visited, define a Markov renewal process
with n states. The sojourn times in this n-state Markov
renewal process are lattice random variables and the tran-

sition probability matrix of the process is given in an

15
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equivalent form by the matrix of generating functions L(z).
There is a classical theorem, see e.g. Hunter [9], p. 196,
in the theory of Markov renewal processes that states that

the mean recurrence time E. of a particular state (0,j) is

J
given by

n
(25) E. =3 ] d,d* , for 15jsn,

where d, and dc are the v-th components of the vectors d

and d* respectively.

The mean recurrence time Ej in this finite state
Markov renewal process is none other than the expected num-
ber of transitions between successive returns to the state

(0,3) in the infinite state Markov chain P. Clearly, we

see that the stationary probability x(0,j) is given by

(26) x(0,9) Ei PRI, OB N,

J
L

es~—13

Y

Oor in vector notation,

To derive an explicit expression for x;, we consider the
Markov renewal process defined by the times between suc-
cessive visits to the states (1,1),...,(1,m) and the states

visited. The transition probability matrix for this process




Lo e

e

17

is given in an equivalent form by the matrix of generating
functions, K(z). Using a completely analogous argument,

we see that Equation (24) for X; holds.

Since the matrices L and K are known in terms of
matrices which may be computed explicitly, Formula (24)
yields the vectors x,; and x; in a tractable form. Knowing
that the vector x must satisfy Equation (3), we must show

that the following relationship between Xo and x; hold.

Corollary 2: The vector X, is related to the vector x; by

the following equality:

= x1Co (I-Bg) ™™,

Proof: By a lengthy, but straightforward calculation given
in Appendix I.
We see that Equation (27) provides us with yet

another accuracy check on our numerical computations.




5. THE DERIVATIVES OF THE PERRON-FROBENIUS EIGENVALUE

In deriving the moments of the stationary distribu-
tion, we will need explicit expressions for the derivatives
of the Perron-Frobenius eigenvalues and the associated
eigenvectors of the matrix A*(z), defined in (6). In this
section, we derive the necessary recurrence relations need-

ed in the computation of these derivatives.

For z£1, the matrix A*(z) has a uniquely defined
Perron-Frobenius eigenvalue §(z). Let u(z) and v(z) be
the corresponding right and left eigenvectors, respectively,

such that thz normalizing conditions

(28) v(z)u(z) = v(z)e = 1,

v(l) = =, and u(l) = e,
hold in addition to the defining relations
(29) [A*(2)-68(2)I]u(z) = v(z) [A*(2)-§(2)I] = 0.

We denote by AC(z), the matrix obtained by differentiating

each entry of A*(z), v times.

(") (1), n20,

Theorem 5: The derivatives é(n)(l), g(n)(l), v
may be computed recursively for each n for which A;(l) is

finite. The recursion formulas are

18
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5(0)(1) =1, L_I(O)(l) =g, v¥¥ ) = n

(30)

a@ @) = @-a+m Tt -s (M (y1)e

S (I-A+n)'lg - pe,

v ) = sat-s M @1 z-aem 7t

= 1A% (1) (1-a+M) "L - o,

and for n22
n (n=v)

31y sl gy - zl(f})y\;(l)g (1)
\)=
n-1

ﬂu(?iy)s(v)(l)

=
v=1

" 2
a™ (1) = (r-a+m Z{Q)EAG(”"S(V) (1)133(?1;))
v=

n-1 -

- [ ¥ ('\})g(") (l)\_x(r(ll;))];e_
v=1
n-1

I ™' [A*_v(l)-a(r(‘I;’)I] (I-A+m) "~

ve=0

1

!(n) (1)

where I is the square matrix of order m, whose rows are all

identical and are equal to the vector .

Proof: The values corresponding to n=0 are obvious. By

differentiating n times in Formula (29), we obtain
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(32) n ) (n=-v)
] M) a*(z)-sV) (z)1) u (2) = 0.
v=0

Premultiplying (32) by v(z), letting z tend to 1 and

rearranging terms leads to

n=1 (n-v) (,)

I ru (1) 6 (1).

n
33 ™M@ = 7 @ ™V-
1 v=1

v:
Letting z tend to 1 in Equation (32) and rearranging terms

leads to
(n) v oo (v) e
o @-au™a = ] OEsw-sM g,
v=1

which is a singular system of equations. Adding ng(n)(l)=
[ g(n)(l)]g to both sides and noting that (I-A+H)_lg = e,

we obtain

n (n=v)
35  u™ (@) = @-am7t ] (@ (Arw-s ) ) u @)
v=1

+ (z u®(q))e.

In order to determine g(n)(l) in terms of earlier terms of
the recurrence, we differentiate n times in the normalizing
condition v(z)u(z)=1, and let z tend to 1 to obtain

n -
(36) nul™ () = - 21(3)22!11;2(?1;)
ve=




2

Note that for n=1, 12(1)(1) = 0, and
(37) v u = v™ e = 0.

Substitution of (36) into (35) yields the stated formula
for g(n)(l). The vectors !(n)(l) are obtained by differ-
entiating the second equation in (29) n times and setting

z=1l. We get

n=1 (n=v)
(38) vi® (1) (1-a) = 7§ (3)3‘“’(1)[Ag_v(1) -5 (1) x]
v=0
but since !(n)(l)n = [g(n)(l)gli = 0, we have

n-1
y_(n) (l) = X

v=0

(n-y)
<3>g‘“’(1)[A;_v<1) -8 (1) 1]
(I-a+m) "1,

Setting n=1, we obtain the stated explicit formulas.

’




6. THE MOMENTS OF THE STATIONARY DISTRIBUTION

In the next section, we shall develop a recursive
algorithm to compute further components of the vector x.
As a criterion for truncation in the’infinite system of
equations xP = x, we will use the moments of the stationary
distribution. We presently derive complicated yet tractable

expressions for these moments.

If we let z tend to 1 in Equation (7), we get

(39) X(1) (I-A) = x ] By - X;Aq.

k=1
Adding X(1)n = (X(l)e)m = (l-xpe)n to both sides of Equation
(39) and recognizing that 1(1-—1\+H)_l = m, we have

oo

(40) X(1) = [éoklek - §1AQ] (I—A+H)-l + (1-502)1.

We see that we may calculate the vector X(1l) in terms of the
data and the known vectors x; and Xxj. This gives us an
accuracy check on the numerical computations of the addi-
tional components of the vector x. Having computed the vec-
tors x5, ..., X, , the sum % x, should be entrywise close

v=]l =V
to X(1). By evaluating the n-th derivative §(n)(1). we

22




23

obtain nglx(?)(l) the n-th conditional factorial moment of

the stationary distribution given that immediately following
a transition the process is in state (i,j), for some i21l.
The quantity X'(l)e is the n-th factorial moment of the sta-
tionary distribution.

(1) (2)

Theorem 6: The vectors X (1) and X (1) are given by

41) X (1) = XN~ §F kA, |+ x B
( X { C b k) 0, L Bk

oo

-1
+ :_c_okzlksk - )_cle} (I-A+1)

5(1)

+ (L)e)n

where
(1) e 1 s ° (1)
(42) X (l)e = 2x kB,e + 2x B, u (1)
= = 2(1-p) —okzl k= —okzl k=

(1)

+ Xy ) k(k-1)Bpe + 2x kB, u (1)
—0k=2 - "okz-l =

k

e~ 8

5 §

- x380u‘? (1) + x(1)es(? (1)}

- xmu
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I k(k-1)a, - 25(1)(1)[}-k21kAk]

k

43) x@q) = {g_(l)
2

0 o -l
+ 2x, ) kB + x, ) k(k-1)B, } (I-A+I)
et = Mle k}

+ x?) 1)e)n,

where

(2) . 1 (1) (2)

(3)

e 1)@ @ + xwes ()

+

+ 3% I k(k-1)Bye + 6x, § kBpu‘l) (1)
'°k=2 e ‘°k=1 .

+ 3% ) Bu® (1) + x5 I k(k-1) (k-2)B e
T e “Ures %
+ 3x, J k(k=-1)Byu () (1)
P (2) v (3)
+ 3x kB, u (1) + x By u (1)
_okzl e —okzl e

- %x(l) MuP 1) - xmu? ).

Proof: The lengthy derivations are shown in Appendix II.
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Note that although the formulas for the conditional
factorial moments are complicated, they involve only known

quantities and are in a computationally tractable form.




rue—

7. AN ITERATIVE METHOD FOR THE COMPUTATION OF THE

COMPONENTS OF THE STATIONARY VECTOR X

We recall that the components of the vector x
satisfy the equations
k+1

By + b M. For EEL.

(45) X, =
=K v=1

X,
We see that if the matrix Ao is nonsingular, the vector

Xp417 k21, may be found by solving the appropriate equation
in (45). Neuts has shown in [27], that in the case where Aj
is singular, the vectors K417 k21, may, in principle, still
be computed recursively if the rank of the matrix AO(I-Al)-l
is equal to the rank of the matrix [AO(I—Al)'I]Z. This

recursive procedure, however, is, except in very special

cases, numerically highly unstable.

