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ABSTRACT

V. Pratt [181 has shown that the real and integer feasibility of sets of linear inequali-

ties of the form x ~ 
y + c can be decided quickly by examining the loops in certain graphs.

We generalize Pratt ’s method, first to real feasibility of inequalities in two variables and

arbitrary coefficients, and ultimately to real feasibility of arbitrary sets of linear inequali-

ties. The method is well suited to applications in program verification.
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I .  introduction

Procedures for deciding whether a given set of linear inequalities has solutions often
play an important role in deductive systems for program veri fication. Array bounds
checks and tests on index variables are but two of the many common programming con-
structs that give rise to formulas involving inequalities. A number of approaches have
been used to decide the feasibility of sets of inequalities (2 .7.8.14 .21 1 , ranging from goal—
driven rewriting mechanisms (25 1 to the powerful simplex techniques [7~ of linear pro—
gramming. Some simple methods are well suited to the small, trivial problems that most
often arise, but are insufficiently general. Full-scale simplex techniques. on the other band.
are general and fast for medium to large problems, but do not take advantage of the trivial
structure of the small problems encountere d most frequently.

The algorithm presented here retains the generality needed in the exceptional case .
without sacrifice of speed and simplicity in the more typical situation. It builds on
V. Pratt ’s observation I 18 .IhJ that most of the inequalities that arise from verification
conditions are of’ the f orm x 

~ 
y + c. where .x and y are variables and c is a constant.

Pratt showed that a conjunction of such inequalities can be decided quickly by examining
V • the loops of a graph constructed from the inequalities of the conjunction. We generalize

this approach, first to inequalities with no more than two variables and with arbitrary
coefficients, and then to arbitrary linear inequalities. Our generalization reduces to Pratt ’s
test for inputs having the simple structure he describes.

The discussion is presented in six sections. Sections 2 and 3 are concerned with pre-
liminary def initions and with a statement of the method for inequalities with two vari-
ables and arbitrary coefficients. Section 4 discusses issues of’ complexity and usefulness
for integer problems, and relates the method to Pratt’s. Sections 5 and t~ deal with the
extension of’ the method to sets having strict inequalities and to sets with arbitra ry linear
inequalities. The last section presents a proof of the theorem that underlies the method.
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2. Definitions

Let S he a set of linear inequalities each of whose members can he writ ten in the
form ax + by 

~ c, where x, v are real variables and a. b, c are reals. Without loss of ’
generality, we require that all variables appearing in S other than a special variable v11,
called the :t’ro i’ariah/e’, have nonzero coefficients. We also assume that v~ appears only
with coet’ticient zero.

Construct an undirected multi-graph G from S as follows, Giv e (‘~ a vertex t’or each
variable occurring in S and an edge t’or each inequality . Let the edge ahsocialed with an
inequality ax + by ~ c connect the vertex for x with the vertex for y. Label each vertex
with its associated variahle* and each edge w ith its associated inequality. G is said to he
the graph t~r S.

Now let P be a path through G. given by a sequence v 1 , v , . .. .,  
~~~ 

of vertic es
and a sequence e 1 , e en of edges. n > 1, The trip le sequence for P is given by :

(a 1, b1,  c 1 ), (a ,, h.,, ~~~~~~~~~~ b~. c~’

where for each i. I ~ I ~ n. a 1 s’ 1 + h1v1~ ~ c1 is the inequality labeling e1.~~ P is athnis-
siNe if. for 1 ~ i ~ n — 1. b1 and a

~+ have opposite signs~ i.e., one is strictly positive and
the other is negative.

Intuitively, admissible paths correspond to sequences of ’ inequalities that form tran-
sitivity chains. For example , the sequence x ~ y, y ~ z . z 3 gives rise to an admissible
path. as does

2x~~~3 y - 4 . 2y~~~4 — z , — z > x  -

Note that the sequence :

x~~~v. v~~~s, —z~~~r

Iii what tollows, it is notationally convenient to write v (or both the variable v and the verie~ asso-
ciated with that variable.

1n the case where v 1 and 
~~~ 

happen to be identical (i.e.. e~ is a selt’-loop~. an arbitrary choice ismade as t o the ordering ot ’ the tirs i two components of the associated triple.
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cannot label an admissible path. since the coefficients of / have the wrong relative
signs.

