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FOREWORD

This technical report is being issued under the Control Systems
Development Branch, Flight Control Division, Air Force Flight Dynamics
Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson
Air Force Base, Ohio, under Project 2403, "Flight Control," Task 240302,
"Flight Control Systems Development.'" This report was a dissertation
prepared by Ernest F. Moore, M. S., Lt Colonel, USAF, and presented to the
Faculty of the School of Engineering of the Air Force Institute of Technology
in partial fulfillment of the requirements for the degree of Doctor of
Philosophy.

This dissertation 1is part of a sequence of studies being conducted
at the Alr Force Institute of Technology to build a sound technology
base concerning the propagation of signals in fluid transmission lines.
The central objective of this dissertation was to develop the frequency
and transient response of transmission lines of arbitrary cross section
carrying fully developed laminar or turbulent mean flow of a compressible
or incompressible fluid.

A legacy of many computer programs and large quantities of data,
much too voluminous for inclusion in this work, has been organized and
bound for the convenience and use of the next AFIT student who desires
to continue this endeavor. It is safe to say that the solution of one
problem surfaces at least two more, so that the quest is not ended with
this work.

There are many people to thank. Captains G. R. Farney and J. D.
Vining, who provided much of the additional experimental data needed to

verify the models, and who worked closely with me in developing some of

iii




the computer programs, deserve special thanks. I wish to thank the
members of the AFIT Research Advisory Committee, composed of Dr. M. E.
Franke, Dr. A. J. Shine, Dr. C. H. Houpis, Major J. T. Karam, Jr., and
1Lt. R. Merz for their guidance. Special thanks are extended to the
chairman, Dr. Franke, for his patience and encouragement, and for the

sound advice given throughout this work.
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THE SMALL-SIGNAL RESPONSE OF FLUID TRANSMISSION LINES

INCLUDING DEVELOPED MEAN FLOW EFFECTS

I. Introduction

Background

The propagation of small signals through ducts or lines filled
with a fluid has been of %interest to scientists and engineers for some
time. With the advent of fluidics and fluerics in the late 1950's and
up to the present time, many investigations have been completed, both
analytically and experimentally, in order to predict and measure the
parameters governing small signal propagation.

The modeling of fluid-filled transmission lines has progressed
from the basic lossless line model, to the line whose losses might be
called linear with mean velocity, to the present frequency-dependent
friction models. Solutions have been obtained in the frequency domain
for lines of circular and rectangular cross section, as these cross
sections are commonly found in fluid systems. For the fluid-filled
circular line, the transient response to small amplitude impulse and
step inputs has been obtained in various forms.

Recently, investigations have been carried out and models
developed to determine and to describe the response of liquid-filled
circular lines to oscillatory inputs, where the inputs are superimposed

on a steady developed flow, and where the steady developed flow may be
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either laminar or fully turbulent. A limited amount of experimental

data has provided some degree of credence to these models.

Problem Description

During the literature search preceding this work, it appeared
that a majority of the investigations were very specialired and that
an effort to synthesize the results obtained by others was in order.
Much of the previocus work relating to transient response in the time
domain, and to combined oscillatory and steady developed flow, was
restricted to liquid-filled circular lines.

A solution for the small-signal response of fluid lines of
concentric annular cross section appeared to be a useful first step in
synthesizing and expanding the applicability of transmission line
modeling. Since the annular line includes the circular line as a
special case (when the inside radius is equal to zero) and approaches
the parallel plate configuration in its other extreme, a solution was
first obtained for this 1line.

In studving the solutions available for circular and rectangular
lines as well as the solution for annular lines given herein, it appeared
that a method of expressing the frequency dependent response of lines of
arbitrary cross section in terms of only the circular line might be
developed. Through the use of the various analogies between electrical
transmission line theory and fluid dvmamics, and in particular bv

constructing and analyzing the equivalent electrical circuit of a

generalized fluid transmission line, such a method was found.
It followed that if the frequency dependence of a line of ¢

arbitrary cross section could be expressed in terms of an equivalent
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circular line, then: (1) The small signal transient (time domain)
response of lines of arbitrary noncircular cross section might be found,
since this response is known for circular lines; (2) The characteristic
impedance of lines of noncircular cross section may be expressed in
terms of equivalent circular lines; consequently, impedance matching of
lines of different cross section may be possible; (3) The computer
modeling of all lines of any cross section in a fluid system might be
reduced to modeling the equivalent circular lipes; (4) A method of
determining the small signal response of fluid lines of arbitrary cross
section, carrying fully developed mean flow might be found.

All of these possibilities were investigated and the associated
problems were solved, subject to the restrictions specified herein. It
is noted that where possible the simplest model achievable is used, in
accord with Oldenberger's observation that only those models which are
reasonably uncomplicated find wide use. This observation is particularly
appropriate to fluid systems, which generally contain a myriad of
components and lines, some of which are usually noncircular in cross

section.

Organization and Contents

Since this work covers a rather broad range of transmission line
problems, specific background information and references will be
introduced as appropriate. TFurther, where specific examples are deemed
necessary, these will be given in terms of the more common rectangular
and annular cross sections for which a relatively larger body of
technical reference méterial exists. Lengthy mathematical details which

are of minor import in understanding the varicus developments, as well
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as certain examples and error analyses, have been relegated to the

appendices.

In Section II, the exact theory describing the small-signal
response of fluid transmission lines of annular cross section is
presented. The results are compared with those obtained by others for
circular and rectangular lines. Thus, Section II serves alsc as an
introduction to the synthesis of results applicable to circular and
noncircular lines. High and low frequency approximations are developed
for the annular line, and experimental results are presented which
confirm the theory.

In Section III, a characteristic frequency and corresponding
characteristic radius are determined, which allow the frequency response

of noncircular lines to be presented in terms of equivalent circular

lines. The results are compared with those previously obtained for
rectangular and annular lines by using the classical hydraulic radius
together with circular line theory. The results predicted using the
characteristic radius and circular line theory are shown to be clearly
superior to the results predicted using the classical hvdraulic radius

and circular line theory. However, the hvdraulic radius may be adjusted

to allow its use in the circular line theorv. A concept of impedance

e

matching is also developed in Section III.

fany practical problems are more concerned with the time domain

E—
-
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response of transmission lines. In Section IV, the results of others, !

48

which describe the impulse and unit step response of circular lines

only, are adapted to lines of noncircular cross section and also

compared with existing experimental data.




Section V is devoted to the simplification and synthesis of
results describing the combination of steady developed turbulent mean
flow, and laminar oscillatory flow produced by a small sinusoidal
pressure input signal. The solutions are extended to include lines
of noncircular cross section.

In Section VI, the frequency domain results of Section V are
transposed into the time domain, and the varioﬁs combinations of
downstream pressure and flow response to upstream step inputs of
pressure or flow are presented.

In Section VII, the last section of this work,a summary of the

conclusions and recommendations is presented.




II. The Small-Signal Response of Annular
Fluid Transmission Lines

‘ntroduction
The small-signal frequency response of fluid transmission line
of circular cross section has been obtained in various forms [1-3]3.

Nichols [3] expressed the results in a manner similar to that used for

a
[
17

ctrical transmission lines. Schaedel [4] followed closely the
approach used by Nichols and obtained the response for lines of
rectangular cross sectioen. In both of these studies, a distributed
parameter line model was developed and results were obtained for the
impedance, admittance, propagation coperator and characteristic impedance
of the line.

There are a number of applications, such as aircraft pitot-static
svstems, hydraulic mining, and instrumentation, where annular lines are
used and the small signal frequency response characteristics are of
interest. The purpose of this section is to present the small-signal
response of rigid pneumatic transmission lines of annular cross section,
Figure 1. The analytical approach taken is similar to that used by
Nichels [3] and Schaedel [4]. The detailed analytical develcopment is
presented in Appendix C. Finally, the annular line results will be

compared with those obtained for circular and rectangular lines.

INumbers in brackets designate Bibliography at end of dissertation.
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Frequency Response

Small Signal Equations and Solution.

The equations expressing

for lines of circular cross section:

equations is given in Appendix C.

conservation of mass, momentum, and energy for laminar small signal
oscillatory flow in a pneumatic line of annular cross section are

those used by Nichols [3] to obtain a frequency response solution

The development of these

-3 3pu)
ot 9z (1)
v 9 u su 1l 3P
s o —_— - — — o
r 9r [r ar] AT p 32 (2)
v 8. T
wapas M 3Th- 80 4 | ST lap @5
r dr ar at p p at

The dependent

variables are assumed to be of the following form

t

, T(r,2,t) =T+ T' =T + AT(r,z) e" (4)
u(r,z,t) = 0+ u' =0 + u(r,z) ewt (5)
P(z,t) = P + P' = P + AP(2) ej“’t (6)

where, for example, T is the average temperature and T' is the instanta-

neous temperature fluctuation.

equations (2) and (3) gives

3%u 1 du _ jwu _ 1 34P
ap? T ar v T vp 0z

8

Substitution of these variables into

(7




n——

a~er -
or~

AT _ jwdT _ _ judP
ol \’T DCp\)T

1l 9
Fah | (8)

Assuming isothermal walls and zero velocity at the walls, the boundary

conditions for the annular line are

AT = 0, u

[
o

at

=
"
"y

i (9)

o

0 at r

AT = 0, u b (10)

The momentum and energy equations are thus identical in form, and
the solutions for the dimensionless velocity and temperature profiles

are Bessel functions of zero order.

3 1
_.Jli‘_‘%_ = 1+ BJp 1‘-\& rj¢| + DKg ‘{%rj'*‘) (11)
Y

L1

(12)

pc AT 3
B 4EL. 2 {EL. 3
ap- = 1t B o ric |+ FKp v ]

The arbitrary coefficients (B,D,E, and F) obtained from the boundary

conditions are

T~




(14)

The coefficients E and [ of equation (12) are identical to B and D,
respectively, except v is replaced by vy in the arguments of the

Bessel functions.

Series Impedance of the Annular Line. The mass rate of flow at

the reference pressure P* is given by

To
p*Q = (pu) 2mrdr (15)

i

and by analogy to electrical transmission line theory

- 222 = g (16)

where Z is the frequency dependent series impedance per unit length,
AP is analogous to voltage and Q¥ is analogous to current.

Solving for (pu) from equation (11), performing the integration of

=)
v
peduetly, _2m (17)
4 A 2 jE
[y

10

equation (15), and using equation (16), an expression for 7 is obtained:

Rt

e g e




where

3 3
M=B vodl< @"032> - ria,( '{_-g‘rij2> +
! 1
- 4D roKl( {g?r°j2> - riK1< {E;rij2> (18)

Introducing the adiabatic inductance per unit length, La = p*/Ap,

equation (17) becomes,

Sl

2= Julg |1+ (19)

2™
3
421 2
An A3 3
where Z is shown to be frequency dependent.

Shunt Admittance of the Annular Line. From electrical transmission

line theory,
- 2
= Tar . (20)
where Y is the shunt admittance per unit length. Upon differentiating

equation (15) with respect to z, using equation (1), and substituting

into equation (20), Y becomes

To
3 20
Y-m[ at!‘d!‘ (21)
ri

a3t

e




It is shown in Appendix C that

2 . 3;5-5 By [—P—ap -3-1] (22)

ot pcp ot at

Introducing the complex time notation for 3P/3t and 3T/3t and using the

relation

equation (22) becomes

(v=1) p AT
a—" P—Y jwAP [1 + (y-1) - = P ] (24)

where Bp = 1/T for a perfect gas. Substituting for p cp AT/AP from

equation (12), equation (2u4) becomes

3p _ pE . w %
T Iy jwaP {1 - (y=1) | EJ 4 % rj +
I‘Ko< /{%r- rj )] (25)

Substituting equation (25) into equation (21) and performing the

N

indicated integration yields

Y = jucy |1+ 2n(1-y) N (26)

[ 3117%

[
A _J
n VT

12

.

e O T =

S e el e st




where

1 1
- JF [!'oKl( '{%'-I‘_ P°j2> - !‘iK1< '4%’1—: I‘ij2>J (27)

= the adiabatic capacitance per unit length. For an

ep Ag
yP®

ideal gas, Caz = Ap/yP%*. Tabulated Bessel functions of interest are

and Cg =

given in [5,6].

Equivalent Electrical Circuit. The series impedance and shunt

admittance may be expressed as

R + jwl (28)

3

-
"

G + juC (29)

where R,L,G, and C are the circuit parameters of resistance, inductance,
conductance, and capacitance, per unit length, respectively. The
equivalent circuit for a transmission line of dz length is shown in
Figure 2. The circuit parameters are all real numbers and are dependent
on the signal frequency, the cross-sectional area, and the radii of the
annular line through the expressions for Z and Y, equations (19) and (26).

Characteristic Impedance and Propagation Operator. Equations (16)

and (20) are used to obtain the governing differential equations for
pressure and flow. Differentiating equation (16) with respect to 2 and

using equation (20) gives

%y, zy(apr) (30)

3z2

13
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The general solution for the pressure is

aP & Cye T 3 gge TTE (31)
where ', the propagation operator, is defined as

F=v2Y¥ = a + j8 (32)
where a is the attenuation per unit length and B is the phase angle

increase per unit length. The solution for the volumetric flow is

Q=

(c,e‘rz s c2e+rz) (33)

S

where Zp, the characteristic impedance, is defined as
Z2p = Y2/Y = 1/Yp (34)

and Yy is the characteristic admittance.

The characteristic impedance and propagation operator are
generally complex quantities and are convenient for describing the
pressure and flow in the transmission line. An excellent review of
the significance and use of Zp and ' in various representations of
fluid lines for system analysis is given by Goodson and Leonard (7].

The phase velocity is
[V

= S e— = — 35

e )3 8 (3%8)

where ) is the wavelength and 8 increases 2m radians per wavelength.

The phase velocity ¢ is in general not equal to ca, the adiabatic

{ 15

e e




speed of sound. For a lossless line the characteristic admittance is

- _ A _ A
Yo = /Ca/l, = Sl (36)

and

= 00 Py 1
cg = 5 ° 4‘13; = = (37)

aCa
For a lossless line a = 0, thus
Ts = jBy = ju/ey (38)

Yo, defined in equation (3%), is normalized with respect to the

lossless line as follows:

1/2
> 2n(1l-y) N 2nM
Yo/Ysp = 1+ S 1+ T (39)
! w .5 [
Ap ;; J Ap S
The normalized propagation operator is
AL . Jlarje) (40)
Ts  Jw/cg
or upon rewriting equation (40),
-, -y & 42
3
w .
An ;; i
a cg/w + Jg calw = SN (3) (4l1)
1+
3
W .o
A =t -
— el v J =

.

e



[k

The propagation velocity ratio or wavelength ratio is

e s (42)

The neper attenuation in A,/2r distance is
a cg/w = a Ag/2n (u43)

To convert the attenuation from nepers tc the more common decibel,

the following equations are used:

(alg) db = ¥07m (logype) a cufw
= S54.575 o cgq/w db per ), (un)
(ad) db = 54.575 a/B db per A (us)

Characteristic Frequencies. Following Nichols [3] it is convenient

to define two characteristic frequencies which will aid in the
presentation of the results and facilitate comparison of the annular

line results with those obtained for circular and rectangular lines:

Wy = gnv = = 8v - = 08\) : (46)
A r 2 - pi? rgl(2-ri?)
8nvr wy,

mT = An = ;—5 (47)

where r* = r;/r, is defined as the annular radius ratio. The viscous

characteristic frequency w, is used to form the dimensionless frequency

17




ratio w/w, which is used in presenting the numerical results. Because
the characteristic frequency w, is defined to be proportional to the
ratio v/A, the frequency dependence of all sizes of annular lines of
the same radius ratio are represented by a single curve when the
results are plotted against w/wy,. This is analogous to the frequency
dependence of all sizes of circular lines and of rectangular lines of

the same aspect ratic when plotted against w/wy.

Numerical Results and Discussion

The numerical results were calculated on a CDC 6600 computer using
the standard properties of air at 80°F given in Table I. Flots are
given for frequency ratios w/w, from C.l to 1000 and annular radius

ratios of 0, 0.1, 0.5, and 0.S.

TABLE I

Properties of Air at S0°F [3]

P* 14,696 psia

o® 1.1017x10"7 1bg-sec®/in.*
vt 0.02u32 in.?2/sec

v 0.03435 in.%/sec

o 0.7080 dimensionless

Y 1.4017 dimensionless

ca 13,674 in./sec

£c 386.088 in./sect

|
Y
\
|




 r————— e

The influence of the frequency and radius ratio on annular line
performance is easily seen in Figures 3 through 6. The modulus of the
admittance ratio given by equation (39) is plotted in Figure 3 and the
phase angle of the characteristic admittance is plotted in Figure 4,

It can be seen that at high frequencies the magnitude of the character-
istic admittance approaches that of the lossless line, while the phase
angle approaches zero. At low frequencies the phase angle approaches

45 degrees. The propagation velocity ratio c/ca, or wavelength ratio,
A/Ag, equation (42), is plotted in Figure 5. TFor a given flow area and
frequency, the propagation velocity decreases with increasing radius
ratio. The db attenuation per line wavelength, equation (45), is
plotted in Figure 6. For given fluid properties, flow area, and
frequency, the attenuation per line wavelength increases with increasing
aspect ratio.

