UNCLASSIFIED

| .
lor2
o
AOBS 90«

AD=A055 902 SOFTECH INC WALTHAM MASS F/6 9/2 \
OPERATIONAL SOFTWARE CONCEPT 0SC EXECUTIVE EVALUATION/REFINEMEN=--ETC(U) 9
AUG 77 M 6 WILLOUGHBY:, C K HITCHON F33615-76-C=1192

AFAL=-TR=77-87

1

g |
.\I
!
|

e

A .

Z2066SS0Vay :_8 el H_S

SECURITY CLA

FICATION OF THIS PAGE (When Deta Entered)

PORT DOCUMENTATION PAGE BEFORE CoNP! ETING PORM

7 *[l. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

ERATIONAL SOFTWARE CONCEPT

EXECUTIVE EVALUATTON/REFINEMENT &
2 = = 1025-3

CONTR

b
ichael G.,Nil]oughby @ Carl K.’Hitchon ,J 33615-76-C-1192

9. PERFORMING ORGANIZATION NAME AND ADDRESS T 10, RROG LEMENT, P_no: £
SofTech, Inc. ~ 5
460 Totten Pond Road 6220V
Waltham, Massachusetts 02154

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Air Force Avionics Laboratory June 1977

13. NUMBER OF PAGES

System Technology Branch (AAT)

MO ORING AGENCY NAME & AD $S(i(dilferent from Controlling Oflice) 1S. SECURITY CLASS. (of this report)

;77 Unclassified
US [75a. DECLASSIFICATION/ DOWNGRAGING

SCHEDULE .

DISTRIBUTION STATEMENT (of thle Report)

Approved for public ease; distribution unlimited. & <:,
VN
34553 \ Qs
17. DISTRIBUTION STATEMENT (of rhe e b= loepytt ¢ drom) <
Vo %Q\"“

SF.

<
18. SUPPLEMENTARY NOTES \\‘0/

KEY WORDS (Continue on reverse side if necessary and identily by block number)

Modular Software Avionics Software
Directed Flow Graphs System Software
Support Software Executive Software
Higher Order Language Software Design

20

-

ABSTRACT (Continue on roverse side if necessary and identify by block number)

’This report describes executives built using the Operational Software Con-

cept (0SC). These executives are designed to operate on a federated net-

work of four DAIS processors connected by DAIS multiplex data busses. In

fact, the executives and applications, represented by stubs, have been im-
plemented on a two processor system.

The applications supported by the executives are specified using Directed

Flowgraphs (DFG) as described in Technical Report AFAL-TR-74-168, Volume II

DD (k"5 1473) eoimion of 1 wov ss s oesorere 0/ -

I

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

bob 150
78 06 12 2

s

B ot

|
i
f
|

SECURITY CLASSIFICATION OF THIS PAQE(When Date Bntered)

from 0SC Phase I. It is assumed that the reader of this report will be
familiar with the contents of the above-mentioned document.

The executives have been built based on the design presented in the 0SC Com-
puter Program Development Specification, Technical Report for April 1976 to
September 1976. The baseline executives were coded on the DAIS laboratory
PDP-10, primarily in J731, providing full generality for the DFG specified
application. The DFG was provided by AFAL as representative of a DAIS
mission. These executives had time overheads of 37.1% and 41.0% and space
overheads of 36.5% and 33.7% for processors O (the head processor) and 1,
respectively. The baseline executives were tuned primarily for High Order
Language (HOL) inefficiencies, HOL deficiencies and generality reduction

for the specific DFG. The resulting final tuned executives had time over-
heads of 11.1% and 11.3% and space overheads of 22.1% and 19.2% for proces-
sors 0 and 1, respectively. These overhead figures and the detailed
statistics presented in the report represent the state of the executives on
20 December 1976 and are based on the DAIS processor described in Specifica-
tion Number MN255R817-1 of September 1976 and the DAIS multiplex data bus
described in Specification Number SA301300B-15 of March 1976.

This report is divided into three sections and an Appendix. The first sec-
tion describes the process of building an executive based on a DFG. The
second section describes the parameters affecting system performance that
are associated with the DFG supported by the executives. The third section
presents the baseline executive statistics, tuning method descriptions and
statistics for the final tuned executive. The Appendix provides program
listings of intermediate tuning results of the final tuned executives.

SECURITY CLASSIFICATION OF THIS PAGE/When Data Entered)

FOREWARD

This final technical report was prepared by Softech,

Inc., Waltham, MA and covers work performed under Contract
F33615-76-C~1192 during the period September through December
1976. The work was funded under Project 2003, Task 05, Work
. Unit 14 by the Air Force Avionics Laboratory, Wright-Patterson

AFB, Ohio Uu45u433. The Air Force contract monitors were Mark

y A. Pitts and Ronald Szkody.

Significant contributors to this report include C. Hitchon,

D. Pfaw, and M. Willoughby.

ACCFSS'ON o :
woe » Seciion

pan o {1 Section (O

0 o
BSTR T 27 2 Y CODES

SFLGIAL]

|

iii

I

I1

I

e e
"! — A i 5 =

Section

TABLE OF CONTENTS

Page
BUILDING AN EXECUTIVE 1
1.1 Construction of Baseline Executives 1 v
1.1.1 File Name Conventions 2 l
1.1.2 Submit Files 3
11,3 Executive Construction 4
1.2 Construction of the Directed Flowgraph Model 5
1.2.1 Approach 5
1.2,2 Reduction of DFG Complexity 6
1.2.2.1 Preemption Reduction 7
1.2.2.2 Combining Tasks 12
1.2.2.3 Serializers 14 i
1.2,2.4 Complex DFG Constructs 15
1.2.2.5 Partitioning 19 |
1.2.2.6 Other Possible 19 ‘
Simplifications
1.2,3 Final DFG Model 20]
1.2.3.1 Key to DFG Models 22 Ii
1.2.3,2 Processor 0 DFG Model 26 ‘
1.2.3.3 Processor 1 DFG Model 29 i
1.2.3.4 Correspondence of DFG 30 ‘
Model to Formal DFG
SYSTEM PARAMETERS 32
2.1 Processor 0 System Parameters 33
2,2 Processor 1 System Parameters 36
TUNING THE EXECUTIVE 39
3.1 Baseline Executive Statistics 40
3311 ITC Baseline Statistics 42
3.1.1.1 Approach 42
3,1.1.2 Definition of ITC 42
Activities
3.1.1.3 ITC Baseline Detailed 44
Timing Statistics
3.1.1.4 ITC Baseline Detailed 48
Space Statistics
3.1.1.5 ITC Sensitivity Analysis 52
3.1,2 TIM Baseline Statistics 53
3,1.2,1 Approach 53
3.1,2.2 Definition of TIM 54
Activities
3.1.2.3 TIM Baseline Detailed 55
Timing Statistics
3.1.2.4 TIM Baseline Detailed 57
Space Statistics
3.1.2.5 Sensitivity Analysis 58

v

TABLE OF CONTENTS (Continued) |
Section Pase
I TUNING THE EXECUTIVE (Continued)
3.1 Baseline Executive Statistics (Continued)
|
3.1.3 DAC Baseline Statistics 59 |
3.1.3.1 Approach 59
3,1.3,2 Definition of DAC 59
Activities
3.1.3.3 DAC Baseline Detailed 61
Timing Statistics
3.1.3.4 DAC Baseline Detailed 63
Space Statistics ' i
3.1.3.5 DAC Sensitivity Analysis 65 5
3.1. 4 S Baseline Statistics 66 |
3.1.4.1 Approach 66 ;
3.1.4.2 Definition of Activities 67 'i'
3.1.4.3 SCH Baseline Detailed 68
Timing Statistics :
3.1.4.4 SCH Baseline Detailed 69 :
Space Statistics
3.1.4.5 SCH Sensitivity Analysis 70
, i P o DTF Baseline Statistics 71
f 3.1.5.1 Approach 71
3.1.5.2 Definition of DTF 72
Activities
3,1.5.3 DTF Baseline Detailed 73
Timing Statistics |
3.1.5.4 DTF Baseline Detailed 75
Space Statistics
3.1.5.5 Sensitivity Analysis 76
3.1.6 MSM Baseline Statistics 77
3.1.6.1 Approach 77
3.1.6.2 Definition of MSM 77
Activities
3.1.6.3 MSM Baseline Detailed 78
Timing Statistics
3.1.6.4 MSM Baseline Detailed 79
Space Statistics
3.1.6.5 Sensitivity Analysis 79
31,7 DSP Baseline Statistics 80
3.1.7.1 Approach 80
3,1.7.2 Definition of DSP 81
Activities
3,1.7.3 DSP Baseline Detailed 82
Timing Statistics
3.1.7.4 DSP Baseline Detailed 84
Space Statistics
3.1.7.5 DSP Sensitivity Analysis 85
vi

Section

III

TABLE OF CONTENTS (Continued)

TUNING THE EXECUTIVE (Continued)

3.1

3.2

3.4

3.5

3.6

Baseline Executive Statistics (Continued)

3.1.8
3:k.9
1

3.1.10

SSM Baseline Statistics
MPL Baseline Statistics
Bus Traffic

3,1.10.1 Processor 0
3,1.10.2 Processor 1

3.1.10.3 Interprocessor Bus Traffic

Tuning for HOL Inefficiencies

3.2.1
3.2.2

3.2.3

Overview

Examples

3.2,2.1 CLOCKQ

3.2,2,2 SEND

3,2,2.3 QUEUE and DQUEUE
Summary

Tuning by Reducing Generality

3.3.1
3.3.2

3.3:3

Overview

Examples

3.3.2.1 CLOCKQ

3.3.2,2 SEND

3.3.2.3 QUEUE and DQUEUE
Summary

Tuning for HOL Language Deficiencies

3.4.1
3.4,2

3.4.3

Overview

Examples

3.4.2,1 CLOCKQ

3.4.2.2 SEND

3.4.2.3 QUEUE and DQUEUE
Summary

Final Tuning

3.5.1
3.5.2

Overview
Final Tuning Description

Final Tuned Executive

3.6.1

ITC Final Tuned Statistics

3.6.1.1 ITC Tuning Approach

3.6.1.2
with Baseline

3.6.1.3 ITC Final Tuned Detailed

Timing Statistics

3.6.1.4 ITC Final Tuned Detailed

Space Requirements
6. 3.5

vii

Functional Differences

ITC Sensitivity Analysis

100
101
103

105

TABLE OF CONTENTS (Continued)

Section

111 TUNING THE EXECUTIVE (Continued)
3.6 Final Tuned Executive (Continued)

3.6.2 TIM Final Tuned Statistics
3.6.2.1 TIM Timing Approach
3.6.2.2 Functional Differences
with Baseline
3.6.2.3 TIM Final Tuned Detailed
Timing Statistics
3,6.2.4 TIM Final Tuned Detailed
Space Statistics
3.6.2.5 TIM Sensitivity Analysis
3.6.3 DAC Final Tuned Statistics
3.6.3.1 DAC Tuning Approach
3.0.3.2 Functional Differences
with Baseline
3.6.3.3 DAC Final Tuned Detailed
Timing Statistics
3.6.3.4 DAC Final Tuned Detailed
Space Statistics
3.5 DAC Sensitivity Analysis

campasne

o~

3.6.

3.6.4 SCH Final Tuned Statistics
3.6.4.1 SCH Tuning Approach
3.6.4.2 Functional Differences
3.6.4.3 SCH Final Tuned Detailed

Timing Statistics

3.6.4.4 SCH Final Tuned Detailed
Space Statistics

3,0,4.5 SCH Sensitivity Analysis

3. 6.5 DTF Final Tuned Statistics

3.6.5.1 Tuning Approach

3.6.5.2 Functional Differences
with Baseline

3.0.5.3 DTF Final Tuned Detailed
Timing Statistics

3,0.5.4 DTF Final Tuned Detailed
Space Requirements

3,6.5.5 DTF Sensitivity Analysis

3.6,0 MSM Final Tuned Statistics

3.6.6.1 Functional Differences
with Baseline

3,6.6.2 Tuning Approach

3.6.6.,3 MSM Final Tuned Detailed
Timing Statistics

3,6.60,4 MSM EFinal Tuncd Detailed
Space Statistics

3.6.6,5 Sensitivity Analysis

viii

Page

100
1006
107

107
108

109
109
109
110

110
111

112
1 e
113
113
114

115

1o
110
117
117

TABLE OF CONTENTS (Continued)

Section

1 TUNING THE EXECUTIVE (Continued)
3.0 Final Tuned Executive (Continued)

3. 6.7 DSP Final Tuned Statistics
3.0.7.1 DSP Tuning Approach
3.0.7.2 Functional Differences
3,0.7.3 DSP Final Tuned Timing
Statistics
3.0.7.4 DSP Final Tuned Detailed
Space Statistics
3.0.7.5 DSP Sensitivity Analysis
3.6.8 SSM Final Tuning Statistics
3,0,9 MPIL, Final Tuning Statistics
3,6,10 Final Tuned Bus Traffic

3.7 Conclusions

N I | Statistical Reduction Allocated by
Function Cluster

3,7.2 Statistical Reduction Allocated by
Tuning Method

Appendix EXECUTIVE TUNING EXAMPLES
A

Appendix TUNING THE DAIS MISSION DFG
B

Appendix ASSIGNMENT OF BUS SUBADDRESSES
C

Page

e AR I T S RTI R

LIST OF ILLUSTRATIONS

Figure No. Page
la FILE NAME CONVENTIONS 2 '
1b EFFECT OF PREEMPTION ON DATA 10 ,
ACCESS CONTROL :
2 BASELINE EXECUTIVE TIMING STATISTICS 41
? 3 BASELINE EXECUTIVE SPACE STATISTICS 41 |
4 FINAL TUNED EXECUTIVE TIMING 98 B |
. STATISTICS i
5 FINAL TUNED EXECUTIVE SPACE 98 '
| STATISTICS
} 6 PROCESSOR 0 TIME OVERHEAD 130
i" s PROCESSOR 0 SPACE OVERHEAD 131
| 8 PROCESSOR 1 TIME OVERHEAD 132

?' 9 PROCESSOR 1 SPACE OVERHEAD 133

xi

Section |

BUILDING AN EXECUTIVE

Building a baseline (untuned) OSC executive for a particular mis-
sion is a two-step process. First, the formal Directed Flowgraph (DFQG)
which specifies the mission must be studied, simplified if possible, and
converted into an executive DFG model which can be translated directly
into an executive data set. This process is described in detail in Section
1.2,

In the second step, the resulting executive data set is edited into
the appropriate COPY and COMPOOL source files as preset data. The
baseline mission executive is then created by performing the proper se-
quence of compilations and link edits. This process is described in detail

in Section 1.1,

The resulting executive is fully functional but untuned. The pro-
cesses of tuning and analysis of the results are described in detail in

Section 3.

1.1 Construction of Baseline Executives

The baseline executives for processor 0 and processor 1 can
be created from files residing on PPN [1111, 351] of the DAIS PDP-10.
Special file naming conventions have been used to aid in the identification
of files and construction of the executives, These conventions will be

described in the first subsection.

The creation of an executive is a three-step process. First,
all the required source files are moved to a separate PPN. Then they
are compiled, assembled and reformatted, Finally, theyare linked to
create the desired executive. The executives are named CSCO0.LDA
for processor 0 and OSC1.LDA for processor 1, Each of these processes
is aided by a set of submit files on PPN[1111, 420]. These files are pre-
pared batch jobs to make the process easier and more reliable, The
second subsection describes the necessary submit files, the final sub-

section describes how they are used to create the executive,

1.1, 1 File Name Conventions

Each file name consists of two parts separated by a dot,

The

name before the dot is used to indicate the type of information it contains;

that is, it indicates whether the file contains executive procedures, data

declarations, procedure declarations or initialization procedures, The

name after the dot, the extension, indicates the executives the file is used

to build, and whether it is a J731 program, DAIS assembly language pro-
gram, copy file, COMPOOL source or preprocessed COMPOOL., A

summary of the conventions is given in Figure la. The use of a ''?'" within

a name indicates that the appropriate letter is substituted for each "? " to

name the requested file. For example, the designation ? ? ? IPD indicates

that names such as ITCIPD, DACIPD, and MSMIPD are valid,

File T i Common Processor 0| Processor
e ! Name Name Name

J731 programs ' .J73 .J70 LJT1
DAIS Assembly : :
language programs « DAL . DAO . DAl
copy files { .CPY . CPO . CP1
COMPOOL source files l .CPS . CSO . CS1
Preprocessed COMPOOL
(one for each CCMPOOL file) . CMP . CMP . CMP
Executive procedures ??? PRC. ?? ?PRC. ? ??PRC.
Initialization procedures ? ??2INT. ?? ?2INT. ? ? ?2INT,
Data declarations ???DCL, ?? ?DCL. ??2?DCL.
Separate copy of
initial data ??2?21IDT. ???IDT. e IDT,
External procedure
declarations ? ??EPD. ?? ?EPD. ? 2?EPD.
Internal procedure
declarations ? ? ?IPD. ? ? ?IPD, ? ? ?21PD,

T P

Figure la. FILE NAME CONVENTIONS

[

2

- B e A i U S A N R TIRE CINT Y T

1.1.2 Submit Files
A set of submit files resides on PPN[1111,420] to assist in con-

structing an executive, The following list names and describes each

of them,

MVOSCO0.CTL - copy all files in PPN[1111,351] needed
to create the processor 0 executive,
Rename all , CP0O, ., CSO, . J70 and . DAO !
extensions to .CPY, .CPS, .J73 and .DAL.,

MVOSC1,CTL - copy all files in PPN[1111,351)] needed
to create the processor 1 executive,
Rename all .CP1, .CS1, .J71 and . DAl
extensions to .CPY, .CPS, .J73 and .DAL.,

PRC.CTL - compile all executive J73 programs,
PD.CTL - compile all procedure declaration COMPOOL i
files. ;
CMP.CTL - compile all COMPOOL files that are not
procedure declarations, |
FMT.CTL - reformat all executive .REL files into
.DAT files

ASSMBL.CTL - assemble all executive DAIS Assembly
Language files,

LINKO.CTL - create the processor 0 executive OSCO0.LDA.

LINK1.CTL - create the processor 1 executive OSC1.LDA,

1. 1.3 Executive Construction

This description will assume the processor 0 executive is being
created. The processor 1 executive is created in the same way, with the
appropriate submit files substituted. One executive should be completed
before the next is begun, It is also important that the commands be per-
formed in the order listed to insure that the proper files are used. It is

also important that each command complete before the next one begins.

The first step in building the executive is to copy the appropriate
files to a different PPN. This can be done with submit files residing on
(1111,420]. These submit files will copy to whatever PPN the submit

file is on. The following command will copy the necessary files:
. SUBMIT MVOSCO (MVOSC1)

All of the required source files have now been copied. The COMPOOLs

and programs must be compiled and assembled next.

. SUBMIT CMP

. SUBMIT PD

. SUBMIT PRC

. SUBMIT ASSMBL

Then the files are reformatted and linked to create the executive,

. SUBMIT FMT
. SUBMIT LINKO (LINK1)

The resulting executive will be named OSC0. 1.DA (OSC1.LDA).

- |

1.2 Construction of the Directed Flowgraph Model

1.2.1 Approach

The process of constructing an OSC DFG model begins when the
mission planner has produced a complete specification of the mission's
executive requirements in the form of a formal DFQG together with supple-
mentary information, The formal DFG precisely depicts all data and
control relationships between the mission's tasks, sources, and sinks.
Supplementary information provides task execution rates and times,
data link descriptions, memory and response requirements, and any
other quantitative aspects of system performance or resource require-

ments which may influence construction of the executive DFG model,

Each mission task depicted on the formal DFG is considered
as an indivisible unit, The internal operations of these tasks are not
specified in the formal DFG and are, in fact, only pertinent in their

effects on the supplementary quantitative information,

The job of the executive builder is to construct an OSC executive i
which accurately models the formal DFG (in that the data and control

flow will be as specified) and which also meets the quantitative requirements

(such as execution rates, response times, etc,) on the target hardware

configuration. More specifically, since the OSC executive is a table-driven

DFG interpreter, the job of the executive builder is to construct a set of
B tables which will drive the executive correctly and meet the quantitative

requirements,

’ One approach to this problem is to perform a one-to-one mapping
of the formal DFG's links, nodes, sources, etc, into the corresponding
models supported by the OSC executive, It is quite possible that such a

"brute force' translation of the formal DIF'G into an executive data set

P S T PR N 2y

could be performed automatically by a translator program driven by a ﬂ
formalized linguistic representation of the DFG. This approach has a

serious drawback, A direct translation of a relatively complex DFG may

B T

result in an executive which is so large and slow that space and execution
time requirements of the mission's tasks cannot be met, Moreover, since
such an automatic translator does not exist, a tedious, error-prone hand

translation must be performed,

LR

For these reasons, the executive builder may be forced to reduce
the complexity of the DFG prior to final translation into an executive data
set., The need to reduce complexity, however, does not negate the useful-
ness of an automatic translator, Even executive data sets produced by
the translator which turn out to be too inefficicnt, can be made useful tools
for debugging the DFG by using task stubs and running virtual clocks at

a slower rate,

1,2.2 Reduction of DFG Complexity

The reduction of the complexity of a detailed formal DFG takes
place in successive stages. At each stage, a less complex model of the
DFG results. Each successive model must meet the data and control
constraints of the original formal DFG while also more closely approach-
ing a final DFG model whose run time overhead is low enough to leave
sufficient resources for the mission tasks. The process of complexity
reduction need not stop when this point is reached, Indeed, continuing
will further reduce the bulk of error prone translation required and also
reduce executive overhead to allow for future expansion of mission re-

source requirements.

The simplifications achieved at each stage of DFG complexity
reduction may result from any of a number of DFG tuning methods
(described below). Specific examples of each tuning method as applied
to the DAIS mission DFG are provided along with the method descriptions.
Details of the final tuned version of the DAIS DFG are presented in Sec-
tion 1, 2,3, The notation used in the final DFG is not strictly formal DFG
notation but is an adaptation biased toward the actual OSC executive model-

ing of DFG objects, A key to this notation is also presented in Section

1. 2, 3. Although only the final result of the DFG tuning process is diagram-

med in section 1, 2, 3, several intermediate tuned versions were sketched

during the tuning process. These intermediate versions are included in

Appendix B,

The DFG complexity reduction process (i, e., DFG tuning) is dis-

tinct from tuning of the executive programs and their data structures.

r ey

However, there is an important interaction to consider, Tuning of the
DFG may result in a model which requires considerably less than the full
functionality provided by the baseline executive, In anticipation of this
situation the functional features of the OSC executive were designed and
implemented in a modular fashion to make their deletion a simple matter
of excluding certain procedures or data structures from the executive
built, It is worth noting that tuning of the formal DAIS DFG resulted in

a significant reduction in the various executive functions required. In
fact, further tuning of the DFG was deliberately avoided in order to retain

examples of all important executive capabilities.

