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INTRODUCTION

The direct application of the finite element method to crack
problems was studied by a number of investigators [1-3]. No special
attention was given to the singular nature of stress and strain of a
crack tip. Because of the large strain gradients in the vicinity of a
crack tip, it requires the use of an extremely fine element grid near
the crack tip. By comparing the finite element result of displacement
components or stress components at a nodal point with the corresponding
asymptotic result of displacement or stress components at that node, the
stress intensity factor can be estimated. The estimated values of a
stress intensity factor vary over a considerable range, depending on
which node is taken for computation. This results in poor estimates if
displacements are taken at nodal points either very close to or far
away from the crack tip.

An improved finite element technique was developed by Wilson [4].
It combined the asymbtotic expansion of displacements in a small
circular core region surrounding a crack tip and the finite element

approximation outside a polygon approximating the circular arc of the

Tswedlow, J. L., Williams, M. L., and Yang, W. H., "Elasto-Plastic
Stresses and Strains in Cracked Plates," Proceedings First International
Conference on Fracture, 1, p. 259, 1966.

2Kobayashi, A. S., Maiden, D. E. and Simon, B. J., "Application of the
Method of Finite Element Analysis to Two-Dimensional Problems in
Fracture Mechanics," ASME 69-WA/PVP-12 (1969).

3Chan, S. K., Tuba, I. S. and Wilson, W. K., "On Finite Element Method

in Linear Fracture Mechanics," Engineering Fracture Mechanics, 2, p. 1,
1970.

4W1'1son, W. K., "Combined Mode Fracture Mechanics," Ph.D. Dissertation,
University of Pittsburgh, 1969.



core region. The displacement fields obtained from these two approx-
imations are not, in general, continuous along the asymptotic expansion-
finite element interface except at discrete nodal points.

An alternative finite element approach to crack problems is the
use of special elements in the region of the crack tip, e.g. [5-7].

In [5], Tracey employs quadrilateral isoparametric elements which
become triangular around the crack tip. The displacement functions of
the two types of elements are selected such that displacements are
continuous everywhere, and the near tip displacements are proportional
to the square root of the distance from the crack tip.

Henshell and Shaw [8] and Barsoum [9] showed that special crack
tip elements were unnecessary. For two-dimensional 8-node quadrilateral
elements, the inverse square root singularity of the strain field at
the crack tip is obtained by collapsing quadrilateral elements into

triangular elements and placing the mid-side nodes at quarter points

5Tracey, D. M., "Finite Elements for Determination of Crack Tip Elastic
Stress Intensity Factors," Engineering Fracture Mechanics, Vol. 3, 1971.

6B1ackburn, W. S., “"Calculation of Stress Intensity Factors at Crack
Tips Using Special Finite Elements," The Mathematics of Finite Elements
and Applications, Brunel University, 1973.

7Benz1ey, S. E. and Beisinger, A. E., "Chiles - A Finite Element Computer
Program that Calculates the Intensities of Linear Elastic Singularities,”
Sandia Laboratories, Technical Report SLA-73-0894, 1973.

8Henshell, R. D., and Shaw, K. G., "Crack Tip Finite Elements Are
Unnecessary," International Journal for Numerica™ Methods in Engineering,
Vol. 10, 1975.

9Barsoum, R. S., "On the Use of Isoparametric Finite Elements in Linear
Fracture Mechanics," International Journal for Numerical Methods in
Engineering, Vol. 10, 1976.



from the tip. The quarter-point quadratic isoparametric elements, as
singular elements for crack problems, have been implemented in NASTRAN
by Hussain et al [10].

In order to reduce the computer core requirement and to simplify
the modeling of a structure, better known but lower order finite
elements have been abandoned in favor of cubic 12-node, isoparametric,
quadrilateral elements as described by Zienkiewicz [11]. In this paper,
the concept of quarter-point, quadratic, isoparametric elements is
extended to 12-node cubic isoparametric elements. The correct order of
strain singularity at the crack tip is achieved in a simple manner by
collapsing the quadrilateral elements into triangular elements and by
placing the two middle nodes of a side at 1/9 and 4/9 of the length of
the side from the tip. The 12-node, isoparametric elements have been
implemented in NASTRAN. Both mode I and mixed mode crack problems are
computed by NASTRAN using the collapsed elements to assess the accuracy.
The stability of resﬁ]ts is discussed when the collapsed triangular
elements are used.

THE 12-NODE QUADRILATERAL ISOPARAMETRIC ELEMENT

A typical 12-node, quadrilateral element in Cartesian coordinates
(xsy) which is mapped to a square in the curvilinear space (£,n) with
vertices at (£ 1, + 1) is shown in Figure 1. The assumption for

displacement components takes the form:

10Hyssain, M. A., Lorensen, W. E., and Pflegl, G., "The Quarter-Point
Quadratic Isoparametric Element As a Singular Element for Crack
Problems," NASA TM-X-3428, 1976, p. 419.

117ienkiewicz, 0. 0., The Finite Element Method in Engineering Science,
McGraw Hi11, London, 1971.
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where u,v are x,y components of displacement of a point whose natural

coordinates are &,n; ujsV; are displacement components of node i and

i
Ni(E,n) is the shape function which is given by [11]

Ny (&) = 255 (1 + 82)(1 + mg)[-10 + 9(&2 + 12)1[-10 + 9(&F + n?)]

