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I.
MODIFICATIONS AND IMPROVEMENTS iN A

STRUCTURA L OPTIMIZATION SCHEME BASED
ON AN OPTIMM,ITY CRITERION

l. INTRODUCTION

While recent years have seen continuing increases in the variety

and scope of applications of struc tural opt imiz ation technology wi th in
the aerospace industry , there are still some significant problems to

be overcome before this technology can be routinely applied wherever
it is needed in all stages of aerospace vehicle design. Among these

problems are the need for efficient treatment of large numbers of

design variables (in the thousands, for example) with many different

constraints. Indeed , it may well be tha t the number of d i f f e rent
design requirements with which industry is faced is grow ing more
rapidly than the number of constraints that is being incorporated in
the most recent structural opt imiza tion schemes .

In an effort to aid in the resolution of these problems, N ielsen
Engineering & Research , Inc. (NEAR) has undertaken a research program
under the sponsorship (Contract F49620—77-C—0055) of the Air Force

F Office of Scientific Research (AFOSR) . Of specific interest is the

extension of an optimality-criterion algorithm (refs. 1—3) to large

problems involving multiple constraints , where the constraints include
both strength and stiffness requirements. Before proceeding with this

algorithm, however , it was considered advisable to conduct some effi-
ciency comparisons in order to identify other algorithms with equal

or perhaps superior qualities. Other tasks that were to be undertaken
during the first year involved a study of the accuracy of computing
flutter-speed or flutter—eigenvalue gradients with fixed modes defining

generalized coordinates and possibly the incorporation of multiple
equality behavioral constraints. The sections that follow describe

the first year ’s accomplishments in more detail , the conclusions to be
drawn from this work, and the work planned for the next year . One

archive publication, covering a por tion of the year ’s accomplishments,
will appear in 1978. A preprint of this paper is appended .

I
1
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2. ALGORITHMS BASED ON OPTIMALITY CRITERIA

2.1 Optimality Criteria Versus Mathematical Programming

Optimization algorithms are more or less arbitrarily classed

according to the philosophy underlying their derivation. Mathematical-

programming (MP) algorithms employ a relatively sophisticated set of
calculations at each design point in order to produce a design change
that will simultaneously improve the merit function (i.e., reduce the
total weight) without violating any of the constraints. Optimality-

criterion (OC) algorithms are derived, generally heuristically , from
conditions that must be satisfied at the optimum design . MP algorithms

can generally be proven to converge, while OC algorithms cannot. On

the other hand, OC algorithms are less involved than M.P algorithms from
a computational standpoint. However, the fundamental reason for
interest in Oc algorithms is to be found in their potential for applica—

tion to very large problems , based originally on the succes s of the
• stress-ratio or fully-stressed—design algorithm in treating stress

constraints on members numbering in the thousands.

2.2 Optimality Criterion and Recursion Relation for an Equality
Behavioral Constraint

OC algorithms come in many forms. To fix ideas, let us consider
a single behavioral constraint on a structure to be optimized . The

structure is character ized by N design variables t1, and its mass in
to be minimized is assumed to be a linear function of these variables:

N
rn(t . )  = in + m(t.) = in + ~ m .t. (1)

1 0 1 0 jl  1] .

The assumption of linearity is not necessary , but it covers a broad
class of finite-element models where the design variables are plate

thicknesses, bar areas , or the like. In addition , there is some mass
m0 

that is not available for optimization , which may represent
fas teners, li ghtly loaded structure , fuel , etc. The behavioral

constraint is written simply as

c(t~) = 0 (2)

__________________ 
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and there may also be minimum-gage constraints of the form

t. .~~ ( t . )  . , i = 1, 2 , ..., N (3)
1 i mm

One simple form of an optimality criterion can be obtained from varia—

tions of the merit function

J = m + A c  (4)

In par ticular , the requirement of vanishing variations of J with
respect to the active design variables leads to

1 ~c _ 1 (5)
i i

Here A denotes the set of design variables that are active-—i.e., not

at their minimum values--at the optimum . A number of recursion rela-

• tions have been introduced for iteratively resizing the structure in

order to arrive at a design that satisfies equation (5). (A very

revealing discussion of the relationships among many of these rela-

tions may be found in ref. 4.) One that has been widely used is due

to Kiusalaas (ref. 5):

t~~
’
~ = c~ tY (6)

1 3. 1

where

v v v i ] .  adC1 c~ ~~~~~~~~~~~~~~~~~~~~~ (7)
1 1

Here v is the itera tion number , and c is a parameter that ranges in

value from -1 to +1. It may or may not vary with each iteration .

Note that as the optimum is approached , A’~[-~
_ 

~~
_) ~ —1, and C~ 

-
~ 1

no matter what value a takes.

2.3 Two Resizing Algor ithms

There are in turn a number of ways of devising resizing algorithms

based on equations 6 and 7. One procedure , from references 1—3 , deter—

mines a~’ so that a given reduction in mass is achieved , while the 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
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multip lier A ” is determined from the requirement that the constraint
value c’~ be always driven to zero. To first order , the change in the
constraint value is given by

N 

~~~~ 

:+:

v 
= ii t~~~

-.) {t~~
l 

— t~~) 
(8)

With ~\m ~ m1 (t. 
- t.), equations (5)-(8) can be manipulated to

i=l

yield , for ~~~~ = 0,

- , + ~~~~~~~
a ~~l +  

2 (9)v 2  V
III - 

~~~ “~ 2

+ - 1)
A = — —  (10)

t3~

where = 

~ 
[~~

_ 
t.)~~, and = J_. 

[(~~~
_)“]t’). The mass change

is specified as -

= —Km~ (11)

where K is chosen from a table of user-selected values arranged in

descending order. The largest value is chosen first , and ~~ 1
V 

and

the C~ are calculated for the active set A. If any active design

variable is changed by more than 25% , the nex t lower value of K is
chosen , and the process is repeated until no design-variable change U

exceeds the 25% limit. Next , the new values of the active design

variables are compared to their minimum gages. If tr1 
~ 

(ti
)min~

the next lower value for K is selected , and the redesign process is

repeated . If t”~~ < (t.) . for the smallest value of K, then fornun
that des ign variable ~~~~ = (t

~~
)
~~~~~

i and it is relegated t~ the

passive set. A final pass through the redesign step is now required ,

—a-—— —
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since ~ t
1 

Ct ..) — t~~, and equations (9) and (10)  must be altered
accordi ng ly to reflect revised expressions for c’1  - c~ and ~ m V ( see
reference 1 for details) . If the active-passive identities are
unchanged , then u new iteration is begun . Convergence is checked

in two ways .  First , if K is at its r~~n i~~urn va lue  and an active
design variable is calculated to change by more than 25%, the design
i~

; declared final , subject to a check on the active-passive identities.
This test is essentially a “diminishing returns” criterion , since a

mass reduction of a given amount requires larger and larger chany~ s

in the design variables as the optimum is approached . The second

test involves the proximity of the redesign factors C~ to unity :

I C~ — l J < e (12)

Here ~ is a user-supplied convergence parameter. If this test is

satisfied , the design is declared final , again subject to a check on

the active—passive identities. This check is to ensure that there are

no passive design variables that should be reintroduced into the active

set. It is based on the Kuhn-Tucker optimality conditions and is

described in detail in references 1 and ‘. A flow diagram for this

algorithm is given in Appendix A.

A variant on the above algorithm involves simply scheduling a,

rather than computing it for a scheduled set of mass reductions

(ref s. 6 and 7). Also , the minimum-gage constraints are handled

differently. At each iteration following the one where a design

variable reaches its minimum value, the factor C~ for this variable

is still evaluated . If C~ > 1, the variable is reintroduced immediately

• into the active set. (Here also special steps must be taken in the

calculation of A ” to account for design-variable changes associated
with entry to or exit from the passive set. Details are in references

6 and 7.) In this algorithm , then , active-passive identities are

con tinually checked , but there is very little computation associated
wi th determ inin g aV . Th is parame ter is scheduled by the following
formula , which replaces equation (9):

V v—l (0) v—i• cl = a  a = c  ( a )  (13)x x 

-~~~~~~~~~~~~~: ~~~~~~~ii~~~::
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Typically, a~°~ will be chosen to be near unity - say, 0.9. Then at

each iteration the current value of a is obtained by multiplying the

previous value by a fac tor 
~~~~~~

‘ which is slightly less than uni ty —

say, 0.9 5. The reduction of a at each step is equivalent to increas-
ing step sizes as the optimum is approached , in order to accelerate
convergence. Convergence is evaluated by checking the uniformity of

the weighted derivatives, according to equation (5):

v I i  ac)”
1 + A i~j— ~~— i < c~ ‘# i c A (14)

‘~~i iJ

The convergence parameter ~ is user-supplied . A flow diagram for

this algorithm is also given in Appendix A.

2.4 An Alternate Approach to an Optimality Criterion

The form of the optimality criterion derived in subsection 2.2

is very general, and this generality is easily extended to multiple
constraints ( ref .  5) .  However , it will prove instructive to consider
at least one other approach, which involves using the equations

governing the structure for the particular constraint being considered .

