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ehavior of the compensating circuits have been derived and indicate that the
rror is proportional to the square of the temperature variation. For typical
robes with an ambient temperature increase of 400C, maximum errors in the

indicated velocity of -12 or less can be achieved.
Measurements in many complex flowfields, such as in swirling flows or near

luff bodies, require the knowledge of the yaw sensitivity of an X-wire probe
to a high degree of accuracy. The yaw relation Ug/Uy = [1 - b(l-cos®a)]2 g
roposed and investigated analytically and experimentally. In the derivation

f the response equation of inclined cylindrical sensors in steady and fluctuat-
ing velocity fields, previous analyses have been extended for the present yaw
relation to include X-probes with dissimilar sensors as well as mean velocities
Jat an angle y to the line of symmetry of the X-wires.

" "For mean velocity measurements, with sensors that have yaw dependence which
does not closely follow the cosine law, neither the simple nor an approximate
weighted sum and difference technique applies when Y$0. This makes analog
processing to obtain accurate mean velocities extremely difficult if not impos-
sible. However, for cases where the mean streamline is aligned with the probe
axis of symmetry, the errors introduced were found to be less then 5Z. In

low level turbulence, time dependent velocity components can always be obtained
with comprable accuracy using a weighted sum and difference technique once the
mean flow angle is determined. However, the weighting must take into account
deviations from the cosine law. For a typical sensor whose yaw data has a
standard deviation from the cosine law of 0.5%, and when Y=0, the estimates of
errors in u', v' and uv are approximately 3%, 112 and 8%, respectively.

The error in UV incréases substantially as Yy deviates from zero. These
errors are essentially proportional to the standard deviation from the cosine

law, 0, as it increases above its value in this example. Even when the sensor
closely follows the cosine law, i.e., 0 = 0.1%, errors in these quantities as
large as 3% can exist. Discrepancies were also found between different yaw
relations in calculated values of turbulence velocity correlations which are
derived from the same data. These discrepancies depend on the mean flow angle,
the distribution of the turbulence energy between the velocity components and
the accuracy to which the mean flow calibration data fits the yaw function.

The effect of various parameters on the yaw sensitivity of hot-wires has been
experimentally determined. In all cases, the present yaw relation fits the
calibration data to a higher degree of accuracy than the cosine law or the
Friehe and Schwarz relation, where m = 0.5. The ratio of improvement over
either relation is smaller for the very short sensors (2/d 3 100) than for the
long sensors (&/d = 1000). The trend of the yaw parameters with either sensor
2/d or Reynolds number does not seem to approach the cosine law but rather it
seems to overshoot it without any observed asymptotic values. Values of the
transverse sensitivity coefficient calculated from a yaw sensitivity function,
taking into account deviations from the cosine law, yield a higher degree of
ccuracy than those obtained directly from the data. Based on the Reynolds
umber dependency of the yaw coefficients, one should use different yaw cali-
bration coefficients for different velocities. If a single set of parameters
is to be used, the accuracy achieved by a simple relation like the cosine law
is as good as one may expect. However, after the data has been gathered, the
results must be corrected for the large errors introduced into the mean and
rms velocity components. Each new sensor mounted on a probé must be calibrated,
even if the new sensor is identical to the ope being replaced.
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Determinant formed from weighting func-
tions of velocity components for each
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Angular range over which yaw calibration
data was obtained

Weighting function of angle of mean
velocity = cos y + sin y
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Ratio of Reynolds stress, uv, toLFI cal-
culated using cosine law=(uv)c/(uz')'c

Percentage difference in a quantity x as
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ABSTRACT

A scheme utilizing a temperature probe immersed in the
working fluid to compensate for the dependence of hot-wire
velocity calibration on ambient temperature variations was
analyzed. One needs only to know the properties of the
anemometer bridge anq the velocity and temperature probes
to achieve the compensation. Hence, the scheme provides
means for incorporating the temperature compensation
a priori to conducting the experiments without any need
for temperature calibration. Estimates of the errors intro-
duced through the non-ideal behavior of the compensating
circuits have been derived and indicate that the error is
proportional to the square of the temperature variation.

For typical probes with an ambient temperature increase of
40°C,maximum errors in the indicated velocity of -1% or
less can be achieved.

Measurements in many complex flowfields, such as in
swirling flows or near bluff bodies,require the knowledge of
the yaw sensitivity of an X-wire probe to a high degree of
accuracy. The yaw relation Ue/Ui = [1 - b(l—cosm'a)]2 is
proposed and investigated analytically and experimentally.
In the derivation of the response equations of inclined
cylindrical sensors in steady and fluctuating velocity
fields, previous analyses have been extended for the pres-
ent yaw relation to include X-probes with dissimilar sen-
sors as well as mean velocities at an angle y to the line of

symmetry of the X-wires.
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For mean velocity measurements, with sensors that have
yaw dependence which does not closely follow the cosine law,
neither the simple nor an approximate weighted sum and dif-
ference technique applies when Y#0. This makes analog
processing to obtain accurate mean velocities extremely dif-
ficult if not impossible. However, for cases where the mean
streamline is aliéned with the probe axis of symmetry, the
errors introduced were found to be less then 5%. In low
level turbulence, time dependent velocity components can
always be obtained with comprable accuracy using a weighted
sum and difference technique once the mean flow angle is
determined. However, the weighting must take into account
deviations from the cosine law. For a typical sensor whose
yaw data has a standard deviation from the cosine law of
0.5%, and when y=0, the estimates of errors in u', v' and
uv are approximately 3%, 11% and 8%, respectively. The error
in uv increases substantially as y deviates from zero. These
errors are essentially proportional to the standard devia-
tion from the cosine law, ¢, as it increases above its value
in this example. Even when the sensor closely follows the
cosine law, i.e., 0 x0.1%, errors in these quantities can
exist. Discrepancies were also found betweer different yaw
relations in calculated values of turbulence velocity cor-
relations which are derived from the same data. These dis-
crepancies depend on the mean flow angle, the distribution
of the turbulence energy between the velocity components
and the accuracy to which the mean flow calibration data fits

the particular yaw function.

XXv




The effect of various parameters on the yaw sensitivity
of hot-wires has been experimentally determined. 1In all
cases, the present yaw relation fits the calibration data
to a higher degree of accuracy than the cosine law or the
Friehe and Schwarz relation, where m = 0.5. The ratio of

improvement over either relation is smaller for the very
short sensors (£/d = 100) than for the long sensors

(£/@ ® 1000). The trend of the yaw parameters with either
sensor £/d or Reynolds number does not seem to approach the
cosine law but rather it seems to overshoot it without any
observed asymptotic values. Values of the transverse
sensitivity coefficient calculated from a yaw sensitivity
function, taking into account deviations from the cosine
law, yield a higher degree of accuracy than those obtained
directly from the data. Based on the Reynolds number de-
pendency of the yaw coefficients, one should use different
yaw calibration coefficients for different velocities. 1If
a single set of parameters is to be used, the accuracy
achieved by a simple relation like the cosine law is as good
as one may expect. However, after the data has been gath-
ered, the results must be corrected for the large errors
introduced into the mean and rms velocity components. Each
new sensor mounted on a probe must be calibrated, even if
the new sensor is identical to the one being replaced.

The parameters of the yaw relation are affected by the
presence of unsteady velocities in the flowfield and de-

pend on the frequency of these fluctuations. While dynamic

XXVvi




yaw calibration of the probes is not necessary, the mean

yaw sensitivity of the probe should be obtained in the pres-

ence of some velocity fluctuations, e.g., in the presence of

some background turbulence of similar spectral content to

the flow under consideration.
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CHAPTER 1

INTRODUCTION

Background

Hot-wire sensors are probably the most commonly used
measuring instrument in experimental fluid mechanics. In
conjunction with a constant temperature anemometer unit,
they provide unique capabilities which to date are only
rivaled by the laser doppler velocimeter. Because of vari-
ous limitations, such as very high cost, ambiguities rela-
ted to the scattering particles and errors introduced by
continuous tracking signal processing units, hot-wire anemo-
meters will most likely remain & primary instrument for
velocity measurements. The hot-wire does, however, have
many of its own limitations, some of which will always re-
main; e.g., need for the sensor and its support to be locat-
ed in the flowfield and the nonlinearity of the anemometer
output. Numerous studies have been carried out to develop
the instrument to its present stage. 1In particular, several
of these studies have been devoted to removing some of the
limitations.

The temperature of the working fluid in many of the
flow facilities does not remain constant for the entire du-
ration of the experiment. These temperature changes may be
deliberate, because of some aspect of the experiment, or in-
cidental, e.g., due to the energy losses from the fan or
pump providing the flow in the facility. In industrial

applications of hot-wires, such temperature variations are
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unavoidable. Since the hot-wire sensor is not only sensi-
tive to the flow velocity but also to the fluid temperature,
density and viscosity, such variations lead in many occa-
sions tc substantial errors in the indicated velocity. A
simple and inexpensive method of temperature compensation
which would require no extensive additional calibration of
the anemometer would be ideal. For example, an acceptable
method would be one which can be accurately used once

basic properties of the probes are known. The accuracy of
the method is of course measured by the errors introduced
during temperature variations. Hence, an estimate of these
errors is an essential part of the development and documen-
tation of the method.

In turbulent or complex flowfields various arrays of
hot-wire sensors are needed in order to resolve the various
components and correlations of the velocity field. Various
types have been used over the last three or four decades,
the most common being the X-wire probe. In order for any
hot-wire array to resolve velocity components in directions
other than the streamwise direction or to provide informa-
tion on the components of velocity in more than one direc-
tion, the dependence of the anemometer output on the yaw or
pitch of the probe must be known. If fluctuating velocities
or their correlations are to be measured , this dependence
must be known to a very high degree of accuracy, since the
derivatives of the output with respect to the yaw or pitch

angle are required in order to infer these quantities from




the anemometer signals.

In the case of the X-probe, the dependence or sensitivity
of the output signal from both sensors must be known as a
function of the yaw angle, measured for example from the
axis of symmetry of the X-wires. When the mean streamlines
of the flow are not parallel to this axis during the entire

traverse of the probe in the flowfield, the mean velocity

vector will not be aligned with the X-wire axis of symmetry

at all times. 1In such cases the yaw dependence of the probe

must be known to the high degree of accuracy over a wider
range of angles. Many practical and complex flowfields are
included in these cases. The one class of flows which moti-
vated this work and is of particular interest here can be
described in general as "swirling flows". Such flows arise
in many problems as, for example, can be seen from the In-
troduction to Nagib's work [1].* Measurements in such flows

or near bluff bodies, in particular in the presence of tur-

bulence, require the information described above.

The present study was initiated in response to needs
which arose in connection with the recent work by Wigeland
et al. [2,3] and aims at providing its results to:future

extensions of their investigations. To obtain the measure-

ments presented in their papers [2,3]) Wigeland, Ahmed and

Nagib utilized X-wire probes. They used well known methods

*Numbers in brackets refer to numbered references
in the Bibliography.




to calibrate the probes and to process the signal with the
aid of analog circuitry. Several such methods, which rely
on different approaches, have been used by many investiga-
tors and only some of them are documented in the literature.
In particular, some of the approaches not documented in the
literature rely on digital processing techniques which have
been recently introduced to experimental fluid mechanics
research, but seem to be gaining considerable ground over
analog signal processing systems. At I.I.T. we believe that
both analog and digital techniques should be available to
the experimenter so that they may be utilized in the various
stages of diagnostics and final data collection of the ex-

i periment. Therefore, in our opinion a most essential ingre-

dient required in an approach for dealing with the calibra-
tion and utilization of X-wire, as well as multiple sensor
probes ,is their adaptability to both signal processing tech-
niques.

Almost all of the methods used with X-wires rely at one
stage on describing the yaw calibration data by some ana-
lytical function. These vary from simple cosine functions
to high order polynomials. 1In a few cases the discrete cali-
bration data are used in the method. However, these suffer
from the difficulties involved in obtaining derivatives of
the anemometer output with respect to yaw angle.

Many of these methods and comparisons between them are
discussed in the following chapters. In the remainder of

this chapter, some of the results in the literature of
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importance to the two aspects of the present study, i.e.,

yaw and temperature dependence of hot-wires, are briefly

discussed.

Relevant Literature

Extensive work has been done in the areas of tempera-
ture and yaw dependence of hot-wires. In regard to the tem-
perature dependence, semi-empirical heat-transfer laws have
been developed by Collis and Williams [4), Davies and
Fisher [5] and Bradbury and Castro [6]. With the aid of
these relations, a number of schemes to measure and/or com-
pensate for the ambient teﬁperature variations are described
both in the literature and through commercially available
compensators.

Burchill and Jones [7] proposed a scheme in which the
resistance in the anemometer bridge that controls the wire
temperature is manually adjusted as the fluid temperature
changes, the adjustment being based on calibration curves
obtained earlier at different ambient temperatures. The
amount of time wasted during an experiment is the major ob-
jection to this scheme. Other techniques developed by
Chevray and Tutu (8] and similarly by Ali [9] involve a
complex compensating scheme which is applied to the signal
from the bridge, atter it has been linearized, through the
linearizer constants. Rose (10) determined a method by
which values read from the anemometer were corrected through
the use of a correction factor which was a function of tem-

perature. His method was found to give 3% errors in
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indicated velocity due to only a 12°F change of temperature.
Methods like those of Chevray and Tutu [8] and of Ali [9]

are particularly suited when high frequency temperature
changes are present in the flowfield. Their methods as

well as Rose's can be also adapted to digital signal process-
ing techniques.

A number of compensating units are sold by the hot-wire
anemometer manufacturers. However cost is prohobitive in
many cases and these units can be interfaced only with the
newer anemometer models. Nagib [1] and Tan-atichat et al.
[11] employed a simple compensa;ing scheme that consisted of
a temperature sensing probe together with a resistive net-
work which was used as the leg in the bridge of a constant
temperature anemometer opposite the velocity sensor. Using
this scheme they were able to compensate to better than 1%
change in indicated velocity over a 20°C change in water
temperature. However to determine the values of resistances
in the network required a long and tedious iterative pro-
cedure. Nevertheless, this was by far the simplest scheme whict
attained the desired accuracy, as long as the frequency re-
sponse of the temperature probe was higher than the frequen-
cy of temperature changes.

In regard to the yaw dependence, Prandtl (12],
Struminsky [13] and Jones [14]) determined that for an in-
finite heated cylinder only the velocity component normal
to it was effective in the cooling. In this case the yaw

sensitivity function is given by
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fz(u) = cos a (I-1)

where a is the angle between the incident velocity and the
normal to the wire. The effective velocity, Ue; is there-

fore related to the incident velocity, Use by:

2
Ue = Ui £°(a) (I-2)

Hinze [15]), Webster [16] and Champagne [17] have found
that finite length hot-wires produce deviations from the
cosine law and suggested the following for the directional

sensitivity,

2 2

fz(a) = (cos“a + k sinza)% (I1-3)

where k is a small parameter accounting for the axial com-
ponent of the velocity. All of them report that k varies
with sensor £/d although considerable amount of scatter is
evident when comparing their data. Hinze [(15], Bruun (18],
and Kjellstrdm et al. [19] have determined that k decreases
with increasing velocity, which Horvatin [20] suggests may
be due to the axial temperature profile of the wire becoming
more isothermal at the higher velocities.

Other yaw relations have been proposed by Bruun [18], by
Fujita and Kovasznay [21], and by Friehe and Schwarz [22]

where in their case,

£2(a) = (1 - b(1 - cos™a)]? (1-4)




The Friehe and Schwarz relation appears to fit most yaw
calibration data to a greater degree of accuracy than any of
the previous yaw relations examined. However, their data
[22]) indicate that hot-films which have small £/d's seem to

deviate less from the cosine law as compared to hot wires

which have much larger £/d4's.
In an attempt to explain these trends, and to examine
the conditions in water, Roberts et al. [23,24] generalized

the Friehe and Schwarz relation to
£2 (a) =.[1 ~b(} ~ cos™ a)}? (1=5)

and investigated the yaw dependence of commercially available

hot-film probes in water. This generalization was based on
observed trends in the data which indicated that a combina-

tion of the behaviors depicted in Figures 1 and 2 is more

suitable than either one separately. It is quite clear from
these two figures that the behavior in the two cases is sig-
nificantly different at large yaw angles. It should also be
noted that the behavior of Figure 1 is that of the Friehe
and Schwarz relation while Equation (I-5) combines the
trends shown in both figures. Roberts et al. [23,24] deter-
mined that the accuracy in fitting the calibration data
using this relation, which is called the present relation

in the following chapters, was superior to the Friehe and
Schwarz relation. However, the trends they sought to ex-
plain still remained unresolved after their studies.

Champagne et al. [25] and later Friehe and Schwarz,




each using their own yaw sensitivity relation, have deter-
mined corrections to low intensity turbulence measurements
using an ideal linearized X-probe for the case where the
mean velocity is along the axis of symmetry of the X-wires.
These corrections have not been determined yet in complex
flows where the mean velocity cannot be aligned with the
X-probe, nor has a comparison been made between the various
turbulence correlations as would be obtained from the same
data using different yaw relations.

Morrison et al. [26) show that dynamic calibration of
X-probes yields significantly different results than those
obtained by static calibration. Bruun [17] has demonstrated
that part of this difference is caused by poor approximation
of the static calibration. Bruun's data however, reveals
that a difference does still exist which he attributes to
experimental error.

From the literature cited above it seems that there is
considerable disagreement and uncertainty in the interpre-
tation of signals from and use of X-wire probes. This study

aims to clarify some of these problems.

Objectives

The objective of this work can be divided into two

groups; one relating to the temperature dependence of hot-

wires , and the other to their yaw dependence.

In regard to the temperature dependence, the objective

is to analyze the compensating scheme proposed by Nagib [1]

to obtain, whenever possible, exact solugions of the values
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of the resistances in the compensating network, and to de-
rive estimates of the errors introduced by the technique
during typical temperature variations. It is considered
desirable to be able to perform all of these knowing only

the temperature dependence of the velocity sensor and com-

pensating probes and their resistances, which are usually
specified by the manﬁfacturer. If these objectives are
accomplished the desired compensation can be achieved and
the expected errors estimated a priori to making any flow
measurements and without the need for temperature calibra-
tion.

In regard to the yaw dependence of hot-wires, the first
objective is to do a careful study of the effect of various
parameters on the yaw sensitivity as described by the cosine
law, the Friehe and Schwarz relation and the present rela-
tion. Theee parameters include Reynolds number, probe
misalignment and length to diameter ratio of the sensor, £/d4.
Two possible methods of varying the sensor £/d were con-
sidered during the planning stages. The first is based on
varying the active portion of the sensor while keeping the
ratio between the prong spacing and the active length con-
stant. Another method is to keep the prong spacing constant

while changing the sensor £/d. The latter was selected for

several reasons, although the former appeared attractive for
other reasons. While the length of the active sensor is
easily changed during fabrication the prong spacing is

usually not readily altered. The separation of the prongs
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is often dictated by the size of the experimental setup and
requirements of minimum probe interference. On the other
hand the length of the active sensor may be varied to suit
the flow conditions, including the scales of the velocity
gradients and turbulence field.

