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1. Motivation

A thorough understanding of analog-to-digital coding is a first step

toward a new theory of digital control (0]. As opposed to present theories

which assume continuous control levels, a new theory of direct finite-
level digital control may lead to more efficient implementations and
better performance. Unfortunately, the mathematics of conversion of
coding continuous waveforms into finite-level waveforms (acceptable to
computers) is not well understood.

Consider a typical feedback situation illustrated in Figure 1, where
a continuous plant is controlled by a digital computer. Because the con-
tinuous waveform from the plant must be converted to digital, a ggggg is
necessary, and a decoder for digital-to-analogy conversion.

Ultimately we want to understand the interaction of continuous and
digital feedback, since new insights may be gained in the design of
digital controllers. For example, it has been shown [1] that a first-
order linear system can be stabilized by a digital system as simple as a
flip-flop. Obviously this implementation is much less costly than a
sampled-data system with a digital multiplier, which would be assumed
in present theories of feedback control.

But before systematic design procedures can be found, we must

throughly understand the interaction of digital machines with continuous

plants through the coding and decoding processes.

oo
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As a preliminary mathematical model we can assume each element on
the feedback loop can be represented as a functional mapping from the
set of all possible input waveforms to the set of all output waveforms.
In particular we are, therefore, studying a very general coder, one that
might have memory and whose output might reflect very complex properties
of the continuous input waveform.

For a meaningful theory the class of input and output waveforms and

the kind of functionals between them must be restricted to reflect the
properties of physical elements themselves. When such restrictions, or
properties are given to the systems and spaces being studied, the complex
systems can often be decomposed into simpler units and this new understand-
ing results in simplified design procedures and stronger statements about
the limitations of such systems. In the cases of continuous plants and
computer controllers, these simplifications have been made and are very
useful (Continuous system, [2] and [3]; digital [4]). Less is known

about asynchronous computer controllers [5]. But there is little known

about general ccding functionals.
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2. Problem Statement

Let D € PC(R; R") (that is, D is subset of all piecewise continuous

functions from R to Rn), and let R C PC(R; X) where x is a finite set. The

functional
s: D~->R

is a coder. S is causal if

PTfl = PTf2 implies Sf1 = sz

D = <
where fl,f2 (> and PTf f L o T

Of course many of the coding functionals which meet the above requirements
do not correspond to the physical behavior of any real device. This
suggests two problems: first, what property can be formulated which
captures the implementable of a coders; second, can this property
(perhaps strengthened) be shown to imply a canonical structure of such
coding devices. Such a decomposition might involve a continuous linear

part, a non-linear memoryless threshold, and a nonlinear digital part.

3. Summary of Present Work

We begin with an example to illustrate the difficulties in formulat-

ing a plausible realizability criterion.
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3.1 Defn. Let eo‘ R + (0,1} be defined by
0 t<o

(3] -

ot
1 £ >1

+
Let Sy : PC(R,R) * RC(R ,{0,1}) be the elementary O-threshold coder
0
defined by

S is a memoryless coder and very simple to implement, so any reason-
able class of mathematically-defined coders must include it. Obviously

linearity cannot be assumed; also, the O-threshold coder is discontinuous in

the usual sense. This is illustrated in the following example; a few
preliminary definitions will be given for completeness.

3.2 Defn. Let Y be a set and let d be a metric on YR. We write

R "
for a sequence fi e Y and erR iff for any T > 0 and any € >0 there is

+
an NeZ such that

< i > N.
d(pri’ PTf) € when i > N
+
3.3 Defn. A coder S: PC(R ,R) » PC(R,X) is 9192 continuous iff
’ +
lim fi = £ (fi € PC(R ,R))




implies lim Sfi = Sf

.

