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NOMENCLATURE

set of active design-variable numbers
reference length (ie, wing semichord)
system matrix

constraint value

redesign multiplier

e,re, exponents in "energy-density" redesign algorithm
(e )i "energy-density" for ith design variable
average "energy-density"
{F} nodal forces
{F(r)} dummy-load nodal forces
g damping parameter

[GA], [GK], [GM] generalized aerodynamic, stiffness, and mass matrices,

respectively
[GKi],[GMi] der?vatives of [GK] and [GM] with respect to ith design
variable
j imaginary unit, (-l)l/2
J merit function
k reduced frequency, wb/U,
K mass-reduction factor in Segenreich algorithm
(K] *discrete stiffness matrix
[Kol invariant portion of (K]
] [Ki] derivative of [K] with respect to ith design variable
i m total mass
; m, invariant portion of total mass
' m varying portion of total mass j
E : m, derivative of m with respect to ith design variable
g [ M, Mach number
(SR




NOMENCLATURE (CONCLUDED)

s .

(M) discrete mass matrix

[Mol invariant portion of [M]

[Mi] derivative of [M] with respect to ith design variable
N number of design variables

NA number of active design variables

{p} multipliers

{p} multipliers; adjoint eigenvector

{q} coordinates, generalized or nodal

{q} generalized coordinates

{q(r)} eigenvector for rth mode of free vibration
ti design variable

u, displacement to be constrained

{u} displacements resulting from loads {F}
{u(r)} displacements resulting from loads (X))
U, speed

a parameter in Kiusalaas recursion relation
u(O),ux parameters in Rizzi algorithm

€ convergence parameter

A multiplier

v iteration number

w frequency

Wy frequency to be constrained

Q eigenvalue

Q complex eigenvalue, (1 + jg)/w2

\ Jaes desired value

iv




MODIFICATIONS AND IMPROVEMENTS IN A
STRUCTURAL OPTIMIZATION SCHEME BASED
ON AN OPTIMALITY CRITERION

1. INTRODUCTION

While recent years have seen continuing increases in the variety
and scope of applications of structural optimization technology within
the aerospace industry, there are still some significant problems to
be overcome before this technology can be routinely applied wherever
it is needed in all stages of aerospace vehicle design. Among these
problems are the need for efficient treatment of large numbers of
design variables (in the thousands, for example) with many different
constraints. 1Indeed, it may well be that the number of different
design requirements with which industry is faced is growing more
rapidly than the number of constraints that is being incorporated in

the most recent structural optimization schemes.

In an effort to aid in the resolution of these problems, Nielsen
Engineering & Research, Inc. (NEAR) has undertaken a research program
under the sponsorship (Contract F49620-77-C-0055) of the Air Force
Office of Scientific Research (AFOSR). Of specific interest is the
extension of an optimality-criterion algorithm (refs. 1-3) to large
problems involving multiple constraints, where the constraints include
both strength and stiffness requirements. Before proceeding with this
algorithm, however, it was considered advisable to conduct some effi-
ciency comparisons in order to identify other algorithms with equal
or perhaps superior qualities. Other tasks that were to be undertaken
during the first year involved a study of the accuracy of computing
flutter-speed or flutter-eigenvalue gradients with fixed modes defining
generalized coordinates and possibly the incorporation of multiple
equality behavioral constraints. The sections that follow describe
the first year's accomplishments in more detail, the conclusions to be
drawn from this work, and the work planned for the next year. One
archive publication, covering a portion of the year's accomplishments,
will appear in 1978. A preprint of this paper is appended.
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2. ALGORITHMS BASED ON OPTIMALITY CRITERIA
2.1 Optimality Criteria Versus Mathematical Programming

Optimization algorithms are more or less arbitrarily classed
according to the philosophy underlying their derivation. Mathematical-
programming (MP) algorithms employ a relatively sophisticated set of
calculations at each design point in order to produce a design change
that will simultaneously improve the merit function (i.e., reduce the
total weight) without violating any of the constraints. Optimality-
criterion (OC) algorithms are derived, generally heuristically, from
conditions that must be satisfied at the optimum design. MP algorithms
can generally be proven to converge, while OC algorithms cannot. On
the other hand, OC algorithms are less involved than MP algorithms from
& computational standpoint. However, the fundamental reason for
interest in OC algorithms is to be found in their potential for applica-
tion to very large problems, based originally on the success of the
stress-ratio or fully-stressed-design algorithm in treating stress
constraints on members numbering in the thousands.

2.2 Optimality Criterion and Recursion Relation for an Equality
Behavioral Constraint
OC algorithms come in many forms. To fix ideas, let us consider
a single behavioral constraint on a structure to be optimized. The
structure is characterized by N design variables ti' and its mass m
to be minimized is assumed to be a linear function of these variables:

N

m(ti) S T m(ti) =m + izl m. t,

(1)
The assumption of linearity is not necessary, but it covers a broad
class of finite-element models where the design variables are plate
thicknesses, bar areas, or the like. 1In addition, there is some mass
m that is not available for optimization, which may represent
fasteners, lightly loaded structure, fuel, etc. The behavioral
constraint is written simply as

C(ti) = 0 (2)




ot

and there may also be minimum-gage constraints of the form

t; 2 (ti)m.m, R POl PERRARE (3)
One simple form of an optimality criterion can be obtained from varia-

tions of the merit function

J=m+ Ac (4)

In particular, the requirement of vanishing variations of J with
respect to the active design variables leads to

miigti’;=—~,v1ezx (5)
Here A denotes the set of design variables that are active--i.e., not
at their minimum values--at the optimum. A number of recursion rela-
tions have been introduced for iteratively resizing the structure in
order to arrive at a design that satisfies equation (5). (A very
revealing discussion of the relationships among many of these rela-
tions may be found in ref. 4.) One that has been widely used is due

to Kiusalaas (ref. 5):

t. = G, By (6)

where

e ey Vy Wit 4 - 36
C. = a (1 a )A [m. at.] (7)
i i
Here v is the iteration number, and o’ is a parameter that ranges in
value from -1 to +1. It may or may not vary with sach iteration.
Note that as the optimum is approached, %Y %& g%; + -1, and Cz * X
i i g

no matter what value av takes.

2.3 Two Resizing Algorithms

There are in turn a number of ways of devising resizing algorithms
based on equations 6 and 7. One procedure, from references 1-3, deter-

mines o’ so that a given reduction in mass is achieved, while the
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multiplier A  is determined from the requirement that the constraint
v : ;

value ¢  be always driven to zero. To first order, the change in the

constraint value is given by

N Y
M+l ¥ow [Bc_] fty+1 % v] (8)
=1

: \Y g V+1 v ;
With am” = ] m (t."" - t.), equations (5)-(8) can be manipulated to
i=1

v+l

yield, for c = 0,

o Amv + CvSI/B;
a’ =1 + At (9)

g B + c'/@¥ - 1)
X = - (10)
B\)
2

2
N \U
Vo Jc b Vi 1 ( e \Y
where Bl = izl [Bti ti] , and 82 = E —— [51—]-] ti. The mass change

am is specified as
\
Am~ = -Km (11)

where K is chosen from a table of user-selected values arranged in

descending order. The largest value is chosen first, and av, AV, and

the C: are calculated for the active set A. If any active design
variable is changed by more than 25%, the next lower value of K is
chosen, and the process is repeated until no design-variable change

exceeds the 25% limit. Next, the new values of the active design

’ 5 Y +
variables are compared to their minimum gages. If t; 1 < (ti)min'
the next lower value for K is selected, and the redesign process is

v+1
repeated. If ti < (ti)min
a : v+1
that design variable t =

for the smallest value of K, then for

(ti)min'
passive set. A final pass through the redesign step is now required,

and it is relegated to the

o e e




=
since Ati = (ti)min - tI, and equations (9) and (10) must be altered
accordingly to reflect revised expressions for c"“1 - ¢Y and amV (see

reference 1 for details). If the active-passive identities are
unchanged, then a new iteration is begun. Convergence is checked

in two ways. First, if K is at its minimum value and an active

design variable is calculated to change by more than 25%, the design
is declared final, subject to a check on the active-passive identities.
This test is essentially a "diminishing returns" criterion, since a
mass reduction of a given amount requires larger and larger changes

in the design variables as the optimum is approached. The second

test involves the proximity of the redesign factors C: to unity:

]c‘i’ ~1] < ¢ (12)

Here € is a user-supplied convergence parameter. If this test is
satisfied, the design is declared final, again subject to a check on
the active-passive identities. This check is to ensure that there are
no passive design variables that should be reintroduced into the active
set. It is based on the Kuhn-Tucker optimality conditions and is
described in detail in references 1 and 2. A flow diagram for this

algorithm is given in Appendix A.