We suggest computing the vectors x,, k21, using the

following block Gauss-Seidel iterative procedure.

(46)  x,(0)

I
o

k=1
+ L xy(n+)AL L, * X, (DAY

Xk (n+1)
V=2

I
|O
e

where bk - (ioBk*.z{—lAk) (I-Al) =4 and A\') .- Av(I-Al)-l.

26
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Note that the vectors by, are now known quantities. Note
also that in the recurrence relationship for Xy, We use the
most recent iterates of x,, v=2,...,k-1. Using the moments
that we have computed in the last section, we first truncate
the infinite system of equations, (46), at some index k¥,
where k* is the smallest integer not less than u + 30. (m
and ¢ being the mean and standard deviation of the queue
length following departures, respectively.) We continue the

iterations until the condition

-8
max X (n) = %, (n—=1 < 10
s 25k k* A
is reached. At this time we check to see if an adequate
number of components have been computed. This amounts to
computing e, where
k*

= ) Eginle . .
Neo =

(48) €

If ¢ > :LO-4 we increase k* by 1 and continue with the itera-
tions. When all of the conditions for stopping have been

reached, we utilize an accuracy check on the components of
the vectors x;,2sksk', where k' is the number of components

computed. From Equation (5), we have

(49) X(1) = ] x,
v=1

where X (1) is known explicitly.

‘ mw*w s . a . - po— e -




8. APPLICATIONS

A. The M*/G/1 Queue

We consider a single server queue with a general
service time distribution and arrivals of random group
sizes, which occur at the epochs of a Poisson process. It
is well-known that the successive queue lengths immediately
following departures in such a queue (denoted by MX/G/1)
form a Markov chain of type (1) where the matrices are all
scalars. In this case, the first two rows are identical
and the entry a,, corresponds to the probability that there
are v arrivals during the service of one customer. For the

scalar case,

I=G=G=A=l, and8=p=%—

’

where A is the mean arrival rate, £ is the mean group size
and a is the mean service rate. Formula (14) for u then
simplifies to

1
R e

which is the classical formula for the mean number of ser-

vices during a busy period.

28
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B. Two Queues in Series with Finite Intermediate

Waitingroom

The following queueing model has been studied by
several authors [18,19,35]. A system of gueues consists of
two units. Customers arrive at a first unit (I) according
to a homogeneous Poisson process of rate A. The service
times in unit I are independent, identically distributed
random variables with common distribution function H(:). We

also assume that H(*) has a positive finite mean.

Upon completion of service in unit I, all customers
go on to a second unit (II) via a finite waitingroom. We
assume that there cannot be more than k customers in unit II
and in the waitingroom at any time. If upon completion of
service in unit I a customer finds the waitingroom full,
then the unit one "blocks until a service in unit II is com-

pleted. At that time he is allowed to enter the waitingroom.

We assume that the service times in unit II are
independent, identically distributed random variables with a
negative exponential distribution. The service times in
unit II are also stochastically independent of those in unit
I and of the arrivgl process. If we look at the number of
customers in the system immediately following a service in
unit I, we have an embedded Markov chain P of the type (1)

and state space {(i,j) 120, 15jsk+1} where i is the number

by
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of customers in the system, who have not yet completed ser-
vice in unit I and j is the number of customers in the
system, who have completed service in unit I, but not yet

in unit II. The states for which j=k+1 correspond to

blocking.

In this model, m=n. The specific form of the
matrices A, and B,, v20, is complicated, but is readily
deduced from Formulas (3) - (18) in [18]. It should be
noted that most of the analysis depends only on the pre-
vailing special structure of the matrix P and not on the

complexities of the precise definitions of the matrices A,

and B,.

C. A Single Server Queue with Versatile Markovian Input

In [30], Neuts defined a general class of Markovian
point processes, which generalize the classical Poisson pro-
cess and also renewal processes of phase type [23]. Such
point processes are useful in modelling a large number of
qualitative features of arrival processes. Among these are
group arrivals, randomly fluctuating arrival rates and inhi-

bitory phenomena.

In his thesis [34], V. Ramaswami has extended the
theory of the simple M/G/1 queue to a single server queue-

ing model having this versatile Markovian point process as

e el e e al i b e e bt i e b o i At b
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its input and general independent, identically distributed

service times.

Although the detailed definition of the matrices A,
and B,, is again highly involved and will not be repeated
here, the queueing model studied by Ramaswami has an
embedded Markov chain of the type (1). Once the vector x
has been evaluated, which may be done by using the tech-
niques proposed here, one can then draw upon the detailed
results in [34] to compute a large number of other qualita-
tive queue features, such as the steady-state distributions

of the virtual waiting time and the queue length at an arbi-

trary point in time.

D. Queues with Exceptional Services

Consider a queueing situation in which there are
occasionally "exceptional" services. For example, the ser-
vice mechanism may occasionally break down, after which
there may be a certain amount of time needed for repair
before a service can be performed. We can consider the
breakdown and repair time combined as forming an exceptional
service. In order to formulate this model, we shall need
some of the basic properties of phase type distributions
(PH-distributions) and renewal processes of phase type (PH-
Renewal Processes), which were introduced by M.F. Neuts [22,

23]. Only the basic definitions of PH-distributions will

I Sa——
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be reviewed here. The interested reader is referred to the

cited references for further details.

Consider an (m+l)-state Markov chain on the inte-
gers {l,...,m,m+l}, whose matrix P of stationary transition

probabilities is of the form

where T is an mxm matrix and T° is a column vector with m
components. We shall assume that the probability of
absorption into the state m+l, starting from any given ini-
tial state, is equal to one. This implies that (I-T)-1
exists. The vector of initial probabilities of the Markov

chain will be denoted by (a,ap,;) and here we may assume

that am+l=0.

A probability density {rk} on the positive integers
is of phase type, if and only if there exists a finite sto-
chastic matrix P of the type (1) and a vector a of initial
probabilities, such that {rp} is the density of the time
till absorption into the state m+l. If {(ry} is of phase

type, then it is easily seen that

grk’lg°, for k21.

Since the density (r;} is determined by a and T, we call the
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pair (a,T) a representation of the density {r}.

Now consider the stochastic matrix Q, of order m,

defined by

Q 3l s

where T;j = T;, for 12i, jZm, and A°= diag(aj,...,ay). The
matrix Q is readily shown to be the transition matrix of

the PH-renewal process obtained by instantaneously restart-
ing the chain P after each absorption by performing a multi-

nomial trial with probabilities Areeest to select the

ml
new "initial" state. Considering each absorption as a
renewal, it is obvious that the density of the times between

renewals is of phase type and is equal to {rk}.

We can now construct a model of a queue with excep-
tional services. Consider a queue with exponential inter-
arrival times with arrival rate A. We introduce an under-
lying m-state discrete PH~renewal process as defined above
such that immediately prior to a service completion, a
transition is made in the PH-renewal process. If this
transition does not involve a renewal then the service time
of the next servic; has the distribution F(x). If the
transition involves a renewal, then the service time of the
next service has the distribution Fl(x). In this way, the

exceptional services correspond to renewals in the discrete

w4




34

PH-renewal process. If we define J, to be the phase of the

PH-renewal process during the nth

th

service and X, to be the
duration of the n service then the pair (Jp,X,) form a

Markov renewal process with transition probabilities given

by

Qj4(x) = P{Ip41=3, Xpsx | J =i}

TijF(x) + T;ﬁjFl(X) -

We define the matrix Q(x) = {Qij(x)} = TF(x} + T°A°Fl(x).

The successive queue lengths immediately following
i departures and the random variables Jn form a Markov chain

of the type (1), where C0 = Ag, By = A, for n=0,1,..., and

n

the matrices A, are defined by

= n
A, = | e~Mu ilg%-dQ(x).
n!
0
The above model may easily be modified to allow for a
different arrival rate during the exceptional services as

may be the case in certain practical situations.

| We see that in this manner a generalization of the

M/G/1 arises in which strings of ordinary services are sep-

arated by single exceptional services. The lengths of the

runs of ordinary services are independent, identically dis-
tributed random variables, which may have an arbitrary dis-

tribution of phase type. Mathematically the queue so
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obtained is a particular case of the M/SM/1 queue. It is
computationally highly tractable and permits the algorith-
mic investigation of a number of control and optimization

aspects, which we shall discuss elsewhere.

E. Bulk Service Queueing Models

1. Bailey's Bulk Service Queue. Consider a bulk

queueing model involving a server, who becomes available at
the epochs of a renewal process with underlying distribution
H(+). Customers arrive according to a Poisson process of
rate A. If k customers are present when the server becomes
available, a group of size min(k,m) enters service. This
model was solved by N.T.J. Bailey [1] by the use of complex

variable methods.