The second objective is to extend the analysis of ;
Champagne [17] and Friehe and Schwarz [22] to cases when an
X-probe, with sensors having different yaw sensitivities,
is used in flows where the mean velocity is not along the
line of symmetry of the X-wires. In conjunction with this,

a comparison of the differences between the values of the

turbulence velocity correlations computed from the cosine law,

Friehe and Schwarz and the present relation can be made.

The third objective is to examine the effect of free-
stream fluctuations on the yaw sensitivity of hot-wires.
Since hot wires are calibrated for yaw sensitivity under
static conditions with very low turbulence levels, i.e.
calibration conditions, operating them under conditions
where larger fluctuations are present may have an effect on

the various sensitivities.




12

CHAPTER II
ANALYSIS OF TEMPERATURE COMPENSATING CIRCUITS

FOR USE WITH HOT-WIRES OR HOT-FILMS

A number of temperature compensating schemes have been

proposed by the hot-film manufacturers. Several of these
schemes depend on a temperature sensing probe which can be
used in the anemometer kridge shown in Figure 3 in place of
the bridge resistance R3. The ideal probe for this purpose
should have the following properties:

1. 1Its resistance RT should be given by

RT 5 roMRC v MRH
where M is the bridge ratio and r, is the overheat ratio.

2. The dependence of Ry, on temperature should be iden-
tical to that of the velocity probe operating resistance RH'

3. The size of the probe should be sufficiently large
so as not to be heated by the bridge current.

The latter requirement assures that the probe resistance is
independent of the fluid velocity.

Such a probe is of course almost impossible to manu-
facture and even if it could be selected from a large
statistical sample it could only be used with the one
matched velocity probe. Fortunately most of the hot-film
and hot-wire probes furnished by a manufacturer are quite
similar in properties with their resistances falling within
a limited range. A temperature compensating circuit

similar to those outlined in Figure 3 can therefore be

e e Rais g P » _ R T
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used, at least over some range of ambient temperature
variation. A complete analysis for the determination of
the series and parallel resistances of compensating
circuits 1, 2 and 3 are presented.

Analysis

Based on the bridge balance condition of the anemometer
circuit in Figure 3,

R)/R; = Ry/R4

where M is the bridge ratio and R3 is the equivalent

M (II-1)

resistance of the temperature compensating network
Considering only the first coefficient of the

temperature dependence of R, and RT (i.e., ignoring second

(o
and higher order terms of temperature changes) we write

&Ry
ar

= RTo“T (IXI-2)
and
dRC
aT— = Rcoac (11‘3)
Or that
Rp = Ry [1+ag (T-T )] (11-4)
and
RC = C°[1+ac('r-'1‘o)] (II-5)

where RTo and RCo are the resistances of the temperature
compensating probe and the cold resistance of the velocity
probe, respectively, when the ambient temperature, T, is

equal to the probe reference temperature To'
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Assuming that a. is independent of temperature, where

nﬂ leﬁ‘

(s

» and ar>0 (I1-6)

we define a probe resistance ratio as follows
B = = (11-7)

The resistance ratio B is dependent on temperature and its

value at the original reference temperature To, (usually

By ™ [;2] (1I-8)
T=T,

room temperature) is

C
We denote the operating resistance of the velocity sensor
by RH' b e

RH = Rcro(T) and rO(T)>1 (II-9)

where r, is the overheat ratio. Since RH is related to the
temperature compensating circuit resistance through the
bridge relation, it is also a function of the ambient
temperature. First, we consider compensating circuit 1,

where

RpRr

R3 = RS + W (II-10)
From the bridge balance condition, we write
RpRy
RH = M[RS + m (II"ll)

Using Equations (I1-5) and (II-7) and defining non-
dimensional series and parallel resistances, Sr and Pr

respectively, where
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Rs !
Sr =z = and Srio (II-12)
T
and
RP |
P = ﬁ; and Pr>0 (IX-13)
we obtain the nondimensional bridge balance condition,
-1 r
1 L O i
Sr*[l"'p‘] -2 (I11-14)

.
The governing equation for the velocity sensor (King's
Law) can be written as
2 g
I
—Elj—g- - A + BU® (1I-15)
C

Ru

where U is the fluid velocity and I, is the current through

P
the probe; A, B and n are nearly constant. Based on this
relation and since for constant temperature operation the
anemometer servo-amplifier maintains the probe temperature
and hence its resistance RH constant, one may conclude that
two possible modes may be useful for keeping the output
voltage constant, i.e., independent of ambient temperature.

One can either maintain a constant overheat ratio or

maintain a constant resistance difference.

Another possible mode exists if we rewrite King's Law
in terms of the bridge output voltage and determine the
condition necessary to keep the output independent of

ambient temperature. ‘

Case A: Constant Overheat Ratio. In this case we set

ro = constant




and the anemometer bridge ratio M is constant, then

M RC(T)
—xz = m = constant

and

g_.R_C. = 0
dT .R3
so that using Equations (II-2,3,4) we obtain
dR3 RCoacro

Case B: Constant Overheat Resistance Difference. 1In

this case we set
RH - Rc = constant

so that
gT[RH’Rc] =
Using Equations (II-l1) and (II-4), we obtain

dR R, a
o =~ (11-18)

Case C: Constant Bridge Output Voltage. In this case

referring to Figure 3, and using the bridge balance
condition, the non-linear governing Equation (II-15) may be

rewritten as

R
2 C 2 n
Eb = [l'q] (R1+RH) (A+BU") (II1-19)

(note that if the ambient temperature remains constant,
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this reduces to the form Ei =a' + B'U"). Assuming that
the coefficients A, B, and n are insensitive to temperature

variations relative to the changes in R, and RH with

Cc
ambient temperature (the validity of this assumption is

examined in Appendix B), we set

3
[ﬁ Eb}U A (II-20)

Using Equations (II-l), (II-4) and (II-19), we obtain
dr R, a.T(T)
T = (11-21)

where

2 + S|

Ry Ry

Let us now consider one final case. In this case we

T(T) = 7 [ﬁ ] (I1-22)

determine the condition necessary to keep the output voltage

constant as the ambient temperature varies if the

anemometer output is linearized. i

Case D: Constant Linearized Output Voltage. From

Equation (II-19) we can write
E = KI(T)U (I1-23)
where EL is the linearized output voltage and the lineari-

zation constant il is a function of T given by
3 RC 2 1/n
Kl(T) = ko B 1-§; (R1+R“) (II-24)

For the output to be independent of temperature

variations, we set

)
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BEL
U
that is,
aﬁl
- 0 (II-26)

Using Equations (II-1), (II-4), (II-24) and (II-26) we
obtain

dR3 RCOacr(T)

| R | SR

Comparing this with Equation (II-21), we find that

temperature compensation does not depend upon whether the
anemometer output voltage is linearized or not.

We now combine all of the above cases into a single

equation which specifies the functional dependence of the
compensating circuit with temperature. This eguation can

be written as

dR R. «
o i
where
1
;r-for Case A
o)
n = 1l for Case B (II1-28)

?%TT for Cases C and D

The solution of Equation (II-27) along with the non-
dimensional bridge relation for each circuit will yield
values of the series and parallel resistances for each

circuit.
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Compensating Circuit 1. Substitution of
Equation (II-10) into Equation (II-27) and using
Equations (II-12) and (II-13) leads to the solution for
the parallel resistance directly
P_ = (/aMn B_-1) % (I1-29)
z 4 o
or
= -1y 1 .
RP = [RT(MarMn Bo 3} (Ir-30)

T=To

then substitution of Equation (II-29) into Equation (II-14)

leads to

- [r

r o

o
™ 7a_!lln—8'” (11-31)
T=T_

Here, the values of RS and RP are evaluated at the initial
reference temperature To'

Compensating Circuit 2. Referring to Figure 3, we

obtain

RP(R +RT)
R3 = R—;_'_—Ri—;g— (II-32)

Use of Equations (II-1l), (II-12) and (II-13) leads to the

non-dimensional bridge balance condition,

BM & -
e Pr[f;(sr+l)-l] 0 (II-33)

Substitution of Equation (II-32) into Equation (II-27)
yields a non-dimensional form

B, = Pr[/arun Eo -1l] -1 (I1-34)
The solution of Equations (II-33) and (II-34) for the

series and parallel resistances results in the resistances
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(II-35)
and
r
(o)
RS = [RT[FE /urﬁn Eo - 1]]T-T (I1-36)
o

Operating charts for the selection of the series and
parallel resistances for circuits 1 and 2 are also plotted

in Figures 4 and 5,respectively. These charts, or the

equations given above, can be used by the reader to design
or adjust either of the two compensating circuits. One

needs only to know the properties of the anemometer bridge

and the velocity and temperature probes, i.e., their
resistances and their temperature dependence coefficients,
in order to achieve the compensation, without any need for
temperature calibration.

Compensating Circuit 3. Circuit 3 is slightly

different than the previous two circuits presented in that

there are four unknown resistances to determine. Since we 1
are working with two relationships, it would seem that at

this point two of the resistances can be selected :
arbitrarily. It will be shown later that some constraints !
on the other two resistances exist. However, initially we
will proceed as if there are no constraints in order to

generate a family of solutions.
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From Figure 3, the equivalent resistance is

_ (Rg1*Rp  *Rp)RpaRsy + RpyRpa (Rgy+Ry)
3" Rgy PRy PRyt (Rpa*Rgal ¥+ Rpy 1Rgy ¥29)

Using the previous methods, the non-dimensional bridge

R (II-37)

relation becomes

(Srl+Prl+1)(Pr2+Sr2) + Prl(srl+1)

éﬁl(s
o)

+Prl+1)1>rzsr2 + P_.P +1)] = 0 (II-38)

rl rl r2)sr1

Substitution of Equation (II-37) into Equation (II-27)
yields the non-dimensional form

(sr1+Pr1+1)(Pr2+sr2)

+ prl(srl+1) ol A r2/ a_Mn 'E' (II-39)

Since two of the resistances will be arbitrary we define

S = a's and a'>0 (I1I-40)

r2 rl -

P b'P and b'>0 (II-41)

r2 rl

where a' and b' are constants to be determined.

We also define the following quantities,

:
!
i
7
+1) (II-42Db) 1

z1 = rl(Srl rl+l) (I1-42a)
2 2 Py (5y

_ BM ’
z3 = ;; Prlsrl(srl+Prl+1) (IX1-42c)
2, = BMp2 (g 41) -p__(S_.+P_.+1) (II-42Q) *
4 ~ r, el el Pl tl 1

Substitution of Equations (II-40) and (II-41) into |

Equation (II1-38) along with Equation (II-42) leads to
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a'zl + 22
b' = Z‘TTT (II-43)

3 4

Aldiaane e

Substitution of Equation (II-40) and Equation (II-41)
into Equation (II-39) leads to

a'zl + 2
Z

b = 2

(11-44)
5

where

e
3, = PL, /o ¥n B

o Pry(Spq*Ppytl)

Solving for a' and b' in Equations (II-43) and (I1-44),

we obtain

Z-Z4
at = —=y (I11-45)
3
and
2,(2.-2,) + 2,2
b' = 1 542'127 £.2 (I1-46)
93
Since a'>0 we find from Equation (II-45) that
zs > 2‘
This leads to
o
0 < Srl < ™ /arMn Bo -1 (I1-47)

The condition on the coefficient b' is that b'>0 which

implies that

and hence

rl ot -1 (IT1-48)

G PO U abbinaseps JaE
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Having selected S, and P, based on Equations (II-47)
and (II-48), Pr2 and Sr2 can be determined from
Equations (II-40) and (II-41).

Putting the solution in dimensional form we have the

following:
(1) Select Rgy such that
ro 8
0 <Ry < [“T(W Yo Mn B_ - 1]]'1'-'1' (I1-49)
Yo
(2) Select Ry such that
R_.+ R
R [ T sl ] (I1-50)
/arMn Bo -1 T=To
(3) Determine RSZ from
Rgr = | TR fpl o To :;Mn 2 o Rgy = Ry, (I1-51)
s1tRp1*Ryp Le
o

and (4) Rpo is given by
Ya_Mn B
Ry, = { “ral o (I1-52)
BM[Ry,, /o Mn Eo = (Rgy+Rp *+Ry) ] T=T

Selection of A Compensating Probe

Ideally, it would be desirable to have one temperature
compensating probe for all velocity probes. For typical
probes this is not always possible. However, knbwinq the
range of resistances of the velocity probes and their
temperature coefficients, a temperature probe may be
carefully selected for use in most of the cases. Based on

the solution of compensating circuits 1, 2 and 3, and
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requiring that a real solution exist, the following
inequality involving the parameters of both probes must
holad:

RCo RCorgarn(To)
W < Rpg £ W (II-53)

With a knowledge of ;he properties of available velocity
sensors, operating overhcat ratios, anemometer bridge ratio
and operation mode of the compensating circuit, a suitable
temperature compensator may either be fabricated or
purchased from a manufacturer based on this inequality.
Besides this restriction, the compensating probe must
not be influenced by the electrical current passing through
it. This results in temperature probes sensitive to
velocity, which is not only an undesirable feature but
also affects the calibration curve of the velocity probe as
discussed by Tan-atichat et al.[11l]. The compensating
circuit also has a frequency response to temperature
variations which depends on the thermal time constant of
the temperature probe (up to several cycles per second
can be obtained using commercially available probes).

Error Estimates

We do not expect "perfect" compensation from the
proposed circuit configurations. This is true since
Equation (II-27) prescribes the dependence of R3 on ambient
temperature for ideal compensation, while the introduction

of a proposed circuit and a temperature probe forces a set
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function of temperature on R3. Therefore, the error Qill
be related to the difference between the two.

Case C: Non-Linear OQutput Voltage. As before

E, = (Ry+Ry) /[1-%9] (a+BU")

Then, with the assumption that A, B and n are not functions

of temperature,

JE R \y-1 R R.R
i BT -1(, ¢ ) O R iy -
¥ W T 3 [l'ﬁ'] [Mﬁ"f“{z g TF]

®
- aCRC°(1+ ——] (II-§4)

If R3 behaves ideally then the terms in the brackets would
vanish and Equation (II-27) would arise. Since this is
not necessarily true, we integrate Equation (II-54) from
the initial reference temperature To to some ambient

temperature T to obtain

A 1/2 -
Eb(T) Eb(To)e (II-55)
where
9R R R,R R

3[ C 1 c} [ 1 ]

M 2- = + - a R, |1+ —=

T 9T MR, M§R32 C Co MR,

= I ar

To [l- —-—J(R +MR ) (II-56)

Since I is a function of R3(T) which is a function of
the particular compensating circuit used, the magnitude of

the change in the output voltage with temperature will be

a function of the circuit configuration employed.
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Once the velocity sensor is calibrated at the
reference temperature, i.e.
Eg =A' + B'U",
then the error in the indicated velocity will be
um -ur,) [ el - a/m
Ty = ) - 1 (II-57)
— ]
o E (T) A
In the case of the linearized output voltage,
following a similar procedure, we find that
= I/n &
EL(T) EL(To)e (II-58)
and the corresponding error in the indicated velocity is
given as
u(T) - Uu(T))
o . I/n _ &
U(To) e 1 (II-59)

A Sample Estimate. We now consider a typical hot-wire

and compensator combination to obtain an indication of the
quality of the compensation using the proposed scheme.
Assume we are using a tungsten hot-wire whose resistance
at room temperature is 102 and whose temperature

coefficient, a,, is 0.0048/°C. From Equation (II-53) we

c’
determine that a compensator made from nickel whose resist-
ance at room temperature is 150 and whose temperature
coefficient, e is 0.0067/°C is suitable.

Using the analysis described, the values of the

resistances for circuit 1 are
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Y RP = 49.68%
Ry = 6.48Q,

and for ccmpensating circuit 2 are
' R, = 77.61Q
R, = 8.44 Q.

Using these values we can determine R3(T) and dR3/dT and
thus evaluate Equations (II~55) and (II-59) for different
ambient temperature changes for circuits 1 and 2. The
results are shown in Table 1.

The estimates presented in Table 1 indicate that the
proposed compensating circuits will tend to slightly under-
compensate for ambient temperature changes. The use of
compensating circuit 1 with a temperature change of 40°C
produces a 2% change in the indicated velocity, while
utilizing circuit 2 would reduce this error to 1% for the
same temperature change. Over the range of temperature
changes examined the error is approximately proportional
to the square of the temperature difference.

Next, we ask the following question: by changing from
circuit 1 to circuit 2, the error was reduced by a factor
of 2; can we then minimize the error by going to circuit 3?

At the reference temperature, the compensating circuit
must satisfy constraint equations as derived previously.

It must satisfy the bridge relation, i.e.,

r _Ro
6, = |Ry=.— =0, (II1-60)
: T=T
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Table 1. Sample Error Estimates for Typical Velocity and
Temperature Probes in Circuits 1 and 2.

T - T_(°C)
0 10 20 30 40
R.(T) (2) 10.00 10.48 10.96 11.44 11.92
Ry (T) (2) 15:00 7. 16.01 . -17:81  18.02 . 19.02
Circuit 1
Ry (T) (9) 18.00 18.59 192.15 19.70 20.23
AR, (q
aa-[ve} 0.0593 0.0575 0.0557 0.0541 0.0525
E, (T) -E, (T_)
. —-L2-9 (3) o0 -0.03 -0.11 -0.25 -0.44
b(T,)
EL (T) -EL (To) .
(8) oO* -0.13*%* -0.52*% =1.17% =2.05%
i EL(TS)
: Circuit 2
| Ry (T) (R) 18.00 18.59 19.17 19.73 20.28
|
i dRj (g
| aT‘[TE] 0.0593 0.0581 0.0570 0.0559 0.0548
Ey, (T) ~Ep (T,)
Rt e (3) 0 0,00 <008 0,13 ' -0.38
Eb To
E, (T) -E, (T_)
L L_O_ (4) o -0.06% =0.23% =0.53% -0.94%

ELITOY

—
n=0.43
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‘ and the temperature relation, Equation (II-21), i.e.,

dR a R, tiT)
» 3 T T £ b
¢2 & [dT M ] 0, (I1-61)

T=T°

for the constant output voltage modes. The error involved

is related to I which is defined by Equation (II-56).

Since in circuits 1 and 2 there are only two adjustable

resistances, I is fixed, i.e., the error is unique,

Circuit 3, however, has four undetermined resistances so

that I can be minimized subject to the two constraints.
For a prescribed temperature difference, Tf = To'

which one wishes to compensate over,
I = f(Rsl'RS2'RP1'RP2) (II-62)

where

Ty

To

I* ar (II-63)

o T L TR Tl I
and where I* is a known function of temperature, namely,

MdR3 . Rc RlRC Rl
-ar—[ " WR; t —z—z] Reo%c [1+ WK |
I* = (II1-64)
[1- ———] (R +MR )

A necessary condition that I has a minimum value is that
ar = 3£ _ar,, + £ —ar,, + 3 —a dr_. = 0
i Aot IR s2 * np Rpy * RP %p2

&l e (11-65)

subject to two constraints

and

e m——
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where ¢, and ¢2 are defined in Equations (II-60) and
(II-61) . Using the method of Lagrange multipliers, we
obtain six equations in six unknowns, RSl' RSZ' RPl' RPZ'
Al and Az. where Al and Az are the Lagrange multipliers.