81
* 256 (1 + 85) (1 + 9mn)(3 - n*) (1 - nf)

+ Bl (14 ) (1 + 985)(1 - €2)(1 - £2) (2)

for node i whose Cartesian and curvilinear coordinates are (xj5¥;) and
(£5.n;) respectively. The details of the shape functions and the
numbering sequence are given in Figure 1.

The same shape functions are used for the transformation of

coordinates, hence the name isoparametric,

x
I

12
= z Ni(E,n)Xi
i=1
(3)

<
0}
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Ni(E,n)yi
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HZienkiewicz, 0.0., The Finite Element Method in Engineering Science,
McGraw Hill, London, 1971.




The element stiffness matrix is found in the wusual way and is
given by [9,10]
1 1
-
(K] = I] I] [B]'[DI[B] det |J|dEdn (4)

where [B] is a matrix relating joint displacements to strain field

aN;
B E
X
[8] = [...Bj....1 B,1=] o M (5a)
oy
L oy X

and [D] is the material stiffness matrix and is given for the case of

plane stress by _ =
1 v 0
[D] = —E& vl 0 (5b)
- '| - \)2
0 0 (1-v)/2

in which E is Young's modulus and v is Poisson's ratio.

The Jacobian matrix [J] is given by

9Barsoum, R. S., "On the Use of Isoperametric Finite Elements in Linear
Fracture Mechanics," International Journal for Numerical Methods in
Engineering, Vol. 10, 1976.

]OHussain, M. A., Lorensen, W. E., and Pflegl, G., "The Quarter-Point
Quadratic Isoparametric Element as a Singular Element for Crack
Problems," NASA TM-X-3428, 1976, p. 419.



B 7] — B m
X 3y eee ON; ...
9f 9% T g
LJ] = = Xy oy (6)
ox 9y eeo ON5 ... e
on 9n an n &
L 4 L i e )

whenever the determinant of [J] is zero, the stresses and strains become

singular [8-10]. The derivatives of shape functions are

aNs _ 1
—ially = 756 (1 & g [=N0] = 9i(ER + n%)](_]ogi +18E + 27g58% + 981n2)
81 , ,
+ 255 £4(1 + 9y (1 - n*)(1 - nf)
+gmg (14 mg) (1 - £3)(9g - 26 - 27g;¢%) (7a)
A | |
oo~z (1 &gl-10 9(g2 + n2)1(-10n; + 18n + 27nin® + 9n;E?)
, 8 , .
256 1 (1 + %880 (1 - €201 - &)
+ oo (14 £85)(1 = n)(9ny - 2n - 27nyn?) (7b)

THE CRACK TIP ELEMENT

In an 8-node quadratic isoparametric element, Henshell and Shaw [8]
and Barsoum [9] found independently that the strain became singular at

the corner node if the mid-side nodes were placed at the quarter points

8HensheH, R. D., and Shaw, K. G., "Crack Tip Finite Elements Are
Unnecessary," International Journal for Numerical Methods in
Engineering, Vol. 9, 1975.

9Barsoum, R. S., "On the Use of Isoparametric Finite Elements in Linear
Fracture Mechanics," International Journal for Numerical Methods in
Engineering, Vol. 10, 1976.

10Hussain, M. A., Lorensen, W. E., and Pflegl, G., "The Quarter-Point

Quadratic Isoparametric Element as a Singular Element for Crack
Problems," NASA TM-X-3428, 1976, p. 419.
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of the sides from the corner node. This singularity is achieved in a
similar way for a 12-node isoparametric element by placing the two
middle nodes at the 1/9 and 4/9 of the length of the sides from the
common node of two sides.

For simplicity, let us consider the singularity along the side

n = -1 of Figure 1. In general, the cubic mapping functions are

2 3
X = ay+ agE + aE? + agt (8)

2 2
bo + b]5 + byE? + bk (9)

u

For £ = -1, -1/3, 1/3 and 1, the corresponding values of x and u

are
x =0, al, BL, &
u = ugs uz, Uss Uy
The constants a's and b's in terms of these values of x and u are
a, = 2= (-1 + 9a + 9g) a2 (-1 - 270 + 278)
0~ 76 \~ a B) » a1 =7g a B
(10)
=== (1 -2&1+3 3
3, =75 (1 -a-8) , az=3¢ (1 + 30 - 38)

- ._.] - 4 + - = ._.] - 27 27 -

= 9 - - =L T -
by = 5 (Uy = Uy = ug + uy) s by = g5 (-uy + 3uy - 3ug + uy)

To have singular strain at x = 0 (£ = -1), the reduced Jacobian, %g ,

must vanish at £ = =1. From (8) we have

dx - 2
=g 2a,€ + 3a5E (12)



For £ = -1, %%-= 0 leads to the equation

B=2a+% (13)

In order to have the inverse square root singularity for %% s

du _ du dg _ 2y/dx
e (by + 2byE + 3bsE )/dE

x must be a quadratic function of £ so that the inverse gives £ as a
function of xZ%. This leads to azg = 0or

1+3-38=0 (14)
The solution of (13) and (14) gives

a=1/9 and B = 4/9 (15)
Equations (8) and (9) become
x=%(1+£)2 or g=-1+2j§ (16)
u = u f %-(-11u] + 18uy - Gug + 2u4)j%:+-% (2u] - Su, + duy - u4)~%
+ %—(-u] * 3uy - 3uy t u4)(%)3/2 (17)
From (17) it dis clear %&-has singularity of the order i-at x = 0.