1,2.2.1 Preemption Reduction

The execution of two tasks, A and B, is said to be interleaved if
part or all of task A is executed after task B begins execution but before
B completes or vice versa, The execution of tasks A and B is further
said to be concurrent if at any time both A and B are in execution, Con-
current execution can occur only in configurations containing more than
one processor. Examples are multiprocessor systems where memory
is shared, and federated processor systems where a data transport re-
source is shared. In a uniprocessor system, only interleaved execution
of tasks is possible, In particular, each processor in a federated con-
figuration is a uniprocessor in its own context. In a uniprocessor system,
interleaved execution occurs when one task preempts another, i.e,, when
the execution of one task is temporarily suspended to allow execution of

a more urgent task,

A formal DFG may impose many constraints on task preemption,

For example, in the DFG below, task B must complete execution before

task A can be executed,

—

oy

In the next DFG, execution of tasks A, B, and C will be mutually exclusive,

For other tasks, the DFG may impose few constraints or none at
all, The purpose of the formal DFG is to specify exactly those data and
control constraints that are required for proper system operation and
no more. Since all data and control relationships among the tasks are
specified on the formal DFG, any task execution policy satisfying the

DFG constraints will perform correctly.

The executive builder's options in construction are proportional
to the level of detail on the formal DFG specification, The further each
task is broken down into smaller tasks, the easier it is to isolate the

gsources of contention for resources,

The purpose of permitting preemption of one task by another
within a uniprocessor system is only to satisfy response requirements.
That is, a task with short response requirements may be required to run
at a time when another task is already running, The task already in
execution may take so long to complete that the other task's response
requirement cannot be met if the executing task is allowed to run to

completion,

The reduction or elimination of preemption requirements is the
single most effective method for reducing the complexity of the DFG
model, The reason for this is that tasks which cannot preempt one
another can access the same global data without a contention problem
(e.g., one task reading the data while the other is writing it). If tasks

which must preempt one another also contend for global data, then the

[
|

executive must coordinate access to that data, Consider the example

in Figure 1, Task A writes asynchronously into storage node B,

task C synchronously updates B, and tasks D and E asynchronously read
B. Now suppose task A is allowed to preempt task C. A may then change

the contents of B while C is running. Hence C must be provided with a

separate copy of the data in B, Ina similar way, if C can preempt D,
then while D is running, C may write new data into B. Hence D must

be provided with a separate copy of B's data,

FORMAL DFG REPRESENTATION

A
SSha
COPIED BY EXECUTIVE WHEN
TASK COMPLETES
Ssnb

Sstwe

“ﬂ “'" COPIED BY EXECUTIVE
WHEN TASK IS SCHEDULED

STATIC BLOCK EXECUTIVE IMPLEMENTATION
SUPPORTING UNLIMITED PR EEMPTION

DIRECT ACCESS BY TASKS

DIRECT ACCESS BY TASKS

Figure 1b, EFFECT OF PREEMPTION ON DATA ACCESS CONTROL

10

A —

The OSC executive provides the facilities of the DAC (Data Access
Control) cluster to manage such situations. There are basically two ways
of handling these problems with DAC, one in which the data is statically
allocated (fixed locations for data buffers) and one in which the data space
is dynamically allocated (locations for data buffers are determined at run
time). Which solution is better depends upon the length of the data and
the execution rates of the accessing tasks, In the static method the 'current"
data for B is always contained in a global statically allocated storage block
(SSB). Each time a task which reads B is scheduled for execution, the
executive copies the data in B to a local SSB which the task accesses instead
of the global copy. Each task which writes into B writes instead into its
own local copy of B and the executive copies the data into the global SSB
when the task completes (see Figure 1). In the dynamic method, static
storage blocks (SSBs) are replaced by dynamic storage blocks (DSBs) and

only pointers to the DSBs are copied by the executive,

Clearly, considerable executive overhead may be required to perform
such control of data access. On the other hand, if taske A, C, Dand E
in Figure 1 ace not allowed to preempt one another, then each task
will have exclusive access to B while it executes. In this case, no conten-
tion problem exists, and each task may directly reference the single global
block B.

Another problem associated with preemption is that of application
programs which are shared by two or more application tasks, If two tasks
which can preempt one another invoke the same subroutine, then that sub-
routine must be reentrant, Reentrantcy is usually obtained at some cost
in efficiency, and in the case of J731 an error prone program controlled

stack management,

In summary, the key factors determining the need for preemption
are the response required for task execution and the maximum individual
task execution times, In general preemption can be avoided when the
maximum task execution time is small relative to most severe response

requirements. For this reason, it is important that the mission planner

11

specify the system with the most detailed DFG practical, In the DAIS
mission DFG, the maximum exemption time of a single task was
approximately 6 milliseconds while the tightest response requirement

was approximately 30 milliseconds. Even under maximum load condi-

. tions, it was possible to meet the response requirements without allow-

ing any preemption, However, in order to demonstrate the executive
handling of preemption, the longest task combination, AT20 on the

final DFG with execution time 8 milliseconds, was made preemptable,
As a consequence, data selector 21 and the link data coming into AT20

had to be put under executive management.

1.2.2,2 Combining Tasks

Another important means of simplifying the DFG is to combine
tasks on the formal DFGQG into larger tasks., This is accomplished by
writing a skeletal master task which simply calls each task in the com-
bination as a subroutine, Since subtasks within such a task combination
are executed sequentially, there is no mutual preemption, There are
several benefits to be gained by combining tasks:

® Executive scheduling overhead is reduced since one

scheduling of the combined task is equivalent to
scheduling all subtasks.

) Executive table space required for the combined task
is the same as the space otherwise required for one
subtask,

° The source/sink requirements of each subtask are

combined resulting in fewer calls to DTF, a reduction
in the number of access controllers required and
batching of I/O operations,

® Control signals which individually activate each sub-
task are combined into a single control signal,

The benefits of combining tasks must be realized while adhering

to the DFG specification., Tasks may be combined without deviating from

DTF requirements if they are executed under the same conditions, for
example, tasks which are controlled by the same clock or control link
(through an identity). In such task combinations, the skeletal master

task simply calls each subtask in any order. Tasks which are connected

to one another by simple data links may be combined. In these task com-

12

binations, the skeletal master task calls each subtask after all the sub-
tasks providing input links to that subtask have been executed., Calls to
subtasks in the master skeletal task are carefully ordered to reflect link
imposed execution order, Finally, tasks interconnected by control selec-
tors may be combined, The control selector nodes which connect the tasks
are implemented in the skeletal master task as if-then-else statements
which call each subtask when the corresponding control selector predicate

indicates,

In many task combinations created for the DAIS DFG, subtasks
which are conditionally executed produce output to devices, A new soft-
ware signal capability (via procedure SIGAC) was added to allow the
skeletal master tasks to conditionally signal that one or more output

operations be performed when the task combination completes.

Large combinations of tasks can result in an increase in the
maximum task execution time to a point where some task combinations
must be made preemptable in order to meet response requirements.

This can result in an increase in executive data access control overhead
greater than the overhead saved by combining the tasks. Hence, task
combinations which complicate meeting response requirements should

be avoided, In the DAIS mission DFG, such combinations were avoided
except in the case of AT20, AT20 is the longest executing task combina-
tion (8 milliseconds) and was made preemptable for the purpose of demon-

strating the executive's preemption capability.

Some examples of task combinations in the tuned DAIS DFG are
ATO01 which combines most of the tasks and control selectors involved in
handling asynchronous pilot inputs, and AT18 which combines several
tasks which must run at the 8/sec rate, Complete details of the tuned
DAIS DFG are presented in Section 1.2, 3. Details of the flow of control
within each task combination's master skeletal task are specified in the
J731 program APPRC, J70 for processor 0 and in APPRC. J71 for proces-

sor 1.

13

1.2.2.3 Serializers

The serializer nodes drawn on a DI'G may have quite complex
implications, In the worst case, it implies a number of input links con-
taining data which must be queued by the executive as they become enabled
and then serially removed from the queue and copied to the output link,
However, in actual practice, this full functionality of the serializer may

not be required,

In the simplest case a serializer may imply enabling a particular

link whenever any one of a number of mutually exclusive links is enabled.

In such cases no queueing is required and each input link to the serializer
may be replaced by the single output link, Examples of such serializers
on the DAIS DFG abound, The serializers which control the iterative tasks
T53 and T55 on page 3B of the DFG are good examples as are the serializers

on the same page which accept data from each loop output.

A slightly more complicated case is a control serializer with inputs
which are not mutually exclusive, Again executive queueing is easily
avoided by allowing the wait count for the task connected to the output
link to be decremented below zero. When the task completes it is resched-
uled if its recomputed wait count is still less than or equal to zero. On
the DAIS DFG examples of such tasks are T36 and T22 (AT36 and AT22
on the tuned DFQ).

Finally, there is a more difficult type of data serializer where again
mutual exclusion is not obvious from the DFG. Here it is possible to guar-

antee serialization by including the serializer's output task in a separate

task combination with each input task to the serializer and disallowing mutual

preemption of these task combinations, It is important to realize that this
method neither implies that multiple copies of the output task are required
nor that the task must be reentrant, Examples of this type of serializer
implementation in the tuned DFG are tasks AT01, ATO08, and ATO09 which
all may call the same subtask (T08) and cannot preempt one another, In
some cases, the inclusion of a subtask in two or more task combinations
has forced duplication of its output devices so that a different data area

can be used for each instance,

14

-

e —

g o

1.2.2.4 Complex DFG Constructs

In some cases complex appearing DFG constructs yield to quite

simple executive implementation, That is, in some cases, the OSC
executive can model a complex combination of nodes without modeling
each individual node. Good examples of this type of simplification are

the eight clock controlled loops on page 3B of the formal DAIS DFG

specification, These loops were reduced to simple combinations of
gates and tasks in the tuned DFG. The control selectors which monitor
each loop have been subsumed into each loop task and are manifested

as software signals which enable and disable the appropriate gates.

The technique of combining control selectors into a combination
with the task which produces the controlling data and allowing the skeletal
master task for this combination to produce the appropriate software
signals was used throughout the tuned DFG to eliminate the unnecessary

overhead of treating each control selector as a separate node,

P4B (4/sec)
CLAEG) 4 GT'AT46

(DG)
c13-
C154 s C15+(EG)

AD27A it
(EG) (2/8ec)
FORMAL DFG TUNED DFG MODEL

15

FORMAL DG

on the left side of page 4A of the formal DI,

’

which apecifies which signal has occurred,

16

Sometimes representation of a control structure in terms of
DEG symbols is rather awkward, A case in point ia the group of nodes
which ultimately controls the gate on clock signal 1’1 in the lower left
corner of page 2A of the formal DG, What is specified ia much simpler
than it appears, namely control selector C3, C4 and C10 all control the
gate., The executive implementation reduces to a simple enabling or dia-
abling of the gate by software signals generated in the skeletal master

taaks for the task combinationas AT01l and A'T09 on the tuned DG,

PIA (8/sec)

aT'PIA

TUNED DEG MODET,

Froquently, a useful simplification iz to replace a large number of
software signals by a single picce of data containing identification of the

signal, One example of thia is the cluster of zignaled taska (195, T90, eote,)

The task descriptions pro-

vided as part of the specitication reveal that the software signals (S1H, Slo,
ete,) controlling these tasks are mutually exclusive, Because of this it is

possible to replace all those signals with a single signal and a data word

The associated tasks can be bound into a single task combination signaled

by the new signal, The skeletal task for the combination can use the data

word as an index in a SWITCH statement to dispatch control to the appro-~

priate subtask,

TUNED DFG MODEL

FORMAL DFG

Another example of a simplifying signal/data trade involves the

tasks at the top of page 413 of the formal DFG. Here, many signalled con-

trol links select an output device for T86, Instead, the control signals
can be combined into a simple bit mask which is updated by the control

tasks and read by T86 to select the proper output device,

S ————

T SO

-

T80

FORMAL DFG TUNED DFG MODEL

18

1.2.2,5 Partitioning

Many factors must be considered in partitioning the DFG among
processors, The fact that the formal DFG was designed for a four
processor system but had to be partitioned for a two processor asystem
made careful consideration of these factors critical, These factors in-
clude memory usage balance (for both executive and applications), func-
tional isolation to avoid total system failure in the event of a single
processor failure, processor time requirements, transfer rates along
inter-processor links, distribution of source sink load, and allocation
of subaddresses, Generous detail in the formal DFG is an important

aid to effective partitioning,

In partitioning the DAIS DG all these factors were conaidered,
The result consists of a well balanced two processor partitioning of an
application intended for four processors., Most of the inter-processor
communication is from processor 0 to processor 1, Data is sent from
processor 0 to processor 1 each time a data selector which is asynchron-
ously accessed (at a high rate) by processor 1 is updated by processor 0.,
Proceasor 0 also requires asynchronous access to some data selectors
in processor 1, namely 43, 44 and 52, These accesses occur at a low
rate while updating in processor 1 occurs at a high rate, Hence, rather
than sending this data via DTF each time it is updated, processor 0 sends
a request for the data (requiring transmission of one data word) when it

is needed. Processor 1 then responds by sending back the requested data,

1.2.2.6 Other Possible Simplifications

Because of the desire to demonstrate various executive features,
not all possible simplifications were applied to the formal DAIS DFG., In
particular, more tasks could have been combined into larger taaks, For
example, tasks running at one rate could be combined with tasks running
at a slightly higher rate, Although such tasks would be executed at a
higher rate than required, thus consuming more processor time, gains
in reduced executive overhead obtained through elimination of taska and

clocks might more than compensate for this apparent inefficiency,

Tasks T89, T90, and T91 present an instance where a signal/data

trade could have been made eliminating two task nodes, two clock pins,
three signals and three gates., In this simplification the gating signals
produced by T87 would be replaced by a data word which selects the

appropriate subtas't in a combination task including T89, T90, and T91,

1.2.3 Final DFG Model

The following subsections (1,2,3.1 - 1.2, 3.4) present the results
of the DFG complexity reduction process as applied to the DAIS mission
DFG. The notation used is not the formal DFG notation but an adaptation
of this notation which corresponds more closely to the OSC executive
constructs which model a DFG. The meaning of each symbol used is

specified in the subsection which follows,

Appendix B includes working DFG's which were drawn at various
stages in the tuning process. The final tuned version which follows is
the result of repeated application of all the tuning techniques described in
the preceding sections. The constructs which are included in the final
tuned version arc only those which require active management by the OSC
executive far correct DFG operation. Constructs not requiring executive

management were omitted to simplify the diagram.

Although all of the tuning methods described were applied, two of
them account for most of the simplification achieved. One is the combina-
tion of tasks which are activated under identical conditions into larger tasks.
Tkis tuning method is described in Section 1. 2,2.2. The resulting task
combinations created for the Dais mission DFG are listed in Section 1. 2., 3, 4,
The other frequently used tuning technique is limiting of intertask preemption.
This technique is described in Section 1,2.2.1. Although the mission re-
sponse requirements do not mandate any intertask preemption, preemption
of the longest executing tasks was permitted in order to demonstrate the
executive's full capabilitiecs. The preemption structure for the processor

0 DFG is:

all other
processor 0
tasks
preempt
preempts

Tasks which cannot preempt one another can share access to data selector
storage nodes without executive intervention. It is for this reason that
only a few of these nodes appear in the final tuned DFG. The storage nodes
which do appear are exactly those whose access must be managed by the
executive to avoid contention among tasks which can preempt one another.
It is also the reason that several tasks appear to have no data inputs and/or

outputs (in particular task combinations AT55, AT68, AT81, and AT86).

Some of the task nodes in the final DFG do not appear in the original
formal DFG. These nodes are special purpose nodes which aid the executive

in initialization and failure detection. They are described in detail below.

Special Processor 0 Nodes

1) RFIN - this sink node when activated signals completion
of initialization of both processors and causes the
processor 0 executive to start its periodic clocks
running,

2) RCLK - This sink node is activated periodically by a
clock signal. It causes a special message, which
is used to synchronize the real times clocks in
both processors, to be sent to processor 1,

3) ATRPA - This task node is activated periodically by a
clock signal. KEach time it is activated, it checks
a flag which is set if a message has been received
from the other processor. If no message has been

21

received, the other processor is assumed to
have failed and its failure link (RPFAIL) is
enabled. Otherwise the flag is simply reset.

Special Processor | Nodes

1) RFIN - This sink node is activated when the processor
1 executive completes initialization. It sends a
message to processor 0 which causes link RPFIN
(remote processor finish link) to be enabled in
processor 0.

2) ATRPA - This task node has the same function as the
node with the same name in processor 0.

The numbers which appear on the data links which are input to
nodes D11 and D12 in the processor ¢ DFG also have a special meaning.
They indicate the number of times each link must be enabled before the
terminating node is activated. In effect these links function as speed
changes (discarders). This implementation of speed changers is more

efficient for discarder ratios which are integral than the discarder node

itself,

1.2.3.1 Key to DFG Models

Application Task ATxxx is index of corres-
ponding node,

Data Link — Nxx or Axx is the index of
p the DTF notification or

Control Link > 4 DAC access controller

Asynchronous Access Link . LY associated with the link

Data and Control B S aan (if any),

link to and from b

remote processor

Software signaled links

(link signaled by a task o

via executive interface O \
procedures: SIGNLEVENT,

ENBLGATE, DSBLGATE, / Q\
or SIGAC). v v

I

e

Pin (holds event time for L
the most irecent enabling). D
Clock Pin (frequency is Faon vt
given in parenthesis). l:]

GT" xxx
Gate M
Task with serialized control s be
(i. e., task runs once for LYY

each enabling of a, b, and
c even if they occur simul-
taneously),

Simple Identity (control)

\/
Data Identity
Inverter (changes enable
to disable).
DSSC":
DDSC:::

Data Selector Storage Node
(static allocation)

Data Selector Storage Node
(dynamic allocation)

23

name is index of pin

Pxxx is index of pin

GT'xxx is index of gate

SIx is index of node

DIx is index of node

IVx is index of node

SSCxxx is index of corres-
ponding static storage
controller,

DSCxxx is index of corres-
ponding dynamic storage

.controller,

Source (for tasks). Data is Dxx
read from the source when

the task is ready to be —
scheduled. When notifica-

tion is received that the sk
data has arrived, the task

is scheduled,

Source (stand alone), Data (control)
is read from the device when

the control link becomes TROxx *
enabled, notification is pro- %D“
vided when the transfer is

complete,

Sink (for tasks). Data is
written to the sink when the
task completes, If a notifi-

cation link is shown, then A
the task may not be scheduled ’ Rk
for execution again until out-

put is complete, ADxx/

Sink (stand alone). Data fcontrol | (data)

(accessed via the asyn-
chronous link) is written
to the device(s) when the
control link becomes en- =
abled, notification is provided
when the transfer is complete.

a

NDxx

Node which becomes active
whenever a, b, or c is
enabled, a, b, and ¢ never
occur simultaneously,

ADxx is the access-controller

on the task node's begin access
list which causes the source to

be read. Dxx is the name(s) of
the device(s) read, NDxx is the
notification code provided by DTF
when the data has been read.

RDxx is the index of the source
nad e (RL node), Dxx is the
name(s) of the device(s) read,
NDxx is the notification code
provided by DTF when the data
has been read.

ADxx is the index of the access
controller on the task node's
end access list which causes
the data to be written, Dxx is
the device name(s), NDxx
(optional) is the notification
code provided by DTF when
the data has been written,

RDxx is the index of the sink
node (RL node), Dxx is the
device name(s), NDxx is the
notification code provided by
DTF when the transfer is
comblete.

Link which enables a gate, 'E’_._.DM
Link which disables a gate, '_D_G’___DM

Link which can enable or
disable a gate,

(EG/DG)
—>\/)
Link to remote processor

which carries data selector

data.

»
NDSSxx

u ADSSxx

Asynchronous access link

. ADSS
to data selector node in a o %
remote processor, W!)en NDSSxx
task node becomes active, :

a message requesting the v,
data is sent to the remote
processor. When data is
received from the remote
processor, the task is
scheduled for execution,
Link which carries data ROaEex
from a remote data selec-
tor storage node asynchro-
nously for asynchronous DSCxx
access, i
N\ ADSSxx
\
\
J

Axx
/7

Data selector data sent in
response to asynchronous
request from a remote
processor,

NDSSxx
I, Axx Rzz

- 25

xx is name(s) of data selector
node(s) whose data is sent to

the remote processor, ADSSxx
is the access controller in the
task's end access list which
causes the transfer, and NDSSxx
is the notification code (if any)
provided by DTF when the trans-
fer is complete.

ADSSxx is the index of the

access controller in the task
node's begin access list which
causes a message to be sent

to the remote processor request-
ing the data in the data selector(s)
xx, When the data is received
DTF notifies the task node via

the notification code NDSSxx.

NDSSxx is the notification code
provided by DTF whenever

data for the data selector(s) xx
is received, DSCxx is the index
of the dynamic storage controller
for the data selector(s). ADSSxx
isthe access controller used by the
task node to gain access to the
latest dynamic copy ot the data.

When data request is received,
DTF provides the notification
code NDSSxx which causes the
sink node Rzz to become active,
The requested data is copied
from the data selector storage
node xx via the access controller
with index AxxRzz and sent to
the remote processor which
requested it,

|

1.2.3.2 Processor 0 DFG Model

PROCESSOR 0 - page 1 of 3
) \!,\ V) (u\) Nas 1

V‘
NL\O\ '}“‘“.'\",‘,“ m S0 RPA20Aec) CLKL1SAec)

CAL s
\' L(/ - WIN RPEIN |
‘ ~w ! v LI0G ATGS) ok Q{\) E D |
: ¢ |

Save—

(EG/DG) (ATR 90 an N
RS W T AN
G L G/ ATES)
%

i

v C6e
P
3 ’
- ATOV
RPFAIL
—
sl
J '—;\'\)m)h\
'Al“\'\’ ~
-
w2

rauo AnvisAbToay A et _._..“3"‘ SVINEPEAIL
A2V S
S~ Nt

DM,:N,,-M ax (0G)
NDSSAY J

PIARsec! &
ATIOY
ATOS
W ALIC)

» > 378 -‘
2) AD7R 1A A28
GIN'DS7]\} “D"’D /IG!N'LN b el

{11 min)

ML SR8 P15 S92 DAQUACK
. Mot —J [—]
MT} Sps’ 3[\\4 /
e o

‘\\
* (G
©) ns V7 {
N _\‘

aoua!