A variant on the above algorithm involves simply scheduling a,
rather than computing it for a scheduled set of mass reductions
(refs. 6 and 7). Also, the minimum-gage constraints are handled
differently. At each iteration following the one where a design
variable reaches its minimum value, the factor C; for this variable
is still evaluated. 1If C; > 1, the variable is reintroduced immediately
into the active set. (Here also special steps must be taken in the
calculation of A’ to account for design-variable changes associated
with entry to or exit from the passive set. Details are in references
6 and 7.) 1In this algorithm, then, active-passive identities are
continually checked, but there is very little computation associated
with determining a’. This parameter is scheduled by the following

formula, which replaces equation (9):

Q = G

W e SR Lt 9 Ay (13)

(ax
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Typically, a(o)

will be chosen to be near unity - say, 0.9. Then at
each iteration the current value of a is obtained by multiplying the

previous value by a factor a_, which is slightly less than unity -~

X
say, 0.95. The reduction of a at each step is equivalent to increas-
ing step sizes as the optimum is approached, in order to accelerate

convergence. Convergence is evaluated by checking the uniformity of

the weighted derivatives, according to equation (5):

\Y)
|1 & [j; iﬁl]

m. ot.
1 i

<g, ¥¥ieh (14)

The convergence parameter € is user-supplied. A flow diagram for
this algorithm is also given in Appendix A.

2.4 An Alternate Approach to an Optimality Criterion

The form of the optimality criterion derived in subsection 2.2
is very general, and this generality is easily extended to multiple
constraints (ref. 5). However, it will prove instructive to consider
at least one other approach, which involves using the equations
governing the structure for the particular constraint being considered.
In an effort to retain some generality, let the equations be written

as

[B(Q,ti)]{q} = {0} (15)

Here {q} is a column of unknowns which may be discrete displacements
or modal coordinates, and the coefficients of the equations are given
in [B], which is a function of the design variables ti and possibly
an eigenvalue Q as well. In the case of an aeroelastic constraint,
such as a fixed flutter speed, then equation (15) will be complex;
for a constraint on a natural frequency, the equations will be real.

The merit function J can now be written as
J = m + Re(|p] [Bl{g}) (16)

Here the scalar multiplier A is replaced by a set of multipliers {p},
and the real part of the triple matrix product must be taken if
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equations (15) are complex (ref. 8). At the optimum, the merit
function J is stationary with respect to independent variations of
the t., {p}, and {q}. 1If the eigenvalue Q is not fixed by the
constraint, then variations of it must be considered also. Applying

these conditions yields

[Bl{q} = [o] (17)
lp) (B] = o], or (B1T{p} = {0} (18)
re (|p)( 28 J{ah) = 0 (19)
m, + Re(LpJEBt]{q}) = 0 (20)

Equation (20) is the optimality criterion. The term involving the
triple matrix product resembles an energy density, so this could be
referred to as an "energy-density" form of an optimality criterion.
(Specific expressions for various types of constralnts will be pre-
sented in Section 3 below.) Writing (ev)i ﬁ" (Lp'[agfj{q})
permits equation (20) to be recast as

(e.). = -1, ¥ i¢€A (21)

As noted here, in the presence of side (e.g., minimum-gage) constraints
only the indexes for the active design variables are to be considered.

2.5 "Energy-density" Recursion Relation and Redesign Algorithm

The number of recursion relations that can be devised to satisfy
equation (21) is limited only by the designer's imagination. One
choice is a variation of the recursion relations developed in refer-

ences 9 and 10:

Dl -
i
where e
V) (ev): - Y] e2
Ci = - (L + ¢c) (22)
(eav)

and

™
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N
v o1 v
ie.)" = o igA (e,); (23)

ﬁ This relation differs from those in references 9 and 10 in several
important respects. 1In reference 9, which is concerned with altering
a strength design to meet a flutter-speed constraint, only the strain-
energy density is used to define the (ev)i, rather than the complete,
or exact, expression represented by equation (20). Also, the denom-
inator in the "energy-density" ratio is obtained by considering only
{ those elements whose (ev)i exceed the average (eav). This has the
effect of permitting only increases in design variables, so that a
particular design variable that is too large for strength require-
ments in the redesigned structure cannot be reduced. This limitation
is removed in reference 10, but "energy-densities" are defined as
le,)y = g:'LgJ g%i {q}l, which is also different from that required

to satisfy equation (20). Hence neither of these two procedures is
capable of converging to the "exact" optimum, whereas a redesign
algorithm based on equations (6), (22), and (23) will do so.

In equation (23), the average (eav)v is determined by averaging
the energy densities only for those design variables in the active
set. (NA is the number of active design variables.) In equation (22),

e, is typically less than unity (for example, 0.5) and e, is greater

tian unity (say, 2.0). Since the individual (ev)i may differ in sign
| from e.v’ the absolute value of the "energy-density" ratio is required
| to avoid numerical problems. This ratio also implies that a design
variable should be decreased only if its "energy density" is less

than the average. 1In the factor involving the current constraint
value cv, c’ >0 represents an infeasible value, requiring an increase

in the design variables.

A redesign algorithm based on equations (6), (22), and (23) is

x quite simple. Minimum-gage constraints are treated by simply relega-
? 4 . . \ +

i ting a design variable to the passive set whenever tI 4 < (ti)min' Et
each step, all C: are calculated, so whenever a particular CI is

greater than unity for a passive design variable, that variable is

reintroduced into the active set and the redesign procedure is invoked
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again. This approach to the identification of the active and passive
sets is identical to that followed in the algorithm of references 6
and 7. Convergence is evaluated by equation (12). A flow diagram
for this "energy-density" algorithm is given in Appendix A.

3. CONSTRAINT EVALUATIONS AND DERIVATIVE OR "ENERGY-DENSITY"
CALCULATIONS

The algorithms discussed in Section 2 above were coded as separate
routines that require constraint evaluations and calculations of the
derivatives or the "energy-densities". 1In this section, specific
forms for the constraints considered--displacements, natural frequen-
cies, and flutter speeds--are presented. Also, the equivalence of the
two forms of optimality criteria--equation (21) or equation (5)--is

discussed.

3.1 Displacement Constraint

The displacements of a structure loaded by a set of forces {F}

are found by solving

[K]{u} = {F} (24)

where [K] is the discrete stiffness matrix, {F} is a column of nodal
applied forces, and {u} is a column of nodal displacements. One of

u
: . 2 r &
, is to be constrained, so that c = TE;T;;; ] [

In the derivative calculation, the dummy-load method is used. This

involves calculating the displacements {u(r)} due to a dummy load set

{F(r)}, where F;r) = 6, ¢

these displacements, u,

(K1 u't?) « #'F)) (25)

It is now assumed that the stiffness matrix [K] is a linear function

of the design variables and can be written as

N
(K] = [Kj) + izl ty (K] (26)
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The justification for this assumption follows the same line of
reasoning used in justifying equation (l). The constraint derivative
can then be shown to be (see, for example, ref. 5)

dc 1 aur 1 J (r}
S [ e e TR = = —F—— |u|[K.]J{u'"" "} (27)
3, (Up)geg Ot L L] tx

The first form of the optimality criterion, equation (5), becomes

E.—(—-J—.-——— [LUJ [K ]{u(r) }] = %‘, ¥1i¢€A (28)

des

While the form of the constraint equation in this case does not
correspond to that used in developing the second form of the optimality
criterion, equation (21), it is nevertheless possible to make use of
the recursion relations, equations (6), (22), and (23), by replacing

(ev)i with —— at . This is reminiscent of the recursion relation

finally chosen for FASTOP (ref. 11), in the sense that it can be
viewed as a heuristically derived recursion relation based on
satisfying the optimality criterion given by equation (5).

Constraint evaluation in this case is straightforward. The
derivative matrices [Ki] are invariant, as a result of the linearity
assumption, so equation (26) is used to update the stiffness matrix
at each step.

The displacement u_ is found by solving equations (24) for ful.
The dummy-load dlsplacements {u( )} are found by solving equations

(25), and ;L is calculated from equation (27). This information is

then passed to any of the optimization subroutines.

3.2 Frequency Constraint

The equation of motion for free vibration can be written in

discrete form as:

([K] - w® [(M]){u} = {0} (29)

The mass matrix is also assumed to be a linear function of the design

variables:




¥l

N
[M] = [Mo] + izl ty [Mi] (30)

The order of (M] and (K] is typically large, and it is often more
efficient to rewrite equation (29) in terms of modal coordinates,
where a set of natural modes of the initial design is used to define
generalized coordinates for all subsequent designs. (Although this
could lead to inaccuracies if the optimal design is substantially
different from the initial one, periodic updating of the modes or
simply using a few more modes of the initial design should be
sufficient to avoid severe problems. This is an open question that
still needs to be answered.) With [¢] defined as the modal matrix,

modal coordinates are defined as {u}l = [¢){g}, and equation (29)
becomes

([GK] - w2 [em]) {q} = {0}, (31)
with

[GK] = [¢]TIK][4]

(32)

]

(Ml = (17 (M) (4]
The linearity assumption embodied in equations (30) and (26) also
carries over to the generalized mass and stiffness matrices, so that
derivative generalized matrices [GMi] and [GKi] may be defined by
obvious analogy. With fixed modes defining generalized coordinates,
these are also invariant and of much smaller order than their discrete

counterparts.