The circuit parameters R,G,L, and C are normalized with respect to
suitable reference values and the results plotted in Figures 7 through
10,

The ratio R/Ryp is plotted in Figure 7, where Ryy is the viscous
laminar steady flow (DC) resistance of the annular line, and is

defined in terms of r* [8].

-1

_ Bmu {142 | (48)
vn Anz l_x‘,}z In !"'y

Equations for determining the DC properties of circular, annular, and

rectangular lines are derived in Appendix A. As the frequency w approaches

zero, R approaches Ryp: however, Ryp is a good approximation for R when

=Y

Y 3 3
w/wy ¢ 1 for all r*. For the larger values of r" shown in Figure 7,

-

19




the range of applicability of the constant resistance model is extended
to higher values of w/wy.

Figure 8 shows the frequency dependence of L/Lg where L is the
adiabatic inductance. The tendency of the frequency dependent induct-
ance to approach its adiabatic value at high frequencies is clearly shown.
For low frequency ratios, say w/w, < 1, the inductance is primarily
dependent on r* and essentially independent of w/w,,. The value of L/Lg
at low frequency ratios varies between approximately 1.2 and 1.33,
depending on r¥*.

The ratios G/wgp Ca and C/C4 are plotted in Figures 9 and 1C. In
Figure 9 the conductance is shown to be essentially zero when w/w, < 1
for all r*. For values of w/w, > 10 the conductance increases
significantly. This increase is more pronounced at large values of ¥,

Figure 10 shows the general thermodynamic behavior of the model:

5 s
C__: _.!E—: l (ug)
Ca An n

Y& J

where y is the adiabatic exponent (approximately 1.4 for air at standard

conditions) and n is the polytropic expenent. At low frequencies
Y/n = 1.4; thus, n = 1, which is the isothermal exponent. At high i
frequencies y/n = 1.0, thus, n = y, the adiabatic expcnent. The process
is therefore isothermal at low frequencies and adiabatic at high
frequencies. As r* increases, the transition from isc;hermal to

' o

adiabatic behavior occurs at higher values of w/w,.

r
©
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In summary, at low frequencies the equivalent circuit, see
Figure 2, consists essentially of constant value elements of resistance,
inductance, and capacitance and no conductance. At high frequencies,
the inductance and capacitance approach their adiabatic values; however,
the resistance and conductance are very large and are strongly dependent

on frequency and radius ratio.

Comparison with Circular and Rectangular Lines

The results obtained for the annular line are now compared with
those obtained for circular and rectangular lines. The comparison is
made on the basis that the respective cross-sectional areas are equal.

Generally, the annular results approach those for circular lines
as the inner radius of the annulus approaches zero and the losses
attributable to the inner wall become small. It can be shown that the
circular line velocity and temperature profiles of Nichols [3] may be
obtained directly from equations (11l) and (12) for the special case of

the annular line with ri = 0. The Bessel function

1
. w <5
Ko < ‘\j; rij?

is infinite at the origin and ceases to be a solution in equations (1ll)

f and (22). Thus, when rj = 0, the constants D and F are identically
zero. Applying the boundary conditions of equation (10) at the outer
wall r = r, and obtaining new relationships for B and E leads to
Nichols' expressions for the velocity and temperature profiles. 1In

"

all of the figures the curves for r" = 0 are identical with those of

Nichols for circular lines.
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The annular results converge to those of Schaedel [4] for rectangular
lines as r* + 1. The comparison is made by defining an equivalent aspect
ratio for the annular line. The aspect ratio of the rectangular line is
defined here as ARp = b/h 2 1. For equal rectangular and annular flow

areas,
bh = m(ro®-ri®) = m{rotri)(ro-ri) (50)

where choosing b = m(rotrj) and h = rgo-rj, the annular aspect ratio is

defined as

m(rotr;) _on(14r®)

Since the annular line side walls of dimension h do not physically
exist and are not considered in the theory, greater losses are expected
in rectangular lines when compared to annular lines of the same area
and aspect ratio. However, as aspect ratio becomes large, the losses
attributable to the short walls of the rectangular line become small
compared to the losses con the long walls. Consequently, the results for
annular and rectangular lines converge with increasing aspect ratio.
Figure 11 is a comparison of the attenuation per unit wavelength (al)
of annular and rectangular lines where here w, is defined to correspond
to that used by Schaedel [4]); i.e., w, = 4v/A. Of interest is the
rather close agreement at moderately low aspect ratios. Agreement
within 10% is achieved for all frequency dependent properties when
AR 2 7 (r* 2 0.38). Thus, either model will give approximate predictions

of the performance of the other model when AR > 7.
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The differences in the circular, rectangular, and annular line
results for equal areas are due mainly to differences in the steady-
flow (DC) resistances. The differences in the DC resistances are
illustrated by the DC resistance ratios plotted in Figure 12. The
viscous resistance per unit length of circular lines is the classical

Hagen-Poiseuille flow resistance

RVC = ——? (52)

For equal flow areas Ap = A,

, -1
R\m = [l"’!‘*‘ 1 ] (53)

+
RVC l_r*Z 1n ¥

where Ryy is given by equation (48). The ratios Ryp/Ryc and Ryn/Ryp

are also given, where Ry, is the viscous resistance of rectangular lines

given by Schaedel [4]. The ratios Ryp/Ryc and Ryp/Ryo are nearly
linear functions of AR for AR >4. The convergence of Ry /Ry, to unity
for large AR is easily seen.

In summary, the small signal performance of annular lines has been
presented and includes the performance of circular lines as a special
case (r* =0). The small signal performance of annular and rectangular
lines converge with increasing aspect or radius ratio. Useful approxi-
mations of rectangular line performance may be made using the annular
line results at higher aspect ratios, or vice versa.

It is important to note that whereas the numerical results are

presented for air at 80°F, any other fluid could have been used. If
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the fluid is considered incompressible, the results are easily adapted,
and considerably simplified by assuming y = 1, and by taking the speed
of sound as ¢ = «EETE where Kg is the bulk modulus of the fluid. 1t is
noted that the shunt admittance, equation (26), becomes a pure
capacitance of constant value when vy = 1. The limitations given by

Iberall [1] apply to the annular line also:
ro-ri > %— (= 1.8x10"% inches, for air)
a

2

w < (= 7.7x10°% rad/sec, for air)

The annular line model, as well as the circular and rectangular models
of [3] and [4], respectively, are restricted to laminar flow.
Discrepancies are to be expected for turbulent mean flow conditions.

The case of turbulent mean flow is considered in Section V.

High and Low Frequency Approximations

Useful high and low frequency approximations of the system variables
are most readily obtained from analysis of the equivalent circuit
components in conjunction with the applicable Bessel function
approximations.

For the low frequency approximations (w/w,, << 1), the equivalent
circuit consists of the constant value elements Rvp» LVn‘ and C;, with
G; = 0. Here C; is the isothermal capacitance, Cj = YCaz. The low

frequency series impedance and shunt admittance are respectively,

ZLp

(54)

Gy + jwCi = jwyCay

Yig




Using the inequality van/Rvn << 1 and equations (34) and (54), the

low frequency characteristic admittance and propagation operator become

i
1]

C 5w
ALiit = Mo (1+9) (55)

2Rvy,

Ty = Y8 /%L, = a+ j§ = 4‘% RyCaw (1t5) (56)

It is seen that the phase lag £ is approximately numerically equal to

YOL

the attenuation a, and that the phase angle of the admittance is
approximately n/4 radians. For w/w, s 0.1, equations (55) and (56)
give T and Yy within one percent of the exact value, for all »*,
Expressions for Ryp and Ly, are derived in Appendix A.

The high frequency approximations are derived in Appendix B using
the standard asymptotic expansions of the Bessel functions [5,6],
along with other approximations. For w/w, >> 1, the inequalities,

R/wl << 1 and G/wC << 1, apply. The high frequency series impedance

and shunt admittance become

™o 2v =

B, ¥ Julag | 3 ¢ TR T B - JGRAL (57)
V. r I

Yg, = jeCag ;l & (135) —KE =ﬁ-[(r*—l) + j(r*+l)]2 (58)

The high frequency propagatior operator and characteristic admittance

become
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) 14w r— "

1 -
rH=“H*jSH=T[C—a'(1*I_l' vuw, + J = (59)

v
H G Ca
Yo, = I . = ;E)] . e (60)

It is of interest that the expression for ay in equation (59) for
annular lines iz identical to that obtained by Karam and Franke [9] for
circular lines for the special case r* = 0. The expression for fy is
identical to that given in [9]. It should therefore be possible to
obtain a solution in the time domain fer annular lines using Karam's
approach [19,20]. The frequency to time domain transformations for

circular, rectangular and annular lines are covered in Section 111.

Experimental Confirmation of Annular Theory

The experimental verification eof the annular line theory was the
primary purpose of a M.§. thesis completed by Captain G. R. Farney
at the Air Force Institute of Technology [10]. Farney measured the
small signal amplitude and phase shift frequency response of a blocked
anhular pneumatic transmission line at five different radius ratios.
The outer line was approximately three feet long and had an internal
diameter of 0.187 inches. The five radius ratios were achieved by
inserting and centering five different sized rods within the basic
line. Tarney obszerved that the experimental gains were within ¢ 1 db
and the phase shift angles within 115 degrees of those predicted by
the annular line theory. I'urther, the predicted analvtical results tell

within the measurement capability of the experimental instrumentationused,




A description of the experimental apparatus and test procedures used
is given in [10].

Additional equations are required to account for the sending and
receiving conditions. These are standard equations of electrical
transmission line theory, available in many references such as [11]
and are repeated herein for the convenience of the reader.

For a given line, the transfer pressure gain is ([12]:

A 2
= E£ cosh I't -~ 5= sinh I# (61)
s «0

where r and s denote sending and receiving locations and f is the
distance between these locations. The sending impedance is
Zy cosh TL + 23 sinh T2

B Zp cosh Tt + 2y sinh T8 ¥8%)

For a blocked line, the receiving impedance Zy is infinite, thus
2g = Zp coth It (63)

The phase lag angle between sender and receiver is

Imag (g)
= L
g4 = arctan Real (g (6u4)
The pressure gain, equation (61) converted to decibels, and the phase
lag angle, equation (64) in degrees, are plotted as functions of

excitation frequency in Figures 13, 14, and 15, for annular radius

ratios of 0.07, 0.23, and 0.67, vrespectively. The experimental data
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of Farney is also plotted. The sharp increase in phase angle shown
in the figures (approximately 720 degrees) is a plotting artifice to
conserve space and has no other significance. The ambient test

conditions at each radius ratio are given in Table II.

TABLE II

Ambient Test Conditions'

ot P(ambient) P(1line) i

(psia) (psig) (°r)
0.07 1k.50 5.01 79.0
v.23 l4.44 5.01 80.0
0.67 14,20 5.01 80.0

*The tabulated values were used to determine
the necessary mean properties of air.

As can be seen from the figures, the agreement between theory and

N it e =

experiment is excellent.
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III. Correlation of the Linear Response of Circular and
Noncircular Fluid Transmission Lines

In steady flow, it has been particularly useful to correlate the
resistances of lines of noncircular cross sections with the resistance
of circular lines through the classical hydraulic diameter. Similarly,
in oscillatory flow, it would appear useful to be able to correlate the
frequency response of noncircular lines to the response of circular
lines. Besides the comparisons made between rectangular and circular
lines [4] and between rectangular, annular and circular lines herein,
other attempts have been made to predict the response of rectangular
lines using the concept of the hydraulic diameter [13,14].

In this section, a dimensionless frequency is defined which leads
to a generalized presentation of the frequency dependent response of
lines of circular and noncircular cross section. The dimensionless
frequency in turn leads to a characteristic radius for the noncircular
line which is roughly analogous to the classical hydraulic radius used
in steady developed flow for noncircular lines. It is shown that the
frequency dependence of noncircular lines may be very closely approxi-
mated when the characteristic radius is used together with the circular
line theory of Nichols [3]). The results are compared with those
obtained by Healey and Carlson [13] for rectangular lines. In [13], the
classical hydraulic radius together with Nichols' theory was used to .
predict the response of rectangular lines. The response predicted
using the characteristic radius defined herein is shown to be clearly
superior to the response predicted using the hydraulic radius. Results

are presented for both rectangular and annular lines over a wide range
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of aspect and radius ratio, respectively. In addition, an approach to

impedance matching based on equivalent circular lines is presented.

Freguencv Response Solutions

Several dimensionless frequencies (or frequency ratios) have been
defined in order to present generalized frequency response solutions
for circular lines. Nichols [3] showed that the frequency response of
& circular line is a function of the dimensionless frequency ratio
w/wy, Where w is the angular excitation frequency and w, is a viscous

characteristic frequency defined as

wy T (65)

Ry is the laminar DC viscous resistance per unit line length and Ly is

the adiabatic inertance per unit line length. For any line, R, and Lg

are defined as

= i [ dl
RV - Q [ dZ] (66)
and
*
T %— (67)

For a circular line, Ry and w, become

g8nu

Ro. % (68)
Ve Acz
and
_ 8wy
Wy = ;:* (69)

43

T e —
B ~ et .




Other formulations of the dimensionless frequency have also been
defined for the circular line; for example, Brown et al. [15] used
8 = wr?/v = Bw/wy,, while Goldschmied [16] used SN = 4ur?/v = 32 w/Wyg .

In all of these cases, however, the dimensionless frequencies are

proportional to wA/v.

Schaedel [4] showed that the response of rectangular lines of the
same aspect ratio is a function of wA/4v, and it has been shown herein
that the response of concentric annular lines of the same radius ratio
is a function of wA/8mv. Typical results for the attenuation per line i

{
wavelength of rectangular and annular lines are plotted in Figures 16 }

and 17, respectively. Circular line results are included in Figure 17 {
as a special case of the annular line with the inside radius r; = 0.
The dependence on aspect ratio and radius ratio as well as signal

frequency is clearly shown.

Generalized Response of Noncircular Lines

The aX curves shown in Figures 16 and 17 for different aspect

ratios and radius ratios all have the same general shape. Thus, it

would seem possible that the results for different aspect or radius

ratios could be generalized and related to a single curve. This can be

accomplished approximately by using the dimensionless frequency defined

by equation (65) with Ry taken as the resistance of the particular
cross section being considered.

A better approach is to include the inertance effects in the
dimensionless frequency as well as the resistance effects and to present
the results as a function of the dimensionless frequency w/wc, where wg

is the radian frequency defined by Nichols [3] as

uy
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Rv
We = E (70)

Here Ry is defined by equation (66), and Ly, the low-freguency or

viscous inertance, is defined by
2
L, = %—J(%)“ Al Ly = Ky ola (71)
u

where K; depends on the laminar fully-developed velocity distribution.

The ratio w/wc includes both viscous and inertial effects at low
frequency. Consequently, this ratio more accurately represents the
fluid line at low freguency ratios, and gives analytical results which
are in closer agreement with both the thecretical and experimental

results obtained for circular and noncircular lines.

The al results shown in Figures 16 and 17 are replotted in

Figure 18 as a function of w/we. The families of curves for different

aspect and radius ratios are now reduced approximately to a single
curve. By incorporating the geometric dependence of aspect and radius

in we, lines of different sizes and cross sections are shown to

The

rat?

have approximately the same generalized frequency behavior.
circular line attenuation is also included in Figure 18, where w. for

the circular line is the same as that given by Nichols [3]; i.e.,

8mu
ate . Ned ey, 3 -
UCC‘L'VC'EL ‘Ac"uw\)c o
3 “ac

Figure 15 shows al, the attenuation per line wavelength. In order to

obtain a, the attenuation per unit length, it is necessary to know A
the wavelength in the line for each ratio w/wg. Curves of A/Ay vs

wA/U4v for rectangular lines are given in [4], and are not reprcduced
herein. However, for annular lines curves of /A5 vs wA/8wv are given
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in Figure 5. The dependence on radius ratio is clearly seen. Similar
qualitative dependence on aspect ratio may be seen in [4] for rectangular
lines. The families of curves depicting A/A; reduce approximately to
one curve representing circular, rectangular and annular lines when
plotted against w/wc as shown in Figure 19. The ratio A/iAz, equation
(42), is also the ratio of the propagation or phase velocity in the line

to the free sonic (adiabatic) velocity; i.e., A/Az = c/ca.

Numerical Results and Discussion

The results in Figures 16 through 19 were computed assuming
standard properties of air at 80 F (Table I). The numerical differences
in a)X in Figure 18 for the range of aspect or radius ratios shown in
Figures 16 and 17 were small and are not plotted in Figure 18. The
maximum difference in al between circular and rectangular lines was
1.05 db at w/we = 6.0 for a = 1C. The maximum difference between
annular and circular lines was 1.40 db at w/w. = 6.0 for r® = 0.8. TFor
w/we € 0.1 the difference was less than 0.09 db, and for w/wc 2 10 the
difference was less than 1.25 db.

