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FOREWORD

This report describes the work performed during the period 1 July 1970 through 31 Decem-
ber 1977 by Pratt & Whitney Aircraft Group, United Technologies Corporation, East
Hartford, Connecticut under Contract No. F33657-70-C-0624, as amended by Modification
P0O000S dated 10 January 1977, with the Air Force Systems Command, Aeronautical Sys-
tems Division, Wright-Patterson Air Force Base, Ohio. This report is submitted in compli-
ance with the requirements of Sequence No. A0O8 of the Contract Data Requirements List,
DD Form 1423 attached to the above contract.
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1.0 INTRODUCTION

The TF30 Third-Stage Composite Fan Blade Service Program was a major effort directed to-
ward early service evaluation of the TF30-P-9 third-stage fan blades made of BORSIC®/Alu-
minum composite material. The program was initiated to further refine and develop existing
composite fan blade designs and fabricating techniques which were developed under the Ad-
vanced Composite Engine Program (ACE), Air Force Contract F-33615-69-C-1651, conduc-
ted by Pratt & Whitney Aircraft for the Air Force Materials Laboratory and Aero Propulsion
Laboratory, Wright-Patterson Air Force Base, Ohio. Advantages associated with using advan-
ced composites as the structural material for aircraft jet engine fan blades include a signifi-
cant reduction in engine weight, improved performance, and the potential for increasing fan
tip speed.

The Composite Fan Blade Service Program was conducted in two phases. Phase 1 was a div-
ersified effort in which the blade designs initiated under the ACE Program were finalized;
prototype advanced composite test specimens, blades and peculiar engine parts were designed,
fabricated, and rig tested; tools required to fabricate the prototype components were designed
and fabricated: and fan blades were fabricated and structurally tested. Concurrent with these
efforts fabricating techniques were developed and refined and a program was initiated to de-
velop effective nondestructive inspection (NDI) procedures for the blades. Procurement of
composite material for use in Phase Il of the Fan Blade Service Program was initiated.

Phase 11 was a specific effort in which tooling, blades, and adapting parts for an engine en-
vironment test program were fabricated; blades and adapting parts were tested in an engine
at simulated sea level subsonic and altitude supersonic conditions; and engine environment
test results were thoroughly evaluated. Fabricating processes and NDI procedures developed
in Phase 1 of the Program were further refined as well. The final task was a successful [84-
hour flight service demonstration in F111-D aircraft at Edwards AFB, Cal.

The choice of the TF30 engine as the hardware test vehicle was based on these considerations:

® The TF30is a modern turbofan engine which powers operational supersonic air-
craft and in which the fan blades are subjected to high temperatures and tip speed.

® TF30 engines were available for use in experimental testing and included those
funded under this contract and those available on a ‘piggyback’ basis from Pro-
duct Support Program engines.

®  The TF30, being currently in service, affords the immediate opportunity of eval-
uating the blades in a flight environment.

The effort was directed toward the third-stage blade because the third-stage provides the highest

possible fan temperature environment (470°F). A further benefit is that the first and second
stages of the fan protect the third from massive foreign object ingestion such as birds and ice.
This protection from foreign object damage (FOD) increases the safety factor making immedi-
ate flight evaluation more feasible.
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2.0 SUMMARY

All major objectives of the program were accomphished  Paragraphs Y1 through 2 0 summartze
the results:

2.1 MATERIAL

A source of BORSI(‘®/AImnmum composite matenial was found trom which BORSIC®/Alu-
minum monolayer tape could be procured at a set price and within a reasonable lead time.
The tape was purchased to a PRWA material specification which resulted in procurement of
a uniform, high quality tape. The tape acceptance rate was over 95 percent

2.2 DESIGN

The blade design which evolved fally meets structural and aerodynamic fight requirements
and can be consistently fabricated to a high quality standard i a normal shop environment.

2.3 TOOLING AND FABRICATION

Tools and processes were developed by which 246 blades were fabricated with an acceptance
rate in excess of 92 percent. Blade dies exhibited a life of at least 168 parts, and are adequate
for fabrication of light evaluation hardware.

2.4 NONDESTRUCTIVE INSPECTION

Nondestructive inspection procedures were developed which enabled the engine environment
test program to be conducted with no blade failures. NDI procedures included ultrasonic
C-scan, X-ray, visual, acoustic emission and eddy current, as well as determining density and
natural frequency. All blades were proof spin-tested.

2.5 BENCH TESTING
Composite blade bench tests showed that:

®  No blade degradation resulted from salt corrosion ora 657 to SO0F thermal
shock.

®  Blades lost frequency in pure bending tatigue tests but did not otherwise fail in
107 cycles.

®  Burst speeds, demonstrated in spin pit tests were at least 30 percent above normal
red line speed (10,550 rpm).

®  Blades withstood the highest engine operating stresses (except for surge stresses)
during combined stress/fatigue testing, as shown in moditied Goodman diagrams
(at room temperature and 450°F).

tJ
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L

e (Composite blades with a nickel-cobalt leading edge had slightly better resistance to
3 sand erosion than titanium blades.

® Composite blades were slightly less resistant to small FOD (gravel, rivets) than
i titanium blades.

®  (Composite blades had relatively poor resistance to massive FOD (birds, ice) com-

pared with titanium blades.
L
2.6 ENGINE ENVIRONMENT TESTING

Y A total of 564 hours of testing in an engine environment were conducted. Of these, 300 hours

took place in a funded engine, while 264 hours were *‘piggyback” tested during CIP/PSP test-
ing. Tests were conducted on two full sets of composite blades and included 444 hours of
cyclic endurance testing at sea level and supersonic conditions. Test results showed that:

®  Blade vibratory stresses were within acceptable levels, both with a clean inlet and
with distortion.

®  Acrodynamic performance and stall margin were unaffected.
®  As many as 19 surges were performed with no apparent detrimental effects.

® A severe tip rub (0.090 in.) caused no blade catastrophic failure but did induce
cracks in 7 of the 36 blades (20 percent).

® Leading edge FOD, blended to maximum limits, resulted in no blade damage dur-
ing approximately 50 hours of subsequent engine operation.

®  Blade performance could be evaluated in all portions of the flight envelope includ-
ing high altitude, high Mach number; high altitude, low Mach number; and sea level,
Mach number 1.2.

®  After test times of 100 hours or more, X-ray inspection indicated small cracks in
some blades at the leading edge near the root. However, these cracks did not grow
appreciably in test time to 364 hours.

During the testing in the engine environment, the maximum blade temperature was 470°F;
maximum blade tip speed was 1500 ft/sec; and maximum blade stresses were 8.000 psi (non-
surge) and 30,000 psi (surge).

Because of the crack indications, P&WA imposed a 200-hour limit on blade engine operation
during the flight program before a full bench inspection.

e
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2.7 FLIGHT SERVICE EVALUATION

One full set of previously ground engine-tested blades was installed inan F111-D aircraft at
Edwards AFB, California, and subjected to 184.1 hours of unrestricted flight over a span of
90 fights in 17 months. This was the first flight of an advanced composite material applied
to an engine primary structural component, i.c., the 3rd stage fan. No serious composite
blade problems occurred during this time. Bench inspection of the blades following the
flight program revealed no damage except for surface cracks in the root region of several
blades. The flight program was conducted entirely by the USAF and program details are to
be reported in a separate ASD report.

3.0 CONCLUSIONS AND RECOMMENDATIONS

This component improvement program was directed toward carly service testing of TF30-
P-9 third-stage tan blades fabricated of B()RSI(‘®/ Aluminum composite material. The blade
attachment roots were tabricated of BORSl(‘®/Al\||\\i|\ll|\\ material with titanium dovetail
section, and aluminum wedges to splay the fibers.

3.1 CONCLUSIONS

From the overall results of the program, it is concluded that TF3I0-P-9 R()RSI(‘®/Aluminum
third-stage fan blades, designed, fabricated and inspected according to the procedures devel-
oped during this program, will be acceptable for flight service subject to periodic inspection.

The BORSIC®/Aluminum composite material selected consisted of silicon-carbide coated
boron fiber filaments attixed to AA6O6 1 aluminum foil by plasma asmying AAo0Qol alu-
minum powder. When made to procurement specifications, BORSICT/Aluminum Tape Spe-
cification PWA 437 and BORSIC® Filament Specification PWA 438, this material exhibited
the required properties to meet fan-blade application requirements. (These two specifica-
tions are included in Appendix B, Quality Control Plan for TEF3I0 Composite Fan Blades, to
show the standards that were imposed on tape and tilament fabrication.) Results of quality
assurance tests indicated that random sampling was not sufticient to assure quality.

The blades fabricated under this program were designed to meet all stress and vibratory con-
ditions consistent with their application as third-stage fan blades in a TE30-P-9 engine. Ana-
lysis indicated that core (unidirectional fibers) and shell (fibers at $45°) construction would
provide both the strength and stiffness requirements for these blades. Titanium dovetail root
attachments provided ample shear and bearing strength.

The tools and fabricating procedures developed during this program were specifically de-
veloped for a low production run application. Fabrication process parameters were held to
tight tolerances to ensure program success. Subsequent test results indicated that the blades
fabricated using the tools and processes developed during the program exhibited superior
performance characteristics,

The NDI procedures developed during this program demonstrated the capability of detecting
all known significant material and/or tabrication defects. The blades flight tested did not

have any cracks detected by these procedures prior to installation in the flight test engine.

4
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Bench testing provided the evidence that the BORSlC®/AIuminum third-stage fan blades
had sufficient structural integrity to successfully undergo evaluation in an operating engine
enviroament. It was further concluded that neither salt corrosion nor thermal shock had sig-
nificant effect on blade structure. The blades exhibited sufficient FOD resistance to per-
form satisfactorily in a third-stage fan environment.

During both simulated sea-level static and altitude/supersonic testing, the BORSIC ®/Alu-
minum blades exhibited the capability of performing well in a flight environment. Engine
performance was in no way degraded by incorporating advanced composite blades in the

fan third-stage.

The 184 hours of flight service operation was highly successful, but did result in surface
cracking of several blades. In future designs, this can probably be avoided by improved
filament orientation and blade processing.

3.2 RECOMMENDATIONS

It is recommended that the blades in service be evaluated at 200-hour intervals by a bench
inspection including 10x visual and x-ray techniques.

It is recommended that the blades be service evaluated in a flight program. However, due to
x-ray indications of small cracks in some ground engine test blades at the leading edge near
the root, a 200-hour limit should be imposed on flight test blade operation before a full
bench inspection is conducted.

It is further recommended that all tape lots be tested and the strength of each tape lot be
evaluated. Tape lots exhibiting average filament strengths of more than 340,000 psi would
result in panels having the required 140,000 psi strength. Tape lots exhibiting filament
strengths of less than 340,000 psi must be qualified by demonstrating that panels pressed
from the tape exhibit at least 140,000 psi composite strength. If possible, the tape vendor
should be required to guarantee the final tape properties.

A future study should be conducted to investigate the effects of imposing less stringent pro-
duction controls on biade quality and also to optimize tools for use in long production run
applications.

The procedures outlined in this report: specifically, ultrasonic C-scan, contact ultrasonic
through-transmission, x-ray, determination of natural frequency and density, fluorescent
penetrant inspection, visual inspection, and proof spin testing should be adopted as the qua-
lity assurance procedures in future advanced composite programs.

It is recommended that a program be conducted to improve methods of FOD protection to
expand the use of composite materials in jet engine fan applications.

Future designs should also utilize improved filament orientations and tooling/processing
techniques to minimize filament breakage which can lead to cracking of the composite
structure. Potential residual stress problems should be identified. Spin-pit burst testing can
be a useful tool for this purpose, by establishing actual burst speeds vs. predicted values.
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4.0 GENERAL BACKGROUND

The term “‘advanced composites’, as used in this report, applies to materials made up of high
strength, high modulus, low density fibers combined with a matrix material which holds the
fibers in proper conformation and distributes the loads among them. It has been recognized
for several years that, if these materials could be successiully applied to aircraft jet engines,
significant weight and performance benefits would result. Development programs conducted
to date have thoroughly demonstrated this potential and reinforced the desirability of refin-
ing the production and inspection techniques required to produce high quality, advanced com-
posite, jet engine aircraft parts economically and consistently.

Although silicon-carbide and sapphire show promise for future use as fiber materials in advanced
composites, current interest is centered on graphite and boron. These are available in a wide
variety of fiber forms. For example, graphite can be obtained in high strength or high modulus
forms in either short lengths or as a continuous filament. It can also be obtained as yarn com-
posed of several hundred filaments, woven yarn, or tow. Boron fiber can be obtained either as
uncoated or coated with silicon-carbide and in sizes ranging from four mils to eleven mils in
diameter. The term BORSIC ®. as used herein, refers to Boron Silicon Carbide coated fibers
under United Technologies trademark.

The matrix materials can be either metal or organic. Standard alloys of aluminum or titanium
are the usual metal matrix materials and they may start out in the form of foil, plasma spray,
molten metal, or powder. Organic matrix materials can be characterized as low temperature
(epoxy resin) or high temperature (polyimide resin) materials. Boron fiber can be combined
with either metal or organic matrix materials while graphite fiber is normally used with an or-
ganic matrix material. Development efforts are currently underway to combine graphite fiber
with an aluminum matrix.