\./mel

AT

.i\ S.&' S§e sV
N ']'1?]

/ /).-) \ K.J
¢ ¥ ¥ \7 r(‘

g w5 Vi ‘
WU A ADIVEIA Al At ‘
AU NARET T | | e _ N NEAB
8§ Ry o \ \aran 4 L Jnona
L Feckd] ;- “ NP rETEY) o]
9 F / = D ,
ATHG LN Mo t = b
\/> 2 \\. I
ADM 3
\ .
é £ Waw'«u
h(\\\ l\ NS
A - .] i 7
v
(’f\ / SN’
N
l' "- oW
20

PAANBAec? 2
B
}], - ¢ \l\‘u

\
&"..- (o -
AN
,.

]

PROCESSOR 0 - page 2 of 3

2AL2 fyec) PLB(E A
Pl L
AD!G"S'I/“'-‘O
ND20 HE

\ . Nivsa
e ATIS o— ‘\
;AL'-F.-.\/
NDSS1O NO&2
SCO2

AlMT 44 &0

ADSS19 28

. SSCT20y
\
AT20L \
ADSSMIW
sse21 nk_/—/ . n
. _} NOSSI6
ALSNZ n
20 216, ADSS21 3668
e RO
T e ——— .
1w
OCe f--
»
PIB(16/50c) N 0.
sOM PLAB (O o) PIAC 0! D0 e
* N
N 7 : \ //m‘" ;
- - i‘v,1..v;‘ ”‘
“n-\.| EELI U
/ . 89 GVAT0 GY AT
Pr20120ee) FUAACIO et P e PAIO(19 sa0)
£ =i - >
[j ATRO AT

'\I\-!
ISR aa P:' ~3
&1 6l 61
~- N ~°
NOS ADSSETREEIA ADSSS T RgEte ADSSE TR0
\M

27

’Vf NDSY A
(A“‘.' y X') NOSSHA NOSSA TR Nl\\\t '

T

Processor 0 - page 3 of 3

(SR N (Afsed)

QO G G

4l EG) O
DYl R~ GV ATS2

GUATSS
oG

B » ~
(SR (O] Eas

£
(S RE

Cine (LGh

AO27A Lroe 16 e TIRTE O O Wn}
(3% [[é (S A
T Grates

Crar
oo

IS D
c1re (£G) \'
— .
€24 -
C12- (EG) DG
.
GYATSY
| G
crge (106 pen
cige Ca%e
e ATSd \\
= . . T e AD2/G)
‘ADII\.; 180 EG) pgn (1) hiadyscirgnll
S}\ (EQ)
/

GT'aT49
Gl AT
3
L ATSS
C10e

| (£Q) (€G)
|

C20

G

DT e

1.2.3.3 Processor 1 DFG Model

PROCESSOR 1 - page 1 of 1
NDSSY NDSSa7? NOSSI8 NOSE2G NOSSA NOSSS 7

3_?3‘3300‘ VEU\L N YOCs3? osciaag | {ll"ﬁc“bn (;nost‘"d ‘5861

' s ‘\‘{)\(2\-1\\‘)

AR71104

ol

PHIAROSN) NDGESIDG!

A.\664 N /'/ \ LA37rss & en o
s
¥
N % A:' 1104
r 3 \) \\ Am_ w01 ik A.,, S8'61
\7
7 X \ A"\\r\l\l\. mmm !
/ N \
/ N\ \ b
AN
’ N \
» ; : N ks \ i t\:ﬁmnm
u|11/\/ N \\ \\’\\ {A LAGETI0N
S o “
’ - A.‘ay?g‘ =N NN — p” PRAL2sec) RPALRO el IPIN
/ > N NN\ ’ / .
\ - e \\ N\
o A26BT50 8 N
|A19’381'” N —
] AN
| ¥ s
: ND&2 %N(‘N w
| (EG/DG)
} _]N« thtsec) N2
\ >
[
| ¥
\ PRB(32/sec)
: ’
: §34 (£G/OG!
i
|
f
»
1
i
|
\

- e - - e e - - = = =
'

(G Hha
N— -
o

wderte NEGESIEG)

ADGO / NDGESIDG)
SRR E \; ‘?‘ ¥
NOSS43 ,5" €32 ADG 6263
' ode
1

’
| LRavasnt
g

NDSSS2

AL2R2 \

RocT et en o)
RARE AR LU TR
3

~—

29

1.2,3.4 Correspondence of DFG Model to Formal DFG

DG Model Formal DI'G Task and Control Selector

Task Node Processor e Nodes Included o }

ATO1 0 TO01, TO2, TO3, TO4, TOS, TO06, TO7, T27, }
T87, T99, T100, C1, C2, C3, C4, C5, C6, i
C7, C14, C30 t

ATOS 0 T05, 'T06, TO7 w

ATO8 0 T08, C8 i

ATO09 0 T04, T07, TO8, T09, C10

AT12 (] T2, T62, T8S8

ATIR (\] TIO, T17, TIR, T19, T34, T35, T37, T39,
T44, T45, T60, T64, T103, C12

AT20 0 T, T3, T4, TS5, T16, T20

AT21 0 T21, T23, T24, T25, T26, T28

AT22 0 T22, Cl11

AT32 0 T332, T33

AT306 0 T29, T30, T3, T36, T40, T41, T42, '[";3,
c27

AT38 0 i e L

AT46 0 T26, T46, C13, C15

AT47 0 T206, T47, C16, C17

AT48 0 T26, T48, C18

AT 49 0 T26, T49, C19

ATH0 0 T50, TS1, C20, C21, C2e

- ATSH2 0 T26, T52, C23

ATSH3 0 T26, TS3, C24

AT5H4 0 T26, T54, C25

ATHS 0 TKS

30

DFG Model Formal DFG Task and Control Selector

Task Node Processor Nodes Included
{ ATS59 1 T59
| AT61 0 T61
. AT63 1 T63
AT65 1 T65, T66 f
AT67 1 T67 |
AT68 1 T68 |
ATT1 1 T70, T71, T73 '
‘ AT72 1 T69, T72, T93, T94, T95, T96, T97, TI8
I Cc29 %
! ATT9 1 T74, T75, T76, T77, T78, T79 |
AT80 1 T80
ATS81 1 T81, T82, T83, T84
AT85 1 T85
AT86 1 T86
AT89 0 T89
AT90 0 T90
AT91 0 T91
AT92 0 T92
AT101 0 TO8, T101
AT102 0 TO8, T102

AT104 1 T58, T104

i

Section 11

SYSTEM PARAMETERS

The system parameters are those mission parameters which
are pertinent to executive performance. The values of these parameters
are derived by examination of the constructed DFG model (discussed in
Section 1, 2) together with the supplementary information provided with

the formal mission DFG.

Some data provided with the formal DFG, though necessary in
the process of construction of the DFG model, is not directly pertinent
to executive performance; for example, the main memory space required
by each task, The information which is pertinent are the rates at which
clock firings and the asynchronous events which drive the DFG occar,
By following the flow of control from clock and external pins on-the DFG
model the rate at which each node is activated can be estimated. In some
cases assumptions about the probable action of control s<‘j--i';*t()l's, gates,
and tasks which can signal must be made, In general, the worst case
conditions (i.e., those which maximize activity) arera}.\sumed. In par-
ticular, all gates are assumed open unless some n’m‘tunlly exclusive re-
lationship is specified in which case the most severe of the mutually ex-

clusive gating conditions is assumed,

Once this detailed information about node activity has been produced,
the rate of each executive activity can be computed, FEach executive activity
can be timed by straightforward examination of the machine instructions
executed, By combining these parameters, the total worst case executive
execution time overhead may be computed. In addition, bus loading can
be computed based on the activity of nodes which are attached to /O
devices (and remote links) together with the supplementary information
to the formal DFG which provides the number of words transferred to or

from each device,

Computation of executive space overhead is more easily performed,
Program space overhead is simply the total of the space required by each
executive procedure, Data space is the total of each data structure size
(¢.g., table entry size) times the number of instances of that data structure

required to implement the tuned DEG model,

e
v

2.1 Processor 0 System Parameters

CLOCKS:

Name

P2
RPA
P19
P3
P12
P13
P1
P4
P6
P7
P9
P8
P10
CLK
P15

Totals 15 clocks

Rate # Pins
(firings/second) attached
32
20
19
16
12
10
8
4
2
1.25
1.11
1.00
0,476
0.150
0.016

[\

S T T O S O T SR

127 firings/sec 25 clock pins
223 pins/sec

37 simultaneous firings/sec

90 clock interrupts/sec

LINKS:

Periodic

Conditionally 14

periodic

Aperiodic

Control selector

Discarder
32/5
32/10
5/4

Data identity
Remote link
Gate

Simple identity
Inverter

Totals

Type
Output links

Consume links

Total

29

50 nodes

Number
Post.vﬂ

34

Activations

(per second)

157

64
16 1
5

29
60
0
8
0

347
activations/sec

Rate
(per second)

256
59
32

347

80

427 posts/sec

DATA ACCESS CONTROL:
Activity
Process begin access list
Process end access list

Process access controller
I/O request
Static copy

Dynamic block allocation

Word copied by MOV

1/0:
Activity
Master to remote switch

Remote to master switch

226
44
32

Master I/O complete notification(s) queued

Remote I/O complete notification(s) queued

I/O complete notification

»

Data transmitted (command word)

Data word transmitted

I/0O request
Static data

Dynamic data

35

195

32

Rate

(per second!
246

246

302
461

Rate

(per second)
100

100
90
5
216
507

3000

227

2.2 Processor 1 System Parameters

Pins

2
1
2
1
~1

7

155

36 simultaneous firings/sec

67 clock interrupts/sec

CLOCKS:
Rate
Name (firings/second)
P2 32
RPA 20
P11 20
P3 16
P14 15
5 clocks 103 firings/sec
NODES:

Type Quantity
Tasks

Periodic 3

Conditionally 6

periodic

Aperiodic 5

14

Data identity 1
Remote link 3

Totals 18 nodes

hed

attac

clock pins

pins/sec

Activations

(per second)

224
1
2

227
activations/sec

Number Rate

Type posted (per_second)
Output links 0 163
1 64
227
Consume links 0 227 _ é,‘!
Total 454 g

DATA ACCESS CONTROL:

Rate
Activity (per second)
Process begin access list 227
Process end access list 227
Process access controller
I/0 request 108
Static copy 40
Begin read dynamic 352
End read dynamic 352
852

Word copied by MOV 560

ST SR SS——. - - e

< I/0:

f Rate

! Activity (per second)

; Master to remote switch 100
Remote to master switch 100 ’
Master I/O complete notification(s) queued 60 i
Remote I/O complete notification(s) queued 50
1/0O complete notification 166 :
Data transmitted (command word) 60 !
Data word transmitted 561
I/0 request (static data) 110 :

r " " o oy v . i
- e e e AN L A A 4N AN A s S A .

Section III

TUNING THE EXECUTIVE

The OSC executive which results from the construction process
described in Section 1 is called the baseline executive for the mission,
It is possible that this basecline executive uses so much processor time .
and space that the mission's resource requirements cannot be met, ,
Hence, it is important that the performance of the baseline executive !
be calculated and that the executive be tuned if the performance is in-

adequate,

This section describes in detail the calculation of baseline ex-
ecutive performance for the DAIS mission, the process of tuning the

executive, and the performance of the tuned executive,

-

3.1 Baseline Executive Statistics

R Time /Second Space
(milliseconds) (words)

Processor 0

J731 Programs 296,096 7017

Assembly Language

Programs 74, 489 1301

Tables 3635

Total 370, 585 12045

Cverhead 37. 1% 36, 8%

Processor 1

J731 Programs 332,476 7017

Assembly Language

Programs 77. 882 1301

Tables 2720

Total 410, 358 11130

Cverhead 41, 0% 349,

This section presents the time and space statistics for the baseline
executives. Summaries are presented in Figures 2 and 3. It should be
noted that the baseline executive is generalized; that is, it is not dependent
on or tailored to the application DFG. The space statistics presented for
each cluster consider all programs, Separate figures are presented for

the executives containing only the necessar rograms,
I y 8

The executives have not been structured to minimize overhead
related to compiler deficiencies since this will be handled in the tuning
process, The inability to enable and disable the processing of interrupts
as inline functions and the lack of double precision fixed point items requir-
ing assembler procedures for subtracting, adding and comparing these

values contributed over 3, 5% time overhead to each processor.

40

Cluster Processor 0 Processor 1
ITC 91, 436 85,591
TIM 83,011 63,532
DAC 30, 123 58. 165
SCH 34, 635 49, 415
DTF 85. 775 88. 803
MSM 6. 829 18,983
DSP 38, 776 45, 869
Total 370, 585 410, 358
Overhead 37. 1% 41, 0%

Fig. 2 Baseline Executive Timing Statistics

T ——

Total Executive Executive
Elastes with programs used by DFG
Processor 0 | Processor 1 Processor 0 | Processor 1
ITC 5093 4151 4411 3129
TIM 888 808 810 730
DAC 1387 1312 1099 958
SCH 332 332 332 332
DTF 3484 3020 3484 3020
MSM 426 1072 426 1072
DsSp 435 435 435 435
Total 12045 11130 10997 9676
Overhead 36.8% 34, 0% 33,6% 29, 5%
Fig. 3 Baseline Executive Space Statistics

41

B e = -~ a — ——

3.1.1 ITC Baseline Statistics

e

{] AT e Time /Second Space
' 1 (milliseconds) (words)

Processor 0

[J731 Programs 88. 738 3392 '
Assembly Language
Programs 2. 698 16
Tables 1685
Total 91, 436 5093
Cverhead 9. 1% 15, 5%

Processor 1

J731 Programs 83, 806 3392
Assembly lL.anguage

| Programs 1, ?25 16

f Tables 743
Total 85.591 4151

| Overhead 8. 6% 12, 7%

3.1.1.1 Approach

The Intertask Communication cluster is responsible for overall
control of DFG interpretation. The primary data structures which control
the interpretation are the node table (NDTBL), the pin table (PINTBL),
and the link table (LNKTBL). The tasks performed by ITC include:

Processing of events signaled through pins,

Posting of enabled and disabled links.

Processing of active nodes.,

[nitiation of [/O activities (via DAC),

Processing of 1/O complete notifications,

3.1, 1,2 Definition of ITC Activities

Timing statistics for ITC were derived from the time required to

perform each ITC activity together with the rate at which each activity

P

P 35 0 g v

must be performed. The rates for each activity were obtained directly
from the tuned DFG. Since the worst case assumption that all non-mutually

exclusive gates were open was made, the timing statistics correspond to

peak load conditions,

Pins are signaled primarily through clock firings which occur at
the rate of 127 and 103 per second in processors 0 and 1, respectively,
Some clocks control more than one pin resulting in 90 and 50 additional =
pin firings per second, Associated with most of these firings are task
starts which occur at the rate of 157 and 224 (worst case) in processors

0 and 1, respectively. In addition, other nodes are activated by pin firings - i

and task completions resulting in a tctal of 347 and 227 active nodes proc-
essed per second (again, worst case).

Notifications of I/O completion occur at the rate of 211 and 105
active notifies, and 5 and 61 passive notifies per second in processors

0 and 1, respectively,

43

3.1.1.3.1

ITC Baseline Detailed Timing Statistics

Processor 0
Procedure

J731 Programs

I'TCACT
Each entry
Each notify

ITCPAS
Each entry
Each notify

NOTIFY
Pin notify
Node notify

ENDTK

ENDTKS

ACTIVE
NCSN
NDC

32/5 ratio
No output
Qutput

32/10 ratio
No output
QOutput

5/4 ratio
No output
Output

ND1

Proceasing Time
(microseconds)

18,6 + KENABLE
33.0

18.6 + ENABLE
37.4

46, 4
49,2

52,8 + ENDTSK
t DROP
F EACCSS

107, 2 + ENDTSK

t DROP
I EACCSS
b TIMIS
33,4
69, 4

51.2

59, 2

Sl &

59, 2

51, 2

G0, 2

59,0 F BACCUSS
t KACCSS

Qccurrences

/Secend

90
211

2t
159

133

24

347

29

Total
(milliseconds)

1. 674
0, 963

8.637
t90 ENABLE

0,093
0. 187

0, 280
+ 5 ENABLE

2. 645
7.823

10, 463

7.022

t 133 ENTSK
+ 133 DROP
+ 133 KACCSS
2. 5713

b 24 ENDTSK
+ 24 DROP

bt 24 WACCSS
{24 TIME
11, 590

0, 554

2. 765
0, H92

0, 563
0, 296

0. 051
0, 237

4, 504

1,728
+ 29 BACCSS
t 29 EACCS

Processing Time Occurrences Total

Procedure

{microseconds) /Second (milliseconds)
NRL 63.8 + BACCSS 60 3,828
+ EACCSS + 60 BACCSS
+ SEND + 60 EACCSS
+ 60 SEND
NSI 34.6 8 0.277
NTK 40. 4 + BACCSS 157 6. 343
+ SCHED + 157 BACCSS
+ 157 SCHED
SIGNL
Fach entry 75,2 ‘ 127 9,550
Fach additional
pin 48, 2 91 4, 386
13, 936
EPINS 74.0 24 1. 776
PLINKS
Each entry 26. 8 427 11, 444
1 link posted 24, 4 59 1. 440
3 links posted 3.2 32 2,342
15, 226
Assembler Programs
CNDPRC 7.6 347 2,637 i
EVLPRD 7.6 8 0,061]
Total 91, 436 ﬂ
+ 95 ENABLE

+ 157 ENDTSK
t+ 157 DROP

+ 246 EACCSS
+ 246 BACCSS
+ 24 TIME

+ 60 SEND

+ 157 SCHED

Overhead 9, 1%

45

- —— S

3.1,1.3.2 Processor 1

/Second

P d Processing Time Occurrences
TRESGUre (microseconds)
J731 Programs
ITCACT
Each entry 18.6 + ENABLE 60
Each notify 33.0 105
ITCPAS
Each entry 18. 6 + ENABLE 50
Each notify 37. 4 61
NOTIFY
Static pin 46. 4 2
Static node 49, 2 105
Dynamic nil 80.4 + RETCOR 61
Dynamic node 102.2 + RETCOR 1
ENDTK 52.8 + ENDTSK 121
+ DROP
+ EACCSS
ENDTKS 107.2 + ENDTSK 103
+ DROP
+ EACCSS
+ TIME
ACTIVE 33.4 227
NDI 59.6 + BACCSS 1
+ EACCSS
NR L 43,8 + BACCSS 2
+ EACCSS
NTK 40.4 + BACCSS 224
+ SCHED
46
-I "

Total
(milliseconds)

1. 116
3. 465

4,581
+ 60 ENABLE

0. 930
2,281

3.211
+ 50 ENABLE

0. 093
5.166
4,904
0. 102

10. 265
+ 62 RETCOR

6. 389

+ 121 ENDTSK
+ 121 DRCP

+ 121 EACCSS

11, 042

+ 103 ENDTKS
+ 103 DROP

+ 103 EACCSS
+ 103 TIME

9. 252

0. 060
t BACCSS
t EACCSS

0,088
+ 2 BACCSS
+ 2 EACCSS

9, 050
+ 224 BACCSS
+ 224 SCHED

N b Bt o Processing Time Occurrences Total
(microseconds) /Second (milliseconds)
SIGNL
Each entry 75,2 155 11, 656
Each additional
pin 48,2 50 2,410
14, 066
EPINS 74.0 52 3. 848
PLINKS
Each entry 26. 8 390 10. 452
1 link posted 24, 4 64 1,562
12,014
Assembler Programs
CNDPRC 7.6 227 1, 725
Total 85. 591

+ 110 ENABLE
+ 62 RETCOR
+ 224 ENDTSK
+ 224 DROP

+ 103 TIME

+ 227 EACCSS
+ 227 BACCSS

Overhead 8. 6%

3.1.1.4 ITC Detailed Space Statistics

3.1.1,4,1 Processor 0

J731 Programs

ITCINT
EGATES
EGATE
DGATES
DGATE
ITCACT
ITCPAS
NOTIFY
ELGATE
ILNK
ICNDW
DLGATE
RLNK
DCNDW
ENDTK
ENDTKS
ACTIVE
NCSN

NDC

NDI

NIV

NGT

NRL

NSI

NTK
SIGNL
QSIGNAL
DQSIGNAL
EPINS
PLINKS
DLINKS
ENBLGATE
DSBLGATE
SGNLEVENT
SIGAC

Program Data Space

J731 Programs
Not Used by DFG
ENDLG
DNDLG
NCI
NCN
NCS
NDP
NDSS

24
28
50
48
110
90
96

48

Words

2710

|
|
|
i

NFP 2

NJIN 66
NGS 50
DPINS 84
SIGNLDEVENT 34

Assembler Programs

CNDPRC/EVLPRD
Data
(see below)
TCTAL
Overhead
Size
ITC Data Structure (words)
Nodes (ND)
TK nodes 26
TKS nodes 30
nodes 12
RL nodes 12
SI nodes 8
IV nodes 10
GTN nodes 10
DC nodes 14
CSN nodes 10
Padding 20
Pins (PIN) 4
Links Vector (LNK) 1
Gates 4
Link Gates (LGT) 8
Notification
Controllers (NTF) 4

Misc. Global Variables 1

49

A p——

682
3392
16
1685
5093
15. 50/0
QOccurrences

20

11

5

7

1

2

3

4

1

1

43

31

17

18

33
Total

144

132

1685

3.1, 1.4,2 Processor l_

Words
J731 Programs ‘
ITCINT 100 a
EGATES 28
EGATE 34 |
DGATES 28 i
DGATE 32 $
ITCACT 48
ITCPAS 48
NOTIFY 176
ELGATE 128
ILNK 106
ICNDW 20
DLGATE 126
RLNK 128
DCNDW 22
ENDTK 48
ENDTKS 98
ACTIVE 30
NDI 70
NRL 76
NTK 70
SIGNL 80
i1 QSIGNAL 48
i DQSIGNAL 66
EPINS 78
PLINKS 58
ENBLGATE 34
DSBLGATE 34
SIGNLEVENT 34
SIGAC 20
Program Data Space 502
2370
J731 Programs
Not Used by DFG
ENDLG 24
DNDLG 28
NCI 50
NCN 48
NCS 110
NCSN 86
NDC 86
NDP 90
NDSS 96
NEP 2
NIV 52
50

e s BT T T AN F v

i NJIN 66

NGS 50
NGT 52
NSI 28
DPINS 84
DLINKS 36
SIGNLDEVENT 34 :
1022 :
3392 i
Assembler Programs
CNDPRC/EVLPRD 16 16
Data
(see below) 743
Total 4151
Overhead 12. 7%
i ITC Data Structure Size Occurrences Total
Node Table -
TK nodes 26 10 260
TKS nodes 30 6 180
DI nodes 12 1 12
RL nodes 12 3 36
Padding 18 1 18
506
Pins 4 15 60
Links Vector 1 5 5
Gates 4 7 28
Link Gates 8 56
Notification
Controllers 4 21 84
Misc., Global Variables 1 4 4
743

51

3.1, 1.5 ITC Sensitivity Analysis

The most important factors affecting ITC overhead are the number
of nodes and the rates at which they become active. The rate at which ITC
processes active nodes is 347 per second in processor 0 and 227 in proc-
essor 1, Handling of these active nodes and posting of their attached links
accounts for 55% of the time spent in ITC. In particular, active node dis-
patching alone (procedure ACTIVE) accounts for approximately 12% of
ITC overhead,

Handling of DTF I/O complete notifications at the rates of 216 in
processor 0 and 167 in processor 1 accounts for approximately 20% of ITC

time.