A pat h is a loop if its first and last vertices are identical A loop is ,sip np ie if its

intermediate vertices are distinct.

Note that the reverse 01’ an admissible loop is always admissible, and that the cyclic
permutations of a loop P are admissible if and only it’ a 1 and b~ are 01’ opposite sign.
where ~a 1 , b1 . . . . (a ,~, b~. c 1~s is the triple sequence for P. In this case, we say P is
permutable. Note also that. since v 1 appears in S only with coefficient 0, no admissible

loop with initial ~c r tcx  ~ is permutable.

Now define. for a given admissible path P. the r esidue inequal itt’ of P as the inequality

obtained from P by applying transitiv ity to the inequalitie s labeling its edges. For examp le .

if the inequal ities along P are

we ha ve :

~ 2~ + I ~ 22 — 3i) + I ~~ 2 t 2 + 3w + I t~w + 5

The residue inequality of P is thus x — t~w ~ 5.

More formally. define the residu e r~ ot ’ P as the triple (ar. h~. cp~ given by:

(a p. h~. cp > = ~a 1,  h1, c 1’ u., b, , ~~ * - ~~~ t~~

w here ~a 1 . h1 , c 1’ , . - ~~~ b~ . c 1~ is t he triple sequence (‘or P and where * is the binary

operation on triples defined by:

~a. h, c’ (a ’. h’, c ’~ = ~kaa ’, —k hh ’. k(ca ’ — c b ~

andk -~-r-

ftc rt ’.~,j tj t ’ inequality ot ’ P i~ then given by ap x + b~ y ~ cp. w here x and y are the first
and lj st vertices . respect ively, of P.

____________________ ___________________________ 
__________- - ~~~~~~~~ ~~~~~~~~~~~~ ~-



- 

-V
-V 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

T . :~~~~~~~~~~~~~~~~’ T ~ 
-‘V.—— ‘ 

r1

I
V It is straigh ct ’orward to show that is associat ive , so that rp is in tac t uniqtie l> detined.

I’he idea that the residue inequality of ’ a pat h is implied by the iiie~iua Iities labeling the patti

is cxpress ~’d in t he following lemma:

1. c,p:pp:a 1. An~ point 1 i.e., assignment of reals to ~
V
~tri ahlcs ) that satisfies the inequalities

label ing an admi ssible path P also satisfies the residue inequality of P.

Pi: Straightforward b~ induction on the length of P.

3. Procedure for Inequalities with Two Variables

In the case where P is a loop with initial vertex, say , x . Lemma I asserts that any

point satisfying the inequalities along P must also sat is t ’v x + h~ x ~ c 1, , If it happens

t hat ap + b~ 1) and c p ‘-~ 0, the res idue inequality ot ’ P is fals e , and we s .i~ th at P ~ an

i nf & ’asthlt ’ l~ u

It follows that a set S of inequalities is unsatisfiable if the graph G (‘or S ha s an
infeasible loop. The converse, however , does no t hold in general, Figure 1 . for example .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Although

S is unsatisfiable, the graph has no infeasibl e loops , simple or otherwise,

FI GURE 1 GRAPH G F O R S - l s ~
..v. 2x~~ y ’~~t , z ’  x , w~~~:, z~~~w~~~1. :- ~~’ :t

4
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The gist of our main theorem is that G can be modified to obtain a graph U’ that
has an inteasibk simple ioop it ’ and only if ’ S is un sa t isfiable :

DerI,utwn: Let U be the graph (‘or S. Obtai n a clos ure U’ of ’ U by add ing. (‘or eac h

simple admissible loop P modulo perm utation and reversal ) of U a new edge
l abelled with t h e  residue inequality of ’ P.

Note that closures are not necessarily unique. since the initial vertex of each pernmutahle

loop can he chosen arbitrarily.

77u’ore,n.’ S IS unsatisf iable it ’ and only it ’ U’ has an infeasible simple loop.

Figure 2 shows the unique closure of the graph of Figure I, Note that the only loop

of G contributing an edge to U’ is the xyx loop. The v 0 xzv~ loop of U’ is infeasible has-

ins residue (0 . 0. — i i) ’ ; hence the example S. accord ing to the theorem. must be unsat ist ’iab le.