In an effort to retain some generality , let the equations be written

as

[B(~~,t.)]{g} = {o} (15)

Here {q } is a column of unknowns which may be discrete displacements
or modal coordinates , and the coefficients of the equations are given
in (B] , which is a function of the design variables t~ and possibly
an eigenvalue ~ as well. In the case of an aeroelastic constraint,

such as a fixed flutter speed, then equation (15) will be complex;
for a constraint on a natural frequency, the equations will be real.
The merit function J can now be written as

.1 = in + Re(LpJ [B]CqJ) (16)

Here the scalar multiplier A is replaced by a set of multipliers Cp},

and the real part of the triple matrix product must be taken if

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~ ~~., -.
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equations (15) are complex (ref. 8). At the optimum , the merit

I function .3 is stationary with respect to ind~~ enden t variation s of
the t., {p}, and {q}. If the eigenvalue ~2 is not fixed by the

constraint, then variations of it must be considered also. Applying
• 

~• these condi tions y ields

[B] {q } = ~oJ (17)

1 L~J (B] = 
Lo] , 

or [3]T{~~} = {O} (18)

Re([pJ[~~]{q}) = 0 (19)

I ml + Re(~pJ[~~ -](q}) = 0 (20)

Equation (20) is the optimality criterion. The term involving the
triple matrix product resembles an energy density , so this could be
referred to as an “energy-density ” form of an optimali ty criterion.
(Specific expressions for various types of constraints will be pre-

• 
sented in Section 3 below.) Writing (e

~
)1 

= j~
- Re ([pl [~~~-J{g})

permits equation (20) to be recast as

(e
~
)1 = —1, V- i c A (21)

As noted here , in the presence of side (e.g., minimum-gage) constraints
only the indexes for the active design variables are to be considered .

2.5 “Energy-density ” Recursion Relation and Redes ign Algorithm

I The number of recursion relations that can be devised to sa t i s fy

equation (21) is limited only by the designer ’s imagination . One

I choice is a variation of the recursion relations developed in refer—

ences 9 and 10:

1J 1 1 1

1 
where 

Ce )
V e1 e

- 
.1 = v i (1 + ~~~ 

2 (22)
1 (eav)

V

and

1..

- - ~ . . 
~~~~~~~~~~~~~~~~ -
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(eav)
V = ~ (es,)” (23)

1EA

This relation differs from those in references 9 and 10 in several
important respects. In reference 9, which is concerned with altering
a strength design to meet a flutter-speed constraint, only the strain-

energy density is used to define the (ev)i, rather than the complete ,
or exact, expression represented by equation (20). Also, the denom-
inator in the “energy—density ” ratio is obtained by considering only
those elements whose (ev)j exceed the average (eav). This has the
effect of permitting only increases in design variables , so that a
particular design variable that is too large for strength require-

ments in the redesigned structure cannot be reduced . This limitation

is removed in reference 10, but “energy—densities” are defined as
(e
~
)1 = 

~— (L~i ~~~~~~

-. {q}~~, which is also different f rom that required

to satisfy equation (20). Hence neither of these two procedures is
• capable of converging to the “exact” optimum, whereas a redesign

algorithm based on equations (6), (22), and (23) will do so.

In equation (23), the average (eav)
V is determined by averaging

— the energy densities only for those design variables in the active
set. (NA is the number of active design variables.) In equation (22),

U e1 is typically less than unity (for example , 0.5) and e2 is greater
than unity (say , 2.0). Since the individual (e

~
)
~ 

may differ in sign
from eav~ the absolute value of the “energy—density” ratio is required

to avoid numerical problems. This ratio also implies that a design

variable should be decreased only if its “energy density” is less

than the average. In the factor involving the current constraint

value CV , cV > 0 represents an infeasible value , requiring an increase
in the design variables.

A redesign algorithm based on equations (6), (22), and (23) is

quite simple. Minimum-gage constraints are treated by simply relega—

ting a design variable to the passive set whenever ~~~~ .�. (t1
)~~~~. ~t

each step, all C~ are calculated, so whenever a particular C~ is
greater than unity for a passive design variable , that variable is
reintroduced into the active set and the redesign procedure is invoked

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

- 

~~~ - - -
.
- 
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again. This approach to the identification of the active and passive
sets is identical to that followed in the algorithm of references 6
and 7. Convergence is evaluated by equation (12). A flow diagram

for thi s “energy-density ” algorithm is given in Appendix A.

3. CONSTRAINT EVALUATIONS AND DERIVATIVE OR “ENERGY-DENSITY ”
CALCULATIONS

The algorithms discussed in Section 2 above were coded as separate

I routines that require constraint evaluations and calculations of the

derivatives or the “energy-densities”. In this section, specific
forms for the constraints considered--displacements, natural frequen-
cies, and flutter speeds--are presented. Also, the equivalence of the
two forms of optimality criteria--equation (21) or equation (5)——is

discussed .

3.1 Displacement Constraint

The displacements of a structure loaded by a set of forces {F}

are found by solving

[x]{u} = {F} 
. 

(24)

where (K] is the discrete stiffness matrix , (F} is a column of nodal
applied forces, and ~u} is a column of nodal displacements. One of

these displacements, u , is to be constrained , so that c’~ = 
~ 

-1.
r r ‘ r d es
L In the derivative calculation, the dummy-load method is used . This

involves calculating the displacements {U~~~~} due to a dummy load set
{F(r)}, where =

[K]  {u ( r )  } = {F(r) } (25)

It is now assumed that the stiffness matrix (K] is a l inear function

of the design variables and can be written as

N
( K ]  = (K 0] + ~ t~ (K 1] (26)

I

I[
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The justification for this assumption follows the same line of

reasoning used in justifying equation (1). The constraint derivative

can then be shown to be (see, for example, ref. 5)

3c 1 r 1 (r
(u)~ 3t. 

- 

(U) d 
u [K.]{u } (27)

The f i r st form of the optimali ty cri ter ion , equation (5), becomes

m .
~~
ur)de 

[Lui Ki~~
u(’

~~) 
= 

~~~
, ~# i c A (28)

While the form of the constraint equation in this case does not
correspond to that used in developing the second form of the optirnality
criterion, equation (21), it is nevertheless possible to make use of

the recursion relations, equations (6), (22), and (23), by replacing
(e
~
). with -

~~~~~~~

_ 
. This is reminiscent of the recursion relation

finally chosen for FASTOP (ref. 11), in the sense that it can be

viewed as a heuristically derived recursion relation based on

satisfying the optimality criterion given by equation (5).

Constraint evaluation in this case is straightforward. The

derivative matrices (K., ] are invariant, as a result of the linearity

• assumption, so equation (26) is used to update the stiffness matrix

at each step .

The displacement Ur is found by solving equations (24) for {u}.

The dummy-load displacements are found by solving equations

(25), and ~~~~~~
— is calculated from equation (27). This information is

then passed to any of the optimization subroutines.

3.2 Frequency Constraint

The equation of motion for free vibration can be written in
discrete form as :

((K]  2 (M]){u) = {0} (29)

The mass matrix is also assumed to be a linear function of the design

variables:  

• ~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~ 
• -

~~~~~
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EM] EM ] + ~ t. [N.] (30)
0 . 1 1i=l

The order of EM] and (K] is typically large , and it is often more

efficient to rewrite equation (29) in terms of modal coordinates ,

where a set of natural modes of the initial design is used to define
generalized coord inates for all subsequent designs. (Although this
could lead to inaccuracies if the opt imal design is substantiall y
d i f f e r e nt from the ini tia l one , periodic updating of the modes or
simply using a few more modes of the initial design should be

sufficient to avoid severe problems. This is an open question that
still needs to be answered.) With [4] defined as the modal matrix,

modal coordinates are defined as {u} = (~ ] { q } , and equation (29)
becomes

( [GK ] w 2 [GM]){q} = to), (31)

with
IGKI = [~~l

T[K][fl ~
) (32)

[GM] [~~]
T[M] [~~] 

J

The linearity assumption embodied in equations (30) and (26) also

carries over to the generalized mass and stiffness matrices, so that

r derivative generalized matrices [GM~] and EGK~] may be defined by

obvious analogy. With fixed modes defining generalized coordinates,

these are also invariant and of much smaller order than their discrete

counterparts.

If w is the frequency to be f ixed , and 
~~~des is the desiredr 

~~~d ac ~~~des ~~ rvalue of this frequency, then c wr

es 
- 1, and ~~~~~

— — 2

To calculate -
~~
-

~~
-

~~ , equation (31) is written for the rth mode, dif fer-

entiated with respect to ti.,, and then premultiplied by [q J , the rth
L eigenvector . Solving then for -

~~
-

~~~~~ gives

~q (r)
j  [GK 1]{q~~~~} ~ 2~~q

(r)
j (Gr4~ ]{q~~~ }

~~~~~~~~~ ( G M ] ( q~~~~}

~~~~ ~~~~~~~~~ ~
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and the optimality criterion of equation (5) reads

Lq~~~J 
[GK~~] {q~~~~} - ~2~q (r)j [GM~ J{q~~~~} = C, ~ i c A (34)

where , with W r = 
~~~des’

C = 
2m
iw~~~q (r)j [GM]{q~~~ } (~ 5)

The left-hand side of equation (34) can be termed a “specific Lagrangian
density ” , since it is the difference between the peak strain energy and
the peak kinetic energy in the constrained mode per unit value of each

active design variable. Note also that equation (34) is homogeneous

with respect to the eigenvector {g~~~ }, so it is invariant with respect
to the normalization of {q~~~ }.

For the “energy—density ” form, the matrix (B] is identified with
E GK] - w2(GM] , and {p } and {q} are both {q~~~ }, since (B] is symmetric
(see equations (17) and (18)). The eigenvalue Wr is f ixed, so there

• is no “free” elgerivalue ~? , and equation (19) does not apply. Upon

writing out (e
~
)
~~ 

equation (21) becomes

Lq~~ J (GK~ ]{q~~~ } — (,~
2 ~ q (r)j (GM~~] {q (1

~~}.= —in., , ‘~~ i c A (36)

In this equation, {q~~~) can be normalized to give an arbitrary value
on the right-hand side, so equations (34) and (36) are in fact

• equivalent.

For any of the optimization routines, constraint evaluation is

straightforward . Equation (31) is solved for 
~r 

and {q (r)} , and then
the A2_ or (e ) .  are calculated . The mass and stiffness matrices are• a t •  V i
updateá with the current values of the design variables by equations

identical in form to equations (30) and (26).

3.3 Flutter—Speed Constraint

The governing equations for flutter , written in modal coordinates ,
have the form

([GM] + (GA] — ~l (GK])(q} = tO) (37)

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
U - 

V
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Here [GM] and [GK] are the generalized mass and stiffness matrices

defined previously,  and [GA ) is the generalized aerodynamic matrix.

The modal coordinates {q} are again defined by a fixed set of modes,

SO [GA ] is a complex func t ion  of reduced frequency k and Mach number
M~,. (The altitude is assumed given.) The eigenvalue ~l is written

in terms of the frequency ~ and damping parameter g as (1 + j g ) / w 2,
and flutter is determined by that combination of k and M~ which gives
g = 0 and the lowest flutter speed U ,  which is obtained from k and w.
A final step involves varying the Mach number until there is com-
patibility among the altitude, the Mach number, and the flutter speed.

The flutter constraint will be enforced by requiring that g = 0

U

for a given combina tion of altitude, Mach number , and speed. The
derivative J1~— is calculated in the manner of refer ences 1 and 2:

= [i~ — w 2 R~ — gI~ ) (2gR3 + 213 + I~ )

— (2R3 
— 2g 13 + 