The successive queue lengths immediately prior to
the beginnings of services form a Markov chain P with the

following structure:

vl sl A 571
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0 ag ay ar ajz cee Ay ' Am4] e
1y ap aj as as “ee an ' Am+1 cee
2 ap a ar ajs eee Ap | Am4] e
P - |
m a, a; a; a, «.ap I apel .o
m+1 ag a;  a, a, -e.Ap | mep CCC
n+2 0 ag a; a, ceo m—ll an .
m+3 0 0 ao al cee l
® _xu (i) 3 . .
where aj = [ e 2= dH(u), for j20. We see that this

0 3!
matrix may be partitioned into the form (1), where Cgp=Ag
and all of the matrices B, and A, are square matrices of

order m. We also note some interesting consequences of the

fact that the first m rows are identical and given by {aj}.

We state these results in the following theorem which may

be found in Neuts [25].

Theorem 7. For the Markov chain in Bailey's model, the
matrix L(z) defined in Formula (18), has m identical rows
which are equal to te first row of G(z), defined in Formula

(8). The vector d, defined in (20) is given by the first
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row of the matrix G and the vector d*, defined in (21), is

given by
a* = ue,

where u; is the first component of the vector u. The vector
Xo is given by

-1
X9 = ¥y C};

and

S il
e " Py -

2. Moran's Dam with Infinite Capacity. A classical

model, due to Moran [13], for a dam in discrete time with
discretized content, involves a Markov chain P of the type

(1), with the following entries:

{Bv}ij = avm+m_il

{Ao}ij il TORY RETYSRY el g Em
=0, if j<i
m-j
{Bo}jo = F ayr
v=0
= > |
{BO}jk = Apim-gr kil |
4
v21, |
|
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where {a,} is the probability density of the number of
units of water added to the dam per year and m is the maxi-
mum amount of water released at the end of each year. We

assume that the capacity of the dam is infinite.

3. A Bulk Service Queue with a Threshold. The fol~-

lowing queueing model also has an emhedded Markov chain of

the type described in this thesis. Customers arrive at a
service unit according to a Poisson process of rate A.
Services occur in groups, with the group size dependent on the

the queue length according to the following rule. Let there

be i customers waiting at the completion of a service. If
0<i<L, the server remains idle until the queue length
reaches L and then starts serving all L customers. If
L2iZm, a group of size i enters service and if i2m, a group
of size m is served. It is assumed that the lengths of ser-
vice of successive groups are conditionally independent,
given the group size. The successive queue lengths follow-
ing departures form a Markov chain of the desired structure.

This model has been studied by several authors [5,14,17,25].

4. A Bulk Service Queue Viewed as a Branching

Process. Assume that a server serves groups of size m. If
at time t=0, there are i customers we divide this group into
groups of size m, with any remaining customers left alone.

Assume that there are n such groups of size m. We consider

B T e————
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any arrivals to the queue during the service of any of

these groups as the progeny of that group. The total

number of customers at the end of the service of the n-th
group will form the first generation. If we continue in
this manner then the busy period starting with i customers
will be equal to the time till extinction in this branching
process starting with i customers. This model has been stu-

died by Ezhov and Shakhbazov [6].

F. Queues with Semi-Markov Service Times

Queues with semi-Markov service times have been
studied by several authors including ¢inlar, Gaver, Loynes,
Neuts and P. Purdue [2,7,12,15,27,29,33]. 'One typical
model involves an M/G/l1 queue in which there are m types of
customers, operating under the first come-first served dis-
cipline. We assume that the server expends a random length
of time in the change-~over from one type of customer to
another. This model has an embedded Markov chain with
state space {(i,j), 120, 1l2jZm} where i is the number of
customers in the queue following a service and j is the
type of service tﬁat the server is tooled up for immediately
following a service. etails of this model are given in
[27]. Explicit formulas for general M/SM/1 queues with

group arrivals are available in [29].
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G. Generalized Random Walks

Consider an infinite Markov chain with state space
{(0,j), 12j%n, and (i,j), i20, 152jSm}. We assume that
starting in state (i,j) i2l, 12jSm, in one transition, the
chain may only enter the states {(i,3'),j'#j,15j'Sm, and
(i-1,3'), (i+1,3'), 15j'Sm}. Starting in the state (0,j),
only the states {(0,3'), j'#j, 15j'SP and (1,3'), 15j'Sm}
may be reached. This model describes a generalized random

walk and has a transition probability matrix P of the form

~ -
Bo Bl 0 0 0 0 orl e RS
CO Al Az 0 0 0 e leiile
0 Ao Al AZ 0 0 .

P = v

0 0 Ao Al A2 0 W e
0 0 0 Ao Al Az

L . . - v J

which is clearly of the type (l1). This model has been stu-

died in references [33,37,39].

The invariant probability vector of this process
may be evaluated using the techniques proposed in this
paper. We also note that the matrix P has a structure,

which is a special case of a general class of Markov chains
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studied by Neuts [26]. It is shown there that the invari-

ant vector is of a matrix geometric form.

H. Queues with Fluctuating Input and Service

Consider a queue where the arrival process and/or
the service rate exhibit random variations. This model may
be used to describe changes in work shifts, rush hours,
interruptions in the arrival process, server breakdowns,
etc. To be specific, we assume that there is an underlying
m-state continuous parameter irreducible Markov chain which
governs the phases. During any interval spent in phase i,
the arrivals are according to a homogeneous Poisson process
of rate A; and any service initiated during such an interval
has a duration distributed according to Hj(-). This model
was first discussed by Neuts [20]. If we consider the queue
lengths immediately following departure we see that once

again, we have an embedded Markov chain of the type (1).

By making Markovian assumptions on the service mech-
anism, it is also possible to consider models for which the
service rate of a customer may vary with the underlying
phase state. Thié model, usually called "The M/M/c queue
in a Markovian environment," has an extensive literature
{3,28,31,32,38]. It may also be treated by the methods

described in this thesis, although results which identify

T
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the stationary probability vector as being (modified)
matrix-geometric, provide a more explicit solution, both

from an analytic and an algorithmic point of view.

I. Parity Dependent Service Times

A model which is related to Fhe above "bin" model is
a queue in which customers are served one at a time but the
service time depends on the parity (residue class) of the
queue. If we consider the residue class of m=3, we have the

following embedded Markov chain:

SRR D DU R e
T %12 | 213 24 Ss] e *
4.8 G gy a21,a22 233 a24|az5 B, -
gol gy

We see that we may partition this matrix exactly as in the

"bin" model to obtain a matrix of type (1). This model was
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studied by Neuts [15]. We note that the first row of the
matrix Py in [15] should consist of the quantities {a,},
rather than {b,}. This also results in some obvious changes

in Section 3 of that paper.

J. A Bin Model

Consider the following "bin" model. The waiting
room of a gqueueing system consists of an unlimited number
of bins of size m. As arrivals occur, they are placed into
the bins, filling them one at a time. When the server

becomes available, he serves the last bin that received

input, if it is not full. If all occupied bins are full, he
chooses one at random and serves it. Now suppose that the
service times depend on the number of items in the bin being
served (i.e. the residue class of the queue). The gqueue
length immediately following a departure forms a Markov
chain P with the following structure. (For simplicity, we

display the matrix for m=3).




S

9 *lg M@ Na Maa
1| aj a; a5, |agg
2 | %3¢ 213 322 | 223
3 a

The above matrix is also of the type

(e
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9. THE APL PROGRAM

The algorithms constructed in this paper have been
programmed and implemented in APL. We briefly review the
purpose of each of the APL functions .and give a short dis-
cussion of the more important ones. In Section 10, we pre-
sent numerical examples.

The index origin of the workspace is set to zero.
The sequences of matrices {Ap} and {B,} have been truncated
at some index k. We denote the matrix A=vEOA at the varia-
ble AA. The sequence of matrices {An}§=0 is represented by
the three dimensional array A of dimensions (k+l,n,m). The
variables CNOT and BNOT equal the matrices C0 and B, respec-
tively. The sequence of matrices {Bn}};=1 is the three dimen-
sional array B of dimension (k,n,m). Note that in the fol-

lowing program, Alk;;] = Ay and Blk;;] for k20.

= Byyyr

A. The APL Functions

P g
TEME ¢p

1O 0

P ] 4 OHOT

M | g emor

it g ] p R @

Fle STVECT OO

BT @4 /0] 600 ] ME

R 6 F T o X BT

@ (FEHO L), 96 ) /CONT THUE
CRAK FMHO= U SEHOS T wkxk
' THY  OGATI
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Once the set of matrices {CorAn,/BL,n=0,...,k} have been
initialized, the function RUN is executed. This function
calls all of the main functions in the program and computes
all of the desired quantities of interest. If the value of
p is greater than or equal to .99, the execution is halted.

This function also utilizes all of the accuracy checks pro-

posed in this paper.