*~~ 1
~~‘ V

2 ’ .~~~

zw

• V s. 1

z .) ‘~

FIGURE 2 CLOSURE OF G

We show later t hat any cyclic permutation of an infeasible permutable loop is itself

int’easible , and that t he reverse of an infeasible loop is also infeasible. We t hus have the

following decision procedure for satistiahility of’ S:
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( 1 the simple admissible loops ot U are enumerated inodulo ~ tic perniutat ion

and re~ er~aI. and if ieti m ~‘\i~lU~’s .u~’ computed. If aii~ loops are found to be

i imt ~’j~iN~’, S h unsat isti.tble .

1 (1tli er~ ise. the closure of _ is I’ormn~’d l~ addiui~ a ne%~ edge oi ~‘j ~ Ii i

- I’he cs iducs of all ne~ Is tormed s i tu  pie adnuisstbk’ loops are I1¼ ~~~

contf’tlk’d. If ,mim’ ~ ,mrt’ fou nd to be unl ’c.isible, S is unsatisfiable. Ot hers~ use S

11,15 soltt ttoiis ,

Not e that this procedure , as stated. does not •ictualI~ construct a sotut i~ n ii S is

tc~t sibk ’ . The proof of the main theorem , given in Section , pros ides such a construct ion.

Note also that the ness admissible loops tornli’d in ~~ ‘I must has e initial vertex s

4. Ft’t’iciencv and Other Issues

Au~ implementat ion of the procedure must , of course. incorporate som e means of

generating the simple loops of ’ a graph. For this i’ur~~~~. ses t’ral algorit hms ~‘\ i s t

( Johnson 1 131 , Read and Tarian 11 ‘fl , Szwarcfit e r an~t Lauer (13 l~ that operate iii ti m e

order ~ 
I1  

~, and space order \ I’ , s~ here ‘, is the mitimber ot loops geneiate~l .

I hese algorithms are eastl~ Iflo¼titied to generate onI~ admissible t~~~ps ss ithout ads ersel~

at ’tect in~ c t t icieiucv . Since each loop has length on t lie ordet’ ol I, thes e .ugoi it  tunis

require little mor~’ time than t hat needed (‘or output. -‘ graph nas - of ’ 
~‘ouis~’ li .m s ~

‘ 
~~ nit

a L’ss simple loops e’sponenti.ilI~ mans ~~~ I i. in ta~ t , :u the 01s t  ,tsc, One caim

sli~~ that t he procedure ss e has e descnbed . tiL e the s ill plex m ethod , exhib its L’\ ponemit .u~

Ss ~~t st —c ase .ts\ niptotic behavior.

In practice. however , one Jot’s not encounter such behas mor. 11w set s ot ’ imit’qu.iimt ics

that arise from veri fication conditions usualI~ hav e t he form of transitis itv chains . the

corresponding graphs are treetike, se ldom having more than .t tess loops. Most of the

loops that do occur are — ioops , w hich are easily test ed at the time the graph is

constructed.

V. Pratt 118 1 has noted that these st ’ts often fall ssttIt iml ~ ~~~ fw h a s  tertiiett

separati on f/leon . ~~ t he inequalit ies of such sets are of tlw form x ‘~ + c. l’he

residue of’ .i loop whose lab elin g inequalities are of’ this form is gm s en by one ot ’

I, — I , m\ ~~
— 1 , I , ni\ ss bert’ in is the suni ot lie constants c around t h e  loop, the graph
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to t  J set S mu ~e p_ ira t ion t heor~ us bus its own c losure , so tlit ’ ni,iimi t tworem ot the last

section m ~‘diu~ s’s , ifl this ~‘ ,1se , to Pratt ’s obs~’t at ion that such ,i set S is mmi tea sibit’ ii and

omits it the slim ot the colu st ,iiuts around ~oiiu~’ siiupk’ loop is umeg.u is ¼’ Pi. mtt note s th a t

I his condition c.in be tested mu order i \ ‘ 4 1’ I t - ~ t ime l’~ taL ing .t max ~ t r a m is i t i se

closure 01 the incidence matrix of the graph. In practice. howcs ~‘r. it iua~ be more et I -

~‘iemi t to gene I .mti ’ loops usmng out’ ot the algoi it tiiiis mentioned earlie r.

