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ABSTRACT

V. Pratt [18] has shown that the real and integer feasibility of sets of linear inequali-
ties of the form x <y + c can be decided quickly by examining the loops in certain graphs.
We generalize Pratt’s method, first to real feasibility of inequalities in two variables and
arbitrary coefficients, and uliimately to real feasibility of arbitrary sets of linear inequali-
ties. The method is well suited to applications in program verification.
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1. Introduction

Procedures for deciding whether a given set of linear inequalities has solutions often
play an important role in deductive systems for program verification. Array bounds
checks and tests on index variables are but two of the many common programming con-
structs that give rise to tormulas involving inequalities. A number of approaches have
been used to decide the teasibility of sets of inequalities [ 2.7.8.14.21], ranging from goal-
driven rewriting mechanisms [25] to the powerful simplex techniques [7] of linear pro-

gramming. Some simple methods are well suited to the small, trivial problems that most

often arise, but are insufficiently general. Full-scale simplex techniques, on the other hand.

are general and fast for medium to large problems, but do not take advantage of the trivial

structure of the small problems encountered most frequently.

The algorithm presented here retains the generality needed in the exceptional case,
without sacrifice of speed and simplicity in the more typical situation. It builds on
V. Pratt’s observation [18,16] that most of the inequalities that arise from verification
conditions are of the form x < y + ¢, where x and y are variables and ¢ is a constant.
Pratt showed that a conjunction of such inequalities can be decided quickly by examining
the loops of a graph constructed from the inequalities of the conjunction. We generalize
this approach, first to inequalities with no more than two variables and with arbitrary
coefficients, and then to arbitrary linear inequalities. Our generalization reduces to Pratt’s

test for inputs having the simple structure he describes.

The discussion is presented in six sections. Sections 2 and 3 are concerned with pre-
liminary definitions and with a statement of the method for inequalities with two vari-
ables and arbitrary coefficients. Section 4 discusses issues of complexity and usefulness
for integer problems, and relates the method to Pratt’s. Sections 5 and 6 deal with the
extension of the method to sets having strict inequalities and to sets with arbitrary linear

inequalities. The last section presents a proot of the theorem that underlies the method.




2.  Definitions

Let S be a set of linear inequalities each of whose members can be written in the
form ax + by < ¢, where X, y are real variables and a, b, ¢ are reals. Without loss of
generality, we require that all variables appearing in S other than a special variable Vo»
called the zero variable, have nonzero coefficients, We also assume that v, appears only

with coetticient zero.

Construct an undirected multi-graph G trom S as tollows. Give G a vertex tor each
variable occurring in S and an edge tor each inequality. Let the edge associated with an
inequality ax + by < ¢ connect the vertex for X with the vertex for y. Label each vertex
with its associated variable® and each edge with its associated inequality. G is said to be

the graph for S.

Now let P be a path through G, given by a sequence Vis Ygs o ooy Voo, OF vertices
and a sequence e, e,, ..., e of edges, n > 1. The triple sequence tor P is given by:
@, b, 6% Cag, by 050 .., 0., b,,0)

where for each i, | S i< n, av, +bv,, | < is the inequality labeling e,.** P is admis-
sible if, for | <i<n-1,b and a,, have opposite signs; i.c., one is strictly positive and
the other is negative.

Intuitively, admissible paths correspond to sequences of inequalities that form tran-
sitivity chains. For example, the sequence X <y, y <z, z < 3 gives rise to an admissible

path, as does
2Xx23y-4,2y>2d-2,-2>x
Note that the sequence:

-

XSy. vz, -2

*In what follows, it is notationally convenient to write v tor both the variable v and the vertex asso-
ciated with that varable.
**In the case where v, and vi,, happen to be identical (i.e., ¢; is a self-loop), an arbitrary choice is
made as to the ordering of the first two components of the associated triple.




cannot label an admissible path, since the coefficients of z have the wrong relative

signs.

A path is a loop if its first and last vertices are identical. A loop is simpie if its

intermediate vertices are distinct.

Note that the reverse of an admissible loop is always admissible, and that the cychic
permutations ot a loop P are admissible if and only if a, and b are of opposite sign,

where (a, . b, . c,> vouta b, cn) is the triple sequence tor P. In this case, we say P is

n' n
permutable. Note also that, since v, appears in S only with coefficient 0, no admissible

loop with initial vertex v, is permutable.

