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FOREWORD 

This technical report is being issued under the Control Systems 

Development Branch, Flight Control Division, Air Force Flight Dynamics 

Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson 

Air Force Base, Ohio, under Project 2403, "Flight Control," Task 240302, 

"Flight Control Systems Development." This report was a dissertation 

prepared by Ernest F. Moore, M. S., Lt Colonel, USAF, and presented to the 

Faculty of the School of Engineering of the Air Force Institute of Technology 

in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy. 

This dissertation is part of a sequence of studies being conducted 

at the Air Force Institute of Technology to build a sound technology 

base concerning the propagation of signals in fluid transmission lines. 

The central objective of this dissertation was to develop the frequency 

and transient response of transmission lines of arbitrary cross section 

carrying fully developed laminar or turbulent mean flow of a compressible 

or incompressible fluid. 

A legacy of many computer programs and large quantities of data, 

much too voluminous for inclusion in this work, has been organized and 

bound for the convenience and use of the next AFIT student who desires 

to continue this endeavor. It is safe to say that the solution of one 

problem surfaces at least two more, so that the quest is not ended with 

this work. 

There are many people to thank.  Captains C.   R. Farney and J, D. 

Vlning, who provided much of the additional experimental data needed to 

verify the models, and who worked closely with me in developing some of 
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the computer programs, deserve special thanks.  I wish to thank the 

members of the AFIT Research Advisory Committee, composed of Dr. M. E. 

Franke, Dr. A. J. Shine, Dr. C. H. Houpis, Major J. T. Karam, Jr., and 

ILt. R. Merz for their guidance.  Special thanks are extended to the 

chairman, Dr. Franke, for his patience and encouragement, and for the 

sound advice given throughout this work. 
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THE SMALL-SIGNAL RESPONSE OF TLUID TRANSMISSION LINES 

INCLUDING DEVELOPED MEAN FLOW EFFECTS 

I.  Introduction 

Background 

The propagation of small signals through ducts or lines filled 

with a fluid has been of interest to scientists and engineers for some 

time.  With the advent of fluidics and fluerics in the late 1950's and 

up to the present time, many investigations have been completed, both 

analytically and experimentally, in order to predict and measure the 

parameters governing small signal propagation. 

The modeling of fluid-filled transmission lines has progressed 

from the basic lossless line model, to the line whose losses might be 

called linear with mean velocity, to the present frequency-dependent 

friction models.  Solutions have been obtained in the frequency domain 

for lines of circular and rectangular cross section, as these cross 

sections are commonly found in fluid systems.  For the fluid-filled 

circular line, the transient response to small amplitude impulse and 

step inputs has been obtained in various forms. 

Recently, investigations have been carried out and models 

developed to determine and to describe the response of liquid-filled 

circular lines to oscillatory inputs, where the inputs are superimposed 

on a steady developed flow, and where the steady developed flow may be 

--   
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either laminar or fully turbulent.  A limited amount of experimental 

data has provided some degree of credence to these models. 

Problem Description 

During the literature search preceding this work, it appeared 

that a majority of the investigations were very specialized and that 

an effort to synthesize the results obtained by others was in order. 

Much of the previous work relating to transient response in the time 

domain, and to combined oscillatory and steady developed flow, was 

restricted to liquid-filled circular lines. 

A solution for the small-signal response of fluid lines of 

concentric annular cross section appeared to be a useful first step in 

synthesizing and expanding the applicability of transmission line 

modeling.  Since the annular line includes the circular line as a 

special case (when the inside radius is equal to zero) and approaches 

the parallel plate configuration in its other extreme, a solution was 

first obtained for this line. 

In studying the solutions available for circular and rectangular 

lines as well as the solution for annular lines given herein, it appeared 

that a method of expressing the frequency dependent response of lines of 

arbitrary cross section in terms of only the circular line might be 

developed. Through the use of the various analogies between electrical 

transmission line theory and fluid dynamics, and in particular bv 

constructing and analyzing the equivalent electrical circuit of a 

generalized fluid transmission line, such a method was found. 

It followed that if the frequency dependence of a line of 

arbitrary cross section could be expressed in terms of an equivalent 
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circular line, then:  (1) The small signal transient (time domain) 

response of lines of arbitrary noncircular cross section might be found, 

since this response is known for circular lines; (2) The characteristic 

impedance of lines of noncircular cross section may be expressed in 

terms of equivalent circular lines; consequently. impedance matching of 

lines of different cross section may be possible; (3) The computer 

modeling of all lines of any cross section in a fluid system might be 

reduced to modeling the equivalent circular lints; I1*) A method of 

determining the small signal response of fluid lines of arbitrary cross 

section, carrying fully developed mean flow might be found. 

All of these possibilities were investigated and the associated 

problems were solved, subject to the restriction? specified heroin.  It 

is noted that whore pcssibl* the simplest model achievable is used, in 

accord with Oldenberger's observation that only those models which, are 

reasonably uncomplicated find wide use. This observation is particularly 

appropriate to fluid systems, which generally contain a myriad of 

components and lines, some of which are usually noncircular in cross 

section. 

Organization and Contents 

Since this work covers a  rather broad range of transmission line 

problems, specific background information and references will be 

introduced as  appropriate.  Further, where specific examples are deemed 

necessary, these will be given in terms of the more common rectangular 

and annular cross sections for which a relatively larger body of 

technical reference material exists.  Lengthy mathematical details which 

are of minor import in understanding the various developments, as well 
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as certain examples and error analyses, have been relegated to the 

appendices. 

In Section II, the exact theory describing the small-signal 

response of fluid transmission lines of annular cross section is 

presented.  The results are compared with those obtained by others for 

circular and rectangular lines. Thus, Section II serves also as an 

introduction to the synthesis of results applicable to circular and 

noncircular lines.  High and low frequency approximations are developed 

for the annular line, and experimental results are presented which 

confirm the theory. 

In Section III, a characteristic frequency and corresponding 

characteristic radius are determined, which allow the frequency response 

of noncircular lines to be presented in terms of equivalent circular 

lines. The results are compared with those previously obtained for 

rectangular and annular lines bv using the classical hydraulic radius 

together with circular line theory. The results predicted using the 

characteristic radius and circular line theory are shown to be clearly 

superior to the results predicted using the classical hydraulic radius 

and circular line theory.  However, the hydraulic radius may be adjusted 

to allow its use in the circular line theory.  A concept of impedance 

matching is also developed in Section III. 

Many practical problems are more concerned with the time domain 

response of transmission lines.  In Section IV, the results of others, 

which describe the impulse and unit step response of cii^oular lines 

onlv, are adapted to lines of noncircular cross section and also 

compared with existing experimental data. 

Ml 



Section V is devoted to the simplification and synthesis of 

results describing the combination of steady developed turbulent mean 

flow, and laminar oscillatory flow produced bv a small sinusoidal 

pressure input signal. The solutions are extended to include lines 

of noncircular cross section. 

In Section VI, the frequency domain results of Section V are 

transposed into the time domain, and the various combinations of 

downstream pressure and flow response to upstream step inputs of 

pressure or flow are presented. 

In Section VII, the last section of this work, a summary of the 

conclusions and recommendations is presented. 

am i 
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II.  The Small-Signal Response oi Annular 
Fluid Iransmission Lines 

Introduction 

The small-signal frequency response of fluid transmission line 

of circular cross section has been obtained in various forms [1-33*. 