Not ~’ tha t a set of inequalitie s iii separation theor~ with integer consu.ints is integer

V 
feasible it .imid onl~ ml it us real t ’easible. Wh ile the maimi theorem tht’retore dec ides integer

ft’asib ilit~ in t hms L’j5~’. it cannot decide integer teasibi lit~ in gt’mwral. Lt h.is been observed

I I . lios~ eve r , that the tr ,must ’orum.I tm ons l~ 1 ¼’ ¼ sot ’ I ~ I describes tom’ ~‘du~- mn~ formulas iii

uuit ~‘g~’ 
, .int hmut’tmc to sets oi imwqu at mf mes tends to ‘roduce ~~ s t f i.u tie ti m ft ’ger fe. msiblt ’ if

,ind only if the~ .ire rea l l~’,isibk, l’lut’ main t lwort’nu thus pros ides .t Lis~’t Ul . but umo t co in—

plett’. tes t for ,mi I ~‘gei 1easi bm lmt s

5. Strict Inequalities

l’h~’ procedure is iris iall~ geiwraIi:¼’d to handle strict imwqu.it it ies (i e.. inequ.ulities ot

t h e  forum .tx t ‘~~ e) . Let an .mdmmss mble loop be ~tr icr  it~ one or muore of i ts edges is

labt’It’d w it Ii a strict ineqtmalit ~’ , A strict loop P with residue \. i 1, , b1, . c 1,’~ us : ‘l r c ’ .~\u! ~i c ’ uf

a 1. ~ b1, ~i ami d ~ u~. If thit’ definit ion of ’ c losure us now muodmt lt’d mit such .i ss ,i~ thi.ut

iit ’w edges .ii isuuig l’roiui strict loops are labeled ss ith strict imuequalities. the main t heoremu

still holds,

P. ~xtensioil to &r hitrary Sets of’ Inequalities

11w mnet hod ¼’ .Ifl be f lirt her generali:~’d to s e t s  of ’ i mlet lualm ties ss mili a rbm t ma r~ L’0¼ ’ t i  —

ciCil ts and .irbitrar~ miunubt’rs of s .irm,iblt’s.

flit’ b.iste ide,m is illustrated h~ tlit’ t’ollosvimig example. ~onsidt’r tilt’ s e t

Note that t he tnequalit~ .‘ ~~~ 
— ~ 1 has three var iables, As shoss it in Figure 3 . \ ‘0

choose tss o of the three I s.i~ and ~ I as the endpoints of the edge corresponding to th us

L ~~~~~~~~~~~~~~~~~~ VV.V. 
‘ -

, 
_____ -
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inequalit~ in the graph U for ~S . The term ( — \  + I ) becomes the constant of thu s

inequality. The residue of the oni~ simple loop iv z v I is given b

\l , —I . i)~ • ~l . — I .  — ‘ + P

and us computed ‘‘ s mholi ’.ully ” t o obtain . I . — I . —x + I ~ . Note that this loop is

inte.tsul ”le unless —\  ~ I “ ii it’ t he residue mneqtLiIit~ —\ t I > $.) us miow added to the

graph. ami i f l t ¼’.I’ublt’ simple ioop i s  xs  
~ 

i re~uits . t h ums making S umisa ti s t iahic ,

FIGURE 3 GRAPH G FOR I~ ~ 
‘
~ 

- 1 ~ > 2~

W e nosy describe t h e  procedure t’or an .irt ’utrj ry s et S. We assume that the ariabtes

of S other th~in ~ art’ ordered in some sv.i~ . F~ucli s ,iriats k’ that us the loss’est or second

loss Cst ranked variable in every inequality in which it appears is said to be a ~‘r: ’~tar i ’

i~ rj aNt ’, We adopt the coiwe nt ion that the edge corresponding to a given ineqtuah ity ‘

.ilss,i~ s .itt.icheit to the two n~ d~s corresponding to i t s primary variables. It ’ it has only one

rnmar,~ 
sanable. one end is attached to . and it’ it ti.ts no primary vanables. both enUs

are .mttjched to s - The procedure us as totl oss

ii (‘~‘inpu :e .1 ~.‘IOsLI rt’ C. of t ilt ’ er.tp h t’~~ s _~~ s~u.i l, es .u1uia t mn ~ residues ‘‘s\ in—

boli~ .~ls ‘‘ n the exanipie. If U’ hi ,is ‘n unf ’e.msmblc loop, terminate returning

“Ufls~it is I  j .ibk’.” Other ~s i-~e, ii .mli the ~iuable s ot  S are i~rirmiary. terminate

returnu Ig ~~Ii 1st ij ~’k’,

1 Othe rss i’ ¼’ . ~~~ t t he procedure ~:5i ~ g the set ot residue inequalitie s ot ~,; 
‘ in

pl.ice 01’ S.

