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Abstract. Let M(m,n) be the minimum number of pairwise comparisons
which will always suffice to merge two linearly ordered lists of lengths
m and n . We prove that M(m,mtd) = 2m+d-1 whenever m > 2d-2 .

This generalizes earlier results of Graham and Karp (& = 1),

linear merging algorithm is optimal whenever m < n < [ 3m/2 |+l .
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1 Introduction.

Suppose we are given two linearly ordered sets A and B consisting

of elements
al < a2 0 aive = am

and bl<b2<"'<bn )

respectively, where the mtn elements are distinct. The problem of merging
these sets into a single ordered set by means of a sequence of pairwise
comparisons is of obvious practical interest, and several algorithms have
been devised for handling it.

An intriguing theoretical problem is to determine M(m,n) , the
minimum number of comparisons which will always suffice to merge the
sets in a decision tree model [5]). Evaluating this function in general
seems quite difficult, and values are known for only a few special cases,
including m <3 ([1), [2), and [4]). 1In one direction, an upper bound
for M(m,n) is provided by a. simple procedure variously referred to as
the normal, standard, linear, or tape merge algorithm. Here the two
smallest elements (initially a, and by ) are compared, and the smaller
of these is deleted from its list and placed on an output list. The
process is repeated until one list is exhausted. It is easy to see that

this algorithm requires mtn-1l comparisons in the worst case, so that
M(m,n) < ntm-l .

Although better algorithms exist for many cases, R. L. Graham and
R. M. Karp independently observed that this algorithm is optimal when

‘n-m‘ is O or 1 . That is, they showed that




M(mym) = 2m-1
and M(m,m+l) = 2m .
Later Hwang and Lin (3] proved that
M(m,m+2) =

2m+1 for m >2

and M(m,m+3) = 2m¥2 for m>% ,

while Knuth [5, p. 20Lk] verified that

M(m,m+h) = 2m+3 for m>6 .

In this paper we generalize these results by proving that
M(m,m+d) =

2m+d-1 for m >2d3-2 .

Intuitively, this means that the standard merge algorithm is optimal, in

the worst-case sense, whenever m < n < L3m/2j+1 .

2. Oracles.

A lower bound for M(m,n) will be produced by means of an "oracle",

the proof technique utilized for example ' by Knuth (5, Section 5.3.2].

*

In his formulation, when presented with a comparison é.i vs. b 3°
an oracle announces which is larger and simultaneously chooses a strategy

for answering further questions so as to force a large number of additional

comparisons to be made. A useful lower bound is obtained from an cracle

that has an effective strategy for dealing with any comparison it might
f encounter.

In addition to an oracle that provides a lower bound for M(m,n) ,
oracles are needed to furnish lower bounds for two other functions. Let

/M(m,n) be the number of comparisons required to merge two lists for

which, ‘unknown to the merger,

8 is in fact greater than bl . An oracle




for this function must therefore make all pronouncements consistent with
& >b, . Similarly, let /M\(m,n) be the number of comparisons required

when a is gréa.ter than bl and an is less than bn, again unknown

to the merger. Occasionally we shall use the notation M\(m,n) to

denote the number of comparisons required to merge two lists when a
is less than bn . This is not another new function, though, since by
symmetry we have M\(m,n) = /M(m,n) . .

To illustrate these definitions, suppose m=2 and na h . It
is well known that M(2,L) = 5 . However, there is a way to perform
this merge in only L comparisons if in fact a) >b; by first
comparing a, with b, . If a >b,, the problem reduces to M(2,2) ;
otherwise, cauparing 2, with b, reduces the problem to M(1,3) . !

Thus /M(2,4) < b .

3. An _Example.

We illustrate the use of Knuth's oracles, and the strategies available
to them, by verifying that M(%,7) > 10 . Assume that oracles for achieving
M(m,n) and /M(m,n) exist whenever m+n < 10 .(see [5]). We consider
four cases.

(1) First, suppose a merge algorithm begins by comparing a, with b, .
The oracle declares that a) > bl » and requires that subsequent comparisons
merge {°1’a2’°3’ah} with {ba’bB""’b'?] » using an M(L4,6) oracle. Thus
 M(5,7) > 1L+M(B,6) = 1+9 = 10 in this case.