The six equations are:

2
T A, 3R X, 0"R
3 I £ . 1™ ¥ vy
IR dT & i & =0 (II-66a)
9Rg) T, 9Rgy 9TORg)
‘ 2 A 9R, A232R3
* = -
TR J I* 4T + ﬁ__ + m— 0 (II-66b)
s2 s2 s2
5 %, X, 9R, x232R3 " o
R I I* 4T + SR + TR, = II-66c
Rp1 I Rpy Rp1
. T, A, 3R, A232R3
- - I* aT + + =0 (II-66d)
Ry I Rp ToRy
2 /o 9Rp, 9TOR;,
(o]
- r R
R, - -3 C] =0 (II-66e)
L M e
(o]
[9R a.R. T(T)
3 _ _Cco - (II-66f)
3T M o
i (o]

In the above equations R3 is given by Equation (II-37).
Solution of the above system of equations will lead to
values of resistances which make circuit 3 the optimized
circuit configuration. The solution of this system of

equations has not yet been attempted. However, in principle
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they can be solved numerically.

The performance of the constant output voltage mode
was based upon the assumption that the coefficients in
King's Law were independent of temperature. From the
experimental results in Appendix B, we see that all of the
coefficients are weak functions of ambient temperature.
However, data for the different operating modes indicates
that the anemometer output voltage drift is independent of
the fluid velocity for measurements in air. Therefore the
variations of B and n with temperature may be ignored.

The analysis can be modified to take into account the
variation of the coefficient A with temperature. However,
the variation of A would have to either be assumed or
experimentally determined. In this case, the compensating
circuits could not be set apriori to making any velocity
measurements and the experimenter would have to calibrate
his probe for both velocity and temperature. The error
introduced, however, by making this assumption should be
small and will be experinentally determined in future

extensions of the present. investigation.

s Sl

ST
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CHAPTER IIIX
RESPONSE EQUATIONS OF INCLINED CYLINDRICAL SENSORS

IN STEADY AND FLUCTUATING VELOCITY FIELDS

In this chapter, the X-probe array of Figure 6 is consid-
ered to be immersed in a flow field described at any instant
of time by an instantaneous velocity Qi' This flow field can
be decomposed into a mean velocity Q8 which is inclined at
an angle y with respect to the x-axis, and the time dependent
velocities dg and q, aligned with the mean streamline and the
direction normal to it, respectively. Throughout this
report the effect of fluctuations 'which are normal to
both qg and 9, is not considered. The response of the
X-probe array to this low turbulence intensity velocity field
will be determined utilizing various relations for the yaw
sensitivity to determine the differences between them in

calculating the flow field characteristics.

Time-Mean Velocity Field

Only the effect of Qg on the time averaged output of
the X-probe is examined here. As will be shown later this
is only true for cases of low turbulence intensity. Refer-
ring to Figure 6, the mean effective cooling velocity that
each sensor is subjected to can be related to the mean

streamwise velocity through the equation

- 2 s
Qe,l — st (Ol-y) (III-1)

for sensor 1 and

2 -
Qg , 2= Qg (85+y) (II1-2)
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for sensor 2. The function fz(e) is determined from the
yaw sensitivity relation utilized. The mean effective -
cooling velocity is related to the mean output voltage of
the sensor by
Qe,l = H(Ei) i=1], 2 (I1I-3)
Where H(Ei) can ‘take many forms. Two of these forms are
given by
E
k-i (I1I-4a)
= i
H(E;) =
i Eiz - A l/ni
— (II1-4b)
i

Where Ky is the calibration constant for a linearized sensor

and A;. By and n, are the calibration constants for a

non-linearized sensor. 1In each case calibration is carried

out when the sensor is normal to the free-stream velocity.
Cosine Law. The angle of inclination Y and the mean

U and V velocity components, aligned with the x and y axes,

respectively, are to be extracted from Equations (III-1l)

and (III-2). If one is fortunate enough to have sensors

which obey the cosine law, then Equations (III-1l) and (III-2)

are linear in U and V and lead to

-1 [H(ED) H(E,)
U = (cot °1 + cot 02) ;'i“ °1 * e 7 (III-5)
-1 [H(Ep) H(E,)
V = (tan 01 + tan 02) Lco' °1 - 62 (I11-6)
where
Yy = tan-l[%] (I111-7)
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When the hot-wire signals are linearized, Equations (III-5)
and (III-6) represent a simple weighted sum and difference
technique and are therefore, very attractive for use with
analog processing.

As Champagne et. al. [25] have shown, nearly all sensors

deviate from the cosine law and the magnitude of this

deviation is a function of probe characteristics. 1In order
to correct for these deviations more sophisticated yaw
sensitivity relations have been proposed. These relations
introduce nonlinearities in such a manner that a simple
weighted sum and difference technique as in Equations .II-5)
and (III-6) is usually not feasable. To determine the mean
velocity components, the angle of mean flow, y, may first

be determined from an iteration scheme using

fz(e1 =% H(E,) ; &
e e III-
£5(6, + v) H(E,)

The mean streamwise velocity can then be determined using
Equation (III-1l) or (III-2) with Equation (III-3). A
simple decomposition of this mean velocity then yields the
mean U and V components of velocity.

In general, proper schemes for determining the mean

components when taking into account deviations from the
cosine law do not readily lend themselves to analog
processing techniques. How large an error then does one make
in the determination of the mean velocity if one assumes the

cosine law to take advantage of the simplicity previously
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described? For ease of interpreting the results we assume
that el = 62 = 45° and that both sensors have identical yaw
sensitivity. Let vy, Qs' U and V be quantities determined
utilizing a yaw sensitivity function taking into account
the deviations from the cosine law, and Yor (Qs)c' Uc’ vc
be those quantities calculated from the same data utilizing
the cosine law. It can then be shown that

-1 [£2(45°-v) - £2(45+v)
Yo = tan ) b (III-9)
£°(45°-y) + £°(45+Y)
U Q [ cosy
. (8)c c -
U Qs cosy | 1532
v Q siny 7
e _ f8le c g
where
Q
Lele - /125112 +  (£2(4541)1°2
E (III-12)

Examining Equations (III-9) through (III-12), one observes
that as the response of the sensors deviates from the cosine
law the magnitude of the errors introdu-ed increases. These
errors will be significant particularly in the angle of the
mean flow and the V component.

It was pointed out in Chapter I that there are many
yaw sensitivity functions in the literature which take into
account the deviations from the cosine law. For mean velocity
measurements when Y=0, there is no significant difference

in accuracy among them. In the next few chapters it will be

B i e -411

,..M.
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shown that this is definitely not the case for time depen-
dent velocity measurments. It will also be demonstrated that
the present relation yields the highest accuracy in all
cases. Thus, for the prupose of examining the errors intro-
duced when using Equations (III-5) and (III-6), we assume
here that f(a) is given either by the present relation or
the Friehe and Schwarz relation.

Since we will be examining the difference in a quantity
X as calculated by the present relation and by the cosine

law, we define a relative error in x by
. waled S (II11-13)

where p and ¢ denote the present and cosine relations,

respectively. Similarly, the difference in the same quantity

=T

X as calculated by the Friehe and Schwarz relation and by
the cosine law can be written as

! () = &, (III-14)
| b=b

; m=0.5
For comparison, the difference between the present relation
and the Friehe and Schwarz relation is denoted by €yt

An ideal X-probe whose sensors have identical yaw
response and are inclined at :45° to the x-axis will now be
considered. When the mean streamwise velocity is aligned
withithe x-axis, using Equations (III-10), (III-12) and

(III-13) it can be shown that

L
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1
g | = = -1 (III-15)
u /2 [1-b(1-2""%))¢
¥=0
and 2
[1-.159 bf ] "

€ = = - (III"lG)
Ol oo L1-b(1-27"2)

For all cases within the scope of this work it was found
that EU'Y:Q‘ 5%. Thus, whenever Y=0 the cosine law is quite
adequate in determining the mean velocity irrespéctive of the
sensor being used. However, the magnitude of this error will
be shown to depend on a number of parameters.

For the cases where Y¥0, sensors whose response is
close to the cosine law are first considered. Next, sensors
whose response is far from the cosine law will be discussed.
As an example of the former case, we assume that b=1.046 and
that m=0.487 (details of these results can be found in
Chapter V). Using Equations (III-9) through (III-~12) one
then finds that for Y<25°
2.5%

a

1.3%

™
1]

= "2‘

Therefore, for sensors that do not show a marked deviation
from the cosine law, mean velocity measurements are not
significantly altered by employing a "more sophisticated"”
yaw relation and the simple sum and difference technique of
the cosine law is quite adequate.

For the latter case we take b=0.534 and m=0.868. Using
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these parameters in Equations (III-9) through (III-12) one
obtains for y=5° '

L g = 20%
- Y

&y = -5%

&y = 20%

As the angle of the mean flow increases these errors also
increase. Thus, for sensors which show a noticeable devia-
tion from the cosine law, the simple sum and difference
technique does not apply for cases where Y#0, making analog
processing extremely difficult i§ not impossible.

Furthur Generalization of Cosine Law. For sensors which

exhibit small deviations from the cosine law it was shown

that utilizing the cosine law leads to quite accurate results.
An approximate method which may result in even more accurate
results is based on the use of a weighted sum and difference
technique utilizing a "more sophisticated" yaw relation.

Here it is assumed that the mean effective cooling velocity

can be decomposed in the manner similar to the cosine law.
= 2 2
Qe,l Uapf (el) + Vapf (90-61) (III-17a)
and
a ., =u_£2(e,) - v._£2(90-0,) (II1I-17b)
e,2 ap 2 ap 2

The function fz(el) once again refers to the yaw relation
utilized and the subscript ap refers to quantities calculated
using this approximate method. Since the angle of inclina-

tion of the sensors is known, then once the sensors are
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calibrated for yaw sensitivity, the weightling coefficients

are determined.

\' one obtains

ap
[ H(E,) 2 R 1]
£2(90°-9,) £2(90°-0,) |
i T BBl oo
and
(H () H(E,)
R ?79_17-?@]
ap (£ (90°-0,) £2(90°-,)
sz(el) g £2(6,) ]

The errors introduced using this scheme can be calculat-

Solving Equations (III-17) for U,

and

P

(I1I-18a)

(III-18b)

ed in a manner similar to that used for Equations (III-9)

through (III-12).

It then follows that

£2(0,-y)  £2(8,ty) y (£2(6y) £ (g,
(e  £2(s) £2(90%-0,)  £2(90°-6,)
N Yap T Y fZ(ooy)  £2(eye) [|£2(30°-sy)  £2(30%-6,)
ooy | o) (e £y
(I1I-19%a)
€2 (6,~v) : £2 (p,+y)
b £2(90°-9,)  £9(90°-0,)] [
. €% (6,) I [°°°Y] b
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and
(£2(0,-v) £2 (0 ,+y)
v |ffeg fz(e 5) ;
22 . [sin] (III-19¢)
[¢% (90°-6,) £2, (90°-6,) Y
y) B,
(6,) £2(e,)

This approximate technique is a function of the sensors angle
of inclination and its yaw sensitivity response. It is not
possible in general to state that the approximate technique
will lead to more accurate results than those based on the
cosine law. The errors introduced should be checked in both
cases to determine which method'is more applicable.

Lastly, there may be times when mean velocity data are
to be corrected for deviations from the cosine law after the
data has been taken. Since all one wants to do is to "adjust"
the experimental values for the deviations from the cosine
law, one would not necessarily want to go through the itera-
tion scheme previously mentioned. Utilizing Equations
(ITI-10) and (III-1ll), the corrections can easily be calcu-
lated once the true angle of the mean flow with respect to
the probe axis is known. From Equation (III-9) one can
write for an ideal X-probe

tan y, = £*(y) (I1I1-20)

where

£* (y)= £2 (850=y} & f (45°+y)
£°(45°-y) + f (45°+y)

(I11-21)

Expanding f*(y) in a Taylor series around Yo ©One can also write




tan v, = £2(1 ) + g-;[f*m] (F=Yg) *+ + . (111-22)
Y=y
c

The mean flow angle can then be computed from

tan y_ - f*(Yc)

Lt M g_'f,m (111-23)
Y Y=Y,

Normally the first order correction should lead to accurate

results. For sensors which show large deviations from the
cosine law a second order correction term must be added to
Equation (III-22). Utilizing Equations (III-10), (III-ll) and
(III-23) corrections for mean velocity measurements can be
made after the data has been taken if the yaw sensitivity of

the wire is known.

Time-Dependent Velocity Field

In this section, expressions for the turbulence
velocity correlations will be developed for an ideal
X -probe in a low-intensity turbulent flow. Figure 6 shows
an X-probe array aligned with the x-axis and the mean
velocity inclined at an angle Yy with respect to this axis.
Here the notation of references [17] and [22] have been
used. Using the assumption of low-intensity turbulence,
second and higher order terms in the velocity correlations
are neglected and the instantaneous velocity can be written
in the form

q

Q = Qs[l > (I11-24)

Qg

For sensor 1, we obtain the expression for the instantaneous

angle of incidence, assuming an ideal X-probe, 01 = 02 = 45°
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and Kla K2 = K, to be
SWZ (), 8 (I11-25)
e Bl X a,
where A £ cos y + sin ¥ (III-26)
and £ 2 cos Yy - sin ¥y (III1-27)
Similarly, it can be shown that for sensor 2
-2 () A i‘a]
cos 82 - [1 3 Qs
The effective instantaneous velocity is given by
2 1
Qe’j = Q,f (ej) j=1,2 (I11-29)
where ;
i 2 mj 2
: f .) = [1-b,(1-cos :
i (BJ) [ J( o Bj)l
i Assuming that the sensor output voltage is linear in the
effective cooling velocity, i.e.,
v Wy,
one can write
2
Ej = K(Qs + qs)f (Bj) (III-30)
Expanding fz(ej) in a power series and keeping only first
order terms, one obtains
E, = Kg(bl,ml,x)os + qug(bi,ml,k) + Kanh(bl.ml,A)
(III-31)
and
Ez e Kg(bZ,mZ,E)Qs + qug(bzpmzlg) e qunh(bzlmzlg)
(III1-32)
where
g
o Ttk 2
q(bl,ml,k) = [1+(2 A -l)blj (III-33a)
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m
2
- m
g(byumy,€) = (142 2 € 2-1)by)2 (I11-33b)
m
1 1
1~ m, -1 - m
& el - i
h(bl,ml,k) = 2 A b1m1[1+(2 A -l)bll
(ITII1-33¢)
and
m m
2 2
3= m, -1 - m
h(byomy &) =2 2 g2 bm, (142 2 £ 2-1)by)
(III1-334)

The sensor output voltage can be decomposed into a mean
and a fluctuating component, that is

=E. +e. ; j=l,2 -

With this, the response of the X-probe to the velocity
fluctuations becomes

e, = qug(bl,ml,k) + KEqnh(bl,ml,A) (III-35)
e, = quq(bz,mz,i) - qunh(bz,mz,e) (III-36)

In the remainder of this section the turbulence velocity
correlations are determined in two different coordinate
systems: (1) one whose axes are along and normal to the
mean velocity vector and (2) one which is along and normal
to the x and y axes of Figure 6.

Streamwise Coordinate System. From Equations (III-35)

and (III-36) and defining =

we obtain the following expressions for the instantaneous

values of the fluctuating streamwise and normal velocity

components:

e e e e e M Sae e e
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9, - K A [Ah(bz,mz,c)e + eh(bl,ml,x)ezj (III-38)

and
-1,-1 i 4
q, = K A [g(bz,mz.c)el g(bl,ml,k)ezl (III-39)
Taking the time average of Equations (III-31) and (III-32)
one arrives at the following expressions for the mean
velocity

Ei = KQ_g (b, ,m;, 1) (II1-40)
Ez = Kng(bz,mz.E) (ITI-41)

Squaring and time averaging Equation (III-38) and
normalizing by the mean velocity we obtain the streamwise

velocity correlation

e, +
ag [1 " g(bz,mzpi)h(bl.ml,k)} 1 Xh(Bz.mz.EY €2

E
1 (111-42)

Following a similar procedure, the following normal velocity

correlation was derived:

— o 9(5 /My, A) Tzf

- +
Qz g(bzumyET g(blﬂnlo)\r ;2'
S

1
(III-43)

Squaring and time averaging Equations (III-35) and
(III-36) then subtracting them leads to the following

relation for the bi-normal turbulence velocity correlation
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T4 [Egtbymy, Mhlby .m0 An(eym 6] [ e2e2)
= 4 (b, ,m.,E) M1y ) -3
Q2 g \Rgelge E3
[1 gz(bl.ml.x)] ;": [Azhz(b,_,mz,e;)
+ [1- +
2 l
’ Eth(bl,ml,x)] q, R
&

Qs

In the special case when y=0, bl-b2 and m, =m,, these
expressions reduce to the forms presented by Champagne [17]

and Friehe and Schwarz [22], i.e.,

9 _ 1l
— = — (111‘45)
2 1 -2
Qs E
- ] S R
G  1[g(b,m]? ‘&1
i I[%TE:T:\T] g (II11-46)
QZ E
-3 3
959, l{g(b,m) o W
'_2“ T[ETF,ET] — (II1-47)
Q E
s

When the X-probe is non-ideal, i.e., when each sensor
has a slightly different yaw response, there is a correction
factor in the streamwise velocity correlation, even in the
case when y=0. 1In this case, the Reynolds stress cannot
be determined using the above scheme without prior deter-

mination of the streamwise and normal velocity correlations.

When the mean flow angle is not zero, in order to determine
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the velocity correlations using analog techniques, a
weighted sum and difference may be used. The magnitude of
the weighting functions depends on the yaw sensitivity
coefficients of both sensors of the probe as well as the
mean flow angle.

x-y Coordinate System. 1In most cases where the mean

velocity is at an anéle Y with respect to an x-y coordinate
system the fluid mechanics experimenter is not interested
in determining the local streamwise and normal fluctuations
but rather he is interested in the u & v fluctuations along
the x and y axes respectively. The streamwise and normal
fluctuating velocities can be decomposed into components
along the x and y axes by the following transformation,

gy = U cos y + v sin vy (III-48)
9, = . sin Y + Vv cos y (III-49)

Substitution into Equations (III-35) and (III-36)
yields the response for the fluctuating output voltage.
This can be written as

e, = Kslu(Y)u + Kslv(Y)v (III-50)

and

e, = Kszu(y)u - Kszv(y)v (III1-51)

where the velocity sensitivity coefficients are given by

Slu(Y) = g(bl,ml,k)cos Y - Eh(bl.ml,k)sin Yy (II1-52)
slv(v) = g(bl,ml,x)sin Yy + £h(b1,m1,x)cos y (III-53)

Szu(v) = g(bz,mz,a)cos Yy + Ah(bz,mz,z)sin Yy (III-54)
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and

Szv(Y) = -g(bz,mzﬁ)sin Y + Ah(bz,mz,ﬁ)cos Y (III-55)

Solving Equations (III-50) and (III-51) for the instantaneous

velocity components, we obtain
u=k2aTs, (vie, + 5. (ve,) (I11-56)
2v 1 1lv 2
' -1,-1
v=K A [Szu(v)e1 - Slu(y)ezl (III-57)

which again is a simple weighted sum or difference of the
output voltages. It should be pointed out that the mean
velocity components must be determined, in order to evaluate
the angle of incidence Yy, before Equations (III-56) and
(III-57) can be used.