The maximum difference in A/)A4 between circular and rectangular
lines was 0.035 at w/we = 2.0 and @ = 10. The maximum difference
between circular and annular lines was 0.0u6 at w/we = 3.0 and r* = 0.8,
For w/wc ¢ 0.1 the maximum difference for both rectangular and annular

-

lines was less than 0.017 and for w/w. > 10 the maximum difference was

less than 0.025. The maximum departure of A/X; from that predicted for
the circular line for the range of aspect and radius ratios considered

occurred for the annular line of radius ratio r¥ = 0.8, as shown in

Figure 19, All other configurations are nearer to the circular line

results.
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It is noted that whereas aX vs w/wC gives the tightest grouping of
the al curves, A/Az vs w/w,, gives a slightly better grouping of the

A/Ag curves, where w, is defined by equation (65).

Determination of the Characteristic Frequency

The determination of values of w¢ for noncircular lines reduces
essentially to obtaining values of Ry and L,,. A4nalytical expressions
of Ry and Ly for circular, rectangular and annular lines are developed
and discussed in Appendix A. A convenient method for obtaining Ry is
to relate the Ry of the line with the noncircular cross section to that

of a circular cross section; i.e.,

2
Bway il (73)
va AZ

where KR for rectangular lines and annular lines depends on aspect
ratio and radius ratio, respectively. Values of Kgp have been calculated
{4,17) and a few are given in Table III. The viscous inertance L, is
obtained from values of Kj, equation (71), for each geometric
configuration. Values of Kj have also been calculated (4,17,18] and a
few are given in Table III.

Starting with equation (70), a convenient equation for computing

we is easily derived as

KR gmv
W, = R‘ET (74)
For circular lines: Kr, = 1 and K. = 4/3; thus wc, = 67v/Ac. Values
of we for noncircular lines can easily be obtained using values from

Table III or using the equations or data from the references {4,17,18].
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TABLE III

Fully Developed Laminar Flow Parameters for

Rectangular and Annular Lines

L o ri
J I
h +
' —
b J
b/h KRI‘ KLI‘ erer KGI‘ I‘i/ro KRn KLn fnRen KGI')
171.132211.3785{56.91(11.2733 0 1.000011.3333(64.00{1.0000
2{1.3920]1.3475|62.19{1.u4324| 0.1 1.7068|1.2298|89.3711.2222
3/1.813311.3120168.36]1.6977} 0.2 2.1645(1.2168192.3511.5000
412.267111.2876|72.93|1.9885] 0.3 2.723211.2101193.85(1.8571
$12.731711.271u4176.28]2.2918} 0.5 L4,464911.2035(95.25(3.0000
1015.095971.2365(8u4.68{3.8515| 0.8 |13.4890(1.2004}95.92|9.0000
© (D 1.2000(96.00 o= 1.0 © 1.2000({96.00 o

Rv: fRe

c

flow parameters:

=l
2D%A

and fRe = 6u4; therefore,

2D 2

A

c °C

S —————————————-

R

factor and Re is the Reynolds number.
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The steady flow laminar resistance Ry does not depend on frequency;

consequently, Ry may be expressed in terms of the classical steady-

(75)

where Dy is the conventional hydraulic diameter, f is the friction

For a circular line, Dy = D¢

(76)




Dividing equation (75) by equation (76)

Rv _ fRe Dc? fg
Ry 64 D2 A

G

o]

where fRe, Dy, and A are determined for the noncircular cross section
being considered. Selected values of fRe are given in Tab.e III for
rectangular and annular cross sections. The relationship between Ky

and fRe is obtained from equations (73) and (77)

KR:————-—z—B—EKG (78)

2 2
Kr = _D_-c—_-A— = .—liA._. = 5— (79)
€ " Dy2 Ac qpy2z  4nA

Kg is a constant for each geometric cross section. It is important to
note that when Dy = D. the areas of the noncircular cross section A and
equivalent diameter circle A, are not equal and Kg = A/A.. Likewise,
when A = A, the hydraulic diameters are not equal and Kg = Dc2/Dp?.
Expressions for Kg are given in Table IV for circular, rectangular and
apnular cross sections. Selected values of Kg are included in Table III

for rectangular and annular cross sections.
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TABLE IV

Geometric Cross Section Factor

Cross Section Kg
circular 1
rectangular (atl)?/na
concentric annular 14k /1-pk

Use of the Hydraulic Diameter

Results based on hydraulic diameter can be used to predict line
performance for small signal oscillatory flow. At a given signal
frequency, Figure 18 shows that for the same attenuation on lines of
different cross section, the wc must be the same. The use of equivalent

hydraulic diameter for a noncircular line, however, leads to an w. that

is, in general, not equal to0 wc.. This will now be illustrated for a
rectangular line.

From equation (74), the ratio w¢,/wc, is

o g R (80)

(81)

For Dp = Do, equation (81) reduces to
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Yep 4 frRep

£ 3KLP 6u

we (82)
Typical values of wc,/wc, and Ywcp/wc, as a function of aspect
ratio are shown in Table V using the values of fpRey and Xp, from

Table 1I1I.

TABLE V

frequency Ratio Parameters for Rectangular
Lines for Dhn = D¢

b/h wep/Weg Ywep/wce
1 0. 86 0.83

2 0.96 0.98

3 1.09 1.04

y 1.18 1.08

5 1.25 1.12
10 1.43 1.19

The ratio JZ;;7G;: can be interpreted approximately as the ratio of
the viscous attenuation of rectangular to circular lines of the same
hydraulic diameter at a given frequency. The values of /52;7522 given
in Table V confirm the attenuation results of Healey and Carlson [13)]
and explain the differences they found between the rectangular line
solutions and circular line solutions of the same hydraulic diameter.
When using circular line equations to predict rectangular line results,
the differences can be avoided if the rectangular line friction factor
(fpRep) and inertance Ly, are included in the calculations. This point

will be made clearer in the next few paragraphs.
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Determination of the Characteristic Radius

It is important to note that w, characterizes the frequency
dependent line performance, and that to compute we, only the kinematic
viscosity, line geometry, and steady flow laminar velocity profile need
be known. Presuming that wc = we, is known for a line of arbitrary but
constant axial cross section an equivalent circular line containing the
same fluid is sought. The characteristic frequency of the circular

line is

Rve 6v
We, = T— = —— (83)
C ch roz

Setting wce = weys the radius of an equivalent circular line, called

the characteristic radius, is easily found to be
I‘c = Vs\)/wcx (8“)

Since no additional restrictions have been placed on the arbitrary line
(i.e., neither the flow areas nor hydraulic diameters are assumed equal),
equation (84) implies that for each arbitrary line there exists a unique
equivalent circular line. The equivalent circular line will have
approximately the same normalized frequency dependent behavior as the
arbitrary line since the characteristic frequencies are equal. The
characteristic radius is roughly analogous to the hydraulic radius used

in steady flow problems.
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Comparison of Characteristic and Hydraulic Radii

Healey and Carlson [13] used the classical hydraulic radius (based

on the hydraulic diameter) for rectangular lines,

x}l=§;=m=—5- (85)

together with Nichols' equations for circular lines [3] to estimate the
frequency response of blocked pneumatic lines of rectangular cross
section. These results were then compared with the results predicted
by the rectangular line theory of Schaedel [u4] and with their own
experimental data. The experimental data and predictions using
Schaedel's theory were in excellent agreement for all aspect ratios
tested (a=1,2,3,4,5). Using rp and Nichols' equations for circular
lines yielded good agreement with the data and with Schaedel's theory
for aspect ratios of 2, 3, and 4; however, at a=l and a=5 significant
differences were observed between the predicted downstream amplitude
response using r} and the measured response.

Using the characteristic radius, equation (84), together with
Nichols' theory, the normalized attenuation al vs w was obtained for
aspect ratios a = 1, 3, 5, and 10 and the results plotted in Figure 20.
For comparison, predictions using r}, and Nichols' theory as in [13],
and using Schaedel's theory are also plotted. The differences
between Schaedel's results and those using r, are so small that they
cannot be seen on Figure 20. It may be concluded that the use of r¢
gives much better agreement with Schaedel's theory and consequently

with the experimental data of [13], than does the use of ry. It can
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also be seen that the use of hydraulic radius predicts too much attenuation
per line wavelength for a=1 and not enough for ax3. The difference
increases with aspect ratio above a=3.

A similar comparison is presented for annular lines of r¥* = 0,
0.1, 0.5, and 0.8 in Figure 21. At r¥=0, r, = r = rg and Nichols' curve
for circular lines is recovered. For r#>0, the attenuation predicted
using ry and Nichols' theory is less than that predicted using either
r. anc Nichols' theory or the exact annular theory given in Section II
hile the latter two approaches are in excellent agreement. The
difference in predicted performance based on r. and ry continue to
diverge with increasing radius ratio.

It is of interest to compare the hydraulic radius r} and the
characteristic radius r. of a rectangular line, for a practical range
of aspect ratio, Figure 22. The two approaches yield the same
equivalent circular line at a=2.3 (rc=rh), and are nearly equal over
the range 2 s a s 4. However, the divergence of r. and ry away from

8=2.3 is clearly seen. The circular radius required to give the same

flow area, denoted rp is defined as

ry = YA/7 (86)

s ——

and is used to normalize both ry and r.. Similar results are plotted

for annular lines in Figure 23. It can be seen that the ratio r./rm,

= ST

decreases rapidly from unity, where r*=0, and ro = r, = ra. The area
of the equivalent circular line using the characteristic radius is

approximately 60% of that obtained using the hydraulic radius for

ri% > 0.2,
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In principle, if the frequency dependence of lines of arbitrary
axial cross section may be correlated as above using w~s then an
approximate impedance match may be found when it is necessary to join
lines of different axial cross sections, as discussed in the next few

paragraphs.

Impedance Matching

It is of practical importance to terminate a transmission line in
its characteristic impedance or admittance since such a termination
implies no reflections. Minimizing reflected signal strength is
synonymous with increasing the efficiency of the line in transmitting
the desired signal. Thus, it is appropriate to discuss impedance
matching when lines of different axial cross section are to be joined.
Such circumstances occur quite often in fluidic applications where
circular lines feed fluidic components whose basic flow regions are
rectangular due to laminate techniques in component fabrication. The
joining of flow regions of different axial cross section may also be
found in aircraft hydraulic systems.

If, for the present, we ignore the junction itself and concentrate
on matching the characteristic impedance of transmission lines of
different cross section, it would seem appropriate to require the
characteristic frequencies to be matched.

The modulus and phase angle of the characteristic admittance ratio
for circular, rectangular and annular lines versus w/w. are plotted in
Figures 24 and 25, respectively. Again it is seen that lines with the
same w, exhibit approximately the same frequency dependence. The

admittance ratio of rectangular lines is within 4% of that of circular
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lines at aspect ratios a < 10, and the admittance ratio of annular
lines is within 6% of that of circular lines for radius ratios r* < 0.8,
At lower aspect or radius ratios, these percentages decrease. The
phase angle of the admittance vs w/w. for both rectangular and annular
lines is within 1.5 degrees of that of circular lines for the same
ranges of aspect and radius ratios.

It is important to note that the modulus of the characteristic
admittance has been normalized with respect to that of a lossless line

of the same cross section. In general terms

S0

= fw/wg,) or 1Yol = Yoo !l® flw/we) (87)

and equations (87) are valid for all lines. It follows that if two
lines have the same characteristic frequency, then for a given excita-
tion frequency w the lines will have approximately the same admittance

ratio but not necessarily the same admittance. From the definition of

Yso.

4l Ca A
\50 = I;- F\a (36)

and Yg, is obviously area dependent. Therefore, setting the character-
istic frequencies equal does not insure that the characteristic
admittances are equal. 1f the conditions that Yp and w, must be the
same are imposed on two lines carrving the same fluid, then the flow
areas must also be the same. These conditions are in general incompat-

ible except for the special case when the two lines are identical. The
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conditions amount to requiring that ry = r. when lines of circular and
noncircular cross section are to be joined. From Figure 23, it is seen
that for annular lines rp = r, only when r* = 0; for rectangular lines,
Figure 22, this condition is never achieved. It is concluded that the
characteristic admittance (or impedance) of lines of different cross
section carrying the same fluid cannot be matched at each and every
physical frequency w. The closest match to a circular line is obtained

when rpsre. (o%

+ 0 or a +~ 1, for annular or rectangular lines.)

In practice, the most common constraint encountered is the
specification of a steady mean flow through which the signals are to
be transmitted. This constraint is equivalent to requiring that the
flow continuity is maintained. It follows that for a given fluid two
lines of the same flow area have the same lossless admittance. At a
specified frequency ratio w/wg, the two lines will also have approxi-
mately the same frequency dependent characteristic admittance. However,
the characteristic frequencies are not the same and, conseguently,
neither are the physical frequencies for which the admittances are egual.

The characteristic frequency of noncircular lines will be higher
than that of circular lines of the same cross~sectional area. For any
excitation frequency w, this implies that the characteristic admittance
(impedance) of noncircular lines will be lower (higher) than for
circular lines of the same area, and the designer is unfortunately
faced with the resultant mismatch. Nevertheless, the characteristic
frequency (or radius) of the noncircular line together with the circular
line theory may be used in a simple procedure to predict the performance

of the noncircular line at any desired frequency.
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The ratios wep/we, and wep/we, are plotted in Figures 26 and 27
for rectangular and annular lines, respectively, assuming equal flow
areas. Similar curves could be constructed for any noncircular line.
The characteristic frequency of circular lines is easily determined
(v, = 6mv/Ac) and from curves similar to Figures 26 and 27 the chara-
cteristic frequency (w.) of the particular noncircular line is
determined. For the physical frequency of interest, the frequency
ratio w/we is computed and any desired performance parameter such as
ax, Figure 18, or IYO/YSOI, Figure 24, is easily obtained from the
circular line performance curves. It is emphasized that laminar mean
flow is assumed; combined turbulent mean flow and laminar oscillatory

flow is discussed in Section V.
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IV. The Transient Response of Noncircular Fluid
Transmission Lines

The transient response of fluid transmission lines of circular

cross section was obtained by Brown [2], who derived the propagation

operator and characteristic impedance of an infinitely long uniform
rigid line in the Laplace domain for both compressible and incompress-
ible fluids. Brown's solution is identical to that of Iberall [1] and
Nichols [3] frequency domain models for the special case of sinusoidal
excitation of the circular line. Subsequently, Karam [19,20] developed
a simplified solution for the transient response of circular lines
after transforming approximate high and low frequency domain models
into the time domain and then observing a basic similarity between the
transformed solutions. Karam's solution is more easily applied than
that of Brown [2], and may be used to obtain the impulse and step

responses of semi-infinite fluid-filled circular lines with good

accuracy and without the aid of a computer.
In Section III, a method of expressing the frequency dependence of
noncircular lines entirely in terms of equivalent circular lines was

presented, and results were obtained for rectangular and annular lines

over a wide range of aspect and radius ratio. The primary purpose of
this section is to present a method of transforming the frequency
response of noncircular lines into the time domain. The analytical
approach essentially combines the approaches of [2,3,20] and that of
the previous section, and results in a simple but complete solution of

the step response of noncircular lines.

{7al’
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Frequency Domain Equations

The exact analytical expressions for the parameters Z, Y, I', and
Yp which characterize the performance of a fluid transmission line are
relatively cumbersome to use in the frequency or Laplace domain.
Furthermore, it has been observed that the time transforms associated
with these parameters have not yielded closed form analytical expressions
over any of the frequency or Laplace domain, even for the simple case
of circular transmission lines. The mathematical difficulties may be
traced directly to the underlying frequency or Laplace domain solutions,
which contain ratios of Bessel functions. These ratios are not thus
far expressible in a form amenable to transformation into the time
domain. Further, according to Sneddon [21], it is unlikely that the
Bessel solutions will ever be totally transformed. Instead, high and
low frequency approximations are made, and these approximations are then
transformed into the time domain. In the mid-frequency range, very
complicated numerical techniques have been used to accomplish the
transformation [22]. Alternately, the transient response in the mid-
frequency range may be approximated in the time domain itself, as was
done by Karam [20].

The general approach taken herein will be to partition the
frequency domain into three regions, to analyze the equivalent
electrical circuit of a general transmission line in each of these
regions, and then to express the results in the time domain. In this
approach, the text by Weber [11] is especially useful.

The three frequency regions are defined with reference to the

characteristic frequency, we = Ry/Lv, as follows: low frequency
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(w << wg), mid-frequency (w = wc), and high frequency (w >> wc). The

characteristic frequency ratio w/we = wly/Ry may be thought of as a

frequency dependent (AC) Reynolds number. At low frequency ratios
viscous flow effects are prevalent while at high frequency ratios
inertial effects prevail. In the mid-frequency range viscous and
inertial effects are of the same order of magnitude. Similarly, the
thermal characteristic frequency wy = we/0? roughly divides the heat
transfer effects into regions of isothermal behavior, w << wp and
adiabatic behavior, w >> wy. Since the Prandtl number (¢2) is near
unity for air (and many other gases) either we or wr will suffice as
the overall behavioral index, and w. has been chosen for this work.
For liquids (y = 1), there is essentially no dependence on the Prandtl
number, since terms in the energy equation containing the Prandtl
number are premultiplied by the quantity (1-v). [See, for example,

equation (26).]