The inverse square root singularity at x = 0 along any other ray
emanating from node 1 can be achieved by degenerating the quadrilateral
element into a triangular element with the side 10, 11, 12, 1 collapsed
to a point at the crack tip and placing grid points 2, 9 at 2/9 and 3,

8 at 42/9 from the tip (Figure 2), where % is the length of the sides
corresponding to n = + 1. The Cartesian coordinates of nodal points are

shown in Figure 2. Using (3),



Wl o=

X (.I + E)zf(n,daﬁ)

(18)

Yy (.I & E)zf'(naa,B)

where f and f' are abbreviations
f(n,asB) = (1 - n)cosp + (1 + n)cosa
f'(n,asB) = (1 - n)sing + (1 + n)sina

The Jacobian matrix is given by

x T & 2 ~

. e 1 (1 + £)f(n,a,B) 3 (1 + £)f' (n,a,B)

J = =
X 3y % (1 + £)%(cosa - cosB) £ (1 + &)2(sina - sinB)
an on 8 8

and the determinant

9] = %—2 (1 + £)in(a - 8) (19)

This shows the strain is singular at x = 0 (¢ = -1) along any ray from
x = 0 since |d] = 0 at £ = -1 for all n.

For the inverse functions, we have

3 9 2(sino_-_sing) -2(cosa - cosB)
[ ]_1 ax  Ax (1T + g)sin{a - 8) 2(1 + &)sin(a - B) -
J = =
_a_g. aj. '4fl(naa38) 4f(n30"a8)
dy dy (T + g)2zsin(a - B) 2(T + £)2sin(a - B)
In terms of polar coordinates (r,8) we have from (18)
1+g£=2/R , R=(r/2)cos(o - g§§)/cos(g%§) -

n = tan(e - g%—@-)/tan(ggﬁ-)



The displacements components u,v at a point (£,n) of the trian-

gular element of Figure 2 are

12
iz] Ni(gan)ui 5 Ao(n,ui) + A](naui)(] +E) \

o=
+ Ay(nup) (1 + £)2 + Ag(n,u))(1 + )3
12 ; (22)
v = '21 Ni(E,n)vi = Ao(naVi) + A](ﬂsVi)(] + E)
'I:
+ Ry(nyv) (1 + £)2 + Agln,vy)(1 + €)° /

where

Ag(nsuz) = {2(-1 + 9n?)[(1 - nduy + (1 + n)uyq]

+ ]8(1 = nz)[(] + 3T])u-|-| + (] - 3T])U'|2]}/32 (23)
The displacement derivatives are
BB BE,udn . 1 -4f'(n,e.8) 0

ox  9E ox onmoax (1 +&)2 gsin(a - B) on

R 2 . . \ 8h1
* U T wein(e - B){(smon - sinB)Ay - 2f'(n,0,8) 51 + ... (24)
oA
Bu _ 3u 3E . du 3n _ 1 4f(n,a,8) °70
3y 9t a9y oanay (1 +&)% gsin(a - B) on
1 2 £~ e+ 28(mos )]y
-{cosa - coOS + 2 »0sB)—} + ... (25
(1 +£) ssin(a - B) e BIF ek an (25)
where
3An(n,us
20(n:41) . (2 + 36n - 54n?)uy - (2 - 36n - San)u
on 10
+18(3 - 2n - 9n?)uyq - 18(3 + 2n - 9n?)uy,}/32 (26)

Similar expressions for 3v/3x and 3v/dy can be obtained by replacing

uj with v,.

10



It can be seen that the strain field is singu]ér at r = 0. The
order of singularity is (1/r). The leading term vanishes together with
dAg/on for all n if

V., = V.. S V.. =V (27)

In this case, the order of singularity becomes (1//r). This is analo-
gous to the constraints given in [12] for quadratic, isoparametric
elements. Hence we have two types of strain singularity at our
disposition. If nodes 1, 10, 11, 12, which are collapsed into one
point at the crack tip (Fig. 2), are tied together during deformation,
the elastic singularity is obtained. If these nodes are allowed to
slide with respect to each other, then the strain singularity is of the
order of (1/r), the perfect plastic singularity.