Now define, tor a given admissible path P, the residue inequality of P as the inequality

obtained from P by applying transitivity to the inequalities labeling its edges. For example,

if the inequalities along P are
xSyt yS2-32, -z w
we have:
XS+ I S22-3D+1S2(2+3w+ 1 =0ow+Ss

The residue inequality of P is thus X - 6w < 3.

More formally. define the residue ry of P as the triple Qp. by, cp) given by:

P
Gap, bp. cp) = (ap, by, o) * (ay, by, e » oo w oy, by )
where Ca;. byocp) QA by is the triple sequence for P and where * is the binary

operation on triples defined by:
(a. b, & * (a', b, ¢ = (kaa', -kbb’, k(ca’' = ¢'bY
al

and Kk = T;-]-

The residue inequality of P is then given by apX + bpy = ¢p, where X and y are the first

and last vertices, respectively, of P.




1t is straightforward to show that * is assoctative, so that rp is in fact uniquely defined.
T'he 1dea that the residue inequality of a path is implied by the inequalities labeling the path

is expressed in the tollowing lemma:

Lemma 1. Any point (i.e., assignment of reals to variables) that satisties the inequalities

labeling an admissible path P also satisfies the residue inequality of P. i

Pr. Straighttorward by induction on the length ot P. .

3. Procedure for Inequalities with Two Variables

In the case where P is a loop with initial vertex, say, X, Lemma | asserts that any §

point satistying the inequalities along P must also satisty apX + bp\ < Cp- If it happens
that ap + bp = 0 and ¢p < 0, the residue inequality of P is false, and we say that P is an
infeasible loop.

It follows that a set S of inequalities is unsatistiable it the graph G for S has an
infeasible loop. The converse, however, does not hold in general. Figure 1, for example,

shows the graph for S = {.\ Sy.XxtysSl.zsx,wsz,z< 1 +w,z2 ‘:}. Although

| S is unsatistiable, the graph has no infeasible loops, simple or otherwise.

Yo

FIGURE1 GRAPHGFORS={xsy 2x+ystl zuxwsz zsw+ 1, 22%




The gist of our main theorem is that G can be moditied to obtain a graph G’ that

has an infeasible simple foop if and only if S is unsatisfiable:

Detinition: Let G be the graph for S. Obtain a closure G’ of G by adding, for cach ‘
simple admissible loop P (modulo permutation and reversal) of G a new edge

labelled with the residue inequality of P. i

Note that closures are not necessarily unique, since the initial vertex of each permutable

loop can be chosen arbitrarily.

Theorem: S is unsatistiable it and only if G' has an infeasible simple loop.

Figure 2 shows the unique closure of the graph of Figure 1. Note that the only loop
of G contributing an edge to G' is the xyx loop. The voXzv, loop of G’ is infeasible (hav-

ing residue (0, 0, =1/3)): hence the example S, according to the theorem, must be unsatistiable.

s wt !
2x +y < 1

FIGURE 2 CLOSURE OF G

We show later that any cyclic permutation of an infeasible permutable loop is itself

infeasible, and that the reverse of an infeasible loop is also infeasible. We thus have the

following decision procedure for satistiability of S:




(1) The sumple admissible loops of G are enumerated modulo cychie permutation
and reversal, and their residues are computed. It any loops are tound to be

infeasible, S s unsatistiable.

(M Otherwise. the closure of G tormed by adding a new edee tor cach restdue
mequahity.  The residues of all newly tormed simple admissible loops are now
computed. I any are found to be infeasible, S is unsatistiable. Otherwise S

has solutions.

Note that this procedure, as stated, does not actually construct a solution it S 1s

-

teasible. The prootf of the main theorem, given in Section 7, provides such a construction.

Note also that the new admissible loops tormed in (2) must have mmtial vertex v, .
A

4. Efficiency and Other Issues

Any implementation of the procedure must, of course, incorporate some means ot
generating the simple loops of a graph. For this purpose, several algorithms exist
(Johnson [13). Read and Tarjan [19], Szwarctiter and Lauer [23]) that operate i tume
order WIVE+ TED, and space order VI + [EL where U as the number of loops generated.
These algorithms are eastly moditied to generate only admussible loops without adversely
aftecting effictency.  Since each loop has length on the order ot 1V 1 these algonthms
require little more time than that needed tor output. A graph may. of course, have quite
a few simple loops — exponentially many tin 'ED] i tact, in the worst case. One can
show that the procedure we have described, hike the simplex method, exhibits exponential

worst-case asvmptotic behavior.

