
A~~ AO SS $90 cOtSES~ OF WIUJ A : NC NARY WIU.IAMSBIM VA DEPT OF N d C  F/S 12/1
ON THE OPTINAL ITY OF LDtAR MERIt. (U)
JUN 78 P K STOCKPtTER. F F TAO N000fl—76—C—0673

t*ICLASSIF IE D TR —16

ENJ U
OATI

B -78
DOC

I

l iL -
~~~~~~~~

--
~~ 

-
~ 

i / i



-.
-—~ --—-—--~~~~~~~~—-~

~~~VRTHER TRAN~k~~

On the Optimality of Linear Merge

Paul K. Stockmeyer and F. Frances Yao

H 
j C )  .•

w 
•
,

.

• ~~~• H

Technical Repo’r t 16

June 1978

[mis document has boon approved
for public release and sale; its
distribution Is unlimited.

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ET~



_ _  

~~-- -~~~~~~ —

— 
& C 4 O O I . L L t~~I I

4. I’’IIV  CI~~ .st f * c .~t~~’n — 

DOCUMEIIT COUTROL DATA .R&D
fSrcuiily cta~ fê~ .t~ ,n of t~~Ie . bof ~ of ~ b’fIIIe( a,,4 fflIIe ~~ III 3 •1000MU(u, s,,u~ t be ~n~e,ed when ?h~ n~ e,~ IS •e~,o,I I.

I. ONIGINA TaN G A C T I V I T Y  (Corpo~as. h,,gho,) j i.. REPON I ILCURI T V  C L A I S I r I C  A Y S U N

~Pollege of William and Mary I Unc1~ssif ied
).

~ 
Depa r tment of  Ma thema Ucs~and Coeputer -Selence ~~ G R O U P

%~i1liamsburg,_Virginia__~~l85 ___________________________________
EPORT T I T L E

~~~~the Optimality of Linear Mer~e.~~~~~~~ ~ T~e.’tak p
~
j
~ ~~~~~~

4. DESCRI PTIVE NOTES (7~ p. .1 ~.p.rI .sid ênclu.Sv. dal*i)

Technical Report 16~ June 1978 . 
____ 

a)

—~~~~~~~ I..II ~~.j IaiI na~~.1

~~~~~~~~~~~~~~~~~~~ ~~~ F. FranceslYao I\
Ta. TOTAL  NO. OF P A GC $  Pb. NO. or MEFS

~~uni~~~~78 ~7 
. 12 5

551 — - l IT L5 55. O R I G I NA T O R S REPORT NUMSERSI)

4~4 14—76_c—~673)~~~... 
~~~

thnieal Repor t 16

7 ~$ 1~-At S-7’/.m ~~ ~L4\~4. _ . 
______ 

REPORT NO(S) (Any oth.r numb. ,. tha( may 6. aa.ign~d
5111 IpOtf)

~~~~~~~~~~~~~~~~~~~~~~ ! T A V V a E I.I T 

~~~~~~~~~~~~~~~~~~

( Approved for public release; distribution unl:iiuited . 
S ~t

II. SUPPLEMEN Y NOTES (a. SPONSORING M I L I T A R Y  A C T I V I T Y

~~ ~~~ ~~~
, 

~~~ J . Mathematics Program

fl ~ ~~,I’L9 Office of Naval Research

____________________________________________ 
Arlington,_Virginia 22217

I). A S S I R A C T

• Let M(m,n) be the minimum number of pairwise comparisons which will always
suffice to merge two linearly ordered lists of lengths m and n. We prove that
M(m,tn+d) = 2m+d—1 whenever ni > 2d—2. This generalizes earlier results of Graham and
Karp (d — 1),. Hwang and tin (d 2,3) ,  Kn’uth (d 4) ,  and shows that the stand-
ard linear merging algorithm is optimal whenever m < n < L3m/2J+1.