Using the multiple constraint conditions, equations (27), the
displacement components at (&,n) relative to the tip may be written in
the form

u ='%§ VRL36F  (n,u;) + F3(nsu;) + 36{Fp(n,u;) - Fy(n,uj) IR

- 36F5(n,u; )R] - (28)

= ]_]6' /E[36F](T1,V1) - F3(T1,V1-) % 35{F2(H,V1) = F](T\,V1)}/§ ‘

<
|

- 36F5(n,v;)R] (29)

1



where

Fi(nsug) = (1 - n)(2up - ug) + (1 + n)(2ug - ug)

Falnsug) = (1 - n)(-3up + 3ug - uy) + (1 + n)(-3ug + 3ug - u7)>

) (30)
F3(nsu-i) = 9(.I - n )[(] = 3n)u5 + (] + 3n)u5]

- (1 - 90 - nJuy + (1 + n)uyl ’

and F](n,vi) etc. are obtained by replacing uj with v;.

DETERMINATION OF STRESS INTENSITY FACTORS

The collapsed, triangular elements around the crack tip have the
correct elastic singularity at the tip if all nodes at the tip are tied
together during deformation. Only one set of displacement functions is
used for regular quadrilateral elements and the collapsed triangular
elements. Hence the continuity of displacement components is insured
throughout the region. The nodal displacements obtained from the finite
element method using higher order polynomials for the displacement field
should be quite accurate. In this section, we will briefly discuss
various techniques to estimate the stress intensity factors from the
nodal displacements thus obtained. The discussion is limited to the
use of nodal displacements. Other techniques, such as J-integral, the
strain energy release rate etc. are not included.

The well known classical near crack tip displacements are given

by [13]

]3Ni11iams, M. L., "On the Stress Distribution at the Base of a
Stationary Crack," Journal of Applied Mechanics, Vol. 24, 1957.

12



n-1 n-1/2
2Gu(e) = B (-1 r [d Du](n,e) +a

A ,0
n=1,2,... 2n-1 n-1 “](n i

2

nn
+ (-1) r [d2nDu n,8) + a

) oo (158)1} (31)

n-1 n-1/2
2Gv(e) = i {(-1) r [d D (n,8) +a A (n,8)]
n=1,2,... 2n-1 vl 2n-1 vi

$ (1) rld D (n6) +a A (no)]) (32)
2n v2 2n y2

where

Du1(n’e) = (n - 1/2)cos(n - gde -{c+n - %)cos(n - %ge \
Duz(n,e) = ncos(n - 2)6 - (k + n + 1)cosné

Au1(n,e) = (n - 1/2)sin(n - g)e - (k +n+ 1/2)sin(n - 1/2)6
Auz(n,e) = nsin(n - 2)6 - (« + n - 1)sine (33)

Dv](n,e) = -(n - 1/2)sin(n - gﬁe -(k-n+ %ﬁsin(n - %ﬁe
sz(n,e) = -nsin(n - 2)6 - (¢ - n - 1)sin né

A (n,8) = (n - F)cos(n - )6 + (x - n - 1/2)cos(n - 1/2)8

sz(n,e) = ncos(n - 2)8 + (k - n + 1)cos no /
in which
(3 -v)/(1 +v) for plane stress
S (34)
3 -4y for plane strain

13



The coefficients d's and a's are to be determined from the boundary
conditions of a problem. The stress intensity factors K] and K2 are
related to dy and a; by

K] = -d]/§F s K, = -a]/?ﬁ (35)

2

In (31) and (32),u and v are displacement components referring to
the local Cartesian coordinates with crack tip as the origin and the
crack on the negative x-axis. A simple transformation can be used to
change the nodal displacements in global coordinates, obtained from
the finite element method, to displacements in local coordinates. For
simplicity, we will assume the Tocal coordinates and the global coor-
dinates are the same.

1. One Term Expansion:

If we retain only the /r term and drop all higher order terms
in the right hand sides of (31) and (32), we shall obtain a set of d;
and a; by substituting the displacement components of a nodal point
into the left hand sides of (31) and (32). Numerical results thus
obtained for K; and K, vary considerably depending on the Tocations of
nodal points and the values of displacement components used. From
(28) and (29), the displacement components of a collapsed triangular

]/2, r and r3/2.

1/2

element are functions of r If u* and v* designate the

leading portion of displacements (r term only) in (28) and (29),

we have specifica11y

14



: 172
) =g (v

(r/z)]/2(18u9 - 9u8 + 2u7)

(18u2 - 9ug + 2u4)

| =
*

—~

3
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[ o
*

—

3
0]

1) =
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and similar expressions for v* (replacing u by v). The stress
intensity factors obtained from (35) with dy and a, computed from
(31) and (32) using u*, v* on the left hand sides and using only the
/r term in the right hand sides, are independent of r. The use of
the leading portion of displacements u* or v* on the left hand sides
of (31) and (32) is suggested by Tracey [14] and discussed by
Barsoum [15]. For a mode I (or mode II) crack, all a's (or d's) of
(31) and (32) vanish. The stress intensity factor Ky (or K2) can be
obtained by either (31) or (32).

2. Two-Term Expansion:

In (31) and (32), if r]/z and r terms are considered, we have
four unknown constants d], ays d2, a, to be determined. Four displace-
ment components of any two nodal points should suffice to compute K]
and K,. In practice, we use either the pair of nodes (2,9) or (3,8)
of Figure 2. Two nodes of different r such as (2,3) or (8,9) usually
give poorer results. On the left hand side of (28) and (29), we may
use actual nodal displacements (u2,v2), (ug,vg) or we may use (up**,
v2**) and (u9**,v9**) where u2** is the part of u, corresponding to

r]/z and r terms in (28). Forn = % 1

]4Tracey, D. M., "Discussion of 'On the Use of Isoparametric Finite
Elements in Linear Fracture Mechanics' by R. S. Barsoum," Int.
Journal for Numerical Methods in Engineering, Vol. 11, 1977.