In the case of an ideal X-probe and y=0, the deviations
from the cosine law in the computed turbulence velocity
correlations would appear in the correction terms (g/h)2
and (g/h) for the normal and bi-normal turbulence intensities
as given by Equations (III-45 through 47). A plot of various
constant g/h's as a function of b and m is shown in Figure 7.
With this plot, one can determine the difference between
these calculated values assuming either the cosine law, the

Friehe and Schwarz relation or the present relation.

Discrepancies Between Different Yaw Relations in

Calculated Values of Turbulence Velocity Correlations. 1In

many complex flows one is faced with cases in which y¥0.
How then do these three relations compare in the computed

velocity correlations?
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Squaring and time averaging Equation (III-56) we

obtain

(;7)p = K'ZA'zlszv(y)e1 + slv(y)ezl2

(III-58)
If one assumes the cosine law for yaw sensitivity, (i.e.,

b=1 and m=0.5) Equations (III-50) and (III-51) become

-l
e, = K2 “(u, + v

k

e, = K2 (uc - vc)

(III-59)
(III-60)

where u, and v, are the time dependent velocities determined
using the cosine law. Note that employing the cosine law
results in no explicit dependenc¢e on y. Substitution into

Equation (III-58), with the aid of Equation (III-20a),

yields
€57 * %u * %2ufu ¥ C3nfue (III-61)
where
a~2 2
Ciuy = =3 [S5,(v) + 8;,(v)]" -1 (II11-62a)
= A-z [s,. (y) =-8,.( )]2 (III-62b)
“2 . 1 Bae'Y v'Y
and
st s e 1s2 (y) - 82 (1)1 (I1I-62¢)
) S S A 1v

The ratios Pu and Puv’ which represent the distribution of
turbulence energy in the different directions and their

interaction, are defined as

Ry

p. E £ (1II1-63a)

N~
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(\_IV)c

P (III-63Db)

uv
(u )c

Equation (III-61) represents the difference in the mean
square of the u component velocity fluctuations as would be
computed by the present relation and by thé cosine law.

It is a function of the coefficients of the present relation,
the angle of incidence,y,and the distribution of the
turbulence as would be computed with the cosine law.

fh\many cases the difference in the rms fluctuations is
of more\}pterest. It can be calculated by

N
\
\
\

\ g, " vE +1 -1 (II1-64)
\ oy
u

where u' is the root mean square of the u component
fluctuations.

Following a similar procedure, the difference between
the mean square of the v component fluctuations computed
using the present relation and that obtained by the cosine

law becomes

c (o}
- 2v uv
= ¢ 4+ —— 4+ ¢ ata— (111-65)
v2 1lv Pu 3v pu
a8 (a (y) + 8, (117 -1 (FrT-66a}
clv 2 2u Y 1u Y
= 22 Is, . (y) =8, ( )]2 (III-66b)
Cav 2 2u Y 1lu Y
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-2..2 2 2
¢y, = & TIS5, (y) - 87, ,(n)] (II1-66c)
For the rms fluctuations we obtain

€

= /é_r + 1 -1 (III1-67)

\4

vl

Next, we examine the difference in the computed values
of the Reynolds stress uv as obtained by two different
methods. The first method is based upon the subtraction of
the mean square of the linearized fluctuating output

voltages of the two sensors. For this case one obtains

~ (E=z +1) Pu
€E__=c¢ + @ —u + c, (8 _+1) — (III-68)
o luv 2uv e 3uv =¥ (-
where
-1
Cson ¥ [slu(y)slv(y) + Szu(y)szv(y)] -1 (IT1-69a)
1s3,(n - s 1
c2 = . (III-69Db)
uv -1
2(cluv +1)
and
[s3,(v) =83 (1)
c = (I11-69¢c)
3uv 2(c +1)-1
luv

Computation of the Reynolds stress in this manner can
introduce large discrepancies since it is sensitive to the
differences in the computation of the other velocity
correlations.

Using analog or digital techniques, the instantaneous
values of u and v can be determined from Equations (III-56)
and (III-57). Since for analog signal processing squaring

circuits are more readily available than multipliers, we
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determine the instantaneous value of uv from the relation
w = 7 L) ? - (@ ?] (I1I-70)

and then time average the signal.
Using this approach the difference in the values of
uv, computed by the present relation and by the cosine law,

is given by

~* W C2uv * Py
£ ™ € + + a (III-71)
uv luv o, 2uv oo
where
® v e v
* = (uv); (av)
uv

(uv)c +Equation (III-70)

The coefficients can be calculated from
R A
Cryy = 8 IS5, (NS, (¥) + 8, (¥)S, (V)] = 1(III-72a)

and

* -1, =2 ’
Couv 2 A lszv(Y)SZU(Y) + Slv(Y)Slu(Y)

- szu(v)slv(v) + Szv(Y)slu(Y)] (III1-72b)

In each of the previous cases, the differences between
the Friehe and Schwarz relation and the cosine law can be
computed from

(8} = &
£ ¥lb=b,

m=0.5
This is true since when the present relation is evaluated
using an exponent of 0.5 and the best coefficient corre-

sponding to it,the yaw dependence becomes that proposed
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by Friehe and Schwarz. The difference then between the
Friehe and Schwarz relation and the present relation in
computing a quantity x is

€, - (&)
¢, = X ___=EL (111-73)

x ~
(cx)f + 1

Using the previous definitions the differences in computing
the velocity correlations can be determined as will be
presented in Chapter VII.

Response of Sensor To Velocity Fluctuations

In all of the previous derivations, we have assumed
that the instantaneous effective velocity, Qe' was
related to the instantaneous velocity, Qi’ through the yaw
relation, i.e., Equation (III-29) or

Q. = 9,£2(8)

where B is the instantaneous angle between Qi and the
direction normal to the sensor. Although this relation
is assumed, only the yaw dependence of the mean velocity
is measured when calibrating a probe for its yaw
characteristics. The calibration does not give any
information about the yaw dependence of the time-dependent
velocities, e.g., the rms of the fluctuations.

Since Qe' Qi and B are instantaneous values, they
can be decomposed into time-mean and fluctuating components
and written in the form

Re = Bt 8 (I11-74)

bimgw o (III-75)
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where a is the mean yaw angle and 6é is the time average

of Qe' Assuming low intensity turbulence, the relation
2

9, (III-76)
L Qs L T 76;

may be utilized. Expanding fz(B) using Equation (III-16)

and noting that

R >
2]
=

0

(III-77)

one obtains

£2(8) * £2(a) + al£%(0)] In

« da Qs
2 3
+ pla) 9n - a [fz(a)] 959 + O(qn)
4 da i =
QS QS QS

where

pla) = b2m2 coszma tan2 o + 2f(a)[%g(m-l) tanza - bm]cosm o

(II1-78)
Applying this relation, the time average of Equation (III-29)

becomes

3 =q £2(0) + Iple) + £6a)) (I11-79)
e S ——7__

PMERN

Under normal calibration conditions the second term will
always be negligible compared to the first so that the
calibration for mean velocity becomes

= 2
o, - st (a)
(III-80)
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Squaring and time averaging Equation (II1I-29), keeping

up to second order terms, and utilizing Equation (III-79)

leads to
@ = 2tt + (Fiet@n? g2 - 26 (G2 ? To

(III-81)
This equation relates the contributions of the streamwise,

normal and bi-normal turbulence intensities to the effective

B Sy

fluctuating velocity, i.e., the time dependent cooling to
which the sensor responds. Two special cases of Equation
é (III-81) are significant. The general case arises for flows
in which the correlation between the streamwise and normal
velocity fluctuations can not be ignored. 1In this case, the

effective rms velocity which the sensor indicates has con-

tributions from the streamwise, normal and bi-normal turbulence
stresses and is described by Equation (III-81).

For the special cases where the streamwise and normal
velocity fluctuations are uncorrelated, E;E; = 0, the sensor
is only sensitive to the streamwise and normal intensities.
The first case arises when periodic streamwise fluctuations
are superimposed on the calibration flow, i.e., a very low
turbulence intensity flow. With this stipulation, E;E; =0

and ;3<<;3 80 that Equation (III-81) reduces to
2
- t -
qe q.t (a) (II1-82)
where q_ and q; are rms values. Combining this with Equation

LA ane obhiaine
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R 6; constant (ITI1-83)
e

Q

This equality states that the effective local turbulence
intensity, measured at any yaw angle, remains constant.
This result will be experimentally examined in Chapter V.

The last special case of Equation (III-81) also
results in contributions to the effective rms velocity from
fluctuations other than those in the streamwise direction.
When such contributions are not negligible Equation (III-82)
will not hold, i.e.,

:

;i- ¥ £2(a) (I11-84)
Contrasting Equations (III-80) and (III-84) one observes
that yaw relations of hot-wires and hot-films obtained
from calibration in a steady velocity field may only be
applied to mean and instantaneous velocities measured in
a turbulent flow. They can not be used for the rms of the
velocity fluctuations. A d_scussion of the implications
of the above results on the present experimental work, as
well as on previous ones, e.g., Morrison et al. [26] and

Bruun ([27], is presented in Chapter VI.




CHAPTER 1V

EXPERIMENTAL FACILITIES AND TECHNIQUES

Experimental Facilities

Two main facilities were utilized during the course
of the experimental part of the present study: the I.I.T.
Environmental Wind Tunnel and the I.I.T. Calibration
Tunnel.

Environmental Wind Tunnel. The I.I.T. Environmental

Wind Tunnel operates in a closed return mode thus permit-
ting use of two test sections. The present experiments
utilized the high-speed test section. The dimensions of
this section are 2 ft. deep, 3 ft. high and 10 ft. long,
and the free stream velocity can be controlled at any
speed up to 65 ft/sec. Through the use of turbulence
manipulators (28], a turbulence level much less than 0.1l%
is maintained throughout the test section. A schematic
showing the side view of the tunnel from the high-speed
side is shown in Figure 8. For a more detailed descrip-
tion of the wind tunnel the reader is referred to the re-
port by Tan-atichat and Nagib [29].

Calibration Tunnel. The I.I.T. Calibration Tunnel

was utilized in two modes during the course of the inves-
tigation. In the experiments of Chapter V it was used in
its standard configuration for velocity calibration of the
hot-wire probes. It was also used in Chapter VI in

another configuration to produce a flowfield with periodic

i e

—
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velocity fluctuations superimposed on the mean streamwise
velocity. In both tunnel configurations, compressed air
enters an acoustically baffled plenum chamber and flows
through a bellmouth into a 3 in. diameter plexiglass duct.

In the calibration mode, a nozzle is attached to the
end of the duct to produce a laminar free jet flowfield.
The probes arelplaced in the core of the one-inch diameter
jet as shown in the bottom photograph of Figure 9. De-
tailed information regarding the construction and calibra-
tion of the tunnel, and on the turbulence manipulators used
in this configuration are  presented by Loehrke and
Nagib [28].

A schematic of the tunnel in the second flow configu-
ration is shown in Figure 10. To produce the desired flow
conditions,a screen, two perforated plates and two honey-
combs are used as turbulence manipulators in two straight
sections of the duct. The straight ducts are connected
with a plexiglass "T" section as shown in the top photo-
graph of Figure 11. One end of the "T" section is con-
nected to a conical contraction from a 15 in. speaker which
produces the periodic forcing of the flow,

The other end of the duct is open to the laboratory. The
first utilization of the tunnel in this mode is described
by Marcichow et al. [30].

Angularity Chuck. A special angularity chuck de-

signed and built by Roberts (23] was utilized throughout

the course of this investigation. The chuck can accurately
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position the probes at various angles of yaw to within
+0.04°. The chuck is shown attached to the side of the
Environmental Wind Tunnel in the top photograph of Fig-
ure 9, and positioned in the traversing mechanism next to
the Calibration Tunnel in Figure 1ll. 1In conjunction with
the angularity chuck, a specially designed probe support
system was used to attach the probes. It allowed the
velocity probes to be rotated either about the midpoint of
the sensor or about any point along the length of the
probe body. In acquiring mean yaw calibration data, the
probe was rotated about the midpoint of the probe body
(as shown in Figure 9), while for the unsteady yaw cali-
bration it was rotated about the midpoint of the sensor.
The arrangement of the support system for the latter case
is visible in the photograph of Figure 1ll.

Velocity Sensors. The single- and X-wire probes used

were designed based on the work of Comte-Bellot et al.[31]
and Strohl et al.[32]) to minimize the aerodynamic inter-
ference on the sensors. In each case, the probe body was
constructed from 0.25 inch 0.D. stainless steel tubing

18 inches in length. The prongs of the single-wire probes
are 1 inch long,0.016 inch in mean diameter and the
spacing between their tips is equal to 0.20 in. The
prongs of the X-wire are 0.75 in. long, and 0.016 in. in
mean diameter with a spacing of 0.12 in. between prongs at
the point where the wires are soldered. The separation

distance between the wires is 0.04 in.
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The sensors used in all measurements are made of
0.00015 in. diameter tungsten wire. The sensor £/d was
varied from 75 to 1000 for single sensor probes, while a
standard-length sensor (£/d=580) was used for all X-wire
measurements. The active, i.e., heated, length of the
wire was controlled by changing the length of the segments
of the wire coated with copper. The wires are soldered
to the prongs with the active length centered between
them. Photographs of some of the probes are shown in

Figure 12.

Angularity Measurements

Steady Velocity Calibration. Mean-velocity yaw cali-

bration for single- and X-wire probes was performed in the
Environmental Wind Tunnel. However, the probes were first
connected to a DISA 55D01 constant temperature anemometer
and velocity calibration data were obtained by placing
them in the jet of the Calibration Tunnel positioned next
to the Environmental Wind Tunnel; see Figure 9. Using the
angularity jig shown in the bottom photograph of Figure 9,
X-probes were rotated to orient each of the wires normal
to the flow direction during its calibration. Next, the
probes were connected to the angularity chuck attached to
the side of the wind tunnel. The probes were supported at
the midpoint of the body and aligned such that the prongs
remained in the same vertical plane throughout as much of
the rotation as possible. The probe was then connected to

the same DISA 55D01 constant temperature anemometer using
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the same overheat ratio utilized in the velocity cali-
bration.

At any constant tunnel velocity, the ambient tempera-
ture remained constant to within +0.5°F. However, the
tunnel air temperature varied with tunnel velocity so that
the output was manually adjusted at each free stream velo-
city to yield the oﬁtput voltage calculated from the cali-
bration curve. The adjustment was provided by the variable
bridge resistance in the anemometer. The accuracy of this
scheme of compensation of the anemometer output for varia-
tion in the tunnel air temperature is verified in Chap-
ter II and Appendix B. The anemometer output was then dis-
played on a Tektronix 564 oscilloscope, time averaged for
10 sec. with a Heath multimeter and also recorded on an
H.P. Mosley strip chart recorder. A photograph and a sche-
matic of the instrumentation for these measurements are
shown in Figures 9 and 13 respectively.

To measure the mean tunnel velocity a Validyne DP-45
pressure transducer connected to a pitot static probe was
employed. This transducer was powered by a CD-15 carrier
demodulator and its gain set to obtain the value calibrated
by Corke et al. [33] of 405.28 volts/psid. The voltage
proportional to the differential pressure was connected to
the analog averaging circuit of Figure 13, which has a
time constant of 4 seconds. The averaged output was then
monitored on a Dana Model 3300A digital multimeter and

displayed on Channel 2 of the oscilloscope. For further
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details of the pressure transducer system and its cali-
bration, the reader is referred to Corke et al. [33].

Fluctuating Velocity Calibration. For this portion

of the investigation, the modified calibration tunnel was
used and the velocity fluctuations were produced via a
15 inch, 25 watt Altec Biflex speaker. The probe was

attached to the angularity chuck using special attachments

so that the probe rotated about the midpoint of the sensor
and the entire sensor remained in the test volume shown
in Figure 10. The angularity chuck was attached to a

milling machine indexing head so that four degrees of free-

Both single and X-probe measurements were made and the
schematics of the instrumentation employed are shown in

Figures 14 and 15. The bottom photograph of Figure 1l also

dom were available (three translational and one rotationzal).

depicts the setup of the instrumentation. 1In either case,
the output of a sensor was fed to a DISA 55D01 Constant %
Temperature Anemometer, utilizing an overheat ratio of 1.8,

and then linearized by a DISA 55D10 Linearizer. This signal

which is proportional to the velocity, was time

averaged with a Heath Digital Instrument model EU805 for

10 seconds. The accuracy of the linearized velocity, i.e.,

+1%, was comparable but not as good as that achieved with

the non-linearized operation discussed in the next sec-

tion. To obtain the rms of the signal, the linearized out-

put was fed into a DISA RMS meter, Model 55D35, and its

output read using an H.P. 3440A Digital Voltmeter. The

———————
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output of a Briiel and Kjaer 1022 Beat Frequency Oscillator
powered the speaker and served as a reference signal to the
PAR Waveform Eductor and to the Acton Labs 329B Phasemeter.
To obtain the rms of the periodic fluctuations, the line-
arized signal was connected to the Eductor. The Waveform
Eductor serves as a periodic averaging device triggered by
the signal produciné the velocity fluctuations. The
educted output, which only contained the part of the sig-
nal correlated to the periodic fluctuation, was then fed
to the RMS meter to determine its level. At each forcing
frequency examined, the phasemeter was used to measure the
phase differences between the reference signal and the
educted sensor signal. The phasemeter output was monitor-
ed while traversing the probe across the test section to
insure that the periodic forcing was planar over the test

volume.

Data Processing

Data from the experiments were reduced utilizing a
UNIVAC 1108 computer and a digital data acquisition and
processing system [34]. Velocity calibration data, with
the sensors normal to the flow, were fit to the following

equation:

2

E‘=2a' + B' U"

(IV-1)

The values of A', B' and n were obtained by minimizing

the standard deviation of the data from the associated
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fit. The equation was fit for a range of velocities from
10 to 50 ft/sec. The normalized standard deviation of the
calculated velocity from the data for all sensors was

approximately 0.4%. This normalized standard deviation is

2
'//i g s Ucalculated

N i=1 Umeasured

defined as

At the four free-stream velocities of 12.5, 25, 37.5 and

50 ft/sec, calibration data were obtained for the yaw
angles -70°<a<70°. At each position for the yaw angles

the anemometer output voltage and the angle of yaw with
respect to the flow direction were recorded. The flow di-
rection was initially determined by maximizing the anemo-
meter output. The wire output voltage was then plotted
versus yaw angle for a values in the range +30° to deter-
mine the angle at which the mean flow was normal to the
sensor,i.e., a_ = 0. In order to perform accurate compari-

o
sons between the different yaw relations, the angle a_ was

o
redetermined to a higher degree of precision in the data
reduction routine as will be discussed in Chapter V. The
yaw data were obtained at increments of three degrees in
all cases and every one degree in some cases.