¢ OMHEMVECT A INVIAF S ERF(RVECT UK KL $LsFeX13T3T15v25T13
ITS;QRER
B HeMHOT  MOME$ QX J& 1
[: :I_’ _] K&l HIE4IXS YOMEe (3 DE M1E e 3¢ 1 B % Q ) L AOIN Ej
31 O EHVEeR L] § 3]
a5 BVECT&HHOT K¢
L% EF e (PE)PAFE (FA)PREQOXRE]
L& AFPO8 s TN 08 8 T4+ XA LRV
i '7 f] LOOF ] 3 AF[Qyy j]et) [[Reée Q4 1 vyl XA ]_ v
81 SCCLTra)>Qe]) OO
& 'f) :] LOOFD I R L I S o Fi & Fo 4 ll. T I O XAY ey
L1011 SCCLAPE) R /002
N 1 1 :] LOOFZX 3 (K<L 4p EF) /ONE
E123 Lol g Beby [TOQFO
L1331 OF @l 7010
CLa]  ONEREVEQ MERVECT ) CLONE 4 | xOF L ReKe] 5 1) +MMOTE xXBFLK; 3]
E1S] G ((KL2IYVvK K] ALOOEZ
161 HeMy ((KaJYXM)PETE (O
C17] STARTIITSLTS phorloe] $deFe]
5181 HEEM$ L4V YL TIEMPQ
C19] SFECINLITIE RN (MALXMY L M4, XAFLGCH .
EZ20] ML MG (L LY IMY UM BVECT (M) (L= ) AM) M4+ T
K21 ) BCCRKFOXTEFEFH L) L e (M) PLHIPTET L) STEST
[227 LOOFAIYET 47V eX[ (M (led)xM)y 41 M]4  XAF[[Wy 5 ]
E23) FCALNed -] ) SLOOF
247 FEFECTIAL T
257 TEST!a(MAXITHIITS) /0UT
L2600 F(1.000000E"H (I /K] -X)/OSTAORT
e o (00001 <C1 /40X Je&K$]) /LOOFZ
281 He (=M ) >
L2291 ()
L 3() 1 OQUT ' TOO MAarTY 1 TERATIOMS FOR THE VECTOR
k3t e (M)
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The function XVECT computes the stationary vector x
defined in Equation (3) by using the iterative procedure
proposed in Section 7. We first compute the index K1 which

is equal to the smallest integer greater than u+30 where

u =X'(l)e, and 0 = /g(z)(1)g+x'(l)g—(§'(l)g)2. The index
Kl is used as an initial truncation of the vector x. We
next compute the vector b = (go,gl,.:.,gxl) defined in Equa-
tion (46). The loop START performs the iterative procedure
defined in Equation (46). These iterations are continued
until Condition (47) is met or until a specified maximum
number of iterations is reached. If Condition (47) is met,
we check to see if an adequate number of components have
been computed. This is accomplished by computing the dif-
K1l

ference 1- I, Xye. If this difference is greater than 10-8,

we increase K1 by one and repeat the procedure.

UV GESOLVGIADIAZIRGCIIDILDERR;GY ;G2 R

[ | ATHIS FURCTION WILL $SO0LVIE THE MATRIN

L21 AFUNCTIONAL EQUATION G=A(06)

£31 AZTEALDNEDE((BepA) -] )LGITS€Q155 1]

L471 GLeOXALINVER(Te(1R)o = iRe(TIMR))-A[]155]

[5] LOOF] 36661 +0XOGLTSGITS4DwDeDD+OX(10)F 1 1 2A2¢A3
L6 LOOF33 (24040 1 1 AO2¢ALDED~1 55 14+A24+, XG) /LLOOF2
L7121 ERFGN /gy |GoGlen] THVE  XAT0F 5 14+A24 , X064, X6

£8l A(CLEMARITGYGITS )AL O000000ETE ) (ERR) /L.OOF]
L1 LML= 10 15

L1021 AT CIMANITGy ' ITERATIOMNS, THE REST AFFROMNIMATION®
313 OF 6 I8}’

[121 Ne6l

C137 'WITH A MAXIMUM OIFFEREMCE BETWEEM ITERATES OF!'jERR
£141 20

[15]  GeGLa(R(FyFE)P((1-4/6G1)+4/62))X62¢61-6
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The function SOLVG solves the matrix functional
equation G = A,GY by the iterative procedure given in

Equation (12). i.e.

G(0) = (I-a;) lag

K
Gntl) = (1-a) (Ag + 1} aeln)]) .
v=2

The quantity in square brackets is evaluated by Horner's
algorithm for the computation of a polynomial. As is well-
known, this algorithm minimizes both the number of matrix
multiplications and the number of matrix summations required.
We continue the iteration until a specified maximum number

of iterations have been reached or until the condition

max -8
15h g5 | PR HERAR R 0

has been reached. Finally a linear extrapolation is

applied, which sets the final matrix G equal to {Gij}, where

Gij = Gij(n+1) i ei[Gij(n+1)-Gij(n)], for lfi,jﬁm.

The quantities 6; are determined so that the row

sums of G are equal to one.

v FLESTVEQRT FiMFMaM]

£13 A OTHIS FUMCTIOM WILL CALCULATE THE STATIOMARY
L2131 AFFOEAKILITY VECTOR OF THE STOCHASTIC MATRIX F
L3 Fe((PyFM) ypyFME(T1y "1+ 1VMErF)AF)AF

(W FLeFME  XB((MPEM) (1ML )0 =\ MleldMepF)—F

LS FleyFTy]ad/FI
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The function STVECT calculates the stationary pro-
bability vector of an irreducible stochastic matrix P, using
using a method suggested by P. Wachter [36]. We write the

stationary equations P = =, as

J(le-le) = 0, for i=1,...,m,

N3

i=1

where éi is the Kroneder delta. If we add Pmi to both

j
sides of the i-th equation, we have
+P .) =P

Z LR e - N
o1 g e T A R

mi*

Note that the first m-1 equations do not involve the quan-
tity m,. Wachter has shown that the first m-1 equations,

m-1

jgl m508537P§i*Pni) = P

form a nonsingular system.

In matrix notation, we define I to be the identity
matrix of order m-1, the vector P, to be the (m-1)-vector
whose i-th component is P i, the matrix P* to be the matrix
obtained by deleting the last row and last column of P, and
the matrix Pp to be the matrix all of whose rows are identi-
cal and equal to Pp. The above system of equations may be

written as

1* (I-P*+Pm) = _l_)_mr
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where n* = (nl,nz,...,nm_l).

The function STVECT solves this system for m* and
then computes w, by

m-1

T, =1 - Z Tao
m j=l J

v MUEMUVECT g =

C11 A THIS FUHCTION CALCULATES THE VECTOR MU
Eaa GTILDAG(FG)FGVECTSTVERCT 6
L33 Te (DELTAKeDIAG BETA) 4, xGTILDA
L4 MUet/(GTILDAGL-G) 4, XP(I-AA) +GTILDA~T
v

The function MUVECT computes the vector

u = (I-G+G) (I-A+G-4(g)G) ~le.

V. KeKMATRIN}F; LE

C12 IEe(1F)o,=|Fe]ApEHOT

£23 K@APRIME+(CPRIME@(CHOT+,xBIB—BNDT))+,xFFRIME
v
V LeLMATR XN

oy B | He(AAPRIMEeBI-APRIME@QSERIEB)+,xCNOT

21 LeBHOT 4 (EFRIMECKSERTES ) 4, xH
v

The functions KMATRIX and LMATRIX compute the
matrices K and L respectively, using their defining Equa-

tion (19).

V HSTARESOLVHZ;CT

C1] ZE(IVPRA)IFOXCED

C21 LOOF:*((*1+1¢F“))C+C+(\0)f1¢1’9Z+2+CXQE°+153])/L°°P
C31 TETHAL25 5]

L4 Te((AA—A[O;;])—AFRIME—AAA@E+,xGTILDA)+,xINVERSMU
CS) HETARECAOFRIMES , X147
v
- S——— —




C11
C21
C3]

C1)
C21
C3]

C1l

C11
C21

C11]

C1l
C21
£31

KSTARESOLVK § I § BEE

EHECETILDAL , XGVECT

T ((PA-AL0F31) ~AFRIME) +AAALCFRIMES , X ( (+4F) ~EFRIME-EEE)
KSTARE]+(+/CPRIME) +Z4 , X THVERSMU

DSTAR]S0LVL T EGTILLA
EGTILDAG(GMUEGVECT 4, XMU) XETILDAE (+/F]MEAN) ~] ~+/EBNOT
T (+£AE) 4, XINVERSMUE (BGTILDALT~G) 4, XMU) +EGTILDA
DSTAR] €1+ (EFRIMEL, X (HSTARESOLVH) ~INVERSMU) +2

The functions SOLVH, SOLVK, and SOLVL compute the

vector h*, x*, and d*, respectively. These vectors are

defined in Equation (22).

DDEDELTAD
D26FI4, X (+/A2CADMEAN) 4 (2XAL+, xU1) ~RHOXU]

OFeDELTAZ S

T (H/ATEATMEAN ) - (U2XFEHO ) 402 xUY
DIEFI4 X (FIXAL+, xUR)+(IXA2+, xUL) +Z

The functions DELTA2 and DELTA3 compute the quanti-

ties 6(2) (1) ana §(3) (1), respectively, using the recurrence

relations given in Equation (31).