~~~ 
R~) (I~ w~~i

1 
+ 9R~)]/D (38)

where
3 • 3

D = (2gR 3 + 21
3 

+ ~~~~~
— 1

4
)1

3 
+ (2R3 

— 2g13 + ~~~~~~
— R~)R~ (39)

= Re(L~J 
[GM~~]{~~) )  (40 )

= Re(lpj [GK~ ] {q ) )  (41)

R3 = Re(~ pJ [GK] {q}) (42)

= Re(LpJ[.~$,fl{q}) (43)

and I~~, I~~, I3~ and 14 are the corresponding imaginary parts. It is

also understood that {
~~

} is the eigenvector for the cri tical f l u tter
mode, and {

~~} is the eigenvector for the adjoint problem

((GM] + (GA ]T — 2 ( G K ] ) {p }  = (0 )  ( 4 4 )

- —  j - U • • • • •• ; V 
- 

- 
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For R4 and I4~ der iva tives of the elements of the aerodynamic matrix
[GA] are needed with respect to reduced frequency k. These are

obtained approximately by ca lcu la t ing  [GA] for  a band of reduced
frequencies in the range of interest and then fitting these data

V with polynomials in k. The fitting procedure used here is the one

discussed at length in reference 12. The derivatives are then

obtained by differentiating the polynomials. For a flutter constraint ,

then, the ~~- timality criterion is obtained from equation (5) by

i d e n t i f y i n g  c with g :

. a . 

= — 
‘ ~ j c A (45)

with at given by equation (38).
i

For the “energy-density ” form , (B] is identified with [GM] +

(GA] - ~ LGK] , (p1 with (p}, and tq} with {q}, so the optimality

criterion in this form is

(eu). = -L Re (L~J 
([GM.] — ?~[GK.]){~~}) = —1 , ~ I c A (46)

This expression is much simpler than equation (45), so it appears that

an algorithm based on computing (e
~
)1 rather than at. would be more V

e f f i c i ent , since less computation is involved , and derivatives of the

• aerodynamic matrix need not be calculated. However , this is only
part of the story , since the convergence characteristics of the

algorithm also influence the efficiency .

It is worth noting that the “energy-density ” formulation provides

an additional relation when a “free ” cigenvalue is involved . In this

case, the “free” eigenvalue is the flutter frequency , which is uncon-

strained . Thus equation (19), with ~ identified with u , is applicable.

By making use of the actua l expression for (B] and the def initions of
equations (40)—(43) and their imaginary counterparts , equation (19)

can be manipulated to give another condition to be sa tisf ied at the
optimum :

b 3
2R3 

— 2g1 3 4 ~~~~~
— R4 = 0 (47) 

~~~~~~~~U -  V •V• V _ - V~V~ .V 
~~~~~~~~~~~~~~~~~~ - :1: -
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If this relation is inserted into equations (38) and (39), equation
(45) is greatly simplified and reads

1 2 i  i 1
3(w R1 

— R2 + g1
2
) = 

T ‘# i. c A (48)

Equation (46), when rewritten with the definitions of equations (40)

and (41) and their imaginary counterparts , becomes

~~~~
— (w 2R~ 

— R~ + gI~ ) = ~w
2
, ~ 

j c A (49)

Since the normalization of {p } and {g } is arbitrary, it is always
possible to renormalize these eigenvectors so that the right—hand

side of equation (49) is identical to the right-hand side of equation

(48). Hence the two optimality criteria are formally equivalent.

However , it must be emphasized that the derivative is in general
given by equation (38); the simplified expression is ~alid only at

the optimum .

For any of the redesign algorithms , constraint evaluation is
accomplished by solving equation (37). Equation (44) is solved to

obtain {p). The generalized mass and stiffness matrices are updated

as described in subsection 3.2. Since the flutter frequency will

vary as the redesign progresses , the reduced f requency k must be
updated in order to ensure compatibility between its value and the

f requency computed from ~~. This is most easily done iteratively .
The value of k from the previous design is used initiall y to determine
[GA], and a new frequency is computed from the eigenvalue Q. If this

frequency differs sufficiently from that of the previous design , the
newly calculated frequency is used to recalculate k, and the analysis
is repeated. (This procedure implies , of course, that [GA] has been
determined for an appropriate range of k values, as discussed above.)
The current constraint value, g~), and either {

~
—) or (e

~~
)
~ are then

calculated. 1.

- . - -

—  
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4. NUMERICAL EXAMPLES

For comparison purposes , three separate redesign algorithms were
coded—-two based on equations (6) and (7), and an “energy-density ”

one based on equat ions  ( 6 ) ,  (22), and (23). The first two differ

in the selection of ct and in the treatment of side constraints; one
(Segenreich) is based on the algorithm in references 1 and 2 , while

V the other (Rizzi) is based on the algorithm in references 6 and 7.
These are described in subsection 2.3. The third algorithm (“energy-

density ”) is described in subsection 2.5. A fourth algorithm (ref.

13), based on the method of feasible directions , was al so included
in order to provide some comparisons with an MP method . Program

CONMIN , described in reference 13, can use analytically computed

gradients or can calculate gradients by finite differencing . Since

analvt-ical gradients were already being calculated , they were used

for CONMIN as wel l .

4.1 Rectangular Wing

The first example problem involves a simple rectangular wing
structure whose dimensions are given in figure 1. This wing was first

used in reference 14 and has since been treated by other researchers. V

A very simple finite—element model was created , involving two cover

sheets, two spar webs, one rib , and four spar caps in each of three
bays in the structural box. The spar caps were represented by axial

elements, and the other member s were represented by in-plane elements .
There are 12 design variables, whose numbers and initial values are
given in Table 1. In all cases , minimum—gage constraints of one

quarter of these values were imposed. No weight or stiffness is

assigned to any portion of the wing except the structural box, and

the initial weight is 88.45 kg. This is the initial configuration

for all of the constraints considered . All of the computing was
performed on an IBM 370/ 168 computer.

For the displacement constraint , transver se loads of 44 5 N were
applied at the six nodes on one side of the wing, and the transver se
displacement at the tip nodes was calculated to be 1.465 cm. This

_ _ _ _  
- 
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displacement was constrained to be 1.524 cm. Iteration histories for

tbc various algorithms used are given in figure 2, and relative CPU

times are given in Table 2, along w i t h  the final values of the active
design variables , the weight , and the constraint parameter

C = Ur/(Ur)des 
- 1. All of the final designs are essentially iden-

tical , with the only active variables being the web thicknesses in

bays 1 and 2. The Rizzi and “energy-density ’ algorithms took less

than one third the CPU time taken by CONMIN , wi th  the Segenreich

J algorithm having an intermediate time . The iteration histories

reveal that all of the OC algorithms nearly reach the optimum weight

within ten iterations. However , it was necessary to have these

algorithms continue in order to ensure that all of the passive

variables were identified and the constraint satisfied. For all

except the “energy-density ” algorithm , the intermediate designs

followed the constraint boundary rather closely, since such behavior

is enforced at each step. The “energy-density ” algorithm is somewhat

looser in this respect and appears to proceed in two stages - a f i rst
- 

~‘ stage where most of the weight is removed , and a second where the
V constraint is satisfied . Parameters chosen for the various algorithms
V are as follows: For the Segenreich algorithm , the sequence of weight-

reduction factors K. was (0.2, 0.1, 0.05, 0.025, 0.01, 0.005); for

the Rizzi algorithm , cz~
01 

= 0.90 , = 0.95; for the “energy—density ”

algorithm , e1 0.5 , e2 = 2.0; for all of thes~ algorithms, the con-
vergence parameter € was 0.001; and for CONMIN , either the default

values or the values recommended in reference 13 were used for the
various parameters require3 .

For a frequency constraint , the fundamental frequency of free

vibration was constrained to be 68.0 rad/sec , or 10.82 H z .  This is

slightly higher than the calculated frequency of 67.16 rad/sec, or
10.69 Hz, for the initial design . Since both the inertial and stiff-

ness properties of the wing are linearly proportional to the design

variables and there is no nonactive mass or stiffness , constraining

the frequency to be identical to that of the initial design would

result  in a t r ivial  problem , since the mass and stiffness matrices

-V _V_  __~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ V~~~~~
V -~ — V -
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can he scaled by an arbitr ary factor without affecting the frequency .

The optimum would therefore be given by the desiqri with ~tl1 design

v a r i a b l e s  at their m i n i m u m  values. with a s l i g h t l y al t er ed f r eq uency
constraint , t he  optimum dcsiqn should have at leas t one act i ve desig n
variable, and this Lf l  fa ct  i~ t h e  casc , a~. can be seen in Table 3.