Nichols [3] expressed the results in a manner similar to that used for 

electrical transmission lines.  Schaedel [«•] followed closely the 

approach used by Nichols and obtained the response for lines of 

rectangular cross section.  In both of these studies, a distributed 

parameter line model was developed and results were obtained for the 

impedance, admittance, propagation operator and characteristic impedance 

of the line. 

There are a number of applications, such, as aircraft pitot-static 

systems, hydraulic mining, and instrumentation, where annular lines are 

used and the small signal frequency response characteristics are of 

interest.  The purpose of this section is to present the small-signal 

response of rigid pneumatic transmission lines of annular cross section. 

Figure 1.  The analytical approach taken is similar to that used by 

Nichols [3] and Schaedel [«.].  The detailed analytical development is 

presented in Appendix C.  Finally, the annular line results will be 

compared with those obtained for circular and rectangular lines. 

'Numbers in brackets designate Bibliography at end of dissertation. 
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Frequency Response 

Small Signal Equations and Solution.  The equations expressing 

conservation of mass, momentum, and energy for laminar small signal 

oscillatory flow in a pneumatic line of annular cross section are 

those used by Nichols [3] to obtain a frequency response solution 

for lines of circular cross section:  The development of these 

equations is given in Appendix C. 

3t " 3z (1) 

v _a_ [" aul _au .  l ap 
" r 3r Lr arJ + at = ~ p 3z (2) 

r 8r 
r 3T"1  3T 
Lr aFj " at 

gp T ap 
P cp at 

(3) 

The dependent variables are assumed to be of the following form 

T(r,z,t) = T + T« = T + AT(r,z) e jut («0 

u(r,z,t) = ü + u' = ü + u(r,z) e JMt 

P(z,t) = P + P' = P + AP(z) 
jut 

(5) 

(6) 

where, for example, T is the average temperature and T' is the instanta- 

neous temperature fluctuation.  Substitution of these variables into 

equations (2) and (3) gives 

a-u  i au  ju)u _ j_ aAP 
3rr   r 3r   v   vp 3z (7) 



3'AT       1   3AT jlD&T juiAP 
lr2         r 3r Vj. PCpVT 

(8) 

Assuming isothermal walls and zero velocity at the walls, the boundary 

conditions for the annular line are 

AT = 0, u = 0 at r = ri 

AT = 0, u = 0 at r = ry 

(9) 

(10) 

The momentum and energy equations are thus identical in form, and 

the solutions for the dimensionless velocity and temperature profiles 

are Bessel functions of zero order. 

ju>u 
1 3A£ 
p 3z 

s 1 + B *( i?*1) • «o( <F n- (11) 

^•».(jr.jIWf^ (l?) 

The arbitrary coefficients (B,D,E, and F) obtained from the boundary 

conditions are 

Ko i?*1)-* (ff*n 
B * 

^ei
,)«.(lT'iii)-j.(^,'rfl)^(^i 

(13) 
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D = 
•M t^^iJ:) - Jot {r roj: 

{tf^H^VK^H^) 
(!«•) 

The coefficients E and F of equation (12) are identical to P and D, 

respectively, except v is replaced by v>p in the arguments of tht- 

bessel functions. 

Series Impedance of the Annular Line.  The mass rate of flow at 

the reference pressure P* is given by 

p*Q* (pu) 2iirdr (15) 

and by analogy to electrical transmission line theory 

JAP 
3z 

= ZQ* (16) 

where Z is the frequency dependent series impedance per unit length, 

AP is analogous to voltage and Q* is analogous to current. 

Solving for (pu) from equation (11), performing the integration of 

equation (15), and using equation (If.), an expression for Z is obtained: 

-1 

ju)P* 1 + 
2TTM 

(17) 

10 



where 

M = B ^i!^1)-^^/ 

-   jD M $*J) - *M $;^ (18) 

Introducing the adiabatic inductance per unit length, La • p*/An, 

equation (17) becomes. 

2 =  juiL, 1 + 2TTM 

v{? r 

(19) 

where Z is shown to be frequency dependent. 

Shunt Admittance of the Annular Line.  Trom electrical transmission 

line theory, 

3Q* 
3z 

= YAP (20) 

where Y is the shunt admittance per unit length.  Upon differentiating 

equation (15) with respect to z, using equation (1), and substituting 

into equation (20), Y becomes 

ft, 
2n 

P*lP 
3p 
Jtrdr (21) 

11 



It is shown in Appendix C that 

3t   y 
*L,   ß  p [!£ IE . ill 
3t   P M pep 3t   3t 

(22) 

Introducing the complex time notation for 3P/3t and 3T/3t and using the 

relation 

B;T 
Cp - cv = PC (23) 

equation (22) becomes 

If = £i ju,AP 3t Y   J 1 +   (Y-1) 
(Y-1)  P  Cp AT 

ÄP ] (24) 

where ßp = 1/T for a perfect gas.  Substituting for p Cp AT/AP from 

equation (12), equation (24) becomes 

|f = «S j„4P [ [»•( {?"- 
FK0 

J Ui   .3 
(25) 

Substituting equation (25) into equation (21) and performing the 

indicated integration yields 

Y = jt»C« 1 + 
2TT(1->) N 

(26) 

12 



wher« 

N = E 

and C- = 
ep ^ 

-^[r°Kl({¥r^)"riKl(l?r^)]   (2?) 

• the adiabatic capacitance per unit length.  Tor an -a " Yp* 

ideal gas, Ca = An/yP*. Tabulated Bessel functions of interest are 

given in [5,6]. 

Equivalent Electrical Circuit.  The series impedance and shunt 

admittance may be expressed as 

Z -  R + jwL (28) 

I • G + j«C (29) 

where R,L,G, and C are the circuit parameters of resistance, inductance, 

conductance, and capacitance, per unit length, respectively.  The 

equivalent circuit for a transmission line of dz length is shown in 

Figure 2,    The circuit parameters are all real numbers and are dependent 

on the signal frequency, the cross-sectional area, and the radii of the 

annular line through the expressions for Z  and Y, equations (19) and (26). 

Characteristic Impedance and Propagation Operator.  Equations (16) 

and (20) are used to obtain the governing differential equations for 

pressure and flow.  Differentiating equation (16) with respect to z and 

using equation (20) gives 

1ÄÖ- ZY(AP) 
3z2 

(30) 

13 
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The general solution for the pressure is 

AP * Cie-
rz t C2e 

+rz (31) 

where r, the propagation operator, is defined as 

r = I^ZY = a + j| (32) 

where a is the attenuation per unit length and g is the phase angle 

increase per unit length. The solution for the volumetric flow is 

Q • Cie - C2e 
+rz\ (33) 

where ZQI  the characteristic impedance,  is defined as 

Z0 =  Jiff = 1/Y£ (3*0 

and YQ is the characteristic admittance. 

The characteristic impedance and propagation operator are 

generally complex quantities and are convenient for describing the 

pressure and flow in the transmission line. An excellent review of 

the significance and use of Zp and r in various representations of 

fluid lines for system analysis is given by Goodson and Leonard [7], 

The phase velocity is 

. -  Xu>  u> 
(35) 

where X is the wavelength and 6 increases 2n radians per wavelength. 