U ULFRIM
ULe((ALIHVERI-AA-(pAR)PFIY 4, XEETA) ~RHO

URQEUDRFRIMK] §KD
KLe2XALIHVE , X (A]~FHOXT )4, XUl U{FRIM
K264 /B1INVE X (A2~ (DDeDELTAR)XT)
UDEK]4KD-2X(V]EVIFRIM) 4+, xU]




¢ UZeUZFRIMK]

£11 Te (~FXVRXUL) +(+/AF) ~DFeDELTAZ
€21 KLeALIHV A, X (BXAL+, XUD) + (~3xRHOXUR) + (ZXA2+, XUL )+
£3 UBEKL-FX (V14 XUD2)+(VREVIFRIM) 4, xU1

v

v V]eVIFRIM
1] V316 (FLIg, XA+, XALINHY) -FRHOXFT

U VDEVOFRIMSR
[11 TEDXFRHOXV]EV]FRIM
£21 V26 ((FI4,XAR2)+(2XV1+,XAL) =~ (DRXFI)+Z)+,XA1INV

The above functions compute the successive .eriva-
tives of the Perron-Frobenius eigenvectors, 5(1)(1),
5(2)(1), 3(3)(1), X(l)(l) and !(2)(1), respectively. These

derivatives are also defined in the recurrence relations

given in Zguations (30) and (31).

Vv HIEEX|MEAM;K] KD

£11 AQe (CROT 4, X+ AE) ~HONES , XA[05 5]
£21 K16 ((L-4/XNROT)XDD)+A4+, X ((2XU]) +U2€UIFRIM)
L3] S (H/HNHOT 4 XEQEEDMEANM ) 4K
41 K€ (2XHHOT 4, X (BLeB]IMEAN) 4+, X (1+U]) ) +2
531 HKIULF & (K16 (P44 XATTHV ) 4 (] =4 /HHOT ) XFI) 4, xU]
] L& HIE(K2+2X]1 ~RHO) -{U{F
v

¢ HIFEX|IFRIMIK]
C131 K6 (] EeX ] MEAN) XFI
C21 MR KT+ ((A4+XHOTH , XE])=X1+,X(I=A1) )+, XALINV

¢ HOEEHIMEAMK] FK25KI; TR

£11l ZG((+f3)+.x(KQ*(U3+U3PRIM)+3Xu2))++/53+33ME°N~
L2131 KLeXHOT4 X (IXE2+ X (14U1) )+ (FXEL+, X (U242XU1) ) +Z
C31 Te(IXDAXHL 4, XUL )+ (L4 /HMOT) XDF "
L4 KZe (=HOME4 , XALOF 51+ XK2) 4+ (FXD2XNIE) 47 ;
£S1 HOE€((K14K3)+3X1=RHO) = (X14,XUR)+4xH1F+,xU1+3

v
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¢ HOFEHOFRIMPK] T

11 K16 (HPEEHIMEAR) XF T

21 TERHOT 4, XED+2XE]

£33 HOF KL (L4 XAR) +T=2X 1P+ X (T=A1) )+, XALINRY
v

The functions X1PRIM and X2PRIM compute the moment
vectors X'(l) and z(z)(l), respectively. The functions
XIMEAN and X2MEAN compute the quantities X'(l)e and
§(2)(l)g, respectively, which are needed in X1PRIM and

X2PRIM. All of the above quantities are defined in

Theorem 6.

v AFRIMEASERIES 3 C

C11 AFRIMECALCE((FR)~1)L0145 5
E2] LOOF 9 (2¢C4+0X 1 1 PAFRIME¢A[CeC-1531+AFRIME+ , xG) /L.OOF
£33 AFRIME«A[ 155 J+AFRIME+ , X6

14

v EFRIMEESERIES; C
C1l EFRIMECELCe((FE)~1)L0T571]
£21 LOOF$3(1¢C+0X 1 1 ABFRIMECE[C¢C-1}j 1+FFRIMEL, xG)/L.O0OF
3] EFRIMECR[Q 3 J+EFRIMES , X6

v

The functions ASERIES and BSERIES compute the quan-

k o k =
tities } AVGV i and ) BVGV , respectively, using Horner's
v=1 v=1
method.
v AleAIMEAN;C
C11 ALECIVFA)FOXCe]
£23 LOOF3AleAL+ALCH 5 IXC
C31 FCCIAPA)ICECH] ) /1LO0F
v
v AREADMEAN;C
(1 A2ECIVFA)FOXCeR
[£21 LOOFIAREARHALCH FIxCxC~]
CL31 F((LIAFPA)ICECH+]) /LOOF

v
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v AZCAZIMEANC
L1l AZE(IVFA)POXCES
L27 LOOFIAZEAZHALC §IXCX(C-1 ) XCw-2
ESd FCCLPFPA)>CECH] ) /LOOF
v
v EleRIMEANGO
Cil Ele(IvrE)PCeQ
£E23 LOOF $E] 5] +EB[CH51xXCH+]
31 F((LPPE)»CECH+] ) /LOOF
v
v EBReEIMEAM;C
C11 EQe(IVFPrE)POXCe]
[21 LOOF IEQeRQ4E[CH 5 IXCXCH+]
L3121 F((LPPE)ICCCH]) /LLOOF
v
v RICEIMEAN;O
[1l EZe(IVFPE)PFOXCeR
£21 LOOF I EZEBIHE[CH 3 IXCX(C+]1 ) XC+2
CL31 D((1PFE)ICECH+] ) /LOOF
v

The functions A1MEAN, A2MEAN, A3MEAN, B1MEAN,

B2MEAN and B3MEAN respectively compute the moment matrices

3 1
vA ' i vB ’
v=l v=1 "

k k

¥ v(v-1)A , ! v(v-1)B,,

v=2 v=2

k . k

! viv-1) (v-2)A,, I v(v-1) (v-2)B,.
v=3 v=3

v DELTARDING EyM

C11 A THILS FURCTION WILL CREATE A DIAGONAL. MATRIM
L2 A WITH THE ELEMEMNTS OF E ALOMG THE DIAGOMAL
£31 DELTARCHPE, (He(FE) g PE) PO

v
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The function DIAG creates the matrix A (g) which is
a diagonal matrix with the elements of the vector g along
the diagonal.

B. The Global Variables

The following is a list of the global variables.

A - A three dimensional array where A[N;;] = A, for
n=0,|oo’k. 3
k
Al - ) va,
v=1
k
A2 - I v(v-1)a,
v=2
k
A3 - ¥ v(v-1) (v-2)A
v=3
E
A4 =X B, = X A
=0 L8 =1 0
ALINV - (I-A+m)~1
k
AA -A= JA,
v=0
k
AAA - ] (v-1)AG
v=2
k -
AAPRIME - (I - J AG" = 7
v=1
X =l
APRIME - z A G




Bl

B2

B3

BBB

BETA

BNOT

BPRIME

CNOT

CPRIME

D2

D3

DELTAB

DSTAR
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A three dimensional array where B[N;;] = B

’
NG, E-T. WL

=

) v(v-1)B,

v=2

k
7 vwlv=1)(v-2)B,
v=3

B

Ba

vzl Bva-l
g
Cqo(1-By) ~t
d

6(2)(1)
s(3) (1)




GITS

GMU

GTILDA

GVECT

HSTAR

INVERSMU

KAPPA

KSTAR

MAXITG

G(1)

The number of iterations required to compute the

matrix G. | 4

g8 :

Qe

An mxm identity matrix

(Eagedl Ty

K(1)

| =

L(1)

The order of the A-matrices.

The maximum number of iterations allowed for the

computation of the matrix G.




MAXITX

MU

PI

RHO

SIGMA

TIME

Ul

U2

U3

vl

v2

X1

X1E

X1P
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The maximum number of iterations allowed for the

computation of the vector Xx.
B

The order of the matrix BO'

m

o = /X"(l)e + X' (1)e - (X' (1)e)?2
The CPU time used in executing the program.

E(l)(l)

2(2)(1) |

NEUET

v (1)

v(2) (1

PrEp T TTR————————~

e st e ol DG B SR
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xwwie - x(mu@ )

X2E -x(P e

X2P - x(3) (1)

XNOT - X,

XONE S gy

C. The Structure of the APL Program

We present below a tree diagram representing the

structure of the APL program. We display the order in which

the functions are called as well as where each global varia-

ble is first initialized. A rectangular box represents the
function being called, an oval represents the resultant of
that function and a diamond represents any global variables
which are initialized internal to the function. We assume
that the variables A, AA, B, BNOT, CNOT, M, N, MAXITG, and

MAXITX have already been initialized.