Wire output voltages were then converted to mean velo-

cities via Equation (IV-1l) and normalized by the velocity

calculated when a = a_, i.e., U . The data was then fit

(¢)
to the following relation




£ =a+hb cosma (IV=2)

© 3
to obtain the values of the coefficients a, b and m which
minimize the standard deviation of the fit. These values
are denoted by b* and m*. The coefficient a can be
replaced in Equation (IV-2) by 1l-b, since a+b must equal
to one to satisfy the conditions when a = 0. Therefore,

we can rewrite Equation (IV-2) as a two parameter yaw relation,

U
EE =[1-Db(l - cosmu)]2 = fz(u) (IV=3)

For the rest of this report this equation will be referred

to as the present yaw relation.

e —

A grid of b and m values was then specified and at
each grid point, the standard deviation of Ue/Uw from the
present relation was determined. The standard deviation,

op, is defined as

P N j=1 ]

N 2
g = V/,l X [fz(ai) - Ue,i] (Iv=-4)

where N is the number of data points. When the value of

the exponent m = 0.5, then o =0, where O¢ is the standard

P
deviation of the data from the Friehe and Schwarz relation

[22). For the case when the coefficient b=1 and m=0.5,

op-a;, where o; is the standard deviation of the fit using
the cosine law.
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These values were then written onto magnetic tape and
processed on the PDP 11-10 utilizing a contour plotting
routine in the Data Acquisition and Processing System
Library. This contour plotting routine was written by

Richard Wlezien during the course of the present investi-

gation.
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CHAPTER V

YAW CALIBRATION FOR STEADY VELOCITIES

This chapter examines the influence of various para-
meters on the yaw calibration of single sensors and X-wire
probes utilizing three different relations for the yaw
sensitivity; the cosine law, the Friehe and Schwarz rela-
tion and the present relation; see Chapter I for details.

As discussed in the previous chapter, the mean yaw
calibration data was initially centered graphically to
determine the mean flow direction which corresponds to
a,=0. An example of this is shown in Figure 16, where the
anemometer output voltage is plotted versus angle of yaw.
The” distance between the curve and the initial line of
symmetry was measured at different heights and used to
calculate the average shift in the center line. The val-
ues measured in the example of Figure 16 are shown on the
graph. This process was carried out for every run to en-
sure that there was no slippage of the probe in the angu-
larity chuck. Such a procedure is sufficient for angular-
ity calibration for normal experimental work. However,
for the purpose of doing an accurate comparison of the
standard deviations determined from the three yaw rela-
tions as influenced by different parameters this was not
sufficient. The reason behind this is found in Figure 17.

Using the initially shifted data, the offset angle,
a_, was varied from -9° to +9° in equal increments and

o
the minimum standard deviation, o;. corresponding to each
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value of a, was found using the present relation. The de-
viation of symmetric data from an even yaw relation, as
calculated in this approach, should be symmetric about the
true mean flow direction. As demonstrated graphically in
Figure 17, the true line of symmetry appears to be -0.18°
away from that determined from centering the data by the
procedure of Figure 16. Using this corrected value, the
typical variation of 05 with offset angle (i.e. probe mis-
alignment) is shown in Figure 18. At o =0, o; achieves
its minimum value of 0.15% and increases linearly with off-
set angle. 1In all cases ekamined, the variation of c;
with a, over this range was independent of sensor £/d or
Red and equal to 0.8% per degree of misalignment. The
data processing program included a subroutine which auto-
matically performed this accurate alignment of the data
and assigned the corrected yaw angles to all data points.
Using this technique to determine the true mean flow
angle, the variations of the minimum standard deviations
determined using the cosine law, Friehe and Schwarz's and
the present relation were exemined. 2 typical result is
shown in Figure 19 for a sensor £/d of 250 and a free
stream velocity of 37.5 ft/sec. If the probe was properly
aligned, an error of 1.8% in the normalized velocity,
Ug/Ug,would be the minimum achievable with the cosine law.
This value, which indicates the goodness of the fit, was
typically egqual to 0.5V {f the Friehe and Schwar: relation

was used 1t was reduced to approximately 0.1% by using
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the present relation. The values of os and a% increase
by 0.8% per degree of misalignment from the accurately de-
termined a,. If the probe is off by more than two degrees
o; also varies linearly by 0.85% per degree. However,
o; does not vary linearly with oy for values of offset
less than two degrees. 1In the case of Figure 19, a factor
of four in accuracy; as measured by the goodness of the
fit of the relation (i.e., o*), is gained by using the
Friehe and Schwarz relation over the cosine law, and an-
other factor of five is gained in going from the Friehe
and Schwarz relation to the present relation.

The procedures described above and in the last part
of the previous chapter are employed for single-wire

probes in the following sections and with X-probes later

in this chapter.

Single-Wire Probes

The best fit values of the coefficients which mini-
mize the standard deviation for the present relation are
denoted by b* and m*. For the Friehe and Schwarz rela-
tion b; corresponds to the minimum value of standard de-
viation, °§. One method of determining these coefficients
is shown in Figure 20 where the deviations away from the
cosine law are plotted for a standard-length sensor
(£/d=580) as a function of Reynolds number. Since the de-

*
viations are linear in cosm o, the value of b* can be

computed from the slope of the straight lins. This




e —— -

69

approach is similar to the one used by Friehe and Schwarz
[22]. Both positive and negative deviations from the'
cosine law are found in the data of Figure 20. This be-
havior will have important implications on the various
yaw relations and is discussed in Chapter VII.

Another method to indicate the regions where the co-

efficient b and exponent m minimize the standard devi-
ation op is based on examining contours of constant op in
the b-m plane. Using this technique a comparison be-

tween all three yaw relations can be performed at the same

time, since when m=0.5 tﬁe present yaw relation reduces
to the Friehe and Schwarz relation and when b=1 and m=0.5
the present relation reduces to the cosine law. Typical
examples of this approach are shown in Figures 21 and 22.
For the case shown in Figure 21 (£/d=250), the position
of the region of minimum standard deviation, i.e. less
than 0.5%, is quite removed from either the cosine law or
the Friehe and Schwarz relation as depicted graphically
on the figure. When a longer sensor is used, as in Fig-
ure 22, this region will lie closer tc the cosine law and
pass through the Friehe and Schwarz relation,although the
point of minimum standard deviation is still removed from
these yaw relations.

The variations of these regions of minimum standard
deviation with Reynolds number is shown in Figure 23 for a
sensor with £/d=250. As the Reynolds number increases,

these regions tend to move upward and to the left of the
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figure, although remaining far removed from both the co-
sine law and the Friehe and Schwarz relation at the high- :
est velocity used, i.e. 50 ft/sec.

Since in many of the cases examined the position of
the minimum standard deviation was far removed from either
of the other two yaw relations, we were concerned if this
type of behavior w;s due to the manner of fabrication
of the probes. To this end, an independent
set of yaw calibration data was obtained from
Dr. John Foss of Michigan State University and processed

in the manner described. Sample results for a sensor

£/d=200 are shown in Figure 24 while a more complete de-
scripticn is given in Appendix D. From this and the fig-
ures in Appendix D one can observe that similar trends are
exhibited. 1In particular, at low values of free-stream
velocity, the region of minimum standard deviation is far
removed from the cosine law and the Friehe and Schwarz re-
lation. As the free-stream velocity increases, these
regions shift upward and to the left and in the case of
Figure 24, they display regions of overlap. Results for

a standard-length wire are also shown in the same figure.
This data exhibits more similarity to the MSU results
(shown above it on the same figure) than the shorter
length sensor contours of Figure 23.

Effect of Probe Misalignment. We next examine the

variations of the minimum standard deviations obtained

from using the three yaw relations, as well as the best
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fit coefficients in the Friehe and Schwarz and present re-
lations, with offset angle (i.e., probe misalignment) and
Reynolds number. Results for a sensor with an £/d=250 are
presented first and are shown in Figures 25 through 29
as contours cf the parameter or variable examined in the
Reynolds number versus angle of misalignment plane. Fig-
ure 25 indicates that o; varies by approximately 0.85%

per degree of offset, as found before, and that the mag-
nitude of o; decreases as the Reynolds number increases.
The variation of og is shown in Figure 26 where again it
varies linearly by 0.8% pef degree of offset and decreases,
although at a smaller rate than in the cosine case, as the
Reynolds number increases. The minimum standard deviation
found using the present relation is shown in Figure 27.

In this case, o; varies linearly by 0.8% per degree of
offset as found from Figures 18 and 19, but unlike the
previous two yaw relations, o; is independent of Reynolds
number. The reason that aé and og are functions of
Reynolds numbers is that the region of minimum standard
deviation in the b-m plane shifts toward these rela-
tions as the Reynolds number increases, thereby reducing
the difference between relations. It is of course more de-
sirable to have the accuracy of representing the calibra-
tion independent of velocity, as achieved by the present
relation.

Variations in bz and b* with a_ and Red are shown in

(]
Figures 28 and 29 respectively. From Figure 28 one
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observes that b% increases with Reynolds number and tends
toward the cosine law. It is important to note that small
differences between the mean flow direction determined
graphically and by the accurate method depicted in Fig-
ure 17 will have a negligible effect on the computed value
of bt' Similar trends are observed for b* in Figure 29,
where again its valﬁe increases with Reynolds number and

a small (less than 0.2°) change in offset angle will usu-
ally have a small effect on the value of b*. In general,
if the probe was misaligned by 0.5°, the effect of the
best fit coefficients is eguivalent to that resulting from
calibration at a free stream velocity 3 ft/sec less than
the desired one.

The variation of these coefficients with Reynolds
number and offset angle for a standard-length sensor are
shown using similar plots in Figures 30 through 35. The
behavior of o% and o; are similar to that of the previous
case and is shown in Figures 30 and 31,respectively, al-
though for this standard length probe, o% depends less on
Reynolds number. From Figure 32, we observe that b; has a
value larger than 1 at low Reynolds numbers and decreases
with increasing Reynolds number. This behavior is oppo~
site that of the sensor with an £/8=250. However,the
variations of bg with offset angle are the same as in the
previous case. Figures 33 and 34 examine the behavior of
the best fit parameters determined from the present rela-

tion. We note that b* increases with Reynolds number
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while m* decreases, once again indicating the shifting of

the region of minimum standard deviation in the b-m
plane. Their dependence on offset angle is identical to
that for the sensor with an £/d=250.

Associated with the values of b* and m* is the tur-
bulence correction factor (g/h)* described in Chapter III.
From Figure 35, (g/h)* increases by 5% over the indicated

Reynolds number range (i.e., values of free-stream velo-

city from 12.5 to 50 ft/sec). 1In this case, if the probe
is misaligned by 0.5°, the value of (g/h)* determined
would be equivalent to recalibrating the probe, properly
centered, in a free-stream with a velocity 3 ft/sec higher
than the desired value.

Effect of Reynolds Number. With the probe properly

centered the effects of changing the free-stream velocity
on the various minimum standard deviations and best fit
coefficients are examined next.

If the values of o; and o% are normalized by o;, we
obtain ratios of improvement in going from the cosine law
or the Friehe and Schwarz relation to the present relation,
respectively. The behavior of these ratios can be seen
in Figure 36 for two different values of sensor £/d. For
both cases the ratio ag/o; decreases with increasing Re,.
The magnitude, however, is a function of sensor £/d.
With the long sensor (l/d-lOOO),c;/as decreases from a
value of 25 at a Reynolds number of 0.9 to a value of 3 at

a Red-3.6. For the short sensor (£/d=75), over the same
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Rey range, the ratio decreases from 9 to 3. Surprisingly,
this indicates that in some cases the shorter sensor fits
the cosine law better than the longer sensor.

Two different trends are observed for the ratio
og/o;. For the long sensor the ratio increases from 1 at
Red=0.9 to 1.75 at Red=3.6. This is opposite to the trend
observed for the shbrt sensor where the ratio of improve-
ment decreases from a value of 3.5 at Red=0.9 to unity at
Red=3.6.

For a sensor with £/d=1000, we next examine the
Reynolds number dependency of the best fit parameters of
the yaw relations. These are shown in Figure 37. As the
Reynolds number, Reg., increases, bg decreases by 10%,

b* decreases by 15% and m* decreases by 10%. In this par-
ticular case, the yaw sensitivity coefficients are strong
functions of the Reynolds number. This behavior is ex-
pected and will be discussed in Chapter VII. This depend-
ence can also lead to many problems when using analog
techniques to measure turbulence velocity correlations.

Effect of Sensor £/d. By changing the sensor £/4,

previous investigators have found that the axial tempera-
ture distribution along the wire is significantly altered.
This may lead to large deviations from the cosine law.
Therefore, the effect of sensor £/d on the minimum stan-
dard deviation and on the parameters in the three yaw re-
lations was investigated.

Five different values of L/d were tested: 75, 145,
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250, 580 and 1000 while keeping the prong spacing con-
stant. Two identical probes were used in collecting the

data, and one of them (Probe 1) was used with the £/d4's

of 75, 580 and 1000. The effect of sensor £/d on the

hot-wire velocity calibration constants of Equation (IV-1)
is shown in Figure 38. The coefficient B' remains fairly
constant with sensor £/d while A' is a strong function of

£/d. The exponent n decreases with decreasing values of

£/d. The exponent of King's law, n, seems to tend toward
the theoretical value of one half as £/d approaches very
large vlaues. The velocity calibration constants obtained
from the standard length sensors of the X-wire are also
shown. Recalling that the prong spacing was different
between the single-wire and the X-wire probes, one concludes
that probe geometry, including prong shape and spacing,
greatly affects the values of B' and n.

To separate out any Reynolds number effect we next
examine the results for a free stream velocity of 25 ft/sec,
which corresponds to a Reynolds number based on the wire
diameter of 1.8. The ratio of improvement over the cosine
law, a;/o;, is shown in Figure 39, where intermediate
value points were determined using a three point Lagrangian
interpolatioﬁ scheme (available with HP97 and 67 calculators)

in order to fit a smooth curve through the data.




For the intermediate range of sensor £/4d (£/d4=250),
this ratio reaches a maximum value of over 20. Thié maxi-
mum value is reduced by either increasing or decreasing
the sensor £/d. Surprisingly, the ratio of improvement
is smaller for the very short sensor (£/d=75) than for the
long sensor (£/d=1000). This indicates that the cosine
law is more applicable to the short sensor, rather than to
the long sensor!

Figure 40 shows the variation of o%/o; with £/4.

Once again this ratio reaches large values for the inter-
mediate sensor lengths. Since the present relation is a
more complex form of the Friehe and Schwarz relation,

one may ask : when does the benefits of greater accuracy
outweigh the additional complexity? If we arbitrarily
assign a ratio of improvement of two as a marginal addi-
tional accuracy, remembering that in all cases o;’o,lsg,
then regions where o%/o;>2 would be regions of significant
improvement. Using this criterion, one finds that signi-
ficant improvement can be obtained in going from the
Friehe and Schwarz relation to the present one, if sensors
with £/d's<550 are used.

The dependence of bg on sensor £/d is examined in
Figure 41. The variation indicates that no significant
range of sensor £/d's fits the cosine law. Note that b%
can take on values greater than or less than one indi-
cating negative and positive deviations from the cosine

law, respectively. Figure 41 indicates that positive
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deviations from the cosine law occur for the intermediate
range of sensor £/4.

The variation of b* and m* with sensor £/d is shown
in Figures 42 and 43,respectively. The value of b*
reaches a minimum for £/d=250 and increases while either
increasing or decreasing the sensor £/d. From Figure 43,
the exponent m* has the largest deviation away from the
Friehe and Schwarz exponent of 0.5 in the region of sig-
nificant improvement as shown in Figure 40.

The turbulence correction factor, as determined from
Friehe and Schwarz and the present relation,plotted as a
function of £/4,is shown in Figure 44. This figure indi-
cates that all sensors will require a turbulence correc-
tion factor. However, by proper selection, this can be
minimized. We note again as in Figures 39 through 43,
that large deviations from the cosine law exist in the
intermediate range of sensor £/d. Figure 44 also reveals
that there exists only a small difference between (g/h)g
and (g/h)*. However, it will be shown in Chapter VII that
this small deviation will be magnified many times in cases
where the mean flow angle Y is not equal to zero with
respect to an X-probe.

Combined Effects of Reynolds Number and Sensor £/d.

The combined effects of Reynolds number and sensor L/d are
presented in Figures 45 through 50 where the various para-
meters investigated are displayed as constant value con-

tours in the Red versus £/d plane. Contours of constant




ratio of improvement, o;/o;, are shown in Figure 44. This
again points out the large improvement gained in going
from the Friehe and Schwarz relation to the present rela-
tion for the intermediate length sensors, in particular

at low Reynolds numbers. This figure also depicts the
decrease of this ratio with increasing Reynolds number,
indicating that the'minimum standard deviation found using
the Friehe and Schwarz relation does not remain constant,
unlike that found from the present relation.

The variation of the parameters in the Friehe and
Schwarz and present relations is shown in Figures 46
through 48. 1In all cases, the coefficients are strong
functions of £/d. 1In general, these coefficients are also
Reynolds number dependent. However it appears possible to
find a probe in which these constants are weak functions
of Reynolds number. It is most significant to point out
that the trend of the parameters with either of the two
variables does not seem to approach the cosine law, but
rather it seems to overshoot it without any observed asymp-
totic values.

The same can also be said for the turbulence correc-
tion factors (g/h)* and (g/h)%, namely, that they are
functions of both sensor £/d and Reynolds number, as dis-
played in Figures 49 and 50.

Application of Yaw Relations Over Reynolds Number

Range. As a result of the Reynolds number dependence of

the yaw sensitivity coefficients, one is lead to ask the
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following questions: does a set of parameters exist for
either of the yaw relations, which can be used over a
Reynolds number range and which would give the best accu-
racy over this range? If such a set of parameters exists,
how good is tte accuracy of the relation in representing
the data over this range of Red? To answer these ques-
tions for a particular sensor, the values of the standard
deviation calculated in the b-m plane were averaged over
the four Reynolds numbers at each grid point in the plane.
This value is denoted Eb. The standard deviation of the

four values from this value is denoted by Gp. The sum of

op and Gp will then indicate an overall effective standard
deviation, denoted by Xp. This effective standard devia-
tion is considered a measure of the quality of the fit
over the prescribed Reynolds number range.

Contours of constant Zp's for an £/d=250 are shown in
the b-m plane of Figure 51. These curves have a shape
similar to those at a single Rey, however the magnitudes
are larger. Once again we see that the minimum region is
far removed from the cosine law although there is negli-
gible improvement over the Friehe and Schwarz relation
when the present relation is utilized. Results for a sen-
sor with £/d=580 are reproduced in Figure 52. 1In this
case there is a negligible difference between all three
yaw relations including the simple cosine law.