4.1 MECHANICAL PROPERTIES

Advanced composite materials have extremely high specific strengths and moduli. Fiber tensile
strengths range as high as 500,000 psi and moduli up to 60 million psi, while densities are 0.1
Ib/in3 for boron fibers and 0.05 1b/in3 for graphite fibers. When combined with a matrix to
form a composite material, the strength in the direction of fiber orientation is generally pro-
portional to the volume percentage of fiber in the composite. Density of the composite on

the other hand, may remain the same as that of the fiber, or increase slightly. Consequently,
their specific properties are superior to thosc of titanium, which is currently favored for jet
engine structural use where the engine temperature environment is less than 800°F.

The properties of advanced composite materials are anisotropic, however. The strength of com-
posites transverse to the fiber direction is far less than in the axial direction of the fibers. The
anisotropic characteristic can be overcome to a great extent by proper design (i.e., cross-ply-
ing) and fabrication of the component.

Temperatures at which advanced composites can be used as structural materials are limited by

the matrices used. These limits are generally 200-300°F for epoxy matrices, 600°F for poly-
imide or aluminum matrices, and 800-1,000°F for titanium matrices.
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4.2 FABRICATION TECHNIQUES

Structural components made from advanced composites are laminar, built from successive
layers of advanced composite tape (sheet) or broad goods. The tape or broad goods can be pur-
chased in either monolayer or multilayer form. Those composite materials having an organic
matrix are called “prepreg” because they are usually impregnated with the matrix material.
Composites with a metal matrix sometimes contain an organic “fugitive” binder by which the
manufacturer holds the fibers in position while applying the metal matrix. If present, the
fugitive binder must be driven off by heat and vacuum during processing, otherwise occlusions
result, thereby weakening the material.

; Composite materials can be used to make shapes as simple as flat panels or forms as compli- ,;
. cated as turbine engine fan blades which have a two-dimensional taper, curvature, and twist o
i plus a root attachment at one end (Figure 4.2-1). :
B Processing of the part, whether simple or complex, is usually similar. Plies of the proper shape ?
and size are cut, stacked with the proper fiber orientation, loaded into a mold (for organic
matrices) or die (for metal matrices), and subjected to heat and pressure for a specified period ‘

of time. This last operation, normally performed in a vacuum, is called a “cure” cycle when
used with organics, and a “bonding” cycle when used with metal matrices.

The cure cycle is performed at moderate pressure levels. The characteristics of organic ma-
terials however, often dictate that more than one temperature level be applied during the cure
cycle and that the time/temperature relationships be closely controlled.

The bonding cycle for metals, on the other hand, is a diffusion bonding process, and requires
less stringent control of time-temperature relationships. It does, however, require high pres-
sures, in the range of 3500-5000 psi for aluminum and up to 25,000 psi for titanium.

The vacuum environment for either cycle can be provided by the use of autoclaves, retorts,
or by bagging.

After molding and bonding, finishing operations are performed as required. The composite
materials can be machined, but in the case of boron the only effective finishing techniques
are grinding and electrodischarge machining (EDM).

Most composite parts require more than one fiber orientation in their structure to meet strength
» and stiffness requirements. This is a consequence of the anisotropic properties of composites.
In fan blades, for example, the most critical structural design requirements are those of bending
and torsional stiffness, tensile strength in the radial direction, and sometimes torsional creep
strength. These requirements usually cannot be met by a unidirectional fiber orientation, but
necessitate a “cross-ply” layup where the fibers are alternately arranged at some angle to the
radial axis of the airfoil. Another possible solution is to incorporate a “‘core-shell” construction
(Figure 4.2-2), wherein the bending and radial load requirements are satisfied by the core of
radial fibers, and the torsional stiffness and creep requirements are satisfied by 45° cross-ply
" shell. The latter arrangement is the one used in the TF30 fan blades designed, fabricated and
tested under this program.
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I'he most common problems which occur in manutacturing composite parts are voids in the
matnx material, delamination ot the plies, cracking, misorientation of fibers, and broken fibers.
All of these defects, however, can be detected with high assurance by proper application of
NDI techniques such as X-ray and ultrasonic C-scan. In addition, the effects of flaws in ad-
vanced composites are reduced because composite materials are less notch sensitive than most
metals, including titantum.

¥ . i) 5 . \ 3 . S 5
Frgure 4.2-1 these BORSICT Auminiem Blades Show the Complex Shape That Can Be
Fabricated From Composite Materials: Lett, Finished - Machined Root and
Blade: Right, Unfinished Root wd Blade

LEADING EDGE PROTECTION

UNIDIRECTIONAL CORE

t a5°sHELL

' S i)
Figure 4.2-2 The Core and Shell Construction Selected tor the BORSICY  Aluminum
Blades Fabncated Under This Program
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v 5.0 MATERIAL

The advanced composite material selected for use in this program was BORSIC®/Aluminum ‘
‘ consisting of silicon-carbide coated boron filaments affixed to AA6061 aluminum foil by g

plasma spraying (PWA 437-1) AA6061 aluminum powder. The material, ordered to Specifi- {

cation PWA 437-1, Rev. D, was procured as a monolayer tape from two sources; the Hamil-

ton Standard Division of United Technologies Corporation, Broadbrook, Connecticut and the

Materials System Division of Union Carbide, Indianapolis, Indiana.

The choice of 6061 aluminum as the matrix material was made on the basis of Pratt &
Whitney Aircraft experience in prior programs. BORSIC ®(silicon-curbide coated boron)
fibers were chosen rather than uncoated boron fibers because of tabricability : the coated
fibers allow the composite material to be processed at higher temperatures and over a
greater range of temperatures.

Upon delivery, the advanced composite was inspected to ensure contormance to the pro-
curement specifications, BORSIC® Aluminum Tape Specification PWA 437 and BORSIC®
Filament Specification PWA 438 which are included in this document as Appendix A, The
inspections, described in Paragraph 5.1, showed that the composite material tape purchased
was consistently uniform and of high quality. The tape acceptance rate was in excess of
95 percent for the Union Carbide tape, which incorporated HSD fiber.

5.1 RAW MATERIAL QUALITY ASSURANCE

5.1.1 Visual Inspection

All raw maternial received was visually inspected tor loose or missing fibers, tiber crossover,
creases or wrinkles in the back-up toil and other visually discernible defects. Minor detects
which were confined to a small arca and would have no degrading ctfect on component
fabrication or composite material physical properties were not a cause for material rejection.

5.1.2 Fiber Content and Characterization

A sample taken from a corner of cach tape was weighed and measured to determine the
weight per unit area. The aluminum matrix was then removed by leaching. Fiber spacing,
diameter, and content were then determined from the remaining material. Shight deviations
in weight per unit area, tiber diameter, and excessive fiber content were expected to have
no etfect on the program and, consequently, tapes with such deviations were judged to be
acceptable. On the other hand, material in which the fiber content was less than that
specified in PWA 437 was rejected.

5.1.3 Mechanical Property Evaluation

Initial mechanical property testing was conducted on unidirectional test panels tabricated
from a randomly selected tape tor cach 100 square teet of material received. The test
panels, fabricated in accordance with paragraph 3.2.1 of Specification PWA 437, consisted
g - of ten layers of composite material pressed together for 1.5 hours in a vacuum of 10+
Torr or less, at a temperature of 1040° + 10°F and a pressure of 5000 psi. Properties de-
termined included longitudinal ultimate tensile strength and modulus (filaments parallel to
applied load) and transverse ultimate tensile strength (filaments perpendicular to applied
load). 0
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Test results of the initial panels showed strengths as low as 53,900 psi, significantly below
the minimum specification requirement of 140,000 psi.

An additional panel was fabricated trom a tape which had exhibited a strength of 92,900
psi. This test panel was laminated at 950°F and tensile tested to determine whether the low
strength was the result of insufficient silicon-carbide coating. Tensile strength improved only
slightly to 100,600 psi which indicated that the coating was sufficient.

Weibull analysis of single-filament tensile test results on fiber extracted trom as-received tapes
and from fabricated test panels revealed that panel fabrication had no observable effect on
filament strength. However, there was a significant difference between fibers extracted

from material which exhibited an acceptable strength greater than 140,000 psi, and those
fibers from materials which did not meet strength specifications. Figures 5.1-1 through

5.1<4 show that the incidence of fibers having a strength less than 200,000 psi or fibers having
defects was significantly greater for the weak material. Despite this demonstrated difference
in fibers, however, the results of filament testing are not always consistent with panel testing.
Sufficient inconsistencies existed to indicate that mean fiber strength values may not provide
a valid criterion of filament quality, and fiber testing only a small sample may be insufficient
to detect unacceptable material. The variability in tape-to-tape composite strength demon-
strated. the advisability of evaluating the strength of all tape lots rather than a random samp-
ling.

The cost and time invelved to evaluate the strength of each tape lot by extensive panel or
fiber testing led to developing tensile test specimens of monolayer tapes as qualitative pre-
dictors of subsequent composite (panel or component) strength. Test specimens contained
40-45 filaments and were 0.250 inches wide by 4.0 inches long with a 2.0 inch gage length
and 1.0 inch long aluminum doublers attached by epoxy adhesive to the gripping areas. A
gripping alignment fixture, used to avoid bending stresses, and a monolayer tape tensile
test specimen are shown in Figure 5.1-5.

Strength values were estimated using the total fiber cross sectional area only because the
load carrying capability of the uncompacted matrix was negligible. The rule of mixtures;
i.e., the strength of the composite is directly proportional to the volume percentage of
filament, indicated that the composites, having approximately SO percent filament, would
exhibit about half the strength indicated by the tests.

Correlation of tape test results and composite panel properties, Figure 5.1-6, showed that

in general, panel strengths were less than half of the tape strength for the higher strength
material. Tape strength above approximately 415,000 - 420,000 psi correlated with
acceptable composite panel strengths, while tapes with strengths less than 260,000 psi
yielded unacceptable composite panels. Experience on this and other programs conducted

at Pratt & Whitney Aircraft indicated that material containing BORSIC® filament prior to
mid-January, 1971, and exhibiting average strength above 415,000 psi would have acceptable
panel strength. Tapes that exhibited strengths less than 420,000 psi required panel fabrication
and testing to assure that the composites would have the required tensile strength of 140,000
psi.

10
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-

;

- 1t was judged that exceptions to the correlation were due to significant strength differences

. between fiber lots which were revealed dunng testing. Initially, three specimens were ob- '

tained from a single edge of each tape. This selection of test specimen locations had the
- result that only one of the two or three fiber [ots used to fabricate a tape was actually
tested. Consequently, tensie test results were highly consistent. When test specimens from

r different edges of the tape were selected, however, some tapes exhibited large differences in I

- strength. This was attributed to the fact that different fiber lots were used to fabricate a single

i tape. This is shown in Figure 5.1-6 where tape lots, J, K and X are indicated.

s Subsequent testing was expanded so that specimens selected were representative of more i
than 75 percent of the tape arca. This provided a more accurate assessment of the tape’s

e strength. |

| 1 Testing of Union Carbide material received between July, 1971 and mid-November 1971 re-

o vealed an apparent improvement in manufacture. Test results showed that the composite panel
strength was approximately 50 percent of the tape strength. Figure §.1-7, shows the
correlation of tape and composite panel strengths for this material. The lower line in this
: figure represents a panel strength SO percent of that of the tape based on the rule of mix-
tures. The upper line, parallel to the 50 percent line and located at the top of the strength 4
band, crosses the composite specitication mimmum of 140,000 psi near the 340,000 psi '
tape strength level, indicating that a tape strength of 340,000 psi would ensure acceptable
composite strength. Therefore, when panel testing of one randomly selected tape from
cach 100 square feet of tape recetved was resumed, panels from tapes with strengths of
340,000 psi or greater were not tested providing that the monolayer tensile tests from
different locations of the same tape exhibited no significant decrease in strength.
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Figure 5.1-5  Monolayer Tape Tensile Specimen and Gripping Alignment Fix ture
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6.0 DESIGN AND ANALYSIS

The airfoil shape of the third-stage blades designed and fabricated under this program was
established by the contract commitment that the blades would be service evaluated in a Pratt
& Whitney Aircraft TF30-P-9 engine. Except for the part-span shroud, which was eliminated,
the blade airfoil shape is identical to that of the TF30-P-9 bill of material (B/M) titanium alloy
blade. As a consequence of removing the shroud, the blade shape was smoothly blended to
eliminate the chordwise notches and local thickening at the shroud locations. Figure 6.0-1
shows a comparison of the advanced composite blade with the B/M titanium alloy blade.

6.1 BLADE DESIGN CONSIDERATIONS

Fan blades must satisfy both vibration and static stress requirements. The vibratory design
criteria are primarily concerned with the second order engine excitation (2E) of lower order
bending frequencies and avoiding torsional flutter. The stress criteria of both the airfoil and
attachment sections of the blade are imposed to ensure that the blade will be able to with-
stand the loading to which it will be subjected during engine operation.

