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1. Motivation

A thorough understanding of analog-to-digital coding is a first step

toward a new theory of digital control fOJ . As opposed to present theories

which assume continuous control levels, a new theory of direct finite-

level digital control may lead to more efficient implementations and

better performance . Unfortunately , the mathematics of conversion of

coding continuous waveforms into finite-level waveforms (acceptable to

computers) is not well understood.

Consider a typical feedback situation illustrated in Figure 1, where

a continuous plant is controlled by a digital computer. Because the con-

tinuous waveform front the plant must be converted to digital, a coder is

necessary, and a decoder for digital-to-analogy conversion.

Ultimately we want to understand the interaction of continuous and

digita l f eedback , since new insights may be gained in the design of

digital controllers. For example , it has been shown 11] that a first-

order linear system can be stabilized by a digital system as simple as a

flip-flop. Obviously this implementation is much less costly than a

sampled-data system with a digital multiplier, which would be assumed

in present theories of feedback control.

But before systematic design procedures can be found, we must

throughly understand the interaction of digital machines with continuous

plants through the coding and decoding processes.

~‘8 ~~~~~~~~~~~~ •

i~~~~~
-
~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
_ _



I-.-. -—-

~~~~~~ ~~~~~ 

- • 
:~~~~~~~~~~~~

-
~~
-

~~~~
-

.~~~~~~~~
--- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

-
--

~~~~~~~~~~~~
---~~~

As a preliminary mathematical model we can assume each element on

the feedback 100p can be represented as a functional mapping from the

set of all possible input waveforms to the set of all output waveforms .

In particular we are , therefore , studying a very general coder , one that

might have memory and whose output might reflect very complex properties

of the continuous input waveform.

For a meaningful theory the class of input and output waveforms and

the kind of functionals between them must be restricted to reflect the

properties of physical elements themselves. When such restrictions, or

properties are given to the systems and spaces being studied , the complex

systems can often be decomposed into simpler units and this new understand-

ing results in simplified design procedures and stronger statements about

the limitations of such systems. In the cases of continuous plants and

computer controllers , these simplifications have been made and are very

useful (Continuous system, (2 ] and [3] ; digital [ 4 ]) .  Less is known

about asynchronous computer controllers [5L But there is little known

about general coding functionals.

I.
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2. Problem Statement

Let V C PC(R ; R5) (that is, V is subset of all piecewise continuous

functions from R to Rn), and let RC.PC(R; X) where x is a finite set. The

functional

S: V- F R

is a coder. S is causal if

~T~l 
= implies Sf

1 
= Sf 2

where f
11f2 

C V and = f t < T

0 O > T

Of course many of the coding functionals which meet the above requirements

do not correspond to the physical behavior of any real device. This

suggests two problems: first, what property can be formulated which

captures the implementable of c~ coders; second, can this property

(perhaps strengthened) be shown to imply a canonical structure of such

coding devices. Such a decomposition might involve a continuous linear

part, a non—linear memoryless threshold, and a nonlinear digital part.

3. Summary of Present Work

We begin with an example to illustrate the difficulties in formulat-

ing a plausible realizability criterion.

• 

—--- • •  - ____