The phase velocity c is in general not equal to ca, the adiabatic 

lb 
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speed of sound.  For a lossless line the characteristic admittance is 

*so • fitt « 4 
P*ca      v^ÄpÄ (36) 

and 

"  1 ̂       /LIC 
(37) 

a1-a 

For a lossless line a =  0, th us 

Fs = J^a • >'/ca 

\'o, defined in equation (3*0, is normalized with respect to the 

lossless line as follows: 

(38) 

Vn/V 0' 'so 1 + 
2n(l-> ) N 

•    3 

1/2 

1 1 
2nM 

«. {?i; 

The normalized propagation operator is 

rs  Jw/ca 

or upon rewriting equation (UO), 

a ca/u> + jt> ca/u> 

1 + -"(1-V) N n 
i/: 

1 •   2^' 
<j> 

(39) 

(40> 

(«H) 

It 



 ----—— 

The propagation velocity ratio or wavelength ratio is 

(u:) 

The neper attenuation in Xa/2ir distance is 

a ca/u> • a Aa/2n («•3) 

To convert the attenuation from nepers to the more common decibel, 

the following equations are used: 

(aXa) db = HOn (logj^e) a ca/u> 

54.575 a ca/w db per X{ (4U> 

(aX)    db =  54.575 tt/l db per X {Hi) 

Characteristic Frequencies.  Following Nichols [3] it is convenient 

to define two characteristic frequencies which will aid in the 

presentation of the results and facilitate comparison of the annular 

line results with those obtained for circular and rectangular lines: 

8i»v 8v 8v 

"V  *n r =(l-r*=) 
(*6) 

STTV-J-  U>V 
^T -     -  — (47) 

where r* • r£/r0 is defined as the annular radius ratio.  The viscous 

characteristic frequency wv is used to form the dimensionless frequency 

17 
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ratio ui/wv which is used in presenting the numerical results.  Because 

the characteristic frequency uk. is defined to be proportional to the 

ratio v/A, the frequency dependence of all sizes of annular lines of 

the same radius ratio are represented by a single curve when the 

results are plotted against w/wv.  This is analogous to the frequency 

dependence of all sizes of circular lines and of rectangular lines of 

the same aspect ratio when plotted against w/tty< 

Numerical Results and Discussion 

The numerical results were calculated on a CDC 6600 computer using 

the standard properties of air at 80°F given in Table I.  Flots are 

given for frequency ratios u>/u>v from C.l to 1000 and annular radius 

ratios of 0, 0.1, 0.5, and O.S. 

TABLE I 

Properties of Air at 80°F [3] 

riV 14.696 psia 

p* 1.1017V10-7 lbf-sec:/in.1' 

V* 0.02432 in.2/sec 

1 0.03435 in.:/sec 

o*- 0.7080 dimensionless 

> 1.4017 dimensionless 

ca 13,674 iu./srr 

£c 386.088 in./sec: 

18 
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The influence of the frequency and radius ratio on annular line 

performance is easily seen in Figures 3 through 6.  The modulus of  the 

admittance ratio given by equation (39) is plotted in Figure 3 and the 

phase angle of the characteristic admittance is plotted in Figure **. 

It can be seen that at high frequencies the magnitude of the character- 

istic admittance approaches that of the lossless line, while the phase 

angle approaches zero.  At low frequencies the phase angle approaches 

45 degrees.  The propagation velocity ratio c/ca, or wavelength ratio, 

X/Aa, equation (42), is plotted in Figure 5.  For a given flow area and 

frequency, the propagation velocity decreases with increasing radius 

ratio.  The db attenuation per line wavelength, equation (US), is 

plotted in Figure 6.  For given fluid properties, flow area, and 

frequency, the attenuation per line wavelength increases with increasing 

aspect ratio. 

The circuit parameters R,G,L, and C are normalized with respect to 

suitable reference values and the results plotted in Figures 7 through 

10. 

The ratio R/Ryn is plotted in Figure 7, where Rv^ is the viscous 

laminar steady flow (DC) resistance of the annular line, and is 

defined in terms of r* [8]. 

*vn 
8* 
A. 

u f"l+r*:    1  1 
2 1^3  ln-r*J 

(t*8) 

Equations for determining the PC properties of circular, annular, and 

rectangular lines are derived in Appendix A.  As the frequency u> approaches- 

zero, R approaches Rvn; however, RVn is a good approximation for K when 

u)/u>v < 1 for all r*.  For the larger values of r shown in Figure 7, 

19 
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the range of applicability vi   the constant resistance nod«! is extended 

to higher values oi u u>v. 

Figure 8 shows the frequency dependence of L/La where La is the 

adiabatic inductance.  The tendency of the frequency dependent induct- 

ance to approach its adiahatic value at high frequencies is clearly shown. 

For low frequency ratios, say u>/u>v i 1, the inductance is primarily 

dependent on r* and essentially independent of u>/u>v.  The value of L/La 

at low frequency ratios varies between approximately 1.2 and 1.33, 

depending on r*. 

The ratios G/u>T Ca and C/Ca are plotted in Figures 9 and 1C.  In 

Figure 9 the conductance is shown to be essentially zero when u/u>v < 1 

for all r*.     For values of w/u^ > 10 the conductance increases 

significantly.  This increase is more pronounced at large values of r*. 

Figure 10 shows the general thermodynamic behavior of the model: 

C_ 
n 

nP 

YF 

a 1 
n 

(49) 

where > is the adiabatic exponent (approximately 1.1 for air at standard 

conditions) and n is the polytropic exponent.  At low frequencies 

y/n = 1.4; thus, n - 1, which is the isothermal exponent.  At high 

frequencies >/n • 1.0, thus, n - •>, the adiabatic exponent.  The process 

is therefore isothermal at low frequencies and adiabatic at high 

frequencies.  As r* increases, the transition from isothermal to 

adiabatic behavior occurs at higher values of w/tty. 

20 
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In summary, at low frequencies the equivalent circuit, see 

Figure 2, consists essentially of constant value elements of resistance-, 

inductance, and capacitance and no conductance. At high frequencies, 

the inductance and capacitance approach their adiabatic values; however, 

the resistance and conductance are very large and are strongly dependent 

on frequency and radius ratio. 

Comparison with Circular and Rectangular Lines 

The results obtained for the annular line are now compared with 

those obtained for circular and rectangular lines. The comparison is 

made on the basis that the respective cross-sectional areas are  equal. 

Generally, the annular results approach those for circular lines 

as the inner radius of the annulus approaches zero and the losses 

attributable to the inner wall become small.  It can be shown that the 

circular line velocity and temperature profiles of Nichols [3] may be 

obtained directly from equations (11) and (12) for the special case of 

the annular line with ri = 0.  The Bessel function 

{Pj 

is infinite at the origin and ceases to be a solution in equations (11) 

and (12). Thus, when rj = 0, the constants D and F are identically 

zero.  Applying the boundary conditions of equation (10) at the outer 

wall r = r0 and obtaining new relationships for B and F. leads to 

Nichols' expressions for the velocity and temperature profiles.  In 

all of the figures the curves for r • 0 are identical with those of 

Nichols for circular lines. 

29 



The annular results converge to those of Schaedel [u] for rectangular 

lines as r* •» 1.  The comparison is made by defining an equivalent aspect 

ratio for the annular line.  The aspect ratio of the rectangular line is 

defined here as ARr = b/h 2 1.  For equal rectangular and annular flow 

areas, 

bh = ir(r0*—r-p) = n(r0+ri)(r0-ri) (50) 

where choosing b = Ti(r0+ri) and h = r0-r£t the annular aspect ratio is 

defined as 

ir(r0+rj)  „(!+!«) 

***> =  (r0-ri) 
=  (1-r*) 

(51) 

Since the annular line side walls of dimension h do not physically 

exist and are not considered in the theory, greater losses are expected 

in rectangular lines when compared to annular lines of the same area 

and aspect ratio.  However, as aspect ratio becomes large, the losses 

attributable to the short walls of the rectangular line become small 

compared to the losses on the long walls.  Consequently, the results for 

annular and rectangular lines converge with increasing aspect ratio. 