This is an expected result, since based on the ex-~

perimental data the variation of Ue/U” with yaw angle
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strongly depends on Reynolds number. At any prescribed
value of Red, the present relations will most accurately de-
scribe the yaw dependence, but with different values of the
parameters b* and m*. Small changes in these parameters may
lead to very large changes in the errors introduced by the
relation in describing the data, as indicated by the sharp

gradients in the contours of 0_ in the b-n plane. Aver-

P
aging over any number, n, of Reynolds numbers will then lead

to significant contributions to the errors from at least

n-1 of the Reynolds numbers. Therefore, if the turbulence
velocities and correlations are calculated using these
averaged values, significant errors will result. This leads
one to the conclusion that a different set of parameters
must be utilized in the yaw relation for each mean velocity
the X-probe is used at; a most severe restriction.

Effect of Overheat Ratio. The effect of the operating

overheat ratio on the yaw coefficients was also examined
using Probe 2, equipped with a standard length hot-wire. Yaw
calibration was carried out at two values of freestream
velocity and three different values of overheat ratio: 1.4,
1.6 and 1.8, the latter being the most commonly used by ex-
perimenters. (Note that this resulted in repeating two

runs at the 1.8 overheat ratio with two identical probes
using similar £/d sensors). These results are described in
Figures 53 and 54. 1In general, the ratio of improvement
a%/a; decreases with decreasing the overheat ratio, while

the turbulence correction factor remains constant within 2%.
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Figure 54 proves that the parameters b*, m* and bg vary
slightly with overheat ratio: b* decreasing with decreasing
overheat ratio; m* increasing with decreasing overheat
ratio; and bg increasing with decreasing overheat ratio.
All of these results indicate that the yaw sensitivity of
wires is not significantly influenced by the operating over~
heat ratio.

The values of the parameters of the yaw relations ob-
tained using Probe 2 with a standard length sensor operated
| using an overheat ratio of 1.8 can be compared to the re-

sults for a standard length sensor using Probe 1 presented

i in earlier parts of this chapter in connection with Fig-

ures 46 through 48. This comparison can serve as a repeat-
ability check on the experimental procedure and may shed

| light on the generality of the parameters. The values of
b; and m* from Figure 54 are nearly identical to those in
Figure 46 and 48 respectively. The variation of b* with
Rey in Figures 47 and 54 is also identical, however the
values are about 15% higher in Figure 54. A comparison of
the turbulence correction factor (g/h)* in Figures 50 ard
53 reveals that the values are identical. Therefore, the
two sets of experiments demonstrate that the results are
repeatable using the same probe and sensor design. How-
ever, at this point one cannot reach any conclusions re-

garding the generality of the yaw dependence parameters.

Effect of Angular Range of Data. The mean yaw cali-

bration data discussed in this chapter were taken in the
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range of yaw angles from -70° to +70°. The effect of
changing this range on the yaw coefficients is demonstrated
in this section. Results for a sensor with an £/d of 145
are shown in Figures 55 and 56. For this particular probe
the value of the turbulence correction factor (g/h)* is
independent of the angular range of fit, while the ratio of
improvement, c}/c*, decreases to unity for all Reynolds
numbers when the angular range of data is +45°. This
means that the improvement in using the present relation
over the Friehe and Schwarz relation comes at relatively
large yaw angles and particularly at low Reynolds numbers.
The variation of b* and m* is shown in Figure S6.
These coefficients remain constant from an angular range of

+50° to +70°. However, the value of bg increases linearly

e
S

as the angular range of the data is decreased.

A similar variation in these quantities is observed
for a sensor of £/d=580 as depicted in Figures 57 and 58.
Here, (g/h)* remains constant and o%/a; decreases to unity
as Ao decreases. However, the variations of b* and m* are
not as well defined as in the previous case: e.g., bg

remains constant with Aa to within 1%.

X~-Wire Probe

In measuring turbulence velocity correlations using an
X-probe, the time dependent component of the sensor output
voltages must be related to the fluctuating velocity com-
ponents. One method has been examined in Chapter III, where

expressions accounting for the deviations from the cosine
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law are derived. Thus, once the probe has been calibrated
for yaw sensitivity, these relations can be analytically
evaluated. Many investigators do not employ this method
but rather calibrate the X-probe in a manner such that the
deviations from the cosine law are accounted for in a cali-
bration constant. This section will compare these two
methods of determining the longitudinal and transverse ve-
locity sensitivity coefficients. A brief description of
the direct calibration method follows.

Determination of Transverse and Longitudinal Sensi-

tivity Coefficients. If the anemometer output voltage is

linearized, then one can write, [22,35]

E = E(Qi.B) (v-1)
s0 that

i oE (V=2)
tew Pt W
By use of Equations (III-24), (III-75) and (III-78), this

becomes

3E 1 | 3E -
e -[w'] qs - Ts[-s—a-] qn (V 3)
Only a comparison between the calculated and calibrated
values of the transverse sensitivity, (8§730)/Os.is &ttempt—

ed in the following. However, similar results for the

longitudinal sensitivity coefficients can be obtained.
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From the mean yaw calibration data of the X-probe, the
velocity as a function of yaw angle was computed so that the
coefficient in Equation (V-3) could be evaluated. 1In order

to obtain this coefficient, methods of determining local de-

rivatives of the data had to be used. 1In order to minimize
any effects of the differentiation scheme on the results,

four different methods of determining the local derivatives
were employed. The first method utilized a two point local

derivative scheme where 3573& is approximated by

= E(a,+h) - E(a,=h)
%g - 2 7T 5 (V=-4)
a=a,

where h is the a increment between the data points. This
method should be the most susceptible to the scatter in the
data. The second method utilized a four point local deri-
vative where

JoE 8 [E(ai+h)-E(ai-h)]-E(ai+2h)+E(ai-2h)

m a=a '
i 12h

(V‘S) 3

Another method involved performing a linear least squared
fit on five adjacent data points, 1° apart, to determine
the slope of the line, thereby obtaining the derivative at
the mid-point. The last method consisted of fitting the
same five points to a second order polynomial of Chebyshev
type, from which the derivative at the midpoint could be

determined analytically.
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A complete yaw calibration, similar to those presented
for the single sensor, was carried out at four different
mean velocities for each of the sensors of the X-probe. A
finer grid of data was collected around the axis of sym-
metry of the X-wires. While data were obtained every three
degrees for -70°<a<70°, where a is measured from the axis of
symmetry, the calibration was performed every one degree
over the range -10<a<l0°. Results for the transverse sensi-
tivity are shown in Figures 59 through 63. The results for
the parameters of the yaw relation are listed in tables in
the same figures and discussed in the last part of this
chapter and in Chapter VII. Figure 59 compares the varia-
tion of the four differentiation schemes with the values
calculated from Equation (III-35). The method which pro-
duces the largest scatter in the results is the two point
local differentiation method. The five point least squares
method averages out most of the scatter in the data. The
values computed from the Friehe and schwarz and the present
relations lie through the values obtained by direct cali-
bration. This indicates that computing the velocity sensi-
tivity coefficients through the Friehe and Schwarz relation
or the present relation, using the present or a similar
technique, yields more accurate results. The utilization
of any "sophisticated" yaw relation will lead to the same
result since it will not be sensitive to small scatter in

the data which is magnified when local differentiation is

applied or when the experimenter's judgement is required

i
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b for a different differentiation scheme, e.g., graphical
methods. We also observe that the cosine law does not
accurately describe the velocity sensitivity coefficients.
It should be noted that the sensor used in the example of
Figure 59 lies in the region of minimum improvement over
the Friehe and Schwarz relation thereby giving negligible
differences in the cbmputed sensitivities between the pres-
ent relation and their's. If an intermediate length sensor
was utilized, the differences would be more significant.

This will be discussed in Chapter VII.

Examples using different mean free-stream velocities
and the other wire in the X-probe are shown in Figures 60
through 63. Only the two point differentiation method is
used in these figures since based on the comparison of
Figure 59 the difference between the methods of obtaining
local derivatives from the present data is considered in-
significant. In each case the values calculated from the
yaw sensitivity function, taking into account deviations
from the cosine law, yield a higher degree of accuracy than
those obtained from the direct calibration method. When
the best fit parameters of the yaw relation are near those
corresponding to the cosine law, the cosine derivatives
appear to be just as good; see Figures 60 and 61l.

Recalling that the design and spacing of the prongs
utilized in the X-probe were different than those for the
single-wire probe, a comparison of the yaw coefficients for

a standard length sensor (Figures 46 through 48) can be

DT P TR
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made with the values presented in the tables of Figures 59

through 63. The Reynolds number dependency is identical .
However, the values of the coefficients are substantially
different. These results indicate that the yaw relation
parameters are strongly influenced by the probe design and
construction. Therefore, each probe must be calibrated to
determine the yaw parameters associated with it at the

Reynolds numbers of interest.




CHAPTER VI
YAW CALIBRATION FOR FLUCTUATING VELOCITIES

When a sensor is calibrated to determine its yaw sensi-
tivity, the effective cooling of the wire, as represented by
the anemometer output voltage, is recorded as a function of
angle during a static calibration procedure utilizing a low
turbulence, calibration-type flowfield. The results of the
calibration are represented by a relation like Equation
(III-80). However, when the sensor is used for measuring
turbulence velocity correlations, it is exposed to fluc-
tuating velocities of varying degrees of intensity and fre-
quency distributions. This chapter examines the effect of
such fluctuations, as represented in particular by control-
led periodic velocities, on the yaw sensitivity of the sen-
sor, which is given by the relation between the time-
averaged effective cooling and the mean flowfield. It also
examines the validity of Equation (III-83), which was de-
rived to relate the yaw dependence of the mean and unsteady
fluctuations and was based on a quasi~steady approximation

of the yaw relation.

Establishment of Fluctuating Velocity Field

The calibration tunnel was initially modified to super-
impose streamwise periodic fluctuations on the mean flow in
the manner described by Marcichow and Way [30]. In this
configuration, a linear contraction leading to a one-inch

diameter nozzle was attached through a short duct segment
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to the open end of the plexiglass "T" section (see Chap-

ter IV and Figures 9 and 10). Driven by the speaker at dif-
ferent frequencies, the resulting free-jet flowfield pro-
vided a fluctuating velocity field with a controllable air
speed and amplitude of fluctuations. 1In particular, high
levels of intensity of the fluctuations could be achieved.

A standard hot-wire attached to the angularity jig and
indexing head was used to carefully map the flowfield pro-
duced by this configuration at different values of free
stream velocity, forcing frequency and fluctuations inten-
sity. Vertical and lateral'profiles at various positions
downstream of the jet were taken utilizing the instrumenta-
tion of Figure 14. These profiles were of the mean velo-
city, the rms of the educted fluctuations and the phase dif-
ference between the reference signal, from the beat frequen-
cy oscillator, and the educted wire signal. For this con-
figuration, it was determined that the phase changed by as
much as 40° from the jet centerline to the edge of the jet
at a position 0.25 inch downstream of the jet exit. This
phase difference increased with downstream distance and was
found to be asymmetric. Initially this was thought to

be due to misalignment of the speaker-duct connection. The
speaker was then inclined at various angles to the duct and
the measurements repeated. The second set of measurements
indicated that the angle of the speaker had little influence
on the flow field out of the nozzle, and that the contrac-

tion and nozzle were the likely component contributing to

|-
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the skewness of the unsteady flowfield.

Considering the size of the probe with respect to the
nozzle exit, one can surmise that such phase differences
would lead to fluctuations incident upon the sensor which
are not planar. This in turn would lead to inaccuracies
in the measurements, in particular at large yaw angles.

In an attempt to minimize these effects, the linear con-
traction was replaced by a smooth contraction section
leading to an identical size free jet. (The same contrac-
tion section is utilized when the tunnel is used for velocity
calibration of probes; see Chapter IV and Reference [28]).
After careful mapping of the flowfields produced, it was
found that the phase difference was reduced to approxi-
mately 20°. This was still not acceptable, in particular
since the rms of the fluctuations was not constant over the
test volume in which the sensor would be positioned during
yaw calibration.

The main advantages of the above two configurations are
the low background turbulence level in the free jets, and
the wide range of velocities and fluctuation intensities
achievable. However, the two-dimensionality of the fluc-
tuating velocity field was considered the most important
aspect and the configuration of the Calibration Tunnel was
modified to achieve it. The final modification consisted
of the removal of the contraction section leading to the
nozzle, thereby having the duct open to the laboratory. By

mapping the flow in this configuration, it was found that
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as long as the sensor remained within the duct,the velocity
fluctuations were planar over the entire cross section.

Assured that the fluctuations in the duct were two
dimensional, turbulence manipulators were added to reduce
the level of the turbulence to an acceptable level but with
minimum interference to the unsteady flowfield. The final
arrangement of these is shown in Figure 10. Without peri-
odic forcing of the flow, at a freestream velocity of
12 ft/sec, the turbulence intensity near the exit of the
duct was found to be 2%. For more details on the flow mani-
pulators and the flow characteristics at the test position,
including velocity and turbulence profiles and spectra,
the reader is directed to the report of Loehrke and
Nagib [29].

Additional experiments were conducted to select the
combinations of mean velocity, fluctuations amplitude and
frequency suitable for calibration. All the selected con-
ditions exhibited two dimensional fluctuations across the
test section and simple harmonic character of the unsteady
velocity component. The only limitations were the maximum
steady velocity achievable and the maximum intensity of
fluctuations which could be obtained in this configuration
of the tunnel. However, as will be evident from the fol-
lowing sections, the available conditions were adequate for
the purposes of the experiments.

In the remainder of this chapter,single and X-probes

are tested in the fluctuating velocity field described
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above. It should be emphasized at this point that the sen-
sors are exposed simultaneously to periodic and random
fluctuations and that their cooling is affected by both
unsteady velocity fields. However, with the aid of the
periodic sampling techniques utilizing the Waveform Eductor
(for details see Chapter 1IV), one can separate the periodic
part of the hot-wite‘output signal. This periodic part

will be useful in the comparison of the yaw relations with

the aid of equations given in Chapter III.

Single-Wire Probe

A linearized standard-length hot wire was used in the
modified Calibration Tunnel as described above and in Chap-
ter IV. The velocity fluctuations presented here refer to
the educted signal from the wire, i.e., the linearized hot-
wire output was periodically averaged to provide the rms of
the periodic component of the measured velocity. With the
free-stream velocity set at 12 ft/sec, the forcing frequency
set at 1000Hz and the fluctuations intensity equal to 3.8%,
the effective mean and rms velocities were recorded as the
yaw angle was varied. The results shown in Figure 64,
for various angles of yaw in the range +48°, indicate that
the effective turbulence intensity, ué/Ué, remains constant.
The behavior of the data in this figure is represented by
Equation (III-83) which testifies to its validity.

To examine this in greater detail, forcing frequencies
of different intensities were used. The effective turbu-

lence intensity, normalized by its value when the sensor is
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normal to the flow,is shown in Figure 65 as a function of
yaw angle for different frequencies and intensities. A wide
range of frequencies encompassing a major portion of the
hot-wire spectrum is used. 1In all cases, the turbulence
intensity remains constant and within 2% or less of its
value at zero yaw angle. With these results the validity of
Equation (III-83) is confirmed.

Having established that at any forcing frequency, the
yvaw sensitivity for the mean and rms fluctuations of the
flow are the same, the effect of the velocity fluctuations
on the parameters of the yaw relation based on mean calibra-
tion is examined next. Maintaining the free-stream velocity
constant while varying the frequency, the yaw sensitivities
for both mean and rms velocities were obtained. For ease of
comparing the results, only the variation in b% will be pre-
sented here. This is done because the Friehe and Schwarz
relation has only one variable coefficient and its variation
in this case should be easier to follow. These results are
shown in Figure 66. In absence of the velocity fluctuations,
the value of b% was determined to be equal to 1.0. When
periodic fluctuations were superimposed on the flow, keeping
the time-mean velocity constant, the values of bg'obtained
from both mean and rms yaw calibration changed by as much as
3% at the lower frequencies and by as little as 1% at the
higher frequencies. The figure displays b%, obtained in
presence of the fluctuation, decreasing with increasing

frequency and approaching the value obtained from static




calibration. It should be pointed out that the same

amplitudes of fluctuations were used in Figures 65 and
66.

This frequency dependence of the yaw coefficients will
cause a discrepancy between static and dynamic calibration
for the X-probe sensitivity coefficients described in Equa-
tion (III-35). 1In addition, Figure 66 brings out other im-
portant problems. If mean velocities are to be measured in
an essentially laminar flow using inclined wires, only a
static calibration will describe its true yaw behavior. In
order to accurately measure mean velocities with an X-wire
in a turbulent flow the probe should be calibrated in a fluc-
tuating flowfield of similar intensities and frequencies.

In cases where fluctuating velocities are to be measured
using inclined wires, neither static nor dynamic calibration
will yield accurate results since the sensitivities for in-
clined wires will be frequency dependent. This frequency
dependence can also lead to substantial errors in spectral
measurements utilizing inclined sensors.

Although the data of Figure 66 are based on the period-
ic part of the hot-wire signal, the results may be influ-
enced by the presence of the random 2% turbulence fluctua-
tions. Based on Equation (III-79) and in presence of turbu-
lence Reynolds stresses, uv, one would expect the difference,
depicted in Figure 66, between the mean-velocity yaw cali-
bration with and without fluctuations present. A similar

conclusion can be made regarding the unsteady velocity from
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Equation (III-8l1). In the calibration condition used in
this chapter such Reynolds stresses could be present in the
random fluctuations or due to their interaction with the
periodic velocity field. However it remains somewhat puz-
zling that Equation (III-83) was verified earlier, while in
view of the results of Figure 66 it may not necessarily
hold. It coula be that the additional terms in Equation
(III-79) and (III-8l1) balanced each other leading to the
behavior described by Equation (III-83) without having to

satisfy all the assumptions made to derive it.

X-Wire Probe

The applicability of Equation (III-83) was also exam-.
ined through measurements utilizing a linearized X-wire
probe. Results for the normalized turbulence intensity for
different ranges of angular position are shown in Figures 67
and 68 for frequencies of different intensities. Once
again, these show that the effective turbulence intensity
remains essentially constant. The scatter in the data in
Figure 68 arises from measurements with forcing frequencies
having intensities of 1 to 2%, where a small error in mea-
suring the rms velocity leads to large errors in the mea-
sured turbulence intensity.

The transverse sensitivity coefficient, numerically
calculated by a two point local derivative method (for fur-
ther details see the section of "X-Wire Probe" in Chapter V),
for mean and fluctuating velocities, using a forcing frequen-

cy of 40 Hz, is shown in Figure 69. These should be equal

e L
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through use of Equation (III-83). The transverse sensitivi-
ty coefficient determined from Equation (III-35) using the
yaw coefficients obtained from yaw calibration in the ab-
sence of periodic velocity variations, is also shown on the
same figure. A significant difference in the calculated
sensitivity coefficients exists between static and dynamic
calibration. The réason for this lies in the frequency
dependence of the yaw coefficients as described in Figure 66.
Although reasonable agreement is demonstrated between the
three curves of Figure 69, other data did not yield as

good an agreement. However, in all cases larger discrepan-
cies were found between the static and dynamic calibration
for the yaw dependence of mean velocities.