In addition to the vibration and stress requirements, the blades must also be able to withstand
foreign object damage (FOD) due to ingestion of foreign objects into the engine.

Because of the inherent anisotropic properties of advanced composite blades and the signit-
icant interdependence of fabrication techniques on mechanical and physical properties, the
design procedure for advanced composite biades is highly sophisticated. In general, the com-
posite-blade design process requires more iterations than the design process for isotropic ma-
terial blades. Figure 6.1-1 is a typical logic network used in the design of composite fan blades
and illustrates the complexity of the process. This has resulted in the development of ad-
vanced, computerized techniques to analyze the stress state and vibration characteristics of
nonhomogenous and anisotropic material fan blades. These techniques, developed by P&WA
and outlined in Figure 6.1-2, were used extensively to optimize the fan blade design.

Although the procedures are more complex, the structure of composite blades does allow a
certain amount of design flexibility not available when designing with isotropic materials.
The lay-up pattern of the laminates can be varied in an effort to meet specific design criteria.
The shell and core construction shown in Figure 6.1-3 can be used to advantage in meeting
bending and torsional frequency requirements as well as stress requirements. The shell pro-
vides the torsional stiffness to meet torsional frequency requirements and keep the angle of
untwist at an acceptable level. The core, on the otherhand, provides the bending stiffness to
satisfy the bending frequency requirements as well as providing the P/A load carrying and gas
bending and restrained warping stress capability.

6.1.1 Vibration Considerations

The high modulus-to-density of advanced composite materials is not sufficient to compensate
completely for the reduced bending frequency which resulted from eliminating the part-span
shroud. Consequently, first bending resonance by 2E excitation was unavoidable. To resolve
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this condition the composite fibers must be oriented and distributed so as to reduce the first

bending frequency to a level where 2E excitation would have little adverse effect. However, |
the blade stiffness must not be decreased to a level where the second coupled bending fre- !
quency is reduced to a point where it will undergo 2E excitation in the engine operating range.

An additional consideration is that the torsional frequency of the blade must be maintaincd |
at a sufficiently high level to achieve an adequate torsional flutter parameter. This parameter
is defined as bw; where b is the chord length in feet and w is the first torsional blade fre- '
quency in radians/sec.

6.1.2 Stress Considerations
6.1.2.1 Airfoil |

The general stress criteria used in fan blade design include yield stress, low cycle fatigue (LCF), I
and creep. f

Low magnitude vibratory stresses, combined with high level steady state stresses, create a f
potential fatigue problem in fan blades. In addition to stress due to aerodynamic loading, £
steady state stresses result from centrifugal forces (P/A stress), blade untwist, and restrained '
warping. Under centrifugal loads, large torsional moments are developed in the rotating blades
because of blade pretwist and the asymmetric blade geometry with respect to the plane of ro-
tation. The fixed condition of the hub prevents warping and results in longitudinal (restrained
warping) stresses. Blade untwist and camber variation due to torsion cause additional longi-

tudinal stresses.

Vibration of the blades induces torques and moments resulting in high frequency stresses.

The magnitude and frequency of these vibratory stresses depends upon the natural frequency
of the blades and disks and are a function of the torsional and bending rigidities of the systems.
A yield strength criterion is traditionally applied to metallic fan blades because experience

has shown that vibratory fatigue failures are avoided by limiting the steady stress to a fraction
of the yield strength. With composites, the criterion is to limit the steady stress to a fraction
of the composite ultimate strength since yield strength essentially coincides with the ultimate
strength.

6.1.2.2 Root Attachment

Blade attachments transmit tensile, bending, bearing, shear, and torsional loads from the air-
foil to the disk. A design constraint is that the attachment must be stronger than the airfoil
so that, in the event of failure, the failure will occur in the airfoil section of the blade rather
than the more massive attachment section, thereby minimizing secondary damage. The blade
attachment must have sufficient strength to withstand the high induced inertial loads and in
addition, must be designed so that stress concentrations are reduced to a level where they will
not be adversely affected by the vibratory loading environment.
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To design the blade attachments, P&WA has developed a computerized finite-element tech-

1 nique by which the stresses in this attachment can be accurately analyzed. In this technique,

. the elastic continuum is replaced by a mesh of interconnected quadrilateral elements of
known stiffness. Equilibrium and compatibility conditions at the nodal points are then satis-

] fied and a system of simultaneous equations is generated. The solution to these equations
. approximates the exact elasticity solution. |
]
1 Figure 6.1-4 is a schematic of a typical finite element model of a blade attachment design. |
: Because of symmetry, only one-half of the design need be considered provided appropriate
boundary conditions are specified along the axis of symmetry. As can be seen, the element i
1 size can be varied throughout the body — small elements in areas of rapid stress variation and ,
: larger elements where stresses vary more slowly. This provides the means to more accurately i
determine stress profiles and stress concentration factors.
: 6.2 BLADE DESIGN METHODOLOGY !
{
A disciplined, orderly design procedure was implemented to ensure a successful fan blade and :
i rotor design as well as to provide a cost effective design effort which would minimize duplica- |
tion of effort and optimize the analytical iterations required. An outline of the procedure is
as follows:
) 1. Fan flowpath and blade airfoil contour technical data were determined. These data were
based on the TF30-P-9 engine B/M blade data.
2. Fiber volume percent, airfoil weight, and centrifugal pull were determined based on
the required fan speed plus ten percent. This data identified the root load carrying
requirements.
3. The blade attachment was designed taking into account the design constraints described
in Section 6.1.2.2 of this report as well as manufacturing considerations. Although
blade root and disk Iug attachment stresses were calculated in the same way as for a
metal blade, particular attention was paid to tooth shear and bearing stresses as well as
; the bonded root joint shear stress because of the anisotropic properties of composites
materials. In addition, the broach.angle of the blade root attachment was optimized
so as to produce the smoothest flow of fibers into the root.
: To form the root section, the fiber plies which make up the blade were translated from
’ the aerodynamic airfoil section into a rectangular wedge shaped root and splayed into
i two fiber bundles. An aluminum wedge was inserted between the bundles, and titanium
i root pads were bonded to the outer surface of the fiber bundles. The root pads provided
! the surface necessary to carry the bearing loads produced by the interaction of centrifu-
- gal force and the restraining lug of the disk. Figure 6.2-1 shows a cross-section of this
| design.
’ s
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The rectangular shape of the root simplifies manufacturing the aluminum wedges and

titanium root pads. To achieve maximum shear strength of the bonded joint, the mat-

ing surfaces were matched as closely as possible. The design aim is to obtain the smooth-

est possible transition in the shortest radial length. This will minimize overall blade length

and consequent vibratory problems as well as avoiding the possibility of imposing more

stringent pitch limitations on the disk lug design. |

Although the design criteria are not identical to those for metal blades, every effort was {
made to adhere to proven disk and blade design relationships.

4. Concurrent with the design effort which provided the basic configuration, the fiber
orientation of the plies was optimized so that the vibratory and stress criteria would be
adequately met. The core and shell construction was selected as the best means of meet-
ing all design criteria, including torsional creep (untwist) of the airfoil.

S.  After determining the fiber orientation and both the radial and axial blade tilt, a com-
puter program was developed to determine the flat pattern shape of each ply to be used
in the blade construction. The airfoil taper established the overall span length of each

ply.

6. Finished tolerances were determined to be those expected of a titanium blade; conseq-
uently, techniques to calculate the blade tip clearance and root balance were those used
for titanium blades. However, it was expected that actual clearances might differ due to
changes in the coefficient of expansion and density of the composite material, plus
lower airfoil stiffness.

?t 6.3 FINAL BLADE DESIGN AND CONSTRUCTION

o o

i The blade has an overall length, including root attachment, of approximately ten inches; chord
f length is approximately three inches. The blade weight is only 6.6 ounces, 40 percent lighter
than the TF30-P-9 engine B/M blade. The airfoil has a maximum twist of 49° and a maximum
camber of 68°. Its leading and trailing edges are a maximum of 26.4 mils thick. The blade is
designed to operate at a maximum tip speed of 1500 ft/sec and at a maximum temperature

of 470°F.

6.3.1 Airfoil

! The airfoil is constructed of 6061 aluminum alloy matrix material reinforced with a 50 per-

‘ cent volume of 4.2 mil BORSI fiber (boron fiber coated with silicon carbide). The al-

: uminum alloy matrix material was chosen because of its superior fabricability and good

i corrosion resistance as well as Pratt & Whitney Aircraft experience with the material. Coated
boron fiber, rather than uncoated, was chosen also because of fabricability; the BORSI

fiber allows a greater range of, and higher, processing temperatures.

Figure 6.3-1 shows a cross section of the core and shell blade construction as well as the fiber
orientation in each element. The inner core is composed of all-radially oriented fibers to pro-
vide both bending stiffness and strength in the radial (root-to-tip) direction. In the shell the
alternate fiber layers are oriented +45° to the radially oriented core fibers. The orientation
of the fibers in the shell provides the required torsional stiffness and creep strength.

7
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The ratio of shell-core-shell thickness is 20 percent-60 percent-20 percent based on the max-
imum thickness at a given airfoil cross section. This thickness ratio is maintained from blade
root to tip. A total of 44 plies is used in the root area, only 13 of which extend to the tip.
The 44 ply shapes at the root were established by computer after the airfoil aerodynamic
parameters were established. The inner most radial ply is the smallest and the outermost
“cross” ply is the largest. Figure 6.3-2 shows the relative sizes of the plies.

To provide protection against sand/dust/rain erosion and the types of FOD encountered in

a fan’s third stage (normally gravel and small metal objects) the airfoil has a nickel-cobalt
leading edge extending from the tip to within one inch of the root. Figure 6.3-3 shows this
protection while Figure 6.3-4 shows a cross section of the leading edge. Nickel-cobalt (Ni-Co)
alloy was selected rather than hardened nickel for the leading edge because it exhibits superior
hardness above 350°F.

An alternate leading edge design consisting of a two-piece titanium alloy sheath was developed
but was abandoned because of substantially higher cost and fabrication difficulty. Figure
6.3-5 shows the alternate design.

6.3.2 Root Attachment

Figure 6.3-6 shows the low-wedge, cne inch splay radius, titanium dovetail attachment se-
lected for the advanced composite fan blade, while Figure 6.3-7 is a sketch of the titanium
dovetail attachment geometries considered. The low wedge attachment was selected and
fabricated under this program. The selected design has several advantages over the aluminum
double-dovetail attachment design developed and tested under the Advanced Composite
Engine Program, Phase I, Air Force Contract F33615-69-C-1651 and discussed in

Technical Report AFML-TR-70-89, J. A. Mangiapane, April, 1970. The prime advantage is
the ample shear strength of the titanium pads; a ratio of maximum titanium shear stress at
redline speed and 450°F to allowable titanium shear stress at the same conditions is 0.53.
Other advantages include simpler geometry, superior wear resistance and a high bearing strength
throughout the operating temperature range.

6.4 VIBRATION ANALYSIS

Blade vibration analyses, using BORSIC®/Aluminum composite material properties at both
room temperature and 450°F, were conducted. The effect of the Ni-Co leading edge was in-
cluded in the analysis. Figures 6.4-1 and 6.4-2 are resonance diagrams showing the results
of these analyses.

The analyses indicated that, at both room temperature and 450°F the TF30-P-9 BORSIC®/
Aluminum fan blade with FOD protection will be excited in first bending by 2E engine fre-
quency at about 5000 rpm. This rpm is just above idle in the engine operating range which
would occur only during rapid descent from high altitude. The S000 rpm speed does not
coincide with any potential operating speed of extended duration.

(]
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The coupled blade-disk second mode 2-nodal diameter frequency satisfies the Pratt & Whitney
Aircraft imposed ten percent margin requirement on 2E excitation at redline engine speed.

To meet this requirement for a Ni-Co FOD protected blade, the disk design incorporates a
live-rim thickness 0.1 inch larger than the rim thickness of a disk designed for a blade with
titanium FOD protection. Figure 6.4-3 is a sketch which compares the two disks.

The shroudless BORSlC®/Aluminum blade with FOD protection exhibits a flutter parameter,
(b wy = 1187 ft/sec) such that torsional flutter is not anticipated. This conclusion is re-
inforced by the results of a rig test conducted on shroudless third stage titanium blades
having a b w, of 1120 ft/sec. Test results indicated that the blades were flutter free.

6.5 STRESS ANALYSIS
6.5.1 Airfoil Steady Stress and Test Analyses

A gas-bending and blade tilt analysis was conducted on the BORSIC®/Aluminum blade in or-
der to equalize the maximum shei! stresses. The shell stresses are a maximum at two points on
the blade airfoil root, on the convex side at the leading edge, and at point A as shown in
Figure 6.5-1. The maximum shell stress (combined P/A, restrained warping, and gas-bending
stresses) at the leading edge is reduced by tilting the blade to create a moment which acts
against the gas-bending moment. The level of stress reduction which can be achieved in this
way is limited because, as the leading edge stress is reduced, the stress at point A increases.
The optimum tilt is attained when the leading edge shell stress with maximum gas loading
equals the shell stress at the three-fourth chord position on the convex surface with minimum
gas loading.