At low frequencies, the equivalent circuit, Figure 2, is comprised

of essentially constant value elements of R, L, and € with G = 0.

These values are R = Ry, L = Ly, and ¢ = C; = yCa, for any line of
constant axial cross section. Using these values in the defining
equations of the series impedance and shunt admittance [equations (28)
and (29)], together with equations (32) and (34), the low frequency

characteristic impedance and propagation operator are easily determined:

B YCauw 3 Y ) §
Yo, = {-Z_L = Ry (1+3) -Yso G v (1+3) (88)

YRyCaw
ry = NZoYp ' = op + 48y = ;J__\'_;_ (1+9) (89)
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Therefore, the low frequency attenuation, aj, and phase angle increase,

B, are

1
’qg— . ’\l"vca‘*‘"a' /q%xb - Nou (90)

QL (91)

ar

8L

At high frequencies, the inductance and capacitance approach their
adiabatic values. However, the resistance and conductance are frequency
dependent and become large with frequency. Karam and Franke [9] have

developed approximations for the high frequency circuit components,

which are rewritten in terms of we as follows:

Ry = % La AKpweo' (92)

Ly = La = p¥/A (93)
o ”l'_‘ —

Gy = T Ca A Kpwwe (9u)

Ch £ Gy = A/yp" (25)

In the high‘frequency region R << wlL and G << wC. Using these
inequalities, the high frequency attenuation per unit length, ay, and

phase angle increase per unit length, By, are approximately [11]:

LHGH + Ry{CH
ay = ——————— (ag)
QVEHCH
By = w'LKCy (97)
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Substituting equations (92) through (95) into equations (96) and (97),

1 =7 1 i) o
SHIE 2 e <k [ 2] i
By = w/laCa = %— (99)

a

It is important to note that the foregoing development is applicable to
any fluid transmission line of arbitrary but constant axial cross
section.

From equations (80) and (86), it is seen that both aj and ay are
of the form a = K/Gl where K is constant, and such a line has a rather

simple time domain solution.

Time Domain Equations

The characteristic time t. is defined as the inverse of the
characteristic frequency (te = 1/w.), and the time domain is divided
into three regions corresponding to the previously defined frequency
regions. Thus, the short time region (t << t,) corresponds to the
high frequency region (w >> wc) and the long time region (t >> tq)
corresponds to the low frequency region (w << wg).

Metzger and Vabre [23] have shown that when the high frequency
attenuation is of the form ay = Kvw, the step response PFH to a step

input U(t) at & inches down a semi-infinite line is

= 1/2
1 [ og®ee
PI‘H = erfe PR CIICT) U(t-T) (100)
75

e VTR
- i




.
e

where U(t) = |Pglu(t), u(t) is a unit step input, T = 2/c 5 is the
adiabatic delay time, and f is the signal frequency. For long times, |

Karam [20] has shown that the unit step response may be written as

1 (orfe2\1/2
PpL = erfc 7 \ =8¢ u(t) (101)

Since for long times t = t-T, evidently the unit step responses for

long and short times are governed by the same relation. It seems
reasonable to assume that the step response will retain the same form

in the mid-frequency range. Thus, in general

1 a2g2 1/2
Py = erfc 3 <—11'_f—(t—_T)) U(t-T) (102)

It is noted that this assumption avoids the transformation of the mid-
frequency region into the time domain. Brown and Nelson [22] achieved
some success in the mid-frequency range for liquid-filled circular
lines, but the method was numerical and was reportedly quite complex and
sensitive. The assumption that the attenuation is of the form a = <
in the mid-frequency range is a convenience which allows the entire

time domain solution to be expressed as a single complementary error
function. The "constant" K is actually frequency-dependent in the mid-
range. Karam [20] used the time transform obf the known low and high
frequency asymptotes obtained from the equivalent circuit approximations
and connected these with a logarithmic straight line of the form
logyola/ay) = A + B logjg T, Where 1' = tu/ro2. This straight line patch

is therefore made in the time domain and any correspondence with the
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frequency domain is los*t in the mid-frequency range. Karam approximated

the transient behavior of o/ay for circular lines as [203:

1 for 1'< 0.0125

%ﬁ_: K(z")® for 0.0125 s 1 5 1.25 (103)
_ﬁEEL:T for 1'2 1.25
1+ 155

where

] and X = (0.0325)°"

4 qu.litative plot of a/ay versus 1 is given in Figure 28, along with a
representation of Nichols' transformed solution. It is emphasized that
the dotted line of Figure 28 representing Nichols! solution is only
qualitative; if the exact transform of Nichols' solution were known,
+here would be no need for the straight line approximation. Karam

defines Tg = Tv/ro2 and expresses the unit step response as

el
P = erfe| 2 o _LLoy UCeth) (104)
P

This solution gives one of the simplest representations of the step
response of circular lines and shows very good agreement with the much more
complicated analytical and numerical solution of Brown and Nelson [22]

for liquid lines. Karam's solution is also in good agreement with his

own experimental data and that of Kantola [2u] for air-filled lines.

The pressure step response of liquid-filled lines obtained using the
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results of Brown and Nelson [22] and of Karam [20] are plotted in
Figure 29 for selected values of 1g. Karam's results are applicable
to liquids when v is unity and the fluid bulk modulus Ky is used to
compute the celerity. In [22,24], the nondimensional time is also
defined as 1'= tv/roz. It i{s seen from Figure 28 that the predicted

responses are in good agreement over a wide range of 1.

Pressure (Flow) Response of Noncircular Lines to a
Step Input of Pressure (Flow)

Whereas Karam and others used the quantity v/r°2 to nondimension-

alize time, the characteristic time, t, = /w,, will be used herein.

Thus, 1’ and T} are redefined and a characteristic time equal to unity

is introduced as follows:

T 2 wet = t/te = 61!
19 = 0T = T/tg = 61 (105)
1= wete = te/te

In terms of the redefined nondimensional times, equation (10u4) becomes

% [1 3 :%l_] [gi] L Ulr-1¢) (106)

and the expression for the long and short time step responses become

i 1/2
Pp = erfc;%( : ) EU(r-ro) (107)

T-T¢
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1/2

2
=3k 2
P,. = erfc {%l +g?§j20;0

U(r-1g) (108)

The logarithmic straight line approximation may be rewritten as follows:
3L for v < 0.1
oz | k™ for 0.1 £ 1t < 10 (109) '
GH i
————EI:T— for © 2 10
1+ 5

where

m = % log)g -—ﬁ*l:_-f and K= (0.1)7"

(o}

Equations (106) and (109) approximately describe the step response
of lines of constant axial cross section, either circular or noncircular.
The key point is the definition and use of w., since the ratio w/u¢
(hence, T = t/t.) characterizes the response of the selected transmission
line. TFor long times, say one decade or more above t, (t 2 10), the
line response is characterized by predominantly viscous, isothermal
behavior. At one decade below t. (1 s 0.1) the line performance is
nearly inertial and adiabatic. Furthermore, the step response of all
lines of the same nondimensional delay time 19 = w,T may be represented
by a single curve when plotted against 1 = wct. Equation (106) versus
1 is plotted in Figure 30 for several values of tp. The fluid has been
assumed to be air at 80 F (y = 1.4017). Figure 30 represents either

the pressure response downstream toO an upstream pressure step input or
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the flow response downstream to an upstream flow step input, i.e., the

equivalent transfer function in the Laplace domain is

Pr(s) _Qp(s) _ 1 -ar(s)
P(s)  Q(s) s °© (L0

Pressure (Flow) Response of Noncircular Lines to a
Step Input of Flow (Pressure)

Two other transfer functions are of interest in determining the
response of semi-infinite lines. These are: (1) the pressure response
to a step input of fiow, and {2} the flow response to a step input of
pressure. The respectiive Laplace transfer functions are:

~2T(s)

Pn(s)
s % Zole) e (111)

Qs(55 B

(s) -
25137-= 2 ¥o(s) e L) (112)

~

and it is noted that a convolution integral may be used to solve for the
time domain response. Karam [20] has used the following equations to

approximate these responses:

Py i Py . Pr e
3 (1) = J 20(X) T (7-2)dx = (1) J Zo(X)dA (113)
s 0 S S 0
T P P T
gﬁ ey = [ Yo(h) 5= (1-1)dh £ &= (1) j Tl A ey (114)
S 0 S S 0
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The approximations given by the terms on the right hand side of

equations (113) and (114) are made to simplify the results by avoiding
computations of the convolution integral. These approximations are

based on the observation that Pn/Pg(1) rises fairly rapidly after the
nominal time delay T and is essentially constant thereafter, especially
for small 1, whereas Z,(Y,) is essentially constant for small 1, and
varies inversely (directly) as /T for large 1. It can be seen in

Figure 30 that for large tp, F./Fg(1) does not rise rapidly. Thus the
validity of the approximations decreases with increasing tp. Fortunately,
lines of large 1 are not practical transmission lines; this conclusion
will be substantiated and illustrated in a subsequent discussion.

Usimg the large and small s approximations of Uy(s) and Y,(s), corresponding

to short and long time, respectively,

1 Rv Ta . Rv . K ewe
Yo, Cis Ca Ylars 7~ “so Ys

(@IO03SH)

&b .
3 = === % (116)
OH Yoy so
The integrals on the right hand side of equations (113) and (1ll4) mav
be easily evaluated using the inverse Laplace transform (L 717 and the

approximations of equations (115) and (116). Thus

t z NRCR Ky *woot
J Zo (Vah = L-1| 250 NS e o AR (117)
0

N
)
wmw
v
(5
L7l
o
)
= |
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{ Soy(M)a\ = L-! [ 5°] * Ban (%)
°{v

: 1 YQO YS Y
JO \oL()\)dX S o il }‘L'“’c ]= Yso /\l m (119)
S Yso

( You(A)a\ = i [-;—] = Yoo (120)
°0

For 1" = tv/ro? and T = wet equations (117) and (119) become
rL -
3r\..l u}\LT
~ \ x =7 -\ = ° YR

s "QL( )d e = 2¢q = (121)
e Y 5

Jy \ob\\)d)\ = Ygo ey = Ygo ‘1_11’_\-1? (122

It is convenient and more realistic to construct a single continuous
function to describe the behavior of the integrals of Lo and Ya.
Karam [20] has found that equations (118) and (121) may be combined as

follows to give a closer approximation of the overall behavior of the

integral of 24.

] W 1/2 i

27! T
b J Zo(dn = (1 4+ 3=l—) = (1 ¢k ) (123
“8C Jg LAY yu

Similarly a continuous function approximating the integral i, A8

obtained in terms of t' and T as




i
i

? -1/2 i -1/2
1 [ . Bnr') ( L“T)
— Y (A)dh = {1 + —— ={1 + (124
Yso !y °° ( b Y )

Equations (123) and (12u) versus 1' are plotted in Figure 21, along with
the asymptotic limits given by equations (116), (120), (121), and (122),
for air-filled circular lines with y = 1.4017. It is seen that the

two continuous functions c¢f equations (123) and (124) are properly
bounded by the respective asymptotes. Using equations (113), (1l14),
(123), and (12u) the desired step responses are obtained in dimension-

less form as

5 5 ‘ 1/2 ? i 1/2
' 4Ky 1
#—/r‘"-\a—’-(r')/l*”’\ ot e e et (125)
“so \Ns/ fs \ Yy J Fg yn o
Q p -1/2 - ) X -1/2
r r 8nt! r LT
z — )= = (") (l + ) = = (1) (1 + )
= (Ps) Fs \f Ps M,

(126)

Equations (125) and (126) are plotted in Figures 32 and 33, respectively,
along with the results of Brown and Nelson [22] for liquid-filled lines
(y = 1) and t' = tv/rof. It is seen that the two approaches are in

good agreement over a practical range of 1'. The above step responses
are adapted to non-circular air-filled lines as was done for Fn/Pg, and
the results are shown in Figures 34 and 35. In these latter figures,

the dimensionless times are based on the characteristic frequency,

i.e.y T = wet.
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Physical Implications of the Fluid Line Step
Responses and Dimensionless Parameters

It is of interest to briefly discuss the physical implications of
the various step responses and dimensionless parameters presented in
this section. The responses apply to semi-infinite lines, and
therefore represent waves travelling in one direction only, with no
reflections. However, the basic linearity of the results allows
superposition and application to problems involving reflections, as
illustrated by Karam [20] and Brown and Nelson [22]. The flow response
to a pressure step input must eventually reach zero (no flow) since the
impedance of the semi-infinite line is infinite. Similarly the
pressure response to a flow step input must eventually increase until
the line is ruptured. For lines having the same t1g, the responses
will be the same when plotted against 1. However, the actual delay
time, T, and rise time of the respense will be shorter for a line
cross section of higher w.. In other words, lines of the same 71y and
working fluid properties but different wc necessarily imply different
axial locations (lengths) along the semi-infinite line. It follows
that the distance along the line will be shorter for the line of higher
we. The line of higher w. will also attenuate high frequencies at a
more rapid rate, and will approach the behavior of the diffusive RC
line more rapidly. For signal transmission, lines of higher w. should
be avoided, as these are accompanied by larger attenuation per line
wavelength at any physical frequency.

As 13 becomes large, say 19 > 1, the line becomes essentially a

diftusive RC line, with R = R, and C = Cj. Tor a circular line of




1/8 inch inside radius filled with air at 80°F (Table I properties)

and tp = weT = 1, the corresponding length is 122 ft and T is 0.107 sec.
For the same line cross section and 1p, but filled with water at B80°F,
the corresponding length is 9,576 feet and T is 1.945 seconds. It is
unlikely that signal transmission would be of interest over such long
fluid lines. For such lines, treatment as a lumped RC line would be

sufficient for most purposes.

Summary of Transient Responses

In this section a method was presented for determining the
transient response of semi-infinite fluid-filled linesof arbitrary but
constant axial cross section. 7The results were presented in terms of a
characteristic frequency which depends only on the laminar steady flow
resistance and conductance of the arbitrary line. Equivalent circuit
parameters (R, G, L and C) were developed and used to obtain the time
transforms of the various combinations of pressure and flow responses
to step inputs of pressure and flow. Results were compared with those
of others for both compressible and incompressible fluids. For non-
circular lines the results are shown for air at 80°F. It is noted
that the results are restricted to laminar flow. Similar results for
the various step inputs propagating through fully developed turbulent

mean flow are presented in Section VI.
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V. Laminar Oscillatory Flow Combined with Steady
Developed Mean Flow

Backggound

Several investigations have been completed concerning the trans-

mission of small oscillatory signals through fully developed mean flow.

A majority of these have been directed toward the superposition of

laminar oscillatory signals on fully developed laminar mean flow [2,3,4].
Recently, investigations concerning the behavior of oscillatory signals
combined with fully developed turbulent flow have been completed [15,
25,27]. Most of the recent efforts have been restricted to incompressible
adiabatic flow in circular lines.

Nichols [3] obtained the small-signal frequency response of fluid-
filled circular lines including frequency dependent dispersion of the
propagation speed and distortion of the oscillatory signal wave shape.

In addition, heat transfer effects were included. 1In essence, Nichols
separated the steady and oscillatory fluid parameters (as was done in
Appendix C) and subsequently solved the oscillatory flow problem;
nevertheless, his solution is applicable to flows combining steady
developed laminar mean flow (Hagen-Poiseuille flow) and laminar
oscillatory flow. Holmboe and Rouleau [28] have shown that if the initial
conditions are assumed to be Hagen-Poiseuille flow then the governing
differential equations may be placed in a form which is identical to
Nichols' equations. The results of Brown [2], expressed in both the
Laplace and time domains, are identical to those of Nichols for the

special case of sinusoidal excitation signals.




L]

F More recently Brown, Margolis and Shaw [15) have obtained the
frequency response of liquid-filled circular lines carrying fully

developed turbulent mean flow. The authors developed two and three

region viscosity profiles which resulted in fairly complicated solutions.
It is noted that at high Reynolds numbers and dimensionless frequencies
there were significant gaps in the frequency domain solutions wherein ¢
the attenuation of the oscillatory signals was not predicted by any of .
tﬁe authors' models. Recently Funk and Wood [25] developed a single

boundary layer model to account for the transient viscous effects and

applied this model to small amplitude sinuscidally disturbed turbulent |
flow in circular lines. The authors developed a transfer function
relating the local boundary layer velocity gradient to the core velocity
of the flow. The model is comparatively much simpler than that of Brown,
et al. {157; nevertheless it gives values of frequency dependent signal

attenuation which are in excellent agreement with the theory and the

experimental data of Reference {15]. It is noted that the utility of the
model given in Reference ([25] is limited to the high frequency regime and

constant phase velocity; Funk and Wood suggest the use of a quasi-steady

model (i.e., a constant LRC model) at low frequencies. It will be

subsequently shown that the model of Funk and Wood is closely related to

the high frequency approximations developed by Nichols [3] and Karam [20]
for laminar oscillatory flow combined with laminar steady flow, and to the
concept of a characteristic frequency and radius previously developed
herein.