Morrison et al. [26] found that large differences in
both sensitivity coefficients of the X-wire existed between
static and dynamic calibration. Bruun [27] argues that
part of this difference is caused by poor approximation of
the static calibration data over a large velocity range by
use of a constant power exponent law, and seems to attribute
all of it to this approximation. However, his results con-
sistently show the statically determined longitudinal sen-
sitivity coefficient less than that determined by dynamic
calibration by approximately 2%. This is consistent with
the present results and hence could not be attributed to

experimental error as Bruun states.
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CHAPTER VII

DISCUSSION

Temperature Dependence

A scheme utilizing a temperature probe immersed in the

working fluid to compensate for the dependence of the hot-

wire velocity calibration on ambient temperature variations

was examined in Chapter II. Requiring only the knowledge of

the resistances of the velocity sensor and the temperature
probe, and their temperature dependence, this scheme was
found capable of compensation over as much as 40°C with as
small as a 1% error in the indicated velocity (The error is
essentially proportional to the square of the maximum tem-

- perature variations). This error may be reduced even fur-
ther if the optimum circuit design is employed. The anal-
ysis for this optimum design yields a range of solutions
from which a minimum error condition can be derived, in
principle. This derivation requires an optimization ap-
proach and has not been completed yet.

The analysis and error estimates were based on the pre-

mise that the coefficient A in King's law is independent of

temperature. However, it was determined in Appendix B that

this coefficient exhibits a slight variation with ambient
temperature. This variation will add a small contribution
to the errors in the compensation attained.

If one wishes to utilize this scheme without velocity

calibration at various temperatures, one may use the
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analysis based on the constant A assumption. However, if
one uses the scheme after such velocity calibration has been
performed, the analysis can be modified slightly to take
into account the variation of A with temperature. The
errors can be determined from the data presented in
Appendix B. They will be calculated by comparing the values
based on the experiméntal data of dR3/dT, i.e., the values
required for a constant anemometer output at a fixed velo-
city with varying temperature , with those derived by the

analysis of Chapter II.

Yaw Dependence

In regard to the yaw dependence of hot-wires, results
for yaw calibration in steady velocities are presented in
Chapter V. As a check on these results, they are compared
to those available in the literature.

Since the Friehe and Schwarz relation was one of the
yaw relations examined in the course of the present investi-
gation, the yaw coefficients determined when using it can be
compared to the results of Friehe and Schwarz [22]. This
comparison is summarized in Figure 70. Although there is a
fair amount of scatter, due to the Reynolds number depend-
ence, a general trend is drawn. The data of Friehe and
Schwarz [22] fall along this trend indicating that the re-
sults are consistent. However, the present data, having
cases when b§>1, i.e. negative deviations from the cosine
law, reveals one aspect which they did not report.

Another check on the data is performed by comparing the
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results to the data of Champagne [17]. Champagne used the

following yaw relation

2 .\ %

£2(a) = (cos’a + k2 sinZa) (VII-1)

where k is a small parameter accounting for the axial
cooling of the wire. The variation of k with sensor £/4
at velocities approximately equal to 110 ft/sec was reported
in his work [17,25]). Data from the present relation were
converted to an equivalent average value of k2 through the

following relation

[1 - b*(l-cos™

0 sin2a

Aa 2

a)]4 - cos“a ds

2 1
k™ = 777 J (VII-2)

where Ao is the angular range over which the yaw calibration
data were obtained. These results, plotted in Figure 71,
indicate that k2 is a strong function of Reynolds Number,
i.e., decreasing with increasing Reyi a result which is also
supported by Kjellstrém and Hedberg ([19]. 1In spite of this
Reynolds number dependence, a general trend with sensor £/d4
can be also drawn in this figure. For intermediate sensor
lengths, k2 is positive. However, it becomes negative for
shorter sensors (i.e. £/d<150) and for longer sensors

(i.e. £/d4>600), a result not determined by Champagne. 1In
all cases one observes that Champagne's data follows the
trend of the present results. Again, as for bg>1l, the

negative values of k2 represent effective cooling of the
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sensor less than that described by the cosine law. Fig-
ure 71 is plotted using k2 instead of k to avoid intro-
ducing imaginary values in the coefficients of the yaw rela-
tions. However, if one is to use Equation (VII-1l) to repre-
sent experimental data, the present results indicate that
one should either use k2 as the parameter or should allow
k to be imaginary if it is to be utilized directly. In Fig-
ure 71 each of the present data sets is represented twice:
once based on its fit to the present relation, and the other
based on the best correlation of the data by the Friehe and
Schwarz relation. The standard deviation of the two fits is
different and is always smaller in the former case. The
trends remain the same in both representations.

Based on the results of Chapter V and in Figures 70 and
71, it is evident that as the velocity over the sensor
changes, its yaw sensitivity is altered. At any velocity,
for a constant temperature anemometer, the conduction from
the wire to the prongs is constant. However, as the velo-
city increases, the convection increases thereby changing
the ratio between convection and conduction, which in turn
will alter the axial temperature profile of the wire.
Horvatin [36] concludes that as this ratio increases (in
his case by decreasing the conduction effects) the tempera-
ture profile becomes more uniform along the entire length
of the wire. This can be also calculated directly through

use of the analysis presented by Sandborn et al. [37].

Therefore, one would expect that at higher velocities, where th
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temperature profile becomes more uniform, that the sensors'
yaw response should be closer to the cosine law approxima-
tion.

The variation of the yaw coefficients obtained from the
present relation are shown in Figures 72 and 73. At any

£/4, there is a wide range of scatter of the coefficients

with Reynolds number and type of probe used. The calibra-
tion data obtained by an independent source over a wider
range of Reynolds numbers and data from hot-films cali-
brated in water are all included in these and the following
figure. Figures 72 and 73 indicate that the yaw coeffi-
cients obtained for any probe are strong functions of probe
design and construction. Therefore, each probe must be cali-
brated separately for yaw sensitivity. Similar results for
the turbulence correction factor are presented in Figure 74,

indicating again that no typical values of the yaw para-

meters can be found for any of the £/d's shown. 1In particu-~
lar, the figure displays the wide range of correction fac-
tors of the turbulence intensity correlations which may be
encountered for typical probes.

Included in Figures 72, 73 and 74 are the data from the
different overheat ratios, the different angular ranges of

calibration, and the X-wire calibration. The X-probe data

brings out a most significant result. Comparing the values
of b%, b* and m* for Wire 1, listed in the tables of Figures
59, 60 and 61, to those for Wire 2, given in Figures 62 and

63, one notes the substantial difference between them. As
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illustrated by the photographs of Figure 12, the two wires
of the X-probe were made as identical as one can expect them
to be. The photograph proves that they appear identical and
symmetric to the naked eye even with the enlargement of the
pictures. In addition, the two wires were made from the
same stock using the identical technique. After careful
examination under the microscope and while using an optical
comparator, it was found that Wire 2, which exhibited the
larger deviation from the cosine law, had a slight double
curvature along its length.

The above results lead us to believe that not only

each probe but also each new sensor mounted on the probe

must be calibrated even if the new sensor is identical
to the one being replaced.

An interesting correlation between b* and m* is shown
in Figure 75 where b* varies approximately as (2m*) 1. If
this correlation is used, the present yaw relation can be
reduced to a one parameter relation. This would still give
a more accurate description of the data than the Friehe and
Schwarz relation but will no longer give the minimum errors
which can be achieved with the two parameter relation.
Again,data from MSU and from hot-films in water are included
in this figure. The small scatter mbout the correlation is
surprising in view of the variety of the data included.

Considering the added complexity introduced by a two

parameter relation over the various one coefficient rela-

tions, it is important to find out when a more complex
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relation is most needed. The most obvious comparison is be-
tween the present and the Friehe and Schwarz relations.
Taking into account the effect of £/d and the Reynolds num-
ber, the regions where a substantial improvement in the
accuracy is gained by using the present relation are shown
in Figure 76. fSignificant" improvement is indicated where
the ratio o%/o; is larger than two as described in Chap-
ter V. This figure can then be used as an operating chart
to determine which of the two yaw relations is more "suit-
able" for a particular £/4.

Considering 5% deviations from unity in the value of
the correction factor of the turbulence correlations to be
small, sensors which behave like the cosine law can be iden-
tified (Note that unity corresponds to the cosine relation).
The cross hatched regions of Figure 77 encompass all the
conditions found to fall under this definition. The results
are somewhat surprising in that the short sensors should have
a non-uniform axial temperature distribution which some in-
vestigators suggest causes deviation from the cosine law.
However the reason that the longer sensors show some devia-
tion from the cosine law may be explained by the method used
to change £/d. 1In all £/d4 cases, the spacing between the
hot-wire prongs is kept constant so that as the sensor £/4
increases, the active portion of the sensor will be closer
to the prongs thereby increasing the conduction and aero-
dynamic interference effects. These increased effects are

probably only significant for £/d=1000.
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If one uses a probe similar to that used in this inves-
tigation, Figures 45 and 76 can be utilized as operating
charts to determine which sensor would be most applicable.
From these, one observes that going to a very short sensor,
e.g., £/d=100, would be most advantageous. With this sen-
sor , the effects of gradients in mean velocity on the wire
sensitivity as described by Gessner and Moller [38] would
be minimized. The short sensor would also be more suitable
for measurement of turbulence gquantities, as described by
Frenkiel ([39].

In Chapter V, the idea of finding the best values of
the yaw relation parameters over a range of Reynolds num-
bers, i.e., velocities, is introduced. Such values would be
useful when X-probes are utilized to obtain the various pro-
files of the velocity components and their correlations.
This is particularly true in connection with analog signal
processing. The selection of the best values of the para-
meters is based on an effective standard deviation of the
data from the yaw relation, over the desired range of
Reynolds numbers. As demonstrated in Figures 51 and 52,
employing the various yaw relations will lead to different
effective standard deviations. The effective overall ratio
of improvement gained by changing from one relation to
another can be calculated for the range of Reynolds numbers
under investigation by dividing the values of the best
effective standard deviations found from the different yaw

relations. This improvement ratio is given in Figure 78 for
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a comparison between the present relation and both the co-
sine law and the Friehe and Schwarz relation. A negligible
improvement is achieved by using the present instead of the
Friehe and Schwarz relation. A small improvement is made
by substituting the present relation for the cosine law.
However, these results must be interpreted with some
care. The magnitude of E*p is typically an order of magni-
tude larger than that of o*p, which indicates the large
errors introduced by trying to represent a range of Reynolds
numbers by a single set of yaw relation parameters. The
present exercise, therefore, indicates that one should use
different yaw calibration coefficients for different Rey-
nolds numbers, or velocities. Based on the results of the
exercise one can also surmise that if a single set of para-
meters is to be used, the accuracy achieved by a simple
relation like that of Friehe and Schwarz is as good as one
may expect. In fact for most sensor £/d's,using the cosine
law is just as good. Therefore, it can be stated that for
analog signal processing one may just as well use the sim-
plest yaw relation, i.e., the cosine law. However, after
the data has been gathered, the results must be corrected
for the large errors introduced by the cosine law. These
errors are present in all of the mean and rms velocity com-
ponents measured by the X-probe and, of course, in their
correlations. The correction factors must be obtained with
the aid of the yaw calibration data of the wires and most

likely they are functions of the velocity, i.e., Reynolds
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number .
Such correction factors have been derived by Champagne

et al. [25] based on his yaw relation for the case when

the mean flow is aligned with the axis of symmetry of the

X-wires. They also demonstrate that a simple summing and

differencing technique can be used to determine the various
turbulence intensities and Reynolds stresses. Bruun[40]
presents an approximate method which he argues can be used
to determine these quantities when the mean flow angle is
not aligned with the probe. His approximate method again
relies on simple sum and difference techniques. However,
based on the present analysis, his approximation will lead
to large errors in some cases. In Chapter III, it was
shown that to first order, an X-probe can be used with the
same degree of accuracy in flows where the mean flow angle
is not aligned with the probe as when the mean flow angle
is zero. The approach of Chapter III is based on simple
weighted summing and differencing of the signals from the
sensors. The weighting functions depend on the yaw coef-

i ficients and the mean flow angle. Having shown in Chapter
| VI that dynamic calibration, as for example used by Perry
et al. [41]), or that calibration in a turbulent flow may be
necessary, one ascertains that the method proposed in Chap-
ter III is much more suitable. 1In particular, since it

has no restrictions on the type of flowfield it is cali-
brated in. This method will also express the accuracy of

the relation representing the calibration data by the

)
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quantity op.
To demonstrate the importance of knowing the standard
deviation of the yaw data, O and how even small differ-

ences in 0, can cause substantial discrepancies in the com-

puted turbulence intensities for different mean flow angles.,

é Figures 79 thropgh 81 are presented. In order to

determine these discrepancies, the distribution of energy be-
i tween the different components of the turbulence, as calcu-
| lated by the cosine law must be known. Sample results are
shown for two different flow conditions, one typical of the

outer region of a turbulent boundary layer, the other typi-

cal of the inner region. Data for these flow conditions

} were based on the measurements of Klebanoff [42]. While
only very small mean flow angles with respect to the X-probe,
Y, are present in the boundary layer, Klebanoff's data is
used here for 0°< y < 25°to illustrate the trends and to
give the reader a feeling for the magnitudes of the errors

involved.

The yaw parameters used in Figures 79 and 80 are for
the case where the largest deviations were observed between
| the three yaw relations, i.e., the worst case expected based
on the probes tested here.
In Figures 79, 80 and 81 the differences between values
i computed by the cosine law and those computed by either the
present relation or the Friehe and Schwarz relation are re-
presented by Ei and (Ei)f, respectively. The subscript i

denotes the turbulence velocity correlation computed. For
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example, an € of 0.1 indicates a 10% difference between the
values computed by the two relations in question based on
the same output signals from the X-wire and the same yaw
calibration data. The differences}between the present
and the Friehe and Schwarz relation can be obtained by the
difference between (Ei)f and (Ei); see Equation (III-73).
In Figure 79, when the mean flow angle, y, is zero, a
4.5% difference in computed values of v' exist between the
Friehe and Schwarz relation and the present relation even
though only less than 0.5% difference in fitting the mean
velocity is observed in Figure 80. This difference in v'

ﬂ increases to 10% as y increases. The major effect appears

in the Reynolds stress uv where a difference of over 70%
exists between the Friehe and Schwarz and the present rela-
tions for increasing values of y, while the difference in
uv between the cosine law and Friehe and Schwarz varies
between 9 and 16%. When y = 0, the minimum difference of
5.5% in the calculated uv is found between the present and
the i'riehe and Schwarz relations.

The distribution of the turbulence does have some ef-
fect on the differences in the computed values of v', how-
ever it plays a larger role in the determination of the
Reynolds stress. As the magnitude of the v component of the
fluctuations approaches that of the u flucutations, the
difference in uv computed by the present relation and Friehe
and Schwarz' relation substantially increases. At the same

i time the difference between the Friehe and Schwarz relation

| .‘




109

and the cosine law increases only by approximately 7% at
the large y's.

Differences in mean and streamwise fluctuating velo-
cities for the same case appear in Figure 80. Although
small differences in u' are found when y = 0, these dif-
ferences grow to 12% as y increases. For y = 0 the differ-
ence in the computed value of u' is identical to the dif-
ference in mean velocity. Therefore the ratio of these,
i.e., the streamwise turbulence intensity, remains the same
in all three cases. This is true in the case of an ideal X-
probe. However once a typical X-probe in which each sen-
sor has a slightly difference yaw sensitivity is used,
there will be differences in the computed turbulence inten-
sities. The results of the analysis demonstrate that the
longitudinal turbulence intensity is the only quantity that
can be measured exactly, even then only with an ideal probe
with matched sensors at equal angles to the mean flow dir-
ection. It is ironic that this quantity can be measured
just as accurately by the much simpler method of one hot-
wire perpendicular to the flow direction.

It should be noted that in all cases, when y = 0, the
differences between the computed values reduce to those
given by Equations (III-45) through (III-47) and are in
agreement with the results of Friehe and Schwarz [22] and
of Roberts et al. [23, 24]. While the present analysis is
limited to small turbulence intensities, by extending it to

the cases v # 0, one is able to get an indication of the
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trends at high intensities. Under large turbulence condi-
tions the instantaneous value of the angle,i.e.,f,can achieve
very large values. If the heat transfer from the wire be-
haves in a somewhat quasi-steady fashion, the y # 0 results
may give good indications of the errors introduced by the
simpler yaw relations.

The case for an X-probe constructed of standard-length
hot-wires corresponding to the region of negligible im-
provement between the three relations, is shown in Figure 81
for the same flow conditions as those of Figures 79 and 80.
The differences in the computed'values of u' and v' are
negligible between the Friepe and Schwarz and the present
relations while the differences in uv are only as large
as 4%. The typical differences for such an ideal probe are
of the order of 1%. The difference between GP for Friehe
and Schwarz and the present data in this case is 0.01l%.

The results of Figure 81 demonstrate that large dif-
ferences in the computed turbulence velocity correlations
can exist even for insignificant differences (i.e., 0.01%)
in fitting the mean yaw calibration data. In addition, the
magnitude of the standard deviation of the yaw calibration
fit must be very small. The data of Figures 79 and 80 show
that a value of O¢ of approximately 0.7% is certainly not
small enough, a most surprising conclusion. Reducing this
value by a factor of about 4.8, i.e., to a ap >~ 0.15%, leads
to very significant reductions in the errors in measuring

the various turbulence quantitites. The errors in the most
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critical of these quantities, namely uv, are reduced by 6 to

70% depending on the inclination of the X-wires with respect
to the mean flow direction [or depending on the intensity

of the turbulence). Therefore, a very high degree of accu-
racy in fitting the mean yaw calibration data is needed to
attain accurate results.

The sample results presented in Figures 79, 80 and 81
utilized information on the distribution of the turbulence
energy, i.e., Pu and Pue * based on the classical experi-
ments of Klebanoff [42]. 1In practice, the correction fac-
tors must be derived based on the data obtained from the
experiment in addition to the yaw calibration parameters.
Such corrections can be made a posteriori if analog signal
processing is used or can be incorporated in a subroutine
to the digital data processing program. In the former case
the analog system would be set based on the cosine relation
because of the discussion on the accuracies achieved over a
Reynolds number range presented earlier in this section. If
the Reynolds number of the probe remains unchanged during
the experiment, the corrections can be included a priori to
the experiments. They would be automatically incorporated
in the weighted sums and differences of the output signal
based on the yaw calibration parameters corresponding to the
operating Reynolds number. The details of this approach are
given in Chapter III.

In regard to the effects of velocity fluctuations on

the yaw calibration of hot wires, the results obtained in
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this study are presented and discussed in Chapter VI. How-
ever the main thrust of the findings will now be
summarized.