Signaling of pins proceeds at the rates of 228 and 205 in processors

0 and 1 accounting for approximately 15% of ITC overhead.

52

3.1.2 TIM Baseline Statistics

Bio i Time/Second Space
RELE (milliseconds) (words)

Processor 0

J731 Programs 45,539 589

Assembly Language

Programs 37.472 159

Tables 140

Total 83,011 888

Cverhead 8. 3% 2. 7%

Processor 1

J731 Programs 28,413 589

Assembly Language

Programs 35,119 159

Tables 60

Total 63.532 808

Qverhead 6. 1% 2. 5%

3.1.2.1 Approach

The Timing cluster has several primary tasks:

e maintain system time

e notify tasks when clock interrupts occur

These tasks are performed by maintaining a list of clocks in each processor.
Processor 0 has 15 clocks; processor 1 has 5. Clock A interrupts are
fielded by INTCKA, which invokes CLOCKQ to signal the appropriate tasks.
It also maintains the clock queue by inserting the clock with the new firing
time onto the queue in the appropriate place. The procedure SETCLOCK is
called to set timer A to interrupt at the firing time for the first clock on the
list., If the time as already passed, SETCLOCK will return a value indicating
this.

Clock B is used to synchronize time in each processor, This is done

by INTCKB, which is called once every 6, 5537 seconds,

53

3.1,2.2 Definition of TIM Activities

‘The processor may be in the executive or an application task
when an interrupt occurs, There are 127 clock timings per secdpd
on the processor 0 DFG, and 103 for processor 1, Of these, at most 90
on processor 0 and 67 on processor 1 are actual interrupts causing INTCKA
and CLOCKQ to be entered. The remainder are simultaneous firings for

which only one interrupt occurs.

The scheduler must also manipalate times in order to schedule

application tasks, In addition, TIME is called by a number of clusters,

54

3,1.2.3 TIM Baseline Detailed Timing Statistics

3.1.2.3.1 Processor 0

Procedure

J731 Programs

CLOCKQ
Times entered
Simultaneous
firing

Assembler Programs

SETCLOCK
Timer set
(worst case)

TSUM
From CLOCKQ
From SCHED

TGTR

TRUE

from CLOCKQ
FALSE

from CLOCKQ
TRUE

from SCHED
FALSE

from SCHED

TIME

Processing Time
(microseconds)

375.7 + ENABLE

316.9

21.8

20,4

21. 8
23,8

21.8

12.8

55

QOccurrences
/Second

90
37

90

127
157

655
127
236

235

48

Total

Overhead

Total
(milliseconds)

33,814

11, 725

45,539
+ 90 ENABLE

1. 962

2.591
3.203

5.790

15,597
2,769
5.617

5,123
29. 106

0,614

83.011
4+ 90 ENABLE

8. 3%

3.1,2,3.2 Processor 1

Bt ee e s Processing Time Occurrences Total
(microseconds) /Second (milliseconds)
J731 Programs
CLOCKQ #
Times entered 296.4 + ENABLE 67 19, 859 i
Simultaneous I
firing 237.6 36 8.554 l
28,413 1
+ 67 ENABLE }
Assembler Programs :
SETCLOCK i
Timer set
(worst case) 21,8 67 1,461
TSUM
From CLOCKQ 20, 4 103 2.101
From SCHED 20, 4 224 4,570 4
TGTR . 5
TRUE
from CLOCKQ 23.8 285 6,783
FALSE
from CLOCKQ 21.8 103 2.245
TRUE
from SCHED 23,8 336 1,997
FALSE
from SCHED 21,8 336 7.325
24,350
TIME 12. 8 206 2.637
Total 63,532
+ 67 ENABLE
Overhead 6. 4%

56

= - . —~— e ——————

e e o D e T -

3.1.2.4 TIM Baseline Detailed Space Statistics

3,1.2.4.1 Processor 0

Words
J731 Programs ;
TIMINT 20 |
STARTCLOCK 112 .
CLOCKQ 154
SETALARM i’ 102
CLRALARM - i
(not used) 78]
Program Data Space 123
589 .
Assembler Programs i
Interrupt handlers 40
SETCLOCK 24
TIME 16
TSUM/TDIF/TGTR 64
Program Data Space 15
159
Data
Clock Table 136
Miscellaneous items 4
140
Total 888
Overhead 2. 7%
3.1.2.4,2 Processor 1
J731 Programs
Same as Processor 0 589
Assembler Programs
Same as Processor 0 159
Data
Clock Table 56
Miscellaneous items __ 4
60
Total 808
Cverhead &+ 0%

o

el

3.1.2.5 Sensitivity Analysis

The prime determinant of overhead is the structure of the clock
queue, Fach attempt to insert a clock on the list requires 57, 0 micro-
seconds for each clock on the list with an earlier firing time. Processors
0 and 1 average 5, 16 and 2, 77 clocks, respectively, for each insert. This
is 3. 7% overhead on processor 0 to insert clocks 127 times each second,

and 1, 6% overhead for processor 1.

Two other factors affecting overhead are beating clocks and missed
firing times, When two or more clocks fire at the same time, only one clock
interrupt is taken, When a firing time is missed, the interrupt is processed
even though the physical interrupt did not occur. Both of these actions take

less time than actual interrupts.

3.1.3 DAC Baseline Statistics

Time/Second Space
Processor (milliseconds) (words)
Processor 0
J731 Programs 28,479 1044
Assembly Language
Programs 1. 644 16
Tables 327
Total 30. 123 1387
Overhead 3. 0% 4. 2%
Processor 1
J731 Programs 56.389 1044
Assembly Language
Programs 1.776 16
Tables 252
Total 58, 165 1312
Overhead 5. 8% 4, 0%

3.1.3.1 Approach

The Data Access Control cluster manages access to global data
(data accessed by more than one task), and initiation of 1I/0 activities
(via DTF). DAC interfaces with ITC via the interface procedures BACCSS
and EACCSS. These procedures process lists of access controllers which
contain information about the type of access required. According to the

access type, control is dispatched within DAC to process each requested

access operation.

3.1.3.2 Definition of DAC Activities

Processing of nodes (primarily task nodes) by ITC results in 246
and 227 calls to BACCSS and EACCSS per second in processors 0 and 1,

59

respectively, FEach call involves the processing of an access list result-
ing in a number of accesses of each possible type occurring each second,
The rates at which each access type occurs were collected from the rate
of each node activation together with the accesses required by that node

as specified on the tuned DFG,

60

3.1.3.3 DAC Baseline Detailed Timing Statistics

3.1.3.3.1 Processor 0

AR Processing Time Occurrences Total
(microseconds) /Second (milliseconds) |
J731 Programs]
BACCSS
Each entry 20. 4 246 5.018
Each AC i
processed 24,8 130 3.224
8. 242 ‘i
EACCSS ‘
Each entry 20, 4 246 5.018
Each AC
processed 24,8 172 4,226
9. 284
BWD 42,8 + GETCOR 32 1,370
+ 32 GETCOR
ESWS 48. 6 34 1. 652
BSRS 68. 4 10 0. 684
CSTN 38.0 + SEND 8 0. 304
+ 8 SEND
CST 33.4 + SEND 25 0. 835
+ 25 SEND
USTN 32.0 + SEND 151 4, 832
+ 151 SEND
UST 25.8 + SEND 10 0. 258
+ 10 SEND
UuDT 31.8 + SEND 32 1.018
+ 32 SEND
Assembler Programs
CPYD
Each entry 16. 4 44 0. 722
Words copied 2,0 461 0. 922
1, 644
Total 30. 123
+ 32 GETCOR
+ 226 SEND
Overhead 3.0%

61

3.1.3.3.2 Processor 1

] Processing Time Occurrences

Processor (microseconds) /Second
J731 Programs
BACCSS
Each entry 20, 4 227
Each AC
processed 24,8 407
EACCSS
Each entry 20, 4 227
Each AC
processed 24,8 445
BARD 31.8 352
ERD 26, 8 352
ESWS 48. 6 40
USTN 32.0 + SEND 103
UsT 25,8 + SEND 5
Assembler Programs
CPYD
Each entry 16. 4 40
Words copied 2.0 560
Total
Overhead
62

Total
(milliseconds)

4,631

10, 094
14,725

4,631

11,036
15, 667
11,194
9.434
1. 944

3.296
+ 103 SEND

0.129
+5 SEND

0.656
1. 120
L1176

58. 165
+ 108 SEND

5. 8%

3.1,3,4 DAC Baseline Detailed Space Statistics

3.1.3,4,1 Processor 0

Static Storage Controllers (SSC) 4
Extra Static Blocks (SSB)

for extra copies of 4
certain data blocks 17
26

Words
J73I Programs
DACINT 150
BACCSS 70
EACCSS 100
BARS 36
BWD 42
ESWS 46
CSTN 34
CST 30
USTN 28
UST 22
UDT 34
Program Data Space 158
756
J731 Programs
Not Used by DFG
BARD 34
BSRD 22
BSRS 20
EAWD 54
EAWS 38
ERD 40
ESWD 80 288
Assembler Programs
CPYD 16 16
Data
(see below) 327
Total 1387
Overhead 4. 2%
DAC Data Structure Size (words)
: Access Controllers (A) 4
; Dynamic Storage
Controllers (DSC) 4

Occurrences
62
1
5

3 12

1 17

1 26

Total
248

20

55
327

i b

3.1.3.4,2 Processor 1

J731 Programs

DACINT
BACCSS
EACCSS
BARD
BARS
ERD
ESWS
USTN
UST

Program Data Space

J731 Programs
Not Used by DFG

BSRD
BSRS
BWD
EAWD
EAWS
ESWD
CSTN
CST
UDT

Assembler Programs

CPYD

Data
(see below)

Total
Overhead

DAC Data Structure
Access Controllers (AC)

Dynamic Storage
Controllers (DSC)

Static Storage
Controllers (SSC)

Extra Static Blocks (SSB)
for extra copies of
certain data blocks

22
20
42
54

80
34

30
34

Size
4

20

64

At a9

Words
690
354
16
252
1312
4, 0%
Occurrences Total
36 144
10 40
3 12
2 16
2 40 56
252

3.1.3.5 DAC Sensitivity Analysis 1

The important factors contributing to DAC overhead are the number
of access lists processed per second and the number of access controllers
in these access lists, Management of the processing of these lists (not i
including the processing of each individual access controller) accounts for .
approximately 55% of DAC overhead while individual access controller :

processing accounts for the remaining 45%.

In processor 0, 24% of DAC time is spent processing I/O request
access controllers while in processor 1 only 6% is spent here. In both :
processors the rates at which static data is copied is fairly low: substan- |
tial increases in these rates would be required if more frequent task pre-
emption were allowed. For example, if 400 static blocks averaging 10
words had to be copied per second, DAC overhead in processor 0 would
nearly double, In processor 1 a substantial amount of read access to

dynamic data is handled (352 accesses per second) accounting for 35%

of DAC overhead.

65

3.1.4 SCH Baseline Statistics

P Time /Second Space
Tososgnr (milliseconds) (words)

Processor 0

J731 Programs 34,635 332

Assembly Language

Programs

Tables

Total 34,635 332

Overhead 3.5% 1, 0%

Processor 1

J731 Programs 49,415 332

Assembly Language

Programs

Tables

Total 49, 415 332

Overhead 4.9% 1. 0%

3.1.4.1 Approach

The Scheduling cluster orders the execution of application tasks,
It interfaces with ITC and DAC via procedure SCHED which is called to
schedule a task for execution., SCH maintains a queue structure which
holds all scheduled tasks not yet executed and all tasks which have been
partially executed and then preempted. Tasks in the scheduling queue

are ordered by deadline and by preemption rules.

When a task completes, DROP is called by ITC to remove the
task from the scheduling queue, The dispatcher (DSP) examines the
top of the scheduler queue and either restarts the active task or starts
a new task, If a new task is started, AUTASK is called to manipulate

the queue so that the task is on the active task stack,

66

& 3.1.4.2 Definition of Activities

The important parameter affecting SCH overhead is the number
of task starts per second (157 in processor 0, and 224 in processor 1).
Each task execution implies one SCHED call, one AUTASK call, and
one DROP call, Calls to SPRTIM (two per task start) are not included
in the baseline timing statistics but are discussed separately in Section

3. 1. 4. 5.

Pt i

At each SCHED call the queue is searched until the first pre-
emptable task is found (usually the idle task). The new task is inserted
into the queue of tasks scheduled to preempt that task according to its i

deadline. i

A A o

3.1.4.3 SCH Baseline Detailed Timing Statistics

3.1.4.3.1 _Processor 0 |

Prctedine Processing Time Occurrences Total
(microseconds) /Second (milliseconds) i
J731 Programs !
SCHED
Each entry 106. 8 + TSUM 157 16,768
Each task not + TGTR
preemptable 28. 4 157 4, 459
Each task |
more urgent 24,2 + TGTR 157x2 7.599 |
28. 826 H
+ 157 TSUM |
+ 471 TGTR |
AUTASK 12, 4 157 1. 947
DROP 24,6 157 3. 862
Total 34,635
+ 157 TSUM
+ 471 TGTR
Overhead 3.5%
3.1.4.3.2 Processor 1
Pricadure Processing Time Occurrences Total
(microseconds) /Second (milliseconds)
J731 Programs
SCHED
Each entry 106.8 + TSUM 224 23,923
Each task + TGTR
not preemptable 28,4 224 6.362
Each task
more urgent 24,2 + TGTR 224x2 10, 842
41, 127
+ 224 TSUM
+ 672 TGTR
AUTASK 12, 4 224 2,778
DROP 24,6 224 5.510
Total 49,415
+ 224 TSUM
+ 672 TGTR
Overhead 4, 9%
68
i
|

3.1.4.4 SCH Baseline Detailed Space Statistics

3.1.4.4.1 Processor 0

Words
h' J731 Programs
SCHINT 12
SCHED 120
AUTASK 12
DROP 28
SPRTIME 88
Program Data Space 72
332
Data
None
Total 332
Overhead 1, 0%
3.1.4.4.2 Processor 1
Words
J731 Code
Same as Processor 0 332
Data
None
Total 332
Overhead 1. 0%

69

e Riappssinemnds

3.1. 4.5 SCH Sensitivity Analysis

Scheduling is the most frequently occurring activity (157 per second
in processor 0, 224 per second in processor 1) which requires a search,
However, the size of the queue at any given time is not particularly large
since it only includes tasks ready to run which have not been run. Hence
much of the scheduler overhead (approximately 50%) is due to loop setups
in SCHED and actual insertion of tasks into the queue. The total time

required by SCH is proportional to the number of task starts/sec.

Part of the work performed in scheduling is the numerous calls
to TSUM and TGTR to perform double precision functions. The overhead
for these calls was included in the TIM cluster baseline timing statistics.
Had it been included with SCH, the SCH overhead would be approximately

40% higher than it was in both processors.

Overhead involved in computing spare time for all tasks in the
schedule queue was not included because it is essentially a testing tool.
The overhead was, however, computed separately and the timing statis-
tics are presented below. Overhead for calls to TIME, TSUM, TGTR
and TDIF are included,

Spare Time Computation Timing Statistics

Processor 0

SPRTIME
Each entry 53.0 157 x 2 - 16, 642
Each task in queue 122, 4 15tz 2 %3 115, 300
Total 131, 943
Overhead 13, 2%
Processor 1
SPRTIME
Each entry 53.0 224 x 2 23, 744
Each task in queue 122, 4 224x2x3 164, 506
Total 188, 250
Overhead 18. 8%

70

3.1.5 DTF Baseline Statistics

p Time/Second Space
Necsshor (milliseconds) (words) |
Processor 0 !
J731 Programs 57.515 1192
Assembly Language
Programs 18. 260 946
Tables 1346 r
Total 85. 775 3484
|
Overhead 8. 6% 10, 6% f
Processor 1 §
J731 Programs 70.543 1198
Assembly Language
Programs 18. 260 946
Tables 882
Total 88. 803 3020
Overhead 8. 9% 9.2%

3.1.5.1 Approach

Processor 0 is specified as the head processor. This requires it

to perform certain tasks not done by processor 1. These include:

Synchronizes system time in the other processor,

Coordinates system initialization by taking master
control of the bus, sending an initialization signal,
and passing bus control to the nonhead processor.

Tasks that are performed by both processors include:

. Error recovery and retry associated with bus commands,

Passing control of the bus from processor to processor
according to a deadline priority scheme,.

® Dynamic construction of command word lists from a
fixed memory list as events occur,

71

Two of these tasks are the prime contributors to time overhead:

° Passing bus control uses 4, 8% of processor 0, 1 0%
of processor 1,

® Construction of command word lists uses 4, 0% of
processor 0, 1, 9% of processor 1.

3.1.5.2 Definition of DTF Activities

The procedure BCI2 is responsible for controlling the bus. There
is a tradeoff between the overhead associated with the number of times it
passes bus control and the ability to meet response requirements ifthe bus is
held for too long. The timing statistics are based on an average time for
holding the bus of five milliseconds, thereby taking control and relinquishing
it 100 times each second. The average time holding the bus is controlled by
two factors; the length of the command word list and the amount of bus fill
time introduced. Bus fill time is the time the processor with bus master
control uses the bus to receive dummy data from the other processor. The

bus fill time can be set within the BCI2 program,

The system response requirements are such that an average bus
hold time in excess of ten milliseconds would be adequate, thus cutting
the control passing overhead by more than one half. However, it is felt
that a five millisecond average would be more representative for most

systems,

!'-* B e el Y o

A raage -

3.0,.58,3

DTF Baseline Detailed Timing Statistics

3.1,5.3.1 Processor 0

Procedure

J731 Programs

DTFACT
ITCACT to be queued

No ITCACT notification
requirement

Dynamic storage data
transmitted

DTFPAS

Each entry

ITCPAS to be queued
Each block of data rec'd

DTFKEY
SENDYN

SEND
Allocated entry

Allocated additional
command word/entry

Allocated notify
Unallocated entry

Unallocated additional
command word/entry

Unallocated notify

Assembler Programs

BCI2
Take control of bus

Relinquish control of bus

Processing Time
(microseconds)

45,8 + QUEUE

38,8

21,6 + RETCOR

Occurrences

/second

90

10

32

158, 0 100
1.4 + QUEUE 5
27. 4 5
63, 4 100
66,6 32
76.2 195
55,8 262
15,8 195
104, 6 40
84,2 10
15, 8 20
114, 6 100
68,0 100
Total
Overhead
73

Total
(milliseconds)

4, 122
. 388

. 691

5,201
+ 32 RETCOR calls
+ 90 QUEUE calls

15, 800
. 007
. 137

15, 944
+ 5 QUEUE calls

6. 340

2,130

14, 860

14, 620
3. 080
4, 180

. 840
. 320
37.900

11, 460
6. 800

18, 260
85, 775
8. 6%

s TR NS R Ko
el e
G T

3.1,5,.3.2 Processor 1

Procedore Processing Time Qccurrences Total
(microseconds) /second (milliseconds)
J731 Programs |

DTFACT j
ITCACT to be :
queued 45,8 + QUEUE 60 3.984
No ITCACT
notification req. 38,8 40 1.552

i 5.536

J +60 QUEUE calls
DTFPAS
Each entry 364, 0 100 36. 400

] ITCPAS to be

queued 1.4 + QUEUE 50 . 070

i Each block of
statically allocated
data received 27. 4 5 Sl

Each block of
dynamically allocated
data received 47.4 + GETCOR 60 2, 844

i : 39,451
+60 GETCOR calls
+50 QUEUE calls

DTFKEY 63,4 100 6. 340
SEND
Each entry 76.2 110 8. 382
Fach additional
command
word/entry 55. 8 165 9.207
Each notify 15, 8 100 1,627
19, 216
Assembler Programs
BCI2
Take control of
bus 114, 6 100 11, 460
Relinquish
control of bus 68,0 100 6. 800
18, 260
| Total 88, 803
f Overhead 8. 9%

74

3.1.5.4 DTF Baseline Detailed Space Statistics

3.1,5.4.1 Processor 0

J731 Programs

RDYBUS

DTFINT

DOWN

FLIP

DTFPAS

DTFACT

DTFKEY

SENDYN

SEND

Program Data Space

Assembler Programs

BCIU interrupt handlers to transfer control,

synchronize time, support monitoring of

24
190
52
168
208
102
62
62
208
116

other processors, do all bus message retries

and determine failures

BCIU initialization
BCIU interrupt and error handling
setting new priority

Data

DEVTBL Device list table
CWTBL Command word table
CWQCWP - Queued CW indexes

88
846
12

36
636
41

MNOTFY - Master/ITC notification buffer 110
RNOTFY - Remote/ITC notificationbuffer 24
RCODE - Remote/ITC notification codes 5
FLPDEV - Failed device CW queue 40
Miscellaneous Items J731 21
Subaddress Pointer Words 118
Storage for Executive 'Signals’ 6
Scratch Storage 32
Priorities [left as 4 Processor Case] 5
Miscellaneous Items Assembler 32
Command Word Storage 240
Total
Overhead

75

Words

1192

946

1346

3484
10, 6%

3.1,5.4,2 Processor 1

J731 Programs

Same as Processor 0 1192

Assembler Programs |

Same as Processor 0 946 :
Data
DEVTBL - Device list table 40
CWTBL - Command word table 246
CWQCWP - Queued CW indexes (not used) 1
MNOTFY - Master/ITC notification buffer 30
RNOTFY - Remote/ITC notification buffer 70
RCODE - Remote/ITC notification codes 15
FLPDEV - Failed Device CW Queue 30
Miscellaneous Items J731 21
Subaddress Pointer Words 110
Storage for Executive 'Signals' 12
Scratch Storage 32
Priorities [left as 4 Processor case] 5
Miscellaneous Items Assembler 30
Command Word Storage 240
3 882
Total 3020

Overhead 9.2%
3.1.5.5 Sensitivity Analysis

There are two primary factors affecting the overhead of DTF. The
first is the tradeoff between the overhead associated with each bus control
transfer and meeting response requirements. The amount of overhead
increases linearly with each transfer of control; however, if the number

of transfers is reduced, the average length of time the bus is controlled

between transfer of control increases and it becomes more difficult to meet

response requirements.