Trikha [29] has suggested that the frequency dependent part of the

friction in turbulent flow may be approximated as the frequency dependent

N
|
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part of the friction in laminar flow for a limited range of Reynolds
number (in this matter, see also [7]).

In this section a simplified model of combined steady turbulent and
small signal oscillatory flow is developed which is based on analysis of
the components R, G, L, and C of the equivalent electrical circuit,
Figure 2, and also on the concept of a characteristic frequency. A
method of determining the frequency response of lines of either circular
or noncircular cross section carrying fully developed turbulent mean flow
is developed. The results are presented for a dimensionless attenuation
and frequency. For the circular line model, results are compared with
those given in [15,25].

In Section VI, Karam's approximate method [19] is adapted to lines
of both circular and noncircular cross section carrying turbulent mean
flow and the pressure and flow transient responses of the lines to step
inputs are estimated. Before proceeding with the broader purposes of
this section, it is instructive to review the physical aspects of
combined oscillatory flow and steady, developed mean flow of compressible
or incompressible fluids in a semi-infinite circular line.

Physical Considerations of Combined Oscillatory and
Steady Developed Mean Flow

A large body of literature exists concerning steady, fully developed,
laminar or turbulent flow in circular lines, from which one may select
flow relationships ranging in complexity from relatively straightforward
to very complex. For turbulent mean flow, elegant theoretical flow
descriptions involving statistical approaches and correlation techniques

have been proposed. However, these descriptions have failed to yield
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solutions except in the simplest cases. The approach taken heveln s
to develop the necessary steady flow parameters from the more usetul

phenomenclogical descriptions of steady turbulent mean flow. In this

approach, the texts of Schlichting [30] and Rinze {31] arve particularly
usetul.,

For smxll signal excitation of developed turbulent flow, the steady
flow velocity profile will not he greatly altered by the superimposed
oscillatory signal provided the steady tlow Reynolds uumber {s sufti-

clently lavge, and the oscillatory signal amplitude is relatively small.

Steady aund Oscillatory Boundary lLavers

For steady developed laminar flow in a circular live or duet the
houndary Javer is presumed to extend fram the wall to the centerline ot
the civeular crogs section,  Thus the steadyv flow lawminar boundary laver
thickness denoted §p . 18 always equal 1o the radiue ot the circular

Line {8y = re)e and is not dependent on the laminar tlow Revunolds

pamber,  The classical Hagen-Poiseunille velocity profile is obtained

tor all laminar flow in civaular lines, However, tor steady Jdeveloped

turhulent low the associated velocity profile and boundary laver thick.
ness will depend on the Revnolds number.  As the turbulent $low Revnolds
mmber increases, the assocfated velocity protile changes shape and
approaches a plug=flow profile.  Simultaneonsly the associated turbulent
boundary laver thickneas Sy decreases, indicating large velocity
puradients at or near the wall and lavge vesistive lonses.

for Jaminar oscillatory tlow, the dynamic boundary laver thickuess
will vary with freguency. Nichels [3) proposed a boundavy laver thick.
= \Jv . for civeular lines; and it is seen that the oscillatory

ness, 8

-
a7
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boundary laver thickness decreases with increasing frequency. Similar
effects occur in electrical conductors where §, is called the skin depth.
At low frequencies the oscillatory velocity profile approaches the
classical Hagen-Poiseuille distribution.

When laminar oscillatory flow is combined with steady mean flow,
it is assumed that an interaction between the steady flow boundary laver
and the dynamic (oscillatory) boundary layer will occur. If the steady
flow boundary layer thickness is less than that of the oscillatory flow
(i.e., Syg¢ < §, or th < §,) then the oscillatory flow will be dependent
upon the steady flow profile. On the other hand, when §, < évﬁ (or
8y < th) the behavior of the oscillatory flow tends to become independent
of the mean flow. This observation is substantiated both analytically
and experimentally by the work of Brown, et al. [15], Franke, Karam and
Lymburner [14], and others [9,25]. Stated in other terms, the behavior
of the oscillatory signal in the low frequency region depends on the

mean flow whereas in the high frequency region the behavior of the

oscillatory signal becomes essentially independent of the mean flow and
dependent on the oscillatory signal frequency (w). For the experimental

data available, the high frequency behavior appears to approach laminar

it g e =

oscillatory flow behavior [15,27]. It is further assumed that for any
steady flow there exists a frequency at which the dynmamic and steady flow
boundary layer thicknesses are comparable (8, = 8y). In this region, a

transition from essentially steady flow dependence to frequency

dependence takes place, or vice versa. Similar qualitative behavior
would be expected concerning the temperature profiles, particularly for
fluids with a Prandtl number near unity. For circular lines Nichols [3]

defines a thermal nonadiabatic skin depth as 6t = ¥2vp/w which is seen
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to be frequency dependent. At low {requencies the heat transfer behavior
of the oscillatory flow will depend essentially on the mean flow,

whereas at high frequencies the heat transfer will depend essentially
upon the oscillatory frequency. Much of the discussion of the frequency
domain equations in Section IV applies qualitatively to the above
discussion., It is not intended to extend the discussion of the various
boundary lavers any further, since ultimately a model for circular and
noncircular lines with mean turbulent flow is sought. TFor certain non-
circular lines, more than one §, or & is involved and it is more
convenient to eliminate the dependence of the flow on the geometric

cross section of the line. By integrating the various parameters over
the appropriate cross section, geometry dependence may be essentially
removed, as was previously done in developing the characteristic frequency
and components of the equivalent electrical circuit for laminar

oscillatory flow.

A Mean Tlow Characteristic Prequency for Circular Lines

The concept of a characteristic frequency which divides the flow
into regions of viscous, isothermal bhehavior, and inertial, adiabatic
behavior has been discussed in Section III for circular and noncircular
lines. It is desired to extend this concept to lines of arbitrary
cross section, carrying combined oscillatory and steadv turbulent mean
flow. Returning to the equivalent electrical circuit, Figure 2, and
keeping in mind that the underlying steady flow determines the low
frequency behavior of the oscillatory signal, it is necessary to determine
R, L, G, and C for the underlying steady flow. The low frequency

resistance, Ry, is dependent on the mean flow,

D
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-3 -9

aé i 2B (127)

Ry =
R Au

and similarly for the inertance,
5 2
Ly = Ky » Ly = |& (_) 7Y (128)

If the underlying mean flow is fully developed laminar, it was previously

shown that for circular lines

Y bv
L = =L w Sy
’ v 3 ~a ’ cg P02

where subscript f denotes laminar flow conditions. These parameters do
not depend on Reynolds number. For turbulent mean flow, the shape of the
velocity profile is a function of the friction factor and Reynolds
number. The defining relation for the steady flow friction factor, f,

for laminar or turbulent mean flow in circular or noncircular lines, is

zop . _f
3z D

2

(S11

pl (129)

>

From eguations (127) and (129), the laminar or turbulent steady flow
resistance of any line of arbitrary but constant cross section is

fou _ (fRe)u

Ry = 3
V 7 2AD), gADhF

(130)

The simplest form of the relation between f and Re for developed turbulent

flow in both circular and noncircular lines is the Blasius relation, #

£ = a3164/Ret”"

(131)
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where the Reynolds number, Re is defined in terms of the hydraulic

diameter:

Re = Eﬁgh (132)

Equation (131) gives good accuracy up to Re < 5x10° [30], and is used to
compute f herein. Using Equations (130) and (131) the turbulent viscous

resistance of lines of arbitrary cross section, Ry, » becomes

= 0.3164u (Re)3/u

Ve

{133)

From Hinze [31], the steady turbulent velocity profile in circular lines

may be expressed as a simple power law,

. \l/n
8 (e (134)
\To/

Umax To
where n is a function of Re, ¥ = rqy = r, and upgx is the maximum
{centerline) velocity. Further, the work of Nunner as presented by
Hinze [31) shows that the exponent n may be expressed as a function of

I f only,
1 vE (135)
n

Equation (135) is shown to be in good agreement with the experimental
data of Nunner, Nikuradse, and Laufer, for both smooth and rough circular

lines [31). TFrom Schlichting [30],

g a 2n®
Upax  (nt1)(2n+l1)

(136)
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Thus
)
u

The turbulent viscous inertance, Lyg, becomes

- (n+1)(2n+1) [L]l/n

e
2n~

(Goleod),

(n+1)(2n+1)?

% Vg (= WPy eml
e e = B o g pACSED

and KL, is seen to be a simple expression. In terms of the friction

factor

Ly

H7 (F = DIGE W )R

(139)
a L(2/F + 1)

[a
']

The value of KL, will be near unity since the steady turbulent velocity
profiles are similar to inertial or plug flow profiles. As Re becomes
large, it can be seen that u/u and K, approach unity, while n + = an¢
f > 0. It is further noted that KL near unity implies that Ly, deces
not differ much from La, and the assumption that the frequency dependent
inertia is in fact constant (L = La, or L = Ly,) is a good approximation,
particularly at high Reynolds numbers. The approximation Ly, = La is
particularly useful in dealing with lines of arbitrary cross section
carrying turbulent through flow, where expressions for u/u are either
very complex or unknown.

A broad range of values of KLt for circular lines, together with

closely related parameters, were obtained using equations (131), (13%)
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and (13%), and are included in Table VI. 1t is seen tha: the tabulated

data is consistent with the preceding discussion of KL, -

TABLE VI
Turbulent Steady Flow Inertance Factor (bLt) for Circular Lipes
Re f fRe n 3
1,000 0.056265 SBr 'S L2158 l.0500
5,000 0.037627 188.1 SLELSSE 1. G35%
10,000 | 0.0316L0 3le. b 5.6219 Y.0302
50,000 0.021159 ANOISTZNY 6. 8747 1. 0230
100,000 0.017792 WS7TQ 2 7.496¢9 1.0180
500,000 0.011889 5,048.3 9.1675 1.Q125
1,000,000 0.010005 10,005.0 9,9973 1.010¢6

Characteristic Freguency and Radius - Turbulent Mean Flow

Proceeding
and radil based
U;t =

(A)\)t =

where subscript

It is more

as in Section 111, a set of characteristic frequencies

on turbulent mean flow guantities are defined as

Ry e

13. . req = “.’L‘. (140)
Ve ct

R Al

= Tve = - (1u81)
Ly t Wug

t denotes turbulent mean quantities.

convenient to use the characteristic quantities defined

in equation (141), since these quantities (i.e., adiabatic inertance)

are more easily

discussicn and other publications on the subfect [23,25]. Both w

determined, and are consistent with the previous

1
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and wy, are dependent on the turbulent friction factor and Reynolds
number. In essence, the circular line carrying fully developed turbulent

flow is replaced by an equivalent smaller line of radius Ty, Or Tey

carrying fully developed laminar flow, of the same characteristic frequency.

Nichels' frequency domain solutions [3], applicable to circular
fluid lines carrying either developed laminar mean flow or no mean flow,
are to be used to solve the normalized frequency-dependent performance
of both circular and noncircular lines carrying fully developed turbulent
flow, and are repeated herein for the convenience of the reader. The
impedance, admittance, propagation operator and characteristic impedance/

admittance are

il -1
:3/2
2\}3(% ral /)
Z = jwbg |1 - (142)
3/2 3/2
i Fro] * Jo(ﬁro] : )
2(y- J l’& .3/2
(y-1) 1(“'}' Yol
Y = jwCq |1+ (1u3)
lw 32 w .3/2
[ Yo7 Tod o |57 Ted
= vZY = a + jB (144)
29 = Y2/Y = 1/Yg (1u5)

To use the above solutions as stated, the radius r, is replaced by one

of the characteristic radii, equations (140) or (1ul), and for
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turbulent flow the further assumption wp = v is made. This assumption
implies a Prandtl number of unity which is thought to be more repre-
sentative of turbulent processes [30,31]. The adiabatic {nertance aund
capacitance (Ly, Cq) are computed frow the actual line propertias,
Lquatious (141) through (144) are the same equations which were used

to closely approximate the normalized frequency dependence of both
cironlar and noncivaular lines, carrying either laminar or no mean flow,
and the results were shown in Figures 18, 19, 24, and 25, These
normalized results will remain the same, when plotted against the
characteristic frequency ratio, w/wy,.

As mentioned in Section 111, tor a given value of the avgument of
the Messel functious, Yo/v e (or equivalently, w/w, ov m/m“). the
nortalived frequency depemdence will be the same when plotted against
this avgument., Since It now is intended to apply the above modeling
approach to circular and nonciveular lines carrving tarbhulent thvough
flow, it {s uecessary to closely examine the vange of validity and
application ot this approach, The tollowing development will address
the low, mid, and high trequency domains relative to the turbunlent
viscons characteristic trequency, Wy s and Nichols' solatious,

Low Yrequency bomain - Turbnlent Mean Vlow. tor w o© CRA

quasi-stealdy constant LRC model is the simplest approach, as suppested
by Brown, et al. {15] and Funk and Woold [26], The equivalent electrical
clrenit as comprised of the constant value elements, R o th.

A

bos bals gy de 6= 0, and © = O = yCyq. The low frequency series

impedance and st admittance ave




ZL, = Rvy + jula = Ry [l & g ﬁ] = Julg [3 - T:l (146)

YLt G + jwCi = JuwyCy (147)

From equations (141) and (lu46), it is seen that as w approaches zero,
ZLt approaches the steady turbulent DC resistance, Ry¢, equation (133).

The low frequency propagation operator and characteristic impedance are

() . Sw OV Lis
TLy = YZL¢YLy = aLe + JBLy = = (1 -3 T) (1“'8)
ZL - 1/2
t Ca {1 . “t)
Z = 2 P o— — l - — (lug)
oLt YLt Aly ( Ll

For very low frequencies, m/u»\,t << 1, the above expressions may be

further simplified:

Wy ”
Ky ® \]jYRv Caw = 2 \‘ Jywy, o = a4 SR (1+3) (150)
t t Ca t Ca 2 w\,t

Ry w
5 B e S@LEYE w g
uoLt = FywCa =0 (l-]) (151)

C
where o -% * 2gy = AJLa/ca.

To facilitate discussion of the constant LRC model and comparison with
recent work, the dimensionless frequency, 2, and normalized attenua-

tion,aBr, for circular lines introduced by Brown, et al. £15] will be

used. These are
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A
X‘ow

(152)

,
D
Ay * —— o (153)

Using the constant LRC model, equation (148), and the above parameters,
it can be seen in Figure 36 that a principal effect of increasing the

steady turbulent Reynolds number is to increase the attenuation at all

frequencies, up to the laminar reference curve, Tigure 36 shows the
extension of the constant LRC curves beyond the laminar limit, and
also indicates that for a given Reynolds number a plateau is reached,
after which the LRC model fails to predict further increases in
attenuation.

To obtain the limiting value of o, denoted apy, for the constant
iR model and large values of w, I'p, is first rewritten using
equations (1l4t) and (147), and then expressed in terms of its modulus and

phase angle,

2 U W i
: 3 g _ ~w*Rv+Cy . Wy "
ML = oY, * TR 4T (154)
wyy \2 ’ f w
g ve Y v
Tpe = fuwbaCs |1 ¢ (—;E) %~[} - arctan wt] (15%)

For large values of N/m“t‘ or small wvt/m.

(w"‘>2 1/4
1+ {— s )
w
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wvtLa, Ci = \’Ca. and 'CaLa = l/Ca;

5 1 Wut oYy 1 Yyt
ay = w YCaLa cOs [—2‘ - 5'——(;—-] = —C-Ja— sin [5. T]

Using the small angle approximation, sing = 8,

(1} Wy
IR T B et St Y -
M Ca 2w 2 Ca

Similarly, for the plateau phase 1dg, By,

2 2w Ca

w
8 =~9~ffsin 1-&._—_“‘ g-_ul/;
M Ca

2 2
Q=8 .Ji.) v alh 'y KN
I‘\)t w\,t \Y)

The locus of break frequency ratios in terms of & is

a
R
oLp = U (—
B (r\’t>

109

Taking ay as the real part of TLys and using the relations Ry,

the constant LRC attenuation in the mid-fregquency range.

corner, or break frequency ratio, w/wy, = 1/2, is obtained.
q y t

(156)

(157)

(158)

The asymptotes of value ay for each Reynolds number are also plotted
in Figure 36, and it is seen that ay is an accurate representation of
Equating the

expressions for a given by equations (150) and (157), the low frequency

To convert to Brown's dimensionless frequency, used in Figure 3t,

(154)

(160)




This locus is also plotted in Figure 36. An expression for the
dimensionless frequency Q at which the ay asymptote intersects
Nichels' laminar reference curve, Figure 36, is obtained by equating
ay and ay, equations (157) and (98), respectively. Equation (98) was
derived from laminar theory, and contains developed laminar flow

quantities, denoted by subscript &.

rol -

W
—zt-/y'=-—l-[1+ﬂ]/w‘ (161)
a

which can be rearranged to give

wy
E = By (162)
Wy =37 Wyg
t A2,
Hp [l + S ]
For incompressible flow, y = 1, and equation (1l6é2) becomes
2
w
=Sl s o RE ol (163)
oot Wve Tve

In terms of Brown's dimensionless frequency, see Tigure 36,

R 2

G EWSS & el

gy = 8 r w
Ve vVt

and for incompressible flow

R 4
Qp = 32| — (165)
B Ty,

u
P - ; [rR] (164)
v
HB [l'fl—.-i] i
0
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The entire set of constant LRC model attenuation curves, Tigure 3t,
can be reduced exactly to a single curve, Figure 37, valid for all
Reynolds numbers and line cross sections by using the dimensionless

frequency ratio m/mvt and expressing the dimensionless attenuation as

Py, ca ‘
apy * —yo— Ol (166)

where aj. is the real part of T'p, in equation (150).