15Barsoum, R. S., "Author's Reply to the Discussion by Tracey," Int.
Journal for Numerical Methods in Engineering, Vol. 11, 1977.
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wrr(n = 1) = % (r/2) /2180, - uy + 2u,) - 3 (r/2)(5uy = dug + u,)

u**(n 1/2

1) = % (r/2) " "(18ug - ug + 2u;) - % (Y‘/Q')(5U9 - Aug + u7)

(37)

For a mode I crack, both ay and 3, vanish. Only two displacement
components of a node are needed to determine d1 and d2. Any of the
following pairs may be used for this purpose: (u2,v2), (u3,v3), (ug,
Vg)a (u8sv8)-

3. Four Term Expansion:

If we take r1/2 up to r? terms in (31) and (32), the eight
constants di and ajs i=1, 2, 3, 4 are to be determined from displace-
ment components of four nodal points. We may take two mid-nodes (%/9
and 48/9 from the tip) of the two sides of a collapsed triangular
element as the four nodal points, or we may take four consecutive
nodes of.the same radius from the tip (r = 2/9 or r = 42/9). For the
three collapsed triangular elements around a mode I crack shown in
Figure 5(a), displacement components are taken from one of the
following three groups: (i) nodes 11, 12, 13, 14; (ii) nodes 15, 16,
17, 18; (iii) nodes 11, 12, 15, 16 of the element (1), nodes 12, 13,
16, 17 of the element (2) and nodes 13, 14, 17, 18 of the element (3).
4, Collocation Method:

Let ug, vg be displacements from the asymptotic expansions (31)
and (32) and let Ug and v, be displacements from finite elements given

by (28) and (29). For an arbitrarily fixed r, we define

16
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i

o~

g (87) = ug(87)1% + [vg(65) - Vi (0)1) (38)

The unknown coefficients d's and a's in (31) and (32) are the set

which minimizes €. In other words, d's and a's are solutions of
0E  _

3d; - 0

J (39)

s O
2

where n = 2p, p is the highest exponent of r in the asymptotic

expansion.

NASTRAN IMPLEMENTATION

The NASTRAN implementation of the 12-node quadrilateral follows
that of the 8-node quadrilateral as described in [10]. The dummy
users element facility of NASTRAN is used. This requires coding
routines to calculate element stiffness matrices and stress recovery
computations. Modifications to existing NASTRAN source codes are
made to provide proper output formats for the element. Three-point
Gaussian quadrature is normally used to calculate each partial
integration of the double integral (4). As an option a four-point
Gaussian quadrature may be used instead. Al1 stiffness computations
are performed in double precision while stress recovery is performed
in single precision. Element stiffness matrix computation requires
10 seconds/element on an IBM 360/44. Stress intensity factors are

calculated from nodal displacements by various techniques. Equations

10Hussain, M. A., Lorensen, W. E., and Pflegl, G., "The Quarter-Point
Quadratic Isoparametric Element As a Singular Element for Crack
Problems," NASA TM-X-3428, 1976, p. 419.
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(40) are finally adopted to compute stress intensity factors for
mode I, mode II and mixed mode cracks.

NUMERICAL RESULTS

Computer program APES [16] utilizes the same 12-node quadrilateral
isoparametric elements shown in Figure 1. The high order element
greatly reduces the total number of elements as well as nodal points
needed to model either elasticity or fracture problems. The program
has been designed primarily for user convenience. There are many
convenient features such as the automatic generation of middle nodes
of a side which is a straight line, and the automatic computation of
nodal force for a given distributed and/or concentrated tractions.

However, APES requires the use of special crack tip elements for
fracture problems. There are two different types of crack tip elements
used in APES. One is a small circular core element which completely
encloses a crack tip and which reproduces the singular nature of the
strains there. The other consists of several "enriched" 12-node
elements around a crack tip all having a corner node corresponding to
the tip. In an enriched element, the displacement assumption 1is
augmented by the leading terms of the singular near field solution
(an extension of the work of Benzley and Beisinger [7]). Both models
lead to about the same high degree of accuracy in stress intensity

factors K] and K2'

’Benzley, S. E. and Beisinger, A. E., "Chiles - A Finite Element
Computer Program That Calculates the Intensities of Linear Elastic
Singularities," Sandia Laboratories, Technical Report SLA-73-0894, 1973.

]6Gifford, L. N., "Apes - Second Generation Two-Dimensional Fracture
Mechanics and Stress Analysis by Finite Elements," Naval Ship Research
and Development Center, Report 4799, December 1975.
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In this report, we have used the collapsed triangular elements to
eliminate the use of these special crack tip elements. The same
displacement functions are used for quadrilateral elements and trian-
gular elements, and there is no question regarding the continuity of
displacement between the special crack tip elements and conventional
QUAD-12 elements. There is no need for the use of 8 x 8 Gaussian
quadrature for numerical integration of element stiffness matrix as is
required for the enriched QUAD-12 elements. From the numerical results,
the collapsed triangular elements as singular crack tip elements will
be assessed.