4 . I

flfl PO~M 1A ~~’~ (PAGE I)
~~~~~~~ i 4Jnclassifipd

IA $M. OIOi IO7.S$O I ~ ~ ~J ~~ev*~Iy CI..sthc.t(os

— _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ _ ~~~-—--



--.- —- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~i the Optirnality of Linear Merge

~A . Paul K. Stockmeyer
Department of Mathematicfland. Computer Science

College of Wifflam and Mary
Williamsburg, Virginia 23185

F. Frances Yao —’
Com puter Science Department

S Stanford University
Stanford, California 9I~.3O5

Abstract. Let M(in,n)  be the minimum number of pairwise comparisons

which will always suf fice to merge two linearly ordered. lists of lengths

m and n . We prove that M(m,n~ d) = 2m+d-l whenever 
~ ~ 

2d-2

This generalizes earlier results of Graham and Karp Cd 1) ,

Hwang and Lin (d 11 2,3) , Knuth (d = 1~ ) , and shows that the standard

linear merging algorithm is optimal whenever m ~ ~ 
L3m/2J+l
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1. Intro~1uct ion.

Suppose we are given two linearly ordered sets A and B consisting

of elements

and b3. < b 2 < ... < b ~ , S

respectively, ~there the ~~n elements are distinct. The problem of merging

these sets into a single ordered set by means of a seq~ence of pair~rise

cauparisons Is of obvious practical interest, and. several algorithms have

been devised for handling It.

An Intriguing theoretical. problem is to determine M(m,n) , the

minimum number of comparisons which will alwa~r s suffice to merge the

sets In a decision tree model 15). Evaluating this function in general

seems quite difficult, and values are known for only a few special, cases,

including in < 3  ([1), [2), and [ii)). In one direction, an upper bound

for M(m,n) is provided by a simple procedure variously referred to as

the normal, standard, linear, or tape merge algorithm . Here the two

s~snllest elements (initially a~, and b1 ) are compared, and the cmR~fler

of these is deleted from its list and. placed on an output list. The

process is repeated until one list Is exhausted. It is easy to see that

this algorithm requires mI n-l comparisons in the worst case, so that

M(m,n) < rt+m-3.

Although better algorithms exist for many cases, B. L. Graham and.

B. M. Karp independently observed that this algorithm is optimal when

is 0 or 1. . That is, they showed that
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M(m,m) 2m-].

and M(iu,m4 l) - 2m

Later Hwang and Lin (3] proved that

M(m,m+2) — 2m4’l for at 
~ 

2

end M(zn, ml~3) ~~~2 for m 
~ ~

while lCnuth (5, p. 201i] verified that

M(ni,m+1~) — 2m+3 for in 
~ 

6

. 5 In this paper we generalize these results by proving that

M(ia,iafd) — ~~+d-1 for 
~ ~ 

2d-2

Intuitively, this means thnt the standard merge algorithm is optimal, in j
the worst-case sense, whenever in < n < ~,,5m/2J+l .

2. Oracles. S

A lower bound for M(m,n) will be produced by means of an “oracle”,

the proof techniq~e utilized for example by l~uth (5, Section 5.3.2).

In his formulation, when presented with a comparison a~ vs. b~ ,

an oracle announces which is larger and simultaneously chooses a strategy

for answering further questions so as to force a large number of additional

comparisons to be made. A useful lower bound is obtained from an oracle

that has an effective strate~ r for dealing with any comparison it might

encounter.

In addition to an oracle that provides a lower bound for M(m, n) ,

oracles are needed to furnish lower bounds for two other functions. Let

/t4(m,n) be the number of comparIsons required to merge two lists for

• which, unknown to the merger, a.~, is in fact greater than b1 . An oracle

3
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for this function must therefore make al]. pronouncements consistent with

> b1 
. Similarly, let /M\(m,n) be the number of comparisons required

‘when is greater than b1 and a~ is less than b~ , again unknown

to the merger. Occasionally we shall use the notation M\(m,n) to

denote the number of ecinparisons required to merge two Lists when

i. less than bn This is not another new function, though, since by

sy etry we have M\(ra,n) /M(m,n)

To illustrate these definitions, suppose at - 2 and n — . It

is well known that M(2,l
~) 5 . However, there is a way to perform

this merge in only I~ comparisons if in fact > b1 , by first

ccz~paring a1 with b2 . If > b2 , the problem reduces to M(2,2) ;

otherwise, ~~nparing a1 with b1 reduces the problem to M(1,3)

Thus /M(2,~ )(I1

3. An ~ cample.

We illustrate the use of Khuth’s oracles, and the strategies available

to them, by verifying that M()i,7) 
~ 
10 . Assume that oracles for achieving

M(m,n) and /M(ni,n) exist whenever m+n < 10 (see t S]) .  We consider

four cases.

(i) )lrst, suppose a merge algorithm begins by comparing a2 with

The oracle declares that > b1 , and requires that subsequent comparisons

merge (a1,a2, a~, a~~ with (b2,b3
, .. . ,b

7) , 
using an M(l~,6) oracle. Thus

~ 
1+M(l~,6) a 1+9 a 10 in this case.

(ii) If a merge algorithm begins by comparing a2 with b~ , with

J ? 2 , a. more complex strategy is needed. The oracle declares that a~ <b~ ,

vid requires that later comparIsons merge ta1) with (b1) and

(a2,a3,a~ ) with fb1,b2,...,b7) , 
with the restriction that all, future 

_— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--- 5- J



pronouncements are consistent with a1 <b1 < a2 . These r~striction.s S

• ensure that information gained in merging one subproblem is of no help

• 
in the other, even though b1 is in both. The situation is illustrated

in Figure 1. The top row is A , the bottom B , with smaller element s

to the left . The dotted lines represent the restrictions the oracle

• imposes on itself, end. the subproblems are encircled. With this strategy,

the oracle can force a.t least 1+ M\(l,l) ÷ /M(3,7) 1+ 1+ 8 ~ 10

comparisons to be made in this case as well. Thus any algorithm which

initially uses a1 requires at least 10 comparisons.

Figure ~~ <~~~ ~ J 2

(iii) An algorithm that first compares a2 with b~ , with j  < 3  ,

can be handled in a manner similar to (ii). The oracle declares that a2 >

and requires that future comparisons merge [a1) 
with (bj~b2sbyb~ ) and

(a2~ay a~) with b11,b5,b6,b7) under the restrictions a1 
<b~ <a2

See Figure 2. The number of comparisons required in this case is at least

1+ i(\(1, 24) + /14(3,24) 1 + 3 + 6 10