1t is seen from equations (150), (157), and (162), and shown in
Figure 37, that §p, and all asymptotic parameters are principally
functions of Wy or W/ Equation (166), with alg determined from
equation (luf) and K = vy, is plotted in Figure 37, together with the
appropriate asymptotes and corner frequencies. A second curve, which
has been normalized such that the plateau value of dimensionless
attenuation is unitv (K = Wy ), is also shown in Figure 37. It can
\
be shown via considerable algebra that this curve is also identical
to the ratio vy c/cg (or vy A/A,) obtained when using the comstant

LRC model.

Mid-fFrequency Domain-Turbulent Mean Flow

A& 3 is used in place of r, in equations (142} through (14u),

\’t

Nichols' circular line theory predicts the low frequency attenuation

very daccurately at or below the low frequency break (w/wy, = 1/2),

t
and can be adjusted to predict the high frequency parameters alsc.
However, in the mid-frequency range, w =& Wy s Nichols' theory does not

predict the extent of the attenuation plateaui in this region the

constant LRC model is used and the plateau extended approximately to
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the high frequency laminar reference. Accordingly, the results

plotted in Figures 36 and 37 and the equations describing the constant
LRC model are extended to include the mid-frequency range. This model
is easily understood and applied, and is in sufficient agreement with
experimental data {15,27,32]. TFurthermore, in the region of the inter-
section of the constant LRC model plateau and the high frequency
laminar reference (called the high corner or high frequency break),
experimental anomalies have been encountered which are not amenable

to linear analysis. In & recent paper by Margolis and Erown (271,
unexpected and dramatic variations in both attenuation and phase
velocity were encountered in the transition region between the quasi-
steady (constant LRC), and high frequency (laminar oscillatorv) regions i
of flow in water-filled circular lines carrying turbulent mean flow.

This same behavior was alsc observed by Vining {321 in a recent
experimental investigation involving air-filled rectangular lines
carrving turbulent mean flow. Vining and the author conducted a thorough
search for experimental anomalies or errors to no avail. The data was
repeatable from day to day, after extensive experimental equipment
replacement and recalibration. A similar exhaustive search was made bv

Margolis and Brown, and they were eventually persuaded that the experi-

mental data was correct. Details of the cited behavior and discussion
of the possible causes are best given in [27,32]. However, the
behavior is worthy of illustration, see Figures 38 and 349, It is
strongly suspected that resonance phenomena involving coupling between
curbulent vortices and the superposed oscillatory signal is present.
In [27], and as seen in Figures 38 and 39, the experimental data

corroborates the use of a quasi-steady model for dimensionless freguency
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ratios below and up to the transition region, and the use of a laminar
oscillatory model at ratios above this region. The experimental evi-
dence in [27,32) further emphasizes the futility of attempting to
develop a rigorous, complicated, smooth transition model as was done
in [15,25]; attenuation and phase velocity behavior in the transition
region is tar from smooth. Fortunately, the transition frequency
bandwidth is predictable [27], and can be avoided in any attempted
transmission of information through the developed turbulent mean flow.
In view of the experimental evidence, it is thought sufficient to use
the constant LRC model for dimensionless frequency ratios in the mid-
range and up to those at which the laminar oscillatory model becomes
valid.

High Freguency Domain - Turbulent Mean Flow. In the high frequency

-

domain (w >> “Vt)‘ the flow becomes frequency dependent. At high
fregquency, the laminar oscillatory boundary layer becomes considerably
thinner than the equivalent mean flow boundary laver (§, << &8y.) as
previously discussed in this section. Thus the high frequency behavior
becomes essentially independent of the mean flow, and approaches the
laminar oscillatory behavior associated with the line being investigated.
The normalized laminar oscillatory behavior of both circular and
noncircular lines was shown to bhe nearly identical when plotted against

the laminar characteristic frequency ratio wy, = Ryp/lge It remains to

L
determine the transition from middle to high frequency and to normalize
the high frequency domain results such that they are applicable to
circular and noncircular lines carrving laminar or turbulent mean flow

over a practical range of Reynolds number. Results are sought which

are similar to the single curves of Figure 37. These curves include
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beth low and mid-£regquency performance of circular and noncircular

boe

lines carrving a compressible or incompressible fluid at the specified
Revnclds number.

If Nichols' equations (1&2 through 145) are used together with rue,
the predicted high freguency attenuation is too high, as shown in
Figitre 4Q. Thus Ty, cannot be uvsed as the characteristic radius in the
high frequency region unless cther adjustments are made. EIxperimental
evidence supports the use of the laminar oscillatory model in the high
frequency regions, and the following development will provide the
mathematical relationships and adjustments needed in the high fregtency
domain.

Equation (1lu4) may be expanded using equations (142) and (143)

with v = wp to give

1/2
= oo Ju [ 14 (v-1) J(¢) - Jw z
T = a+ jp = = T - 3te) el g(¢) (167)

where

_ 207(¢)
J(¢) = 33%??7 (16%)

and
- w N8Y/2
¢= NS ros (169)

The normalized impedance ratic is obtained from equations (1u2), (1k3),
(1u5), and (36):

Zo -1/2
1 -3@) |1+ (y-1) J(3) = h(¢) (170)

~
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It is clear that the argument ¢ completely determines the bracketed
expression of equatic.i (167) and all of equation (170). The modulus
of ¢ can be rewritten in terms of the characteristic radius and

frequency as

. Qlﬂl 5 fx-l\ls*.'4|§i' " 2w
[¢] = v r, = v2 ikt el 2 = )

where r, = rg, ryg or Tyugs and similarly for wy. The argument ¢ depends

only on w/wy, or its equivalents. However, from equation (167) it is
seen that T also depends on w/c,. Supposing two lines of the same

characteristic frequency ratio, but different wy, i.e.,

w

;)_\; H -“-;; ) and m\,l 4 h\\)z
1 2
implies
2
& Wy ™
=l & sk 2 | =2 ., for all w. (172)
w2 “’\)2 !‘\,l

Consequently, a (and B) may be adjusted between lines of different

characteristic frequency to obtain the proper values:

)

Wy !‘\,
a; = —Lay; = [—=2| aj (173

It follows that a single baseline curve can be constructed to describe
the high frequency attenuation of all lines, carrving either laminar

or turbulent mean flow. One form of this curve is cobtained by
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normalizing a. equation (167), in a manner similar to brown [15]:

]-2'\*, I\’{\Ca W r‘“\ S(‘
el l“ I e . T & S ) = e Reg v \ )
vl v cq Real [ig(®)] ey Real {ig “—-\\‘ (LFu

when a = a(r,). Tquation (174) shows that the normalized attenuation i=
a function of w/wy only. Equation (174) is plotted in Tigure 41. The
high frequency behavior as shown in Tigure 4l (above w/wy, # IV, mayv be
adjuuted to the appropriate laminar vefevence (asymptote) by using the
known high frequency behavior and the approach leading to equations (172)
and (173), or by noting that the correct characteristic frequency ratic
at high frequencies is w/wye. whether the underlying steady flow is
laminar or turbulent, and interpreting Figure 41 accardingly.

It is convenient to normalize a such that the onset of {reguency
dependent hehavior beginz at unity value on the mid-frequency platean
and joins the laminar oscillatory limit curve of the fluid line being
congidered. The normalized high freguency attenuation iz to be determined

in termz of w/wy The appropriate asvmptotes are given in equations

.
(157) and (98} for the middle and high frequency regions, respectivelv,
These are used to define a new, extremely simple, single expression for

the middle and high frequency dimensionless attemuation. The two

asvmptotes are:

“M‘,“M x ] (179

¥ Y,..l fr—
“” .ij Cn [ 1 4 - ‘G"‘] v (l‘(l‘\\‘
e - (1706)

[
—
.

and for o

119




MOT 4 Uesl jUsTnqIn]
JO Jeulwe] ‘S3UTT JETNOITOUCH pUE JETNSIT) UT UCTIENUS1LY juspusdsq Aousnboay “In wanZti

80T g0T 20T o1 T

1
4
[\
D ) Ad
<

o1 1€ _
h.\nV s _
_ \
_ Z _ ). |
- = [V e 1 ™ — —
— 1 1
\\\\\\\\ ol
.- LTON'T = A
— L~ o
\ 247 veisue)| —— — —
e .- ssyoidufsy| —--— | m
\\\\\ 0T voTienby| ——
el —
150! T SO | (O L 1 LNt [ | | T T o o £0T




i el SRRk B )

ap U\)t Tvz w\,t

Equations (175) and (177) are combined into a single function, called

ay,:

2 L
= - Q X vVt w
g2 — =z + — Ze
GH, oy 1l 'y Tog o (178)

This function represents the middle and high frequency dimensionless
attenuation of laminar oscillatory signals in circular and noncircular
lines, carrying fully developed laminar or turbulent throughflow. The
inclusion of ¥ in this equation also accounts for compressibility effects.
Equation (178) is plotted in Figure 42. The high corner (break)
frequency occurs at the intersection of the two asymptotes, as previously

shown in the development of equations (161) through (165). A new

dimensionless grouping, the abscissa of Figure 42, is formed which
combines mean flow, geometry, and frequency dependent parameters. This
new grouping facilitates comparisons with previous work, notably that of

Funk and Wood [25], as discussed in the following subsection.

Comparison of High Frequency Results with Previous Work

In comparing the above results with those of Brown, et al. [15,27],
and Funk and Wood [25,26], it is necessary to establish a common basis
among the references. This basis assumes: (1) lines of circular
cross section (ryy = ro or R); (2) nearly incompressible fluids (y = 1);

(3) unity Prandtl Number (o = 1): (4) constant phase velocity (c = ¢,);
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(5) developed turbulent mean flow; (6) relatively small amplitude
oscillatory signals; (7) small attenuation per line wavelength; and
(8) high or near high signal frequencies (w/wy, 2 1), for all turbulent
Reynolds numbers. Since Funk and Wood [25] have compared their work to
that of Brown, et al. [15], the comparison herein deals primarily with
Reference [25). The dimensionless parameters of Brown, equations (152)
and (153), will be used for overall comparisons, since these parameters
have found wide use in the literature.

The model developed by Funk and Wood [25] assigns all viscous

effects to a single fictitious laminar boundary layer whose thickness

(4) is based on steady flow laminar and turbulent friction factor data:

e o - 08
R ° TERel, e

where R is the radius of the circular line. All other effects are assigned
to an inertial plug-flow core (i.e., L 2 La). The model makes use of
the eight assumptions listed above, and results in a single dissipation
function (&) such that the attenuation can be expressed as
68 pih (180)
Regd
The attenuation itself is assumed to be small, and only first order effects

are considered in the expansion of the dynamic pressure ratio:

AP,
8P

-0z

)
(]
(124
[
)
=}
12}

(181)




The model of Funk and Wood still requires the computation of a complex
transfer function relating the local velocity gradient to the core
velocity, and alsec requires numerical integration of the dissipation
function across the boundary layer. Both of these requirements are
avoided by the model given in equation (178) and plotted in Figure 2.
From equations (65), (75}, (76), and (141) it is easily shown that for

the same circular line carrying turbulent mean flow,

wop (DY Ry (Rely e (e
Wy R Rve  (fRe)y = (fRey)y s

The model of Tunk and Wood and the author's model are related through
the turbulent mean flow parameters. Comparing equations (179) and (182),

-%= %—(f—;—t-)z (183)

The relationship between ¢ and the parameters developed herein is obtained
by comparing expressions for the dimensionless attenuation. From
equation (180),

2
L o cha . e
v v Rcad

- ,_R_ Y
ol ¢ (18u)

and from equations (178) and (183),

R?c, R2e, RV . R .
v a = v apMayy = U r—\)f—) Ofy = XaHt (185)
It follows that equivalence is of the form & = &Ht' From equations
(178), (183), and (185), with y = 0 = 1, and ry, = R for comparison

with [25],

123




g .| Topon Aouanbsaj yBiy
MOTJ UPSH JUSTNQUN] 40 JRUTWET *S3UTT JBTNOJTOUON pue JBTNOAT) Ul UoTIPNUally °Zh 2andrg

Uha .NDfH #
m
u.D,u T
[4

g0T

124

2 (LLT) pue (GLT) suorienby *sajojdudsy —-.— |
(8LT) uoTienbg 1 "

C | | __ | | __ | ] L | | | __ 1 1 00T




cha
v

i
/\.’
“r
N
N
EIE
<
rt
i)
1]
)
[ J
+
x| >
E’E
<
ot
—d

o]
"
&)

[l +
R2c, 1/2 2]1/2
’ AT | 5
== 4 o [} + (E;E)] = [é + (6;) (186)

Equation (186) indicates the significant influence of the steady and

)

o>

dynamic boundary layers on the line response. At high frequency ratios,

2 /2
Lim ¥ a G bm Ry (2" & i SO T S
W v ue A 8w TS oy
and at low frequency ratios,
R%c
Lim a R 1/2 _ R
et Sl [1+0) e (188)

and the high corner (break) frequency occurs at 4 = §,. From Nichols [3]

and Karam [20], the high frequency laminar oscillatory attenuation was
approximated by equation (98). Equation (98) reduces to equation (187)

as shown in the following development (y = 0 = 1).

" Ik M o ady e
OH = 3o [l e ] Wy, = Tes wwy g (189)
Using the definitions of wyy and §,, together with equation (189) and
Brown's notation, gives

&
Recy 2

o = 33 Ywwye = 2 4= %— (180)




It remains to show the equivalence of the mid-frequency asymptotes,

i.e., that(R%cz/v)ay = R/4, with vy = ¢ = 1:
2
Rfcg =~ Rica /fy "o R2 gy | 4 (R ) =} (191)
M - - w——as ¢ == T — - -
v v 2 cg v rgt Ty A

The last two terms of the above equation are identical to those of
equation (183).

The attenuation model embodied in equations (178) and (1886),
applicable to the middle and high frequency regions, constitutes a very
significant simplification when compared to the models given in [15] and
(25]. An appreciation of this model can only be realized by compariscn
with the cited references.

The results of Brown, et al. [15,27], Funk and Wood [25], and the
author are plotted for comparison in Figure 43 at two Reynolds numbers,
Re = 1x10" and 1x105, for ry, = R. In view of the experimental data,
the auther's model is as valid as any of the referenced models for
circular lines, and is comparatively much simpler. TFurthermore, the
model is applicable to any fluid line of arbitrary cross section,

carrying laminar or turbulent mean flow. The other models are not.
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VI. The Transient Response of Fluid Lines Carrving
Developed Turbulent Mean Flow

In this section, the high, middle, and low frequency models developed
in Section V are transformed into the time domain using the general
approach of Karam [19,20]. The methodology and form of the data is very
similar to that presented in Section IV; much of the general discussion
presented in Section IV concerning the various regicpns of the frequency
ané time domains is also applicable here. Accordingly, only major
differences will be pointed out in the development and discussion which
follows. 1In all developments of this section, unity Prandtl number is

assumed.

Frequency and Time Domain Equations

The frequency domain is divided intc three regions (low, middle, and
high) based on the turbulent characteristic frequency ratio, w/wy, =
Ry./La. The regions are divided according to the value of the low and
high corner (break) frequency ratios, as defined by equations (150),

(157), and (162):

Low frequency: —_— = —

y Wy
Middle freguency: % § L ¢4t

e (192)
Wy, T Y Wy

y Wy
High frequency: EL—-z & ms t &
Eog.~ T 0wy S

lar B




It is seen that the regions are highly dependent on both the laminar

and turbulent steady flow parameters. A new characteristic time, t. =

l/”“t' is used to redefine the dimensionless time parameters, such that:

TE Wyt t/te

1]

10 = wueT = T/t (193)

l = m\,ttc = tc/tc

The above frequency regions and dimensionless time parameters are
used in developing expressions for the various pressure and flow

transient responses presented in this section.