This analysis indicated that the recommended stack line offsets (tilt) were 0.2 inches tangential
and 0.0319 inches axial at the blade tip. Table 6.5-1 lists the elastically calculated longitudinal
stress components and their vector sum at the locations of peak stress at the airfoil root sec-
tion (r=7.01 in.). Values are:

TABLE 6.5-1
MAXIMUM AIRFOIL STATIC STRESS (psi)
Conditions: Mach No. 1.2, Sea Level, Max Afterburner, Fan Speed 10,355 rpm

Core (0° fiber orientation) Shell (+45° fiber orientation)

3/4 Chord (CV) Leading Edge
P/A (p 32,170 18,000
Restrained Warping 21,000 24,500
Tilt and Gas Bending 2,406 1,410
Total 55,576 43910*
24
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TABLE 6.5-1 (Cont’d)

Conditions: Min. Gas Load, Fan Speed = 10,350 rpm

3/4 Chord (CV) 3/4 Chord (CV)
P/A 32,170 18,000
Restrained Warping 21,000 19,450
Tilt and Gas Bending 7,070 6,920
Total 60,240 44 ,370*

* Balanced Stresses

The recommended stack line offsets (tilt) were determined by balancing the total longitudinal
stress at the leading edge of the shell (maximum gas loads, Mach No. 1.2, sea level, maximum
afterburner flight conditions) against the total longitudinal stress at the three-fourth chord
position on the convex shell surface (minimum gas load at fan speed of 10,350 rpm).

6.5.2 Titanium Dovetail Attachment

The titanium dovetail attachment was optimized by using a finite element method of ana-
lysis to determine the combination of fiber splay radius and wedge height which would re-
sult in minimum interlaminar shear stress in the +45° oriented fiber cross-plies. Two wedge
heights were considered, and several splay radii were analyzed for each wedge configuration.
Figure 6.5-2 shows a plot of maximum and average interlaminar shear stress in the cross-ply
layers versus the splay radius for the “high” and “low’ wedge designs. The optimum design
is indicated to be a low wedge combined with a small splay radius.

The minimum bend radius to which the fibers can be subjected is limited by the maximum
allowable bending stress induced in the fibers by curvature. Unidirectionally oriented fibers
(core) may be bent about a minimum radius of 0.75 in. while the cross ply fibers (shell) may
be bent about a2 minimum radius of 0.375 in. Bending about these minimum radii will induce
a maximum 160,000 psi bending stress in the fibers. Figure 6.5-2 shows that the interlaminar
shear stresses for the cross ply layers of the optimized dovetail design are less than the allow-
able value of 5,300 psi or 66.6 percent of the shear strength.

In the optimized configuration the fibers are splayed by a single aluminum wedge which
produces a minimum splay radius of 0.75 in. in the unidirectionally oriented fibers. The
titanium pads provide ample shear and bearing strength throughout the operating temperature

range.

The root design point shown in Figure 6.5-2 was based on fabricability and inspectability
considerations as well as laminar shear strength. Although the stress optimized design results
in a slightly lower shear stress, the larger bend radius of the actual design point (one inch vs
three-fourths inch) reduces fabrication difficulties at the root and facilitates ultrasonic in-
spection. In either case, the average shear stress is well below the allowable value and the max-

imum shear stress is not affected at all.
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B/M TITANIUM

BORSICE/ALUMINUM
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Comparison of Shroudless TE30-P-9 BORSICY/ Alwminum Fan Blade Designed

Figure 6.0-!
and Fabricated Under This Program With B/M Titaniwm Alloy Blade
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44 PLY SHAPES

-

Figure 6.3-2  Relative Sizes of the 44 Plies Used in the Construction of the BORSIC®/
Aluminum Fan Blade
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Figure 6.3-3  Composite Fan Blade Showing Nickel-Cobalt Leading Edge Protection Extending
. Erom Tip to Withine One-Inch of Root
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Figure 6.3-4  Cross Section View Showing Nickel-Cobalt Leading Edge Protection
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Figure 6.3-5  Altemate Design of Leading Edge Protection; This Design Was Not Pursued Because of
High Cost and Fabrication Difficulty
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Figure 6.3-6  The Low-Wedge, One-Inch Splay Radius, Titanium Dovetail Attachment
Selected for the BORSIC®/Aluminum Blades Designed and Fabricated Under
This Program
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7.0 FABRICATION, TOOLING AND EQUIPMENT

The fabrication processes and tooling used in producing the ll()RSl(‘®/A|umimnn third-stage
fan blades under this contract were developed specifically to meet the needs of this pro-
gram; i.c., a short production run application. Emphasis was placed on developing the
techniques and tools necessary to ensure technical success rather than conducting an effort
directed toward possible future long production run cost optimization,

7.1 FABRICATION PROCESSES

7.1.1 Development

Stringent process control parameters were established and adhered to throughout the pro-
gram. These parameters will form the basis for fabricating flight cuality hardware. In the
blade bonding-ditfusion process the atmospheric pressure in the retort was reduced to a
maximum of 10°* Torr, the dies were heated to 10507 + 10°F, and a load of S000 psi was
applied for 1.5 hours. Although holding these parameters was relatively difficult, it was an
effective method of ensuring that the technical success of the program would not be compro-
mised. Lowering the standards could have resulted in such a compromise.

During the development stages of the process, two problems were defined wnien naa to ve
solved before fabricating parts of high quality.

The first involved fabricating the titanium root blocks to a +0.002 in. tolerance. Figure 7.1-1
shows these blocks. Machining was chosen over casting or forming as the most feasible meth-
od of producing the blocks. Both tracer machining (from a master) and numerical tape con-
trol (NC) machining were possible. The NC tape approach was tried unsuccesstully. Subse-
quent trials using the tracer technique were even less successtul. Improved tooling was then
developed and the NC approach again tried. This resulted in the successtul and consistent pro-
duction of engine quality parts.

The presence of a second problem arca was recognized when initial spin-pit proof testing of
the blades resulted in several failures at 11§ percent design speed. 1t was determined that
high residual stresses induced in the fibers during the hot-pressing operation were causing the
failures. Initial remedial action was to relicve the stresses by adjusting the cool-down rate of
the die. Success by this method was inconsistent, so an 800°F heat-treat was applied to the
blades in their finished contiguration. This procedure solved the problem and no turther
blade failures were experienced cither in spin-pit or engine environment testing.

During this developmental period 59 blades, E-1 through E-59, were cither not processed
by optimum procedures or destroyed in spin-pit testing,

7.1.2 Finalized Fabrication Sequence
Table 7.1-1 outlines the sequence of operations used in producing the blades from which all

engine test blades were selected. This sequence was used to fabricate 189 blades (F-60
through E-248),
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Sequence
No.

1.
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10.

11.

12.
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14.

15.

17.

18.
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TABLE 7.1-1
FABRICATION SEQUENCE

TF30 Third-Stage Composite Fan Blade

Operation

Cut 44 plies of BORSlC®/Aluminum tape to correct shapes.

Cut three plies of .005"" 6061 Al foil.

Machine two 6-4 titanium root blocks.

Machine one 6061 Al wedge.

Stack, preform, and tack-weld plies together into three packages.
Record weight of blade components.

Tack-weld together three ply packages, wedge, and root blocks.
Load assembly into closed die.

Transfer die to vacuum retort/press facility.

Reduce pressure in retort to 104 Torr or lower, induction heat die to 1050°
10°F, load blade to 5000 psi (78.5 tons), hold for 1.5 hrs., cool down.

Remove compacted blade from die, deflash edges, and clean blade.

Perform in-process, non-destructive inspection (density determination, ultrasonic
C-scan, acoustic emission).

Electroplate nickel-cobalt leading edge protection on airfoil.

Shuttling

Machine root form, platform, and undercut, by grinding.
Machine blade lock slot by electro-discharge machining (EDM).
Machine blade tip by EDM (rough) and grinding (finish).
Clean and heat treat at 800°F for 3 hours (two cycles).

Check airfoil twist.
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TABLE 7.1-1 (Cont,)
FABRICATION SEQUENCE
TF30 Third-Stage Composite Fan Blade
» Sequence
£ No. Operation -
. 20. Mark blade with proper identitication.
~
21. Inspect blade dimensions. .
b 22. Inspect blade root by fluorescent penetrant inspection (FP1), R
; 23. Determine blade natural frequencies in first and second bending, and first
- torsional modes.
i 24, Proot spin to {2,150 rpm (5 cycles).
25. X-ray blade airfoil,
b 26. Mark blade with appropnate experimental tlight quality mark.
7 7.2 FABRICATION TOOLING AND TECHNIQUES
7.2.1 Ply Cutting (Sequence Nos. 1 and 2)
: After establishing the final ply shapes to be used in this program, a ply cutting tool* was
designed and fabricated. Figures 7.2-1 through 7.2-4 show the tool and illustrate its
. operation,
) The tool consists of 44 steel, ply-shaped templates, one for each of the required ply shapes.
The templates were assembled into a single tool by adhesively mounting on a steel backing
plate. Sharp upper corners were produced on the templates by means of a “skim™ cut on
' the upper surface of the template assembly. To operate the tool, a sheet of BORSIC™/Alumi-
num tape was placed on the cutting surfaces of the tool. A sheet of reinforced cork, approxi-
mately one-half inch thick was then placed on top of the tape. This “‘sandwich”-tool, BORSIC™/
Aluminum, and cork - was then passed through a set of rubber rollers. The pressure applied
by the rollers was transmitted through the cork, thereby pressing the composite sheet against
the templates which punched out the ply shapes.
1 In this program, approximately 50 sets of plies could be produced before another skim cut
? was needed to sharpen the tool.
F 4o
]
: * 4 similar tool was used in Phase 11 of the Advanced Composite Engine Program, Air Force Contract F-33615-69-C-1651
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7.2.2 Root Blocks (Sequence No. 3)

Two titanium root blocks, shown in Figure 7.1-1, are used in each blade. Each of the

blocks has one contoured surface with compound curvature ; the remaining surfaces are flat.
The contoured surface was machined in a Numeric Keller, and airfoil-section charts were
used to prepare the numerical control tape. To maintain the dimensional tolerance of
+0.002 in. required for this surface, special procedures had to be developed and implemented.
These were:

®  Parts were machined one at a time to assure optimum control, even though the
Numeric Keller used is a three-spindle machine.

® A special tapered-shank cutting tool was designed which provided precise tool
location.

® The cutting-tool head, shown in Figure 7.2-5, was made non-spherical in order to
provide a more uniform cutting rate as the tool moved up or down the shoulders
of the contoured surface of the block.

Tapped holes were provided in the surface of the blocks opposite the contoured surface to
allow bolting to the Numeric Keller mounting plate. During final machining of the blade
root these holes were eliminated.

7.2.3 Wedge (Sequence No. 4)

Each blade requires an aluminum (6061 aluminum alloy) wedge to splay the fibers in the
blade root. To fabricate this wedge, a full ring having the required cross section was turned
on a lathe, The ring was then cut into three sections, each of which was sufficiently long to
form a single wedge. Figure 7.2-6 shows one of these sections. Because the tip of the
wedge was designed to be as close as possible to a knife edge, it had to be supported by a
back-up tool when the final cut was made.

7.2.4 Preforming and Spot Welding Plies (Sequence No. §)

To facilitate loading the plies into the forming die, a preforming tool was designed and
fabricated in order to assemble the 44 plies required for each blade. Figure 7.2-7 shows the
plies required to fabricate a blade. The tool, shown in Figure 7.2-8 was contoured to
duplicate the airfoil twist and camber. The tool was used to assemble the 44 plies into
three separate packages. The assembly operaiion consisted of manually pressing the
individual plies against the contoured surface of the tool and then spot welding them to a
five mil 6061 aluminum alloy foil sheet and/or to each other in non-critical areas. To
facilitate the welding operation, shown in Figure 7.2-9, the preform tool was made of
copper.

Figure 7.2-10 shows the three packages of plies produced for each blade during the
preforming and spot welding process.
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7.2.5 Diffusion Bonding (Sequence Nos. 8, 9, 10)

Figures 7.2-11 and 7.2-8 show the blade bonding tool. This tool is a closed die consisting f
of a contoured upper punch and lower die, two tapered side plates, two tapered end plates, i
and a retaining ring. The retaining ring both aligned and contained the internal die com- i
ponents as well as acting as a susceptor (heat generating body) during the induction heating ’

process. The tool is referred to as a “balanced” die because the root and tip chord angles :
are equal relative to the line of action of the punch, i

|
Rectangular cavities at the root end of the punch accommodate the titanium root blocks. i
Three thermocouples, which pass through the upper surface of the punch, measure root, ;
midspan, and tip temperatures during the diffusion bonding process. A fourth thermo- f
couple measures the temperature of the susceptor ring.

Water-cooled induction heating coils, made of copper tubing, are wound around the
susceptor ring, as well as around the upper flange of the punch and the lower flange of the
die. Die stops between the punch flange and the end and sideplates limit the downward
travel of the punch during the pressing operation.