RUN

Rl Ty aparp——
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Rk i RGN via =W Ml

Fep—




MUVECT GVECT GTILDA MU

LMATRIX

ASERIES

BSERIES
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KMATRIX STVECT STVECT

_@

SOLVL _@_<GMU DSTAR

SOLVH

© (K0

SOLVK

BBB
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N
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|
U2 U2PRIM
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X2MEAN X2E
1

T |

B3MEAN U3PRIM —4 u3 )
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|
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10. SOME NUMERICAL EXAMPLES

We demonstrate the use of the algorithm discussed

in this paper by some numerical examples. As we noted in

Section 8, in many

applications, the detailed structure of

the sequences of matrices {A,} and {B,} may be quite

involved. In order to avoid cumbersome numerical integra-

tions, we chose to

present only simple examples. As such,

their practical significance may be somewhat limited, but

they do illustrate

Consider a
in which a service
vices of length c.
and the pattern is
of length cj, there

during services of

the concepts discussed in this paper.

queue with deterministic service times,
time of length ¢, is followed by m-1 ser-
The next service is again of length c;.,
repeated periodically. During a service
are Poisson arrivals of rate A and

length ¢, there are Poisson arrivals of

rate A. It is easily seen that in this case, Co = Agp., and

that the sequence of matrices {B,} is equal to the sequence

of matrices {An).

The mxm matrices A, are given by

66
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-\, C
11 n
0 - i i 0 0 s
n!
0 0 e }¢(ac)? 0 .
n!
-AC n
= e (Ac)
A, = 0 0 0 - cwe 0N
-\C n
e (Ac) 0 0 0 S i
n!

Since A = Z AL is doubly stochastic, its invariant proba-
n=0

bility vector m is given by m =

3|+~

e'. The vector B is equal

% to (Alcl, AC, ++», Ac), and therefore

A;Ccy = AcC
+ (m=1)Acl = Ac + —l—la———— .

— m*1%1

In the numerical examples, we further simplify by
assuming that the arrival rate is constant during all ser-
vices, i.e. A;=), and normalize X to be equal to one. The

matrices A, are generated by the following program:

B B ARG 15+
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V¢ OCGENERATE§RET M
L1 L] el OMDR] xCq
(e | LCE L AMDE X
I3 BETLC] o (M=1)pLO
£4) TeOXANE1@DIAG Mp ((h-LOC) XM
£35) ALOS1LT6(x-1C1)
ré LOOF $AEOy [ 4+M0] 1 1eRnIae Mp (k—LO) X (LCxity =M
£7) ALMFOSLTe (-0 ) X (LC] ki) =N
ral TeZaMxarM; i
el SC(HEMNE])L4) /1.O0F
£101 A A CEET (4 /TN 4 /4403 )y L, 000000E™E ) /L.O0OF
E11) Qe [OT(ONE]ANIAG Mp )b AR ?
E3E) EHOTEUHOT N7 0887
£13) Ee 1 O O A

v

Assuming the parameters LAMDA, LAMDAl, C, and Cl have been

initialized, the matrices A, are generated until the maximum

o~—3

n
vA e - (n+l)fe - §
e [f v=

element in the vector g - Avglis
0

vV
less than 10“8. That this is an adequate truncation has
been shown in Neuts [24]. The last matrix is added to the
sequence to ensure that the computed matrix A is stochastic.

We ran the program several times with m=5, varying the para-

meters C and Cl.

The results of the first run are shown with a com-
plete listing of the output and the remaining runs are
shown with an abbreviated listing. Also, to conserve space,
we only print 5 digits although APL computes to 18 digits

and all of the accuracy checks hold to 13 digits at least.

SN

S




!
j
{

»

ey

‘&-'n

69

COMFUTATION OF THE STATIOMARYT DISTRIBUYLIOMN OQF
THE QUEUE LENGTH
(PR SSRESSSFEE SRR ST RT TS FTETETEIFTSTESSE T ST E S ESE S S

M EQUALS &

THE AFERIVAL FROTE LOMOO = q
THE ARREIVOL BOTE LOMDOAY = 3
THE SERVICE TIME © = 0,1

THE SERVICE TIME €1 = 1,6 J

THE MATFRIXN 66 18§
1 000
61 00
& G Q1 @
) (3 8 (0 A
1 &0 a O

THE FOW SUMS OF 0 AFRE

i o A R (R

AERARKAKAKHARAARKRAAANKAA AR KRR ARA R RN AR AR AR A LK RN ARKRN

COMPFUTATION OF THE OUNTLLARY QUANTITIES

RAARKAKAE AL A KA KK ARHARNAX AR AACRLARRARRNAR RN A AN RN K

THE VECTOR FI I%5¢

Qe Qe W@ Ol Q2
THE VECTOR BETHN LGE
106) ()o‘ 001. 001 00‘.

FHO EQUALS O, 4
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THE MATE M 6 15 ¢
0. 078351 0.20972 03061 025174
0.0018222 QL 00007411 050495 0.081974
0011303 0,000418468 000064713 0.7054
0,08301% 0.,0025971 0.0039732 0.0034092
021275 0, 019074 0.028702 0. 024258

Q ITERATIONS WERE REQUIRKED FOR THE COMPUTATION
OF  THE MAaTRIM G

THE VECTOER G %)%

0.28625 0.065771 018579 0,22574 0.26645

THE VEQCTOR MU I&¢

2:.874 1.1118 1115 11347 1.2797

IS SS S SESESEST TR SRS EFICEESES ST EEEETE S S S S EFE S S
MM FOR KR R R R ot R R A R OO SR RO N o X R ok 3k RO R Ok X X R ek

A ACCURARY CHECK OM THE COMFUTATIOM OF THE
MATRHRIN G AMD THE VECTOFR MU A5 SHOWH IN COROLLARTY
1 EIH THE THESIS IS THE FOLLOWING?

THE  LEMEFR FRODUCT OF THE VECTORS G AMD MU XS ?

LebbELHEELEGN

THE QUAMRTIETTY. (] -FHO)Yy 145

*

166666666655

HRK S R Kk R A A R ek O K O ROR R R R IR R RO R
FOR R RS AR S YR R R R O R R KR RO R RO R RO R R R
THE VECQTORE @ 16!

028625 04066771 0415579 0,22574 0.26645

THE VECTOR KOFFA TG4

061103 04297 0426152 019188 0. 1393

015409
Q011177
0,08223X
0.90701
0,015218




THE VECTOR DSTAR 1%%

2,874 1,1118 1,115 1.1347 1.2797
THE VECTOR HSTaR 16}

2,874 1.1118 1,115 1.1347 1.2797
THE VECTOR KOFFO-STAR LS

3.0361 H.5253 4,9983 4.,4094 3.7609

KK KR R KK A R K e R R K KRR R R K KRR K KA KR KRR KKK K
COMFUTATION OF THE L[HVARLAHNT VECTORS 0T ARD HONE
KRR K KRR K K K K KR K IR AR R K K R R R K A A R R KRR RN A AR R KA KKK
THE VEQTOR MMHOT 1§}

0.17175 0,039463 0.093473 0.13544 0. 15987

THE VEQTOR HONE L%

0.023709 0.06384 0,056213 0.041240 0.029943

AAKKAKAKKAAERA KA KA RN AR A AR AR AL ARARAAR AR AR R AR R AR AKX
AAARRAA R KRR KA NAR RN A KA RARAARARR A AL AR RN AR AR A KRR KX

THE ACCURACY COHECK FROFOSED M COROLLAKRY 2
VERIFIES THE COMFUTATION OF aAll. THE QUANTITIE
TAVOLVED I COMFUYTIMG THE VYECTORS DHOT ARD SORE |
THE VECTOR MMHOT SHOULD EE EQUAL TO THE QUAKRKTITUY?

HHMOT TIMES EBHOT FLOUS HOME TIMES CHOT

THE AROVE QUANRTILIYY 1%

Q17175 0.039463 0,093473 0.13544 0.15787

AAKAAEKXKKKARN KKK R AL RDRKKEA AL R ARAARAARN AR ARNRNKRK
RAXEAKRKARAKAKNR KRR ARRRAE XA ARXA XA XA LA RRRA S AN A AR A R XX
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COMFUTATLION OF THE MOMEMTS OF THE $STOTLOMHARY
VECQTOR M
PR R g R R o R e e ok e oY R R R 0 RO R R R T 0k R e Y R R ot ok YOk Ok R

THE COMOLTIOMNOL MEAM QUEUE LEMNGTHS LM THE
VAR TOUS FHASES AFRE

0.17104 1.6298 0,92711 0.49448 0.27148
THE MEAMN QRUEUE LENGTH TS :
0.69882

THE STAMDARD LDEVIATION OF THE QUEUE LEMGTH L83

1.2825

F5% AR K KK R R R kR e ok i N D% R 0 R R R Ok Y R O% R e ok e Rk ok Ok
THE STATIOMAKY VEQTOR X
IS S S S S S SRS IS TESEEEESEREESE S S S EEEEESEEEEEEEEE SRS,

o

B0 COMPONENTSE OF THE VECTOR X HAOVE TEEMN COMPUTED
ARD THESE COMEFOMEMTS ALD UF TO O0,99994

THE VECTOR X I FARTITIOMED FORM IS GIVEM RY§

1 7175671 3.9463E72 9,34
2.3709E72  4.3840E72 5,
3 A653E7F  5.1794E72  3,(
8.0459E74 2.8137872 1.,3235E72 S.553¢ 241587
2.0424E74 1 I537ET2  4.6364E73 1, 7230873 6. 0561k y
4.8375875  3.8205E73  1.3695673 <"