The constraint parameter c is here 
~ des~

’
~ r 

- 1. The iteration

histories are given in figure 3. For the Segenreich algorithm , the

table of weight—reduction factors was (0.1 , 0.05, 0.025 , 0.01, 0.005 ,

0.002); for the Rizzi algorithm , 0.95, = 1.0; the parameters

for the “energy-densi ty” a lgor i thms  and for CONMIN were identical to
those used for the displacement constraint . The CPU-time comparison

shows that this time only the “energy-density ” algorithm is faster

than CONMIN , although the differences are not great. The “energy—

densi ty ” a l g o r i t h m  ac tua l ly  resu l t s  in an increase in weight for a
few i t e ra t ions  before i t  converges , and the Rizzi algorithm does not

display the same rapid approach to the vicinity of the optimum weight
as it did for the displacement constraint . The latter phenomenon is

undoubtedly a result of keeping a constant , which was necessary in

order to achieve convergence .

For the f l u t t e r  cons t r a in t ,  the s ix  t ransverse modes of the
i n i ti al design were used to define generalized coordinates , and sub-
sonic generalized aerodynamic forces were calculated with the doublet
lattice method (the program described in reference 12 was u s e d) .  A
flutter Mach number of 0.717 was calculated at an altitude of 1,372 in,

corresponding to a speed of 240 m.’sec. This f l u t t e r  point was i mposed
as the constraint , with c = g. CPU-time comparisons among t.he four

algorithms and the final design information are given in Table 4, ~nd
the iteration histories arc given in fi~iure 4. The parameters useL

in the various algorithms are the sam e as those used for the displace-

ment constraint , with two exceptions - ~
- 0.002 in the Rizzi algorithm ,

and e1 
= 0.1 in the “energy-density ” algorithm . The exponent e1 had to

be reduced from the ori ginally selected value of 0 .5  in order to prevent
divergence. The iteration history reflects this reduction , in that the

approach to the  opt imum wei ght  is more gradua l than  i t  was in the

‘ I

V 
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.

-. 

_ _ _ _  

-

____________________________ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~ — ~~~~_~~~— —



‘V - -~ ~~~~~~~~~~~~~

I
i 

-19-

previous examp los. As a check on the accuracy of using f i x e d  modes ,
the f inal design was reanalyzed for flutter with new natural modes.
This new analysis gave a flutter speed 6% lower than that calculated

I ~.ith the original modes. Since the maximum number of transverse

modes available , six , was used in both cases, it was not possible to

see whether retaining more modes initially would narrow this difference .

4 .2  Rectangular Winy with Increased Degrees of Freedom and Interna l

I Fuel

In an e f f o r t  to obtain a s l igh t ly more complex problem with more
design variables active at the optimum , the rectangular wing was

remodeled with an increased number of elements , as indicated in

i f igure  5. Each bay was divided into two with a set of nodes at the

I midspan of the bay . New ribs were not added , however , so only the
number of cover sheets , spar webs, and spar caps was doubled . This

resulted in a total of 21 design variables , whose numbering and initial

values are given in Table 5. In addition , nonstructural mass to rep-

resent internal fuel was distributed uniformly within the structural

box. The initial weight was increased in this manner by 110.58 kg
to a total of 199.13 kg. M inirnum— ga cje cons t r a in t s  of 2 5% of t he

initial values were again imposed on the design variables.

The initial design was analyzed for flutter with generalized

coordinates defined by 12 transverse vibration modes, and a flutter

speed of 231 rn/sec was calculated at an altitude of 1,372 in, correspond-

ing to a Mach number of 0.689. As before , doublet-lattice generalized

aerodynamic forces were calculated with the program described in refer-

ence 12. This flutter speed was imposed as the behavioral constraint ,

and the wing was optimized with the Rizzi algorithm, with ct (0) = 0.90,

0,95, and c = 0.005. The iteration history is shown in figure 6,

and the final design information is given in Table 6. In addition to

J the webs that were active before at the optimum , there are now some

cover sheets that  are also involved , but most of the design variables
are s t i l l  at thei r  minimum values. The f inal design was also reana lyzed

for flutter with new modes , and the recalculated flutter speed is 9%

V 1 lower than that calculated with the origina l modes. In this case, also ,
V 

all of the modes available were used for both calculations.

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
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At  tempts  to obt a in Opt I WUm SOlUt. ions w i th tue other a lyor ithm~,
were not success f u  I , and at  t h i s ~oi n t  i t wa~; decided to use anothe r

example t h a t  wou ld  be m ol e  l e p i  e sen ta  ti ye ol a t oil design and that
mi ght also have nio t e act i ye des i t;n v a r  i a b E  es . Th i i s descr ibcd

below.

4.3 Delta Win y

The next examp le structure to be considered is a biconvex-airfoil .
delta wing , shown in p l a n form in f i gure 7. This  wing is examp le 2 of

reference 15. EL can have up to 102 design variables , and lower total.s

can be created through linking , so problems of varying complexity in

- 

- terms of the o p t i m i za t i o n  task can be treated while the full y modeled

- 
- s t r u c t u re is used for analyses. The structural planform is buil t up

from triangular in—plane elements separated hy very stiff axial men~bers

V 
at each mode that m odel the core. Miss to represent internal fuel is

distributed in the core.

The structure has been modeled and is  st i l l  i n  the process of

be ing ..inal y~~!d , so I here a r ( s no opt i ml za t i on resu 1~ t s t ha I can be gi Vei l

here.

5. C O N C L U D I N G  REM A RKS

5.1 Conclusions From Results to Date

F rom t he vesu i ts  with the s impl e model. of the rectan jular winy ,

It  can be seen that. the OC a l gor i  t hins qener~al ly performed better t h an

the MI’ algorithm in terms of relative CPU time , with the fliz-i. i a Iqor i thin V

doing the best.. However , the need for the user  to experiment with

these parameters in any new ap~ i I cat ion wi 11 have a qrc.it_ m l  .tuence

on t he Ut i 1 t y  (~ f the algo r i thm being used , which could we I I overshadow 
V

any  advantages  the a lg o r ith m  mi ght have in comput.~i t i oti i 1 ci ti c i ciley

For the I i  nil. compa r I sons, t lierefore , it would be dos i rabi e to have

recommended or d e f au l  t va l ues for  t in ’ p ar am et e r s  in V a t  i OUS appl i cit ions

ard not change them unless it . is absolute ly necessary.

- . — 
~~~~~~~~~~~~~~~~~~~~~~~ 

- 
~~~

-
~~~~~~

-
:

- 
V V



1 
-21-

I
In retrospect , it has also become apparent that the convergence

I c r i t e r i a  fo r  the var ious  al go ri thms  may not , have  been as consistent

as they should have . Consider , for  example ,  the rel at i o n s h i p  between

I the convergence criterion for the Rizzi algor i t h m  (eq . ( 1 4 ) )  and t h a t
for  the “energy-density ” and Seqen r e i c h  al gori thms (eq . (12)). The

Rizzi and SeyenreVich crite ria can be related through the recursion
-
~~~~~ relation , equation (7). This can be manipulated to yield

I 1 — = 
[1 

+ A ’1[~~~ 
V~~~ .~~~~~

) V J  
(1 — 

V
) ( 5 0 )

I If is the convergence paramot:r f:r the Segenreich algorithm and

£2 that for the Rizzi algorithm , then

£ 1 1 - a k 2 (51)

With = 0.90 and = 0.95 , alter 25 iterations a = 0.263 , so

= 0.737e2. On the other hand , if 1.0, then 0.lr 2.

• This means that , for equivalent convergence criteria , in these two

cases , should be 74% or 10% of r2. With the rectangular—wing

example , inconsistencies in these criteria affect CPU time more than

the f i na l  answer , since the optimum appears to be located in a very

shallow depression in design space. It is hoped that the delta-wing

structure , or others that may be analyzed , will have more sharp ly
V 

defined optima .

5.2 Future Work

• During the next year , comparisons of the various algorithms wi l l

be continued with the delta-wing example described above. This

example will also be used to test the accuracy of computing gradients

w i t h  f ixed  modes. The most p r o m i s i n g  al g o r i t hm  w i ll t h en  be ex tended