_ _ _  
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Note that the procedure must terminate since the number of non—primary variables m u s t
decrease eac h iteration. One can prove as an extension of ’ the main theorem that the gen-
eral procedure is complete as well as sound.

R. Tarjan* has observed that any set oh’ inequalit ies can he polynomiahly transformed
to one with no more titan t hree variables per inequality through the addition of ’ new vari-
ables. The inequality w + x + y + z ~ I, t’or example , is rep laced by w + x ~ v , w + x ~ v ,

v + y + z ~ I. For sets with inequalities having no more than three variables , only two
iterations ot’ t he procedure are ever required. There does not seem to be any fast way to
t ransform a set of ’ inequalities to one having inequalities with no more than two variables .

7. Proof of the Main Theorem

it follows from Lemma 1 and from the definition of closure that a set S of inequali-
ties (each having no more than two variables) is satisfiable if and only if S’ is unsatisfiable,
where S’ labels the edges of a closure of the graph for S. If we define a closed graph as
one that is a closure of itself, the main theorem can thus be restated as follows:

Theorem: If G is a closed graph for S, then S is satisfiable if and only if G has no
infeasible simple loop.

The proof of the theorem requires a number of technical lemmas. Proofs are omitted for
the more trivial of these.

Notation.’ Where P and Q are paths. let PQ denote the concatenation of P with Q.

Lemma 2. If P and Q are admissible paths, then PQ is admissible it’ and only if’ bQ and
a~ are of opposite sip.

Notation.’ Let T = (a, b, c) be a triple of reals. Then T~ denotes the triple (b, a, c).

Lemma 3. If T~ ,T, are triples, T1 * 1, = (T~ * 
‘

~

‘

~ 
) .

(‘orro llar,i ’ 4. i~ ~ is the reverse of an admissible path P. then r~ = r~’.

(‘orollari ’ 5. The reverse of an infeasible loop is itself in feasible.

Pr ivate Commim ica t ion. 9 
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lc ’,HpH11 n. Aii\ perimital mon of an itilt ’asibk pt’rmuu tablt’ loop is iiil C.IsmblC.

I’,, Sas P is inft ’asitsle ,ind P’ is .1 pe rmu mtatiou of P. then I here ,ire p~t hs Q and R sum~’hm

that P ~ QR amitt P’ ~ RQ. thus.

r1, a La Q ‘1R , —kt s Q hR . k~ c0 a~ — C R h0 t ’

~ifl#,l

i 1, sk ’a~ .i~~~. ‘-k h R t~~~, k ’tc~ a~ — e Q bR ~‘

a 1
ss’here k —‘—‘ and K’ —

~~~ , Note  that by adm issibility of P and P’, both a and
I IJ Q I

a0 art ’ non/ero. Ily infe~isibm hit~ ot ’ P. ‘1R ~1Q 
— bLi hR ~ 0 and kt c11 ~R — t R b0 I < 0,

/ c Q bR bQ \
__________ — c~~ b0 “V 0

\ ‘0 /

/c Q 
hR

_ _ _ _ _  - U

— —~~~~~~~ ‘—~ 0 sinet’ aR amid b0 has e opposite signs)
‘Q

— eQ IsR 1 <0

Recatliiig that a0 — t\~ hR U. we Ihums bas e tti.m t P’ us infeasible

.\~ ‘tat:o~z: Whert ’ u, v , sy art’ reals , lt’t it mean that it —.- s if ss’ ~ U .iud ii s i t  ss

l)
~’ ‘inun ‘H Wher e P us .in admuissihlt , pat h. the dis ’ .’:’mnant d , of P is g ms cmi Isv

- V 

I ‘ a~ + Is 1,

V 

Noi~’ that an mii l t ’ .isi hlt ’ loop is out’ ss’ith discnntin.nit —“ ,

-V —— ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ —— ~~ IV. —
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-

a
1.t’nmia “

. It’ P
~

V,? is an adm issible hoop tr ommi s~ to “~ , then Pt,,’) is mnl ’casmbk iI’f tip
‘ii’

mU d~ -
~ d0.

.\ogatuni : In the Iollovs’mng, let sa 1 . b 1 . c 1 ~ . ,a~ . h~ . c, ~‘. sa .1 . is~ . ~~~ 
~ . and sa p. b1, ,

respt’ctms clv , denote tiit’ r~sidties of ’ l~ . l~, , . and P.

Lenima S. If U~ is closed and has an infeasible loop from “~ to 5 . U has au infeasible
sinipk loop.

P,~ Let P he a shortest infeasible loop from s’~ to 
~~~ 