POPAGETE 1L 06BIETS B HD2I6E"4
246139874 8107987
5.7436E75  1,7057€75  3,1938€
1.1606E

1 3HA4ET1 1,598767]

Y

A‘ ()0.."0/5‘*7

]

I NDDPARDUS=O

7+ 2033

'.9943E“2
qqoqﬁwz

1. 5238E74
X A7R1ETD
U HPREETA

1.3837E76 2.133377 3J,7920E7¢8
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LRSS S S FEIEEESSESSES SR EFE TN ETTESFTES T EFTEEEEEEEE
MRAAARNHAARNRKN AR A ARREEARE N AR R AT RRN AN AL AR KRN AR

THE ACCUEREACTY OCHEQK FROFOSEXD IH THE THESIS
FOLLOWERG EQUATIOMN (40) 45 VERLIFLED 66
FOLLOWS S

THED Ml EMUM  XCLFFE MCE EETWEEM THE VEQTOR
GEMERATIMNG FUNOCTION X EVALUATED AT OHE aMbD
THE SUM OF THE FARTITIOMED COMFOMEMNTS OF X
CENCLUDIMG HXMOTY KH)}

8. 8920874

ok A ORCR OR R RO R AR AR AR R R R A R R R R O R % R R o kR
LS S S SO SSEFEESEST SRR S P EET WSS FEEEE PR T RSB E S S S
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COMELUTATLION OF THE STAOYLIOMARY DISYEIERUTILION OF
VHE QUEUE LEHGTH
LSS S PSR ST EEE ST FSETFTETESEETETESTTELEFTETESETEE ES ST E T

M EQUALS &
THE AFRRIVAL RAOTE LAMON = )
THE AFRFEIVAL FATE LAMDOA] =

THE SERVICE TIME € = (0,49

THE SERVICE TIME C1 = 0.04

BHO EQUOLS O, 4
THE VECTOR MU I8 1,0754 1.8667 1.8458 1.7708 1.6078
RO R KR R K AR R R R R R R R R R KRR R R KK K KK A AR AR R KR KR K KK KA
THE YECTOR MMOT L6}

0.10467 016272 0114698 010937 0.10625

THE VECTOR MOME 163

006469 0.028222 0.061545 0.06409 0.044593

PR K e KOR R R R RO % R R RO R RN K OR KO R R R R Sk R X

THE CORDTTIOMONL MEMAM OUELE LEMGTHS L1 THE
VAR TOWUS FREOSE (A2 484

0.68219 024554 0.549210 0462403 066084

THE MEOM QUEUE LENGUH 18

055235

THE GTOMHUARE DEVEIATION OF FHE QUEUE LERGTH TS,

0,84402¢
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AALAAR N AN RANRNRARARARARCARNRRNAKRAA LA LKA ARANSEAARARRA XA KX

THE VECTORE X I FARTITIONED FORM IS5 GIVEM XTe

1. 0467EY 1627287 1169071 1,007 108628
Hedh . DLBR22ETD GV IEQGETR 4,4090E7C & o AP 3N
D 2E9HE b OP7PET 1, /7138E72  2,0440KE 201873
H 1400 Le&724E° S OAGOE™T? 4.8642% e bGH7I
4 WRoal 7

1.4751E7F 3. 78469E74  6.4993 2 g
Fo2996ETA RBL0HGAETE 1 1920ETS 1, B094ET 2ol

6495108
1.2841€

e

1.H278E7 0 2D01109E7E X, 4700 G 200%EE
G.0046ET7 0 3,29497¢ §,7887ETE 0 QW I1236ETS

NS L= O

AR RN KA M A AN AR A AAARARAAR AR AR RA R AR AR AR RN AR AN AR
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COMPUTATION QF THE STOTIONARY DEISTELEUTLON OF
THE QUEUE LLEMGTH
Kk F Ok Rk kR R ok K R R R ok kA R R R R kRt RO Rk ROk Rk R Kk ROk Ok ket

THE ARREIVOL ROTE LAMOA =
THE OFRIVAL FOTE LAMON] = ]
THE SEBRVICE TIME © = (0,4
THE SERVICE TIME ] = 0,4

FHO EQUALS O, 4

THE VECTOR MU I8 1,48667 1:6667 1.86667 16667 1.6667
ARRARXRAEEA R KRR AR R R AR E AR T XL ARRA AR AR R AR AN
THE VECTEOR KRNOT KHi

0:12 0,12 0412 QT Okl

THE VECTOFR MOME IS¢

00592019 0.059019 0.,0%%019 0,05%01% 0.QH701

AR R ok deod R d R N R ok f Ak o b b AR A R R Y gt R T e Y

THE COMDITIONML MEAM QUELE LEMGTHSG TR THIE
VAR LTOUSE FHOS [ &

0.53333 0.,53333 0.53333 0,53333 0.43333
THE MEOM QUEUE LEMGTIH 1S¢
053333

THE STOMDAED CEVIATION OF VHE QUELUE LENGTH L&,

079963
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PR R R DT A R L A R % R O R R YR R R Y R RO RO RO R R 0

THE VECTOFR X OIMN FARTEITIOMED FOFRM LS GIVEM &Y 3

0 1.2000E™1  1,2000E™1  1,2000E™1  1,2000E"1 200071
1 5.9019E72  §,9019E72  §,9019E72  5,9019E72 § L9019E"D
2 ' g 116437672 1.6437E7D
3 x 30 L25RE 3.6"’5“3
4 .35*45 7. 3354E 74033546

5 4450874 1o 4460E74 1, 44608~

6 23710 R.771GETE  2.771€

7 4.SB26576  A.5B26E76  1.5820E76  4.5826E78

NACR RN R A AW AW AR R KR AR ol AR LA AR R AR R AR RRRX

In the first run, Cl is much larger than C. As one
would expect, the conditional mean queue length is largest

immediately following long services and gradually decreases

until a minimum is reached at the beginning of the long ser-

2 i o Dioetagasitinds

vice. 1In the second run, Cl is much smaller than C. Here

we note the opposite effect. The queue length immediately

{ following the very short service is smallest, as is to be

o

expected. In the last case, C = Cl and we have an M/D/1

queue with p = C. Note that in this case, the mean queue
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length agrees with that given by the classical formula

2
p

X'(lle = o + ETT:ET -

The small scale implementations of the algorithm,
selected for inclusion here, do not fully illustrate its
power to handle the high orders of the matrices likely to
arise in practical situations. Examples with m as large as
fifteen were generated to test our APL program and runs
with m as high as fifty, using a well-written FORTRAN pro-
gram, are entirely feasible without requiring prohibitively
expensive processing times, except in cases where p = 18 is
very close to one. In the latter cases, the practical

value of steady-state distributions is in fact questionable.
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APPENDIX I

Proof of Theorem 4:

By substituting Equations (24) into (27) we obtain

(1') 4= EQQ:; «Cq (1-Bg) L.
KK

(dd*)

(kx*)

Since is a constant, we must first show that

ECO(I'BO)-I is a left eigenvector of L=L(1l). Multiplying L

on the left by ECO(I'BO)-lr we have

-1 -1 -
(2')  xCy(I-Bp) "L = KC(y(I-Bjy) "By + XCo(I-Bj) .

[Z 26" i1~ § Ava—l)—lCOJ
=] .

v=1
Rearranging the equation kK = k yields
=3 5 v-1 % =
(3')  xCo(I-Bg) ™t I BG ' = 5{1- ] aG’ 1}.
v=1 v=1

Substitution into (2') yields
(4") CalI-B,) "ML = ¢Co(I-Bn) 1B, + kCp = kCn(T<Ba) L
Ly 0 £ep 0 6" 5 " =g 0 4

Now since de=1, it remains to verify that

9
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(5')  kk* = (dd*)kCy(I-Bple

(by multiplying equation (1') on the right by e).