~~~~~~ITTi.iD

Tigure 2. a2 >b~~ j<3
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(Iv) If the first comparison is a2 vs. b~ with j 
~ 

24 , a simpler

strategy will work. The oracle declares that a2 <b~ , and insists

that later comparisons merge (a1,a2) with [b11b2,
b
3
) and

with (b24,b5,b6,b7) as in Figure 3. The number of comparisons required

is at least 1+ ~t(2,3) + M(3,24) a 1+24+24 = 10

Figure3. a2 <b~~ i �~~~•

We have shown that any merge algorithm that begins with a comparison

using either a1 or 
~2 requires at least 10 cctnpa.risons for this

problem. By symmetry, the same is true for a3 and a~ . Having

cc*isidered all cases, we conclude that M(24,7) 
~ 

10

The two types of strategy illustrated above endow- act oracle with

sufficient power to prove our main result in the next section. In the

“simple” strategy, the oracle answers the query and divides the merge

problem into two disjoint unrestricted problems. In the “complex” strategy,

there Is an element of B in both subproblems, which are handled by-

suitably restricted oracles. Oracles for the functions /M(m,n) and.

/*~(m,n) use the same strategies, with one or both subproblems inheriting

the restrictions of the original. A subproblem may have one list empty

in degenerate cases, as in case (i) above. In all cases, though,

each subproblem contains fewer elcnent s than the original problem, so

that inductive proofs can be used.

6

- 5 - 

- -S--

~~~~~~

---
- - - -

~~~~~~~~
.-

—— -~~~~- S - 5

—— ~---— .~~~~ - —- S -



—-5 - • ~----— -_±—-•T-~~~

~~. The Main Result.

The proof of our theorem is simplified by first establishing a few

preliminary results. 
-

Lemma 1.

(i) /M\(m,n) < /M(m,n) < M(m,n)

(ii) /M(rn+l,n#l) ~ 
/M(m,n)+2

(iii) /M\(m+l,n+l) 
~ 

/M\(in,n)+2

proof. Part (i) is obvious ; any merge algorithm5 performs at least as

well on more restricted problems. In part (ii), an oracle for /M(m#l,n+l)

can make all pronouncements consistent with b1 <a 1 <b2 <a2 , 
and

force [a2,a3,.. 
., a~~] ) to be merged with [b2~b~~ ...7 b~~1) . Then the

cauparisons a1 vs. b1 and a~ vs. b2 
can not be avoided. The

proof of part (iii) is similar.

We are now ready to prove the main result. Although we are really

interested, only in part (a), bounds for all three functions must be proved

simultaneously, as each oracle requires the help of at least one other.

Theorem 1.

(a) M(m,m”d) � 2in+d-1 for m > 2d-2

(b) /M(m,lni~d) � 2m*’d-l 
for in

(c) /i4\(m,m+d+2) � ~ it+d for m 
~ 

2d-l

Proof. If (b) and (c) are true for the threshold values m 2d-l , then

they are also true for in > 2d-l by repeated application of Lemma 1 (ii)

and (iii). Also, if (b) is true for ~ 2 2d-l then Lemma 1 (i) implies

that (a) is also true for in > 2d-l . Thus it is sufficient to prove the

7
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theorem for the threshold values of m only, that is,

M(2d-2,3d-2) 
~~ 

5d-5 ,

/M(2d-1,3d-l) > 5d-3 ,

and /M\(2d-1,3d+1) > 5d-2

The proof is by Induction on d . The starting values for 1 <ci  < 3 si-c

given in Knuth (5, p. 20)].

part (a). Suppose an algorithm begins by comparing a1 with b~ ~

~there I — 2k-l and j  <3k-2 , for some integer k satisfying 1 < k <d

The oracle proclaims that a1 > b~ and follows the simple strategy,

yielding .