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3.1 Defn . Let O
~~

: R -
~~ 

{o , i} be defined by

=

Let S0 : PC(R,R) -
~~ Rc(R~,(0,1}) be the elementary 0—threshold coder

0
defined by

S0
( f )  00 •f

S
0 

is a memoryless coder and very simple to implement , so any reason-
0

able class of mathematically-defined coders must include it. Obviously

linearity cannot be assumed ; also, the 0—threshold coder is discontinuous in

the usual sense. This is illustrated in the following example; a few

preliminary definitions will be given for completeness.

3.2 Defn. Let Y be a set and let d be a metric on We write

lim f . = f
d 

1

for a sequence f. e and fcY
1
~ if f for any T > 0 and any C >0 there is

an NCZ
+ such that

d(p
T
f.
~ 

P~f) < c when i > N.

3.3 Defn. A coder S: PC(R
+
,R) 4. PC(R,X) is 

~l~2 
continuous if f

lint f~ f (f. C PC(R’,R))
1
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implies lint Sf . • Sf
d2

3.4 Exas~ple. Let

f.(t) = ~~~~~~~ i > l

Then under most any metric d
1 

(for example, Lesbegue integration)

lim f . 0
d1 

~

which implies S~ is discontinuous since for any metric d2
0

• d 2 (0 , ])  ~ 0

where

0 = l int S f .
d2 

00 1

1 S lim f .0
0 d 

1
1

Even though S~ is discontinuous in the usual sense, it is still

reasonable to look for some kind of continuity. The idea we have pursued

is continuity in transition times. This is best illustrated by an example.

3.5 Example. Let = sin(i + 4)t i > 1, t > 0. The result of

passing these waveforms through can be determined from the zero—
0

crossing times of the input. For example,

+ 3fl 6fl 91T
f , (0) -‘ (0 , - --i, —i, -j ~~.. .)

where f (0) means the series of zero—crossing times made by f2 
when t > 0.
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A simi lar series could be defined on the binary output as the series

of transition times, either 1 to 0 or 0 to 1; obviously this series

would be the same as f (O) and we could write

- 

- 

(S 0 f 2
)~ = f (0) = (0 , ~~~~~, ~~~~~~~~~~~~~

• Letting f (0)
k 
be the kth element in the series, define

= 

k~ l 
If~

(O) k 
—

Looking at the transition times

+ iii 21Ti
= (0 , i~;i’ 

y — ~...)

we see they will converge under p to sin
+(0) = (0 , fl, 21T, . . . ) :

u r n  f. = sin t
1

and since (S~ f~)
4 

=

l iin S f . = S l ixn f .0 1 0 i
~) 0 0

• which shows ~i limited kind of continuity of transition times in this

particular case.

There are two problems in making this idea rigorous. First, we must

be sure that the functions under question have well defined transition

sequences, not infinitely many transitions in a short period. Second,

_ _ _ _  

_ _ _  _ _
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we must define a more general metric P so that a reasonable class of thresholds

are continuous . Sequences like the one illustrated in Example 3.4 should be

di vergent.

3.6 Exam~~e

Let f(t) 0 t~~~0
— l

e x sin~~- t~~ o
x

It can be shown that f is C . Yet there is no first zero—crossing for

t • 0.

Thus C is still too large a class of functions to meet our require-

ments. We now introduce a class F 
+ 

of normal functions from to a
R ,Y

set Y, which have well defined transition times, closure under composition,

and lead naturally to a notion of continuity which includes all thresholds.

Normality Spaces

We will first define a class of normal sets on a space X in analogy

to a class of open sets in a topology. The idea is to then let f: x ~ Y

be a norma l :~et if the inverse image of a normal set is normal, again in

analogy to continu i ty. Given a few additional properties, and by choosing

our class of normal sets properly, we will show a class of normal functions

are closed wider composition and have well-defined transition times.

3.1 Defn. J~ triple (X, p ,  N )  is a normality space if

- - - -- I 
— - --- -