(1) If a merge algorithm begins by ccmpaz.'ing a, with b 37 with
J>2, amore complex strategy is needed. The oracle declares that a <b» 3’
and requires that later comparisons merge {a;} with [bl] and

(‘2"‘5’%} vith {bl,be, ...,b.,] , with the restriction that all future
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pronouncements are consistent with al < bl < a, - These restrictions
ensure that information gained in merging one subproblem is of no help

’:Ln the other, even though bl is in both. The situation is illustrated
in Figure 1. The top row is A , the bottom B , with smaller elements

to the left. The dotted lines represent the restrictions the oracle
imposes on itself, end the subproblems are encircled. With this strategy,
the oracle can force at least 1+M\(L,1)+/M(3,7) = 1+1+8 = 10

camparisons to be made in this case as well. Thus any algorithm which

initially uses 8y requires at least 10 comparisons.

Figure 1. a1<bj,;j_22.

(1ii) An algorithm thatifirst compares &, with b;j » with §J <3,
can be handled in a manner similar to (ii). The oracle declares that a, >b j
and requires that future comparisons merge {al} with .[bl,bz,bj,bh] and
{‘2’83’a;t] with {bh’bS’b6’b7} , under the restrictions & <bh < a, -
See Figure 2. The number of comparisons required in this case is at least

1+ M\(1,4) + /M(3,4) = 1+3+6 = 20 .
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(iv) If the first comparison is 8, Vs. b;j with j > L , a simpler

strategy will work. The oracle declares that a, <b j°? and insists

that later comparisons merge {al,a.e} with {bl’b2’b3} and [33’8‘1;}

with {bh’bS’b6’b7} as in Figure 3. The number of comparisons required
is at least 1+M(2,3)+M(3,4) = L+L+h = 10 .

Ve have shown that any merge algorithm that begins with a camparison
using either a) or a, requires at least 10 camparisons for this
problem. By symmetry, the same is true for a3 and 2 . Having
considered all cases, we conclude that M(L,7) > 10 .

The two types of strategy illustrated above endow an oracle with
sufficient power to prove our main result in the next section. 1In the
ngimple" strategy, the oracle answers the query and divides the merge
problem into two disjoint unrestricted problems. In the "complex" strategy,
there is an element of B in both subproblems, which are handled by
suitably restricted oracles. Oracles for the functions /M(m,n) and
/M\(m,n) use the same strategies, with one or both subproblems inheriting
the restrictions of the original. A subproblem may have one list empty
in degenerate cases, as in case (i) above. 1In all cases, though,

each subproblem contains fewer elements than the original probtlem, so

that inductive proofs can be used.




4. The Main Result.

The proof of our theorem is simplified by first establishing a few

preliminary results.

Lemma 1.

(1) /M\(=,n) < /M(mn) < M(mn) .
(i1) /M(mtl,n+l) > /M(m,n)+2 .
(ii1) /M\(z+1,n+1) > /M\(m,n)+2 .

_lzr_g_o_f_‘. Part (i) is obvious; any merge algorithm performs at least as
well on more restricted problems. In part (ii), an oracle for /M(m+l, n+l)
can make all pronouncements consistent with bl < a < b2 <a,, ax;d
force [ae, 855 "a'm+l} to be merged with [b2’b3"”’bn+l} . Then the
comparisons ay Qs. bl and a, Vs. b2 can not be avoided. The
proof of part (iii) is similar.

We are now ready to prove the main result. Although we are really
interested only in part (a), bounds for all three functions must be proved

similtaneously, as each oracle requires the help of at least one other.

Theorem 1.

(a) M(m,m+d) > 2mt+d-l for m > 2d-2
(v) /M(m,m+d) > 2mrd-1  for m >2d-1
(¢) /M\(m,m+d+2) > 2wtd for m >2d-1 .

Proof. If (b) and (c) are true for the threshold values m = 23-1, then
they are also true for m > 2d-1 by repeated application of Lemma 1 (ii)
and (iii). Also, if (b) is true for m >2d-1 then Lemma 1 (i) implies

that (a) is also true for m > 2d-1 . Thus it is sufficient to prove the




theorem for the threshold values of m only, that is,

M(2d-2,3d-2) > 5d4-5 ,
/M(2d-1,3d4-1) > 5a-3 ,

and /M\(2d-1,3d+1) > 5d-2 .