Three mode I crack problems and one mixed mode crack problem are
chosen for numerical computation of stress intensity factors. The
geometries and loads of mode I tension test specimens are given in
Figure 3. The idealization of a half of the single edge crack is
shown in Figure 4. Similar idealization is used also for a quadrant
of a center crack or a double edge crack. Three collapsed triangular
elements surrounding a mode I crack tip are shown in Figure 5(a). The
same idealization is used for NASTRAN and APES (with collapsed trian-
gular elements). For comparison, a circular core with 10-core nodes
around the crack tip is also used in APES and is shown in Figure 5(b).
Around a mixed mode crack tip, six collapsed triangular elements,
shown in Figure 6(a), are used and the corresponding singular 'core’
element surrounded by six QUAD-12 elements are shown in Figure 6(b).

A 45° slant edge crack, in a rectangular panel under tension, is taken

as an example of mixed mode cracks and is shown in Figure 7. The
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sixteen-element idealization of the cracked panel is also shown in the
same figure, and the six elements around the crack tip are enlarged
and shown in Figure 6.

Our first goal in the numerical analysis is to find a simple and
accurate way to estimate the stress intensity factor from nodal
displacements obtained from the finite element method. For the
purpose of comparison, stress intensity factors obtained from the
finite element method are normalized by corresponding values which are
considered a. exact. Referring to Figure 3, K1 = 1,966 [17] is taken
as exact for the central crack and Ky = 2.00 [18] for the double edge
crack. For the single edge crack Ky = 3.728 for a/b = 0.4, H/b = 4
and K; = 5.009 for a/b = 0.5, H/b = 3 (first F(a/b) on page 2.11 of
[19]). Normalized strec . intensity factors for the three mode I crack
specimens are computed ~y APES, using singular 'core' elemei.t with
10-core nodes, Figure 5(b). Results are tabulated in Table 1 for

h/r_ = 6 and e, = 0.01, 0.02 and 0.03. The overall results are better

0
for ro/a = 0.01. Here and in tables 1 through 8, rg = 0.01, 0.015,...
should be understood as ry/a = 0.01, 0.015,... since a = 1 is used for

all mode I crack examples.

171sida, M., "Analysis of Stress Intensity Factors for the Tension
of a Centrally Cracked Strip with Stiffened Edges," Engineering
Fracture Mechanics, Vol. 5, 1973.

18Brown, W. F., and Srawley, J. E., "Plane Strain Crack Toughness
Testing of High Strength Metallic Materials," ASTM STP-410, 1966.

19Tada, H., Paris, P., and Irwin, G., The Stress Analysis of Cracks
Handbook, Del Research Corp., 1973.
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TABLE 1. RATIOS OF Ky (APES) TO Ky (EXACT)

ro = 0.01 {r, = 0.02 [r, = 0.03
Center crack (exact Ky = 1.966) 0.996 0.976 0.969
Double edge crack (exact Ky = 2.00) | 1.001 0.993 0.989
Single edge crack (exact K1 = 5,009)] 0.974 0.964 0.966

Replacing the special core element and the regular 12-node, quad-
rilateral elements surrounding the core with collapsed triangular
elements, we can use the APES program for general structures (no cracks)
to obtain displacement components at all nodes. Stress intensity
factors are then obtained from displacements at nodes close to the
crack tip by various techniques mentioned previously. If only one
term expansion is used, the ratios of Ky (Finite Element) to Kq (Exact)
for the three tension test specimens are given in Tables 2-4. The use
of v* (leading term of v) does not always give better results (e.qg.
Table 4). Using two term expansion, the same ratios are given in
Tables 5-7. The results from two term expansion show little improve-
ment. Similar results using four term expansion are tabulated in
Table 8. The values in the last column of Table 8 are the linear
average of three values of Ky obtained from three different elements.
Careful study of results tabulated in Tables 2 through 8 reveals that
one term expansion using v at node 14 or 18, Figure 5(a), with g =
1% - 2% of the crack length is the simplest way to estimate Ky and
K1 thus obtained is quite accurate. This technique is adopted in our

NASTRAN to compute Kj.
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The collocation method requires the computation of displacements
along r=r, at points between nodes. For the single edge tension
specimen with a/b=0.5, H/b=3.0, the numerical results obtained from
the collocation method are given in Table 9. It can be seen that
values of K] remain nearly a constant no matter how many terms or how
many mid-points are taken. Because of more computations involved and
since as good or even better results can be obtained by other simpler

methods, the collocation method has not been pursued further.