~~~
- - - _ _ _ _

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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i)  ~ is a metric on X
x

ii) N is a subset of the Sorel se t s  generated by p 1called the set of

norma l

lii) If A ,B N thenx
a) A is bounded

b) A B , A - B ~~~Nx
iv) every bounded set in X is contained in a normal set

Note that A 13 is also normal.

3.~ Oefn. An interval in R is a subset (a ,b), (a,b), (A,b) or

(.
~

, bJ where ‘~~~~ a b

3 rn ’) I)efn. N~ (S S is a finite union of disjoint intervals

~ RI

3.10__Pr2j~~ (R, d , N~) is a normality space if d(a,b) = la-b i .

3.11 Defn. Let f: K ~ Y where Y is a narmality space. f is

norma l i f f

a) f (s )  is bounded if S is bounded for any S K

b) For any norma l T ~ N~ 1 A t N~~, A flf ’(T) is normal.

3 . 1~~~~Pwj ’. If R K X are norma l functions on normality

SI ~~~~~~~~~~ K , X , then ~ f is ,ior~t~ l

Proof: From the above definition part a) is obviously satisfied.

I ~
..- .

~~~~~~~~
.-- - • -  - 
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Let A , T be as in part b). Since A is norma l , A is bounded , hence

f ( A )  is bounded , and there is some S c N~ s.t. f(A) S. Then

A I f~~~ (S ~ g 1 C T ) )  = A (~ f~~
1 g~~ (T) and A ~~ f

1 g 1 (Ti must

be norma l as required .

We can ese Prop . 3.12 to define a class of normal thresholds

which are guaranteed to take normal input functions to norma l output

functions. Once this  feature is guaranteed, it is possible to define

continuity over the set of normal functions, which will be dor.e in the

next section.

First , suppose x is a f in i te  set of real numbers. Let X also be a

normali ty space by taking every subset open and normal; let B : K X be

normal. Then the norma l 0 threshold is the functional

PC(R~ , R) 1~ PC(R ~ , X)

where S0
( f)  = 0•f

By Proposition 3.12 S0
( f )  will be normal if I is: thus any normal 0

threshold wil l  have the desired property.

Proof: Imnted iate from Proposition 3.12.

The real power of our definitions now emerges as we show that all

rw t-mal functions can be represented as in example 3.5 .

3.14 Def n. Let F 
+ 

be the set of all normal functions from
K

+
R to normality space Y which are right-continuous.

_ _ _ _ _ _ _  --—

~~ -;~~~-- 
.
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3.15 Proposition Let f I F 
+ 

and y C Y . Then 1’T ~ (T > 0) takes
R ,Y

on the value y for a f ini te  number of invervals.

Proof: Since {y} is normal, so is [O ,T1 f
1(y).

We can now proceed to define the normal inverse of a function on a

rigorous basis.

3.16 Defn .  Let f ~: F 
+ 

. Let T > 0 be arbitrary.
K , ? T +

1. Define for fixed T f , : Y R , i > 1, by

f
’r

( )  
the left endpoint of the ith interval in

1 
~ (y ) f ) [0 ,Ti if there is an ith interval

~ otherwise

2. Define f~ (y)

3. The norma l inverse of I is the series of functions (ft)

i = 1,2 

3.17 Example 1. Calculate (sin~ (t)} . It can be checked that

s in( ) is normal and sin c F + 
. Figure (2) shows graphically the

K , R
norma l inverse . It can be seen that

sin . (t) if ~~ 
‘ 1

and , for example ,

s in ~~( t )  21T + ( — l ) ~~~~~~ 51n
1(t)  when 0 t 1

2

I.e t sq: R+ (o ,il be a square wave of period 1

(Figu re 3) .  Then sq I F + 
and

K , (0 , l}

I ~~~~~~ •~~~~:~ — - - —i• •
~~~~~ —.---- —• —~~ 
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+
sq

1
(i)

sq~ (0) — i

1 —0 .—° .--

—S

0 -
~~ I 2

t~~~~U~~~~y

Armed with the normal inverse, we can now completely formalize the

idea of Example 3.~~.

3.18 Defn. Let f,g c FR Y .

p(f,g) supIf~ 
- gJ where ~~-~u is taken to be zero.

3.19 Proposition : p is a metric .

..‘O ProI.oHit j o l t :  Let S0 be a threshold as in Corollary 3.13. Then

_ _ _ _ _ _ _ _ _  
- -~~- - - - - - - - •_ _ _

— —•- — —-•--—-•-———• •—.——~~~~~~~~
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S0 is 
P-continuous.

So we have achieved our goal of defining a notion of continuity

which includes thresholds. But is it  really a useful notion? To get

a feel for p-continuity we discuss briefly some of its properties.

1. Let d (f,g) = f If 
- gi. Then lim I . = f if

d

I. = f .

2. If S
1
, S2 

are p-continuous, so is S1
S2
.

p-continuity also seems to be connected to circuit realizability, as we originally

hoped . The following examples illustrate some p-continuous coders that

are realizable with the configuration on Figure (4): a linear, continuous

filter, thresholds, and a digital computer which feeds back to the linear

system.

3.22_Exam~~~ 
p-continuous coders

1. Zero crossing detection. Let D F be the set of all
-

~~~~~~~~ R~,{0,l}

normal continuous functions . The zero-crossing detector flips output

whenever the input crosses through zero. Figure 5 that a simple threshold

will serve as realization.

2. Frequency coder. Note that every F + 
is Lesbegue integrable, 4

R ,R
since the inverse of any half-open interval is a finite union of intervals,

I

_________ — 

_
~~~~~ •_ 

—

-— 

-•- .~;_;._ ~~~~~~~~~~~~~~~~~~~~ ----a
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which is measurable. So we can define a frequency coder as

S f ( t )  — 0
0
(sin (f0 

+ f(t))dt)

which is p-continuous. As an idealized element with which this coder

could be realized, we define the resettable integrater (Figure 6) to be

a two input system which integrates the first input and resets to zero—

state when the second input makes a transition.

- ~~~~~~~~~~~~~~~~~~~~
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