If Wy, is the frequency to be fixed, and (m)des is the desired

(w) (w) qw
: & des 8 o des  +
value of this frequency, then c = Nt 1, and YT ——— N
" r i W i
To calculate 3{5 , equation (31) is written for the rth mode, differ-
i
entiated with respect to ti' and then premultiplied by Lq(r{], the rth
Jw
eigenvector. Solving then for 3{5 gives
i
3o, g 1ok, 14a™y - W2 (@'Y tom,14q ")
) i r i (33)

9ty 2mr[_q‘r)_] (aml {q‘F)}

e r————
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and the optimality criterion of equation (5) reads

La™ tex @™y - Ela™ ) tem1ta™ 1 = ¢, wiena (34)
where, with R (w)des'
g ) (r)
e La') tamitq ¥} (35)

The left-hand side of equation (34) can be termed a "specific Lagrangian
density", since it is the difference between the peak strain energy and
the peak kinetic energy in the constrained mode per unit value of each
active design variable. Note also that equation (34) is homogeneous

with respect to the eigenvector {q(r)},

kit

so it is invariant with respect
to the normalization of {q

For the "energy-density" form, the matrix [B] is identified with
[GK] - wi[GM], and {p} and {q} are both {q(r)}, since [B] is symmetric
(see equations (17) and (18)). The eigenvalue W, is fixed, so there
is no "free" eigenvalue 2, and equation (19) does not apply. Upon
writing out (ev)i, equation (21) becomes

Lq(r).l lGKil{q(r)} = wi Lq(r)_] [GMi]{q(r)}.= -m,, ¥iecAa (36)

In this equation, {q(r)} can be normalized to give an arbitrary value
on the right-hand side, so equations (34) and (36) are in fact
equivalent.

For any of the optimization routines, constraint evaluation is

(r)}

straightforward. Equation (31) is solved for W and {q , and then

the g%% or (ev)i are calculated. The mass and stiffness matrices are
updateé with the current values of the design variables by equations

identical in form to equations (30) and (26).

3.3 Flutter-Speed Constraint

The governing equations for flutter, written in modal coordinates,
have the form

(feM] + [GA] - Q[GK]){g} = {0} (37)
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Here [GM] and ([GK] are the generalized mass and stiffness matrices
defined previously, and [GA] is the generalized aerodynamic matrix.
The modal coordinates {q} are again defined by a fixed set of modes,
so [GA] is a complex function of reduced frequency k and Mach number
M_ . (The altitude is assumed given.) The eigenvalue Q is written

in terms of the frequency w and damping parameter g as (1 + jg)/wz,
and flutter is determined by that combination of k and M_ which gives
g = 0 and the lowest flutter speed U, which is obtained from k and w.
A final step involves varying the Mach number until there is com-
patibility among the altitude, the Mach number, and the flutter speed.

The flutter constraint will be enforced by requiring that g = 0
for a given combination of altitude, Mach number, and speed. The
derivative S5 is calculated in the manner of references 1 and 2:

at,
3g. il i bw’
ati = [:(R2 - w Rl - gIz)(ZgR3 + 213 + TZ: I4)
3 . . :
bw i P i
- (ZR3 - 2913 + —-U—a: R4) (12 - w Il + ng):]/D (38)
where
bw3 ' bw3
D = (29R3 + 213 + Tm— 14)13 + (2R3 - 2913 + -E— R4)R3 (39)
i - -
X - Re (| p] [eM; 1{q}) (40)
R, = Re(|B) [GK;]{3)) (41)
Ry = Re(|pJ (6Kl {g}) (42)
=1 (3GAY, =
R, = Re(|[B)(52)an (43)

and Il, I;, 1, and 14 are the corresponding imaginary parts. It is
also understood that {q} is the eigenvector for the critical flutter
mode, and {5} is the eigenvector for the adjoint problem

(teM] + [GA)T - @[cK]) (P} = {0} (44)
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For R, and Igr derivatives of the elements of the aerodynamic matrix
[GA] are needed with respect to reduced frequency k. These are
obtained approximately by calculating [GA] for a band of reduced
frequencies in the range of interest and then fitting these data

with polynomials in k. The fitting procedure used here is the one
discussed at length in reference 12. The derivatives are then
obtained by differentiating the polynomials. For a flutter constraint,
then, the ontimality criterion is obtained from equation (5) by
identifying c with g:

1l 9 1 :
n_‘i__ﬁ_;_x, ¥iceh (45)

with g%L given by equation (38).
i

For the "energy-density" form, ([B] is identified with [GM] +
(ca]l - Q[GK], {p) with {p}, and {q} with {q}, so the optimality
criterion in this form is

o - = s i .
(e ), = ﬁ; Re(LQJ([GMi] - ek, N{gqh) = -1, ¥ ieA (46)

This expression is much simpler than equation (45), so it appears that
an algorithm based on computing (ev)i rather than g%L would be more

i
efficient, since less computation is involved, and derivatives of the
aerodynamic matrix need not be calculated. However, this is only
part of the story, since the convergence characteristics of the

algorithm also influence the efficiency.

It is worth noting that the "energy-density" formulation provides
an additional relation when a "free" eigenvalue is involved. 1In this
case, the "free" eigenvalue is the flutter frequency, which is uncon-
strained. Thus equation (19), with @ identified with w, is applicable.
By making use of the actual expression for [B] and the definitions of
equations (40)-(43) and their imaginary counterparts, eguation (19)
can be manipulated to give another condition to be satisfied at the
optimum:

bw3

2R3 - 2913 » ‘6-;- R4 =0 (47)




-] 5=

If this relation is inserted into equations (38) and (39), equation
(45) is greatly simplified and reads
1

T e
m

: [ :
" 1 5 + gI2) = " ¥ i¢€A (48)

Equation (46), when rewritten with the definitions of equations (40)

and (41) and their imaginary counterparts, becomes

i
2

2

1 + gI;) = -w®, ¥iea (49)

n; (szi - R
Since the normalization of {p} and {g} is arbitrary, it is always
possible to renormalize these eigenvectors so that the right-hand
side of equation (49) is identical to the right-hand side of equation j
(48). Hence the two optimality criteria are formally equivalent.

However, it must be emphasized that the derivative g%% is in general

given by egquation (38); the simplified expression is %alid only at

the optimum.

For any of the redesign algorithms, constraint evaluation is
accomplished by solving equation (37). Equation (44) is solved to
obtain {p}. The generalized mass and stiffness matrices are updated
as described in subsection 3.2. Since the flutter frequency will
vary as the redesign progresses, the reduced frequency k must be
updated in order to ensure compatibility between its value and the
frequency computed from Q. This is most easily done iteratively.

The value of k from the previous design is used initially to determine
[GA], and a new frequency is computed from the eigenvalue . 1If this
frequency differs sufficiently from that of the previous design, the
newly calculated frequency is used to recalculate k, and the analysis ]
is repeated. (This procedure implies, of course, that [GA] has been
determined for an appropriate range of k values, as discussed above.)
The current constraint value, gv, and either é%?] or (ev)z are then
calculated. 1
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4. NUMERICAL EXAMPLES

For comparison purposes, three separate redesign algorithms were
coded--two based on equations (6) and (7), and an "energy-density"
one based on equations (6), (22), and (23). The first two differ
in the selection of a and in the treatment of side constraints; one
(Segenreich) is based on the algorithm in references 1 and 2, while
the other (Rizzi) is based on the algorithm in references 6 and 7.
These are described in subsection 2.3. The third algorithm ("energy-
density”) is described in subsection 2.5. A fourth algorithm (ref.
13), based on the method of feasible directions, was also included
in order to provide some comparisons with an MP method. Program
CONMIN, described in reference 13, can use analytically computed
gradients or can calculate gradients by finite differencing. Since
analytical gradients were already being calculated, they were used
for CONMIN as well.

4.1 Rectangular Wing

The first example problem involves a simple rectangular wing
structure whose dimensions are given in figure 1. This wing was first
used in reference 14 and has since been treated by other researchers.
A very simple finite-element model was created, involving two cover
sheets, two spar webs, one rib, and four spar caps in each of three
bays in the structural box. The spar caps were represented by axial
elements, and the other members were represented by in-plane elements.
There are 12 design variables, whose numbers and initial values are
given in Table 1. 1In all cases, minimum-gage constraints of one
quarter of these values were imposed. No weight or stiffness is
assigned to any portion of the wing except the structural box, and
the initial weight is 88.45 kg. This is the initial configuration
for all of the constraints considered. All of the computing was

performed on an IBM 370/168 computer.

For the displacement constraint, transverse loads of 445 N were
applied at the six nodes on one side of the wing, and the transverse

displacement at the tip nodes was calculated to be 1.465 cm. This
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displacement was constrained to be 1.524 cm. Iteration histories for
the various algorithms used are given in figure 2, and relative CPU
times are given in Table 2, along with the final values of the active

design variables, the weight, and the constraint parameter

¢ = alind e

tical, with the only active variables being the web thicknesses in

1. All of the final designs are essentially iden-

bays 1 and 2. The Rizzi and "energy-density" algorithms took less
than one third the CPU time taken by CONMIN, with the Segenreich
algorithm having an intermediate time. The iteration histories
reveal that all of the OC algorithms nearly reach the optimum weight

within ten iterations. However, it was necessary to have these

algorithms continue in order to ensure that all of the passive
variables were identified and the constraint satisfied. For all
except the "energy-density" algorithm, the intermediate designs
followed the constraint boundary rather closely, since such behavior
is enforced at each step. The "energy-density" algorithm is somewhat
looser in this respect and appears to proceed in two stages - a first
y stage where most of the weight is removed, and a second where the ;
constraint is satisfied. Parameters chosen for the various algorithms H
are as follows: For the Segenreich algorithm, the sequence of weight-
reduction factors Ki was (0.2, 0.1, 0.05, 0.025, 0.01, 0.005); for

o (0)

the Rizzi algorithm, = 0.90, A, = 0.95; for the "energy-density"

algorithm, e, = 0.5, e, = 2.0; for all of thes« algorithms, the con-

1 2
vergence parameter € was 0.001; and for CONMIN, either the default
’ values or the values recommended in reference 13 were used for the

various parameters required.