to treat multiple behavioral constraints , and alternative strategies

for  hand l ing  these c o n s t r a i n t s  w i l l  be eva luated .

~~~~~~~~~~~~~~~~~~~ V i~ 
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I
1
I TABLE 6. FINAL DESIGN INFORMATION FOR THE RECTANGULAR WiNG WITH

INCREASED NUMBER OF ELEMENTS AND A FLUTTER CONSTRAINT.

I
I

Weight , kg: 143.2

I
Active design variables , cm : t7 = 0.5469, t8 = 0.3195, t9 0.07341

J t15 
= 0.1569, t16 0.1301, t17 0.04879

Constraint: —0.7l5~ 10~~ H
7 Iterations: 24
e
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dimensions are in cm .
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I Abstract

I
It is observed that modern optfma l dc~si gn of structures represents

I a confluence of two streams of theoretica’ development : Matric finite-

I element approximation on the digital conpu~er 
— a technology of which

Professor Argyris is one of the founders ; and practical application of

I the variational calculus. The present paper addresses optimization

I 
problems wherein complicated Constraints involving dynamic aeroelastic

behavior are prominent. Search procedures based on optimality criteria

I are believed to offer special advantages relative to such problems.

With the principal constraint formulated in terms of the “V— g method”

I of flutter analysis, three search schemes are applied to the minimum—

weight redesign of a particular ‘..:ing. The first scheme is based on the

method of feasible directions and is rep:eseatative of mathematical—

programming methods. The other tC;o are derived f rom necessary conditions

for a local optimum and can be classed as optthality—criteria schemes.

Al though the results are by no t’c~~~s definitive , they do suggest that a

heuristic redesign algorithm based on an optimality criterion may be the

best candidate for incorporation it’. a more general design procedure

capable of t r ea t ing  mul t ip le constrcints with large numbers of design

variables.

The paper ’s f ina l  sect ion u’.-~der tdk e s  to show how optimality criteria

might be constructed when the aeroolastic constraint is written in the

V 
t ime domain.  Three special forms of the aerodynamic generalized forces

are considered : quasi—steady , q u a s i — s t e a d y  with dissipation omitted ,

and fully unsteady. The resulting criteria for the first and last cases

are based on an unproven hypot~~ si~ , but it is suggested tha t  t h e i r

1 simp licity merits a trial app li c ;iti~ n.

Submitted for publication in C~
-’~~p ~ters  an:I Structures , October 1911
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1. iNTRODUCTION

The design of realistic , efficient structures by procedures based

on the mathematics of optimization is today a routine tool in the isanu—

facture of large aircraft and other devices where a combination of light

weight with high reliability is necessary for success. This si tuation

comes about in consequence of the merg ing of two streams of analyt ical

development. The first of these involves the use of finite—element

approximations to built—up structural arrangements, together with matrix

theory and the digital computer. Although hundreds of names might be

mentioned , no one has contributed more to the foundations or to the

current useful state of finite—element methods than Professor Argyris.

In addition to numerous research papers , his several books (e.g.,

Argyris (1]) and his valuable series of articles with Professor Kelsey

in Aircraft Engineering are classics of the field. The computer program

ASKA , developed with his colleagues at Institut fur statik und Dynamik

der Flugkonstruktionen in Stuttgart , is in daily use throughout the world

on problems which include the class discussed in this paper.

The second stream derives from variational calculus and the concept

of extrerna. Based on the construction of necessary or sufficient conditions

that must be met by the optimum (usually , minimum—weight) design , its

practical aspect consists in the formulation of ever—more—efficient search

me thods , which are intended to bring a trial or starting configuration to

within acceptable convergence of the goal by the smallest number of 
-

steps or the least cycles of computer operation. An excellent summary,

with innumerable examp les , of the mathematics of optimi zation is contained

In Bryson and Ho [2]. The AIAA Structures Design Lecture by Schmit [3)

reviews the rich history of aeronautical app l icat ions.

2
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I The present research addre sses  a sr~all corner of dynamic structural

I optimization: one where constraints relating to flutter of a wing or other

dynamic aeroelastic performance must be imposed along with conditions of a

I more conventional nature , such as those relating to stress under load,

I 
defle ction , minimum dimensions of structural elements, etc. This general

topic was reviewed recen tly by Stroud [4) — a survey which perhaps

I relieves the present authors of responsibility for extensive literature

citations. SpecIal recognition should be given , however, to the paper by

I Turn er [5] , wherein optimization with  rigorous flutter requirements was

first formulated in a discrete , finite—element framework.

The focus here is on a single constraint involving aeroelastic

stability. Section II begins with a very fa~rtiliar statement of the

flutter problem for a linear sys~ er with a finite number of degrees of

freedom (cf. Bisplinghoff et al. [6), Sect. 9—5). The structure’s motion

is assumed in advance to be a sinp 1~ harmonic time function , and through the

artificial introduction of energy dissipation one seeks the actual speed

- of neu tral stability for fligh t under given atmospheric conditions.

Because flutter calculation is so tine consuming in cases of aero—

nautical interest , there is here a special reason for identifying sear ch

- methods that require this step as infrequently as possible. It is the

authors ’ opinion that schemes which fall under the heading of optimality

criteria offer the best prospect. Accordingly, a relatively simple ~iing

structure , subjected to a single constraint on its flutter performance ,

• is analyzed in several ways and the computer costs are compared. The

chosen methods range from well—kno~n and generally—available routines,
4

based on mathematical programming , to a pure criterion approach that

is believed to incorporate  some new features. While  the l a t t e r  is

3
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similar in form to those emp loyed by Siegel [7) and H af tka  et al. 18),

it alone is capable of converg ing to a t rue  local opt imum. As wil l  be

seen, this permits comparisons of efficiency among the different schemes

that involve both the same initial design and essentially the same final

design.

Section III contains no numerical results but is an e~cploration of how

aeroelastic optimization might be carried out in circumstances when it is

undesirable to prescribe simple harmonic motion. Such computations

appear more feasible today because of investigations liKe those of Vepa

[9] and Edwards (10], wherein means are described for  adapting existing

aerodynamic theory to the unsteady flows produced by general small motions

of wings or bodies. -

The aim of Sect. III is to produce optimality criteria under various

app roximations to the aerod ynamic terms in the equations of motion.

Although no such scheme may be regarded as proven until after its success-

ful application to meaningful designs , nevertheless these proposals are

deemed worthy e~ trial. In the process of their development the concept

of the ad~~-~ 
V • system plays a significant role. A curious discovery is

men ti oned , w~ ‘~~i relates to this adjoint in circumstances where “aero-

dynamic memory” must be accounted for.

II. COMPARISONS OF DIFFERENT OPTIMIZATION METHODS ON A WING STRUCTURE

WITH FIXE D FLUTTER SPEED

In his lecture , Schmit (3] has discussed the d i f f e r e n t  philosophies

underlying optimization schemes derived from mathematical programming and

from optin’.ality criteria. Basically, the mathematical—programming algorithrr~-

make use of information from the current design and calculate a design

4
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chan~e that will alter the objective in the required direction without

I 
violating any of the constraints. Optima lity— criterion algorithms are

derived — often purely heuristically — from the necessary conditions

I for optimality, or an approxima t ion thereto. Either approach may or

may not require that  der ivat ives  of the constraints be calculated. For

a complicated behavioral constraint , such as a constraint on flutter

I speed, the computation of derivatives may introduce unnecessary penalties

in terms of computation time. The purpose of this section is to introduce

[ an algorithm that does not require derivatives and to present some compari—

E sons with other algorithms on a relatively simple system governed by a

single equality constraint on the flutter speed. Additionally , the new

algorithm will be seen to have the capability of converging to the “exact”

optimum , so that the comparisons are core meaningful. Although virtually V

Ii every new or revised scheme that has appeared has been compared with other

ii sch emes, there are very few ins tances  ( e . g . ,  Haftka et al. [81 ) where the

comparisons have been made on the same computer system.

F 2.1. Statement of the Flutter—Speed Constraint

Consider now a lifting surface whose deformation is approximated by

superposition of a finite number of free—vibration modes, which may or

may no t be norma l modes. (Typically , they will be the normal modes of

an initial design , which for the sake of simplicity will be retained as

I primit ive modes during the op t imiza t ion .)  These modes define generalized

E coord ina tes ~1
(t) ,  1 1, ..., n~ With the assumption of simp le harmonic

motion in time t , the governing equations for flutter become

- 

([ifi 
-
~
- [~~] 

— ?~ (K] ) (~~ = (0) (2.1)

I 
S
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Here- [MI and [K] are syr~metric n x n  generalized mass and stiffness

ma tr ic~~~, respectivei\ , (A] is a ma trix of oscillatory generalized

aerodynamic forces , and ~~. (t )  ~~~~~~ The matrix ~X] is a complex

function of Mach number and reduced frequency. In the “V—g” method ,

(2. 1) is solved for fixed Mach number and a number of reduced frequencies

to give a set of eigenvalues ~L, and eigenvectors {O~~ 
, I 1, ..., n.

With 
~~ 

(i + jg.) /u~
2 ,(j =‘~/T ), a corresponding set of frequencies t~~

and artificial damping parameters g. can be calculated. From each

frequency and the reduced frequency, an airspeed V can be determined ,

and the roots of (2.1) can then be VP l Ot t e . d  as curves of V vs. g for

varying values of reduced frequency . The lowest speed at which a root

makes the transition fro.—~ negative g, denoting stability, to positive g,

denoting instability , is the critical flutter speed. A final step involves

repeating this process for other values of Mach number until the values of the

critical flutter speed , the Mach number , and the sound speed at the chosen

altitude are compatible. -

For the purposes of optimization , there are several ways in which

the c o n s t r a i n t  may be imposed. One possibil i ty is to work direct ly wi th

the speed i t s e l f ;  this has been done successfully in a number of instances

( (i i ] , 1121).  Another poss ib i l i t y  tha t  o f fe rs  cer ta in  advantages is to

f ix  the speed (a nd therefore the Mach number ) and to const ra in  the value

of g ( c f .  Segenretch and Mcintosh [13)) .  This practice will be followed

here , and the cons t r a in t  for  flutter is then stated simply as

g < (2 .2 )

6
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I 
for  the c r i t i c a l  roo t (or mode), with speed and Mach number fixed. In

the examp~es that follow , this constraint will be the only behavioral

I constraint , so ( 2 . 2 )  can really be regarded as an e q u a l i t y  con-s t rain t .

2 .2 .  A H e u r i s t i c  Redesi gn Algor ithm Based on an Opt im al i ty  Criterion

I The finite—element representations of many structures involve elements

I 
whose stiffness and inertial properties depend linearly on the design

variables, which are commonly plate thicknesses, spar—cap cross—sectional

I areas , etc. This linear dependence will therefore be assumed here , and

the wei ght to be minimized will be written in the form

I H
J 

~~~ 
a1t . (2.3)

E i~ 1

There may, in fact ,be some mass tha t  is invariant with respect to the

L optimization , but it is not necessary to include it in (2.3) . In accor—

dance with Turner (5) and H aftka  et al. [81, the equations of motion

(2.1) , wr i t t en  for  the critical code , are premultiplied by a row matrix

of Lagrange multipliers or adjoint  variables , and the real part of this

quantity is adjoined to to give

J ( {~},{O , , t .) J + Re ( ~ (B ) {~~}) (2.4)

I where 
-

[ (B] = EM] + E~~) 
— ?~ (K] (2.5)

[ Necessary conditions for optimality are given by the vanishing of variations

of J wi th  respect to ~~, t , and the elements of (q) and tD - These

yield , respectively ,

I
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Re ( ~qi [
~

-
~

- ] (C) ) 0 (2.6)

a . 4 Re ~~~ [~ - i~)~ 
o~ I ~ i , . . . ,  N (2.7)

(B]  (~, } -- {0} (2.8)

= (BJ~ {q) {0) (2.9)

Since — on the constraint boundary where g 0, (2.6) is equiv-

alent to the vanishing of the variation of J w i th  respect to the f l u t t e r

frequency w , and it can be viewed as a relation giving the flutter

frequency at the optimum design. The original constraint equations are

reproduced by (2.8), while (2.9) defines the adjoint equations. The

optimality criterion is given by (2.7). Under the aforcment1.~~-’d assump—

tion of linear dependence of the inertial. and stiffness properties , IN)

and [K] can be w r i t t e n  as

[H] t
1 

[N
i
] (2.10)

1=1

(K] t
1 

[K .1 (2.11)

and (2.7) becomes

-~ ~-!~ Re <icJ ([Mj) — j~ fKj~(~~} ) — 1 (2.12)

The left—handsId~�sof (2.12) resemble energy densities , and the optimal ity

c r i t e r i o n  is t h e r e f o r t -  seen to require that all of these “energy densities”

have the same value . if m1u -ituun—g~~ge constraints on the desi gn variables

are also specified , then some desi gn variables may become passive — i.e.,

equal to their minimum allowable vnlues durlng redes i gn. If this occurs ,

then (2. I?) must h o l d  onl y for t h e -  ~~e t  I V L ’ de~; f gn var i ab l e ~; .