Various sensors from single- and X-probes were cali-
brated under steady conditions as well as in the presence
of velocity fluctuations. The results indicate that while
dynamic yaw calibration of the probes is not necessary, the
mean yaw sensitivity of the probe should be obtained in the
presence of some velocity fluctuations, e.g., in the pres-
ence of some background turbulence. These results also
suggest that the velocity calibration of the probe may fol-
low the same trends. This of course is contradictory to the
common practice of using calibration flow conditions with
the minimum possible turbulence intensity. However, they
are not necessarily surprising in view of the changes which
may be induced by unsteady velocities in the boundary lay-
ers aid in the flow around the sensor and prongs as well as
in other aspects of the convective heat transfer from the

wire.
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CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

The conclusions drawn from the various parts of the in-
vestigation are presented in the following order: first,
conclusions obtained from the analysis of the temperature
compensating scheme, examined in Chapter II and Appendix A,
are presented. Next, the main findings of the
experiments on temperature compensation, reported in Appen-
dix B,are summarized. The major conclusions drawn from the
analysis describing the yaw response of hot-wires in steady
and fluctuating velocity fields are presented next. This
analysis is given in detail in Chapter III. Finally, con-
clusions based on the results of the experiments on the yaw
sensitivity of hot-wires are listed. The discussion of

these results is included in Chapters VII, VI and V.

Conclusions

Based on the analysis of the scheme proposed for com-
pensation of the anemometer output for ambient temperature
variations, it was found that:

l. Temperature compensation does not depend on
whether the anemometer output is linearized or not.

2. One needs only to know the properties of the ane-
mometer bridge and the velocity and temperature probes
(i.e., their resistance and temperature dependence co-
efficients) in order to achieve the compensation, without

any need for temperature calibration. Hence, the scheme
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provides means for incorporating the temperature compensa-
tion a priori to conducting the experiments.

3. Constraints on the parameters of the temperature
compensating probe, valid for all three circuit configura-
tions, were derived. With this and the knowledge of the
properties of available velocity sensors, operating over-
heat ratios, anemomeﬁer bridge ratio and operating mode, a
suitable temperature compensating probe may either be fab-
ricated or purchased.

4. Exact solutions for temperature compensating cir-
cuits 1 and 2 were obtained for three different operating
modes; i.e., constant overheat ratio, constant overheat dif-
ference and constant output voltage. Operating charts are
provided (Figures 4 and 5) for the selection and adjustment
of the resistances in the circuits.

5. When no constraints are imposed, a family of solu-
tions exist for compensating circuit 3. Constraints to
minimize the non-ideal behavior are being derived for this
circuit making it the optimum circuit configuration.

6. Estimates for the errors introduced through the
non-ideal behavior of the compensating circuits have been
derived and indicate that the error is proportional to the
square of the temperature variation.

7. For a typical hot-wire, temperature compensator
pair, it was determined that circuit 1 with an ambient tem-
perature increase of 40°C produces a -2% change in the in-

dicated velocity, while utilizing circuit 2 reduces the
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error to ~1%. This error can be further reduced if the op-
timized configuration of circuit 3 is employed.

8. The temperature dependence of the coefficient A
in King's Law, which was found from the experiments, was
ignored in the analysis and error estimates. 1Its variation
with temperature will add a small contribution to the errors
in the compensaiion attained. 1In order to account for the
temperature dependence of this or the other coefficients
in King's Law, i.e., n and B, the a priori setting of the
scheme and estimating of the errors will not be possible
without velocity calibration at different temperatures.

Based on the experiments on temperature compensation
conducted in air, the following conclusions were drawn:

1. For a constant velocity, if the ambient temperature
changes, operating in a constant overheat mode overcompen-
sates but seems to approach the ideal compensation to a
greater degree of accuracy as compared to the constant dif-
ference mode of operation, which undercompensates.

2. The effective temperature compensation of all oper-
ating modes was found to be independent of fluid velocity
and initial overheat ratio.

In the derivation of the response equations of inclined
cylindrical sensors in steady and fluctuating velocity
fields, previous analyses have been extended for the pres-
ent yaw relation to include X-probes with dissimilar sensars
as well as mean velocities at an angle y to the line of
symmetry of the X-wires. The following conclusions are

based on the results of the analysis.
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l. For sensors with yaw dependence that does not
closely follow the cosine law, neither the simple nor an
approximate weighted sum and difference technique applies
when Y#0. This makes analog processing to obtain accurate mean
velocities extremely difficult if not impossible. However,
for cases where the mean streamline is aligned with the probe
axis of symmetry, thé errors introduced are usually less
than 5%,

2. In low-level turbulence, time dependent velocity

components can be obtained using a weighted sum and dif-
ference technique once the mean flow angle is known.
i 3. By extending the analysis to cases where y # 0,

| 2 2 . ? ; :
! while using low intensity assumptions, one is able to get an !

indication of the trends at high intensities for which the
instantaneous flow angle can assume very large values.
4. The correction factors derived for the measured mean

and turbulence quantities must be based on the data obtained

from the experiment in addition to the yaw calibration para-
meters. Such corrections can be made a posteriori if analog
signal processing is used or can be incorporated in a sub-
routine to the digital data processing program.

S. Discrepancies exist between different yaw relations
in calculated values of turbulence velocity correlations
which are derived from the same data. These discrepancies
depend on the mean flow angle, the distribution of the tur-
bulence energy between the velocity components and the ac-
curacy to which the mean flow calibration data fits the par-

ticular yaw function. For differences in this accuracy of
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0.5%, discrepancies as large as 10% and 70% may exist in the
computation of v' and uv, respectively. Differences in fit-
ting mean calibration data of 0.01% produce discrepancies in
turbulence quantities of the order of 1% when vy = 0 and as
large as 4%, in the Reynolds stress, at large Yy's.

6. The longitudinal turbulence intensity is the only
quantity that can be measured exactly, even then only with
an ideal probe having matched sensors at equal angles to the
mean flow direction.

7. Measurements in many complex flowfields such as
"swirling flows" or near bluff bodies, in particular in the
presence of turbulence, require that the yaw sensitivity of
bothL sensors of an X-probe must be known to a high degree of

accuracy.

Conclusions based on the experiments on yaw sensitivity
in steady and fluctuating velocities are listed in the
following:

l. Unlike the cosine law or the Friehe and Schwarz re-
lation, the standard deviation of fitting the yaw calibra-
tion data by the present relation is independent of the
Reynolds number and the length of the sensor, i.e., £/d.

2. In all cases examined, including hot-films in water
and data from an independent source, the present relation
fit the yaw calibration data to a higher degree of accuracy
than the cosine law or the Friehe and Schwarz relation. The
improvement in the accuracy over the cosine law can be as

large as a factor of 25, while that over the Friehe and
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Schwarz relation can only be as large as 5. This improve-
ment, however, is dependent on probe design and Reynolds
number.

3. The ratio of improvement over either the cosine law
or the Friehe and Schwarz relation is smaller for the very
short sensors (£/d = 100) than for the long sensor (£/4 =
1000). This indicates that the cosine law is more appli-
cable to the short sensors, rather than to the long ones!
The variation of the yaw parameters was not found to be
monotonic with sensor £/d and did agree with previously
reported results.

4. The improvement in using the present relation over
the Friehe and Schwarz relation comes at relatively large
yaw angles (i.e., larger than 50°) and particularly at low
Reynolds numbers. The yaw coefficients determined from the
present relation are independent of the angular range of
data between +50° and +70°.

5. A good yaw relation must account for both higher
. «d lower effective cooling rates than that determined by
the cosine law.

6. The yaw sensitivity of hot wires is not significant-
ly influenced by the operating overheat ratio in the range
between 1.4 and 1.8.

7. The trend of the yaw parameters with either sensor
£/4 or Reynolds number does not seem to approach the cosine
law, but rather it seems to overshoot it without any observ-

ed asymptotic values.
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L 8. In general, if an X-probe is misaligned by 0.5°,
the effect on the yaw coefficients is equivalent to that
resulting from recalibrating the probe, properly centered,
at a freestream velocity 3 ft/sec lower than the desired
one.

9. An approximate correlation can be used to reduce

the present two parameter yaw function to a single para-
meter relation and is given by b* = 1/2m*. Employing this
relation would still yield a more accurate description of
the yaw calibration data but will no longer give the mini-
mum possible errors.

10. For all cases examined, values of the transverse
sensitivity coefficient calculated from a yaw sensitivity
function, taking into account deviations from the cosine
law, yield a higher degree of accuracy than those obtained
directly from the data.

11. All sensors require a turbulence correction factor
to take into account deviations from the cosine law. How-
ever, by proper design and selection, the magnitude of this
correction factor can be minimized.

12, One should use different yaw calibration coef-
ficients for different velocities. If a single set of para-
meters is to be used, the accuracy achieved by a simple re-
lation like the cosine law is as good as one may expect.
However, after the data has been gathered, the results must
be corrected for the large errors introduced into the mean

and rms velocity components.
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13. The yaw parameters are influenced by the probe
design and construction. Therefore, each probe must be cali-
brated to determine the yaw parameters associated with it at
the Reynolds numbers of interest. The results lead us to
believe that not only each probe but also each new sensor
mounted on the probe, must be calibrated, even if the new
sensor is identical fo the one being replaced.

14. The parameters of the yaw relation are affected by
the presence of unsteady velocities in the flowfield and
depend on the frequency of these fluctuations.

15. While dynamic yaw calibration of the probes is not
necessary, the mean yaw sensitivity of the probe should be

obtained in the presence of some velocity fluctuations,

e.g., in the presence of some background turbulence of simi-

lar spectral content to the flow under consideration.

Recommendations

The following items are recommended for future investi-
gations in connection with the proposed temperature compen-

sation scheme:

l. The optimization analysis of compensating circuit
3 should be completed.

2. The analysis of the compensating scheme should be
extended to incorporate the variations of the coefficients
A and B in King's Law with ambient temperature; this should
include estimates of the errors involved. The variation of
A with temperature is important in air while the variation

of B with temperature will probably be important in water.
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3. The errors can be calculated exactly from the ex-~
perimental data presented in Appendix B. They should be
found by comparing the values based on the experimental data
of dR3/dT, i.e., the values required for a constant anemom-
eter output at a fixed velocity with varying temperature,
with those derived by the analysis of Chapter II.

4. Experiments using real compensating probes should
be performed to verify the analysis of Chapter II.

The following items are recommended to develop further
insight into the yaw dependence of hot-wires.

1. The analysis can be extended to account for the
effect of small lateral velocity fluctuations, i.e., w, on
the various turbulence correlations.

2. The analysis can also be extended to detcrmine the
variation of the measured u' and v' as functions of y.

3. Experiments on yaw calibration in fluctuating velo-
city fields should be modified to also include controlled

periodic velocity fluctuations in the transverse direction.
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INITIAL ERROR ESTIMATES FOR TEMPERATURE

COMPENSATING CIRCUITS

Instead of the approach presented in Chapter II for
determining the errors introduced when using the tempera-
ture compensating circuits, the following approximate meth-
od was initially used. If one assumes that over a reason-
able range of ambient temperature variations (e.g., for a
temperature change of 40°C in air) the equivalent resist-
ance R, varies linearly, the operating velocity probe re-
sistance RH will also be linear due to the bridge balance

condition . The resistance RH can then be written as:

RH ~ RHo (r+ oy (T - To)] (a-1)

Operating the anemometer and compensating circuit in
the constant bridge output voltage mode, we assume that the
temperature function 1 (T), which is defined in Chapter 1II,

can be approximated by
T(T) » T(T,) = m(T - T) (a-2)

where t(To) is a constant evaluated at the reference tem-
perature and m(T - To) is a small variation away from this
constant value. Here, the coefficient m can be deter-

mined once Rc(T) and R3(T) are known.

Using Equation (A-2) with Equation (II-21) one ob-
serves that aEb/aT # 0. The resulting variation of bridge

output voltage with ambient temperature can be given as
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Ep(T) - B (T,) e Roge m(T-T,)

Ep (To) Ry * Ryo
R2 az m(T - T.) R, a. m(T - T)) a.~a
& Co C (o] +COC (e] gc
20y (ay = aQ) Ry (Ryy = Re) 2 oyRuo
1l

(A-3)
(g = ag) (Ryy = Rgo)

If the anemometer output voltage is linearized, fol-

lowing a similar procedure one finds that

n n n 2
E. (T) - E (T°)~ acRCOKOBU m (T - To) / 2

PR - s Dol -
2.2 1l 2.2
yRyo %R0
2a R
C C
= ;_2__0) enll + aH(T - 'ro)l
1Ry
+R, (“gRgo . RCg ) (T =Tl (A-4)
®pRuo  %Ryo |/ 1 * oyx(T = T,)

With available information on the temperature depend-
ence of the compensating probe and the velocity probe,
Equation (A-3) or (A-4) may be used to estimate the drift
in output voltage. The accuracy of this method solely de-
pends upon the accuracy of Equation (A-1) which can be

experimentally determined.

, oudl
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EXPERIMENTS ON TEMPERATURE

COMPENSATION

In parallel with the analysis of the temperature compen-
sating circuits preéented in Chapter II and Appendix A, ex-
periments were conducted in air to determine the validity
of several of the assumptions made and to determine the
temperature dependence of some of the parameters derived.

Measurements were carried out utilizing the I.I.T. com-
pressed-air driven hot-wire calibration tunnel. Dry air was
heated by a 4.5 kw "Chromalox" Model GCH3405 heater prior to
entering the plenum chamber of the calibration tunnel. The
air temperature was varied by regulating the current to the
heater via a 3-phase voltage control unit. Air temperature
was monitored in the test section of the calibration tunnel
by a specially constructed circuit utilizing a thermistor.

A digital voltmeter indicated the temperature in % directly
and the accuracy and repeatability of the readings were
within 0.5°C over the range from 20 to 60°c. At high velo-
cities a thermistor near the upstream end of the test sec-
tion was used, while at low velocities, the temperature was
monitored approximately 2 cm. downstream of the hot-wire to
reduce errors due to heat loss to the surroundings. The
flow rate was controlled by a Watts Model 110 pressure regu-

lator in line with and ahead of the air heater. A schematic
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of the entire setup is shown in Figure 82.

The temperature coefficient of resistance.of two compen-
sating probes and a standard length hot-wire (£/d=580) were
obtained by exposing the probes to heated air streams of
known temperature. Probe resistance was measured using the
bridge of a Disa 55D01 anemometer unit to within +0.005 Q.
The temperaturé was varied and measurements taken through-
out the range from 20 to 60°C. Graphs of probe resistance
versus temperature were plotted and the temperature coeffi-
cients of resistance determined from the slope of the curve.
The temperature dependence of all probe resistances was
found to be linear for the range of temperature variation.

Guided by the analysis, three different operating modes
were examined. The first kept the operating overheat ratio
constant by manually adjusting the decade resistance on the
anemometer at each temperature where data was taken. The
second mode kept the operating resistance difference,

RH—RC, constant by manually adjusting the decade resistance
at each temperature. The third mode of operation involved
adjusting the decade resistance on the anemometer to achieve
constant output voltage at each fixed velocity as the air
temperature was varied. The operating resistance as a func-
tion of ambient temperature, required to maintain the

bridge output constant, was found from the latter approach.

Results from this portion of the experiment are shown
in Figures 83 through 85. Figure 83 demonstrates that with-

out compensation, the non-dimensional bridge voltage
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decreases linearly with increasing temperature while main-
taining the velocity constant. This result was found to be
independent of flow velocity from 3.5 to 30 m/s. This drop
in the bridge output voltage is dependent on the overheat
ratio used and ig largest for low overheats. Three over-
heats were used=. 1.4, 1.6 and 1.8, the latter

being the most common value ewployed by various ex-

perimenters.

Holding the resistance difference constant, again while
maintaining a constant velocity, the drop in output voltage
was found to decrease. Ideally,’' the bridge output voltage

for a velocity sensor should remain constant for a constant

velocity if the ambient temperature changes. The constant
overheat mode over-compensates but seems to approach the
ideal compensation to a greater degree of accuracy than the
constant difference mode. Both of these operating modes are
found to be independent of fluid velocity and initial over-
heat ratio.

If the bridge output is forced to remain constant at a
given velocity, i.e., the third mode of operation described
above, the variation in the overheat ratio and resistance
difference can be determined as shown in Figure 84. The
resistance difference has to increase substantially while
the overheat ratio must drop slightly as the temperature in-

creases in order to achieve ideal compensation. This tends

to suggest that compensation using a constant overheat mode

would give better results as compared to the constant
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difference mode, a result which is in agreement with Fig-
ure 83. Each of these cases, normalized in the proper way,
is independent of flu%@ velocity and initial overheat ratio.

The variation of the function Tt with ambient tempera-
ture is shown in Figure 85. Use of this figure permits the
evaluation of the coefficient m, discussed in Appendix A,
which is needed for the approximate estimate of the errors
of the compensating circuits. The linear variation of =t
with temperature substantiates the assumptions made in
Appendix A.

The hot-wire used in these measurements was calibrated

for velocity over a range of overheat ratios and ambient

temperatures. The summary of the results is shown in Fig- #

ure 86. Both of the coefficients A' and B' are found to be

dependent on the ambient temperature and initial overheat

ratio. A' increases with temperature and with overheat

ratio while the coefficient B' decreased with overheat

ratio and with ambient temperature. The exponent n was %;
found to be the least sensitive to temperature, varying only
within 4% of its mean value for all cases.

The parameters A and B in King's Law can be extracted
from these results with the aid of Equation (II-19). The
calculated values are plotted in Figure 87. The curves in-
dicate that the coefficient A has a slight temperature de-
pendence while the coefficient B remains almost the same for
all cases.

The analysis of the constant output voltage mode in
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Chapter II was based upon the assumption that the parameters
in King's law, i.e., A, B and n, are independent of temper-

ature. Based on Figures 83 and 87 one can conclude that the

variation in B and n may be neglected. However, the tem-
perature dependence of A will introduce a small error in

the resistances computed for proper compensation. The mag-
nitude of this error'can be calculated from the experimental

data.
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YAW CALIBRATION RESULTS FROM HOT-FILMS

IN WATER

Initial work on the present yaw relation was done at
I.I.T. by F. A. Roberts [23] wusing hot-films in water in
an attempt to explain some of the trends shown in Fig-

ure 88. Data presented by Friehe and Schwarz [22] has been

reproduced in this figure using their method of presenta-
tion. The data indicates that hot-films, which have small
£/d's, seem to deviate less from the cosine law as compared
to: the hot-wires which have much larger £/d's. Although
for each of the films or the wires increasing £/d decreases

the deviation from the cosine relation, the behavior of the

data in Figure 88 remained unexplained after the studies of
Friehe and Schwarz [22] and of Roberts [23].
The summary of Roberts' data is presented in this ap-

pendix and in Figures 72 through 75 since his original

work is not readily available to the reader. His data, for
a hot-film with £/4=18, are plotted in a similar fashion to
those of Friehe and Schwarz in Figure 89. The Reynolds
number dependence of the best fit yaw coefficients (in the

least squares sense) as determined from the present rela-

tion demonstrates the importance of studying yaw rela-

tions over a range of Reynolds numbers. To date we have

not been able to find many such studies in the literature.
Contours in the b-m plane of constant standard de-

viation of the data from the present relation are shown in
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Figures 90 through 92 for the same sensor. It should be
noted here that the definition of o' differs from that of
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