For a frequency constraint, the fundamental frequency of free
vibration was constrained to be 68.0 rad/sec, or 10.82 Hz. This is
slightly higher than the calculated frequency of 67.16 rad/sec, or
10.69 Hz, for the initial design. Since both the inertial and stiff-
ness properties of the wing are linearly proportional to the design
variables and there is no nonactive mass or stiffness, constraining

the frequency to be identical to that of the initial design would

result in a trivial problem, since the mass and stiffness matrices
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can be scaled by an arbitrary factor without affecting the freguency.
The optimum would therofore be given by the design with all design

# variables at their minimum values. With a slightly altered freguency
constraint, the optimum design should have at least one active design
variable, and this in fact is the case, as can be seen in Table 3.
The constraint parameter ¢ is here (u)des/wr - Y. The iteration
histories are given in figure 3. For the Segenreich algorithm, the
table of weight-reduction factors was (0.1, 0.05, 0.025, 0.01, 0.005,

0.002); for the Rizzi algorithm, a(O) » 095, 0, - 1.0; the parameters

for the "energy-density" algorithms and for CONMIN were identical to
those used for the displacement constraint. The CPU-time comparison
shows that this time only the "energy-density" algorithm is faster
than CONMIN, although the differences are not great. The "energy-
density" algorithm actually results in an increase in weight for a
few iterations before it converges, and the Rizzi algorithm does not

display the same rapid approach to the vicinity of the optimum weight

as it did for the displacement constraint. The latter phenomenon is
undoubtedly a result of keeping a constant, which was necessary in

order to achieve convergence.

For the flutter constraint, the six transverse modes of the
initial design were used to define generalized coordinates, and sub-
sonic generalized aerodynamic forces were calculated with the doublet
lattice method (the program described in reference 12 was used). A
flutter Mach number of 0.717 was calculated at an altitude of 1,372 m,
corresponding to a speed of 240 m/sec. This flutter point was imposed
as the constraint, with ¢ = g. CPU-time comparisons among the four
algorithms and the final design information are given in Table 4, ¢nd
the iteration histories are given in figure 4. The parameters useu
in the various algorithms are the same as those used for the displace-
ment constraint, with two exceptions - ¢ = 0.002 in the Rizzi algorithm,
and .y = 0.1 in the "energy-density" algorithm. The exponent e, had to
be reduced from the originally selected value of 0.5 in order to prevent
divergence. The iteration history reflects this reduction, in that the

approach to the optimum weight is more gradual than it was in the
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previous examples. As a check on the accuracy of using fixed modes,
the final design was reanalyzed for flutter with new natural modes.
This new analysis gave a flutter speed 6% lower than that calculated
with the original modes. Since the maximum number of transverse
modes available, six, was used in both cases, it was not possible to

see whether retaining more modes initially would narrow this difference.

4.2 Rectangular Wing with Increased Degrees of Freedom and Internal

Fuel

In an effort to obtain a slightly more complex problem with more
design variables active at the optimum, the rectangular wing was
remodeled with an increased number of elements, as indicated in
figure 5. Each bay was divided into two with a set of nodes at the
midspan of the bay. New ribs were not added, however, so only the
number of cover sheets, spar webs, and spar caps was doubled. This
resulted in a total of 21 design variables, whose numbering and initial
values are given in Table 5. In addition, nonstructural mass to rep-
resent internal fuel was distributed uniformly within the structural
box. The initial weight was increased in this manner by 110.58 kg
to a total of 199.13 kg. Minimum-gage constraints of 25% of the

initial values were again imposed on the design variables.

The initial design was analyzed for flutter with generalized
coordinates defined by 12 transverse vibration modes, and a flutter
speed of 231 m/sec was calculated at an altitude of 1,372 m, correspond-
ing to a Mach number of 0.689. As before, doublet-lattice generalized
aerodynamic forces were calculated with the program described in refer-
ence 12. This flutter speed was imposed as the behavioral constraint,
(0 _ 0.90,
a_, = 0.95, and ¢ = 0.005. The iteration history is shown in figure 6,

X
and the final design information is given in Table 6. In addition to

and the wing was optimized with the Rizzi algorithm, with a

the webs that were active before at the optimum, there are now some
cover sheets that are also involved, but most of the design variables
are still at their minimum values. The final design was also reanalyzed
for flutter with new modes, and the recalculated flutter speed is 9%
lower than that calculated with the original modes. In this case, also,
all of the modes available were used for both calculations.
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Attempts to obtain optimum solutions with the other algorithms
were not successful, and at this point it was decided to use another
example that would be more representative of a real design and that
might also have more active design variables. fThis is described

below.

4.3 Delta Wing

The next example structure to be considered is a biconvex-airfoil
delta wing, shown in planform in figure 7. This wing is example 2 of
reference 15. It can have up to 102 design variables, and lower totals ]
can be created through linking, so problems of varying complexity in
terms of the optimization task can be treated while the fully modeled

structure is used for analyses. The structural planform is built up

from triangular in-plane elements separated by very stiff axial members
at ecach mode that model the core. Mass to represent internal fuel is
distributed in the core.

The structure has been modeled and is still in the process of
being analyzed, so there are no optimization results that can be given

here.

5. CONCLUDING REMARKS
5.1 Conclusions From Results to Date

From the results with the simple model of the rectangular wing,
it can be seen that the 0OC algorithms generally performed better than
the MP algorithm in terms of relative CPU time, with the Rizzi algorithm
doing the best. However, the need for the user to experiment with
these parameters in any new application will have a great influence
on the utility of the algorithm being used, which could well overshadow
any advantages the algorithm might have in computational efficiency.
For the final comparisons, therefore, it would be desirable to have

recommended or default values for the parameters in various applications

and not change them unless it is absolutely necessary.
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In retrospect, it has also become apparent that the convergence
criteria for the various algorithms may not have been as consistent
as they should have. Consider, for example, the relationship between
the convergence criterion for the Rizzi algorithm (eq. (14)) and that
for the "energy-density" and Segenreich algorithms (eq. (12)). The

Rizzi and Segenreich criteria can be related through the recursion

relation, equation (7). This can be manipulated tc yield
RN P | R -2 A (50)
i m, dt,
i i
1£ € is the convergence parameter for the Segenreich algorithm and

€, that for the Rizzi algorithm, then

v
€, = (1~ a ' |ey

With a(o) = 0.90 and By ™ 0.95, after 25 iterations a = 0.263, so
s 0.73762. On the other hand, if Gy ™ 1.0, then €, = 0.152.
This means that, for equivalent convergence criteria, in these two
1 should be 74% or 10% of €0 With the rectangular-wing

example, inconsistencies in these criteria affect CPU time more than

e
cases, €

the final answer, since the optimum appears to be located in a very
shallow depression in design space. It is hoped that the delta-wing
structure, or others that may be analyzed, will have more sharply

defined optima.

5.2 Future Work

During the next year, comparisons of the various algorithms will
be continued with the delta-wing example described above. This
example will also be used to test the accuracy of computing gradients
with fixed modes. The most promising algorithm will then be extended
to treat multiple behavioral constraints, and alternative strategies

for handling these constraints will be evaluated.

(51)
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TABLE 6. FINAL DESIGN INFORMATION FOR THE RECTANGULAR WING WITH
INCREASED NUMBER OF ELEMENTS AND A FLUTTER CONSTRAINT.

Weight, kg: 143.2

Active design variables, cm: t, = 0.5469, tg = 0.3195, t9 = 0.07341

= 0.1301, t = 0.04879

s 17

= 0.1569, t

15 16

Constraint: ~0.715><10-4

Iterations: 24
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Figure l.- Layout of rectangular wing.
dimensions are in cm.
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Figure 5.~ Layout of rectangular wing with increased elements.

All dimensions are in cm.




*qUTEI3SUOD I9IINTIF © Y3ITA HEpe
Y putm xelnbuelzdax JuswaTe-paseaIduT Yl 103 A103sTYy uOT3IRIDNII ~°9

A ‘suoTr3jexa3T FO ISQUINN

| 0
. 01
r o€ 0z .
| |
| Jdz’o
ki
, 1zzTd V
| =
: A9°0 )
[Ta} 3
™M b °
| =2
t
ial
o
(54
T-
49°0 o

o e s e N A S




-36~

2855

Bl

1 i
\" 2159 —

Figure 7.- Layout of delta-wing structure.
All dimensions are in cm.
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APPENDIX A

Input data;
initialize variable:

vV = ]

B |

Evaluate constraint cVv,
total mass mV, and

a i 3c |V
erivatives Tf:

Choose next
value of K

e)
:
T
Calcylate aVv, \V l

! Choose next

vel value of K

Calculate C:, €

oty , ViE A k%

v+l
t

Revise

= (ti)mln
A

Yes

Reintroduce any

No
Print message

Jassive variables?