Figure 11 is a comparison of the attenuation per unit wavelength (aA) 

of annular and rectangular lines where here uv is defined to correspond 

to that used by Schaedel [>]; i.e., wv = 4v/A.  Of interest is the 

rather close agreement at moderately low aspect ratios.  Agreement 

within 10% is achieved for all frequency dependent properties when 

AR > 7 (r* > 0.38).  Thus, either model will give approximate predictions 

of the performance of the other model when AR > 7. 

30 
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The differences in the circular, rectangular, and annular line 

results for equal areas are due mainly to differences in the steady- 

flow (DC) resistances.  The differences in the DC resistances are 

illustrated by the DC resistance ratios plotted in Figure 12.  The 

viscous resistance per unit length of circular lines is the classical 

Hagen-Poiseuille flow resistance 

RvC = H (52) 
A c 

For equal flow areas An • Ac, 

F-vc 
"l+r*= 1   T1 

l_r*2      In r* 
(53) 

where R^ is given by equation (48).  The ratios Rvr/Rvc an(^ Rvn/^vr 

are also given, where Ryp is the viscous resistance of rectangular lines 

given by Schaedel [4].  The ratios Rvn/Rvc aii^  Rvr/Rvc are nearly 

linear functions of AR for AR >U.  The convergence of KVT1/KVT  to unity 

for large AR is easily seen. 

In summary, the small signal performance of annular lines has been 

presented and includes the performance of circular lines as a special 

case (r* =0).  The small signal performance of annular and rectangular 

lines converge with increasing aspect or radius ratio.  Useful approxi- 

mations of rectangular line performance may be made using the annular 

line results at higher aspect ratios, or vice versa. 

It is important to note that whereas the numerical results are 

presented for air at 80°F, any other fluid could have been used.  If 
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the fluid is considered incompressible, the results are easily adapted, 

and considerably simplified by assuming > = 1, and by taking the speed 

of sound as c = >'Kg,'c where Kg is the bulk modulus of the fluid.  It is 

noted that the shunt admittance, equation (26), becomes a pure 

capacitance of constant value when y  -  1.  The limitations given by 

Iberall [1] apply to the annular line also: 

r0-ri > — (a 1.8*10"6 inches, for air) 

ca~ 
u <   (= 7.7*109 rad/sec, for air) 

The annular line model, as well as the circular and rectangular models 

of [3] and [*0, respectively, are restricted to laminar flow. 

Discrepancies are to be expected for turbulent mean flow conditions. 

The case of turbulent mean flow is considered in Section V. 

High and Low Frequency Approximations 

Useful high and low frequency approximations of the system variables 

are most readily obtained from analysis of the equivalent circuit 

components in conjunction with the applicable Bessel function 

approximations. 

For the low frequency approximations (w/u>v << 1), the equivalent 

circuit consists of the constant value elements RVn, Wn» 
an(^ ci» with 

Gi - 0.  Here Cj is the isothermal capacitance, Cj = YCa.  The low 

frequency series impedance and shunt admittance are respectively, 

ZLn • Rvn • j«*W„ 

YLn =Gi + J">ci - jwyCa 

3U 

... _ •   
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Using the inequality u)LiV /Rv « 1 and equations (3H) and (5*0, th« 

low frequency character is tic admittance and ;•:•>'. .t.ra* :. en cpor.stoi become 

Y0I • ftQz£   - \-~£-   U+j) (55) 

h  • *-Ln/Y flo = a + 36 - ^ * RvnCaui  (1+j) (56) 

It is seen that the phase lag 6 is approximately numerically equal to 

the attenuation B, and that the phase angle of the admittance is 

approximately */<) radians.  For u/uv s 0.1, equations (55) and (56) 

give r and Yp vithin one percent of the exact value, for all  r*. 

Expressions for Rvn and L^j, are derived in Appendix A, 

The high frequency approximations are derived in Appendix B using 

the standard asymptotic expansions of the Bessel functions [5,6], 

along with other approximations,  for w/wv 
N^ 1, the inequalities, 

RVuiL << 1 and G/«C « 1, apply.  The high frequency series impedance 

and shunt admittance become 

zhn = j^anji + ~2 m\ 
-1 

YHn -  j(,Can jl t (*=i) -jg (^[(r*-l) •  j(^l)3j 

(57) 

(58) 

! 

The high frequency propagatior operator and characteristic admittance 

become 
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rn • «Hi + 5»n = 437 (x + *?) < 
1+r* 
l-r»> 

lUK4)v  +  -i  ~ a 
(59) 

Y0H  -     11 ?• jS^A-«]- ff (60) 

It is of interest that the expression for a^ in equation (59) for 

annular lines is identical to that obtained by Karam and lYanko [9] for 

circular lines tor the special case r* -   0.  The expression for Hu, is 

identical to that given in [9].  It should therefore be possible to 

obtain a solution in the time domain fcr annular lines us inf. Karam's 

appi-oach [ll|,.V|.  The frequency to time domain trans 1 ormat ions for 

circular, rectangular and annular linos are covered in Section 111. 

1 
1 
i 

Lixpcrimental Confirmation of Annular ThgOTV 

The experimental verification of the annular line theory was the 

primary purpose <>t a M.S. thesis completed by Captain Q. K. Farnoy 

at the Air Force Institute of Technology [!•?].  Farnov measured the 

small signal amplitude and phase shift frequency response of a Mocked 

annular pneumatic transmission line at five different radius ratios. 

The outer line was approximately three feet loin; and had an internal 

diameter of 0.187 inches.  The live radius ratios were achieved by- 

inserting and centering five different sized rods within the basic 

line.  I'arnev observed that the experimental fains were within ' 1 dl- 

and the phase shilt angles within MS decrees of those predicted bv 

the annular line theory.  1'urther, t lie predicted .in.ilvtic.il results toll 

within the measurement cip.it> i I i t v oJ the experiment a I instrumentation used 

M- 
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A description of the experimental apparatus and test procedures used 

is given in [10]. 

Additional equations are required to account for the sending and 

receiving conditions. These are standard equations of electrical 

transmission line theory, available in many references such as [11] 

and are repeated herein for the convenience of the reader. 

For a given line, the transfer pressure gain is [12]: 

g = 
i.r 

cosh m sinh T2 (61) 

where r and s denote sending and receiving locations and £ is the 

distance between these locations.  The sending impedance is 

Zr cosh T£ + Z0 sinh Ti 
J° Z0 cosh Ti  + Zr sinh Ti 

(62) 

For a blocked line, the receiving impedance Zr is infinite, thus 

= Zn coth r« Js " "0 (63) 

The phase lag angle between sender and receiver is 

M . arctan 1-6 JBJ 
Real (g) 

(64) 

The pressure gain, equation (61) converted to decibels, and the phase 

lag angle, equation (6«0 in degrees, are plotted as functions of 

excitation frequency in Figures 13, I1», and 15, for annular radius 

ratios oi 0.07, 0.23, and 0.67, respectively. The experimental data 
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of Farney is also plotted. The sharp increase in phase angle shown 

in the figures (approximately 720 degrees) is a plotting artifice to 

conserve space and has no other significance. The ambient test 

conditions at each radius ratio are given in Table II. 