In practice, however, one Jdoes not encounter such behavior.  The sets of mequalities
that arise from veritication conditions usually have the torm ot transitivity chains.  The
corresponding graphs are treelike, seldom having more than a tew loops. Most of the
loops that do occur are 2-loops, which are casily tested at the time the graph is

constructed.

V. Pratt [ 18] has noted that these sets often fall within what he has termed
separation theorv. All the inequalities of such sets are of the torm v sy + ¢ The
residue of a loop whose labeling inequalities are of ths form s given by one of

o=1omd =1, 1, m), where mis the sum of the constants ¢ around the loop. The graph

O

T —



for & set S separation theory is thus its own closure, so the main theorem of the last

section reduces, in this case, to Pratt’s observation that such a set S s infeasibie 1 and
only 1t the sum of the constants around some simple foop s negative.  Pratt notes that
this condition can be tested in order CIVE+ TEDY time by taking a max + transitive
closure of the incidence matny of the graph. In practice, however, it may be more etfi-

ctent to generate loops using one of the algonthms mentioned carlier.

Note that a set of inequalities in separation theory with integer constants is integer
feasible if and only it it is real teasible. While the main theorem theretore decides integer
feastbility in thas case, it cannot decide integer feasibility in general. 1t has been observed
(211, however, that the transtormations Bledsoe [ 3] describes tor reducing tormulas
imteger antthmetic to sets of inequalities tends o produce sets that are mteger feasible it
and only if they are real teasible. The main theorem thus provides a usetul, but not com-

plete, test for integer feasibihity.

5. Strict Inequalities i

The procedure is trivially generalized to handle strict mequalities (e, inequalities ot

the torm ax + by <C ). Let an admissible 1oop be seric if one or more of its edaes s
labeled with a strict inequality. A strict loop P owith residue g, by, Cpl s nfeasible i
ap by =0and ¢y = O. It the definition of closure s now moditied in such a way that

new edges ansing from strict loops are labeled with strict inequalities, the main theorem

still holds. 4

6. Extension to Arbitrary Sets of lnequalities

The method can be turther generalized to sets of mequalities with arbitrary coeffi-

clents and arbitrary numbers ot vanables,

The basic idea is illustrated by the tollowing example. Consider the set
S={\\_\._\--\.'.1t;'\-—\+1,\>.‘} .

Note that the inequality z sy = X + | has three variables. As shown in Figure 3, we

choose two of the three (say 2z and v) as the endpoints of the edge corresponding to this




inequality in the graph G for S. The term (=X + 1) becomes the “constant” of this

inequality. The residue of the only simple loop \y z ¥) is given by
(L, =1, 0 « <L, =1, =x+ 1D
and is computed “symbolically™ to obtain (1, =1, -x + 1>, Note that ths loop 1s

infeasible unless =x + 1 2 0. If the residue inequality =x + 1 2 0 is now added to the

graph. an infeasible simple loop (vyxv,y) results, thus making S unsatistiable.

2Ny -x+

J
”
'

sy

FIGURE 3 GRAPHGFOR |x sy ysz zsy-x+1 x22|

We now describe the procedure for an arbitrary set S, We assume that the variables
of S other than v, are ordered in some way. Each variable that is the lowest or second
lowest ranked variable in every inequality in which it appears is said to be a prinwry
yariable. We adopt the convention that the edge corresponding to a given inequality 1s
always attached to the two nodes corresponding to its primary variables. [t it has only one
primary variable. one end is attached to v, and if it has no primary variables, both ends

are attached to vy, The procedure is as follows:

(1) Compute a closure G’ of the graph G for S as usual, evaluating residues “sym-=
bolically™ as in the example. 1 G has an infeasible loop. terminate returning
“unsatistiable.”™ Otherwise, i all the vanables of S are primary. ternunate

returning satisfiable.”

(2) Otherwise. repoat the procedure using the set of residue inequalities of G in

place of S.

8




Note that the procedure must terminate since the number of non-primary variables must
decrease each iteration. One can prove as an extension of the main theorem that the gen-

eral procedure is complete as well as sound.

R. Turj;m* has observed that any set of inequalities can be polynomially transformed
to one with no more than three variables per inequality through the addition of new vari-
ables. The inequality w + x + y + z < |, for example, is replaced by w + x S v. w+ x 2 v,
v+y+2< 1. For sets with inequalities having no more than three variables, only two
iterations of the procedure are ever required. There does not seem to be any fast way to

transtorm a set of inequalities to one having inequalitics with no more than two variables.