M(2d-2,3d-2 ) � ). + M(2k-2,3k-2) +

i + (5k-5 ) + (5(a.-k)-1)

a 5d-5 . 
- 

5

If I - 2k-i and j > 3k-i , the oracle announces that a. < b ~ and.

uses the complex strategy, with b,k2 in both subprobleins. This leads to

M(2d-2,3d-2 ) � i + M\(2k-l,3k-2) + /M(2(ci-k)-1,3(d-k)+1)

1 + /N(2k-1,3k-2) +

2. + (5k-24) + (5 (d-k)-2)

a 5d-5

This settles the case where I is odd.. Reversing the order oi’ the elements

in A and B maps all points of A with even subscripts onto those

with odd. Thus by sy2mnetry we have hand.led the even case as well.

_ _  

-

. 
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Part (b). Suppose the first comparison of an algorithm is

vs. b~ with 1 = 2k-i a,nd j  < 3  k-2 , where 1 < k < d . The

oracle proclaims that a~ > b~ and uses the complex strategy, with

in both subproblems. In this case we have

/M(2d-l,3d-1) � 1 + /~~(2k-2,)k-l) + /M(2(d-k)+i,3(ci-k )+1)

1 + (5k-5) + (5(d.-k)÷l)

a 5d-3

If i 2k-i and. j ? 3k-i , the oracle announces that a1 <b~ . The

simple strategy yields

/M(2d-1,3d-1) � i. + /M(2k-l,5k-2) + M(2(d-k),3(d.-k)+l)

> 1 + (5k-be) + 5(d.-k)

— 5d-3
S 

Now suppose i 2k aM j  < 3k , with 1 < k  < d . Choosing

> b~ , the oracle follows the co~up1ex strategy, leading to

/M(2d-i,3d-i) 2 l + /~1\(2k-i,3k+1) + /M(2(d-k),3 (d.-.k)-l)

1 + (5k-2) + (5(d.k)-2)

5d-3

Otherwise, if I = 2k and. j 
~ 
3k~i , the simple strategy- with a

1 < b ~

produces

/M(2d-l,3d-l) � 2. + /M(2k,3k) + M(2(d-k)-l,3(d-k)-l)

3. + (5k-i) + (5(d._k)-3)

S 

3d-)

9

— —. - — -— -- --5 - 5 -  - -  -—  -5- -

— -- - — — — ~~~~
-
~--.- ~ - - . - S  - - :~~_.. .-- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~r- 

~~~~~~~-5- --- 
— - - 5 - - - - - -  —-5--~~--~~~~~~~

--5- - -
~~~~~5-- S



5—. ——— ‘——5————- - 

—— ———-~- —S-—--—— -—-—-— -— - -._~~___ —5-— - —5—-— -—-- 5-— -5——— .-—— -5,—- -- —5-- — - S 5-5-5-— 555-55 -5 ~~~~~~~~ - 3

Part (c). Assume ax-i algorithm begins a1 vs. b~ wi th I = 2k-i

and j < 3k-l , where 1 <k < d . The oracle picks a1 > b . arid follows

the simple strategy, yielding

/~f~(2d-i,3d~l) 
~ 

1 + /M (2k—2 ,3k-l) + M\(2(ci.-k)+1,3(d-k)÷2)

1 + /~\(2k-2,3k-l) + fM(2(d-k)÷l,3 (d-k)÷2)

3. + (5k-5) + (5(d.-k)+2 )

a 5d-2 .

The case i = 2k-i and j ~ 3k is the mirror image of this case.

If I = 2k and j  < 3k4-1 , wIth 1 < k < d. ,  the simple strategy

works again. The oracle declares a~ > b~ , and. we have

/M\(2d-l,5d.+1) ? 1 + /M(2k-1,3k+l ) + I~f \(2 ( d -k ), 3 (d- k ))

1 + /!if\(2k-1, 3k+l) ÷ /M(2(ci-k),3(d-k) )

2 1 + (5k-2) + (5 (d-k) -.J.)

5d-2

Finally, the case i = 2k arid. j 
~ 3

k-I-i is contained in the mirror image

of this case.

In conciusion, we note that Knuth (5, p. 206] has made several

conjectures concerning the behavior of M(m,n) , such as -

M(mi-i,n+1) 
~~ 

M(m,n)’i-2 . 
S S

In view of Theorem 1, it seems reasonable to add.

M(m+2,ri+3) 
~ 

M(m,n)+5

to the list.

Also, it would be interesting to know the precise range of m and. n

for which the linear merge algorithm is optimal. No instances have been

found. outside the range In < n < L3m/2J+1 , but cases as sim~.ll as m = 7 ,

ii — 12 remain open .

10
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