Line Attenuation Factor

To facilitate the use of Karam's methodology, the attenuation in
turbulent mean flow is expressed in terms of the three logarithmic line
segments (asymptotes) corresponding to the three frequency regions of

equations (192):

W
f Wy = ¥ r 8 2 K, v
B¢ Ca 2 w\)t
[\
g = 4 =9 Yy {1a4)
W F ey :
w .
T A O A A R o~
A, F 7wy 3 e = Ky vw
S Ucy 4Ca 1\'Q' Wy,

It is seen that the high and low freguency attenuation are of the form

a = Kk rw. Consequently, the solutions of Metzger and Vabre [23] and




(4
#
Karam [20] may be adapted to obtain the various transient responses. The f
attenuation ratio, a/ay, is redefined as |
Ty 2 !
1 for = < l(_t) | &
B \ryg 1
> ;
: r
. L =4 r* for -Y-(Lt> Sigsie? (19%) (
ay 1\},: 4 r\)n 9

l'§'(PV£ for 2 2
Y \Pye

where

Pressure (Flow) Response to a Step Input of I3
Pressure (Flow), Turbulent Mean [low

The general solution for the transient downstream pressure (flow)

response to a step input of pressure (flow) was given by equation (102).
Using the attenuation ratios of equations (19%5) above, together with
equations (102) and (193), the generalized transient response may be

expressed as

Pr, = erfc UCt-1p) (196)
ol
"(T—To) f
where subscript t denotes applicability to turbulent mean flow conditions.
1
The dimensionless step responses for long and short times corresponding t
to equations (107) and (108) are, respectively: ;
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Ws sk
4 Aryp/ VKR 8
Py, = erfc U{t-1g)
t V?(T-To)
[ 5 (372
T
= erfc %-(:_20 ) U(t-19) (187)

and

X (3’.1) !
4 Pvg 0

Bop o enfe e A=l (v -vlg) - {198)
E v2(1-19p) c

for completeness, the intermediate or middle time solution is
F = erfc

Y Vt) n
o (zvg kt 1p
I‘M+

U(1~1p)
S Y2(1-1p)

2
TQT
= erfc % (% 2 > U (1-1p) (19¢)

It is seen that the middle and long time transient response is completely
determined for a given fluid, t,and tp. It is also noted that equation
(197) is identical to equation (107); in the latter equation the times
are nondimensionalized with respect to w.. Equations (197) and (193)
describe the transient response of arbitrary lines filled with a
compressible fluid carrying laminar or turbulent mean flow. :or laminar
mean flow, wy, = Ry,/La is used to define the dimensionless time (i.e..

T = wvgt)3 for turbulent mean flow, wyy = th/La is used. The short
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time response, equation (198), retains some dependence on the ratio cf
the turbulent to laminar characteristic radii. The physical interpre-
tation is that the high corner break frequency, which essentially marks
the division of influence between‘steady turbulent mean flow behavior
and frequency dependent laminar oscillatory behavior must include
influences from both phenomena. The ratio r\,t/x\,K essentially adjusts
the transient response to account for the various arbitrarv line
geometries and turbulent Reynolds numbers, and is therefore not solely
dependent on the turbulent characteristic frequency (wyy).

Equation (196) is plotted in Figure 44 as a function of 1 = wy, t,
for two values of the ratio rvl'r“q, which correspond to the following

tabulated conditions for circular lines (r = R).

Ve
TABLE VII

Equivalent Circular Line Steady Flow Parameters for
Figures uu, 45, and 46

!‘v r
t Y ( \,t>
AN Re e =y
Top Y e fRe ¥ \rog R{=ry)
. 44975 1.4017 1x10% 316.4 .15760 .0935
.07998 1.4017 1x106 1779.2 .02803 , 0935

The influence of rvt/rvg on the short time response is small and nearly
negligible, as can be seen in Figure 44. In the middle or long time
vegions, there is no influence, which is evident from equations (197)
and (199). TFor the large differences in mean flow parameters given in
Table V11, the nearly unnoticeable effect on the pressure and flow

parameters plotted in Figure 44 indicates that the transient responses
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are very weak functions of Tyy/Tyy . The equations developed in this

section also apply to upstream and downstream flow transients; i.e.,

Pr £ Qr
s "\ Qg
; t t

and
Uftyiz Pe(®ult) wor Qgltiu(t)

as appropriate. Expressions for the remaining unit step inputs and

responses of interest are developed in the next subsection.

Pressure (Flow) Response to a Step Input of Flow
(Pressure), Turbulent Mean Flow

The two remaining dimensionless transfer functions of interest are:

Pr(s) Zo(s)
3L 1S 1l <o -l (s)
g T = (200)
S0 Qs(ss> s Zg4
t
and

1 Qr(s) g i Yo(s) e-art(s) (201)

Y5 t8) \ PiR) 8 e

WG

As was done in Section IV, the approximations used by Karam [20] are

adapted, witht = w,, t, and equations (113) and (11u) are used to obtain

i
the final time domain expressions. Subscript t again denotes applica-
bility to turbulent mean flow conditions.

Approximations of tne characteristic impedance and admittance for

the long time (small s) and short time (large s) regions., adapted to

turbulent mean flow conditions, are respectively:
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ZOLt =

Zop, *

Y°Lt

YOHt

Performing the reguired

t

integrations yields:

QZSO ‘\l ——Y“ = QZSO ‘\I ;1-;

Zop,, (M)AA) = LEs

o
t

Zop, (MAA =
o

t

YoLt(X)dA =
o

t

Yoy (VA =

As before, it is convenient to combine the impedance and admittance into

a single function applicable to the entire time interval:




_F._
T "
[ e (1 + -“—T>lh (208)
“so ~ 2
o
t -1/2
1 T
o Yo (A)dX = (1 + — (209)
Yso ° Y
o
Using the form of equations (113) and (1lu4) together with equations
(196), (208), and (209), the desired dimensionless step responses are
obtained as follows:
p s - 1/2
L2y} s [RR ] J1e (210)
Zs0\ Qs Qs ! A
t - t
- -1/2
Q B
fso (5= (D) =[] [1+Z (211)
s 2 i, V
: G

Equations (210) and (211) are plotted in Figures u5 and 46, respectively,

for the parameters given in Table VII.

Physical Implications of the Fluid Line Step
Response with Turbulent Mean Flow

It is of interest to discuss the physical implications of the
dimensionless step responses shown in Figures 44, 45, and 46. For lines
with the same value of tp, the computed responses will be identical

for values of 1 2 (y/4) (wyg/wyy), and will be nearly identical for

smaller values of t. However, two lines of identical 1y and working
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fluid, but different turbulent characteristic frequencies necessarily
imply different physical lengths down the lines. The line having the
larger turbulent characteristic frequency will exhibit a faster rise
to a given ratio of Pn/Ps or Qp/Qs, in a shorter length, and will
approach a diffusive RC line more rapidly. Comparing the two circular
pneumatic lines for the conditions of Table VII with 15 = 2, it is seen
that an increase in Reynolds number from Re = 10" to Re = 108 decreases
the adiabatic delay time (T = %/cg) by the ratio of 31.6/1! The
implication of this example is that increases in the turbulent flow
Reynolds number greatly accelerate the transition to diffusive RC line
behavior; consequently, high turbulent Reynolds numbers should be
avoided in any attempt to transmit information.

In terms of the equivalent laminar and turbulent steady flow

boundary layers, equation (183), it is seen that the condition

wy
et ()
y “‘Vt

is equivalent to

-
r
-~
=)

for circular lines or

vy XA
I‘\)g

for arbitrary lines. Thus the break time between short time and inter-
mediate time domain responses is a strong function of the equivalent

steady flow boundary layer parameters.
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VII. Conclusions and Recommendations

This section contains a summary of the conclusions reached as a
consequence of this work. Recommendations for extensions of this work

are addressed.

Conclusions
alg In general, the very close analogy between the small-signal
response of fluid and electrical transmission lines has been

reinforced for a wide range of fluid line geometries, mean flow

conditions, fluid media, and heat transfer effects. The signifi-
cant role of the equivalent electrical transmission line properties
in describing the fluid line response has been demonstrated.
Distributed line parameters such as resistance, inductance,
conductance and capacitance, derived from the series impedance
and shunt admittance of an equivalent electrical transmission line,
are shown to be the kev parameters in determining the line response.
2T A closed form, distributed parameter, analytical solution for the
small-signal frequency response of fluid transmission lines of
annular cross section has been obtained. The solution considers
shear flow effects, fluid compressibility, and heat transfer
effects, and is applicable to blocked lines or lines carrying
developed laminar mean flow. The solution was shown to be in very
good agreement with experimental data for blocked annular pneumatic
transmission lines over a wide range of annular radius ratios and
signal frequencies. In comparing the annular line results with
those previously obtained for rectangular lines, it was shown that

for large radius and aspect ratios the solutions converge. The
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annular line solution contains the circular line solution as a
special case.

Lines of arbitrary cross section can be accurately modeled as
equivalent circular lines having the same ratio of steady flow
resistance to inertia properties. The concept of an equivalent
characteristic frequency and radius can be applied to transmission
lines of arbitrary cross section to predict both the freguency
response and transient behavior of these lines, including either
laminar or turbulent mean flow effects. In solving practical
problems involving fluid systems, this equivalence should be of
significant value in simplifying the system modeling task.

The characteristic radius is analogous to the hydraulic radius
used to represent circular and noncircular lines in steady flow
analysis. However, the characteristic radius more accurately
accounts for the actual viscous and inertial effects and was shown

to be clearly superior to the hydraulic radius in modeling the

frequency response of noncircular lines. In view of the much closer

agreement with existing data and analytical solutions for both
rectangular and annular lines, the characteristic radius should be
used instead of the hydraulic radius to determine the equivalent
circular line for all noncircular lines.

Very significant simplifications have been achieved regarding the
modeling of the frequency and temporal response of circular lines
carrying turbulent mean flow. Comparison of the simplified models
with existing models and experimental data on circular lines shows

that the simplified models are as accurate as any existing models

14l




in predicting the frequency response. Furthermore, the simplified
models are not restricted to circular lines or incompressible
fluids.

Of the four equivalent circuit components, the steady flow viscous
resistance is the most influential parameter in determining the
frequency and temporal response of fluid transmission lines. For
developed laminar flow, the steady flow resistance is determined by
the line geometry and fluid, and is not influenced by changes in
the Reynolds number. For developed turbulent mean flow, the
resistance is strongly dependent on the Reynolds number. In all
cases, the thickness of the frequency dependent laminar oscillatory
boundary layer relative to the equivalent steady flow boundary
layer is a key parameter in determining whether the freguency or
transient response exhibits predominantly viscous, isothermal

behavior or inertial, adiabatic behavior.

Recommendations

dho

The small signal transient response of both circular and non-
circular lines carrying laminar throughflow should be determined
experimentally and compared with the analyvtical results presented

in this work. The experiment should include both compressible

and incompressible fluid flow. and should be repeated for turbulent
throughflow.

More analytical and experimental work is also needed to extend the
applicability of the concepts. The frequency and temporal responses
of fluid transmission lines to large amplitude excitation signals

are of particular interest. The assumption of essentially constant

')
r
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mean fluid properties and small perturbation of a steady mean flow,
valid for small-signal excitation, would have to be re-examined.

A possible approach would begin with a sensitivity analysis of the
amplitude and frequency dependence in the initial formulation of
the governing equations, followed by the addition of corrective
terms to the simplified equations of this work to account for the
first order dependence on excitation signal amplitude.

An analytical model which adequately describes the behavior of the
signal attenuation and phase velocity at or near the high frequency
corner, or break frequency, should be developed. The anomalous
behavior is associated with the transition of small-signal
dependence from quasi-~steady turbulent mean flow dependence to
laminar oscillatory frequency dependence. A companion experiment
which would include flow visuvalization and high-speed photography
of the disturbances might provide significant physical insights

in developing the model.
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Appendix A

DC Resistance and DC Inductance of Fluid Transmission
Lines Carrying Developed Laminar Flow

In general, the DC resistance (Ry) and DC inductance (Ly) are
determined from the steady flow parameters of the rigid transmission
line. These parameters will be functions of the line geometry, fluid

properties and steady flow profiles. The DC resistance is defined by

_ -3P/3z _ -3P/dz .
RV = Q = AT (A l)

and the DC inductance is defined as

.
(;) dalL, = KpeL, (A-2)
u

where u is the steady flow velocity (either laminar or turbulent); u

is the average velocity, u = 1l/A JudA; and Ly = p/A is the adiabatic

inductance.

For circular lines, Ry and L, are constants. For steady developed

laminar flow, Ry and Ly are obtained from the classical Hagen-Foiseuille

flow:

-3P/az &y
R = T mnem— (A"a)
v 6 A2

The Hagen-Poiseuille velocity ratio is [30]

= 2 [1 -(f;)Q] (A-1)

e

1u7



where r is the radial coordinate and r, is the inner radius of the

circular line. Using this ratio in equation (A-2),

L 292
Ly = —2 I 4 [1 - (:—) ] 2mrdr = % La (A-5)
[=]

For annular and rectangular lines R, and L, will depend on the radius

or aspect ratio, respectively. For the annular 1line [8],

ro2/4yu (-dpP/dz) 2 ln r;

& %
1-r;2
= i[l + o¥2 4 —rﬁg] (A-6)

From which Ry, is easily obtained as

l+z=*2 =
-3P/9z 8mu i 1
Ry, = = + (A-7)
L Q An? [l—rif2 1n r*]
i

% P 5 g .
where B = ri/ro, is the radius ratio of the annular cross section.

The velocity ratio is [8 ]:

i [1-r#*2] 1in rz - [l-rgzl in p*

- = (A-8)
Y % '

b %-[(1+rg2) in rj + (1-r§?)]

where r* = r/r, and the dependence on geometry is obvious. The notation
r* = r;/r, is generally used in the body of this work. However, for
this appendix only, it is necessary to distinguish between the
dimensionless ratio r* = r/r, and rg = rij/r,. Using equations (A-2)

and (A‘B)’
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La #2102 * 0 *2
Lvn-KL Ly = > (ln I‘l) [-5——3-(1+ri)+-5(1+ri
r*2 g
+=3-|-1nrs (% r*“) + % (1- r’i2)2 (A-9)
where
) to\] 2
a2 = [(1 +rei) e+ (2- r’iz] (A-10)

For the rectangular line [8] of aspect ratio a = h/b,

S
u T sinaj cosh(—; 9
-;i——a-P— = 2 z cos(ain) l- ————El——' (A-11)
E:(‘EE i=l o4 cosh(—s)
where n = y/h, £ = x/b, and oj = m/2(2i-2)m/2(2i-1) 1 = 1,2,3,...
The average velocity is
ﬁ «© [ 3] a:
= - sinZa; [—i - tanh —i] (A-12)
n2 —aP) i=1 og® A s
Lu\ 3z

The DC resistance for the rectangular line is easily found as

Ry.

s\1-1

L as Qa

_ -3P/oz _ 2u BV i el (s & )

e e s ’ i sin‘ay ( < tanh — (a=13)
aA® {i=1 @i

The velocity ratio is given by

cosh(g-i- Q]

» sinai
,z o e - coshfai/ai

i=1 @i
2. - . (A-14)
u a 85 | ik e
z -;—g sin<a; [ tanh a]
JEIL =
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The DC inductance is

. 2
L 2 L +1 +1 o . cosh _i)e
o= B2 (0 e 2 [ (] i o - 25
u d j=1 © a3
SRS COSh—;
(A-15)
v a Joi o
here d = =t {| == -~ tADh —
e izl i [ < a]
The integrand is of the form
(- 2 o«© [
D ovitmxg(®)| = T T yi(ndxi(&)ys(n)x3(e) (A-16)
i=1 j=1 i=1
where
o,
cosh —i £
Xi(E;) =11 - Y
cosh —
a
and
sinaj
yi(n) = —;—?— cosain
ot

The integrand is sufficiently well-behaved to permit interchanging the
orders of summation and integration. Thus, the integral of equation

(A-15) may be written as

1

® » +1
1= 7] ] yi{n)y5(n) dn %3 (£)x4(£)at (A-17)
j=1 i=1 ) ) N
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The integration is greatly simplified by noting that

1
{ Yi(n)Yj(n)dn
-1

=0, i#7
(A-18)
oL ieg
= by d 1
ai 0%
The integral is evaluated, and Lvr becomes:
lLa T 1 3a Qi 25\
Ly = —— —— (3 ~ == tanh — - tanh? — (4-19)
Vr T ye2 izl ai‘*( of a a

It is of interest to include the case of steady developed laminar flow
between parallel plates, because this case represents limiting values
of both radius ratio for annular lines and aspect ratio for rectangular

lines. As r?