8
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I One can create any number of iterative redesign schenes based on

(2.12). One particularly attractive candidate is the following:

v+l ‘~ 2 1 3

I 
t
i 

C
i

t
i

V
( e )  e

C — 
_ _ _ _ _ _ _  

1 (1+ g ~ 
2 (2.14)I

I Here u is the iteration number , and e is the average of the (e )
av v j

for all the ac tive variables. The absolute value of the “energy—density”

I ratio is r .; tred , ~~~ce ~~~~ exp~~ ent e
1 
is typically less than unity

i and the (eu). 
m~y be either positive or negative. Note that as the

“energy—d ensity” rat io- ; approach unity, the constraint factor (1+g )e2

serves to ensure tha t the constraInt g=O will be satisfied. The form

of (2.14) is derived from two assum?tions:

- (a) If I(e )11 > e~~~ , the corresponding design variable

should be increased , a-~d

(b) If the current design is not feasible (g~
’ >0), all design

I
variables should be increased. -

Convergence of this iterative forriula cannot be proven, and there is no

guarantee that the formula will be capable of equalizing not only the

magnitudes but also the signs of the (cv) , which is a necessary condition
1

for optimality according to (2.12). The formula (2.14) is similar to that

I used by Uaftka et al. [8] , except that the absolute value rather than the

I real pa-ct was used in defining the Ce) in (2.12). In effect , this

means that the algorithm used in [83 attempts to satisfy an approximate

rather than an exact optimality criterion , and the final designs obtained

with this algorithm did not correspond to the final designs obtained with

other methods.

- 9
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The analysis and redes ign algorithm proposed herein proceeds in

the following steps:

(1) The current value of the constraint is found by solving (2.8)

and obtaining g, w , and (~~) for the critical mode. Since

the aerodynamic matrix (K] will vary with frequency, it is

requirerl that the frequency used in defining [A] coincide with

the frequency calculated from fl . This is achieved iteratively.

The frequency from the previous design i.s used initially to

define [A] and is then compared with the frequency calculated

from 0. If these two frequencies are not in agreement to within

a specified limit, the frequency computed from f~ is used to

de termine a new generalized aerod ynamic matrix [A] and the

process is repeated.

(2) The adJ oirtt equations (2.9) are solved, and {q} for the

critical mode is obtained.

(3) The densities (e ) 
V 

are calculated as in (2.12) for the
v

current active set of desic’n variables, and e and the0 av

are calculated. The cY are calculated for all j

(4) The new active design variables are calculated. If

any of these is less than its specified minimum value, it is

set to that minimum ’value and is relegated to the passive set.

(5) If for a passive variable C~
V 

> 1.0, this variable is reiniro—

duced to the active set and steps (3) — (5) are repeated until

the active—passive identities are stable. Once this stability

is ach ieved , the new set of design variables ~~~~~~ is taken

as the nex t des ign.

10
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(6) Convergence is checked by testing the C
i
” for the active

I set. If I 1 — C ” ( c c for all of the C
1~
’ tested, the new

design is declared final. If not , the algorithm is repeated.

I The convergence parameter c is set by the user.

I 
Before a numerical example is given, it will be instructive to consider

briefly an alternative optimality criterion and to explore its relationship

I to the criterion derived above. This criterion is derived from variations

of the function 
-

I
- J (X , t1) + Ag - - (2.15)

I -
Vanishing of the variations of J with respect to the design variables

I yields the optimality criterion

-Il .

~~~
-. -

~~~~

-

~~ 
= — f  - (2.16)

II Once again, this equality holds for those design variables that are active

at the optimum. Following Segenreich and Nelntosh tl3], one can write for

the derivatives -

= — ~2 
R1
1

- — g I~~)(2g R
3 + 213

+ 14)

— (2R
3 

— 2g 13 
+ —~~~ R~) (12

’ — w
2 I~ + g R2

’)] ID (2. 17)

I where -

I D (2g R
3 
+ 21

3 + I~) 13 + (2R
3 

— 2g 1
3 
+ ~~~ R~) R3, (2.18)

I R~ Re ( i~~j (H 1] (
~~

} ) ,  (2.19)

I. R2
1 Re ( t~~

’
j [K

1
) (1) ) ,  (2.20)
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R
3 

= Re ( i~ j [KJ (~ } ) ,  (2.21)

= R ( ~ [ aX] {~ i ) ,  (2.22)

ii i  12 )  13) and 14 
are the corresponding imaginary par ts, b is a ref—

erence length, and k = sib/V is the reduced frequency. At first glance,

it would seem that (2.16) bears little resemblance to its counterpart (2.12) .

Bowever, by making use of (2.6), which is not obtained from the formulation

immediately above, it can be sho’.m that at the optimum

3 -

2R
3 

— 2g 1
3 
+ ~~~~~~~ R~ 0 

- 
(2.23)

Making use of this relation in (2.18) and (2.17) produces a vastly simplified

expression for -
~~~~~

- , which when inserted into (2.16) gives
I

.
~~~
- (w2R

1~ - 4 + g 4) ~~
-
~~

- 
- 

(2.24)

Since (~ = (1 + jg) /w2, (2.12) can be rewritten with the definitions (2.19)—

(2.22) to give

~~ (~
2 
4 

— 

4 + g 4) = ~2 

- 

- 

(2.25) 

-

Since the quantities R~ , etc. involve triple matrix products with {~~}

and {E1 , and since the normalization of (~~) and ff} is arbitrary,
(2.24) and (2.25) are in fact ecjuivaient expressions. It must be emphasized,

however , tha t the simplified expression for 4~- 
is valid only at the

optimum, so that an optimization scheme that requires derivative calculations

must use the full expression (2.17).

12
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1 2.3. A Numerical Example

I In order to illustrate some of the Ideas discussed above, consider the

rectangular wing whose dimensions are given in Figure 1. This wing was

I crea ted by Rudisill and Bhatta [11] and has since been considered by

Segenreich ar~d McIntosh (13], among others. The structural box has three

I bays. In each bay there are two cover sheets, two spar webs, and one rib,

all modeled by in—plane rectangular elements, and four spar caps, modeled

by axial elements. The design variables are numbered as shown in Table 1.

[ The initial design values were : t
1 

— t3 12.90 cm2 
, t

4 
— t~~ = 0.2032 cm.,

t
7 

— t
12 

= 0.1016 cm. The weight of the initial design was 88.45 kg.

Minimum—gage constraints were imposed at one quarter of the initial values.

F For the f lutter  calculations , the f irst  six t ransverse free—vibration modes

of the initial design were used to define generalized coordinates. The

II doublet—lattice method (14] was used to calculate generalized aerodynamic

f orces , and a f lut ter  Mach number of 0.717 was calculated at an altitude

- 
of 1,372 meters. This flutter point was imposed as the primary behavioral

I I constraint. Optimal designs were calculated with three methods — the

“energy—density” method described in 3.2, the method used by Segenreich and

ii McIntosh (13], and a method developed by Vanderplaats (15]. The method in

ii (13] is derived from an algorithm due to Kiusalaas (16] , which is based on

an optimality criterion of the form (2.16) and requires calculation of the

derivatives at each Iteration. The method in [15] is based on ati

r mathematical—programming procedure known as the method of feasible directions

L [17]. 
-

JJ The final designs from all three methods were essentially identical.

- The only active des ign variable was t4, the thickness of the front and

[ rear spar webs in bay 1. The final designs , constraint values , and relative

[ 13
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computer CPU times are given in Table 2. All computations were performed

on an IBM 370/168 computer at Stanford University. Both Siegel (71 and

Haftka et al. [81 used e1 0.5, e
2 

= 2.0 in their computations. With

these values, the algorithm of Sect. 2.2 dIverged, and it was necessary to

reduce e
1 

to 0.15 in (2.14) before convergence could be demonstrated.

Before the flutter constraint was considered , the same structure was

optimized with a displacement and a natural—frequency constraint. For these

problems, it was possible to leave é 1 at 0.5. All three methods produced

almos t identical final designs and CPU—time comparisons similar to those

in Table 1. -

The final design was reanalyzed for flutter with new (normal) modes

in order to ensure that the root that was constrained was still the critical

root. This was found to be the case; the critical branches of the Initial

and f inal designs are com pared in Fig. 2. Using the normal modes of the

initial design as primitive modes during redesign is seen to cause an

error of 5.5% in the estimation of the flutter speed in comparison with

the flutter speed calculated with no:~al modes of the f inal design.