The second factor is the amount of data that must be transferred be-
tween processors. The effect on the overhead can be seen by examining the
executives. Each time control is received, DTFPAS is entered. In processor 0,
where up to five blocks of data can be received, each entry takes 158, 0 micro-
seconds to process, contributing a total of 1, 6% to overhead, However, processor 1
canreceive up to fifteen blocks of data, This requires 364, 0 microsecondsto process
for a total of 3. 6% overhead., Thisisanincrease of 2%, directly attributable tothe
additional ten blocks of data that can be transferred.

76

3.1, 6 MSM Baseline Statistics

T

Time/second Space
Procesacy (milliseconds) (words)
Processor 0
J731 Programs 6. 829 258
Assembly Language
Programs
Tables 68
Total 6. 829 426
Overhead « 7% 1.2%
Processor 1
J73I Programs 18, 989 358
Assembly Language
Programs
Tables 714
Total 18, 989 1072
Overhead 1. 9% 3.2%

3.1.6,1 Approach

Each executive maintains a list of free blocks. Each allocated block
will be 34 words long and use space from the first block on the list, When
a block of storage is returned, it is placed in the list in ascending order by
address. If a block is contiguous at either end, it will be compacted with
the contiguous block to keep one larger block on the list,

3.1. 6.2 Definition of MSM Activities

When storage is allocated by a call to GETCOR, it comes from the
first block of storage that is large enough. The block may be the exact size
required, or it may be larger leaving a smaller block of the remaining space

on the list,

m

T e g g P

When a block of storage is returned, it may be contiguous to other
blocks on the free list. In addition, it is placed in the appropriate place

on the list.

In processor 0, there are at most two GETCOR calls in a row

followed by two RETCOR calls,

In processor 1, there are fourteen

GETCOR calls. This is followed by at most seven GETCOR calls before

any storage is returned,

3.1.6.3 MSM Baseline Detailed Timing Statistics

3,1.6.3.1 Processor 0

Procedure
J731 Programs

GETCOR
RETCOR

First on list, contiguous

at end
First on list, not

contiguous at end

Second on list, contiguous

both sides

3.1.6.3.2 Processor 1
Procedure

J73I Programs

GETCOR
Exact fit

Extra space

RETCOR

Not contiguous

Contiguous both ends

Contiguous front

Contiguous end

Processing Time
(microseconds)

101.0

109. 4

105.0

137, 8

Processing Time
(microseconds)

151. 6
160, 8

137. 8
154, 2
149. 8
142, 2

78

Occurrences Total
/second (milliseconds)

32 3.232

24 2,626

4 . 420

4 . 551
3.597
Total 6. 829

Overhead . T%

Occurrences Total
/second (milliseconds)
31 4,700
31 4,985
9, 685
15 2.067
15 2.313
16 2,397
16 2. 275
9,298
Total 18. 983
Overhead 1,99,

o

3.1.6,4 MSM Baseline Detailed Space Statistics

3. 1 6.4.1 Processor 0

Words
J731 Programs
GETCOR 142
RETCOR 166
MSMINT 18
Program Data Space 32
358
Data
Two blocks _68
Total 426
Overhead 1.2%
3.1,6.4.2 Processor 1
Words
J731 Programs
GETCOR 142
RETCOR 166
MSMINT 18
Program Data Space 32
358
Data
Twenty-one blocks _714
Total 1072

Overhead 3.2%

3.1.6.5 Sensitivity Analysis

The primary factor affecting both space and time is the sequencing
of calls to GETCOR and RETCOR. If the calls are interspersed and random,
then a free list is created. As the free list gets longer, the time to process

and the number of blocks of storage required increases linearly,

79

3.1, 7 DSP Baseline Statistics

P Time /Second Space
FREesaor (milliseconds) (words)
Processor 0 '
J731 Programs 24.361 110
Assembly Language
Programs 14, 415 164
Tables 69
Total 38.776 343
Overhead 3. 9% 1. 0%
Processor 1
J731 Programs 24,867 110
Assembly Language
Programs 21,002 164
Tables 69
Total 45, 869 343
Overhead 4. 6% 1. 0%

3.1.7.1 Approach
The Dispatching cluster controls the assignment of the processor

to executive and application tasks, Tasks to be run in executive mode are
queued (by interrupt handlers) through calls (some inline) to QUEUE, When-

ever an executive task completes it returns through the DSP program
DQUEUE which dispatches the next executive task in that queue until it
is empty.

When all executive tasks are complete, the dispatcher either
restarts the application task which was interrupted or starts a new more

urgent application task,

80

3.1. 7.2 Definition of DSP Activities

The dispatcher tends to be the most active cluster in the executive,
Entries via DQUEUE occur at each interrupt (200 bus and 90 clock in
processor 0 and 200 bus, 67 clock in processor 1) and at each task comple-
tion (157 in processor 0 and 224 in processor 1), Hence, assuming worst
case, tasks are restarted 290 and 267 times a second, and started 157 and
224 times a second in processor 0 and 1 respectively., Restarting inter-
rupted or preempted tasks involves manipulation of the stack and restoring
of all registers and the machine state. Starting of new tasks requires a

call to the schedule function AUTASK and allocation of a stack frame,

DSP also contains assembly programs ENABLE and DISABL which

are called by other clusters.

81

3.1.7.3

DSP Baseline Detailed Timing Statistics

3.1.7.3.1 Processor 0

Processing Time

Procedure s
(microseconds)
J731 Programs
QUEUE 20, 6
DQUEUE
Each entry

Task ends
DTF interrupt returns
TIM interrupt returns

16, 2

Each item queued
DTF queueing

Interrupts in executive
24,8

DSPTSK
Interrupt returns 26.0
Task starts 19,8 + AUTASK

Assembler Programs

CEXCPR 6.0
RSTART 24,6
START 8.8
ENDTSK 7.8
ENABLE 4,4
DISABL 4, 4

Total
Overhead

82

QOccurrences
/Second

95

157
200

90

447

95

87 (30% of 290)

182

290
157

182
290
157
157
185
629

2, 768

3.9%

Total
(milliseconds)

1,957 :

7.241 |

4,514
11, T95

7.540
3.109

10. 649
+ 157 AUTASK

1, 092
7.134
1,382
1. 225
0.814

38.776

Fy—,_—-—.__r—-—,w—r e

3.1,7.3.2 Processor 1

Processing Time Occurrences Total
Procedure (microseconds) /Second (milliseconds)
J731 Programs
QUEUE 20.6 110 2,266 {
DQUEUE !
Each entry
Task ends 224
DTF interrupt returns 200
TIM interrupt returns 67
16, 2 491 7.954
Each item gueued
DTF queueing 110
Interrupts in executive 80 (30% of 267)
24,8 190 4.712
12,666
DSPTSK
Interrupt returns 26.0 267 5.500
Task starts 19.8 + AUTASK 224 4, 435

+224 AUTASK

Assembler Programs

CEXCPR 6.0 190 6. 840
RSTART 24,6 267 6.568
START 8.8 224 1.971
ENDTSK 7.8 224 1,747
ENABLE 4, 4 200 0. 880
DISABL 4.4 681 . 2,996
Total 45, 869
Overhead 4, 6%

3.1.7.4 DSP Baseline Detailed Space Statistics

3.1.7.4.1 Processor 0

J731 Programs

DSPINT 78
QUEUE 16
DQUEUE 36
DSPTSK 26
ENDTSK 10
Program Data Space 36

Assembler Programs

ENABLE/DISABL 8
CEXCPR 6
START/RSTART 18
Machine initialization/
Fault handling 132

Data

EXCQ - executive
task queue 6
initialization handler
transfer addresses 32
Machine initialiasation/
fault handling 31

Total
Overhead

3,1,7.4.2 Processor 1

J731 Programs
Same as Processor 0
Assembler Programs
Same as Processor 0
Data
Same as Processor 0
Total
Overhead

Words

202

164

69
435

1.3%

Words

202

164

69
435
1.3%

3.1.7.5 DSP Sensitivity Analysis

Approximately 40% of the time spent in the dispatcher is spent
in queueing and dequeueing executive tasks. This operation is triggered
at each task completion and each interrupt. These occur at the com-
bined rate of 447 per second in processor 0 and 491 per second in proc-
essor 1 (worst case). Approximately 30% is consumed in restarting
interrupted application tasks, and 20% in starting and finishing tasks,
The remaining 10% is consumed in performing the interrupt enable and

disable functions for various J73I programs in the executive.

3.1.8 SSM Baseline Statistics

Secondary Storage Management is not implemented.

3.1.9 MPL Baseline Statistics

Multiprocessor Locking is not implemented.

3.1.,10 Bus Traffic

There are two events which control the amount of activity on the

bus. The first is passing control of the bus. This requires sending two

data words, one command word and one status word. In addition, there
is a delay of 57. 2 microseconds each time control is passed. Control

is passed 100 times each second.

The second event causing bus traffic is the transmission of data.
Each transmission causes a command word, status word and the data
word to be sent, There is a transmission for each command word allo-
cated on calls to SEND. The number of data words sent is derived from i

the data associated with each command word.
Fachdata word requires 20 microseconds to send.

The statistics for each processor are summarized in the following

sections, The transmissions include both device and interprocessor
data.

AD=A055 902 SOFTECH INC WALTHAM MASS F/6 9/2 i |

OPERATIONAL SOFTWARE CONCEPT 0SC EXECUTIVE EVALUATION/REFINEMEN==ETC(U) N
AUG 77 M G WILLOUGHBY» C K HITCHON F33615-76-C-1192

UNCLASSIFIED 1025=3 AFAL=TR=77-87

NL
202
]

END

DATE

FILMED

8 -/8:

poc

i ‘ 3.1,10.1 Processor 0

Occurrences Words Transmitted
/Second /Second

Passing control 100 400
Data transmissions 507 1014 l
Data words 3000 “;
i
{
}

4414 words
2.0 microseconds/word
88, 28 milliseconds

Idle time 5,72 milliseconds |
Total 94, 00 ‘
Overhead 9, 4%

3.1.10.2 Processor 1

Occurrences Words Transmitted
i /Second /Second

Passing control 100 400]
Data transmission 275 550 .
Data words 6500

{ 7450 words
2. 0 microseconds/word

149, 0 milliseconds

Idle Time 5.2 milliseconds
Total 154, 72
Overhead 15, 5%
3.1,10,3 Interprocessor Bus Traffic
3.1.10,3.1 Processor 0 to Processor 1
Occurrences Words Transmitted
/Second /Second
Data transmissions 60 120
Data words 561
Negligible asynchronous
transmissions

—

‘ 681

3.1,10.3.2 Processor 1to Processor 0

Negligible - all asynchronous

transmissions
Total of all 681 words
interproces- 20 microseconds/word
sor traffic 43 (5 milliseconds |
Overhead 1. 4% |

3.2 Tuning for HOL Inefficiencies

3.2.1 Overview

This section provides examples of efficiency gain by recoding

J731 executive procedures into DAIS assembly language. The approach
taken is to recode procedures such that they could be inserted into the

executive as a replacement for the J73I procedures, Further, recoding
is done with the same limitations that apply to the compilers; primarily,
procedure linkage conventions must be adhered to, procedure calls must

be made, and state variables may be modified across procedure calls.

The intention of this section is to obtain an understanding of the
extra OSC executive overhead associated with inefficiencies in code

generated by the compiler,

3.2.2 Examples

Examples have been selected from three executive function
clusters: CLOCKQ from the TIM cluster, SEND from the DTF cluster
and QUEUE and DQUEUE from the DSP cluster. These examples were
selected as representive of all features of the code that comprises the
executive. Timing statistics are based on the system performance

parameters of processor 0,

3.2.2,1 CLOCKQ

The hand coded version of CLOCKQ is shown in Appendix A,
Figure A. 1, Overhead comparisons between the baseline and handcoded

versions are as follows:

87

- ————~ — — e ———

R

Time/Second Space
(milliseconds) (words)
Baseline Version 45,539 182
Handcoded Version 20, 085 102
Percentage Reduction over 55, 9% 44, 0% ‘I
Basgeline Version % * .

3.2.2,.2 SEND
The handcoded version of SEND is shown in Appendix A, Figure A, 2,

!
Overhead comparisons between the baseline and handcoded versions i
B
[

are as follows:

Time /Second Space
(milliseconds) (words)
Baseline Version 37,900 240
Handcoded Version 21,123 149
Percentage Red uction over ’
Baseline Version 44, 3% 37. 9%

3,2,2.3 QUEUE and DQUEUE

The handcoded versions of QUEUE and DQUEUE are shown in
Appendix A, Figure A, 3,

Overhead comparisons between the baseline and handcoded

versions are as follows:

Time/Second Space

(milliseconds) (words)
Baseline version 13,712 61
Handcoded version 8,504 39
Percentage reduction over 38, 0% 36. 1%
Baseline Version

88

3.2,3 Summary

The effect on the OSC executive of eliminating compiler code in-
efficiency can be estimated as a 48,2% reduction in time and a 40, 0%
reduction in space, This estimate is derived from the composite effi-

ciency gain shown in the previous three examples,

3.3 Tuning by Reducing Generality

3.3.1 Overview

This section provides examples of efficiency gain resulting from

removing executive generality not required for a specific DFG.

3.3.2 Examples

The examples used and the efficiency comparisons made are based

on the results of Section 3.2, Tuning for HOL Ineffiencies.

3.3.2.1 CLOCKQ

The excess generality of CLOCKQ with respect to the processor 0
DFG requirements exists only in the ability to handle alarm clocks. The
recoded version of CLOCKQ without alarm clock capability is shown in
Appendix A, Figure A.4, Comparisons between the handcoded version

of Section 3, 2 and the recoded version of this section are as follows:

Time/Second Space
(milliseconds) (words)
Handcoded version 20, 085 102
No excess generality version 19,374 98
Percentage Reduction over
handcoded version 3.5% 3.9%

3.3.2,2 SEND

The processor 0 DFG does not require SEND to support unallocated
master receive and remote receive subaddresses, The recoded version of
SEND with the above capability removed is shown in Appendix A, Figure A, 5,

Comparisons between the handcoded version and the version of this section

89

are as follows:

Time/Seconds Space

(milliseconds) (words)
Handcoded version 21,123 149
No excess generality version 19,915 88
Percentage Reduction over 5. 7% 40. 9%
handcoded version

3.3.2.3 QUEUE and DQUEUE

QUEUE and DQUEUE contain no excess generality,

3.3.3 Summary

The removal of excess generality from the executive is estimated
to yield an efficiency improvement of 3, 9% in time and 22, 4% in space,
However, the space reduction is closely coupled with the complexity of
the DFG. Extremely complex DFGs may require all the features of
the executive and allow for no generality reduction while simple DFGs

could allow on the order of a 50% or more space reduction,

The structure of the executive is such that additional capability
can be added relatively easily with an impact on space rather than time.

The results of this section tend to validate that statement.

()0

3.4 Tuning for HOL Language Deficiencies

i e il

3.4.1 Overview

This section provides examples of efficiency gain that would result
from additional tanguage features in the J731 compiler. The primary |
language featurea desired for the OSC executive are a built-in function

(BIF) capability and a more powerful inline capability,)

The built-in function capability would allow certain machine instruc-
tions to be accessed by the HOL directly rather than through procedure |
’ calls to assembly language programs, The efficiency gain is largely
j derived by having the necessary instructions generated in-line, thereby

’ circumventing the procedure linkage overhead and the required register

v

. flushing, The built-in functions most desired for the OSC executive
are interrupt enabling and disabling, jump (branch to an address), and
double precision fixed point arithmetic (although a double precision fixed

point language feature would be more desirable).

An inline feature using an INLINE directive would be much more

desirable from the inline point of view rather than the somewhat obscure

and inflexible DEFINE,

3.4.2 Examples

The examples used in this section are derived from the same pro-

cedures used in the two previous sections,

3.4.2.1 CLOCKQ

CLOCKQ makes extensive use of double precision fixed point
arithmetic. The large efficiency gain observed is due primarily to per-
forming this arithmetic inline, The recoded version of this section

is shown in Appendix A, Figure A, 6,

Comparisons between the C LOCKQ version of Section 3, 3 and the

recoded version of this section are as follows:

i

Time /Second Space

(milliseconds) (words)
No excess generality version 19,374 98 ‘
HOL deficiencies removed version 10,223 62 i
Percentage reduction over N 47, 2% 36, 7%
no excess generality version

3.4.2,2 SEND

The recoding of SEND to eliminate HOL deficiencies shows limited

improvement, The improvement comes mainly from the ability to manage

registers more effectively due to the absence of procedure calls, The

recoded version of SEND is shown in Appendix A, Figure A. 7,

Comparisons between the SEND version of the previous section

and the version of this section is as follows:

Time/Second Space

(milliseconds) (words)
No excess generality version 9. 915 88
HOL deficiencies removed version 16. 957 83
Percentage reduction over 14, 9% 5. 7%
no excess generality version

3.4.2,3 QUEUE and DQUEUE

The recoding of QUEUE and DQUEUE showed no change in QUEUE
and a marked improvement in DQUEUE due to including DSPTSK inline
and making a direct jump to the queued procedure rather than through a
procedure call to CEXCPR,

Comparisons between the handcoded versions of QUEUE and
DQUEUE from Section 3, 2 (no change was observed by eliminating excess

generality) and the version of this section are as follows:

92

g b
|
|
“ |
Time /Second Space
(milliseconds) (words)
1
Handcoded version 8,504 39 |
1
HOL deficiencies removed vergion 4, 386 27 !
b
Percentage reduction over 48, 6% 30, 8% !
handcodad version ;
3,43 Summary F

The removal of the language deficiencies deacribed in this section

from the J731 compiler would yield an estimated efficiency improvement
of 34, 0% in time and 23, 6% in space for the OSC executive,

3.5 Final Tuning

3.5.1 OQverview

The tuning steps described in sections 3. 2 through 3, 4 yielded

an efficiency gain of 67, 5% in time and 64, 4% in space for the selected

examples. The composite results of the stepwise tuning for CLOCKQ,
SEND, QUEUE, and DQUEUE are shown below,

P~

Time /Second Space
(milliseconds) (words)
Baseline 97.151 483
Tuned by removing the
inefficiencies and deficiencies 31,566 172
and excess generality
Perce.ntage re_:duction over 67. 5% 64. 4%
baseline version

The following performance can be expected by applying the results

of the three-step tuning process to the executives of processor 0 and

processor 1, The space statistics reflect a reduction in program space only,

Data structures were not tuned,

Processor 0 Processor 1
Executive Cverhead Executive Overhead
Time Space Time Space
Baseline 37. 1% 33.7% 41, 0% 29. 2%
Tuned* 12, 1% 20.1% 13, 3% 17.3%

_—
Tuning limited to removing HOL inefficiencies and deficiencies and

excess generality,

94

e e <

The final tuning phase involves global modifications to the

executives that result from the three-step tuning process,

These global modifications are described in the following

subsection,

3.5.2 Final Tuning Description

The final tuning process involves examining the executive as a
whole, and studying the flow of data and control between its parts in an
effort to reduce or eliminate the overhead involved in communication
among these various parts. In performing this process, the functional
boundaries delineated by function clusters and individual procedures may
be blurred and in some cases lost altogether. The result of final tuning
is therefore not only a smaller, faster executive but also an executive
whose parts are intricately interwoven, Such an executive is likely to

be difficult to understand, modify, and debug.

In the case of tuning the OSC executive for the DAIS mission, the
final tuning process was not necessary to meet mission requirements but
was performed in order to demonstrate the method and measure of its
efficacy, The estimated reduction in executive time overhead resulting
from the final tuning process was about 9, 0% of the tuned overhead or
only 2, 7% of the baseline version overhead, That is, 3, 9% of the total
overhead reduction is attributable to final tuning and 90, 1% to all other
tuning methods, In view of this and the drawbacks of final tuning mentioned
above, the process should be applied only when mission requirements

cannot otherwise be met,

The types of optimization applied in the final tuning process in-
clude:

® Global allocation of registers throughout the executive,
Global allocation of registers reduces and in some
cases eliminates the need for movement of operands
back and forth between the register file and main
memory, even over procedure calls, State-of-the-art
compilers are capable of this type of optimization but
generally limit the allocation to local variables within
a single procedure,

Q5

e ar— - ~a e——

e

Examples of this global allocation are the dedication

of a register to the active node stack (ANODE) through -
out ITC processing and the dedication of a register to
the executive control queae (EXCQ) throughout the
executive,

Inline expansion of calls between function clusters,
Here the meaning of the term inline expansion is ex-
tended to mean the absorption of the actions of part
or all of one function cluster into another function
cluster., For example, in the final tuned version,
CLOCKQ (in the TIM function cluster) performs the
functions of SIGNL (in the ITC function cluster) by
stacking the nodes activated by each clock firing and
then transferring control to ITC to process the active
node stack when all fired clocks have been processed.
Note this is not the same as a direct inline expansion
of the cail to SIGNL in CLOCKQ. A direct expan-
sion would result in a call to ITC to process active
nodes for every clock firing thus incurring more
TIM/ITC linkage overhead.