TABLE II 

Ambient Test Conditions'' 

ft 
r 

P(ambient) 
(psia) 

P(line) 
(psig) 

T 
(°F) 

0.07 14.50 5.01 79.0 

0.23 14. 44 5.01 80.0 

0.67 14.20 5.01 60.0 

"*"The tabulated values were used to determine 
the necessary mean properties of air. 

As can be seen from the figures, the agreement between theory and 

experiment is excellent. 
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III. Correlation of the Linear Response of Circular and 
Noncircular Fluid Transmission Lines 

In steady flow, it has been particularly useful to correlate the 

resistances of lines of noncircular cross sections with the resistance 

of circular lines through the classical hydraulic diameter.  Similarly, 

in oscillatory flow, it would appear useful to be able to correlate the 

frequency response of noncircular lines to the response of circular 

lines. Besides the comparisons made between rectangular and circular 

lines [u] and between rectangular, annular and circular lines herein, 

other attempts have been made to predict the response of rectangular 

lines using the concept of the hydraulic diameter [13,iu]. 

In this section, a dimensionless frequency is defined which leads 

to a generalized presentation of the frequency dependent response of 

lines of circular and noncircular cross section.  The dimension}ess 

frequency in turn leads to a characteristic radius for the noncircular 

line which is roughly analogous to the classical hydraulic radius used 

in steady developed flow for noncircular lines.  It is shown that the 

frequency dependence of noncircular lines may be very closely approxi- 

mated when the characteristic radius is used together with the circular 

line theory of Nichols [3]. The results are compared with those 

obtained by Healey and Carlson [13] for rectangular lines.  In [13], the 

classical hydraulic radius together with Nichols' theory was used to 

predict the response of rectangular lines.  The response predicted 

using the characteristic radius defined herein is shown to be clearly 

superior to the response predicted using the hydraulic radius.  Results 

are presented for both rectangular and annular lines over a wide range 

U2 
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of aspect and radius ratio, respectively.  In addition, an approach to 

impedance matching based on equivalent circular lines is presented. 

Frequency Response Solutions 

Several dimensionless frequencies (or frequency ratios) have been 

defined in order to present generalized frequency response solutions 

for circular lines.  Nichols [3] showed that the frequency response of 

a circular line is a function of the dimensionless frequency ratio 

w/u>v, where u  is the angular excitation frequency and wv is a viscous 

characteristic frequency defined as 

(65) 

Rv is the laminar DC viscous resistance per unit line length and La is 

the adiabatic inertance per unit line length. For any line, Rv and La 

are defined as 

• 5 [- ft] (66) 

and 

La  — (67) 

For a circular line, Rv and wv become 

and 

RV 
8Tt\J 

A 2 

u>v 
8nv 

8       A, 

(68) 

(69) 
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1 
Other formulations of the dimensionless frequency have also been 

defined for the circular line; for example, Brown et al. [15] used 

fi = a>r2/v = 8(D/ü)VC, while Goldschmied Cl6] used SN = n*>sr2/\> -  32 u>/u>Vc. 

In all of these cases, however, the dimensionless frequencies are 

proportional to wA/v. 

Schaedel [t] showed that the response of rectangular lines of the 

same aspect ratio is a function of wA/4v, and it has been shown herein 

that the response of concentric annular lines of the same radius ratio 

is a function of wA/8irv. Typical results for the attenuation per line 

wavelength of rectangular and annular lines are plotted in Figures 16 

and 17, respectively. Circular line results are included in Figure 17 

as a special case of the annular line with the inside radius r^ = 0. 

The dependence on aspect ratio and radius ratio as well as signal 

frequency is clearly shown. 

Generalized Response of Noncircular Lines 

The aA curves shown in Figures 16 and 17 for different aspect 

ratios and radius ratios all have the same general shape. Thus, it 

would seem possible that the results for different aspect or radius 

ratios could be generalized and related to a single curve. This can be 

accomplished approximately by using the dimensionless frequency defined 

by equation (65) with Rv taken as the resistance of the particular 

cross section being considered. 

A better approach is to include the inertance effects in the 

dimensionless frequency as well as the resistance effects and to present 

he results as a function of the dimensionless frequency u>/(oc, where UJC 

is the radian frequency defined by Nichols [3] as 

4H 
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Rv 
U)c = -— 

Here Rv is defined by equation (.66), and Lv, the low-frequencv or 

viscous inertance, is defined by 

(70) 

^ • [i I (if" La • KL"La (71) 

where K^ depends on the laminar fully-developed velocity distribution. 

The ratio w/uc includes both viscous and inertial effects at low 

frequency.  Consequently, this ratio more accurately represents the 

fluid line at low frequency ratios, and gives analytical results which 

are in closer agreement with both the theoretical and experimor,cal 

results obtained for circular and noncircular lines. 

The oA results shown in Figures 16 and 1" are replotted in 

Figure 18 as a function of w/u»c. The families of curves for different 

aspect and radius ratios are now reduced approximately to a single 

curve.  By incorporating the geometric dependence of aspect and radius 

rat-'  in u>c, lines of different sizes and cross sections are  shown to 

have approximately the same generalised frequency behavior. The 

circular line attenuation is also included in Figure 18, where wc for 

the circular line is the same as that given by Nichols [3]; i.e.. 

Rv. 
8ru 

61TV 

-•«% jsr«; r wvc (72) 

Figure 18 shows aA, the attenuation per line wavelength.  In order to 

obtain a, the attenuation per unit length, it is necessary to know \ 

the wavelength in the line for each ratio w/wc.  Curves of X/Xa vs 

MA/*V for rectangular lines are given in CO, and are not reproduced 

herein.  However, for annular lines curves of X 'Xa vs uvA/8*v are given 
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in Figure 5. The dependence on radius ratio is clearly seen.  Similar 

qualitative dependence on aspect ratio may be seen in [4] for rectangular 

lines.  The families of curves depicting X/Xa reduce approximately to 

one curve representing circular, rectangular and annular lines wher 

plotted against u)/wc as shown in Figure 19. The ratio X/Xa, equation 

(42), is also the ratio of the propagation or phase velocity in the line 

to the free sonic (adiabatic) velocity; i.e., X/Xa • c/ca. 

Numerical Results and Discussion 

The results in Figures 16 through 19 were computed assuming 

standard properties of air at 80 F (Table I).  The numerical differences 

in aX in Figure 18 for the range of aspect or radius ratios shown in 

Figures 16 and 17 were small and are not plotted in Figure 18.  The 

maximum difference in aX between circular and rectangular lines was 

1.05 db at w/wc = 6.0 for a = 1C.  The maximum difference between 

annular and circular lines was 1.40 db at w/u>c = 6.0 for r" = 0.8.  For 

u/wc < 0.1 the difference was less than 0.09 db, and for u>/wc > 10 the 

difference was less than 1.25 db. 

The maximum difference in X/Xa between circular and rectangular 

lines was 0.035 at w/u>c = 2.0 and a = 10. The maximum difference 

between circular and annular lines was 0.046 at w/uc = 3.0 and r'v = 0.8. 