in U. It ’ P is simple, we .irc donc’.

Ot herwise , since , ls~ admnissitsilitv. the intermediate se r ices of ’ P are distim ict from s

P can be expressed P1 P. P3 , w here P. is simple. We c laim that I’-, is also infeasi ble.

S mtspose not. then either a, + Is, () and c, ‘ 0, or d1~ us t ’iniIt’. In flit’ for-

mer case , a, and h. h ave opposite signs. It t’ollosv s from Lemm a ~ t hat b
~ ~mnc l ,m

~
miiu i st as sv’ell, hence P1 P3 is admissible. Now since

a
\0 , h1. c 1~ * .i ,,  (5 ,.  c , ’~ a,I ~~~~ ‘ 1 i~~~ ’ ~~~~~ 

—

we has’e:

— c, Is~ e , .i,\
= 

~~ Li, 
= 
ii 

tip = 
h
’
~, 

+ ti p 1

Since P is infeasible. ss e base fromii Lemiimiia that

+ d~ 
>

Thus,

a Is ,
- 

‘ 
c , + is , d11 

~ 
~~

- Is , 
~~

t .
‘
. c, + Ii, Li p ‘—. b , LI p simice .m 1 and Ii, li.isc oppos ite signs)

II

~~~~~~~~~‘ 
p 

~~~~~~~~~~~~~~~~ 
— V.-’

—V.--- ~ -‘ - - - “ ~
‘
~~~~ 

-
~~~
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( 
I

:, Ii , d 1. 
~ 

< Ii, i suic’e c — 1))

(‘I

- cliii

a
tip ~p f sll ic ’ t’ h , ,tuij .I~ .tte of opposite sigh ).

But t hen l’
~ 

I’ is itt f ’c’.ism blt’ by I emma 2 , contra dmc’f mug our assum pfion t hat P is flit’
shortest such loop.

Nos~ i f  tIp, is f i nite , the Jt’se~li mt ’ss of U pros ides that sonic e rt ex x on

milust be ~‘onnc’c’tt ’d to vi a an edge I l.iht’lt’d a~ ~ c , w here c a us the disc ii mu m uia ui t
of solut e c\ ~‘hmc pernmutatm oit P’~ poss ubl~ P. I of P. , We now has-c three eJst ’s:

Caae I. P 1 is not 1~rmut abla,

I’heii I’, P. , a = .i , ~ , C . nid fs~ l ,eumiuima 2 , .~~, and h. .1? C of flit ’ saint’
sign . ‘~ko , a  m ust he of f l i t s  sign . hence tsoth P~ 1- .mnd 1’ P. .u c’ adm mmms si bk ’ . Au

am’gumucut su inml.i r to fl it’ omit’ alsos e g ust ’ s  that one or t hit’ other of I’ . (‘ I’ , must (se

infeasible . ~‘oiit radi c ’t iuig flit’ shortness of ’ P.

Uise II, P, i~ parniutable amid P, — P,.

In t i t u s ,,‘ as~’ , ss t~ t i . is e front Lemma 2 that a~ amid b~, has c’ opposite signs , hence
antI .t~ do .is ss’ell. ~m i ,irgumnent similar to that g is en eai’lier sltosvs that omit’ of

~
‘ P 1 , P 1 I , .mii d 1 P. must be mitt easibit’. again comit radict ing tilt ’ short ness of P, . 

V

(a~~ Ill, P1 is j~rmutable ~nd P~, P1.