In operation, the die was placed in a 42-inch diameter vacuum retort which was mounted in i’
a 150-ton hydraulic press. A ten-inch, high-speed, vacuum diffusion pump, connected to the
retort, had the capability to reduce the retort pressure to 10 Torr. Supplementary controls
and load, temperature, and vacuum recording instrumentation completed the installation.
Figure 7.2-12 shows the vacuum retort/press facilities used.

Figure 7.2-13 is a chart showing the heat-up, hold, and cool-down cycle which comprised

the total diffusion bond process. The heating cycle took about five hours normally and was
performed as rapidly as possible, consistent with maintaining a vacuum of 104 Torr or better.
The hold, or bonding cycle, was accomplished in 1.5 hours at a temperature of 1040°F-1060°F,
a ram pressure of 5000 psi, and a vacuum of 10 Torr or more. Halting the induction heat-

ing initiated the cool-down cycle. The system was then allowed to cool at its natural rate to
600°F while the vacuum of 10™ Torr was maintained. When 600°F was reached, the retort
was opened, argon was introduced into the retort and air cooling continued. At 400°F, the

die was removed from the retort and disassembled. As Figure 7.2-13 shows, the cooling cycle

took approximately three hours and the total diffusion bonding cycle required between nine
and ten hours.

The die was then disassembled and the blade was visually examined. The final punch posi-
tion was determined by measuring the height of the rivets above the die stops. The die
components were then cleaned and prepared for the next bonding cycle.

A total of 168 blades were pressed in a single die with no significant die wear or distortion.
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Artificially retarded cool-down cycles were tried early in the program in an effort to reduce
blade residual stresses. The effectiveness of this approach proved inconsistent and a heat-
treat cycle, described in a subsequent paragraph of this report, was far more successful.

e e b

7.2.6 Deflashing (Sequence No. 11)

Because the blades were pressed in a closed die, the aluminum flash at the leading and f
trailing edges was a “‘vertical’* flash as shown in Figure 7.2-14. This flash was removed by
hand filing; no special tools were used.

7.2.7 Leading Edge Plating (Sequence No. 13) |

Electroplating of the Ni-Co leading edge was accomplished using the tooling shown in ;
Figures 7.2-15, -16, and -17. The tool was shaped to control the amount of fluid available |
to the leading edge regions, so that a heavy buifd-up of plate would occur at the edge and |
a lesser thickness of plate would occur in the regions farther from the edge. This resulted J
in the tapered configuration shown in Figure 4.3-4, Section 4.3. The plating fluid was '
forced to circulate past the leading edge from tip to root in order to sweep away gas
bubbles which tend to cling to the leading edge and cause pitting. Forced circulation
decreased plating time as well,

A taper at the inboard (root) end of the leading edge plate was also required. This was
accomplished by using a “thief” wire at that location. This wire captured current normally
available to the blade, and as a result reduced the plating thickness in the local area around
the wire,

Standard electroplating tanks and current controls were used for this process. The current
controls were constructed to handle three blades simultaneously. Table 7.2-II outlines the
plating process sequence.

7.2.8 Shuttling (Sequence No. i4)

To prepare for final machining, the blades were fixed in shuttles which are short, thick-
walled tubes (usually square or hexagonal) with ends and outer surfaces machined flat.

The blades were inserted in the shuttle to a point just above the root as shown in

Figure 7.2-18. A comparator image of an airfoil section near the root was used to properly
orient the blade with respect to a reference surface on the shuttle, Originally, Cerrobend
was used to fill the shuttle cavity in order to fix the blades firmly in place. Toward the end
of the program Cerrobend was replaced by Rigidax WINF yellow, a reinforced wax, to
position the blades. The last 50 blades (approximately) were shuttled with the Rigidax
WINF yellow.

B e U e —

7.2.9 Root Machining (Sequence Nos. 15 and 16)

Due to the presence of BORSIC® /Aluminum on some of the root surfaces, the root shape
was produced by grinding. Conventional titanium grinding tools were used. The blade lock
slot, shown in Figure 7.2-19, was produced by EDM again using conventional tools,

Figure 7.2-20 shows the blade locks which were also produced by conventional means.

P s

46

'
L




PRATT & WHITNEY AIRCRAFT GROUP

TABLE 7.2-1I

PROCESS FOR PLATING NICKEL/COBALT LEADING EDGES ON
BORSIC®/ALUMINUM FAN BLADES

Sequence
No. Operation

1 Weigh blade and record

2. Tape leading edges with Mylar tape
3. Mask (five coats PMC 1801)

4 Trim maskant

5 Vapor blast (35 to 40 psi)

6 Water rinse

7. Fixture

8. Check continuity

9 PS48 dip - fifteen seconds (HNO3-HF)
0

1 Water rinse

11. PS30 dip - fifteen seconds (zincate)

}2. Water rinse

13. PS11 dip - ten seconds (HNO3)

14. Water rinse

15. PS30 dip - fifteen seconds (zincate)

16. Water rinse

¥7. 1 percent sulfuric dip - five to ten seconds

18. Water rinse

19. Nickel/cobalt plate - three hours with agitation on with current of 1.5 amp,
nickel anode and 1.0 amp, cobalt anode

20. Water rinse

21. Remove from fixture

22, Visually inspect - if acceptable, remove maskant - if not acceptable, strip with

50 percent HNO3, and replate
23. Weigh blade and record weight

24. Bake at 300° to 350°F, two hours*
25. Polish
26. Cut one-half inch off tip for hardness check and analysis (as necessary)

*The 350°F bake improved the bond between the plate and the substrate and would also
reveal a poor bond by causing blisters. The 50 percent cobalt, 50 percent nickel solution
provided a plate hardness greater than that of 6-4 titanium alloy.
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7.2.10 Tip Machining (Sequence No. 17)

Using the finished root as a position reference, the blade tip was rough machined by EDM,
and finish ground. Conventional tooling was used.

7.2.11 Heat Treating (Sequence No. 18)

Blades were heat treated at 800°F by suspending them from a slotted rack shown in
Figure 7.2-21 and heating them in the electric oven shown in Figure 7.2-22. This heat-
treat was successful in relieving the residual stresses induced during the diffusion bonding
cycle. These residual stresses had caused premature spin-pit proof testing failures in early
blades (Section 10.3.3, Spin-Pit Burst Testing).

7.2.12 Dimensional Inspection (Sequence No. 21)

Blade root form was inspected in process using a 10X shadowgraph. Airfoil contour was
inspected by use of a New England Plotter which produced a permanent 10X plot of any
desired airfoil station.

Sequences 12, 22, 23, 24 and 25 refer to non-destructive inspection, which is covered in
Section 8.0.
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7.2.13 Disk

Figure 7.2-23 shows the third-stage disk which was produced by conventional means with
the exception of the blade slots. Because the slots had to be deeper than normal, they

were broached with two sets of broach cutters, one producing the upper portion of the slot,
and the other the lower portion (Figure 7.2-24). The two-cut approach was taken to
eliminate the expense of a new broach.

A full set of process operation sheets, describing the various operations in detail, accom-
panied each blade through its manufacturing cycle. At the completion of the cycle, these
sheets were filed for future reference. Critical data items were recorded on the sheets as
well. These items are listed in Table 7.2-111.

TABLE 7.2-I1

PROCESSING INFORMATION RECORDED
ON BLADE OPERATION SHEETS

1. BORSlC®/ Aluminum tape lot number(s)

9

Total weight of ply package, including:
® Titanium root blocks

® Aluminum wedge

° BORSlC®/Aluminum plies

® Aluminum foils

® Shim
3. Weight of bonded blade
4. Root block shim thickness
S. Bonding temperature
6. Vacuum level during bonding
*7. Height of aluminum rivets above stops
*8. Height of aluminum rivets above die flange surface
9. Die used

*These measurements indicate the position of the punch after the load has been applied.
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Figure 7.1-1  Titanium Root Blocks Used in Fabrication of the BORSIC®/Aluminum Fan
Blades
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44 PLY SHAPES

Figure 7.2-1

Roll-Cutting Templates for TF30-P-9 Third-Stage BORSIC®) Aluminum
Fan Blade

Figure 7.2-2

CORK SHEET BORS|C®TAPE CUTTING TEMPLATES BACKING PLATE

Roll-Cutting Sandwich for TF30-P-9 Third-Stage BORSIC O/ Alminum Fan
Bl(l(l(’
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Figure
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Roll-Cutting BORSICY Aluminiem Ply Shapes
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Figure 7.2-4 BORSIC®) Aluminum Plies After Roll-Cutting

MODIFIED TOOL

co NTIONAL TOOL
e TAPERED SHANK

STRAIGHT SHANK
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MODIFIED
NON-SPHERICAL
HEAD
CONVENTIONAL
SPHERICAL

CUTTING HEAD

Schematic of Numeric Keller Cutting Tool Showing the Modified Head and
Shank

Figure 7.2-5
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Figure 7.2-6

Ring Section Used to Form a Single Wedge

Figure 7.2-7

ate BORSIC® Aliominum Third-Stage Fan Blade

Plies Required to Fabric
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M
CONVEX SIDE
CONCAVE SIDE
Figure 7.2-8

Preforming Tool, with Ply Package in Position, Used to Assemble the Plies Into
Biade Form
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Figure 7.2-9  Spotwelding the Plies in the Preform Tool
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CONCAVE CENTER CONVEX

Figure 7.2-10 Three Packages of Plies are Produced to Form Fach Blade
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Figure 7.2-11 Cross-Section View of the Blade Diffusion Bonding Tool
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Figure 7.2-12 The Vacwon Retort/Press Fac ilities Used i the Dif fusion Bonding Process
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THIEF WIRE TO TAPER NICKEL/COBALT
PLATING IN ROOT REGION

Figure 7.2-15 Composite Blade With Nickel-Cobalt Plating Tool Partially Installed

Figure 7.2-16 Composite Blade With Nickel-Cobalt Plating Tool Fully Installed
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BLADE WITH PLATING TOOLING ATTACHED
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Figure 7.2-17  Nickel-Cobalt Plating Tank
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Figure 7.2-18 Schematic View of Shuttle Used To Position Blades for Final Machining
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Figure 7.2-19 The Blade Lock Slots Were Produced By Electro-Discharge Machining
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Figure 7.2-21 Slotted Rack Used to Hold Blades During Heat Treat
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Figure 7.2-22 FElectric Heat Treat Oven Used to Apply th SO0 F Stress Relief Heat Treat
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Figure 7.2-23 T1F30-P-9 Third-Stage Fan Disk Adapted for Use With BORSIC®/ Aluminum
Blades
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Figure 7.2-24 Two Cuts Were Required to Broach the Blade Slots of the Third-Stage Disk
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8.0 NONDESTRUCTIVE TESTING AND INSPECTION

Because of the nonhomogeneous, anisotropic nature of BORSI(‘®/Aluminum composites,
the inspection techniques and procedures existing at the start of this program would not pro-
vide valid, dependable results. Consequently, a comprehensive nondestructive inspection
(NDI) development and evaluation effert was included in the program which was directed
toward establishing reliable quality control techniques and procedures for the production of
advanced composite fan blades. In addition to establishing the methods to detect defects,
the program included developing nondestructive methods for determining both the elastic
properties and composition of the materials as well. The latter two quality control para-
meters we.2 investigated because nonhomogeneous composites are composed of structural
elements which can vary in amount, quality, and in this program, in fiber orientation. These
variations can result in substantial changes in the physical properties of the composite.

8.1 METHODOLOGY OF DEVELOPMENT

The program as originally structured consisted of a literature search and three independent
development activities:

®  Methods to detect defects
® Radiographic methods of inspection
®  Methods to determine elastic properties

Radiography was the subject of independent study because experience indicated that it re-
presented the greatest potential for fiber distress detection. As the program progressed, ac-
coustic emission methods of detecting defects evolved into a fourth independent develop-
ment activity, whereas it was originally included under the general methods to detect defects
category.

To evaluate the methods being developed to detect defects and material elastic properties,
composite test panels and blades were used. Those methods which appeared to be most re-
liable were further evaluated by applying them to the engine test blades produced in the
program.

8.1.1 Defect Detection

Advanced methods of defect detection generated at other facilities, as well as those developed
at Pratt & Whitney Aircraft. were evaluated under this program. To evaluate the methods
developed outside P&KWA, blades with programmed defects were provided to the outside faci-
lities. The reports of findings were submitted to P&RWA and compared to the actual defects:
the specific defect detection system was also evaluated.
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8.1.2 Radiographic Detection of Defects

This activity was conducted similarly to that described in paragraph 8.1.1. However, with the
radiographic methods the basic X-ray exposure and film reading were conducted at P&WA
facilities. Film enhancement and evaluation were usually conducted at a vendor’s site using
his commercial equipment. Duplicate radiographs of a blade defect were provided to each
radiographic equipment manufacturer for enhancement. For methods of radiographic defect
detection which did not produce a permanent record, P&WA personnel visited the vendor’s
site in order to evaluate the methods used. Each method of detection was evaluated on the
reports received.

8.1.3 Acoustic Emission Detection of Defects

The acoustic emission development program included both smooth and notched tensile gpeci-
mens as well as correlating blade emissions with combined stress fatigue. Spectrum response
and pulse height analysis were evaluated. However, the total energy emitted proved to be

the most effective parameter and was the one used in these studies.