Print final
results

Flow chart for algorithm of references 1-3 (Segenreich).
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Abstract

It is observed that modern optimal design of structures represents
a confluence of two streams of thecretical development: Matric finite-
element approximation on the digital computer —— a technology of which
Professor Argyris is one of the founders; and practical application of
the variational calculus. The present paper addresses optimization
problems wherein complicated constraints involving dynamic aeroelastic
behavior are prominent. Search procedures based on optimality criteria
are believed to offer spacial advantages relative to such problens.

With the principal constraint formulated in terms of the "V-g method"
of flutter analysis, three search schemes are applied to the minimum-
weight redesign of a particular wing. The first scheme is based on the
method of feasible directions and is represeatative of mathematical-~
programming methads. The other two are derived from necessary conditions
for a local optinum and can be classed as optimality-criteria schemes.
Although the results are by no means definitive, they do suggest that a
heuristic redesign algorithm bas=d on an optimality criterion may be the
best candidate for incorporation in a more general design procedure
capable of treating multiple constraints with large numbers of design
variables.

The paper's final section undertakes to show how optimality criteria
might be constructed when the aeroelastic constraint is written in the
time domain. Three special forms of the aerodynamic generalized forces
are considered: quasi-steady, quasi-steady with dissipation omitted,
and fully unsteady. The resulting criteria for the first and last cases
are based on an unproven hypothesis, but it is suggested that their

simplicity merits a trial application.
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1. 1INTRODUCTION

The design of realistic, efficient structures by procedures based
on the mathematics of optimization is today a routine tool in the manu-
facture of large aircraft and other devices where a combination of light
weight with high reliability is necessary for success. This situation
comes about in consequence of the merging of two streams of analytical
development. The first of these involves the use of finite-element
approximations to built-up structural arrangements, together with matrix
theory and the digital computer. Although hundreds of names might be
mentioned, no one has contributed more to the foundations or to the
current useful state of finite-element methods than Professor Argyris.
In addition to numerous reséarch papers, his several books (e.g.,
Argyris [1]) and his valuable series of articles with Professor Kelsey

in Aircraft Engineering are classics of the field. The computer progranm

ASKA, developed with his éolleagues at Institut fiir statik uand Dynamik
der Flugkonstruktionen in Stuttgart, is in daily use throughout the wgrld
on problems which include the class discussed in this paper.

The second strean derives from variational calculus and the concept
of extrema. Based on the construction of necessary or sufficient conditions
that must be met by the optimum (usually, minimum-weight) design, its
practical aspect consists in the formulation of ever-more-efficient search
methods, which are intended to bring a trial or starting configuration to
within acceptable convergence of the goal by the smallest number of
steps or the least cycles of computer operation. An excellent summary,
with innumerable examples, of the mathematics of optimization is contained

in Bryson and Ho [2]. The AIAA Structures Design Lecture by Schmit [3]

reviews the rich history of aeronautical applications.
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The present research addresses a snall coraner of dynamic structural

optimization: one where constraints relating to flutter of a wing or other
dynamic aerocelastic performance nust be imposed along with conditions of a
more conventional nature, such as those relating to stress under load,
deflection, minimum dimensions of structural elements, etc. This general
topic was reviewed recently by Stroud [4] — a survey which perhaps
relieves the present authors of responsibility for extensive literature
citations. Special recognition should be given, however, to the paper by
Turner [5], wherein optimization with rigorous flutter requirements was
first formulated in a discrete, finite-element framework.

The focus here is on a single constraint involving aeroelastic
stability. Section II begins with a very familiar statement of the
flutter problem for a linear syster with a finite number of degrees of
freedom (cf. Bisplinghoff et al. [6], Sect. 9-5). The structure's motion
is assumed in advance to be a sinplz harmonic time function, and through the
artificial introduction of energy dissipatioﬁ one seeks the actual speed
of neutral stability for flight under given atmospheric conditions.

Because flutter calculation is so time consuming in cases of aero-
nautical interest, there is here & special reason for identifying search
methods that require this step as infrequently as possible. It is the
authors' opinion that schemes yhich fall under the heading of optimality
criteria offer the best prospect. Accordingly, a relatively simple ying
structure, subjected to a single constraint on its flutter performance,
is analyzed in several ways and the computer costs are compared. The
chosen methods range from well-known and generally-available routines,
based on mathematical programming, to a pure criterion approach that

is believed to incorporate some new features. While the latter is




similar in form to those employed by Siegel [7) and Haftka et al.[8], g
it alone is capable of converging to a true local optimum. As will be
seen, this permits comparisons of efficiency among the different schenes
that involve both the same initial design and essentially the same final
design.

Section III contains ne numerical results but is an exploration of how
aeroelastic optimization might be carried out in circumstances when it is
undesirable to prescribe simple harmonic motion. Such computations

appear more feasible today because of investigations like those of Vepa

[9] and Edwards [10], wherein means are described for adapting existing
aerodynamic theory to the unsteady flows produced by general small motions
of wings or bodies.

The aim of Sect. III is to produce optimality criteria under various
approximations to the aerodynamic terms in the equations of motion.
Although no such scheme may be regarded as proven until after its success-—
ful application to meaningful designs, nevertheless these proposals are
deemed worthy of trial. 1In the process of their development, the concept
of the adjc’ system plays a significant role. A curious discovery is

mentioned, wi'ch relates to this adjoint in circumstances where "aero-

dynamic memory" must be accounted for.

I1. COMPARISONS OF DIFFERENT OPTIMIZATION METHODS ON A WING STRUCTURE
WITH FIXED FLUTTER SPEED ﬁ

In his lecture, Schmit [3] has discussed the different philosophies

underlying optimization schemes derived from mathematical programming and

from optimality criteria. Basically, the mathematical-programming algorithmre

make use of information from the current design and calculate a design

B ——
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change that will alter the objective in the required direction without
violating any of the constraints. Optimality-criterion algorithms are
derived — often purely heuristically — from the necessary conditions

for optimality, or an approximation thereto. Either approach may or

may not require that derivatives of the constraints be calculated. For

a complicated behavioral constraint, such as a constraint on flutter -
speed, the computation of derivatives may introduce unnecessary penalties
in terms of computation time. The purpose of this section is to introduce
an algorithm that does not require derivatives and to present some compari-
sons with other algorithms on a relatively simple system governed by a
single equality constraint on the flutter speed. Additionally, the new
algorithm will be seen to have the capability of converging to the "exact"
optinum, so that the comparisons are more meaningful. Although virtually
every new or revised scheme that has appeared has been compared with othar
schemes, there are very few instances (e.g., Haftka et al. [8] ) where the
comparisons have bzen made on the sanme compuﬁer systeﬁ.

2.1. Statement of the Flutter-Speed Constraint

Consider now a lifting surface whose deformation is approximated by
superposition of a finite number of free-vibration modes, which may or
may not be normal modes. (Typically, they will be the normal modes of
an initial design, which for the sake of simplicity will be retained as
primitive modes during the opéimization.) These modes define generalized
coordinates Ei(t), i=1, ..., n. With the assumption of simple harmonic

motion in time ¢t , the governing equations for flutter become

([N] +[A] - % [K]){Z} = (0} (2.1)




Here [M] and [K] are symmetric nxn generalized mass and stiffness
matrices, respectively, [A] is a matrix of oscillatory generalized
aerodynanic forces, and Ei(t) = E;eiwt. The matrix [A] is a complex
function of Mach number and reduced frequency. In the "V-g'" method,

(2.1) *is solved for fixed Mach number and a number of reduced frequencies
to give a set of eigenvalues Ei’ and eigenvectors (E}i’ £ 3 Ly weny e
With 51 = (l+jgi) /ulz (3 =\/-—r),a corresponding set of frequencies we
and artificial damping parameters g; can be calculated. From each
frequency and the reduced frequancy, an airspeed V can be determined,

and the roots of (2.1) can then be plotted as curves of V vs. g for

varying values of reduced frequency. The lowest speed at which a root

makes the transition from negative g, denoting stability, to positive g,
denoting instability, is the critical flutter speed. A final step involves
repeating this process for other valuss of Mach number until the values of the
critical flutter speed, the Mach nunber, and_che sound speed at the chosen
altitude are compatible.

For the purposes of optimization, there are several ways in which
the constraint may be imposed. One possibility is to work directly with
the speed itself; this has been done successfully in a number of instances
( (111, [12]). Another possibility that offers certain advantages is to

fix the speed (and tnerefore the Mach number) and to constrain the value

of g (cf. Segenreich and McIntosh [13]). This practice will be followed

here, and the constraint for flutter is then stated simply as




for the critical root (or mode), with speed and Mach number fixed. 1In

the examples that follow, this constraint will be the only behavioral
constraint, so (2.2) can really be regarded as an equality constraint.