For U)/IDC < 0.1 the maximum difference for both rectangular and annular 

lines was less than 0.017 and for u>/wc > 10 the maximum difference was 

less than 0.025. The maximum departure of X/Xa from that predicted for 

the circular line for the range of aspect and radius ratios considered 

occurred for the annular line of radius ratio r,v = 0.8, as shown in 

Figure 19.  All other configurations are nearer to the circular line 

results. 
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It is noted that whereas czA vs w/u>c gives the tightest grouping of 

the aX curves, X/Xa vs w/wv gives a slightly better grouping of the 

A/Aa curves, where wv is defined by equation (65). 

Determination of the Characteristic Frequency 

The determination of values of aic for noncircular lines reduces 

essentially to obtaining values of Rv and Ly. Analytical expressions 

of Rv and Lv for circular, rectangular and annular lines are developed 

and discussed in Appendix A. A convenient method for obtaining Rv is 

to relate the Rv of the line with the noncircular cross section to that 

of a circular cross section; i.e., 

Rv   „ Ac' 
^ = KR IT 

(73) 

where KR for rectangular lines and annular lines depends on aspect 

ratio and radius ratio, respectively.  Values of KR have been calculated 

[1,17] and a few are given in Table III.  The viscous inertance Ly is 

obtained from values of KL, equation (71), for each geometric 

configuration. Values of KL have also been calculated [1,17,18] and a 

few are given in Table III. 

Starting with equation (70), a convenient equation for computing 

u)c is easily derived as 

KR 8TTV 

KL A 
(714) 

For circular lines:  KRC = 1 and KLC = 1/3; thus OJCC = 6*v/Ac. Values 

of u>c for noncircular lines can easily be obtained using values from 

Table III or using the equations or data from the references [1,17,18]. 
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TABLE III 

Fully Developed Laminar Flow Parameters for 
Rectangular and Annular Lines 

r0~V r-T* 
t 1 
i 

— b    . 

b/h KRr frRer «*P 
ri/ro KRn %> 

fnRen ^n 

1 1.1322 1.3785 56.91 1.2733 0 1.0000 1.3333 64.00 1.0000 
2 1.3920 1.3475 62.19 1.4324 0.1 1.7068 1.2298 89.37 1.2222 
3 1.8133 1.3120 68.36 1.6977 0.2 2.1645 1.2168 92.35 1.5000 
4 2.2671 1.2876 72.93 1.9895 0.3 2.7232 1.2101 93.85 1.8571 
5 2.7317 1.2714 76.28 2.2918 0.5 4.4649 1.2035 95.25 3.0000 

10 5.0959 1.2365 84.68 3.8515 0.8 13.4890 1.2004 95.92 9.0000 
CO 00 1.2000 96.00 OO 1.0 OO 1.2000 96.00 OO 

The steady flow laminar resistance Rv does not depend on frequency; 

consequently, Rv may be expressed in terms of the classical steady- 

flow parameters: 

Rv = fRe 2Dh^A 
(75) 

where D^ is the conventional hydraulic diameter, f is the friction 

factor and Re is the Reynolds number.  For a circular line, Dy, = Dc 

and fRe = 64; therefore, 

= 64 
2Dc2Ac 

(76) 
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Dividing equation (75) by equation (76) 

fRe Dc2 Ac 
vc 64 Dh 

(77) 

where fRe, D^, and A are determined for the noncircular cross section 

being considered. Selected values of fRe are given in Tab_e III for 

rectangular and annular cross sections. The relationship between KR 

and fRe is obtained from equations (73) and (77) 

% = 
fRe Dc2 A 
64 »h 2 A, ^4 *S 

(78) 

where Kg is a geometric shape factor defined as 

K      -  C  A 

Dh
2 Ac 

4A P 2 rw 
4TIA 

(79) 

KQ is a constant for each geometric cross section. It is important to 

note that when D^ = Dc the areas of the noncircular cross section A and 

equivalent diameter circle Ac are not equal and Kg = A/Ac.  Likewise, 

when A = Ac the hydraulic diameters are not equal and KQ  = Dc
2/D},2. 

Expressions for KQ are given in Table IV for circular, rectangular and 

annular cross sections.  Selected values of Kg are included in Table III 

for rectangular and annular cross sections. 
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TABLE IV 

Geometric Cross Section Factor 

Cross  Section *G 

circular 

rectangular 

concentric annular 

l 

(a+l)2/ira 

l+r*/l-r* 

Use of the Hydraulic Diameter 

Results based on hydraulic diameter can be used to predict line 

performance for small signal oscillatory flow. At a given signal 

frequency, Figure 18 shows that for the same attenuation on lines of 

different cross section, the coc must be the same. The use of equivalent 

hydraulic diameter for a noncircular line, however, leads to an wc that 

is, in general, not equal to n>Cc.  This will now be illustrated for a 

rectangular line. 

From equation (74), the ratio u>t. ,/ti>cc is 

ucr 

<*>cr 

it K*r Ac 
3 KLr Ar 

(80) 

By substituting for KR from equation (78), the ratio becomes 

»Oj,  4 fpRej, ! Dc 
"CC   3  6t ^„2 

(81) 

For Dh = Dc, equation (81) reduces to 
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F 

H      fpRejp 

64 (82) 

Typical values of u>Cr,/u>c    and /wCr>/wCc' as a function of aspect 

ratio are shown in Table V using the values of frRer and KLr from 

Table III. 

TABLE V 

Frequency Ratio Parameters for Rectangular 
Lines for Dh-n * Pg 

b/h wcr/wcc /a>cr/<*>cc' 

1 0.86 0.93 
2 0.96 0.98 
3 1.09 1.04 
4 1.18 1.09 
5 1.25 1.12 

10 1.43 1.19 

The ratio /wc /uc ' can be interpreted approximately as the ratio of 

the viscous attenuation of rectangular to circular lines of the same 

hydraulic diameter at a given frequency. The values of vu>cr/u>cc' given 

in Table V confirm the attenuation results of Healey and Carlson [13] 

and explain the differences they found between the rectangular line 

solutions and circular line solutions of the same hydraulic diameter. 

When using circular line equations to predict rectangular line results, 

the differences can be avoided if the rectangular line friction factor 

(fpRejO and inertance Lvr are included in ths calculations. This point 

will be made clearer in the next few paragraphs. 
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Determination of the Characteristic Radius 

It is important to note that u>c characterizes the frequency 

dependent line performance, and that to compute u>c, only the kinematic 

viscosity, line geometry, and steady flow laminar velocity profile need 

be known. Presuming that u>c = wCx is known for a line of arbitrary but 

constant axial cross section an equivalent circular line containing the 

same fluid is sought.  The characteristic frequency of the circular 

line is 

»Ce " 
Wc  6v 

Wt To' 
(83) 

Setting ü>CC = üJCX,  the radius of an equivalent circular line,  called 

the characteristic radius,  is easily found to be 

rc • I^V/W cx 
(84) 

Since no additional restrictions have been placed on the arbitrary line 

(i.e., neither the flow areas nor hydraulic diameters are assumed equal), 

equation (84) implies that for each arbitrary line there exists a unique 

equivalent circular line.  The equivalent circular line will have 

approximately the same normalized frequency dependent behavior as the 

arbitrary line since the characteristic frequencies are equal.  The 

characteristic radius is roughly analogous to the hydraulic radius used 

in steady flow problems. 
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Comparison of Characteristic and Hydraulic Radii 

Healey and Carlson [13] used the classical hydraulic radius (based 

on the hydraulic diameter) for rectangular lines, 

2A bh 
b+h 

Dh 
2 (85) 

together with Nichols' equations for circular lines [3] to estimate the 

frequency response of blocked pneumatic lines of rectangular cross 

section. These results were then compared with the results predicted 

by the rectangular line theory of Schaedel [4] and with their own 

experimental data. The experimental data and predictions using 

Schaedel's theory were in excellent agreement for all aspect ratios 

tested (a=l,2,3,4,5). Using r^ and Nichols' equations for circular 

lines yielded good agreement with the data and with Schaedel's theory 

for aspect ratios of 2, 3, and 4; however, at a=l and a=5 significant 

differences were observed between the predicted downstream amplitude 

response using r^ and the measured response. 