The proof is by induction on d . The starting values for 1 <d <3 are

given in Knuth [5, p. 203].

Part g ) Suppose an algorithm begins by camparing ay with b.1 ’

where i = 2k-1 and J <3k-2 , for some integer k satisfying 1 <k<ad.

The oracle proclaims that ay > b j and follows the simple strategy,

yielding
M(2d-2,33-2) > 1+ M{2k-2,3k-2) + M(2(d-k),3(d-k))

> 1+ (5k-5) + (5(a-k)-1)
= 54-5 .

If i =2k-1 and J >3k-1, the oracle announces that a, < b 3 and

uses the complex strategy, with ka_a in both subproblems. This leads to
M(2d-2,3d-2) > 1 + M\(2k-1,3k-2) + /M(2(d-k)-1,3(a-k)+1)
> 1+ /M(2k-1,3k-2) + /M\(2(d-k)-1,3 (a-k)+1)
> 1+ (5k-k) + (5(a-k)-2)
= 5d4-5 .

This settles the case where i 1is odd. Reversing the order of the elements
in A and B maps all points of A with even subscripts onto those

with odd. Thus by symmetry we have handled the even case as well.




Part Sl_)! Suppose the first comparison of an algorithm is

a; Vs. b‘j with i = 2k-1 and j <3k-2, vhere 1 <k<d. The

oracle proclaims that a; >b 3 and uses the complex strategy, with

b in both subproblems. In this case we have

k-1
/M(2d-1,3d-1) > 1+ /M\(2k-2,3k-1) + /M(2(d-k)+1,3(d-k)+1)
> 1+ (5k-5) + (5(a-k)+1)
= 5d4-3 . |

If i =2k-1 and J > 3k-1, the oracle announces that ay <b The

-

simple strategy yields

/M(2d-1,3d-1) > 1+ /M(2k-1,3k-2) + M(2(d-k),3 (d-k)+1)
> 1+ (S5k-b) + 5(d-k) i
q
- 5d-3 . |
Now suppose i =2k and j <3k, with 1 <k<d. Choosing
a >b 3°? the oracle follows the complex strategy, leading to.
| /M(2d-1,3d-1) > 1+ /M\(2k-1,3k+1) + /M(2(d-1£),5(d-k)-1)
| > 1+ (5k-2) + (5(d-k)-2)
| - BN
! Otherwvise, if i =2k eand § >3k+l, the simple strategy with a <b,
produces
! /M(2d-1,3d-1) > 1+ /M(2k,3k) + M(2(d-k)-1,3(a-k)-1)

|
; > 1+ (5k-1) + (5(d-k)-3)

= 3d-3




Part (c). Assume an algorithm begins a; vs. b, with i = 2k-1

J
i

and J < 3k-1 , where 1 <k<d. The oracle picks a >bj and follows

the simple strategy, yielding

JM\(2d-1,3d+1) >
| >
2

1+ /M(2k-2,3k-1) + M\(2(a-k)+1,3(d-k)+2)
1+ /M\(2k-2,3k-1) + /M(2(d-k)+1,3(d-k)+2)
1+ (5k-5) + (5(d-k)+2)

sa-2 . ¢

The case i = 2k-1 and J >3k 1is the mirror image of this case.

If i=2k and J < 3k+l , with 1 <k<d, the simple strategy

works again. The oracle declares a; > b 5 and we have

/M\(2d-1,3a+1) >

v v

Finally, the case i =2k and J >3k+l 1is contained in the mirror

of this case.

1+ /M(2k-1,3k+1) + M\(2(d-k),3(d-k))
1+ /M\(2k-1,3k+1) + /M(2(d-k),3(d-k))
1+ (5k-2) + (5(da-k)-1)

5d-2 .

In conclusion, we note that Knuth [S » P. 206] has made several

conjectures concerning the behavior of M(m,n) , such as

M(m+l,n+l) > M(m,n)+2 .

In view of Theorem 1, it seems reasonable to add

M(m+2,n+3) > M(m,n)+5

to the list.

image

Also, it would be interesting to know the precise range of m and n

for which the linear merge algorithm is optimal. No instances have been

found outside the range m < n < L3m/2 ]+1 , but cases as small as m =T ,

n = 12 remain open.
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