8.1.4 Elastic Property Determination

The amount, quality and fiber orientation of the components in a composite material can
adversely affect its physical properties: defect detection alone is not a sufficient criterion for
determining the suitability of a batch of composite material tor structural purposes. Con-
sequently, a program was conducted to develop the most reliable method for determining
material modulus and analyzing material composition.

8.1.5 Test Specimens

Two production configuration blades were produced with programmed defects. These defects
represented conditions that might occur during fabrication and included varying degrees of cut
fibers, unbonds, wrinkled plies and areas cut from plies. The defects were located in various
parts of the blades to study the effect of location on detectability.

Four 4-in. x 6-in. panels were fabricated with defects simulating varying amounts of porosity.
Panels were 20 layers thick with one-quarter inch and one-half inch diameter defects. Some
defects were created by removing arcas of tape, while others were created by removing just
the foil backing from the tape. Each panel had defects with material removed from one ply
and from two plies. To ensure porosity would occur, two panels were pressed at a reduced
pressure and temperature of 3500 psi and 970°F for 1.5 hours. The other two panels were
pressed at 1050°F and 5000 psi for 1.5 hours in accordance with the fabrication specification.

Thirteen 4-in x 6-in panels representing various fiber contents, number of plies and fiber
orientation schemes were obtained for elastic property studies. Fiber contents of 30, 40 and
50 percent volume: ply counts of 10, 20 and 40; and five different ply onentation schemes
were included among the panels.

All samples fabricated for this program were made from five mil BORSK Aluminumn
utilizing 4.2 mil dia. fiber.
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8.2 DEFECT DETECTION
8.2.1 Ultrasonics

The use of ultrasonics proved to be the most effective inspection technique to detect unbond
or delamination defects. The characteristic straight-line transmission of energy with the lack

of diffusion and the high impedance represented by an unbond area all favor this method as an

inspection technique. Because of the many reflective surfaces in a composite structure, a
pulse echo ultrasonic method can be difficult. However, through-transmission methods are
not hampered by extraneous reflections. Because of the almost total inability to transmit
across an unbond area, we can look for large losses in the transmitted signal to indicate de-
fective areas. The effectiveness of this method was proven during this program and four
separate procedures utilizing ultrasonic through-transmission have been applied.

8.2.1.1 Procedure One

The first procedure utilizes two-wheel search units slightly spring loaded against each other.
The spring load assists in ultrasonic coupling and maintains the blade in the correct orienta-
tion for the ultrasonic transmission. Additisnal coupling is obtained by wetting the surface
of the wheels. The particular system used in this program had a 0.75-in. diameter transmitter
and 0.25-in. diameter receiver operating at | MHz. The frequency was low because the unit
was also used for graphite/epoxy blades which have an excessively high attenuation at higher
frequencies. Delaminations approaching the size of the receiver have been detected with
this system. Advantages of the system are that it is easy to set up, requires only a small area,
and provides a very fast inspection method. However, because of the size of the wheels, it is
not effective at the airfoil edges or within the root platform radius. Figure 8.2-1 shows this
method.

8.2.1.2 Procedure Two

A second procedure was developed to inspect the areas which the wheel search units missed.
Two 0.25-in. diameter transducers fitted with radiused plastic adaptors were mounted to
allow a contact through-transmission inspection of the airfoil. Although not as fast, a rapid
inspection of the area missed by the wheel units can be made with a greater sensitivity to
smaller defects. Figure 8.2-2 shows this method.

8.2.1.3 Procedure Three

A third procedure was developed to obtain an inspection less susceptible to human error
and one with an increased sensitivity to porosity as well as delaminations or unbonds. With
a dummy blade and follower system to act as a positioning device, a “‘C”’ scan recording is
made of the airfoil. The setup, shown in Figure 8.2-3, uses a 0.50-in. diameter SIL trans-
mitter on a 0.1870-in. diameter SIL receiver operating at 2.25 MHz. It provides a complete
inspection of the blade airfoil and produces a permanent record. The method has excellent
resolution with a capability of varying sensitivity by recording different levels of transmittal
signal.
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8.2.1.4 Procedure Four

The fourth procedure was applied to inspecting the root attachment area. In fabricating the
root, the two titanium alloy blocks and the aluminum wedge are attached to the composite
structure by diffusion bonding. The blocks are later machined to obtain the proper blade
root configuration. To ensure a bond has been achieved, an ultrasonic through-transmission
“C” scan of the root is made before the roots are machined. Using a 0.5-inch diameter SIL
transmitter and a 0.62 in. diameter SIL receiver operating at S MHz, broken fibers at the
wedge tip as well as unbond areas have been detected. Figure 8.2-4 shows a root section being
inspected.

8.2.2 Advanced Ultrasonic Methods of Defect Detection

Two advanced methods of ultrasonic through-transmission imaging were evaluated at ven-
dor’s sites. Acoustic holography by Holosonics, Inc., Richland, Washington, and Acoustic
Optical by TRW, Redondo Beach, California, were applied to the defect samples. Both
methods present real time images of ultrasonic signals; however, neither appears to have the
resolution of present scanning methods. They are much more complicated and require a
combination of optical and ultrasonic systems as well as being affected by blade curvature.
Because of this it was decided to continue with standard scanning methods rather than to
pursue either of the imaging systems.

8.2.3 Miscellaneous Methods of Defect Detection

Fluorescent penetrant and eddy current methods were evaluated for crack detection. Both
methods proved effective but were not thought to be production inspection procedures.
They appear to be more applicable as fatigue detection methods during service.

Several methods were evaluated which proved ineffective or otherwise unacceptable. Ther-
mal methods (infrared) were unsuccessful because the high thermal conductivity of the blade
diffused the heat and destroyed resolution. Holographic methods proved excellent for shallow
defects but were unable to effectively detect defects at any significant depth. This method
might have application for bonded leading edge protection schemes or for thin composites.
Application of Krypton exposure methods by Industrial Nucleonics utilizing radioactive Kryp-
ton 85 gas was unacceptable because the inherent porosity of the composite made the blade
extremely difficult to degas.

8.3 RADIOGRAPHIC INSPECTION

Although it is ineffective in detecting bond and delamination defects, X-ray radiography is
the most effective method of detecting other composite blade defects. Not only does this
method provide the widest type of defect detection range but it has also proved useful for
determining ply orientation. Ply orientation is clearly distinguishable with high quality
radiographs.
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As examples of the effectiveness of X-ray radiography for defect detection, the following de-
fects were detected using standard production equipment (Norelco OEG-50):

®  Single fiber skewed 10°
2 ®  Single ply of cut fibers in a ten-ply lavup :
® 0.375 in. diameter hole in one ply of 30 plies
®  Five broken plies in the root section ‘

i These sensitivities were obtained by using low KV outputs (20-35), a target-to-film distance |
of 36 inches, and a beryllium window tube with a small focal spot size (1.5mm target). With l
a 1500 MAS exposure and Eastman Kodak M film, blade radiographs had sufficient resolution
. and contrast to permit inspection with 20X magnification. {

Further improvements in the resolution and sensitivity were achieved by using a Picker Mini-
i shot system with a 0.5mm focal spot and by placing a single emulsion, extra fine grain film

in direct contact with the subject. Eliminating the film holder allowed the film to be placed
closer to the subject in areas where geometry was a problem. The Minishot proved to be ideal
for this application as it is a self-contained cabinet unit which requires no special facilities.
With this unit, adequate contrast and resolution were obtained on single-ply composites to
allow identification of the tungsten filament, the BORSI(‘® fiber, and the aluminum matrix
at magnifications of 30X.

T e

The most difficult fiber discontinuity to detect was a small number of broken plies in the

root area. The thickness of the root, the uneven cross section, and the subject-to-film distance
created resolution problems. However, by using 0.005 inch lead screens, five broken plies at
the root wedge tip were detectable. Although using lead screens at these low KV’s (= 35)

is unusual, in this case they were effective in reducing scatter and were needed to produce

the required image sharpness.

8.3.1 Film Enhancement

In an attempt to improve defect detectability on radiographs, nine methods of film enhance-
ment were evaluated.. None of the nine improved defect detectability any more than the de-
tectability provided by a 20x magnification of the original radiograph. However, three of
the nine methods, the Philco Ford color derivation, the Dupont film contrast method, and
printing on lithographic film in the P&WA photographic laboratory, made defects more obvi-
ous. These methods were expensive and time consuming; therefore, it was decided to use
relatively high magnification only for radiographic image enhancement when inspecting the
flight evaluation fan blades.
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8.4 ACOUSTIC EMISSION DEFECT DETECTION

Unlike homogeneous materials, boron/aluminum composites generate a large number of emis-
sions when stressed. Many of these emissions are sufficiently large to be heard without elec-
tronic amplification. The emissions occur at stress levels well below the yield stress and even
may occur while the material is cooling or aging. An attempt was made in this program to
measure the emission output and correlate it with mechanical test results.

8.4.1 Tensile Test Specimens

The initial attempt to determine the effectiveness of acoustic emissions as a defect detection
tool was to monitor the emissions from both center-notched and smooth specimens during
tensile test.

The center-notched specimens exhibited a drastic change in emission rate just prior to failure.
This phenomenon was used to time the triggering of high-speed cameras in an attempt to
photograph the specimen at the instant of failure. Using a film speed of 2,500 to 5000 frames
per second, a maximum of eight seconds of film was available to conduct the photography.
By monitoring the emission rates, an accurate warning of impending failure was received and
the camera was triggered successfully. However, despite the high frame speed, the failure was
so rapid that the event occurred between frames.

Investigations conducted in monitoring the acoustic emissions of smooth tensile specimens
showed that by loading them to less than 50 percent of the failure load, the specimen could
be used to predict the ability of the specimen to meet specifications. At aload of 50,000

psi an acceptable specimen had a total emission energy of 1.6, whereas a specimen with an
unacceptable ultimate tensile strength of less than 140,000 psi had a total emission energy of
70 at the same loading.

8.4.2 Blades

The blades manufactured during this program were subjected to a 200 mil tip deflection while
acoustic emissions were monitored. Figure 8.4-1 shows the blade deflection rig and acoustic
emission monitoring equipment used. A wide range of emission levels was noted. Three of
these blades were tested in combined stress fatigue at 450°F. The blade with the lowest
amount of acoustic emission (7.4) failed at 54,000 cycles with severe fabrication damage
noted. The blade with the highest acoustic emission (130) failed at 5,240,000 cycles and had
no apparent fabrication damage. The third blade had acoustic emission energy of 72 and
failed at 1,540,000 cycles with evidence of minor fabrication damage. The correlation with
cycle life and acoustic emission is the reverse of what would be expected at first glance. How-
ever, these blades were given a controlled deflection rather than applying a controlled load.
and the emission level may be a function of the relative stress created. A blade with fabrica-
tion damage would deflect more easily, have less stress generated, and, consequently, exhibit
a smaller emission output.
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l ‘ 8.4.3 Monitoring Equipment Used
i The equipment used for these studies was a Nortec Acoustic Emission Monitor ’Nl)'l'-.ZOO
-i with a Krohn-Hite filter model 3202 and a Mosely 7100B strip chart recorder. The pickup

used was a Nortec 1.5 MHz longitudinal wave 0.75 in. diameter lithium-sulfate transducer.
1 The correlations described above were made by measuring total energy output. Additional
: efforts to relate spectrum and pulse height analysis proved unsuccessful.

i 8.5 ELASTIC PROPERTIES '

The elastic properties of a component made of advanced composite material depend largely ,
E on the procedures used to fabricate the component. Consequently, quality assurance pro- ]
cedures are unique in that they must not only detect “normal’ defects with a high degree of !
confidence but also must provide information relative to the adequacy of the components
physical properties as well as the correctness of the fabrication procedures used. If adequate
elastic properties can be confirmed by measurement, then it is possible to ensure that the
fabrication procedures were correct.

In this program, two elastic properties,natural frequency and modulus, were measured as
. potential parameters by which to characterize the BORSI(‘®//\luminum blades designed and
fabricated under this contract. The natural frequency measurements proved to be sensitive
only to gross changes however, and, as a result, this characterization technique was not ag-
.- gressively pursued.

8.5.1 Modulus Determination

Three separate methods of modulus determination were evaluated on specimens to establish
y correlations. Ultrasonic velocity measurements, elastomat dynamic modulus measurements,
and strain gage data from tensile specimens were compared. Specimens with various ply
orientation, fiber volume percent and specimen thickness were used for the comparison.
Results indicated that, in every case, the experimentally determined data was lower than ana-
lytically determined values. This difference increased as the percent fiber increased. Table
8.5-1 lists the data for the 0° orientation samples with various fiber volume percent. A mean
value and a standard deviation value is included for the experimental results. 1t is evident
from this data that the experimental methods for determining modulus give fairly consistent
values.