2.2. A Heuristic Redesign Algorithm Based on an Optimality Criterion

The finite-element representations of many structures involve elements
whose stiffness and inertial properties depend linearly on the design
variables, which are commonly plate thicknesses, spar—-cap cross-sectional
areas, etc. This linear dependence will therefore be assumed here, and

the weight to be minimized will be written in the form

N
Jo= ) at, (2.3)
i=1
There may,in fact,be sonz mass that is invariant with respect to the

optimization, but it is not necessary to include it in (2.3). In accor-

dance with Turner [5] and Haftka et al.[8], the equations of motion

(2.1), written for the critical node, are premultiplied by a row matrix
of Lagrange multipliers or adjoint variables, and the real part of this

quantity is adjoined to Jo to give

J({q}, {51, @, e,) = J_+Re(lql (B){ZH (2.4)

where

(B] = M + [A]l - 2K (2.5)

Necessary conditions for optimality are given by the vanishing of variations

of J with respect to @, t,, and the elements of {q} and {£} . These

e

yield, respectively,

- .
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E Re (xq; [gg—][i} ) = 0 (2.6) ;

ai + Re ( 12].1 [;&][E)) - 0; l) arey N (2. 7)
f [(B) (&) = (0} (2.8)
(131 [s])T = B (@ = {0 (2.9) |

Since Q = 1/m2 on the constraint boundary where g = 0, (2.6) is equiv-
alent to the vanishing of the variation of J with respect to the flutter
frequency w, and it can be viewed as a relation giving the flutter
frequency at the optimum design. The original constraint equations are
reproduced by (2.8), while (2.9) defines the adjoint equations. The

optimality criterion is given by (2.7). Under the aforementioned assunp- .

tion of linear dependence of the inertial and stiffness properties, [M]

and [X] can be written as

N

Moo= Y £, 0Y) ' (2.10)
i=1

I - i e IR (2.11)
| i i

and (2.7) becomes

l by f a > = -
() = - Re TIn) - FIRNEHY = -1 (2.12)
The left-hand sides of (2.12) resemble energy densities, and the optimality T
criterion is therefore seen to require that all of these "energy densities" 1

have the same value. If minimum-gage constraints on the design variables
are also specified, then some design variables may become passive — i.e.,

equal to their minimum allowable values——during recdesign. If this occurs,

then (2.12) must hold only for the active design variables.
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One can create any number of iterative redesign scheaes based on

(2.12). One particularly attractive candidate is the following:

v+l v v
t1 = Ci ti (2.13)
(e )\) e e
¢ - ¥4 L (1+g”) 2 (2.14)
i e ¥
av

Here v is the iteration number, and eav is the average of the (ev)i
for all the active variables. The absolute value of the "energy-density"
ratio is required, since the exponent e is typically less than unity
and the (ev)i may be either positive or negative. Note that as the

"energy-density" ratios approach uaity, the comnstraint factor (l+g )e2
serves to ensure that the constraint g=0 will be satisfied. The form
of (2.14) is derived from two assumptions:
(a) 1If l(ev)il > leavl , the corresponding design variable
should be increased, and
(b) 1f the current design is not feasible (gv >0), all design
variables should be increased.
Convergence of this iterative formula cannot be proven, and there is no
guarantee that the formula will be capable of equalizing not only the
magnitudes but also the signs of the (ev')i , which is a necessary condition
for optimality according to (2.12). The formula (2.14) is similar to that
used by Haftka et al. [8] , except that the absolute value rather than the
real part was used in defining the (ev)i in (2.12). In effect, thisb
means that the algorithm used in (8] attempts to satisfy an approximate

rather than an exact optimality criterion, and the final designs obtained

with this algorithm did not correspond to the final designs obtained with

other methods.




The analysis and redesign algorithm proposed herein proceeds in
the following steps:
(1) The current value of the constraint is found by solving (2.8)
and obtaining g, w, and {£} for the critical mode. Since
the aerodynamic matrix [A] will vary with frequency, it is
required that the frequency used in defining [A] coincide with
the frequency calculated from @ . This is achieved iteratively.
The frequency from the previous design is used iﬁitially to
define [A] and is then compared with the frequency calculated
from Q. If these two frequencies are not in agreement to within
a specified limit, the frequency computed from Q i; used to
determine a new generalized aerodynamic matrix [A)] and the
_process is repeated.
(2) The adjoint equations (2.9) are solved, and {q)} for the
critical mode is obtained.
(3) The densities (ev)f’ are calculaged as in (2.12) for the
current active set ;f design variables, and e;L and the
C;’ are calculated. The C;’ are calculated for all 1 .
(4) The new active design vériables t;rbl are calculated.‘ If

any of these is less than its specified minimum value, it is

set to that minimum-'value and 'is relegated to the passive set.

v
i

duced to the active set and steps (3) - (5) are repeated until

(5) 1If for a passive variable C, >1.0, this variable is reintro-

the active-passive identities are stable. Once this stability

is achieved, the new set of design variables t;ﬂi is taken

as the next design.




|

v
i

set. If |1-ci" | < ¢ for all of the C

(6) Convergence is checked by testing the C for the active

v
i

design is declared final. If not, the algorithm is repeated.

tested, the new

The convergence parameter ¢ is set by the user.
Before a numerical example is given, it will be instructive to consider
briefly an alternative optimality criterion and to explore its relationship
to the criterion derived above. This criterion is derived from variations

of the function
J(x, ti) = Jo + Ag i ) (2.15)

Vanishing of the variations of J with respect to the design variables

yields the optimality criterion

S S
a, ati Y (2.16)

Once again, this equality holds for those design variables that are active.
at the optimum. Following Segenreich and McIntosh [13], one can write for

the derivatives

%Egi_ - [(Rzi - Rli._ g 121)(23 Ry + 213>+ -b—i:’(-— 1)

- Ry - 2 1, + "—:’; ) if -o? 1t vgrb]m an
where -
bm3 bm3
D = (2g Ry + 21, + 14-) I, + (2R3 - 281, + - R,) Rs, (2.18)
RE = e (@ I (), (2.19)
R, = Re (@ [K] (E)), . (2.20)
11
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R, = Re (g [KI(E}), (2.21)
— [3A],
R, R (1 [5—1;]{5} )» (2.22)
I | i - - . -
Il, 12 s 13, and I4 are the corresponding imaginary parts, b is a ref-

erence length, and k = wb/V is the reduced frequency. At first glance,
it would seem that (2.16) bears little resemblance to its counterpart (2.12).
However, by making use of (2.6), which is not obtained from the formulation

immediately above, it can be shown that at the optimum

bw '

2R 3

3

Making use of this relation in (2.18) and (2.17) produces a vastly simplified

expression for %fL , which when inserted into (2.16) gives
i
I
i i RS :
-R, +g 12 ) = 3 (2.24)

2.1
2 (R

i
Since @ = (1 + jg)/wz, (2.12) can be rewritten with the definitions (2.19)-

(2.22) to give

2 .1 i .00 .3
(w R1 RZ + g 12 ) = -w . (2.25)

Since the quantities R;‘, etc. involve triple matrix products with {q}
and {Z} , and since the normalization of {q} and {£} is arbitrary,

(2.24) and (2.25) are in fact equivalent expressions. It must be emphasized,

however, that the simplified expression for %{L is valid only at the

i
optimum, so that an optimization scheme that requires derivative calculations

-

must use the full expression (2.17).
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2.3. A Numerical Example

In order to illustrate some of the ideas discussed above, consider the
rectangular wing whose dimensions are given in figure 1. This wing was
created by Rudisill and Bhatia [11] and has since been considered by
Segenreich and McIntosh {13], among others. The structural box has three
bays. In each bay there are two cover sheets, two spar webs, and one rib,
all modeled by in-plane rectangular elements, and four spar caps, modeled
by axial elements. The desigﬁ v#riables are numbered as shown in Table 1.
The initial design values were: £t - t3 = 12.90 cm2 v Xy S té = 0.2032 cm.,

t, - t12 = 0.1016 cm. The weight of the initial design was 88.45 kg.

7
Mininum-gage constraints were imposed at one quarter of the initial values.
For the flutter calculations, the first six transverse free-vibration modes
of the initial design were used to define generalized coordinates. The
doublet-lattice method [14] was used to calculate generalized aerodynamic
forces, and a flutter Mach number ocf 0.717 was calculated at an altitude

of 1,372 meters. This flutter poiat was imposed as the primary behavioral
constraint. Optimal designs were calculated with three methods — the
"energy-density" method described in 3.2, the method used by Segenreich and
McIntosh [13], and a method developed by Vanderplaats [15]. The method in
{13] is derived from an algorithm due to Kiusalaas [16], which is based on

an optimality criterion of the form (2.16) and requires calculation of the

derivatives %{L at each iteration. The method in [15] is based on a_
i

mathematical-programming procedure known as the method of feasible directions
[17].