Let 1 4 he f lit’ in itial suibpath of P, w iiicii terminates at \ ,  amid let P~ be the fimial

sitispath of P. w h ich om’igmui ate s .t t x Iso that P~ = P4 P~ ~ . lii t h is case , it eaii be

it that P1 P1 is .itlmnmssibie , that omit’ of P~ P~ L. I’ P~ P 1 is adnussibk, amid thmt

omw of t tit ’st’ t im ret’ p.m f i t s  mnt m st  be ~u fc’as mls le , l’he shortness of ’ P u~ f bus once again

tout radit’It’tI.
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The’orenu. Let G be a closed graph for S. Then S is satisfiable if’ and only it ’ G has no
simple infeasible loop.

~~: It follows t’rom Lemma I that , if G has a simple , infeasible loop, S must be unsatis-
fiabk. Conversely. suppose G has no such loop. We will show that S is satisf Iable
by constructing a solution.

Let v i , .. . , v, be the variables of S other than v 0. We construct a sequence 

~ of reals and a sequence G0. G i , . . . ,  Gr ot’ graphs inductively as
t’ollows:

t I )  Let 
~ 

= 0 and G0 = G.

2) Suppose 
~ 

and have been determined for 0 ~ i <j ~ r. Let
sup~ = min~ d~IP is an admissible path from vj to v0 in G~_ 1 and a~ > o}
int~ = max 1d~IP is an admissible path from v0 to Vj in G~,,1 and b~ < o}’ .
(where it is understood that minQ = and maxO = ~~e). Then let be any
value in the interval (inf~. sup,I. (We show momentarily that int ~ sup~.)
Let G~ he obtained from G~_ 1 by adding two new edges from V

3 
to

labeled ~ and v~ ~ ~~~~, respectively.

To ensure that the Q~’s and G~’s are well detined, we mtust show that , for

I ~ 
j ~ r, inf~ ~ sup~. It will then remain to show that the ~ ‘s do indeed give a

solution for S.

We need the following claim:

claim. (i) For 1 ~ 
j ~ r, int~ ~ sup,~

- 
~: (ii) For 0 ~ 

j ~ r, has no infeasible simp le loops.

pj: By induction on j .

Basis. j = 0.
In this case. (i) holds vacuously, and (ii) holds since U0 = G.

induction Step. 0 < j ~ r.

For tO . suppose, to t he contra ry, that int’i > sup~. Then in G,_ 1 admissible
paths P1 . P, exist from s’~ to v~ and v~ to v0. respectively, with b~1 < 0.

13
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ap , > 0, and d~1 > d~2 . By Lenima 2, P1 P, is an admissible loop, and by

Lemma 7, P1 P, is infeasible. By Lemimi S . then. ~~~~~_ has a simple int ’easilsle
loop, contradicting Iii ) of’ th e  induc tion hypo thesis.

For (ii ) . suppose G~ has an infeasib le simple loop P. Sinct’ G~_ 1 has no

such loop, and simice the loop t’ormed by the two new edges added to G3_ ~ to
obtain is not infeasible. P for its reverse ) must be of ’ the f ’orm P’E, where L
is one of’ the two new edges (say the one labeled v 1 ~ ~~: the other case is
handled similarly ), and P is a patti t’rom s o to v~ in G~_ 1 . But then, by

Lemma 7. d~ > d~ V~, con t radic ting s~ > inf~ ~ d~~. (Note that h~ . < 0

from the admissibility of P’E.)

Q. F , D.

It now remains to shovv that the ~ ‘s sat isfy S. So let ax + Isy ~ c he an ineqtm ality
of’ S. ~Ve claim tha t a~ + h~ ~ c. We treat the case in which a > 0 and h < 0~ the

other cases are argued similarly. Let E be the edge labeled ax + by ~ c in Cr~ 
Then.

where I’~ is the edge labeled ~ ~ x in (
~ , and E~ is the one labeled y ~ ~~ . F~ EL ,

t’ormn s an admissible hoop. ‘flit’ residue of this 1oop is

(0, _ I , — * (a, b, c > * ( I , 0 , P) (0 , 0, _a~~_ h~~+c )

Since, by the claim proved above, and by Lemma 8, G~ has no infeasible ioops From

to s’0. we have —a~ —h~ + c >0. Thus a~ + h~ ~ c as required.
Q,L.I).
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