Elimination of procedure call/return linkages where
possible. In many cases execution of executive pro-
cedures follow one another in a predictable sequence.
In such cases it is possible to reduce overhead by
substituting direct transfers for the usual procedure
call/return mechanism. For example, in the base-
line executive, ENDTK always calls ACTIVE and

then DQUEUE which either transfers control to
another executive task or to the dispatcher but never
returns. There is no need for ACTIVE to return to
ENDTK or for DQUEUE to return to ACTIVE. In the
final tuned version, ENDTK transfers directly to
active node processing which in turn transfers directly
to DQUEUE when the active node stack is empty.
DQUEUE itself transfers directly to the next executive
procedure on the executive control queue (EXCQ) or,
if the queue is empty, then to DSPTSK which dispatches
an application task, Naturally some flexibility may be
lost in that such procedures are inseparably tied to a
particular flow of control and therefore may not be
called individually,

0 6

i

3.6 Final Tuned Executive

R Time/Second Space
(milliseconds) (words)

Processor 0

J731 Programs 1678

Assembly Language

Programs 110, 730 2007

Tables 3558

Total 110, 730 7243

Overhead 11, 1% 22, 1%

Processor 1

J731 Programs 1708

Assembly Language

Programs 113, 220 2095

Tables 2482

Total 113,220 6285

Overhead 11, 39, 19,2%

methods previously described.

Figures 4 and 5,

The tuned executives were created by using each of the tuning

for each cluster,

Summary statistics are provided in

Q7

The following sections will provide detailed statistics

!'l

98

Cluster Processor 0 Processor 1
ITC 23,628 24,741
TIM 16, 610 11, 150
DAC 9, 001 17. 903
SCH 8. 330 12, 141
DTF 39, 354 32,306
MSM 0. 000 0,000
DSP 13,811 14, 982

Total 110, 734 113, 223

Overhead 11, 1% 11, 3%

Fig. 4 Final Tuned Executive Timing Statistics

Cluster Processor 0 Processor 1
ITC 3257 2315
TIM 368 288
DAC 699 624
SCH 60 60
DTF 2589 2082
MSM 83 729
DSP 187 187

Total 7243 6285

Overhead 22.1% 19.2%

Fig, 5 Final Tuned Executive Space Statistics

; 3.6.1 ITC Final Tuned Statistics

p = Time /Second Space

FRRERS (milliseconds) (words)
Processor 0
J731 Programs 970 '
Assembly Language
Programs 23,628 602
Tables 1685
Total 23,628 3257 “
Overhead 2. 4% 9. 9%
Processor 1 ;
J731 Programs 970 _;'
Assembly Language f
Programs 24,741 602 ‘
Tables 743 :
Total 24, 741 2315 :

f

Overhead 2.5% 7.1% %

3.6.1.1 1TC Tuning Approach

The reductions in I'TC functionality described below account for much
of the space reduction and a gignificant improvement in speed. All frequently
called procedures were written in assembly language. In general, calls to
small procedures in other function clusters were expanded into inline assem-

bly code. In particular, this was done for calls to ENDTSK, DROP, RETCOR,

and TIME, Internal function cluster procedures ACTIVE, EPINS, EGATES,

and DGATES were also expanded inline, The interface procedure SIGNL was
eliminated altoget':zr, thus requiring the TIM cluster to perform this function
inline, Procedure linkages were simplified and in some cases eliminated al-
together. For example, each active node processing procedure simply sends

control to the active node procedure for the next node on the active stack., A

99

e

dummy node always at the botten: of the stack automatically transfers
control to DQUEUE when all active nodes have been processed. Registers
were allocated on an executive wide basis, and saving and reloading around

procedure calls was eliminated.

Data structures owned by ITC were not modified (e. g., node table,
pin table, links vector, gate table). However, some reduction in table
space (especially the node table) could have been achieved by removing
data items required only by unsupported functions (e.g., ND'ETIME which

contains a task node's maximum execution time).

3.6.1.2 Functional Differences with Baseline

° Only node types TK, TKS, CSN, GT, SI, DI, DC,
IV, RL are required.

® Of the node types implemented, only GT checks for
disabled inputs.

° Only the '+' link of the CSN node is implemented,
e No consume links are posted,

° Only pin and links block gates are implemented.

®

A links block gate may modify only the LINKS'BLK
links block,

) A maximum of four output links are allowed for each
node,

) RL node does not invoke EACCSS,

100

R S -~

ST WSS R N

T

- o e e

3.6,1,3 ITC Final Tuned Detailed Timing Statistics

3,6,1,3,1 Processor 0

N SR Processing Time Occurrences Total
ce (microseconds) /Second (milliseconds)
Assembler Programs
ITCACT
Each entry 18, 2 90 1, 638
Each notify 11, 4 211 2, 405
‘ 4,043
| ITCPAS
Each entry 18,2 5 0,091
| Each notify 11, 4 5 0,057
0, 148
NOTIFY
Pin notify 31. 4 57 1, 790
Node notify 20, 4 159 3, 244
5,034
ENDTK 37.4 + EACCSS 133 4,974
; + 133 EACCSS E
{ ENDTKS 74.6 + EACCSS 24 1. 790
. + 24 EACCSS
NCSN 16, 4 8 0,131
NDC
32/5 32x2
No output 18,2 54 0, 983
Output 26,2 10 0, 262
32/10 16
No output 18.2 11 0, 200
Output 26,2 5 0, 131
5/4 5
No output 18,2 1 0,018
Output 26,2 -+ 0, 105
1, 699
NDI 24,4 + BACCSS 29 0. 708
t EACCSS + 29 BACCSS
+ 29 EACCSS
NRL 13,8 + BACCSS 60 0, 828
t SEND + 60 BACCSS
+ 60 SEND
NSI 16, 4 8 0,131

101

Procedure

L NTK

PLINKS
Each 0 link post
Each 1 link post
Each 3 link post

3.6.1.3.2 Processor 1

Procedure

Assembler Programs

ITCACT
Each entry
Each notify

ITCPAS
Each entry
I Each notify

NOTIFY
Static pin notify
Static gate notify
Static node notify
Dynamic nil notify
Dynamic node

notify

ENDTK

ENDTKS

NTK

NDI

NKL

PLKO

PLK1

Processing Time Occurrences Total

(microseconds) /Second (milliseconds)
14,6 + BACCSS 157 2,292

+ SCHED + 157 BACCSS

+ 157 SCHED

2.0 98 0. 196
12, 4 59 0.732
28.8 32 0. 922
1. 850
Total 23,628

+ 246 BACCSS
+ 186 EACCSS

Overhead 2. 4%
Processing Time Occurrences Time
(microseconds) /Second (milliseconds)
18.2 60 1.092
11, 4 105 1, 197
2. 289
18.2 50 0.910
11, 4 66 0,752
31.4 2 0.063
10,0 2 0.020
20. 4 105 2,142
30. 8 61 1. 879
41,2 1 0,041
4, 145
37.4 121 4,525
74.6 103 7.684
14,6 224 3,270
24,4 1 0, 024
13.8 2 0, 028
2.0 160 0, 320
12. 4 64 0. 794
Total 24, 741
Overhead 2. 5%

102

e = - S
F: ¥ TR fos e
-

3.6.1.4 ITC Final Tuned Detailed Space Requirements

3.6.1.4.1 Processor 0 : |

Words
J731 Programs |
ITCINT 100 i
ELGATE 128 f
ILINK 106
; ENDLG 24
i‘ ICNDW 20
i DLGATE 126
RLNK 128
DNDLG 28
: DCNDW 22
; ENBLGATE 34
DSBLGATE 34
SIGNLEVENT 34
SIGNLDEVENT 34
SIGAC 20
Program Data Space 132
970

,E Assembler Programs

ITCACT 30
ITCPAS 30
NOTIFY 84
NDI 24
NIV 20
NGT 22
NRL 18
NCSN 24
NDC 26
EGATE 14
DGATE 14
DQSIGNAL 30

103

Assembler Programs (Continued)

DLINKS

PLINKS

ENDTK

ENDTKS

NSI

NTK

Program Data Space

Data

Same as baseline

3,6.1.4.2 Processor 1

J731 Programs

Same as processor 0

Assembler Programs

Same as processor 0

Data

Same as baseline

104

26
46
42
104
16
16
16

Total

Overhead

Words

970

602

743
Total

Overhead

602

1685
3257

9, 9%

2315

7.1%

3,6.1.5 ITC Sensitivity Analysis

The time overhead in the final tuned ITC is about 28% of the

baseline version's overhead in both processors. A slightly higher per-

centage (60%-70%) of ITC time is spent in processing active nodes
This is due to absorption of segments of other
Most

than in the baseline,
functions into inline code, in particular the posting of clock pins.

of the active node processing is of task nodes: hence a doubling of the
number of tasks or their rates of execution would result in approximately
a 50% increase in ITC overhead, or 1,2% of total processor overhead.

The remaining 30% to 40% is consumed in processing I/O complete noti-

fications,
Program space is dramatically reduced by the elimination of

unnecessary generality and the compaction resulting from hand coding.

105

A ——

PO T —

3.6.2 TIM Final Tuned Statistics

Do okaann Time /Second Space
i (milliseconds) (words)

Processor 0

J731 Programs 158

Assembly Language

Programs 16.610 70

Tables 140

Total 16. 610 368

Overhead 1. 7% 1.1%

Processor 1

J73I Programs 158

Assembly Language

Programs 11, 150 70

Tables 60

R
Total 11, 150 288
Overhead 1. 1% 0.9%

|
|
1
E

3.6.2.1 TIM Timing Approach

The functions TIME, TGTR, TSUM, TDIF were expanded as inline
assembly code wherever called and therefore are not implemented as
procedures in this cluster, SETCLOCK and SETALRM were merged
into CLOCKQ which was recoded in assembly language. The interface
between CLOCKQ and ITC was modified so that the functions performed
by SIGNL in ITC were done inline in CLOCKQ. Instead of calling ACTIVE
for each enabled pin, CLOCKQ stacks the activated nodes and exits by
transferring control to the active node procedure for the first notle on
the stack,

A more efficient method of handling the timer interrupt (INTCKA)

was devised., This method of handling interrupts is discussed in section
3.6.7. 1.

The TIM owned data structures were not modilied,

106

F’”'W"";’r' » TR ST T, an G ™ i e Tk e S TP m — -
3.6.2,2 Functional Differences with Baseline
] One shot alarms are not implemented.
3,6.2.3 TIM Final Tuned Detailed Timing Statistics
3,6.2.3.1 Processor 0
Précadiss Processing Time Occurrences Total
% ¥ (microseconds) /Second (milliseconds)
Assembler Programs
INTCKA
From application task 24,0 81 1. 944
From executive task 15.0 9 0. 135
2.079
CLOCKQ
Entries 13.2 90 1, 188
Clock firings 42,8 127 5.436
Multiple pin clocks 18,6 96 1,786
Pass first clock on list 16,2 127 2,057
Pass additional clocks
on list 8.0 508 4,064
14,531
Total 16. 610
Dverhead 1. 7%
' 3.6.2,3.2 Processor 1
Processing Time Occurrences Total
Procedure (microseconds) /Second (milliseconds)
Assembler Programs
INTCKA
From application task 24,0 60 1, 440
From executive task 15,0 9 0, 135
1,575
CLOCKQ
Entries 13,2 67 0, 884
Clock Firings 42,8 103 4, 408
Multiple Pin Clocks 18, 6 52 0.967
Pass first clock on list 10, 2 103 1, 668
Pass additional clocks
on list 8.0 206 1, 648
9,575
Total 11, 150
Overhead 1, 1%
107

3,6.2.4 TIM Final Tuned Detailed Space Statistics

3,6,2.4.1 Processor 0

Words
J731 Programs
TIMINT 20
STARTCLOCK 112
Program Data Space 26
158
Assembler Programs
CLOCKQ 70
70
Data
Same as baseline 140
Total 368

Overhead i.1%

3.6,2,.4.2 Processor 1

Words

J73I Programs

Same as processor 0 158
Assembler Programs

Same as processor 0 70
Data

Same as baseline 60

Total 288

Overhead 0.9%

108

-

3.6.2.5 TIM Sensitivity Analysis

The time overhead in the final tuned version is about 20% of
the untuned version's overhead., Searching the clock list to insert a
clock which has just fired accounts for about 30% of the processing.
Additional independent clocks result in more clocks firing per second |
and more clocks to search through on the queue after each firing,
Hence, TIM overhead is a function of the product of firings/second

and the number of independent clocks,

3.6.3 DAC Final Tuned Statistics g |

Time /Second Space A
Frocesscr (milliseconds) (words) ;
Processor 0 :
J731 Programs 172 "
Assembly Language
Programs 9,001 200
Tables 327
Total 9,001 699
Overhead 0. 9% 2.1%
Processor 1
J731 Programs 172
Assembly Language
Programs 17.903 200
Tables 252
Total 17.903 624
Overhead 1. 8% 1.9%

3.6.3.1 DAC Tuning Approach

All frequently called procedures were recoded in assembly
language, The calls to procedures RETCOR avd GETCOR in MSBM were

coded inline as simple stacking/unstacking operations (all dynamic storage

blocks being the same size), Internal procedure CPYD was coded inline

as a MQV instruction, The access functions required were BWD, FESWS,

BSRS, CSTN, CST, USTN, UST and UDT,

The processing of access lists was handled in a manner similar to
the handling of the active node stack in ITC, BACCSS and EACCSS start
the processing by transferring to the begin or end access procedure res-
pectively for the first access controller, FEach access procedure then
transfers control to the appropriate access procedure for the next controller
on the list, Fach list is terminated by a dummy access controller which

causes control to be returned divectly to the caller of BACCSS or EACCSS.

The DAC owned data structures were not modified,

3,0.3,2 Functional Differences with Baseline

® Only the functions BACCSS, EACCSS, BARD, ERS, BWD
BSRS, ESWS, CSTN, CST, USTN, UST and UDT are impie-
mented,

8.6.3.3 DAC Final Tuned Detailed Timing Statistics

3.6.3.3.1 Processor 0

Procedure (*j\:?::::;:gn’cli‘;‘)ne OCC?SX‘::::;S (mil'{i(::gonds\
Assembler Programs
BACCSS 8. 6 224 1. 926
EACCSS S. 6 1o+ 1. 410
USTN 15, 4 151 2. 3235
UST 11, 8 10 0.118
uDpT 16, & 32 0.518
CSTN 1¢. 6 8 0. 140
CST 14, 4 25 0. 360
BWD 18,2 3 0. 582
ESWS 15. 0 34 0.530
BSRS X7, 0 10 0. 170
Words copied via
MOV instruction 2.0 401 0, 922
Total 9. 001
Overhead 0. 9%

110

[eyt

3.6.3.3.2 Processor 1

A Pr?cessing Time Occurrences Total
(microseconds) /Second (milliseconds)
Assembler Programs |
BACCSS 8.6 227 1. 952
EACCSS 8.6 225 1,935 J
USTN 15, 4 103 1.586
UST 11,8 5 0. 059
BARD 16, 6 352 5. 843
ERD 17.0 352 5. 984 |
ESWS 13.6 40 0.544]
Total 17. 903 j

Overhead 1., 8% it
3.6.3.4 DAC Final Tuned Detailed Space Statistics

3,6.3.4.1 Processor 0 |

Words :
J731 Programs i
DACINT 150 '
Program Data Space 22
172

Assembler Programs

BACCSS 8
EACCSS 8
BARD 16
EARD 22
CST 14
USTN 14
UST 12
uDT 14
BWD 18
BRS 16
EWS 14
CSTN 16
Program Data Space 28

200

Data
327

Total 699

Same as baseline

Overhead 2.1%

3.6.3.4.2 Processor 1

Words
J731 Frograms
Same as processor 0 172 |
Assembler Programs '
Same as processor 0 200
Data {
Same as baseline 252
Total 624

Overhead 1.9%

3.6.3.5 DAC Sensitivity Analysis

The time overhead in the final tuned version of DAC is about 30%

of that in the baseline version, Copying of data in static storage blocks

accounts for 10% of DAC overhead in processor 0 and 5% in processor 1.

In both processors the rates at which static data is copied is relatively

I e

low. If the system response requirement and sharing of data were such

that 400 static blocks averaging 10 words had to be copied every second,

then the DAC overhead in processor 0 would be doubled.
i

3,6.4 SCH Final Tuned Statistics

Time/Second Space
Frosessos (milliseconds) (words)
Processor 0
J731 Programs 16
Assembly Language
Programs 8.330 44
Tables
Total 8.330 60
Overhead 0. 8% 0.2%
Processor 1
J731 Programs 16
Assembly Language
Programs 12, 141 44
Tables
Total 12, 141 60
Overhead 1.2% 0.2%

e

3.6.4.1 SCH Tuning Approach

The outside calls to procedures DROP and AUTASK were recoded

as inline assembler code.

Pata structure used by SCH were not modified,

3.6,4,2 Functional Differences

° Spare task execution time is not computed,

was dropped since it is not required in a checked out system.

Overload flag is not used.

113

The spare time computing procedure (SPRTIM)
SCHED was
coded in asasembler language thus eliminating calls to TGTR and TSUM.,

3.6.4.3 SCH Final Tuned Detailed Timing Statistics

3.6,4.3.1 Processor 0

Procedure

Assembler Programs
SCHED entries

Active tasks not
preemptable

More urgent tasks

3.6.4.3.2 Processor 1

Procedure

Assembler Programs
SCHED entries

Active tasks not
preemptable

More urgent tasks

Processing Time Occurrences
(microseconds) /Second
28.4 157
9.8 157
8.0 314
Total
Overhead

Processing Time Occurrences
/Second

(microseconds)
28.4 224
9.8 224
8.0 448
Total
Overhead

114

Total
(milliseconds)

4, 459
1,359
2.512

8. 330
0. 8(70

Total
(milliseconds)

6. 362
2.195
3,584

12, 141
1. 270

o ————

]

3.6.4.4 SCH Final Tuned Detailed Space Statistics

3.6.4.4.1 Processor 0

J731I Programs
SCHINT
Program Data Space

Assembler Programs
SCHED

Data
None
Total

Overhead

3.6.4,.4.2 Processor 1

J731 Programs

Same as processor 0

A:zsembler Programs

Same as processor 0

Data

None
Total

Overhead

115

Words

16

44

60

0.2%

Words

16

44

60
0.2%

NevR— -—"'"l"_v . F

3.6,4.5 SCH Sensitivity Analysis

The time overhead in the final tuned version of SCH is approxi-
mately 25% of the untuned version. In the tuned version as in the baseline
version, loop setup and actual insertion accounts for approximately 50%
of the overhead. The overhead is directly proportional to the number
of tasks scheduled per second .nes the average number of tasks which
are in the queue and are more urgent. In contrast to the clock queue
which gets longer with each additional clock, the scheduler queue length
tends to remain nearly empty, Tasks are removed from the queue as
fast as they are inserted except at brief beats where several tasks are

scheduled nearly simultaneously,

3.6.5 DTF Final Tuned Statistics

ghatasrlal Tix}\e/second Space
(milliseconds) {(words)

Processor 0

J731 Programs 0 270

Assembly Language

Programs 39,354 1051

Tables 1268

Total 39, 354 2589

Overhead 3. 9% 7. 9%

Processor 1

J731 Programs 0 300

Assembly Language

Programs 32,306 1139

Tables 643

Total 32,306 2082

Overhead | 3. 2% 6, 4%

116

o

3.6.5.1 Tuning Approach

DTF tuning consisted of deleting the generalities associated with
dynamic subaddress allocation, priority, bus control passing, and dynamic
storage when they were not required, including ENABLE, DISABL, QUEUE,
DQUEUE, GETCOR and RETCOR inline and straight line coding of the loops
in DTFPAS. Space was reduced additionally by removing head only code in

processor 1 and non-head only code in processor 0.

3.6.5.2 Functional Differences with Baseline

The following are differences between the baseline executive and the
final tuned executive in processor 0:

Control is passed on a round robin basis.

.
® Only one remote receive subaddress field.

@ One dummy word is transmitted when control is passed.
° Dynamic storage for remote receive not supported.

° Unallocated subaddresses for master receive not

supported.

The same differences occur in processor 1. The following additional

differences exist:

Dynamic /unallocated subaddresses for master transmit
not supported.

Dynamic storage remote receive is supported,

117

T o

3.6.5.3 DTF Final Tuned Detailed Timing Statistics

3.6.5.3.1 Processor 0

Procedure Processing Time

(microseconds)
Assembler Programs

DTFACT
ITCACT to be queued 21,6
No ITCACT notification

req. 16,0
Dynamic storage data

transmitted 23,8
DTFPAS
Fach entry 26, 4
ITCPAS to be queued 9.2
Each block of data received 8.8

DTFKEY 29.0
SENDYN 29,0
SEND
Allocated entry 28.8
Allocated additional

comniand word/entry 27.2
Allocated notify 9.6
Unallocated entry 48.8
Unallocated additional

Command word/entry 47.2
Unallocated notify 9.6
BCI2
Take control of bus 79.2

Relinquish control of bus 48, 4

118

Qccurrences Total
/second (milliseconds)
\
90 1. 944 !
10 . 160
32 . 762 i
2, 866
100 2, 640 E?
5 . 046 g
5 . 044 :
2,730
100 2. 900
32 . 928
195 5. 620
262 7.130
195 1, 870
40 1.952
10 . 472
20 . 190
17,170
100 7.920
100 4, 840
12, 760
Total 39, 354

QOverhead 3. 9%

3.6.5.3.2 Processor 1
PR Processing Time Occurrences Total |
(microseconds) /asecond (milliseconds) |
Assembler Programs |
DTFACT
ITCACT to be queued 15,6 60 . 936 f
No ITCACT notification i
required 10,0 40 . 400]
1,336
DTFPAS
Each entry 73.4 100 7,340
ITCPAS to be queued 9,2 50 . 460
Each block of statically
allocated data received 8.8 5 . 044
Each block of dynamically
allocated data received 19,6 60 1,176
9. 020
DTFKEY 15,8 100 1, 580
SEND
Each entry 25,2 110 2,770
Each additional command
word/entry 23,6 165 3,890
Each notify 9.2 103 . 950
7.610
BCI2
Take control of bus 79.2 100 7.920
Relinquish control of bus 48,4 100 4, 840
12, 760
Total 32.306
‘ Overhead 3.2%
119

v T ——

" —— S5 e —
P . :
e T A ST LN TR ST

3.6.5.4 DTF Final Tuned Detailed Space Requirements
3.6.5.4,1 Processor 0
Words
J73/1 Programs '
DTFINT 102 i
FLIP 168 i
270 |
Assembler Programs |
SEND 70
SENDYN 2 ;
DTFPAS 86 !
DTFACT 46
DTFKEY 32
BC1U Initialization 70 !
BC1U interrupt H
;’ handlers 721
i j 1051
: Data
| DEVTBL 36
| CWTBL 636
' CWQCWP 41
MNOTFY 64
RNOTFY 16
‘, RCODE 5
' FLPDEV 40
| Miscellaneous Items J731 8
Subaddress Pointer Words 112
Storage for Executive 'Signals' 6
Scratch Storage 32
Miscellaneous Items Assembler 32
Command Word Storage 240
1268
Total 2589

Overhead 7.9%

120

3.6.5.4.2 Processor 1

J73/1 Programs

DTFINT 132
FLIP 168

Assembler Programs

‘ SEND 34
g DTFACT 16
i DTFPAS 274
R DTFKEY 20
! BC1U Initialization 42
BC1U interrupt
handlers 753
Data
DEVTBL 40
, CWTBL 164
3 MNOTFY 16
RNOTFY 64
RCODE 15
FLPDEV 30
Misc Items J731 8
Subaddress Pointer Words 92
Storage for Executive 'Signals' 12
Scratch Storage 32
Misc Items Assembler 30
Command Word Storage 140
Total
Overhead

Words

300

1139

643
2082
6. 4%

3.0.5.5 DTF Sensitivity Analysis

The time overhead in the final tuned version of the DTF is approxi-
mately 45% of the processor 0 baseline and 35% of the processor 1 baseline,
The time reduction for the final tuned DTF over the baseline was less
dramatic than for other function clusters because a significant portion of
the baseline was already in assembly language, The final tuned assembly
language portion was over 72% of the time overhead of the baseline version

with the reduction due almost entirely to a reduction in generality,

The time overhead of the final tuned version is sensitive to the
same parameters as the baseline version, namely, the number of times
control is passed per second (BCI2) and the number of different inter -

processor data blocks that can be received (DTFPAS).