7. Proof of the Main Theorem

It follows from Lemma 1| and from the definition of closure that a set S of inequali-
ties (each having no more than two variables) is satisfiable if and only if S’ is unsatisfiable,
where S’ labels the edges of a closure of the graph for S. If we define a closed graph as

one that is a closure of itself, the main theorem can thus be restated as follows:

Theorem: 1f G is a closed graph for S, then S is satisfiable if and only if G has no

infeasible simple loop.

The proof of the theorem requires a number of technical lemmas. Proofs are omitted for

the more trivial of these.
Notation: Where P and Q are paths, let PQ denote the concatenation of P with Q.

Lemma 2. If P and Q are admissible paths, then PQ is admissible if and only if bQ and

ap are of opposite sign.

Notation: Let T =(a, b, ¢) be a triple of reals. Then T denotes the triple <b, a, ¢).

~

Lemma 3. 1f T T, are triples, T, » T, = (fz * ?,)
Corrollary 4. 1f Q is the reverse of an admissible path P, then rp = r(; 3

Corollary 5. The reverse of an infeasible loop is itself infeasible.

W g
Private Communication. 9




Lemma 0, Any permutation ot an infeasible permutable loop is infeasible.

Pr. Say P s infeasible and P’ is a permutation of P Then there are paths Q and R such

that P = QR and P’ = RQ. Thus,

rp ™ ‘k*‘g)“a ; -kl\Ql\R‘ k\c“,ak - thQ )

and
- LN : = _} oDie I A \
pe = Kagag. -Kbp by, Kicgay = cobg?
S Q
where kK = = and K" = —= . Note that by admissibility of P and P, both ay and
fag ! lag | R

ag AT NONZETO. By infeasibility of P, a, 4% h‘)l\R =0 and kt\UaR \RI\Q\ < 0.

\‘Q hR hQ :
ag e ‘Rl‘o <
“Q
o l\R
Wb e Gy ) 0
4
o hQ . ‘
g = < 0 (since ag and by, have opposite signs)
a Q
Q
e (\‘RAIQ - ¢g l\R\ < 0
Recalling that Ao - l\Q bg = 0, we thus have that P'is inteasible

Q.E.D.

: ; a W L - .
Notation: Where u, v, w are reals, let u < v mean that u < vitw 2 0 and u > vt w < 0.

Cy

Derinition: Where P s an admissible path, the discriminant d ot P s given by

ap t bl‘

Note that an inteasible loop is one with discniminant -oo,

Y




a
" : ’ e 0
Lemma 7. 1t PQ is an admissible loop from v to v, then PQ is infeasible it d, ™ d,

Ay

il dy < dQ

Notation: In the following, let <ay, by, ¢y Gy, byoey) tay, by oo and Sag, by, ¢,

respectively, denote the residues of P, Py, P, and P.
\ 1 3 R)

Lemma 8. 1t G is closed and has an infeasible loop from v, to v, G has an infeasible

simple loop.

Pr. Let P be a shortest infeasible loop from v to v, in G. If P is simple, we are done.
Otherwise, since, by admissibility, the intermediate vertices ot P are distinet from v,

P can be expressed P, P, P,. where P, is simple. We claim that P, is also inteasible.
¥ 15253 2 2

Suppose not. Then either a, + b, =0 and ¢, 2 0, or dp | is finite. In the for-
mer case, a, and b, have opposite signs. [t tollows from Lemma 2 that by and a,

must as well, hence P\ Py is admissible. Now since

A,
o,y = 0.0y, Cpd % Cay, by eyl = ] €0, =b by, cpay = b
we have:
Ciiy =0, h( Cy ay I\
d = —— e o — ) {, =— +d
L -b, b, b, B T B, )

Since P s infeasible, we have from Lemma 7 that

Oy a,
— +dp. > d
h‘ Pl P.‘

Thus,

eyt b:d,.‘ < bydp, (sinee ay and by have opposite signs)




% “:"l‘, < hld".\ (singce ¢y 2 0)

b,
-

a dpl -~ \lp]

a
\
'. d,.‘ > G,.} (since b, and ay are ot opposite sign),

But then P Py s infeasible by Lemma 2, contradicting our assumption that P is the

shortest such loop.