Using the characteristic radius, equation (8U), together with 

Nichols' theory, the normalized attenuation aX vs w was obtained for 

aspect ratios a = 1, 3, 5, and 10 and the results plotted in Figure 20. 

For comparison, predictions using r^ and Nichols' theory as in [13], 

and using Schaedel's theory are  also plotted. The differences 

between Schaedel's results and those using rc are so small that they 

cannot be seen on Figure 20.  It may be concluded that the use of rc 

gives much better agreement with Schaedel's theory and consequently 

with the experimental data of [13], than does the use of r^.  It can 
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also be seen that the use of hydraulic radius predicts too much attenuation 

per line wavelength for a=l and not enough for a^3.  The difference 

increases with aspect ratio above a=3. 

A similar comparison is presented for annular lines of r* = 0, 

0.1, 0.5, and 0.8 in Figure 21.  At r*=0, rc = r^ = r0 and Nichols' curve 

for circular lines is recovered.  For r*>0, the attenuation predicted 

using r>h and Nichols' theory is less than that predicted using either 

rc and Nichols' theory or the exact annular theory given in Section II 

while the latter two approaches are in excellent agreement. The 

difference in predicted performance based on rc and r^ continue to 

diverge with increasing radius ratio. 

It is of interest to compare the hydraulic radius r^ and the 

characteristic radius rc of a rectangular line, for a practical range 

of aspect ratio, Figure 22.  The two approaches yield the same 

equivalent circular line at a=2.3 (rc=rh), and are nearly equal over 

the range 2 < as 4.  However, the divergence of rc and r^ away from 

a-2.3 is clearly seen.  The circular radius required to give the same 

flow area, denoted rA is defined as 

rA = /A/if (86) 

and is used to normalize both r^ and rc.  Similar results are plotted 

for annular lines in Figure 23.  It can be seen that the ratio rc/r«h 

decreases rapidly from unity, where r*=0, and rc = rj-, = rA. The area 

of the equivalent circular line using the characteristic radius is 

approximately 60% of that obtained using the hydraulic radius for 

rL*  2 0.2. 
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Aspect Ratio, a 

Figure 22.  Radius Ratios of Rectangular Lines 
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Figure 23.  Radius Ratios of Annular Lines 
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In principle, if the frequency dependence of lines of arbitrary 

axial cross section may be correlated as above using we, then an 

approximate impedance match may be found when it is necessary to join 

lines of different axial cross sections, as discussed in the next few 

paragraphs. 

Impedance Matching 

It is of  practical importance to terminate a transmission line in 

its characteristic impedance or admittance since such a termination 

implies no reflections.  Minimizing reflected signal strength is 

synonymous with increasing the efficiency of the line in transmitting 

the desired signal.  Thus, it is appropriate to discuss impedance 

matching when lines of different axial cross section are to be joined. 

Such circumstances occur quite often in fluidic applications where 

circular lines feed fluidic components whose basic flow regions are 

rectangular due to laminate techniques in component fabrication. The 

joining of flow regions of different axial cross section may also be 

found in aircraft hydraulic systems. 

If, for the present, we ignore the junction itself and concentrate 

on matching the characteristic impedance of transmission lines of 

different cross section, it would seem appropriate to require the 

characteristic frequencies to be matched. 

The modulus and phase angle of the characteristic admittance ratio 

for circular, rectangular and annular lines versus u>/tuc are plotted in 

Figures 2*+ and 25, respectively.  Again it is seen that lines with the 

same wc exhibit approximately the same frequency dependence.  The 

admittance ratio of rectangular lines is within u% of that of circular 
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lines at aspect ratios a <  10, and the admittance ratio of annular 

lines is within 6% of that of circular lines for radius ratios r* < 0.8. 

At lower aspect or radius ratios, these percentages decrease.  The 

phase angle of the admittance vs w/i»>c for both rectangular and annular 

lines is within 1.5 degrees of that of circular lines for the same 

ranges of aspect and radius ratios. 

It is important to note that the modulus of the characteristic 

admittance has been normalized with respect to that of a lossless line 

of the same cross section.  In general terms 

YO 
Ys0 

• f(w/»c)    or    |Y0| • |Ys0|-f(u/wc) (87) 

and equations (87) are valid for all lines.  It follows that if two 

lines have the same characteristic frequency, then for a given excita- 

tion frequency u> the lines will have approximately the same admittance 

ratio but not necessarily the same admittance.  From the definition of 

Yso» 

Ys0 
Ca 
Ja  P"ca 

and YSQ is obviously area dependent.  Therefore, setting the character- 

istic frequencies equal does not insure that the characteristic 

admittances are equal.  If the conditions thst YQ and u>c must be the 

same are imposed on two lines carrying the same fluid, then the flow 

areas must also be the same.  These conditions are in general incompat- 

ible except for the special case when the two lines are identical.  The 
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conditions amount to  requiring that r^ = rc when lines of circular and 

noncircular cross section are to be joined.  From Figure 23, it is seen 

that for annular lines r^ = rc only when r* • 0; for rectangular lines, 

Figure 22, this condition is never achieved.  It is concluded that the 

characteristic admittance (or impedance) of lines of different cross 

section carrying the same fluid cannot be matched at each and every 

physical frequency ID.  The closest match to a circular line is obtained 

when r^=rc.  (r* •* 0 or a •+ 1, for annular or rectangular lines.) 

In practice, the most common constraint encountered is the 

specification of a steady mean flow through which the signals are to 

be transmitted. This constraint is equivalent to requiring that the 

flow continuity is maintained.  It follows that for a given fluid two 

lines of the same flow area have the same lossless admittance.  At a 

specified frequency ratio w/wc, the two lines will also have approxi- 

mately the same frequency dependent characteristic admittance.  However, 

the characteristic frequencies are not the same and, consequently, 

neither are the physical frequencies for which the admittances are equal. 

The characteristic frequency of noncircular lines will be higher 

than that of circular lines of the same cross-sectional area. For any 

excitation frequency u, this implies that the characteristic admittance 

(impedance) of noncircular lines will be lower (higher) than for 

circular lines of the same area, and the designer is unfortunately 

faced with the resultant mismatch. Nevertheless, the characteristic 

frequency (or radius) of the noncircular line together with the circular 

line theory may be used in a simple procedure to predict the performance 

of the noncircular line at any desired frequency. 
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The ratios wCr/u)Cc and u>Cn/wCc are plotted in Figures 26 and 27 

for rectangular and annular lines, respectively, assuming equal flow 

areas. Similar curves could be constructed for any noncircular line. 

The characteristic frequency of circular lines is easily determined 

(wCc = 6TTV/AC) and from curves similar to Figures 26 and 27 the chara- 

cteristic frequency (<DC) of the particular noncircular line is 

determined. For the physical frequency of interest, the frequency 

ratio U/OJC is computed and any desired performance parameter such as 

aX, Figure 19, or |Y0/YS0|, Figure 24, is easily obtained from the 

circular line performance curves.  It is emphasized that laminar mean 

flow is assumed; combined turbulent mean flow and laminar oscillatory 

flow is discussed in Section V. 