TABLE 9. K, (FINITE ELEMENT) FOR SINGLE EDGE CRACK USING

COLLOCATION METHOD. NODAL DISPLACEMENTS OBTAINED FROM APES

WITH 3-COLLAPSED TRIANGULAR ELEMENTS. COLLOCATION POINTS
ARE EQUALLY SPACED ON r=0.01

No. of Mid=Points Four-Term Expansion Eight-Term Expansion
Between Nodes General |Mode I (a's=0) General | Mode I(a;=0

0 4.90392 4.85093

2 4.82446 4.82966

8

5 4.82815 4.83417 4.81972 | 4.82762

9 4.82753 4.83352

11 4.82743 4.83337

14 4.82737 4.83322

19 4.82734 4.83309

Our second goal in the numerical computation is to assess the
accuracy of NASTRAN in linear fracture, using 12-node, isoparametric

elements with collapsed triangular elements around a crack tip and to

examine the effect of multiple constraints. Normalized stress intensity

factors thus obtained are given in Table 10. It indicates a high degree
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of accuracy, and the effect of multiple constraints is insignificant.
The multiple constraints tend to increase the stress intensity factors
sTightly. In Table 10, by "No" multiple constraint we mean nodes 2 to
10, Figure 5(a), are free to move in both the local x- and y-directions
with respect to node 1, and node 1 has no displacement in the local
y-direction due to the symmetry of the problem (mode I crack). The
column "Yes" gives results obtained by assuming Vi = Vp =ttt Vg S 0

and uy = = Uyp-

TABLE 10. K, (NASTRAN)/K1 (EXACT)

Uz

ro/a 0.01 0.015 0.02

Multiple Constraint No Yes No Yes No Yes

Center Crack
a/b=0.4, H/b=4.0 0.981 1.013 | 0.982 | 0.999 | 0.983 | 0.994
Exact K1=1.966

Double Edge Crack
a/b=0.4, H/b=4.0 1.000 | 1.021 | 0.998 | 1.007 | 0.999 | 1.002
Exact Ky=2.00

Single Edge Crack

a/b=0.4, H/b=4.0 0.980 | 1.003 | 0.980 | 0.991 | 0.982 | 0.988
Exact K{=3.728

Another goal in the numerical computation is to compare results
using the concept of‘c011apsed triangular elements in APES with results
of APES with singular 'core' element around the crack tip. Ratios of
Ky (APES) to K1 (EXACT) are given in Table 11 for the tension test

specimens with ro/a = 0.01. Results in the first column of Table 11
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are obtained by using three collapsed triangular €lements around the
crack tip where nodes 1 to 10, Figure 5(a), coincide. A1l vertical
displacements of nodes 1 to 10 are assumed to vanish while they are
free to slide with respect to one another in the x-direction. Results
in the second column are computed by using a singular 'core' element
surrounded by three quadrilateral elements as shown in Figure 5(b)
with h/ro = 6. Table 11 shows values of stress intensity factors,
obtained by collapsed triangular element, are as accurate as those

obtained by using singular 'core' element.

TABLE 11. Ky (APES)/K] (EXACT)

Collapsed Triangular Singular "“Core"
Elements, Fig. 5(a) | Elements, Fig. 5(b)

Center Crack
a/b=0.4, H/b=4.0 0.998 0.996
Exact K1=1.966

Double Edge Crack
a/b=0.4, H/b=4.0 1.005 1.011
Exact K]=2.00

Single Edge Crack 3 -
a/b=0.5, H/b=3.0 0.972 0.974
Exact K]=5.009 :

In NASTRAN, it is the user's choice to apply the multiple constraint
conditions, equations (27), at the crack tip. But in APES, it is not
yet available for the application of multiple constraints. Since the
~ effect of multiple constraints is so small, Table 10, that results |
from APES with collapsed triangular elements are considered correct

even if the multiple constraint conditions (27) are not satisfied.
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For the integration of the element stiffness matrices, a 3 X 3

Gaussian quadrature is used in all NASTRAN results in this report while

a 4 x 4 Gaussian quadrature is used in APES.

For a mixed mode crack, six collapsed triangular elements shown

in Figure 6(a) are used.

An effective way to estimate the stress

intensity factors is to use v(rg,-m) for K, and u(ro,ﬂ) and U(Po,-ﬂ)

for K2.
K](“) _ V2 2G v(rg,m) ’ K](_“) ) -2 2G v(rg,-m)
/o (k1) /o (k1)
vem 2G u(ry,m) _ -
Ky (n) = 2T plew - Bl ()
/s (e+1) e (1)
K = 1 (K (m) + Ky (m)) > Ky = 1 (Ra(m) + Ky(-m)
where u(ry,m) and v(ro,w) are displacement components of node 26

relative to node 19 in the direction of parallel and normal to the
crack face; r, is the distance between nodes 26 and 19. u(r,,-m) and
v(rgs-m) are the same but of node 20 relative to node 1.

For a 45° edge crack shown in Figure 7, NASTRAN resu]fs for Ky
and K, are tabulated in Table 12 for r,/a=0.01 and for various other
conditions. Again the multiple constraint conditions, namely uy = up =
© = Upg and vy = Vp = = Vygs give Tittle effect on values of Ky
and K2. An obliqued edge crack in a rectangular panel under uniform
tension is solved by Freese using a modified mapping collocation method

[20]. K, and K,, read from Bowie's graphs (Figure 1.16a and 1.16b of
1 2

20Bowie, 0. L., "Solutions of Plane Crack Problems by Mapping Technique,"
in Mechanics of Fracture, 1, Edited by G. C. Sih, Noordhoff International
Publishing, Leyden, The Netherlands, 1973.