In more comp lex practical applications of the method , especially when the

initial design is far from optimal, one should occasionally re—calculate

the normal modes . They are then to be used as the basis for subsequent

itera tions, and slight mismatches of the final flutter speed can thus be

avoided.

14
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III. OPTIftALITY CRITERIA BASED ON AEROELASTIC EQUATIONS IN THE TIME
AND LAPLACE—TRANS FORN DOMAINS

Since optimality criteria are closely related to variational pri m—

ciples from which the associated equations of motion can be derived, the

first stage of this investigation looks at these principles and at the

adjoint systems which are an inherent feature when nonconservative effects

are present. The starting point, as in Sect. II, is a reference design

whose behavior can be adequately represented by the generalized coordinates

F~1(t) , i = 1, ... n , of some subset of its natural modes of free vibration.

The generalized masses and stiffnesses are described by symmetric nxn

matrices (N] and (K],  respectively . At the beginning of optimization , these

matrices may be diagonal. But , as the search proceeds , the generalized

coordinates and associated eigenfunctioz-is are left unchanged. Therefore

EM (mk)) and IK(zek
)) become full matrices , functions of the N added or sub-

trac ted masses n~ that constitute the vector of design variables. The

dependence on may , in one or both instances, be linear (cf. Turner [5]),

E but this is not necessary to the development.

For the analysis of homogeneous aeroelastic phenomena like flutter

stabil ity, the equations of motion governing the column matrix {~~(t))

contain aerodynamic generalized forces, linearly dependent on this matrix.

Two cases are considered in what follows.

3.1. Quasi—Steady _Aerodynamics

In this approximation (cf. Sect. 5—6 of Bisplinghoff et al. (6]

and Pines [18], among many other sources of information) there Is negligible

“memory ,” so that the airloads are algebraically related to ~ {~~
} and {~~}.

[ tThe “apparent mass” effect might also be included through a (
~~) term , but

this refinement would contribute nothing of significance.

• 
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One useful form of the equations then reads

EM] {
~~

} + (K) {~~ — [D] {
~~} + (Efl~~} 0 (3.1)

Here ID] and (El are nonsymmetric matrices of -real constants for a given

flight condition. It proves desirable to extract from these terms a

quantity with dimensions of force, containing the aeroelastic elgenvalue

0,. This eigenvalue may be the actual flight dynamic pressure or perhaps

Mach number, etc. Ccf. the parameter 
~~ 

used by Weisshaar ([19] , Chapter 6)

in panel flutter optimization). Equations (3.1) then become 
- 

-

[H] C~~
} + [K]ft} - 

~ 
s 
(
iiv [d]{~ } + [e)~~~}) = 0 , ~.2)

where (dl and [e] would normally be dimensionless. S is a reference

area such as that of the wing planform projection; reference wing chordlengtu

c and f l igh t speed V are employed to cancel the dimensions of the time

derivative.

Let q.(t), j = 1,... , n, be generalized coord inates for the adjoint

system. The equations governing the colu~nn matrix of the q. are

(M] (~) + [K) [q} - çs (-  ~Iv EdI
T (

~~} + (e]T {q)) = 0 (3.3)

Here superscript T denotes the transpose of a square matrix. One way

of deriving (3.3) is to require stationarity, with respect to variations

in the elements of {
~~} and {q} , of a generalized Hamilton ’s principle

which might be wr i t ten

f
t
2

H = J <—  Lqi [M]{~ } + [qi (K](~
} + cL s( cfv  )L 6 i (d] c~~

ti -
— Q,,,S LqJ Ee] (~~} )dt  (3.4)
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I The open brackets mean a row m a t r i x .  In the usual way , “initial” con—

I ditions are prescribed at the time limits t
1 

and t
2 

to prevent nonzero

terms from arising during integration by parts. It is remarked that H —

I like the optiinality criteria based on it , to be proposed below — is not

unique . Thus the thi rd term in the integrand could have its sign changed

1 and the time differentiation transferred from ~qj  to

1 3.2. Linear Aerodynamics with “Memory .” -

When analyzing stability, experience shows that one must usually

I account for the unsteady influences of the past history of a wing or body ’s

motion. They are due to the presence of a vortex wake shed as the -result

of prior changes In the circulation “bound” to a wing, to the finite speed

of sound propagation in the gas, or to both of these effects. One must

then rep lace the aerodynamic terms in (3.1) by a convolution

* (A] * (~ } — j (A(t — r)1 {
~ (r)} dT (3 .5)

- Jo 
-

• In this form, the motion is assumed to have begun at t 0. - The elements

A~~(t) of [A) are indicial time functions , giving the generalized force

exerted on one degree of freedom I due to impulsive motion in another j.

F
In most cases these elements are known , without approximation, only in

terms of their Laplace transforms

Replacing (A] by a dimensionless equivalent (a] as before, one is

led to the fully unsteady generalization of (3.2): 
-

ft
(Ml {~ ) + K{~~ } — çs J (a(t — t)1 ~~(r )} dr = 0 (3.6)

Jo
Clearly , (3.6) can be derived from stationarity, with resp~~ t to the

; elements of LqJ , of
4

L
17
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2

H = I < - LqJ (M](~~} + Lq] (K](~~
}

-It1

— Q,,S Lq (t)i J [a (t—T)] {~~~~
(-t ))  di ) dt (3.7)

0

It is of interest to examine the adjoint equation , the one governing

(q(t)). To this er~d and before a meaningful variation of H with respect

to can be carr ied out , the order of integrations in (3.7) must be

inverted and the variables t and t interchanged. Since the result should

no t depend on the choice of t
1 
and t2, it seems convenient to replace

these quantities with the start ing time t
1 

O and with t
2 . After

these choices have been made, simple manipulations lead to

EM] {q) + [K] {q} - Q
~,
S f [a(r-t)]Cq(r)}dr = 0 (3.8)

J t

Albeit there are other ways of writing the adjoint equation, (3.8)

has a certain intrigue. If one attempts to give physical meaning to the

aerodynamic term , it would seem to imply that the state at instant t is

af fec ted by events subsequent in tir”e. Such speculation is apparently not

fruitful. As in other nonseif—adjoint systems, there is often a great -

deal of artificiality in the adjoint problem, and this feature is here

exacerbated by the presence of a convolution in (3.6). The convolution

theorem of Laplace transformation , inciden tally, does not apply to the

integral in (3.8).

In an e f fo r t  to gain insight , an elementary problem with a single

degree of freedom F (t) was constructed from (3.7) and (3.8). The single

indicia]. funct ion was taken as a simple lag ,

A( t) a0 e at (3.9)

Even In this case , the solution of (3.6) and initial conditions

18
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I + ~~~ - a e
0 ( t - T )  (

~
) di

I ~ (O) ; ~ (O) 0,

I is not particularly convenient to write out. The special choice

L
a
0 ~~ = ~~~~ Causes a pole—zero cancellation, however , yielding

the elementary result

= ~~

— ~~~~ ~~~ ~~ +
~~~

) ,  (3.h1~~

with ~ = w ~~ (c/2w)
2 (3.lib)

= tan ’ (2w /a) (3~ lit)

( The corresponding adjoint q(t), also with

[ q(O) q
0; ~ (O) = 0 (3.12)

[ canno t be calculated by Laplace transformation. Merely assuming it in

the form of (3.ila), however , yields -[
q(t)/q

0 
= E (t)/E

0 
- (3.13)

[
This is physically reasonable and not unexpected , because the system and

[ its adjoint should have the same elgenvalues.

L - 
3.3. The Search for Optirnality Criteria.

As an aid to deriving criteria that might enable ef f icient search

[ routines while aeroelastic constraints are enforced , the ideas in Sect. Sb

of Plaut ’s review (20] furnished an excellent lead. This presentation is,

F accord ingly, broken into three parts , the first dealing just with a discrete

version of the same kind of nonconserva tive system treated by that author.

i 
19
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3.3a. Minimi ~‘ei ht Structure with Prescribed Flutter Stab i l i !y
Boundarjr of the ~~~~~~~~~~~~~~~~~~~~~~

In the quasi—stead y Eq. (3.2), specialize further by assuming

[dl = 0 (3.16)

This elimination of dissipative mechanisms ensures that the eigenvalues o~

[M]t~) + (K]{~ } 
— Q,,S [e]~~} = 0 (3.15)

remain purely imaginary as parameter Q is increased from zero. Because

of the asytm~etry of Eel , however , the re is some Q 
~~~ 

at which a pa ir

becomes equal and produces “instability by merg ing of frequencies” (cf.