3.4 Example. Let

gty = e SOk T
1 & il

Then under most any metric d1 (for example, Lesbegue integration)

i
d1
which implies se is discontinuous since for any metric d2
0
dz(o,l) # 0
where
0 = l1lim s, £
0 i
d2 0
1l = Se lim fi [:]
0 d1

Even though se is discontinuous in the usual sense, it is still

0
reasonable to look for some kind of continuity. The idea we have pursued

is continuity in transition times. This is best illustrated by an example.

= sin(i + —i—)t i>1, t >0. The result of

3.5 Example. Let fi
passing these waveforms through sy can be determined from the zero-
0

crossing times of the input. For example,

+ 3m 6m  9m
fz(o) 5 (o, ’2"r "5! 2'---)

where f;(o) means the series of zero-crossing times made by f2 when t > 0.

——————
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A similar series could be defined on the binary output as the series
of transition times, either 1 to 0 or C to 1; obviously this series

would be the same as f;(O) and we could write

+

' = £ = (0, F &

(Sef 2 ‘—2,...)

0 2

+ . :
Letting f2(0)k be the kth element in the series, define

+ +
pytfia) = | €@, -g 0]

Looking at the transition times

+ i 27i
fi(o) = (0, ErS m,...)

+
we see they will converge under p to sin (0) = (0, m, 2m,...):

lim £, = sin t

5 i

. + +
and since (S0 fi) = fi(O),

lim S £, = S lim f,

0 00 i 00 i

which shows a limited kind of continuity of transition times in this

particular case.

There are two problems in making this idea rigorous. First, we must

be sure that the functions under question have well defined transition

sequences, not infinitely many transitions in a short period. Second,

P
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we must define a more general metric P so that a reasonable class of thresholds

are continuous . Sequences like the one illustrated in Example 3.4 should be

divergent.

1 3.6 Example

Let f(t) = 0 t <0

i s

o
It can be shown that f is C . Yet there is no first zero-crossing for

t > 0.

w

Thus C is still too large a class of functions to meet our require-

SR s

; x +
ments., We now introduce a class F + of normal functions from R to a

R ,Y
set Y, which have well defined transition times, closure under composition,

s el

3 and lead naturally to a notion of continuity which includes all thresholds.

Normality Spaces

Rk M e
sta 0l

We will first define a class of normal sets on a space X in analogy

B Ao A S PO & 4y

to a class of open sets in a topology. The idea is to then let f: x =+ Y

< e

be a normal set if the inverse image of a normal set is normal, again in i
analogy to continuity. Given a few additional properties, and by choosing i
; our class of normal sets properly, we will show a class of normal functions

: are closed under composition and have well-defined transition times.

3.7 Defn. A triple (X, px, Nx) is a normality space if

)
S — — G — -~ e e e———
> 0 s, el ipethaine




T

T ———

g .

v oom

1) Dx 1s a metric on X
il) Nx is a subset of the Borel sets generated by ox)called the set of
normal sets
iii) If A,B ¢ Nx then
a) A is bounded
b) A B, A-B¢cN
X
iv) Every bounded set in X is contained in a normal set

Note that A B is also normal.

3.8 Defn. An interval in R is a subset (a,b), (a,b), (A,b] or

{a,b] where w< a <« b < w,

0

3.9 Defn. R, * {s | s is a finite union of disjoint intervals
in R}
3.10 Prop. (R, 4, No) is a normality space if d(a,b) = la=b]|.
ek R
3.11 Defn. Let f: R » Y where Y is a narmality space. f 1is

normal iff

a) f(S) is bounded if S is bounded for any S R

0

& A nf-l('l‘) is normal.

b) For any normal T ¢ NY' AN

3.12 Prop. If R £ R 7 X are normal functions on normality

spaces R, X, then g f is normal.

Proof: From the above definition part a) is obviously satisfied.
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Let A, T be as in part b). Since A is normal, A is bounded, hence

f(A) is bounded, and there is some S ¢ NY s.t. f(A) S. Then |

anttesnetmy = A g'm aaaNet ol must
. |

be normal as required.