82



[20]), are approximately 1.86 and 0.88 respectively. Numerical results
of the same problem computed by APES, using special crack tip elements

and various idealizations, are given in Figure 12 of [16].

TABLE 12. Ky AND K, FOR 45° EDGE CRACK BY NASTRAN

B.C. Integration Multiple Constraint K Ko
1 3 x3 No 1.89 0.95
1 3x3 Yes 1.89 0.96
1 4 x 4 No 1.83 0.92
2 4 x 4 Yes 1.84 0.93

THE STABILITY OF COLLAPSED TRIANGULAR ELEMENTS

In a recent report by Hussain and Lorensen [21], it was found that
a slight perturbation in placing the mid-side node opposite to the
crack tip for a collapsed 8-node, quadrilateral element led to unstable
results in stress intensity factors. This unstability can be shown in
the collapsed 12-node, quadrilateral element if one or both middle
nodes of the side opposite to the crack tip are slightly perturbed from
their nominal positions.

Let node 5 be perturbed as shown in Figure 8. Denoting the

perturbed quantities with an asterix, we have

]GGifford, L. N., "Apes - Second Generation Two-Dimensional Fracture
Mechanics and Stress Analysis by Finite Elements," Naval Ship Research
and Development Center, Report 4799, December 1975.

20Bowie, 0. L., "Solutions of Plane Crack Problems by Mapping Technique,'
in Mechanics of Fracture, 1, Edited by G. C. Sih, Noordhoff Inter-
national Publishing, Leyden, The Netherlands, 1973.

2]Hussain, M. A. and Lorensen, W. E., "Isoparametric Elements As
Singular Elements for Crack Problems," Watervliet Arsenal Technical
Report, to be published.
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x, _ 2+ coso
x5/2 == + e

sina + g (4])

Ye/8 =

A general point (x,y) given by equation (18) will be displaced at

k/L = T (146)2[(1-n) + (Hen)cosal + & 37 (1+6) (1-n%)(1-3n) ~ (42)

L (ee)2(1m)sing + ' 55 (1)(1-n2)(1-30)  (43)

v/

Along the line n = -1/3, and replacing y* with r sing in (40), we have

—-—

sina E 3et?2

r  asing. 1/2
_ 3 1 r 4sinBsina
+ g [_ 1+ (1 + - —=—=—) :] (44)

Since (1+£) is a common factor in displacement components, equations
(28) and (29), it is seen that the singularity required, for the
crack problems disappears along at least the ray n = -1/3 in the
collapsed triangular case.

As a numerical example, the central crack tension specimen of
Figure 3(a) is again used. If the idealization remained the same as
shown in Figure 4, except that the collapsed elements of Figure 5 were
replaced by those of Figure 8(b) (where nodal points 20, 2l; 284 28z
26 and 27 are on a circular arc), the computed stress intensity factor
changed from its almost exact value Ky = 1.962 to Ky = 1.421 (nearly
30% error). If only nodal points 26 and 27 were perturbed to their
new locations in Figure 8(b), the stress intensity factor would become

Ky = 1.457 (a 26% error).
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CONCLUSIONS

By a simple manner, the 12-node isoparametric elements can be
used to form a singular element for two-dimensional, elastic, fracture
mechanics analysis. The elements have been successfully implemented
in NASTRAN, which can now be more efficiently used for more accurate
prediction of stress intensity factors of complicated crack problems.
The middle nodes of the side opposite to a crack tip in a collapsed
triangular element should be accurately located to avoid unstable
results. The extension of collapsed triangular elements as singular

elements to three-dimensional brick elements can be easily done as in

[9,10].

9Barsoum, R. S., "On the Use of Isoparametric Finite Elements in Linear
Fracture Mechanics," International Journal for Numerical Methods in
Engineering, Vol. 10, 1976.

10Hussain, M. A., Lorensen, W. E., and Pflegl, G., "The Quarter-Point
Quadratic Isoparametric Element As a Singular Element for Crack
Problems," NASA TM-X-3428, 1976, p. 419.
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Figure 2.

A Normalized Square in (£,n) Plane Mapped Into a Collapsed

Triangular Element in (x,y) Plane with the side £ = -1
Degenerated into a Point at the Crack Tip.
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Figure 4. Idealization of a Half of the Single-Edge Cracked
Tension Specimen.
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Figure 5(a).

(b).

pk I 1t 15 49

Three Collapsed Triangular Elements Surrounding
a Mode I Crack Tip.

_ Special Core Element and Three Quadrilateral

Elements Surrounding a Mode I Crack Tip.
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(D)

Figure 6(a).

().

Six Collapsed Triangular Elements Surrounding a
Mixed Mode Crack Tip.

Special Core Element and Six Quadrilateral Elements
Surrounding a Mixed Mode Crack Tip.
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(a)

| 2 3 4
(10-12)

(D)

10

Figure 8(a). Node 5 Perturbed to 5*.
(b). Nodes 20, 21, 23, 24, 26, 27 Perturbed From
Their Nominal Positions.
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