The final designs from all three methods were essentially identical.
The only active design variable was tys the thickness of the front and

rear spar webs in bay 1. The final designs, constraint values, and relative

13




computer CPU times are given in Table 2. All computations were performed
on an IBM 370/168 computer at Stanford University. Both Siegel [7] and
Haftka et al.[8] used e

0.5, e, = 2.0 in their computations. With

3 2
these values, the algorithm of Sect. 2.2 diverged, and it was necessary to
reduce e1 to 0.15 in (2.14) before convergence could be demonstrated.
Before the flutter constraint was considered, the same structure was
optimized with a displacement and a natural-frequency constraint. For these
problems, it was possible to leave él at 0.5. All three methods produced
almost identical final designs and CPU-time comparisons similar to those
in Table 1. .
The final design was reanalyzed for flutter with new (normal) modes
in order to ensure that the root that was constrained was still the critical
goot. This was found to be the case; the critical branches of the initial
and final designs are compared in Fig. 2. Using the normal modes of the
initial design as primitive modes during redesign ig seen to cause an
error of 5.57 in the estimation of the flutter speed in comparison with
the flutter speed calculated with normzl modes of the final design.
In more complex practical applications of the method, especially when the
initial design is far from optimal, one should occasionally re-calculate
the normal modes. They are then to be used as the basis for subsequent
iterations, and slight mismatchés of the final flutter speed can thus be

-

avoided.
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ITI. OPTIMALITY CRITERIA BASED ON AEROELASTIC EQUATIONS IN THE TIME
AND LAPLACE~TRANSFORM DOMAINS

Since optimality criteria are closely related to variational prin-
ciples from which the associated equations of motion can be derived, the
first stage of this investigation looks at these principles and at the
‘adjoint systems which are an inherent feature when nonconservative effects
are present. The starting point, as in Sect. II, is a reference design
whose behavior can be adequately represented by the generalized coordinates
£i(t) , 1=1, ... n, of some subset of its natural modes of free vibration.
The generalized masses and stiffnesses are described by symmetric nxn
matrices [M] and [K], respectively. At the beginning of optimization, these
matrices may be diagonal. But, as the search proceeds;‘the generalized
coordinates and associated eigenfunctioans are left unchanged. Therefore
[M(mk)] and [K(mk)] become full matrices, functions of the N added or sub-
tracted masses m that constitute the vector of design variables. The
dependence on m_may, in one or both instances, be linear (cf. Turner (s,
but this is not necessary to the development.

For the analysis of homogeneous aerozlastic phenomena like flutter
stability, the equations of motion governing the column matrix {§(t)} _ :
contain aerodynamic generalized forces, lincarly dependent on this matrix.
Two cases are considered in what follows.

3.1. Quasi-Steady Aerodynamics'

In this approximation (cf. Sect. 5-6 of Bisplinghoff et al. [6]
and Pines [18], among many other sources of information) there is negligible

"memory," so that the airloads are algebraically related to * {€} and {E}. 4

L)
+The “"apparent mass" effect might also be included through a {£} term, but
this refinement would contribute nothing of significance.

Il 15
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One useful form of the equaticns then reads

M) {'é} + [K){g} - ([D]{?;} + [E]{g}) = 0 (3.1)

Here [D] and [E] are nonsymmetric matrices of real constants for a given
flight condition. It proves desirable to extract from these terms a
quantity with dimensions of force, containing the aeroelastic eigenvalue

Q.. This eigenvalue-may be the actual flight dynamic pressure or perhaps
Mach number, etc.[cf. the parameter Ao used by Weisshaar ([19], Chapter 6)

in panel flutter optimization]. Equations (3.1) then becoﬁe‘
[M]'{E} + [KJHE)} - @ 8 ('E/v [a)(&} + [e]{g}) =0, 2.2)

where [d] and [e] would normally be dimensionless. S is a reference
area such as that of the wing planform projection; reference wing chordlengtu
¢ and flight speed VvV are employed to cancel the dimensions of the time
derivative.

Let qj(t), j=1,¢*+ , n, be generalized coordinates for the adjoint

system. The equations governing the column matrix of the qj are.
- . : - T o T
Ml{q} + I[K1{q} - Qs ( - c/v [d]” {q} + [e] {q}) =0 (3.3)

Here superscript T denotes the transpose of a square matrix. One way
of deriving (3.3) is to require stationarity, with respect to variations
in the elements of {£} and {q}, of a generalized Hamilton's principle

which might be written

2
H = / <~ 1a) DMIEY + La) [KI{E} + QS (E/v)u’u (dl{e}
t

1 .
- Qs tqilel{g} Hae (3.4)
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The open brackets mean a row matrix. In the usual way, "initial" con-
ditions are prescribed at the time limits tl and t2 to prewvent nonzero
terms from arising during integration by parts. It is remarked that H —
like the optimality criteria based on it, to be proposed below — is not
unique. Thus the third term in the integrand could have its sign changed

and the time differentiation transferred from 1q) to {E} .

3.2. Linear Aerodynamics with "Merory."

When analyging stability, experience shows that one must usually
account for the unsteady influences of the past history of a wing or body's
motion. They are due to the presence of a vortex wake shed as the result
of prior changes in the circulation "bound” to a ying, to the finite speed
of sound propagation in the gas, or to both of these effects. One must

then replace the aesrodynamic terms in (3.1) by a convolution
t
[aA] * (g} = -f [ACt-1)] {e ()} dn (3.5)
o

In this form, the motion is assumed to have begun at t = O. The elements

Aij(t) of [A) are indicial time functions, giving the generalized force
exerted on one degree of freedom i due to impulsive motion in another j.
In most cases these elements are known, without approximation, only in
terms of their Laplace transforms Xij(s).

Replacing [A] by a dimensionless equivalent [a] as before, one is

led to the fully unsteady generalization of'(3.2):

. t
){g} + k{g} - Qs f fae~1)] (8Cx)} dr =0 (3.6)
o

Clearly, (3.6) can be derived from stationarity, with respect to the

elements of 1q), of




: B
2 ;
H =[ < - 1 MIEY + 1q) [KI(E}
tl .
¥ s lq(t)l/ fa(t-1)) {g(x)} ar ) 4t (3.7)

o
It is of interest to examine the adjoint equation, the one governing

{q(t)}. To this end and before a meaningful variation of H with respect

to £, can be carried out, the order of integrations in (3.7) must be

i

inverted and the variables t and t interchanged. Since the result should

not depend on the choice of t, and t it seems convenient to replace

1 2’
these quantities with the starting time t, = 0 and with ty==. After
these choices have been made, simple manipulations lead to
M {q} + [K] {q} - Q.S / la(r -t)]{q(r)}dr = O (3.8)
t

Albeit there are other ways of writing the adjoint equation, (3.8)
has a certain intrigue. If one attempts to give physical meaning to the
aerodynamic term, it would seem to imply that the state at jnstant t is
affected by events subsequent in tima2. Such speculation is apparently not
fruitful. As in other nonself-adjoint systems, there is often a great .
deal of artificiality in the adjoint problem, and this feature is here
exacerbated by the presence of a convolution in (3.6). The convolution
theorem of Laplace transformation, incidentally, does not ;pply to the
integral in (3.8).

In an effort to gain insight, an elementary problem with a single
degree of freedom §&(t) was constructed from (3.7) and (3.8). The single

indicial function was taken as a simple lag,

AGE) = a . (3.9)

Even in this case, the solution of (3.6) and initial conditions
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. .
ME + w? g - a, f g AT g (1) dr (3.10a)
(o]

£0) = & £(0) = o, (3.10b)

is not particularly convenient to write out. The special choice

2 : <
Ko = Mo 0 causes a pole-zero cancellation, however, yielding

the elementary result

E(t) w - ot/2

£ ali o sin (wn t +¢), (3.11a)

o n
with w = W /1 - (o/2m)2 (3.11b)
P = t:an_1 (Zw“lo) (3.11¢)

The corresponding adjoint q(t), also with

a(0) = q_; q(0) = 0 (3.12)

cannot be calculated by Laplace transformation. Merely assuming it in

the form of (3.1la), however, yields

a(t)/q, = E(t)/g, - A (3.13)

This is physically reasonable and not unexpected, because the system and

its adjoint should have the same eigenvalues.

The Search for Optimality Criteria.

As an aid to deriving criteria that might enable efficient search

routines while aeroelastic coastraints are enforced, the ideas in Sect. 5b
of Plaut's review [20] furnished an excellent lead. This presentation is,
accordingly, broken into three parts, the first dealing just with a discrete

version of the same kind of nonconservative system treated by that author.
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3.3a. Minimum-Weight Structure with Prescribed Flutter Stability
Boundary of the Frequency-Merging Type.

In the quasi-steady Eq. (3.2), specialize further by assuming

[ =0 . (3. 14)
This elinination of dissipative mechanisms ensures that the eigeavalues of

DOCEY + (KICE} - QS [el{g} = O (3.15)

remain purely imaginary as parameter Q. is increased from zero. Because

of the asymmetry of [e], however, there is some Q. =8 at which a pair

oc
becomes equal and produces "instability by merging of frequencies" (cf.
Pines [18] ).

In a form slightly different from that in Sect. II, a typical optimi-

zation problem may be stated as follcws:

N
Minimize Jo = :E: W (3.16)
k=1

with {£} a solution of (3.15) such that

B 2% - (3.17)

L AR k=1,2,...N. ('3.18)

Observe that the ™ can be inferred from specified minimum dimensions
o .
of structural members; ifJo represents the reduction of total weight from

.

an initial design, they will be negative numbers. Equation (3.15), its

adjoint, and the generalized Hamittonian integrand (cf. 3.4) arc rewritten v




. 5 2
the substitutions s = -qQ,

g, (x) = Ei e%t and qj(t) = —ij S Y (3.19)
(-sz o) + [X] - QwS[e]) €&} =0 (3.20)
(-n ) + [K) - QmS[e]T) Q@ =0 (3.21)
o= @ KIE + e@ RO - Qs @ [el(E} (3.22)

[Note that, although H is nonlinear in q and &, it is expected that
the eigenvectors will be real up to ro. Therefore, there is no question
of taking real parts in (3.22).]