8.5.1.1 Ultrasonic Velocity Measurements

To apply ultrasonic velocity measurement techniques requires that the measurement be made
from a surface parallel to the direction of measurement. The tixture shown in Figure 8.5-1
was designed and fabricated to accomplish this. The fixture positions a sending transducer
and two accurately spaced receiving transducers on the surface of composite panels. By
rotating the fixture, velocity measurements can be made in any direction relative to the ply
layups. The results obtained on 0° ply direction panels with this fixture are included in Table
8.5-1 discussed above and were part of the good correlation exhibited. Two additional fix-
tures were made to fit the blade airfoil near the tip and near the root. They were designed
& to measure velocity in only one direction along the length ot the blade. They have been
successfully used to measure acoustic velocities on production blades.

g =8 73
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The purpose of determining blade modulus with ultrasonic velocity measurements was to in- ‘
sure correct tiber modulus, tiber content and correct ply fayups. However, the modulus only |
vaned from approximately 30 x 100 psiin the 0° ply direction to approximately 20 x 100 ;
b in the 90° direction. Consequently, only large ply layup discrepancies are detectable. Ply |
tayup can be verified better on x-ray radiographs. Fiber modulus is spot inspected with ten- {
sile tests before the airfoil is made to ensure fabrication efforts are not wasted. Fiber con- "
tent can be determined within 3% with an eddy current method that is presented in the next
section. For these reasons, it was impractical to expect ultrasonic velocity measurements to
produce any new or useful information and the method was discontinued.  Although it has
little value for BORSl(‘®/:\luminum composites, it may have more use tor other systems
where substitute inspection methods are not as successtul.

In conjunction with elastic property measurements, three methods for determining volume
percent fibers were evaluated. They included eddy current conductivity measurement, beta
backscatter, and radiation gaging. Using conductivity values measured with a Magnatlux FM
100 conductivity meter, it was possible to predict the percent fiber content within +3 percent.
Beta backscatter methods utilizing promethium and thallium probes could not match the ac-
curacy attained with conductivity measurements. Other attempts to utilize radiation gaging
were unsuccessful. Even using measurements made with three ditterent energy sources, the
absorption of aluminum and boron could not be separated. The tungsten represents too

small a volume percent to make accurate measurements. The sources used were americium
241 (60 Kev), cadmium 109 (22.2 kev) and cobait 57 (122 kev).

TABLE 8.5-1

COMPARISON OF YOUNG'S MODULUS DATA FOR 07 ORIENTATION

Elastomat* Ultrasonic I'ensile Standard
Percent Velocity * lost* Mcean* | Deviation | Analvtical*
Panel [ Fiber Il E2 S \2 Pancl | T1 T3

SSVat 30 235 2t 230 22.2 23.8 240 ) 2.6 0.9 240
] SSVa¢ 30 AR ARNY 221 228 240 A28 224 230 0.04
SSViA 30 AR 213 200 227 204 I8.0 23 149

SSUAE 40 oo 254 202 27.0 21.3 278 AN 27.0 093 288

SSUae 40 2R3 217 248 20N R0 238 0.0 L.av
* SSU3A 40 o0 2o 4.2 a3 25.0 218 238 244 149
SSTOE SO 288 204 RIUA] N 200 REI 298 399 078 RREY

SStro¢ S0 Mo 9.3 .9 9.9 29.7 2RO 2.3 29.0 000 328

~3

SSTOA S0 28 28.2 1.7 o4 21 .6 JoN N3 008 3001

*Young's Modulus, 100 psy
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Figure 8.2-1 Ultrasonic C-Scan Inspection of Bk of irfoil Wit 0.25 Inch Diameter,
1.OMHZ, Sperry ICheel Search Units
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Areas Near Edges of Airfoil and Just Above Root Platform Inspected
Using 0.25 Inch Diameter Transducers With Lucite Shoes Attached

Figure 8.2-2
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FOLLOWE R WHEEL
ON COMPOSITE BLADE

Freure 8.2-09 Vioditied Fivtwre for Ultrasonic C-Scarmig of Composite Airfoils

P 5 o S T 9 £
Ix.\'un ATREE Roor Sections Ultrasonically Dispected by Uirroughe Franseussion Using
Diameter Uransemitrer With U Diameter Receiver Masked to 132
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Blade Deflector Rig and Acoustic Monitoring Equipment With Blade

Figure 8.4-1
Mounted For Inspection

Figure 8.5-1 Equipment For Measuring Ultrasonic Velocity in Composite Panel Specimens
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9.0 MATERIAL SERVICE EVALUATION

. 9.1 TESTPROGRAM ;
]
N Turbine engine fan blades may incur damage from several possible sources i their operating
- environment. The general criterion tor a serviceable part s that it be capable of continued
service after sustaining minor damage until (s retired at a suitable mspection time. The ,
- objective of this program was to obtamn knowledge concerning the potential serviceability
5 of Borsical® for fan blade matenal. Specifically, the amount of static and high-trequency ‘
fatigue (HEF) property degradation resulting from foreign object damage (FOD), erosion, ;
- corrosion and thermal fatigue damage was established o this eftort Spectmens, rather than |
& actval components, were utilized to permut close control ot test parametens and to facilitate
a less ambiguous interpretation of test results.
1 The specimen panels were fabricated using wdentical parameters to those used tor tabnca-
» tion of the TE30 fan blades (1050 to TOSOCE at 3000 psi i a vacuum of 10 torr or
better) and were 20 layers thick (approximately 0.100 inch). Three different ply configura- 3
T tions were used: unidirectional (OV). representing the blade core: cross ply (2 459). "
- representing the blade shell: and a sandwich configuration to represent the actual blade

component and to reveal any core-shell interactions. The component contiguration was

- =0 ¥ g - X
20 percent 459, 00 percent unidirectional, and 20 percent 1 459 Al materntal contamed
3 - s RS N
3. 5023 volume percent Borsic® tiber. Specimens were electrodischarge machined and
subjected to one of the four potential types of damage (except tor the base-line specumens)
followed by HEFE, tensile, and post-HEE tenstle testing. The hagh-frequency fatigue test
3 program involved testing spectmens to various {ractions of thetr expected lite, as shown i
Figure 9.1-1. Upon completion of the high-frequency fatigue tests, MUCTOS{TUCTIRS were
. examined for evidence of fatigue and the effect of the controlled damage on the nicro-
structure. Tensile nroperties of HEF-tested samples were determined to define the effect of
the combination of fatigue and controlled damage on tenste strength.
TFasmicate
AND *an” oY e
. NATE AL
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The high-frequency fatigue failure criterion was either visible delamination or a ten percent
drop in first-bending natural frequency. Since no significant frequency drop occurred
during tests of the unidirectional configuration, the condition of this material was estimated
by observation of visible delamination. Cross ply HFF life was determined by a ten-percent
drop in natural frequency with no evidence of delamination. Specimens of the component
configuration exhibited frequency drops within § x 10° cycles; however, visible delamina-
tion did occur later in the test and was used as the criterion for failure.

9.2 SPECIMEN DAMAGE PROCEDURES

Test specimens used to evaluate the various potential types of damage were straight-sided
0.8 x 5.0-inch sections taken from 20-layer composite panels. When local damage was
inflicted (such as erosion or ballistic impact), the damaged area was located 2.0 inches
from the specimen end. This location corresponds to the region adjacent to the grip edge
during HFF testing (approximate point of maximum stress). Figure 9.2-1 depicts the speci-
men described. as well as the tensile specimen which was subsequently machined from the
damaged sample. As illustrated, the most severely damaged area of each test specimen was
located within the tensile specimen gage length.

B A NS
{
|

]

X

SHADED AREA HELD
IN HFF GRIP

LOCATION OF BALLISTIC
IMPACT AND EROSION
DAMAGE
Figure 9.2-1  Composite Specimen Configuration Showing Location of Erosion and Ballistic
Impact Damage

The erosion of test samples was accomplished using an SS White Airbrasive Unit set at an
abrasive flow rate of 0.14 gm/sec for a sufficient time to expose two layers of fiber in
unidirectional material. The abrasive consisted of 27 micron alumina impinging the sample
surface at an angle of 20 degrees. Typical eroded samples are shown in Figure 9.2-2.

Ballistic impact damage was achieved with a 0.67 gm pellet fired from an air pistol at a
velocity of 500 ft/sec. The resulting damage is shown in Figures 9.2-3 and 9.2-4. To assess
the extent of damage produced by impacting, ultrasonic C-scan inspection was performed,
as illustrated by Figure 9.2-5.

Thermal fatigue exposure consisted of cycling Borsical® specimens for 2000 to 3000
cycles in fluidized sand beds. Each cycle consisted of one minute at SO0°F followed by
one minute at -65°F.

One hundred hours of exposure to a humid salt spray at 90°F was performed on Borsical®
samples subjected to 1880u in./in. surface strain through the use of bend fixtures as shown
in Figure 9.2-6. Typical exposed specimens are shown in Figure 9.2-7.
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MAG: 0.8X N\

MAG: 13X MAG:

SPECIMEN SAR-Bs/A-7A/B-H 2 SPECIMEN SAR-Bs/A-2A/u-H1

Figure 9.2-2  Tvpical Erosion Effect on 20-Layer Borsical® Test Panels of a Nine-Second
Lxposire to 0.14 ¢/sec Flow of 27-Micron Alumina in 60 psig Air at an

’villlQ(‘HI(’llr ,'\H.\'[(' of 20 Degrees
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BACK MAG: 13X

>

Figure 9.2-3  Ballistic Impact Damage on a Unidirectional Borsical™ Test Panel Specimen,

SAR-Bs/A-3A Ju-H2
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BACK MAG: 13X

Figure 9.2-4  Ballistic tmpact Damage on a Componert /»‘ur.vi(‘u/® Test Panel Specimen
SAR-Bs/A-7B/B-H 3 '
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BALLISTIC DAMAGE

BALLISTIC DAMAGE
/

% C . N QO g o o e S G ~ $
Figure 9.2-5  Ultrasonic C-Scan Traces of Tvpical Ballistic Impact Borsical® Specimens
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SPECIMEN
SAR-Bs/A-6A/u-H3

SPECIMEN
SAR-Bs/A-8E/B-H2

MAG: 0.75X

SPECIMEN
R SAR-Bs/A-6A/u-H3

SPECIMEN
SAR-Bs/A-8A/B-H2

MAG: 0.76X

Figure 9.2-6  Tvpical Corrosive Effect on 20-Layver Borsical® Test Panels of a 100-hour
Exposure to a Humid Salt Spray; Maxinuen Strain at Frderum of the Test
Fixtrre was 1880 microinches which is Fquivalent to a Bending Stress of
60,000 psi for the Unidirectional Specimens and 35,000 psi for the ( ‘omponent

Specimens
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9.3 TEST PROCEDURES

adesinses

Twenty-laver tensile specimens with a O.4-inch wide gage section were tested with either
nickel-plated or epoxy-bonded aluminum doublers at the grip ends, depending on the
expected tatlure load. These 4.0-inch long specimens were mounted in clamp-type grips
using a micrometer alignment tixture. The grips had serrated faces to provide adequate
g gripping with minimum clamping force (30 in-tb). The specimen-grip assembly was then
!1 instatled 1 an Instron tensile machine using pin connections. Single-ball-pivot universal
;

»

[ —

joints were located at both upper and lower grips to ensure minimum load-train induced
bending. The toad was applied to tailure at 0.050 in./min cross-head speed. A plot of load
versus cross-head displacement was obtained on the tensile machine recorder chart for a
modulus determination of selected specimens. Also, back-to-back strain gages were used to
detect any specimen bending during the tensile test.

at 60 cycles persecond. Flevated temperatures were obtained by placing a resistance-wound
furnace around the specimens, as shown in Figure 9.3-2. Thermocouples were located on the
specimen surtace near the maximum strain location. ln general, duphicate specimens were
run simultancously with individual surtace strains measured by strain gages located near the
grip edge which is the maximum strain location, Periodic specimen inspections were con-
ducted during fatigue testing to determine any natural frequency change and to observe any
visible material degradation such as delamination. These inspections were accomplished
without removing the specimens trom the test rig,

-
l High frequency fatigue testing was conducted in moditied Krouse rigs, shown in Figure 9.3-)

& Lol [ S———ry L

-

P

Figure 9.3-1  Equipment and Specimen Arrangement for High Frequency Fatigue Testing at

Fom—

Room Temperature
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Figure 9. 3-2 1 et arid Specimaen Arrangement for tHigh t reQuen vdatigue Testing at
Flevated Temperature
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{
i
| 9.4 UNDAMAGED SPECIMENS (Base-line)
5 The following conclusions were drawn from the results of the testing of undamaged speci-
mens:

3 ®  HFF exposure at 450°F had no significant effect on the 70°F tensile strength of

cross-ply or component laminates. Unidirectional laminates retained their strength {
- after 70°F HFF exposure but appeared to lose about 25 percent of their strength f
4 after 450°F HFF exposure. }
- ®  Maximum strain HFF run-out (107 cyeles) levels were 2800 win./in. at 70°F for ‘
: unidirectional material and 2100, 1500 and 700 uin./in. tor unidirectional, com- |

ponent, and cross-ply material, respectively, at 450°F. i

|

®  The mode of HFF damage for unidirectional specimens consisted of the formation
- of matrix cracks with delamination and fiber damage observed after exposure to ,
high strains. Fiber splitting was observed in cross-ply material. The splitting orien-
tation was parallel to the specimen surface for component laminates and normal
" to the surtace for all cross-ply material.