An alternative approach to DTFPAS may be desirable for executives f
where the number of different interprocessor data blocks is large (on the

order of twenty or more),

DTFPAS currently has all remote receive (interprocessor) tag-
words as zero prior to entering remote mode, DTFPAS examines each

tagword for non-zero (data received) each time another processor re-

linquishes master control. An alternative approach would have the proces-
sor in master control allocate a sequential subaddress, starting at one,
for each processor to processor transmission, This would allow DTFPAS

to terminate the tagword examination on encountering the first non-zero

tagword, DTFPAS overhead would be dramatically reduced for large
numbers of different interprocessor data blocks, with increased overhead
in dealing with dynamic storage and extracting the data block identification

from the data, i

3.6.6 MSM Final Tuned Statistics

P Time/second Space
Tacassor (milliseconds) (words)

Processor 0

J731 Programs 0

Asaembly Language

Programs 14

Tables 69

Total 0 83

Overhead 0% . 2%

Processor 1

J731 Programs 0

Assembly Language

Programs 14

Tables 715

Total 0 729

Overhead 0% 2. 2%

3.6,6.1 Functional Differences with Baseline

The tuned version on each processor is capable of allocating only

blocks 34 words long.

3.6.6.2 Tuning Approach

The cluster maintains a list of 34 word blocks, FEach time a block
is allocated, it is removed from the front of the list; when returned, it is

placed at the front of the list.

The code to perform thease activities has been placed inline in all
places where calls are required, except in initialization. The time and
space for these has been included in the statistics for the cluster manipu-
lating the storage. Each inline call to GETCOR is 6.2 microseconds and
to RETCOR is 6. 4 microseconds yielding . 04% overhead in processor 0

and . 08% overhead in processor 1,

123

3.6.6.3 MSM Final Tuned Detailed Timing Statistics

3.6,06.3.1 Processor 0

The times have been included in the calling cluster,

3,6.6,3.2 Processor 1

The times have been included in the calling cluster,

3,6.6.4 MSM Final Tuned Detailed Space Statistics

3.6,6.4.1 Processor 0

Words
Assembler Programs
MSMINT 14

The GETCOR and RETCOR space has
been included in the calling clusters,

Data

Two blocks 69

83

3.6.6.4.2 Processor 1
Words
Assembler Programs
MSMINT 14
The GETCOR and RETCOR space has
been included in the calling clusters,

Data

-
—
o

Twenty-one blocks

3.6.6.5 Sensitivity Analysis

The sequence of calls does not affect timing since blocks are
always removed from the front of the list and placed on the front when
returned, However, the call sequence does affect space since there must

be enough blocks to satisfy all outstanding requests,

124

3.6.7 DSP Final Tuned Statistics

Time /Second Space
e i (milliseconds) (words)
Processor 0
J731 Programs 92
Assembly Language
Programs 13,811 26
Tables 69
Total 13,811 187
Overhead 1. 4% 0.6%
Processor 1
J731 Programs 92
Assembly Language
Programs 14, 982 26
Tables 69

ﬁ

Total 14,982 187
Overhead 1.5% 0.6%

3.6.7.1 DSP Tuning Approach

A more efficient interrupt/return linkage was devised. Register 14
was dedicated to the save area/stack pointer (CURSAV). When the processor
is in the application, register 14 points to the top of the stack. When the
executive is entered (either via an interrupt or when an application task
completes), register 14 is complemented. Hence, when an interrupt is
taken, the interrupt handler can immediately determine whether the proc-
essor was in the task or executive state by testing the sign of register 14
imposed by the baseline executive, Use of register 14 also eliminates
the restriction in memory layout and thereby avoids saving registers
when in the executive state., When the executive is exited via DSPTSK,

register 14 is again complemented to indicate return to the task state.

The interface functions ENABLE, DISABL, QUEUE and ENDTSK

were eliminated in favor of inline code in all calling procedures,

125

. o v

3.6,7.2 Functional Differences

® None.

3,.6.7.3

DSP Final Tuned Timing Statistic

3,6.7.3.1 Processor 0

Procedure

Assembler Programs

QUEUE
Each entry
Task ends
DTF interrupt returns
TIM interrupt returns

Each item queued
DTF queuing
[nterrupts in exec

DSPTSK
Interrupt returns
Task starts

RSTAR'T
START

Processing Time
{microseconds)

20,0
11,2

126

Qccurrences Total
/Second (milliseconds)
157
200
90
a7 3, 040
95
29 (10% of 290)
124 0, 843
3, 883
290 2.088
157 1, 225
3,313
290 5, 800
157 1, 758
Total 14, 75
Overhead 1. 5%

3.6,.7.3.2 Processor 1

Procedure

Assembler Programs

DQUEUE
Each entry
Task ends
DTF interrupt returns
TIM interrupt returns

6.8
Each item queuned
DTF queueing
Interrupts in exec
6.8
DSPTSK
Interrupt returns T.2
Task starts 7.8
RSTART 20,0
START 11,2

127

Processing Time
(microseconds)

Occurrences Total
/Second (milliseconds)
224
200
67
491 3,339
110
27 (10% of 267)
137 0.952
4,271
267 1,922
224 1, 747
3,669
267 5.340
224 2.509
Total 15. 789
Overhead 1. 6%

3.6.7.4 DSP Final Tuned Detailed Space Statistics

3.6.7.4.1 Processor 0

J731 Programs
DSPINT
Program Data Space

Assembler Programs

DQUEUE
DSPTSK
] RSTART
START
L ’ Data
; Same as baseline
Total
Overhead

3.6,7.4.2 Processor 1

J73I Programs
Same as processor 0

Assembler programs

Same as processor 0

Data
Same as baseline
& Total

Overhead

~—r

128

78

‘l—l
S O B O

Words

9‘)

26

187
0, 6%

Words

92

3.6.7.5 DSP Sensitivity Analysis

The time overhead for the final tuned version of DSP is approximately
37% of the baseline version's overhead, Since parts of the dispatchers were

already hand coded in assembler language, the improvement in speed is

less marked than that for other clusters. The dispatcher overhead depends
primarily on the number of interrupts and the number of task starts per
second. FEach additional 100 interrupts/second consumes about 0, 4% of
processor time, Each additional 100 task starts per second consumes

about 0, 3% of processor time,

3.6.8 SSM Final Tuning Statistics

Secondary Storage Management is not implemented.

3.6.9 MPL Final Tuning Statistics

Multiprocessor Locking is not implemented.

3.6, 10 Final Tuned Bus Traffic

The only difference between the baseline and tuned bus control is
g that only one data word is required to pass control. The effect of this

reduced bus overhead by 0, 4%.

kK Conclusions

The approach taken allowed small and efficient baseline executives

to be written., These were then tuned significantly for the DAIS mission.

The executives were tuned by approximately 72% for time and 47% for
space. The following subsections present the time and space statistics

by function cluster and tuning method,

3.7.1 Statistical Reduction Allocated by Function Cluster

This section provides a series of figures which illustrate the time

and space overhead allocated to each function cluster, and the overhead

reduction between the baseline and tuned executives., Figures 6 and 7
shows the processor 0 time and space overhead, and Figures 8 and 9 show

the time and space overhead for processor 1,

129

BASELINE

—

TUNED

REDUCTION BY TUNING

Figure 6. PROCESSOR 0 TIME OVERHEAD

130

i it o

’

BASELINE

AN A -

SCH

OVERHEAD
36,81

BASELINE

OVERHEAD
22.1%

KEY
-~

TUNED \’@
BASELINE

REDUCTION BY TUNING

Figure 7. PROCESSOR 0 SPACE OVERHEAD

i b e

T ———

s

-

s

TUNED BASELINE

-

REDUCTION BY TUNING

Figure 8, PROCESSOR | TIME OVERHEAD

132

SCH

”

DSP /

PARL :E’ 10NED

BASELINE

OVERHEAD
34.0%

" BASEL INE

REDUCTION BY TUNING

Figure 9. PROCESSOR 1 SPACE OVERHEAD

133

N
il i " Mot Db

3.7.2 Statistical Reduction Allocated by Tuning Method

The primary tuning methods employed were described in Sections
3,2, 3.3, 3.4, and 3.5, This section generalizes from the results obtained
in the sample programs studied, and uses the statistics to find the improve-
ment over the baseline executive, The first tuning method, hand coding to
eliminate compiler inefficiency, was shown to reduce the processor 0 base-
line executive time by 48, 2% and space by 40, 0%. The removal of excess
generality reduced baseline executive time by 2, 0% and space by 13, 4%.
It should be noted that the removal of excess generality is heavily dependent
upon the executive requirements of the particular mission. The removal of
HOL deficiencies reduced baseline executive time by 16, 9% and space by
11.0%. Final tuning reduced baseline sparetime overhead 2, 7%, but in-
creases space by 1,9%, This implies the following percent of total reduction

allocated to each tuning method:

1 Time/second Space
(milliseconds) (words)

Compiler inefficiency 69.1% 64, 0%

Reducing generality 2.9% 21. 4%

HOL deficiency 24.1% 17.6%

Final Tuning 3.9% -~ 3.0%

It is interesting to note that only 2, 9% of the time savings is due
to reducing generality, This suggests the possibility of not reducing gene-
rality (unless the 21.4% space savings is required) and maintaining a
mission independent, tuned executive, In addition, final tuning may not

be desired, as discussed in Section 3.5,2,

Appendix A

EXECUTIVE TUNING EXAMPLES

THIS PACGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TODDC -

A.1 CLOCKQ - TUNED FOR HOL INEFFICIENCY

CLOCKO EQU S
STM RS,CLOCSV
Js R2,ENABLE

L R3, TIM®NEXT

DL RA,TIM°DUE,R3

DST RV, PARM2 |
CLOC®S L RA, TIM’NEXT,R3 !

ST RA, TIM’NEXT

L KV, TIM°EVENT,R3

JC E2,CLOC1Q /2,9

ST RV, PARMI

LIM R15,PARMLI

JS R2,SIGNL
CLOCto bL RU,TIM°PERIOD,R]3

DC RY, TIMEY

JC £Q,CLOC20
DST RO, PARMI1
L1Im R15,PAKRML2

JS K2, TSUM

DL RO,PARM3

DST RO, TIM’DUE,R3 {

ZR R4 |
CLOC1S LR RS, R4 :

L R4, TIM°NEXT,RS

LIM RO, TIM’DUE,R4

ST RO, PARML4

LIm R15,PARML]

JS R2,TGTR

L R®, PARM1L

JC GZ,CLOC15 /2,9

ST R4, TIM°NEXT,R3

ST RI, TIM’NEXT,RS
CLOC 24 L R3, TIM’NEXT

bL RA, TIM’DUE,R3

DC RO, PARM?2

JC EQ,CLOCOS /2,9

DST RO, PARM2
LIM R15,PARML2
Js R2,SETCLOCK

®© @ @ ® 4 9 0 0 0 O O 0 O ° O O @ % G G G ® O & O O 2 O 6 O % 00 8 O 0 O 0 0 0 o0
NA= NN N=2RNNNNNNSRKNS RO RN==mRNRNN = O2RNNORN=NN=NNONRNNNNNONWC
@ @ & & ¢ © 0 0 © 6 O 0 © O O O O & O @ O O O & 5 6 6 S 6 % P 0 0 0 0 0 O 0 0 ° 0 e

SXOCSSTPCO0TLENNOOSSESONTCS ST aSCOTDLSONTCSENSCLS S

L RV sPARM]

JC EZ,CLOCVS /2.9
LM KS,CLOCSV

J WeRY

PARML1 CONSTANT PARM1
PARML2 CONSTANT PARM2
CONSTANT PARM]

PARML3 CONSTANT PARM3 92,6 EACH ENTRY

PARML4 STORAGE | 60,06 EACH CLOCK W/SAME TIME
CONSTANT PARM1 AS PREVIOUS
EVEN 14,6 FACH CLOCK ON QUEUE

PARM1 STORAGE 2 W/EARLIER TIME

PARM2 STORAGE 2

PARM3 STORAGE 2

CLOCSYV STORAGE 6

r..v.-‘.,'.w-w-w.-,V.‘"

]
AMIS PAGE 1S BEST QUALITY PRACTICABL
FROM COPY FURNLSHED 10 big ,

A. 2 SEND - TUNED FOR HOL INEFFICIENCY

SEND EQU $

L R19,4,R1S « 4.9 '

L R3I,N,R1S o 449

JC £72,SEND3S e leb/2,0

DST RZ»SENDSV o 8.6
SENDAS JSs R2,DI[SABL « 2,0

L R2oM(W o 2.0

ALM R2,=¢ « 1.0

ST R2sMCW « dud

oL KA, Cw’RCV,R) o 2o¢

DST KW, CwRCV,R2 o« d4b

L RIS, CW°TYP,R) o LoV

L RIS, JUMPTBL,R!S « 29

J ‘,lh"“ . 2.“
NMTURRU A RO, URPISA « 2.9

ST RW,CWRCV,R2 o Bad

M URP1ISA . i
NMTURRA L R15,USTSA e 2,0 1

CIm R15,IUDTSA e 2,0

Je GE,SEND1S e 1,6/72,0

‘H R‘IR‘S ° ‘.‘

ST R1,CWTRA,R2Z s Sed

M USTSA ¢ 3o

L k1, MHUF? o 249

JC GZ,SEND1V e 1,0/72,¥

AIM RIS, MTSAP2=MTSAPl , 1,0
SEND10 L RY,CWDADR,R} ¢ @40

ST RO ,MTSAPL, K15 s Qe

J NOTIFY « 2,0
SEND1S AlM R2,2 e 1,6

ST R2,MCw o 242

L R1,CWQPTR « 2,0

ST R’pCNQ.R‘ o« ol

iM CWUPTR o Jgd

iR R3 o 1.4

J NOTIFY o 249
MTARRUY A RV, URPLSA o 4.9

ST Ré,CARCV,R2 « 242

IM URPISA s Jed

J NOTIFY e 2,9
MRUDYN L R15,UDRSA « 4400

AR R¢, R15 o 1,4

ST KO, CWRCV,R2 « d¢8

L Rit, MBUFL o o0

JC b2y SEND2V « 1,672,090

AlM R15,MRSAP2=MRSAPL , 1,06
SEND20 L KU MRSAPL, RIS e 2.0

ST ht‘,Cd'DAﬂR.RS . 2.2

i~ UDRSA o 3.2

J NOTIFY « 2.9

A-3

" R L S i

- . N

TRIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TODDC

A.2 SEND - TUNED FOR HOL INEFFICIENCY (Continued)

MRUSTA L R15,USRSA o Lo
AR RA,R1S « lo4
ST RA,CWRCV,R2 suded
IM USKSA S
L Ri,MBUF I o LoV
JC GZ,SEND2S e 1.6/72,0
AlM R1S,MRSAP2=MKRSAPY , 1,06
SEND25 U RPL,CW?DADR,R3 e 29
ST RO, MRSAP1,R1S o 242
NOTIFY L RO,Cw°CODE,R3 « 2.0
JC F.2,SEND3® e 1.6/2,0
L R2,MNINDX e 240
L R1,Cw°DADR,R3 o 249
DST RO, UNCODE ,R2 e &40
i\l" thz (] l.o 1
ANDM R2,MNMAX e 1,0 f
ST K2, ININDX R
SEND3V JS K2,ENABLE o B0
L R3I,CA°NXT,R]) « 2,9
JC NEZs SENDOS e 1e6/72,0
DL K2, SENDSV o 244
SEND3S J BeRYE « 2.0
°
EVEN
SENDSV STORAGE 2 41,9 USEC ALLOCATED ENTRY
CONSTANT MTURRU 28,8 USEC ALLOC ADDITION CW
JMPTBL CONSTANT MTURRA 64,2 USEC UNALLOCATED ENTRY
CONSTANT MTARRU $2.¢ USEC UNALLOC ADDIT Cw
CONSTANT NOTLFY 11,6 USEC NOTIFICATION

CONSTANT MRUDYN
CONSTANT MRUSTA
CONSTANT NOTIFY

e — e ——— —— — ————————-

QUEUE

‘ L]
k DQUEUF

DQLOOP

DQUE®S

o
DQUESV
PARML1

THIS PAGE 1S BEST QUALITY PRACTICABLE

FROM COPY FURNISHED TO DDC

EQU $

L R15,0,R15

L R15,A,R1S5

L R1,EXCQ

ST R1,EXC’NEXC,R15
ST R15,EXCQ

J W,R2

QU S

ST R2,0QUESY

JSs R2,DISABL

L K1,EXCQ

JC EZ,DQUENS

L RVO,EXCPNEXC,R1
ST RV,EXCQ

LIM RO,EXC’PRC,R1
ST RO, PARMLI

LIM R15,PARML1

JS R2,CEXCPRC

J DOLOOP

JS R2,0SPTSK

Jl DQUESV
STORAGE 1
STORAGE 1

A-5

® & & & & & o o & ° 9 o

ssEsonNONNSOSE N

et

i A. 3 QUEUE/DQUEUE - TUNED FOR HOL INEFFICIENCY

12,4 USEC

10,2 USEC PLUS
15,2 USEC EACH CEXCPRC CALL

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC —r

A.4 CLOCKQ - TUNED FOR EXCESS GENERALITY
CLOCKQ EQuU $

STM RS,CLOCSV
JSs R2,ENABLE

L R3, TIM?NEXT

DL R*, TIM’DUE,R3

DST R!)aPARMZ 1
CLOCHS R, TIM?NEXT,R3 |

ST RO, TIM’NEXT ;

L RA,TIMEVENT,R3

Jc £EZ,CLOCLV /72,9

ST R, PARM]

LIM R15,PARML1
Js R2,SIGNL
CLOC10 LIM RV, TIM°PERIOD,R3
ST RY, PARMLS
LIM R15,PARML2

JS R2,TSUM |
DL RO ,PARM3
DST RA,TIM’DUE,R3 .
ZR R4

CLOC15 LR RS5,R4
L R4,TIM’NEXT,RS

1 LIM RA, TIM’DUE,R4

ST RO, PARMLY4
LIM R15,PARML3
JS R2,TGTR
L RO,PARM]
JC GZ,CLOC1S /2,0
ST R4,TIM°NEXT,R3
ST R3,TIM’NEXT,RS

CLOC29 L R3,TIM’NEXT
bL RO, TIM°DUE,R3
DC RO,PARM2

Jc EQ,CLOC®@S

t DST k®,PARM2

| LIM R15,PARML2
Js R2,SETCLOCK
L RO, PARM1

Jc £2,CLOCAS
LM RS ,CLOCSV

NU = RNNN=SRNEENNNNNESERUNN=SRO=R=2 e ONN=SRN=S == RNNNNNNOONNN O

® & & 6 @& & & & & o & O O & O O O © O °® © © 9 O °© o O & °© O O © O & & &6 © ° o o

CSCOCSSCSTTTDLESNVNNOOCSEINCS PO LHETKNTIONOSENSC LSS e

® @ @ 9 O O & @ ¢ @ © © 0 ¢ @ & & T & O @ & O 9 O O O O ° O O O O ©° @ ° © e o o

J Ve k2
PARML | CONSTANT PARM1
PARML?2 CONSTANT PARM2
PARMLS STORAGE 1
PARML3 CONSTANT FARM3 86,4 EACH ENTRY
PARML¢ STORAGE 1 $5.,¢ EACH CLOCK W/SAME TIME
CONSTANT PARM1 AS PREVIOUS
EVEN 14,6 EACH CLOCK ON QUEUE
PARM1 STORAGE 2 W/EARLIER TIME
PARM2 STORAGE, 2
PARM3 STORAGE 3
CLOCSV STORAGE 6

RIS i o Stitin e il i Mt

SEND

SEND@S

SEND1®

SEND1S

NOTIFY

SEND2¢

SEND 25

SENDSV

TH1S PAG
FROM COFY ¥

LI
15 BEST QUA
- uﬂNlﬁUﬂ)“)ch

5 SEND - TUNED FOR EXCESS GENERALITY

EQU $

L R15,68,R15

L K3,0,R15

J€ EZ,SEND25

DST R2,SENDSV

JS rR2,NISABL

N R2,MCwW

AIM R2,=2

ST K2yMCW

DL RA,CW°RCV,R3
LDST RW,CwRCV,R2

L R195,CW°TYP,R3
JC NEZ,NOTIFY

L R15,USTSA

CIM R15, IUDTSA

JC LT,SEND1Y

AIM R2,2

ST K2 MCW

L R1,CwWQPTR

ST R3I,CWQ,R]