Pines [18] ). 
-

In a form sl ightly d i f f e ren t  from that in Sect. XI, a typical optimi-

zation problem may be stated as follows: — 
-

Minimize J
0 tn.~ , (3.16)

with {F~} a solution of (3.15) such that

Q~~ 
> Q0 - (3.17)

and (fo r examp le)

> in.~ , k = 1,2 , .. . N . (3.18)
0

Observe that the can be inferred from specified minimum dimensions

of structural members; ifJ represents the reduction of total weight f rom

an initial design , they will be negative numbers. Equation (3.15), its

adjoint , and the generalized }lami’ttonian integrand Cc!. 3.4) are rewritten ~- 1-

20
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the substitutions s
2 

= — 2 ,

~~1
(t )  = eS~ and q . ( t) 

~~ 
e
St 

: (3.19)

(— ~ 
[ifi + [K] — QS [e] ) {

~~) = 0 (3.20)

(_Q EM) + [K] — Q~S[e]T) {
•

~~

•
} = 0 (3.21)

= 
~~~~ 

[K] {~~~} + Q ~~~ [u 3(~) — Q S  j qj  (e][~ } (3.22)

[Note that, al tho ugh H is nonlinear In q and ~~, it is expected that

the eigenvectors will be real up to Therefore, there Is no question

of taking real parts in (3.22).]

Plant [20] points out that the characteristic equation of (3.20) or

(3.2 1) has the form

P(c2~ , Q )  0 (3.23)

Be reasons that , with two frequencies merged at ~ = and 
~

it should be true that

___ = 0 (3.24)

C

~~

He suggests pr omult i plying (3.20) by Lq i and solving for

~ iqi  EM] (~~
} + L~ J (K] Ct) - 

(3. 25)
S iqj (e] {

~
}

ApplyIng (3.24) to (3.25) then produces a relation

21
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[qi (M] {~~) 0 (3.26)

which must  hold at the critica l condition.

The manner  of constru~-ting an opt tmality criterion Is to adjoin h

to the performance index J with a Lagrange mult1p~ icr A

..i (t ,{
•cj},c~ 1 51

k) 
.

+ A (iii [K(’~~~) )  Ct) + ~
[
~
j] [M( m.K)1 Ct) - Q~ S çq) I c) (

~} )  (3.27)

The variations (or partial dcriv~itJvt~~) of J with respect to the elements

of (1) and {q} produce (3.21) and (3.20), respectively. The vanishing of

the variation with respect to ~ is assured by (3.26) . FInally, variations

on the design variables tm
k 

yield

— ~(~i-~ { -
~

} (t} + c~ t~iJ { -
~

-
~

] Ct)) 
- 

(3.28)

Note that the equality, fo r al l . k 1, ..., N~ of the quantities in

parentheses in (3.28) furnishes the dcsir~d criterion. Just as in Sect. it

the “energy ratios ” are employed to adjust  the Individual  masses during

progress toward an optimuri , so these quantities should be able to do the job

here without the need for differentiations wi th respect to cigenval.ues.

That such criteria do lead to ~e.iningful. designs is implied by the simple

examples given in Plaut L20]..

3. 3h. More General Quasi-Stea4y ALr load s  -

The ph ysical  and a d j o in t  equ at ions  of m o t i o n  i n  t h is case ar e the

full (3.7) and (3.3). To be specific , let. it be required t h .~r , at a

given 
~~~~
, the lt  stable of the aeroelastic eigeiivalues has a given

degree of stabili ty - - - a condit ton th,~t mi ght be expressed

2?

hul. 
- 

- 

~~~~~~~~~ ~~~~~~~~~~~~
- -

~~~~~~~~ - - : ~~~~~ 
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Re ~sj < — s , for al l. I 1,2 . 2n (3. 29)

I Here s is a positive real constant, tinder assumption (3.19), the real

I or complex—conjugate pairs of s
1 

ar e el genvalues of

< s~ ~ti + i~ i — q,,s (.~1 (dl + [e]))(~~} 0 (3.30)

I 
and also of the corresponding equations from (3.3). Subject to these

constrain ts and to a prescr ibed Q~~~, 
the optimization problem then

I consists of (3.16), (3.18) and (3.29).

By analogy with (3.27), it is now j~ j~othesized that an appropriate

I formulation requires the vanishing of variations with respect to 
~~~~
, q

3
,

and s of

~ ~ }, s , = + Re < A  ~ (K] ~~~ - ~2 ~ (Ml Ct)
k=l

— ~~S (~) L i  E d i C t )  + Q S  t~~~~i 
(c i  Ct) > (3.3 1)

I
Here, of course, A , the eigenvectors and s~ are all complex numbers.

I The line of reasoning whereby the real part  Is taken in (3.31) follows

r 
directly that given first by Turner [5 1.

As before , two additional relations (beside the physical and adjoint

equations) are obtained from vari.itic’ns of (3.31).

j — 1 R e <A ( L ~ J[}~ .](C} - ~2 i~ i[-~~ -]tti) > (3.32)

for all k 1, •.., N. Also

Re (A (2s L~~J (Mi (t) + QS -s-- L q I  E d i c t ) ) >  0 (3.33)

£
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The solution procedure that is proposed to be tried starts from

calculating, at a given design step, all eigenvalues and vectors of (3.30)

and its adjoint. In general (3.32) and (3.33) will not be satisfied. For

a particular eigenvalue s (the least stable), they amount to N + 1 real

equations involving N + 2 variables: the N mk’s , 
ReCA) and Im {x).

Using the known for the given design, one might select a single one

of (3.32) plus (3.33) and calculate A . With A available, the remaining

members of (3.32) can be used to adjust the various tm
k 
up or down , aiming

for a design in which the quantities within the parentheses of (3.32) are

equal for all k.

One difficulty remains: that of how to drive thn real par t of the

leas t stable of the s~, toward s
0 

at each step. This might be done by

numerically differentiating the stability determinant of (3.30) with

respect to the “most active” of the design variables tm
k’ 

This m.~ could

be altered by just the amount needed to bring Re Cs1
) to s. Then the

aforementioned optitnality criterion from (3.32) provides a way of correcting

all other 1
~K • (Note that “passive” m

k. 
which already coincide with their

minima prescr ibed by (3.18), are omitted.)

Obviously, the changes in the other (besides the “most active”)

are going to throw of f  the system stabili ty.  Nevertheless, these changes

become progressively smaller as the optimization progresses, so choosing

the particular index k whose mass seems to be varying most rap idly may-

furnish a sufficiently powerful control on Re (s
i
).
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3.3c. Fully Unsteady Airloads

Surprisingly, this case appears to be a fairly straightforward

extension of the treatment in Sect. 3.3b. The key step seems to be to

assume that the motion has gone on for a 1.0mg time prior to t = 0.

In this case , (3.6) and (3.8) must be modified to

f
t

[M] {
~~

} + [K] {
~ } 

— çs J (a(t — r)] {~~~~(t)}  dr 0 (3.34)

(N] {q) + (K) {q} — QS [ [a(T _ t) ]T {q(t)} dr = 0 - (3.35)

Leaving aside certain questions of existence, one again chooses the

homogeneous solutions (3.19) . This substitution into (3.34) , wi th the

variable change t
1 

= t — r , then leads to the algebraic system

([K] + 2 [N] — çS E (sfl) -(t} = 0 , (3.36)

where the a1.(s) are the Laplace transforms of the aerodynamic ind icial

f unctions — exac tly the quantities which the Edwards 1103 investigation

shows how to calculate.

Inserting (3.19) into (3.34) gives rise to the following manipulations

of the aerodynamic integral:

{q (r ))  dr = ( f e
S(t_ t) 

(a(r_t))
T 
dr)t~) e

St

e~~
2 
[a(1

2)I
T 

dt2~) ~~
} e

St [
~ 

~~~~~ 
~~

} eSt (3 37)

In (3.37) t
2 

— t , and the elements of the final square matrix are

simply the Laplace transforms of a
1~~ 

with the sign of s reversed.

Subst i tut ing (3.37) into (3.35) , one obtains

25
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([K] + 2 [N] — Q S  ( ‘ 
(~~~

- S)]T) (‘i) = 0 (3.38)

The steps in the proposed—opt imality—’criterion approach parallel

rather closely those starting from (3.31). The expressions containing

matrices (d], Eel and their tranposes must, of course, be adjusted by

the insertion of [ (s)] and [ (_s) ]T , as appropriate. The quantity

whose variations yield the needed data Is

= tm
k 
+ Re 

< A (L~ J [K] -(j}— S
2 Lq J [M) {t} — Q,,,S L~ J

k=1 - (3.39)

The principal complication over the quasi—steady case seems to be that

(3.33) is replaced by a more elaborate formula containing derivatives of

the elements of t (s)]. Although these deriva tives migh t have to be

obtained numerically in the “exact” formulation, one suspects that their

computation will be greatly simplified by adopting the Pad~ approxitnants

of Vepa [9].

26

- 
- ~~~~~~~~~~~~~~~~~ 

- - - 

T~~~~~~T ~~IT



I 
‘~~ r

I 
_ _ _ _

IV. CONCLUDING RE~1ARKS

I Al though the example considered in Sect. V is a very simple one, the

results are encouraging enough to support additional Investi gations with

I the new algorithm described in Sect. 2.2. It will, of course, be necessary

- I to apply all of the methods employed in Sect. 2.3 to more realistic problems

before any quantitative assessments can be given concerning relative

- I efficiency. In particular, it should be noted that the weight reduction

i achieved — some 74% of the initial weight is not truly representative

of what would occur in actual practice. Ultimately the methods need to be
- 

I

I tested for multiple behavioral constraints. The mathematical—programming

procedure CONNIN (15] is already capable of treating such problems , and

I th~ work of Segenreich et al. (21] and PJzzI [22] will provide interesting

- possibilities for introducing a mult i ple—constraint capability into the

algorithm of Sect. 2.2. -I .  -

Having thus demonstrated , by means of a familiar example, the attrac—

tiveness of optituality criteria in connection with an analytically—complicated

design constrain t like flutter , the paper proceeds into a more speculative

area. It cannot be too strongly emphasized that expressions like (3.31)

and (3.39) are hypothesized. The sirnilarity of criteria derived from them

to proven counterparts like (3.27), however, lends credence to the proposal

that these schemes be accorded~a fair trial. One may cite the interestingI
and successful work of Siegel [7] as evidence that complete mathematical

J rigor is not always necessary in a procedure for design optimization.
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Table 1. Design—variable numbering for rectangular wing.
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1 - f No. of R d .
Weight, ~ Itera— CPU

Method 
- 

t1, c~ . kg. t io~t3 i~ i:e

Vanderplaats [15) — 3.8x10
3 0.1609 22.SS 12 1.4

Segenreich and M- :Intosh [13] — 9. l x  10~~ 0.1376 22.85 49 1.4

“Energy—Density ” Rat io  — 2.4x10
4 0.1.376 22.85 38 1.0

Table 2. Comparison of Results for the Rectangular Wing
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FIGURE CAPTIONS

Figure 1. Layout of rectangular wing. All dimensions are -in cm .

Figure 2. Behavior of critical modes in V—g plane for initial and f inal
designs. M = 0.717 , altitude 1,372 in, 6 modes.
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