3 9.4.1 Tensile

Base-line tensile properties were determined for undamaged SO-percent Borsical® specimens
s with and without HFF exposure. Results shown in Table 9.4-1 and Figure 9.4-1 revealed no

! effect of 70°F HFF exposure on unidirectional material, or of 450°F HEF exposure on +45°
material. HFF exposure at 450°F lowered the strength of component material slightly, and
’ unidirectional material about 25 percent. Neither the HEF strain range nor the number of
i cycles over the range tested appeared to influence tensile strength except for component
material where a trend of higher strength with lower strain range was observed (see Table
9.4-1).
!
4
g
!
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TABLE 9.4-1

BASELINE 70°F TENILE RESULTS FOR UNDAMAGED 20-LAYER
; S0 PERCENT - VOLUME BORSICAL® SPECIMENS

Prior HFF Exposure

Specimen Ply Temp.  Strain Cyclesto Total  UTS  Modulus
Number  Config, (“F)  (uin./in.) Failure  Cycles gl()“ psi) (10° psi) |
15B/u-T2 oY None 166.5 35.5
;. 1SB/uT3  0° None 149.0 328
| 15B/u-T4 0° None 153.0  30.7
| 15B/u-TS 00 None 1275 318
' 15F/u-T1 o° None 155.3 34.0
15E/u-T2 o0 None 155.1 338
1C/u-H3 00 70 3380 3x100 107 130.7
1C/u-H1 o0 720 3215 sx100 107 153.0
2D/u-H2 o 70 2025 DNE* 100 157.1
JE/u-H3 ov 70 2000 DNF 100 157.5
1A/u-H1 00 70 2830 DNF 10’ 1691
1B u-H2 00 70 2000 DNF 10’ 139.5
1
oF /u-H2 o° 450 2330 2100 3x10% 1035
SD/u-H4 o 450 2200 Sx10®  Sx10®  138.0
of u-H3 v 450 2170 X100 4x10© 92.7
3D u-He a° 450 2030 DNF sx100 035
! 2F w-Hi a0 450 1500 DNE 107 138.0
% 4F/B-T)  345°,0°.145¢ None 127.2
4F/B-T2 245000, 2450 None 1250 28.0
AF/B-T3  H450,00, 2450 None 118.0 26.8
4F/B-T4 345900 t45° None 101.0 6.8
SE/B-HY  $45000345° 450 1700 3109 3x100 93.6
SE/B-H1I 3450004450 450 1695 X100 2x100 99,1
SE/B-H4 1450004450 450 1630 Sx100  5x100 1118
SD/B-HE 459004450 450 1620 DNF 410 1100
SC/B-HI 1450004450 450 1540 DNF Sx100 1132 .
SF/C-TI  *45° None 2.6 16.0 )
SE/C-T3 450 None 218 12.6
SE/C-T4 14509 None 223 149
SE/C-H4 2450 450 975 DNF 100 22.6
SD/C-HE #450 450 910 DNF 100 21.9
SD/C-H3Y 450 450 870 DNF sx100 2.7
SB/C-HY H4s° 450 760 DNF  4x10® 245
*DNFE = Did not tail.
l)o
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UNIDIRECTIONAL COMPONENT CROSS-PLY

Figure 9.4-1 Effect of High Frequency Fatigue Exposure on the 70°F Tensile Strength of
Undamaged 50 Volume-Percent 20-Layer Borsical® Specimens

9.4.2 High Frequency Fatigue

High frequency fatigue testing of damaged specimens was performed to establish base line
levels for assessing the effects of damage on fatigue strength. rable 9.4-11 contains the HFF
data for unidirectional specimens at room temperature and for all three ply configurations
at 450°F. The strain versus cycles-to-failure curves plotted in Figure 9.4-2 were determined
using a least-squares analysis of the data in Table 9.4-I1. The results indicate a 107 run-out
strain of 2800 win./in. for the unidirectional material or approximately 81,000 psi based on
interpolation from tensile stress-strain curves. Similarly, the run-out strain levels for the uni-
directional and the +45° material at 450°F are 2100 uin./in. (68,500 psi) and 700 pin./in.
(6500 psi), respectively. The component material run-out strain of 1500 win./in. corresponds
to a shell surface stress of 8700 psi and a maximum stress of 31,500 psi which occurs in the
core at the core-shell interface. This latter stress level was determined by estimating the
strain at the core-shell interface, located approximately 0.3 inch from the neutral axis, and
using tensile stress-strain curves to estimate the stress.
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TABLE 9.4-11

HIGH FREQUENCY FATIGUE TEST RESULTS FOR UNDAMAGED
20-LAYER SO PERCENT - VOLUME BORSICAL® SPECIMENS

Specimen Ply Temp.  Strain Cycles to Total Failure ‘
Number  Contig. ("F) uin./in)  Failure*  Cycles Mode |
1E/u-H2 0° 70 2000 DNE** 10/ ‘
1E/u-H1 0 70 2320 DNF 10’ |
1C/u-H2 o° 70 2450 DNFE 107
1A/u-H1 0° 70 2830 DNF 107 |
2D/u-H3 0° 70 2900 DNF 100 |
1A/u-H2 00 70 2920 107 10’ Delamination |
2D/u-H2 0° 70 2925 DNF  10° !
1A/u-H4 oY 70 3000 6x100  6x10°  Delamination v
1D/u-H3 0° 70 3000 5x100 107 Delamination ?
2F u-H2 0° 70 3100 DNF 2x10°
2F/u-H3 0° 70 3100 DNF 100
1D/u-H1 0° 70 3100 3x100 3x100 Delamination
ID/u-H4 0° 70 3100 3x100 3x10®  Delamination
1F u-H3 00 70 3100 5x10©  5x10°  Delamination
1E/u-H4 0° 70 3100 4x109  5x10°  Delamination
1C/u-H1 0° 70 3215 5x100 10/ Delamination
1C/u-H3 0° 70 3380 3x100 107 Delamination
1B/u-H1 00 450 1400 DNF 107
2E/u-H1 00 450 1500 DNF 107
3D/u-H4 0° 450 2030 DNF S\ 100
1B/u-H2 0° 450 2100 DNF 107
3F/u-H! 0° 450 2108 ax100 5x100 Delamination
3D/u-H3 o° 450 2105 DNF 5x10°
3F/u-H4 0° 450 2130 X109 5x10°  Delamination
11F/u-H4 0° 450 2150 100 100 Delamination
6F/u-H3 00 450 2170 X100 ax10® Delamination
11F/u-H1 0° 450 2180 100 100 Delamination
2D/u-H4 0° 450 2200 5100 5x10Y  Delamination
oF /u-H2 0° 450 2200 2100 4x10®  Delamination
1E/u-H1 0° 450 2220 Sx10°  2x10°  Delamination
11E/u-H3 0° 450 2220 Sx10°  2x10®  Delamination
6F /u-H1 0° 450 2280 X100 310 Delamination
oF /u-H2 0° 450 2330 2100 3x10°  Delamination
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TABLE 9.4-11 (Cont’d)

Specimen Ply Temp. Strain Cycles to Total Failure
Number Contfig. (“F) (uin./in.)  Failure®  Cvcles Mode
7E/B-H1 145909 459 450 1300 1o’ 107 Delamination
8C/B-H3  #45°0°+459 450 1540 DNF 5x10°
TE/B-H2 3459001459 450 1600 4x10®  4x10®  Delamination
4C/B-H4  $450,0°.1450 450 1600 100 107 Delamination
S8E/B-H3 145900 145° 450 1610 5x100  5x10®  Delamination
8D/B-H1  45°0°.445° 450 1615 DNF 4x100
SD/B-H4  145°,0°.+45° 450 1620 DNF 4x10°
8C/B-H2  1459,0°.145° 450 1630 DNF sx10°
S8E/B-H4 1459 0° 4459 450 1630 5x10©  5x10°  Delamination
8F/B-H1 450 00 459 450 1695 2x100  2x10°  Delamination
S8F/B-H3  #45°0° *45° 450 1700 3N10Y%  3x10°  Delamination
SF/B-H2  +45°,0°.245° 450 1725 100 3x10®  Delamination
4C/B-H3  +45°0° 1459 450 1750 3100 6x100  Delamination
7F/B-H4  $450,0°,t45° 450 1755 2x100  2x100  Delamination
AC/B-H2 3450900 #450 450 1950 sx10° 107 Delamination
4D/B-H1  345°,0°.+45° 450 3560 Failed

on

Loading

SB/C-H4 145 450 730 8x100  4x10®  10% £, Drop
SC/C-H4  $45° 450 740 LIx100  5x10®  10% f,, Drop
SB/C-H3  $45° 450 760 8x100  4x100 0% f,, Drop
SC/C-H3  $45° 450 770 11x10®  5x10©  10% f,, Drop
SD/C-H3  #45° 450 870 6x10°  5x10¢  10% f,, Drop
SD/C-H4  $45° 450 870 6x10°  5x10®  10% f,, Drop
OD/C-HY  345° 450 900 4x10® 100 10% 1y Drop
SD/C-HI  #45° 450 010 ax10® 100 10% f,, Drop
SD/C-H2  #45° 450 935 3x10®  5x10©  10% f,, Drop
9D/C-H4  ¥45° 450 960 5x100  3x10  10% tf,, Drop
SE/C-H4  $459 450 975 5x100  3x10®  10% f,, Drop
12C/C-H3  $45° 450 1000 ax10 107 10% f,, Drop
12D/C-H4  $45° 450 1265 2x108 107 10% f,, Drop
12D/C-H2  #45° 450 1280 3X10©  8x10¢  10% f,, Drop
12F/C-H1 - $45° 450 1325 2x100 107 10% f,, Drop
12D/C-H3  $45° 450 1505 2100 2310 10% £, Drop

* Number of cycles to failure tor 459 specimens determined from a plot of natural
frequency drop versus cycles and, in some cases, extrapolated to the ten percent
frequency drop.

** DNF = Did not fail.
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Figure 9.4-2 High Frequency Fatigue Test Results for Undamaged 50 Volume-Percent 20-
Layer Borsical® Specimens

9.4.3 Metallography

Room temperature HFF tests of unidirectional specimens resulted in microstructures of
several distinct types. When run at low strain levels (< 2400 uin./in.), no fatigue cracks or
defaminations were observed. Between 2400 and approximately 3000 uin./in. strain, the
unidirectional specimens that were tested to 107 cycles developed internal fatigue cracks
of the type shown in Figure 9.4-3 with no visible specimen delamination or appreciable
frequency drop. Note that the cracks are not associated with the fiber-matrix and the ply-
to-ply interfaces, indicating good bonding during panel fabrication. Specimens cycled at
approximately 3100 yin./in. and higher for up to 5 x 100 cycles revealed that surface
delamination occurred at about 3 x lO6 cycles with severe matrix and fiber damage near
the specimen surface, as shown in Figure 9.4-4. Delamination with very few fatigue cracks
and no significant natural frequency drop was detected in specimens tested at high strains
(greater than 3400 pin./in.) for short times. An additional type of deterioration observed
after testing at 3100 win./in. consisted of internal delamination between the ninth and
tenth layers of the 20-layer composite, as shown in Figure 9.4-5. No fiber splitting was
observed in any unidirectional specimens examined after room temperature HFF tests.
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At 450°F the HEF failures of unidirectional specimens did not ditter greatly from those
tested at room temperature, At this higher test temperature, lower strain fevels were used,
but the basic tailure modes were unchanged. Failures consisted mostly of surface delamina-
tion (Figure 9.4-0) with some internal delamination between middle layers, and a few cracks
(Figure 9.4-7). Differences between microstructures for the various HFF life fractions were
not found, and all unidirecticnal specimens had similar internal defects regardless of test
temperature or percent of lite exhausted.

The undamaged component configuration specimens which were HEE tested at 450°F
exhibited a very distinctive failure mode in addition to surface delamination. Splitting of
cross-ply tibers parallel to the plane of the specimen was detected in every component
specimen tested (see Figure 9.4-8). Fatigue cracks and delaminations were noted in some
but not all samples. The splitting is believed to contribute to the immediate natural
frequency drop detected for all component specimens tested at approximately 1600 uin./in.
strain or greater. None of the unidirectional fibers in the core were split and no matrix
deterioration was observed around the core fibers. As in the unidirectional material, no

real microstructure differences were noted between specimens tested to 20 percent versus
100 percent of their expected HEF lite.

Cross-ply samples that were HEE tested at 450°F contained numerous fatigue cracks which
appeared to originate at split fibers (see Figure 9.4-9). The orientation of the splitting which
occurred tn the fibers of the cross-ply laminate was normal to the plane ot the specimens
rather than parallel as found in the component specimens. Stress analysis of cross-ply
siwaples during HEF testing indicated that the tensile stresses in the plane of the samples
could result in fiber splitting due to the low transverse strength of Borsic® fitament. During
tatigue testing, a ten percent drop in natural trequency occurred prior to delamination, and
apparently the fiber splitting, as well as the growth of fatigue cracks in the matrix, pro-
duced that frequency drop. The orientation of fiber splitting directed the fatigue cracks into
the specimen, preventing visual delamination.
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