Im CWQP1R

ZR K3

J NOTIFY

AR k1,R1S

ST R1,CWTRA,R2
M USTSA

L R1,MBUF1

JC GZ,SEND1S

ATM R1S,MTSAP2=MTSAP1
L RO,CW°DADR,R3
ST RO, MTSAP1,R1S
L RO,CW’COVE,R3
JC EZ,SEND2V

L R2,MNINDX

L R1,CW°DADR,R3
DST RO, MNCODE,R2
AlM R2,2

ANOM R2,MNMAX

ST R2¢,MNINDX

JS k2,ENABLE

L R3I,CW°NXT,R)
JC NEZ, SENDWS

DL R2,SENDSV

J VeR2

EVEN

STORAGEF, 2

~

~

~

CSSLTSENT TSSO IEINSTTEIENNSLSSENNNENCOODSSOSCTANTSSTOSS
~

»
.
S

~
®
s

~
°
[

LS}
.
s

USEC
USEC
USEC
USEC
USEC

ALLOCATED ENTRY
ALLOC ADDITION CW
UNALLOCATED ENTRY
UNALLOC ADDIT Cw
NOTIFICATION

TRIS PAGE IS BEST QUALITY PRACTICABLE

A.6 CLOCKQ - TUNED FOR HOL DEFICIENCIES

CLOCKQ EQU $

L]

STM RS,CLOCSV . 5.4

ENHL 2 BIF ENABLE

I R3,TIMNEXT e 2,0

DL RO, TIM DUE,R o 2.4
CLOC®A2 DST RA, PARM2 e 2,6
CLOCHS L KO, TIMPNEXT,R3 o« 240

ST KA, TIMNEXT . 242

L RY, TIM EVENT,R3 . 2.0

Jc EZ,CLOCLA e 1.6/2,0

ST RA, PARM1 o 2.2

LIM R15, PARML1 o 146

Js R2,SIGNL e 2.0
CLOC1w DL KU, TIM°PERIOD,K3 , 2,4

DA RA,PARM2 . BIF TSUM

DST RA,TIM’DUE,R] e« 240

ZR KR4 e 144
CLOC15S LR RS, R4 . N4

L R4, TIM’NEXT,RS o 24P

bC RO, TIM’°DUE, R4 & BIF TGTR

Jc GT,CLOC15 o 1o6/2,0

ST R4, TIM°NEXT,R3 o 242

ST R3,TIM°NEXT, RS . 2o
CLO0C29 L R3,TIMPNEXT « 249

DL KV, TIM®DUE,R3 e 2.4

DC R@, PARM2 o 248

Jc tw,CLOCOS e 146/2,0

ITB K2 . BIF SETCLOCK {

SK R2,R1 5 BIF SETCLOCK &

Jc GEZ,CLOCY2 . BIF SETCLOCK ;

MSIM R2,1v . BIF SETCLOCK

OTA R2 N 8IF SETCLOCK 13

LM RS ,CLOCSV e« 5.8 ‘

J woR2 o« 249 |
° |
. \
- |
2 ‘
. 58,4 EACH ENTRY }
PARML1 CONSTANT PARMY 38,6 EACH CLOCK W/SAME TIME i

CONSTANT PARM2 AS PREVIOUS

EVEN 5,4 EACH CLOCK ON QUEUE k
PARM1 STORAGE 2 W/EARLIER TIME i
PARM2 STOKAGE 2 \
CLOCSY STORAGE 6 N

T ——

—————

B —

-

B i P S VR e

SEND

SENDAS

SEND1O

SEND1S

NOTIFY

SEND20

SEND2%

SENDSYV

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TODDC

A.7 SEND - TUNED FOR HOL DEFICIENCIES

EQU $

L R1S,¥,R1S

L R15,¥,R1S

JC tZ,SEND2S

ST R2,SENDSV

pPSBL

L R2,MCw

AIM R2,=2

ST R2¢MCW

LL RA,CW?RCV,KLS
psT RV ,CWRCV,R2

L RV,CWTYP,R1S
JC NEZ,NOLIEY

L R2,USTSA

CIM R2, IUDTSA

JC LT,SENDEW

AlM K2,2

ST R2,MCW

L R1,CWQPTR

ST R15,CWG,R1

iM CwOPIR

ZR R1S

J MOTLFY

AR R1,RQ

ST R1,CWTRA,R2

M USTSA

LR R1,RO

L R, MBUF1

JC GZ,SENDIS

AlM R1,MTSAP2=MTSAPIL
L RA,CW°DADR,R1S
ST ROL,MTSAPL, R

L RO,CWN°CODE,R1S
JC £7,SEND2O

L R2,MNINDX

L R1,CW°DADR,R1S
DST ke, MNCODE ,R2
AIM R2,2

ANDM K2, MNMAX

ST R2,MNINDX

ENBL

L KR15,CW°NXT,R1S
JC NEZ, SENDAS

L R2,SENDSV

J PeR2

EVEN

STORAGE |

® ® © & © © 8 ¢ & ¥ 8 O B " O O O O & 9 O O O & & O O 6 & O O 9 O O O O O O °© O O o o 9

2.0
2,9
1,6/72,9
2.2
8IF DISABL
2,9
‘.b
2,2
2..
2.b
2,9
1,6/2,0
20“
290
1.,072,9
1.0
2.2
2,9
2,2
3.2
‘.‘
2,9
1.4
2.2
3,2
1.4
2.”
1.672,9
1.6
2.9
2.2
2,0
1,6/72,9
2.“
2.9
240
1.6
1.6
2.2
BIF ENABLE
2.9
1,6/72,0
2.0
2,9

32,6 USEC ALLOCATED ENTRY
20,4 USEC ALLOC AUDIONAL CW

58,2 USEC UNALLOCATED ENTRY

44,86 USEC UNALLOC ADDIT CW
11,6 USEC NOTIFICATION

SR ST V 2 e

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TODDC ___

A. 8 QUEUE/DQUEUE - TUNED FOR HOL DEFICIENCIES

QUEUE EQU

ST
ST

.

DQUEVE EQU
ST

DQLOOP DSBL
JC
ST
Js

DQUE“S oo 00
Jl

$

R15,0,R1S
R15,0,K15
R1,EXCQ
R1,EXC’NEXC, 115
R15,EXCOQ

WeR2

$
R2,DUUESV

R1,EXCW
k.Z,0QUESDS
RO,EXC°NEXC,R1Y
RO, EACQ
R15,EXC°PRC,R1
R2,0,R15
DALOOP

PQUESV

2,0
2,9
2.0
2.2
2.2
2,9 12,4 USEC
2,2
BIF DISABL
2.9
1,6/2,9
2,9
2,2
BIF CEXCPRC
BIF CEXCPRC
2,4
INLINE DSPTSK

4,9 USEC PLUS
7.8 USEC EACH CEXCPR CALL

Appendix B

TUNING THE DAIS MISSION DFG

The formal Dais mission DFG was tuned by systematic application
of the techniques discussed in detail in Section 1.2.2. The major stages

in the tuning process in order of application were:
1) Combining tasks and simplifying complex constructs,
2) Partitioning the DFG among processors,
3) Preemption limiting.

In Stage 1, tasks which were closely related by their activation
conditions were combined into larger tasks. Complexity was reduced by
absorbing most of the control selector nodes into the task combinations.

The DFG was then redrawn to show the combined tasks and their inter-
relations.

In Stage 2, the DFG was partitioned into two disjoint parts, The
partitioning chosen was based on the functionality of each processor load,
the space occupied by the tasks, the processor time required by each task,

the bus load imposed by links connecting the partitions.

In Stage 3, the preemption limiting technique was applied to each
of the DFG partitions. No preemption was allowed in processor 1 while a
limited amount of preemption was allowed in processor 0. The limitations
on preemption avoid contention problems for most of the data selector
storage nodes in both partitions. The resulting DFG was drawn showing
only the data selector storage nodes which still required executive manage-

ment after preemption limitation.

ettt

THIS PAGE IS BEST QUAL
ITY PRACTICABLE
FROM COPY FURNISHED 10 DDC

< e

11,8 sesese A A
o

~ 61X
21,611 worde ?lll (144,49)

Cla
(6e 08

' TO1.02 93.00.03.06.07.08
______________ E1C1.C2.C3.C0.CP.C6.C7.CO.CT4
3.007.1823

Ce-

(E0)1CI+
R (De)ICe-

40,49,50.52,63. 4¢
61.90,57.21.64.37
3819

19.4 we/eec.2020

STABE | DFG - Poee 1
B8-2

P3 té/eec
62.9%

1?

T2
2.9

AT12
.196.63

13
DI

P3 16/0e0

120.7 me/ee0.7033

UALITY mmcm\!
s PATEISBER O g
P corY FURNLSHED
P2 32/e00
e P1 8/e00
o 128.
2 u.;:.s @ 21,4 !
K19 w &
oL
. 10.4 2.0
T T10 ele
7.18.19,
7 T se? 10,408,485, as
11.13.16, 15, 16,20 "23?6"’ 2o
1.560. 654 e
at2e 1 | e
2 a8 E 31
g 39 \-_,_\‘J : e 19
@ " K22
K2t 4
& /
! /
/ 23
¥ & f— $3(T02)
20,28, 28,28 | _ 200 / [s29(T09)
9.109.3379 s I
aT21 3 s E
32/e00

STRGE | DF8-Poee 2
8-3

:

P4 4/000
2%8.

—o

P9 1.11/e00

= i ? 900.9.
VP
L)

AN @ G

® C24+
T53.26
S A 1.092,178
‘, = ATSY

C1S+
' c24
cis Pé 2/e0cC .

yu

Clas

\/F g it
\

o ATSe

\F g =2

P10 .476/00cC
e 2100.0

Ci9+

C22+
@ ca2-
Ci9+

KS1

4.4 me/eec, 1370 s> ‘agfs s

T

TH1S PAGE
FROM COPY

=% oy

FURNISHED

T —

P11
20/s0c

O
822(702)

S34(780)

2.928,1220
ATe1

!

67,68.69,70,71 I
72,73.74.79%
76,77.78.79 //
! 7S 76

. e S

24.95 me/eec. 1830 e ‘ngs-Po.. ;

P4
4/000

\>/

P3

s$23(772) 16/00cC
62.9

P
8/e00
128

D6 S14(T02)

93.96.97
90.69.72

s P2 d2/eec
, 3D % 1.702.2370
/ 172
s34(772) aczg

170.71.73
A.74.1820
AT

427.2 me/eec.8300 STAGE ! DFG - Poee S
B-6

3 K33

16/00C
62.9

K34

s23(T102)

s24 (TO2)

K36

S251T82)

P13
10/e0cC
100

K32

110, .264
AT8?

11.1 me/vec, 1048

STAGE | DFG - Pose &
8-7

P19
19/e0C

e e

T T e
g

,___._.’_-.._—._‘—

I
-'_—-—-—.——“
|

i L

ATE88
16/00cC

___...._Lt

STABE 2 PARTITIONED DF6
(PROCESSOR @)
8-8

Adae

>

————— o —
—— . ———
—

| ¥4
: |
; |
k 4
s 4
s .~w
] : .
i “ _ A
| _ ~ “ |
i _ _ _ |
] “ " _ | ..A
— — D I 3
_ ,
“] _ “ :
S " oy %
o
_ _ B
_ | i -
_ | | cTO |
i “ . i ..
“ .“ | " |
| _ “ .u
\ & “ 3
ol Sl
2 R I -_J_ <1 “ “ :
i ..
i ' Yol T - _ | v
\ \ I 11 | # | -
| “ \ " “ “ _r..!!L llllll “ " ;
“ Lo i) 1 Giners 5o | |
v e e, i g p “ _ \
et HEO) = “ \
g I
: f::n:::;;::::::] g3 — ol | : .
\ 2 til &g - 2 |
\) f/ / _
I “ NN // "
— ’I"" l’,""'
| y 1 %) \ i _
\ i 2 /_“ w | 3
._ Q“] " “ _ “ =
{ i 5 | ; : L
\ ! _ = |
] _ o s .o o
AT s :]
e =T ; y
Y s g
ble

|

.])\
1 8

(AT09.90.91 NDll - - :g:l - uo

CS+
A832

C14+(EB/DQ)
3

(EB/DB.ATES)

(§6/08.Q78S)

& &

;;'; n m :TN'D“
&)

NO®7 ND14
wi =
8007 8014

+
C9'LINKS

STAGE :ns:-r"gocnson 0

CLK(.15/e00) [_—_':_]——\ oPIN
‘

PIA P2A
)t 16/000) w [(32/000)
GDM 18’
NDSé 19 El
N\ ND2#

I\Dl‘ ADI2

‘, NDAS 8sc $sC
ox' Y Sy b2

ssc
013 pop

\(:znoo) sD23"
8024] [26'27
b or:
ND24 ND27 aTe?
*
ATO?
NDS$S
378
P19
)(19/000) ADS8YS7 "
30'61R

STABE 3 DFB-PROCESSOR
B-1

P18
[](8/000)

G Heay

N3SS19 W

B8

o

P13A
(10/000)

(‘/..0)

v 4
o
&
~n
.‘.'e-.
-~u
o

P13C
(

10/000) (18/000)
er!'
er*
AT9e L
NOS8S
ND8S
878 }S?l

. ADBBY7*
RD88S? 88'61C

58'618

PaD
(4/000)
C14-(EB)
= oT"
= \‘ ATAS
c13+
to®)
@
C13+¢ 0@0 C1S+ (EO)
e ¥
c18-
t66)/ Pe
[](2/000)
Cle+
(08)
O
Cree @. C17+ (EG)
o "
c17-
(68)/ P?
l?n.u/uo)
i or'
. “ ATeS
Ci8+

(E0) POA

Q(1/e00)

@
M’h’

Cc
(08)
Ci9+

Ci9e Pee
(60), q(ll..o)
c22+ (EO)

1)

v

STAGE 3 OFG-PROCESSOR @
8-12

(L1Y
)¢ 4/000) ‘
Clee (EO) |
.'0 ' -
ATS2 =
\‘ C2de

(0e) :
|

ATI2 c2ye

x @017
Py
(1.117000) [e

s N)" (o8

P1OR W

C2se

@:. Ccase .
P

M’

P10
(.476/000) [n
.’ ! M
ATSS

&

B e el !
'i

e

L T R

NDS836 ND8S21 ND8837 NDS819 ND8826 ND8826A ND88S7

08C36 psca1 psC37 $ 08C19 W D8CS?
‘64 30 3861
~ ~
~ £ NN \ \
aseres DX\ N TS’ \)’awso\ \
770 N Ties § \
7 P i ~ 7N \ \
e A37
B)
1 7 .
/;/,/ aS? so,,
s IPIN
a19°30
227 / 0
(e !
VA
-
P28 —{) p2n
[[)¢32/e00) (32/000)
i i
| =
' M
\)
Q (E6/08)
|
: u- —w PI1A
AT71 (28/960)
NEG6S(ES)

NDB6S(D8)

RPA(208/s00C)
L

O ® O !

R A, ()

STABE 3 DFG-PROCESSOR 1
B-13

rwv—wr—t"vv> e ———
.

Appendix C

ASSIGNMENT OF BUS SUBADDRESSES

The strategy for assignment of subaddresses has been designed
to maximize efficiency by using fixed subaddress allocations for the most
frequently transmitted messages and dynamic allocation for the numerous

less frequently sent messages.

At any given point in time, exactly one processor is in master
mode (i. e., in control of the bus) and all others are in remote mode, Each
processor has three tables of subaddresses containing the addresses of
data areas for the transmittal and receipt of messages. These tables are:

1) Master transmit - subaddresses for data to be

sent to other processors and remote terminals
while in master mode.

2) Master receive - subaddresses for data received
from remote terminals (excluding other processors)
while in master mode,.

3) Remote receive - subaddresses for data received
from other processors while in remote mode,

For a given processor each active sink and outbound link requires
a master transmit subaddress, each active source requires a master
receive subaddress, and each active inbound data link requires a remote
receive subaddress. Subaddresses for any of these cases may be either
pre-allocated and fixed or dynamically allocated and variable. Since
dynamic allocation takes more time, frequently transmitted or received
messages are pre-allocated fixed subaddresses beginning with subaddress
1. The remaining subaddresses belong to a pool which are allocated on
a first-come-first-serve basis. Dynamically allocated remote receive

subaddresses are allocated by the transmitting master processor,

In any of these cases, buffers for transmission or receipt of data
may be dynamically or statically allocated, Dynamic allocation is used
for remote receive subaddresses for instances in which the time of re-

ceipt is unknown, that is while one copy of received data is in use, another

copy may be received. In these cases a new buffer is allocated for
cach subaddress where data has been received when bus control is trans- |
: |
ferred to another processor, All remote receive subaddresses which |
l

are dynamically allocated also make use of dynamically allocated buffers,

As mentioned above, the preferred method of subaddress assign- ‘
ment is pre-allocation, In some cases it is not possible to pre-allocate ;
subaddresses for all messages in a given class because of the limited A
number of subaddresses available (30 not including the subaddress used
for transfer of control), A case in point is the master transmit sub-
addresses for processor 0. Processor 0 contains many sinks and out-
bound data links (more than 70). The 16 most frequently transmitted
messages have been pre-allocated subaddresses, The remaining mes- i
sages compete for the remaining subaddresscs. It is possible in this :
case that by coincidence enough transmission requests occur in a short
period of time (since the last time the processor was master) to consume
all the available master transmit subaddresses. When this happens,
subroutine SEND queues the excess requests for execution the next time

the processor becomes master,.

The following pages detail the subaddress assignments used in

each processor,

O 0O N O O AW N~
el A o i el N

N R N N = et od od oo od ok o
W N — O W oo NO ;O & whh —- O
.

-
W oW NN NN NN
- O W O N O O &
.

PROCESSOR O SUBADDRESS ASSIGNMENTS

MTSAP Notify Code
D23 A
D24 ND24
D26 !
D27 Preallocated ND27
D41 Subaddresses
D42 ND42
D43
D44
D46
054
D81
D82 ND82
D48 ND48
DSS57A, DSS57B, DSS57C NDSS57A, NDSS57B, NDSS57C
DSS19(,38) NDSS19
DSS57(,58,61) JUSTSA
Pool of
Dynamically
Allocated
Subaddresses
DSS37 IUDTSA
PRIL

MASTER TRANSMIT

PROCESSOR O SUBADDRESS ASSIGNMENTS |

MTSAP
Notify Code

b e w——

UNALLOCATED MASTER TRANSMIT Page 1 of 2

D05
D06
DO6A
D068
D07
DO7A
D08
DO8A
D09
DO9A
D10
D10A
D11
D11A
D11B
D12
D12A
D128
D13 ND13
D13A ND13A
D138
D13C
D15
D15A
D22
D25
D27A
D28 ND28
D36
D37
D38
039

—_—

MTSAP

D40
D45
D45A
D50
D51
D55
D79
3 D8O
D85
D86
; D95

D95A
DSS36,64
DSS21
DSS26
DSS26A
DSS02
DSS02A
DSS17A
DSS178B
D45B
EG65
DG65
EG35
DG35

. RDSS43
RDSS52

T T T T

UNALLOCATED MASTER TRANSMIT

B o i Ak
. e e

|
{
|
1
i
g

PROCESSOR O SUBADDRESS ASSIGNMENTS

Notify Code

ND40
ND45
ND45A

ND55

ND86

NDSS36

NDSS26A

Page 2 of 2

W W RN NN RN N NN NN = = oo e od o ol ot -—
- 0O W O N OO U A W N~ O W o ~NO O, H W N - O
. .

T

PROCESSOR O SUBADDRESS ASSIGNMENTS

MRSAP

O 00 N OB W N~

Do, D02, DO3
D04
D14, 087
D16
D17
D18
D19
D20
D21
D29
D30
D31
D32
D33
D34
D35
D47
D49
D56
D58
D88

DUMSTDR

Statically
Allocated
Subaddresses

IUDRSA, TUSRSA

MASTER RECEIVE

Notify Code
NDOY

ND14

ND20

ND32

ND47
ND49
ND56
ND58

rv—uvwv—w -

N o> AWy~

10.
1.
12.
13.
14,
15.
16.
17.
18.
19.
20.
21.
22.
23.

25,
27.
28.
29.

3.

PROCESSOR O SUBADDRESS ASSIGNMENTS

RRSAP

DSS43

DSS52

sstl

001, D02, DO3
DRPFIN

PRIT

Notify Code

NDSS43

Preallocated NDSS52
Subaddresses NDSS11

Statically
Allocated NDO1
Buffers NFIN
RRIMAX
RRADYN,RRUDYN

REMOTE RECEIVE

O 00 N OO & W N~
P e i SRR s e

W W NN NN NN N NN DN v e e ad e ed od od od
- O W O N O O & W N~ O W oo N, e wWwMN -~ O
. .

PROCESSOR 1 SUBADDRESS ASSIGNMENTS

MTSAP

DSS43
DSS52
SS1
D52
D83
D84
D53
D60
D67
D68
D69
D70
D71
D72
D89
D90
D91
D92
D93
D94
D73
D74
D75
D76
D77
D78
DPRIN

PRIL

A

Preallocated
Subaddresses

IUS#&A,IUDTSA

MASTER TRANSMIT

Notify Code

ND84
NDS3

ngNNNNNNNNN—'—‘—‘—'—"—'—‘—‘—‘—‘
- \DQNO(’I&&N—‘OO@NOO‘IPWN—‘O

PROCESSOR 1 SUBADDRESS ASSIGNMENTS

MRSAP

O 0 N OOV & W N ~

D57
D59
D61
D62
D63
D64
D65
D66

DUMSTOR

A

Preallocated
Subad?res ses

IUDRSA, IUSRSA

MASTER RECEIVE

Notify Code

ND57
ND59

ND66

W oW N N NN NN NN NN N NN e ed et o o od et od o
‘—‘ ? WO 0O N OV O & W NN — O W 0 N OO, & W N —~ O
.

PROCESSOR 1 SUBADDRESS ASSIGNMENTS

RRSAP

:Dm\lc\(ﬂhwl\?—‘

DSS02
DSS178
EG65

DG65

EG85

DG85
RDSS43
RDSS52
DSS26
DSS26A
DSS37
DSS21
DSS36(,64)
DSS19(,38)
DSS57(,58,61)
DSS02A
DSS17A

PRIL

Prea ltoca ted
Subaddresses
Statically
Allocated
Buffers

RRADY

Preallocated
Subaddresses
Dynamically
Allocated

Buffers
RRIMAX
RRUDYN

Dyhamically
Allocated
Subaddresses
Dynamically
Allocated
Buffers

Y

Notify Code

NDSS02
NDSSO2A
NEG6S
NDG65
NEG85
NDG85
NRDSS43
NRDSS52
NDSS26
NDSS26A
NDSS37
NDSS21
NDSS36
NDSS19
NDSS57

— - —~ o —— —
- . - T e ey g ey —
W' il TN - -

REMOTE RECEIVE

c-10