Now it dp, s fimite, the closedness ot G provides that some vertex x on P,
must be connected to v via an edge Folabeled ax = ¢, where ¢ ais the discriminant

of some cychic permutation Py (possibly = P,y ot Py. We now have three cases:

Case I P, is not permutable.

Then P, = P, a=a, +b,, ¢ =0, 2nd by Lemma 2, a, and b, are of the same
sign. - Also, a must be ot this sign: hence both P E and EPy are admuissible. An
argument similar to the one above gives that one or the other ot Py B, EP, must be

infeasible, contradicting the shortness ot P.

Case 1l P, is permutable and P, = P,.

In this case, we have from Lemma 2 that a, and b, have opposite signs: hence b,
and ay do as well. An argument similar to that given earlier shows that one ot

P, P, P E,aad EP, must be inteasible, again contradicting the shortness ot P,.
¥y Ty 2 8 L 2

Case L. P, is permutable and P, = P,.

Let P, be the imitial subpath of Py which terminates at x, and let Py be the final
subpath of P, which originates at x (so that Py = P, Ps ). In this case, it can be
shown that P Pas admissible, that one of PP ECEPP, s admussible, and that
one of these three paths must be infeasible.  The shortness of P is thus once again

contradicted.
Q.L.D.




Theorem. Let G be a closed graph for S. Then S is satistiable if and only if G has no

simple infeasible loop.

Pf. It follows from Lemma [ that, if G has a simple, infeasible loop, S must be unsatis-
fiable. Conversely, suppose G has no such loop. We will show that S is satisfiable

by constructing a solution.

Let v,, ..., v, be the variables of S other than v,. We construct a sequence
?0, ‘\"l ..... 9: of reals and a sequence G, Gl v+« « G, of graphs inductively as
follows:

(1) Let GO =0 and GO =G.

(2) Suppose ?‘i and G, have been determined for 0 < i <j <r. Let
sup; = min{ dPlP is an admissible path from v; to v, in Gj~l and a, > 0}.
inf; = max {dPlP is an admissible path from v, to v; in G;_, and b, < 0}.
(where it is understood that min@ = oo and max() = -). Then let VJ. be any
value in the interval [infj. supj]. (We show momentarily that int‘j < supj.)
Let G,' be obtained from Gj_l by adding two new edges from v; to vy,
labeled v; < Gj and v; > Vj. respectively.

J

1<j<r, infj < sup;. It will then remain to show that the ¥

To ensure that the ¢.'s and Gj'x are well defined, we must show that, tor

)

i's do indeed give a

solution for S.
We need the following claim:
Claim. (i) Forl <j<rr, infj < sup;
(i) ForO<j<r, G). has no infeasible simple loops.
Pf. By induction on j.
Basis. j = 0.
In this case, (i) holds vacuously, and (ii) holds since G, = G.

Induction Step. 0 <j<r.

For (i), suppose, to the contrary, that infj e sup;. Then in Gj~| admissible

paths P, . P2 exist from v, to Y; and v; to v, respectively, with bp‘ <0,

13




ap, > 0.and dp > dp,. By Lemma 2, P, P, is an admissible loop. and by

Lemma 7, P, P, is infeasible. By Lemma 8, then, G,_, has a simple infeasible

loop, contradicting (ii) of the induction hypothesis.

For (ii), suppose Gj has an infeasible simple loop P. Since Gj_‘ has no
such loop, and since the loop formed by the two new edges added to (;,'-1 to
obtain Gj. is not infeasible, P (or its reverse) must be of the form P'E, where E
is one of the two new edges (say the one labeled Vi < \7].; the other case is
handled similarly), and P’ is a path from v, to Vi in Gj_l. But then, by
Lemma 7, dy. > d; = ?j. contradicting ?'J. > infj 2 dp.. (Note that by, <0

from the admissibility of P'E.)
Q.E.D.

It now remains to show that the V’j's satisty S. So let ax + by < ¢ be an inequality
of S. We claim that al + by < c¢. We treat the case in which a > 0 and b < 0; the
other cases are argued similarly. Let E be the edge labeled ax + by < ¢ in G.. Then,
where E, is the edge labeled R<xin G,, and E, is the one labeled y < V. E, EE,

forms an admissible loop. The residue of this loop is
(0, =1, =0 * Ca, b, o) * (1,0, =<0,0, -ak - by + 0

Since, by the claim proved above, and by Lemma 8, G, has no infeasible loops from
Vo 10 v,. we have —aX =by + ¢ > 0. Thus al + by < ¢ as required.
Q.E.D.
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