Plaut [20] points out that the characteristic equation of (3.20) or

(3.21) has the form
F(o,, Q) =.0 ' (3.23)

He reasons that, with two frequencies merged at Q = Qc and Q = ch,

it should be true that

d Q,

——ag— = 0 (3.24)

Q=20
c
. R

we

He suggests premultiplying (3.20) by 1q) and solving for Q,

~uqs M (E} + 1qu(K]1{E} . e E3.25)

S s 1q; [e] (€}

Applying (3.24) to (3.25) then produces a relation
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Qi Mg} = o, (3.26)

which must hold at the critical condition.
The manner of constructing an optimality criterion is to adjoin h

to the performance index Jo with a Lagrange multiplier A,
= 0 N
J((s} .(q},ﬂ.mk) - ) m
' k=1
+ A(IE) [K(m )] (E} + ala) )] (E} - Qs [q]le] {'é}) (3.27)

The variations (or partial derivatives) of J with respect to the elements

of {E€} and {q} produce (3.21) and (3.20), respectively. The vanishing of

the variation with respect to Q is assured by (3.26). Finally, variations

on the design variables m yield
-1 =3 ( Lq) [—2—;1—] (£} + Q 1q [g;;] {E}) (3.28)

Note that the equalitb for all k= 1. s, N) of the quantities in
parentheses in (3.28) furnishes the desired criterion. Just as in Sect. 1I
the "energy ratios" are employed to adjust the individual masses during
progress toward an optimum, so these quantities should be able to do the job
here without the need for differentiations with respect to eigenvalues.

That such criteria do lead to meaningful designs is implied by the simple
examples given in Plaut [20].,

3.3b. More General Quasi-Steady Airloads -

The physical and adjoint equations of motion in this case are the
full (3.2) and (3.3). To be specific, let it be required that, at a
given Q_, the least stable of the acroelastic eigenvalues has a given

degree of stabllity -— a condition that might be expressed
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Re {si} e W for all 4= 1,2 ..... 2n (3.29)

Here So is a positive real constant. Under assumption (3.19), the real

or complex-conjugate pairs of s, are eigenvalues of

i

< M o+ K- QS (ivg (d] + [e])>{E} = 0 (3.30)

and also of the corresponding equations from (3.3). Subject to these
constraints and to a prescribed Q_, the optimization problem then
consists of (3.16), (3.18) and (3.29).

By analogy with (3.27), it is now hypothesized that an appropriate
formulation requires the vanishing of variations with respect to Ei’ qj,
m and s of

N
3 ({'z;'}, (@, s, “‘k) = k}:‘l‘ m, + Re ¢ x(@ KIGE} - s” \q) L CE)
- QS (%5) tas [d1{€} + QS 1qilel{E} D (3.31)

Here, of course, 1A , the eigenvectors and s, are all complex numbers.

i
The line of reasoning whereby the real part is taken in (3.31) follows
directly that given first by Turnmer [5].

As before, two additional relations (beside the physical and adjoint

equations) are obtained from variations of (3.31).

~[3K 1y - .2 = [aM )~
~ 1 = Re{)\ P - 22KEY) 2 .32
el oqj[amk]{ﬁ} s qu[amk]{ }) FB 32)
for all k=1, ..., N. Also
Re <A(2s ta) MI(EY + QS 3—_ tq) (d](E}) >=0 (3.33)
23




The solution procedure that is proposed to be tried starts from
calculating, at a given design step, all eigenvalues and vectors of (3.30)
and its adjoint. In general (3.32) and (3.33) will not be satisfied. For
a particular eigenvalue s (the least stable), they amount to N -+ 1 real
equations involving N + 2 variables: the N mk's, Re{A} and 1Im {)}.
Using the known m for the given design, one might select a single one
of (3.32) plus (3.33) and calculate A . With A available, the remaining
members of (3.32) can be used to adjust the various LY up or down, aiming
for a design in which the quantities within the parentheses of (3.32) are
equal for all k.

One difficulty remains: that of how to drive the real part of the
least stable of the sy toward Sq at each step. This might be doune by
numerically differentiating the stability determinant of (3.30) with
respect to the "most active" of the design variables - This z, could
be altered by just the amount needed to bring Re {si} to B Then the
aforementioned optimality criterion from (3.32) provides a way of correcting
all other m . (Note that "passive" Ty s which already coincide with their
minima prescribed by (3.18), are omitted.)

Obviously, the changes in the other m, (besides the "most active')
are going to throw off the system stability. Nevertheless, these changes
become progressively smaller as the optimization progresses, so choosing
the particular index k whose mass seems to be varying most rapidly may

furnish a sufficiently powerful control on Re {sif.

24
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3.3c. Fully Unsteady Airloads

Surprisingly, this case appears to be a fairly straightforward
extension of the treatment in Sect. 3.3b. The key step seems to be to
assume that the motion has gone on for a long time prior to t = O.

In this case, (3.6) and (3.8) must be modified to

t
D (e} + [K1{g) -Qos/ la(e-1)) {g(1)} ar = O (3.34)

—c0 @

b {q} + [Kl{q} - Qms/ [att-0)]T {q()} dar = 0 (3.35)

-0

Leaving aside certain questions of existence, one again chooses the
homogeneous solutions (3.19). This substitution into (3.34), with the

variable change Ty = t - T, then leads to the algebraic system
([K] + 2 g - Qs [a (s)}) {g}= o, (3.36)

where the Egj(s) are the Laplace tfansforms of the aerodynémic indicial
functions -— exactly the quantities which the Edwards [10] investigation
shows how to calculate.

Inserting (3.19) into (3.34) gives rise to the following manipulations

of the aerodynamic integral:

-

/ la(t - )17 {q(r)} dr =( / SU Y -9 ar){?ﬁ .
g .} & t
T . -
=(/ e 2 fatey” drz) @ = @ (@ e (3.37)
! _ ;

In (3.37) Ty=T -t and the elements of the final square matrix are

simply the Laplace transforms of a,,, with the sign of s reversed.

ij
Substituting (3.37) into (3.35), one obtains
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([K] + £ m - Qs [a (-s)]T){E} =0 (3.38)

The steps in the proposed-optimality-criterion approach parallel
rather closely those starting from (3.31). The expressions containing
matrices [d], [e] and their tranposes must, of course, be adjusted by
the insertion of [a(s)] and [Z'(—s)]T » as appropriate. The quantity

whose variations yield the needed data is

N
3= mo o+ Re( A(Lch [K1(E}- s? 1q1 MI{E} - QS gl [Z(s)](E)))
k=1 : ' (3.39)
The principal complication over the quasi-steady case seems to be that

(3.33) is replaced by a more elaborate formula containing derivatives of
the elements of [a(s)]. Although these derivatives might have to be
obtained numerically in the "exact" formulation, one suspects that their

computation will be greatly simplified by adopting the Padé approximants

of Vepa [9].
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IV. CONCLUDING REMARKS

Although the example considered in Sect. V is a very simple one, the
results are encouraging enough to support additional investigations with
the new algorithm described in Sect. 2.2. It will, of course, be necessary
to apply all of the methods employed in Sect. 2.3 to more realistic problems
before any quantitative assessments can be given concerning relative
efficiency. In particular, it should be noted that the weight reduction
achieved — some 74% of the initial weight — 4is not truly representative
of what would occur in actual éractice. Ultimately the methods need to be
tested for multiple behavioral constraints. The mathematicél—programming
procedure CONMIN [15] is already capable of treating suéh problems, and
the vork of Segenreich et al. [21] and Rizzi [22] will provide interesting
possibilities for introducing a multiple-ceonstraint capability into the
algorithm of Sect. 2.2.

Having thus demonstrated, by mzans of a familiar example, the attrac-
tiveness of optimality criteria in connection with an analytically-complicated
design constraint like flutter, the paper proceeds into a more speculative
area. It cannot be too strongly emphasized that expressions like (3.31)
and (3.39) are hypothesized. The sinilarity of criteria derived from them
to proven counterparts like (3.27), howeyer, lends credence to the proposal
that these schemes be accorded'a fair trial. One may cite the interesting

and successful work of Siegel [7] as evidence that complete mathematical

rigor is not always necessary in a procedure for design optimization.
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Table 1. Design-variable numbering for rectangular wing.

No; of} PRel.

w
(ad
(ad
(ad
A¥-]
(a4

Weight, § Itera-§ CPU
Method : g Ly cm. kg. tisas { Tire
! -3
Vanderplaats [15) - 3.8x10 0.1409 22.8S8 12 )
| ol i
- Segenreich znd KclIntosh [13] §- 9.1x10 0.1376 22.85 49 1.4
{
2
i "Energy-Density" Ratio = 2. 410" 0.1376 22.85 38 1.0

Boasont

Table 2. Comparison of Results for the Rectangular Wing




Figure 1.

Figure 2.

FIGURE CAPTIONS

Layout of rectangular wing. All dimensions are -in cm.

Behavior of critical modes in V-g plane for initial and final

designs. M = 0.717, altitude 1,372 m, 6 modes.
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