We can vse Prop. 3.12 to define a class of normal thresholds

W

N O 40T S LMot RIS 8 . 455 2 bt NS TP N WA 51

which are guaranteed to take normal input functions to normal output

g

functions. Once this feature is guaranteed, it is possible to define
continuity over the set of normal functions, which will be done in the

next section.

M AR A

First, suppose X is a finite set of real numbers. Let X also be a

A e
e I g e

normality space by taking every subset open and normal; let 68: R =+ X be

normal. Then the normal § threshold is the functional

" e

+ +
S PC(R , R) * PC(R , X)

where Se(f) = Gef

By Proposition 3.12 se(f) will be normal if £ is: thus any normal 6

threshold will have the desired property.

e

Proof: Immediate from Proposition 3.12.

The real power of our definitions now emerges as we show that all

i e

normal functions can be represented as in example 3.5.

3.14 Defn. Let F & be the set of all normal functions from

R ,¥Y
+ |
R to normality space Y which are right-continuous. |




-1

3.15 Proposition Let £ € F & and y € Y. Then PT f (T > 0) takes
R X
on the value y for a finite number of invervals.

proof: Since {y} is normal, so is (0,T] f_l(y).

Wwe can now proceed to define the normal inverse of a function on a

rigorous basis.

3.16 Defn. Let £ €EF _ . Let T > O be arbitrary.
Al T +
1. Define for fixed ?,fi: Y R, i>1, by

T & the left endpoint of the ith interval in

fi(y)

f_l(y)/)[O,T] if there is an ith interval
© otherwise
2. Define f.(y) = inf {fT( )}
: g L
3. The normal inverse of f is the series of functions {f;)

i=1,2,....

+
3.17 Example 1. calculate {sini(t)} . It can be checked that
sin(*) is normal and sin € F . Figure (2) shows graphically the
R ,R

normal inverse. It can be seen that
* s
sin (e} = @ if |e] >
and, for example,

atnfiey = znotd o 0 st e e 0 g v <2

Example 2. Lot sq: R' {0,1) be a square wave of period 1

(Figure 3). Then sq © F and
R, (0,1}




w) 3w

sal(0) = i+ 3
sq(t)
1 e ¢ ——0
|
|
i
1
l Pl B el L e t
o 4 { 4 3 24

p-Continuity
Armed with the normal inverse, we can now completely formalize the

idea of Example 3.5.
3.18 Defn. Let f,g € FR'Y.

p(f,q) = suprI - gzl where o~ is taken to be zero.

3.19 Proposition:p is a metric.

3,20 Proposition: Let S, be a threshold as in Corollary 3.13. Then




is pP-continuous.

Se
So we have achieved our goal of defining a notion of continuity

which includes thresholds. But is it really a useful notion? To get

a feel for p-continuity we discuss briefly some of its properties.

3.21 Proposition.

1. Let a(f,q) = [ |f - g|. Then lim £ = f if

lgn fi = f,

. PO Sl' SZ are p-continuous, so is sl'sz.
p~continuity also seems to be connected to circuit realizability, as we originally
hoped. The following examples illustrate some pP-continuous coders that

are realizable with the configuration on Figure (4): a linear, continuous

filter, thresholds, and a digital computer which feeds back to the linear

system.

3.22 Example p-continuous coders

1. 2Zero crossing detection. Let D F & be the set of all

r ,{o,1)
normal continuous functions. The zero~crossing detector flips output

whenever the input crosses through zero. Figure 5 that a simple threshold

will serve as realization.

2. Frequency coder. Note that every F + is Lesbegue integrable,
R ,R

since the inverse of any half-open interval is a finite union of intervals,




which is measurable. So we can define a frequency coder as

t
s f(t) = 6 [sin [ (£, + £(t))dt]
0 0
0
which is p-continuous. As an idealized element with which this coder

could be realized, we define the resettable integrater (Figure 6) to be

a two input system which integrates the first input and resets to zero-

state when the second input makes a transition.
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