+ 1 (a~ 0), the pairs Ry s v, and Ry Ly, will
approach the values obtained for parallel plate flow. Taking a unit
width of flow between parallel plates where 2b is the distance separating

the plates [30] and y is measured from the center plane between the

plates, \
= = 5&-%5— (b2-y2) ' (8-20)
= Z?—f;% b (A-21)

And the DC resistance per unit width is

-BP/Bx 3u
N c——ma—n n  em— A’
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The DC inductance is easily calculated as

L 1 iz I
i " apaa
Lv-A[(ﬁ)dA 2b[
-b

(A-23)

Thus, the low frequency (DC) inductance does not vary greatly over the
range of aspect or radius ratios for rectangular or annular lines.
With inside radius rj = 0 for annular lines, KLn 3 KLc = 4/3. As
rj + ros KL, + 1.2. TFor rectangular lipes, KL, has its maximum at
a = 1 where KLr = 1.3785, and approaches KLr = 1.2 as a + 0.

A similar approach may be used to obtain the low frequency (DC)
viscous laminar resistances and inductances for other noncircular lines,

provided the steady flow velocity profile is known.
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Appendix B

High Frequency Approximations for Annular Lines

First order approximations of the system variables describing the
performance of annular fluid transmission lines at high frequency
ratios (w/w, >> 1) are obtained from equivalent circuit considerations
and analysis of the asymptotic behavior of the Bessel function solutions.
In general at high frequency ratios, the flow is approaching inertial,
adiabatic behavior. As was pointed out by Nichols [3], the velocity
profile is characterized by a large central plug wherein inertial
effects are predominant, and a viscous skin region wherein viscous shear
effects are predominant. The viscous region is characterized by a
skin depth 6§, which is proportional to Yv/w. As frequency (w) increases,
&y decreases. Similarly heat transfer effects may be separated into a
relatively large adiabatic core region bounded by a nonadiabatic regiou,
the latter being characterized by a thermal boundary layer thickness
§r which is proportional to /3;7—. For the annular line, there are two
boundary layers and their influence on the velocity and temperature
profiles vary with radius ratio. The behavior is described in the
velocity and temperature profiles, equations (11) and (12), respectively.
In general, the Bessel function J°<¢jg> has its gre?test influence on
the solution at the outer wall (r = ry) while Ko(}55> is most
influential at the inner wall. At high frequencies the following

inequalities apply:
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Jo(rg) >> Jplr;) Ko(ri) >> Kp(rg)

(B-1)
Ji(re) >> Ji(r;) Kij(ri) >> Kij(rg)
Jo(ry)Ko(r;) >>> Jplr;)Kp(ry) (B-2)

where for Jp,J; the argument (r) is presumed to be </m rja/é and
for Kp,K; the argument is presumed to be </Z73 rjl/2>. For the energy
equations v is replaced by vr.

With the foregoing approximations the parameters appearing in
equations (11) and (12) may be greatly simplified. The coefficients

B, D, and M of equations (13), (14), and (18) become:

, Ko(ri) - 1
el e Jo(ro)Ko(ri) ~ ~ Jplro) Ll
. Jo(ro) - 1
DA B TR, ()R ) SES)
ks X rodi(re) | riKi(ri)
MaM = [——J-B-(?;)— + 3 W (B-5)

From [5,6] the first order approximations of the Bessel functions are
given in Table B-I. Using the expressions given in Table B-I and keeping

only first order terms, the high frequency series impedance becomes

"o * 2v £
Zyy = jwla 31 + Xn_ o [(I‘*—l) + j(I‘*"'l)]i (B-6)

and the shunt admittance is

Yyp = juCqy gl - (J;—l) TTO @ [(r*-l) + j(r*+l)]£ (B-7)
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TABLE B-1

First Order High Argument Approximations of Jp,J1,Kg,K1

Bessel Function Modulus Phase
3 . x/V2
2 6 e 1 X b 1
J0<x32> = Moej 0 Mp = (l + > Bp = —= - = -
y2nx 8v2x V2 8 8v2x
3 . x/V2
J1<xj2> = M1e3°1 My = e <l . ) 6, = X, g% b 3
Y21 8v2x V2 8Y2 x
1 £ -x/fg
.5 1 X s 1
Ko<x32> = Noej¢° Ng = S (l - ) $g = - —= - = + ~—
0 Yn/2x 8v2x i 2 8 8Y2x%
1 -x/V2
.2 ) 3 X 5n 3
X (x32> = Nyel® Ny =S (l + ) oy = - =- 2L -
! ! = 8v2x . 2 8 8/

The high frequency components of the equivalent circuit are easily

obtained from equations (B-6) and (B-7) by separating real and imaginary

parts:

Y2vw L l+r;®

Ry = Real(Zyp) = &= 2 Vauy L, - d (B-8)
ro(l-r¥) l-pr;*

Lyy = Imag(Zh1)/uw = Lg (B-9)
v2vpuw (y-1)C 1tpg®

- " R S e I__-l) - .
Gy = Real(¥yy) = —— 303" = 3 ww\,( = Ca"'l i Oedo)
CHI = Imag(YHI Y/ w =.Cq (B-11)
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In the high frequency regime and using the approximations R/wL << 1,

G/wC << 1, the attenuation a and phase lag B are given by Weber [11] as

LG+RC
Uy = ——— Byt = wrLC (B-12)
HI 2 @E; HI

Using equations (B-8) through(B-11) in the above equations

l+r;* -
§ ey 1555 (43
ayp = > (B-13)
2/1Ca

BHI = wy zaCa

The foregoing approximations are accurate to within 1% for w/w,, 2 100
and ri* < 0.9 and are accurate within 10% for w/wy 2 10 and r;* < 0.5.
The smaller is ri* the greater is the accuracy for a given range of

w/wy,.
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Appendix C

Derivation of Small Signal Equations in

Cylindrical Coordinates

In this appendix, the continuity, momentum and energy equations
governing the small signal propagation of pressure waves through a
fluid-filled line are developed from the more general equations of fluid

mechanics and thermodynamics. The equations are expressed in a cylindrical

coordinate system (r, 6, z). The radial, angular and axial velocities
. . 3 <2 .
in this coordinate system are up, ug, and u,, respectively, and u is the

vector velocity. In the following developments

[ L.
Dt = o9t T3r 1r ab Z 3z
. 139 1l aue BUZ
vusrw ) et
2 2 2

g Baanh Z o3 di) 2N
ar? r ar  p2 g2 2°

Momentum Equations

The Navier-Stokes equations of motion for a compressible fluid are

as follows:

' Dur  ug? -3p 2 ur 2 dug
- P [B?' el B R (U e Sl
l a .+ -
AN — (veu) (c-1)
i
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| D ug Upug 1 3P 2 d Ur e
— = - = =+ F + vz + ——— e ——
[¢] D + ) U ue ry

i 1l 3 -+
tFu [; 5 (v U)] (c-2)
fo) Du_z =d = ﬁ + }‘ + uvzu + _l- u a— (V-;) (C_a)
Dt 3z 2 2 3 9z

The principal direction of small signal wave motion is the axial
direction; thus, it is assumed that the flow is axially symmetrical. This
further implies ug = 3/36 = 0. This assumption eliminates the momentum
considerations of Equation (C-2). In addition, the body forces (Fp, Fg,
F,) are also assumed negligible. The momentum equations are thus reduced

tc the following:

aur aur aur 22 32ur 1 aur azur\ ur

Ple—+t Upo—+ Uy — | = - +u + = + - —

ot or < 3z or 32 r 3r 322 e
13 i) dugy

*3IVar [? oo RS ] =)

13 [23(ry) 3uz‘]
T3V ez [; ar -y J (¢-5)

Th'. wavelengths of interest are assumed large compared to the cross-
sectional dimensions of the line, which implies that the radial component
of velocity, up, and its derivatives may be neglected. The above

equations are further reduced to the following:

158




P A
O = M= s, e
¢ T3 = (c-6)
du,, duy P 4 3%y, 32u 1 du
FEEL B vl | RS G e e =0 et AL ST =
"[at*“Zaz] %2 BeE TRl TR te=7)

This assumption may be expressed as the following condition: X >> ry
where ry is the principal dimension of the cross section in the radial
direction. Since ¢ = fA, and f = w/2n this condition is equivalently

expressed as

2n¢c

* rg << " (c-8)

where c = speed of sound in the lipe. It is next assumed that the
pressure is uniform across any line cross section. This assumption
removes the dependence of P on r and eliminates the radial momentum
equation

oP

= (c-9)

o |
31-1

wlw
&3
/—\
wf ar
S
L

"

o

It is necessary to define the conditions under which the axial variation
of uy is negligible, and to remove this dependence. The pressure,
velocity, and density may be written in terms of a mean value and a

small perturbation about this value as follows:

p=p+p'
P=p+ p! (C-10)
u=zlu-+u
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and the subscript = has been dropped from velocity, since only the axial
velocity remains in the momentum equation. Substituting these variables

into equation (C-7), and separating the steady and dynamic terms gives:

.90 . .. a0 _ 9P 4 %% 2%0 1 9%
R TR Tl R a2 ¥ [ ard *r _F] (C-11)
u' e Qoen ) O P! 4 ady!
(p+p') = 4 (futpu'+hp'+u'p') B Y P = ¢
acu' 1 au’
+ — - -12
¥ [av? & r ar ] (€-12)

It is assumed that the steady part of the velocity is constant in both
the axial direction and time. Thus d0/3t = du/dz = 0, and the above

equations are rewritten as follows:

_ 8t . au! art 324y ayt TN
(D*D')"%* (p*p')u'-‘ﬁ :--_‘_-f.T“.L%:‘. + u | — .,.l_.‘_‘_
s <

(C-1u)

Equation (C-14) can be further reduced by neglecting higher order terms

involving products of perturbation quantities:

Ayt art 32y i AU 3y
5&: -f_...'...u‘_..}l + u 4 .'.1__‘3 (C-15)
at an 3 agd ap- rar

It is now possible to solve the steady flow problem, equation (C-13),
by standard techniques. The combined homogeneous and particular solution

tor velocity is as follows:
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b
G=Cp dntr+ e %E %g i (C-16)

where C; and C, are arbitrary constants, subject to the boundary
conditions of either circular or annular lines. For circular lines, the

boundary conditions are:

remains finite at r = 0

(o4}

U=0 at r = rg

Applying these conditions to equation (C-16) leads to the well-known

Hagen-Poiseuille velocity distribution:

o DER 2 2 =8
G T (ro<-r<) (C-18)

For the annular line, the boundary conditions are:

ri*)

c
"
o
o
-
xS
'

£ 5y (or ™=
(C-19)

u=0 at r =15 {or r* = 1)

where r* = r/rq and ri“ = ri/ro, and ri, ro are the inside and outside
radii which bound the annular cross section of the line. Applying these
conditions to equation (C-16) gives the steady developed laminar flow

velocity profile in an annular region.

2 L ot
o k. Al i A s G
Q= - - B [(l ) (1 s ) o l‘i* (C-20)
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Returning to the dynamic problem, equation (C-15), it is necessary to

develop the conditions for which

2, '
3y s (C-21)

£ <«
3 Y 922
This is done by assuming the dynamic pressure to be of the following

form:

Fz juwt

p' = ape % e (c~22)

and ' is the propagation operator defined in Section II, which defines
the lengthwise dependence of the dynamic pressure. Differentiating

equation (C-22) gives

SR ~Tz jwt o
5z - - ApT e e (C-23)

To a first approximation, the axial sensitivity of the perturbation

velocity is

du' 1l P!

—_— T e— e— ~2U
iz Pcg 9t G )
Substituting equation (C-22) into (C-24), then differentiating
equation (C-24) with respect to z gives
2y s =P &
SR 5 - ppr S gTE UT (Cc-25)
32 Bca‘.
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Comparing equations (C-21), (C-23) and (C-25) it is seen that

aZu’ I ?zn
322 3z

when
W << = e T —— (C-26)

For air at standard conditions this amounts to requiring that
w << 3.2x107 rad/sec. The radian frequencies considered in this work
are well within this restriction. Using equation (C-26) in equation (C-15),

and rearranging terms

A3 su'] . au' . 1 8P .,
T [r T ] Y% g% (c-27)

Equation (C-27) is identical with equation (2}, Section I1I. The
continuity equation is considered in the following development.

Continuity Equation. The continuity equation for a general

compressible fluid expressed in cylindrical coordinates is:

9p
- t
&

Iw

13 3 N i
(pruy) + ] (pug) + = (puz) = 0 (C-28)

o N ] od
[

r

By previous assumption, up = ug = 3/36 = 0; thus

§%+ —g—; (puy) = 0 (c-29)
Expanding equation (C-29) gives
du
i) Byuy B (c-30)

at ML T z 5z
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Energy Equation. For a compressible fluid with constant thermal

conductivity, k, the energy equation is

Dh DR _ 3

->
pApE S T Tt BT KREE =19 . (c-31)

where h is the specific enthalpy, q is the internal heat generation
other than by viscous dissipation, ¢ is the mechanical or viscous
dissipation function, and ar is the radiation heat flux vector. For
small signal propagation the dissipation ¢ is assumed negligible.
Radiation effects (Er) and internal heat generation by chemical or
other like means (q) are not considered. With these assumptions,

equation (C-31) reduces to

p -g—i - %fcl = kV2T (c-32)

Expanding equation (C~32) in cylindrical coordinates,

h  %h Yo o 3hf | P U3 3P
Plac T e v T T30 T Y232 ot r3r T T 36 z 3z

32T . 1 9T . 1 3%T . a?r
2 k| —+ ==+ + (c-33)
[ar-2 r3r " 1?7 307 322

From the assumptions made previously on simplifying the momentum

equations, such as up = ug = 9/96 = 0, the above equation becomes

dh dh 3P D §<0 . L 8% . &k (C-34)
P[‘a—t-'f UZH] -[-8T+ uz-a—z] = k[s;-z-'f - ar+a—z-2-]

16y




Since only the axial velocity remains, the subscript z is dropped at
this point. As before, the variables are defined as mean values and

small perturbation quantities:

+ p!

v
"
pell

P=p+p (C-39%)

T+ T

-3
"
-3

These variables are substituted into equation (C-34) to obtain the

small signal energy equation. The result is

' 2mt [ 2m
<) _3_}_1_'_ _3_}?_ =k —--—a T + _1.2.'1.‘. + ___3 T (Cc-36)
dat 9t apl r or 522

Using the relation dh = CpdT and dividing by the quantity ECP gives

' ' 27 ' 2
3T 1ap_k[a'r+;_a_'_r_+a'r'] (83

5% " Bcp 5t Bep fae? T ror T ax?

The Prandtl number o = uCp/k, together with the relation u/¢ = v, gives

PR T I (c-38)

and vy is the thermal diffusivity. Substituting equation (C-38) into

(Cc-37), and rearranging

T [, *fﬂﬂ'za_'f',,v,ré_zl' (C-39)
r dr or oC at 9t 322

2
%{-'>> vT ———2 g' (C'UO)
z
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Assuming the dynamic perturbation of temperature is of the following

form

TV = 4T & 2 (iUt (C-41)
then

. .

FB g 72 ylipe a7 Toag J9E (C-u2)

322
anc

T . - j

Since the modulus of I' is approximately equal to w/Ca it is seen by
comparing equations (C-u42) and (C-u43) that the condition of
equation (C-40) is satisfied when
caz cazc
VT v

% (C-uy)

w <<

For air, 0% = .7 so that the condition expressed in equation (C-uu)
is nearly identical to that of equation (C-26). The final form of

the energy equation is

b Y S R L )
R T R TR T (C-u3)

which is in agreement with equation (3), Section II.
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Temporal Derivative of Density

It is thought necessary to show the derivatiot of equation (22),
since this equation is crucial to the development of the line shunt
4 properties. The density is assumed to depend on pressure and

temperature, p = p(P,T).

= (28 o) C-46
dp (aP L dp + (3T>P 4T ( )

The isothermal compressibility e is defined as

€ = - .J;(ﬂl. = Py -3_[)) (C-47)
V\p/¢ P \3P/p

where V is the specific volume. The coefficient of thermal expansion

Bp is defined as

- CAA N ) ) (C-48)

Bp= ¥ == = )
P VBTP DBTP

For an ideal gas, BpT = 1 and ¢P = 1.

Equation (C-43) may be rewritten in terms of the temporal

derivative as

d %%:p[e %%—8%] (C-u9)

From the definition of the specific enthalpy, h:
= R (C-50)
dh = de + d(p) |

where e is the specific internal energy. For a perfect gas
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b dh = deT and@ de = CdT (C-51)
Using equations (C-51) in equation (C-50) gives

i
CpdT = CydT + = dp - 55 p (C-52)

Rearranging terms and using equation (C-49) together with the ideal

gas relations, BPT = ¢eP = 1,

L 18p P e _
(Cp-Cv)dT = —E'(l—tp) + S-deT e dar (C-53)
f or
Cn=Cy = Eﬁl = C (l:l 5
P- v - pe = &3 Y (C‘Du)

The pressure term in equation (C-49) may now be expanded as follows

i . /6ET 5 BET
pe o LB (W LD L BE 4RI B (C-55)
ot Cp y~1l/ 9t Y Cp ot

Substituting equation (C-55) into equation (C-u49) leads directly to

equation (22) repeated here for convenience:

% _pedp BpT ap 3T
3t~y ot | BPO[pCp 3t ot (22)

The development of the remaining equations in Section II is relatively

straightforward.
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