Using Theorem 3 and multiplying the equation for k* on the

left by x, we have

(6')  xx* = 1 + xCq(I-By) "te + 5{%0(1-50)‘1

[;le“ e

AG L+ T (v-1)AG ) (1-g+e) hy
i | v=2

A

i E
= 1

B,G +

1 v=2

e~8

A%

(v—l)Bvé] +

e~ 8

Y

|
e~ 8

v

and similarly

(7')  da* =1 + g.[ !B, - J Bva—l + 3 (v—l)Bvé]
\J=1 = =2

v=1 v
- =1 - v-1 -~ v-1§"1
(1-6+G) "y +a [ B,6" (1- [ A,6"7)
v=1 v=1
e+l Ia - } Ava—l + 7 (v-l)Avé]
v=1 v=1 v=2
(I-G+G)_l£ .
The equation dL = d implies
(8') d=d]BgG" *i1= 3 A G’ L Cq(I-Bg) ~,
v=1 v=1
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and therefore dd* can be written as

o
&

*

]

=

+
T
Il ~8

B 1 z

Ava—l)—le
1 v

1

+a]Be -] Ava_%J_l Co(I-By) 71
=] v=1l

o oo —l «© . el o]
I B,- § BG "+ T (v-1)B G] + J A
[v= Y ovsl Y v=2 g v=1 4

“ =1 2 - -~ -1
= TAGTTT 4 ] (v-1)A,G)(I-G+G) u.
=1 v=2

Comparing (6') with (9'), we see that (5') holds if

(10") [iCO(I-BO)-ng a E

=1 ot v=13-1
BG" "|l1- ] AG = k.
v=1l i [ v=1 ¢ ) )

By a straight forward substitution, it is easily verified

that 4 J BVG“'l[ﬁ-
=1

e -15-1 . :
) Ava l] is a left eigenvector of K.
v =1

A%,
Rearranging the equations dL=d and kK=x, yields equation (8')

and

e (-] - @ & _l
11"} kx = kCo(I-Bj) . I B,GY 1[1- ] AGY 1] .
v=1 v=1

e )

e ——
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Multiplying (11') on the right by CO(I-BO)—l and comparing

with (8') we see that

(12*y a = BECO(I-BO)—]',
for some constant 6. But since de = 1,

(13') o = [500(1—30)'153'1 .

Upon substitution into (12'), multiplying on the right by

fHo~—g

i (x - z

AvGV-{)_le and using (11'), we finally
1 v .

1

v

obtain
(14) [;co(x—so)'lg)g I B,6 711~ ] A6 1) le = ke =1,
v=1 v=1

and the theorem is proved.

R o

i




APPENDIX II

Proof of Theorem 6:

Differentiating (7) once with respect to z yields

(1")  X'(2) [2I-A%(2)] + X(2) [I-A*' (2)] = x, § B, z¥
- = k=1
o k_l
+ 2%, } kB, z - XqKq.
S0, 21 K £1%
Letting z tend to l-gives
(2") X'(1) (I-A) + X(1){I- J kA ) =x, ] B, + x, ] kB
[ ko1 ] 0, % "k N

We note that I-A is singular but I-A+1 is non-
singular and X'(1)N = (X'(l)e)n. Therefore (2") becomes

(3") X'"(l) ={xp ) B, + x, ) kB, - x;8, - X(1)[1- J kA 5
= {_Ok=lk TRl RN [kgl A

1

(I-A+1) " + (Xj(e)n .

Differentiating twice in Equation (7) with respect to z

83
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gives

(4")  X"(2) [2I-A*(2)] + 2X'(2) [I-A*'(2)] - X(z)A*"(z)

v k-1 v k-1
= 2% ] kBy%Z + zx, } k(k-1)B, z""+.
e =025 5

As z - 1- we have
(5") X7 ¢1) [I-a] = XCHaF“({l) - ZX' (1) (1-A**(1})]

+ 2x5 ) kB, + x, ) k(k-1)B,,
Opm1 k& T0h2) *
or

(6") X" (1) = {X(1) | k(k-1)A, -2X' (1) [I- | kA
e {_ k=2 = [k=1 k]

o0 @ —1
+ 2xq ) kB + x4 ) k(k=1)B, } (I-A+0)
=L Tk T S0 L, k}

+ X" (e .

To determine X'(l)e, we multiply (7) on the right by u(z)

and differentiate to give
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(7")  X'(z2)u(z) [z-5(2)] + X(2)u'(2) [2-5(2) ]

+ X(2z)u(z) [1-6'(2)]

= EokngkzkE(z) + zZX) zlkBkzk—lE(z)

k

+ ziokngkZKE'(z) = ilAOE(Z) - z&lAOE'(z)'

which implies

(8") X'(z)u(z) = ;:i(—z)-{%klekzkg(Z) + zgokzlkBkzk'lg(z)

+ zXg X Bkzk
=

u'(z) - x
1l

1AOE(Z) - z§leg'(z)
- X(z)u(z)[1-8" (Z)]} - X(z)u'(2).

Letting z + 1 yields

1

k T v
(9") I(l)e = (X X B e + X Z kBk?_ a X z B E' (1)
=P { Yesp & iy By

| <

- x)Age - %A, u' (1) - X(1)e(l-p)p - X(1)u'(1).

Note that the term in braces equals
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(10") X z B,.e + X z kB e + X Z.B (I-A+II) _lB"Oe
_ok=l k= 0k=l k 0k=ll<[ - ;]

-x1Age - x1Ag ((1-a+1m) "1g-pe] - X(1)e(1-p)

]

(1‘9)[50(9’302)'§1A0éj + xg | kBye
k=1

+ (50 ) Bk-ile] (1-a+m) ~1g - X(1)e(1l-p)
k=1
. iokzlkskg + [§(1)—(1-§Og)i]g - X(1)e + X(1ep
= X ) kBye + X(1)g - X(1)e = 0,
k=1
by multiplying (3") on the right by e and simplifying.

Therefore, we may use L'Hopital's rule on Formula (8") to

get

(11"} X'(z)u(z) = T?E%TET{%io ) kBkzk_lg(z)
k=1

i + 2%y § BrzKu'(z) + zxy ] k(k-1)B zK"2u(z)
i Rl “Oy=2 I

| + Zziokz kBkzk-l

u'fz) + zxy5 | Bkzkg"(z)
1 k=1

- 2)_511\01_1:'(2) - zx,Au" (z) + }_2(2)9_(2)6"(2)}
- X'(2z)u(z) - 2X(z)u'(z),

which finally yields
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1 (-] oo
(12") X'(l)e = I(1=p) {2§ok£lkBkg + 2§0k£lBkg'(l)

e~ 8

kB,u' (1)
1 k=

+ x, ) k(k-1)B, e + 2x
e e

+ Eoklekg"(l) - 2x)Aqu' (1) - x,Acu" (1)

- 5(1)9_6"(1)} - X(1)u'(1).

In order to evaluate X"(l)e, we differentiate (7")

with respect to z to get

(13")  X"(z)u(z)[z-6(z)] + 2X'(z)u'(z)(z-6(2)]
+ 2X'(z)u(z) [1-6'(2)] + X(2)u"(2)[2-6(2)]

+ 2X(z)u'(2) [1-6(2)] - X(2)u(z)d8"(2)

= 2%, z kBkzk-lg(Z) + Zgokzlakzkg-(z)

k=1

+ 2Xg ) k(k-l)Bkzk-lg(z) + 2zx ] kBkzk_lg'(z)
k=1

k=2

Bkzkg"(z) - 2x3Aqu’ (2) - zx;Aju"(z),

1

Il o~ 8

+ zx
_ok

which, upon setting z=1, simplifies to
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(14") &"(1)9_ =

(=1

{_:g(l)gé"(l) - 2X' (1)e(1-p)

2X(1)u'(1) (1-p) + 2x4 ] kBye
k=1
+ 2xq ) Bpu'(l) + x4 ] k(k-1)B e
el = b ==
+ 2x ) kBypu'(l) + xp ) Bpu"(1) - 2xqAqu‘(l)
Xo, L *Pk2 Xo L Pk% X1%p%
- §1A09_"(1)} - 2X'(1)u'(1) - X(1)u"(1).

In order to show that the term in braces equals zero, note

that from (10"),
(15")  xo ] kBxe + xq ] Byu'(l) = x;Ape + x;Aqu ' (1)
k=1 k=1
+ X(1)e(l-p)-x, £ Bye.

Upon substitution of (10") and (15") into the braces and

noting that x;Ase - x, )

Bye = x,A. e - x,(e-Bhe) = 0, we
iy k= 7 21%= T 2p'="F0= 4

see that the term in braces reduces to 0. Therefore, we can

again apply L'Hopital's rule to get
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(16") X"(z)u(z) = STT:%TTETT {35'(2)2(2)6"(2)
+ 3X(z)u'(2z)s"(2) + X(2)u(z)s" (2)

+ 3%y k(k-l)Bkzkg(z) + 6x5 ] kBkzk-lg'(z)
k=2 k=1

e~ 8

= 1Bkzkg"(z) + z§0k£3k(k-1)(k-z)akzk‘ﬂgz)

+ 3z§ok£2k(k-l)Bkzk‘22-(z) + 3z§0k£lkak2“ﬁ!wa

+ zﬁokZlBkzku"'(z) - 3x3Aqu" (2)

- 2xX;Apu™ (z)} = 53- X'(z)u'(z) - X(z)u"(2z).

Letting z » 1- yields Equation (44) and completes the proof.

The higher factorial moments of the queue length
may in principle be computed in the same manner but the
formulas become uninspiringly complicated and will not be

shown here.
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