I 
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IV.  The Transient Response of Noncircular Fluid 
Transmission Lines 

The transient response of fluid transmission lines of circular 

cross section was obtained by Brown [2], who derived the propagation 

operator and characteristic impedance of an infinitely long uniform 

rigid line in the Laplace domain for both compressible and incompress- 

ible fluids. Brown's solution is identical to that of Iberall [1] and 

Nichols [3] frequency domain models for the special case of sinusoidal 

excitation of the circular line.  Subsequently, Karam [19,20] developed 

a simplified solution for the transient response of circular lines 

after transforming approximate high and low frequency domain models 

into the time domain and then observing a basic similarity between the 

transformed solutions. Karam1s solution is more easily applied than 

that of Brown [2], and may be used to obtain the impulse and step 

responses of semi-infinite fluid-filled circular lines with good 

accuracy and without the aid of a computer. 

In Section III, a method of expressing the frequency dependence of 

noncircular lines entirely in terms 0f equivalent circular lines was 

presented, and results were obtained for rectangular and annular lines 

over a wide range of aspect and radius ratio. The primary purpose of 

this section is to present a method of transforming the frequency 

response of noncircular lines into the time domain. The analytical 

approach essentially combines the approaches of [2,3,20] and that of 

the previous section, and results in a simple but complete solution of 

the step response of noncircular lines. 
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Frequency Domain Equations 

The exact analytical expressions for the parameters Z, Y, r, and 

YQ which characterize the performance of a fluid transmission line are 

relatively cumbersome to use in the frequency or Laplace domain. 

Furthermore, it has been observed that the time transforms associated 

with these parameters have not yielded closed form analytical expressions 

over any of the frequency or Laplace domain, even for the simple case 

of circular transmission lines. The mathematical difficulties may be 

traced directly to the underlying frequency or Laplace domain solutions, 

which contain ratios of Bessel functions.  These ratios are not thus 

far expressible in a form amenable to transformation into the time 

domain. Further, according to Sneddon [21], it is unlikely that the 

Bessel solutions will ever be totally transformed.  Instead, high and 

low frequency approximations are made, and these approximations are then 

transformed into the time domain.  In the mid-frequency range, very 

complicated numerical techniques have been used to accomplish the 

transformation [22]. Alternately, the transient response in the mid- 

frequency range may be approximated in the time domain itself, as was 

done by Karam [20]. 

The general approach taken herein will be to partition the 

frequency domain into three regions, to analyze the equivalent 

electrical circuit of a general transmission line in each of these 

regions, and then to express the results in the time domain.  In this 

approach, the text by Weber [11] is especially useful. 

The three frequency regions are defined with reference to the 

characteristic frequency, wc = Rv/Lv, as follows:  low frequency 
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(w << u)c), mid-frequency (w • wc), and high frequency (u >> u>c). The 

characteristic frequency ratio U)/u>c = loLy/Ry may be thought of as a 

frequency dependent (AC) Reynolds number. At low frequency ratios 

viscous flow effects are prevalent while at high frequency ratios 

inertial effects prevail. In the mid-frequency range viscous and 

inertial effects are of the same order of magnitude. Similarly, the 

thermal characteristic frequency u^  = wc/a
2 roughly divides the heat 

transfer effects into regions of isothermal behavior, o> << w?  and 

adiabatic behavior, u » wq.     Since the Prandtl number (a2) is near 

unity for air (and many other gases) either u>c or urp will suffice as 

the overall behavioral index, and üic has been chosen for this work. 

For liquids (y = 1), there is essentially no dependence on the Prandtl 

number, since terms in the energy equation containing the Prandtl 

number are premultiplied by the quantity (1-y).  [See, for example, 

equation (26).] 

At low frequencies, the equivalent circuit, Figure 2, is comprised 

of essentially constant value elements of R, L, and C with G = 0. 

These values are R = Rv, L = Ly, and C = C^  = yCa, for any line of 

constant axial cross section. Using these values in the defining 

equations of the series impedance and shunt admittance [equations (28) 

and (29)], together with equations (32) and (34), the low frequency 

characteristic impedance and propagation operator are easily determined: 

\  " N ZlJL = «L + 1»L *  \   2~ (1+j) 

U+j) (88) 

(89) 
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Therefore, the low frequency attenuation, OL, and phase angle increase, 

ßL, are 

•L- {T-f^-k-1^?- i UKJO, 
ßL = <>L 

(90) 

(91) 

At high frequencies, the inductance and capacitance approach their 

adiabatic values. However, the resistance and conductance are frequency 

dependent and become large with frequency.  Karam and Franke [9] have 

developed approximations for the high frequency circuit components, 

which are rewritten in terms of o>c as follows: 

RH = i La ^Ky^' 

LH = La = p' /A 

GH = ^ Ca Aj KLo,u,c 

CH = Ca = A/Yp* 

(92) 

(93) 

(94) 

(95) 

In the high frequency region R << ML and G << u>C. Using these 

inequalities, the high frequency attenuation per unit length, aH, and 

phase angle increase per unit length, 0^, are approximately [11]: 

«H 
LHGH + RHCH 

2'/LHCH ' 

/T eH = U)/LHCH 

(96) 

(97) 
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Substituting equations (92) through (95) into equations (96) and (97), 

°H • ; [• 1 • I=ij ftfiZ   . ^L Ji • tij /&% (98) 

ßu = u)/LaCa' = ~ (99) 

It is important to note that the foregoing development is applicable to 

any fluid transmission line of arbitrary but constant axial cross 

section. 

From equations (90) and (96), it is seen that both aL and aH are 

of the form a = Knt, where X is constant, and such a line has a rather 

simple time domain solution. 

Time Domain Equations 

The characteristic time tc is defined as the inverse of the 

characteristic frequency (tc • l/wc), and the time domain is divided 

into three regions corresponding to the previously defined frequency 

regions. Thus, the short time region (t << tc) corresponds to the 

high frequency region (u> >> u>c
,> and the long time region (t >> tc) 

corresponds to the low frequency region (« << wc'>. 

Metzger and Vabre [23] have shown that when the high frequency 

attenuation is of the form a^ = KKI>, the step response Ir„ to a step 

input U(t) at I inches down a semi-infinite line is 

FrH ' 
er^c 

1 / «H'*' 
i/: 

2 Uf(t-T) 
U(t-T) (100) 
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where U(t) = |Ps|u(t), u(t) is a unit step input, T = i/ca is the 

adiabatic delay time, and f is the signal frequency.  For long times, 

Karam [20] has shown that the unit step response may be written as 

r^L erf c «L 
2£2\ 1/2 

irft 
U(t) (101) 

Since for long times t = t-T, evidently the unit step responses for 

long and short times are governed by the same relation.  It seems 

reasonable to assume that the step response will retain the same form 

in the mid-frequency range.  Thus, in general 

erfc [l (TOTT)   J U 
(t-T) (102) 

It is noted that this assumption avoids the transformation of the mid- 

frequency region into the time domain.  Brown and Nelson [22] achieved 

some success in the mid-frequency range for liquid-filled circular 

lines, but the method was numerical and was reportedly quite complex and 

sensitive.  The assumption that the attenuation is of the form a = K/U 

in the mid-frequency range is a convenience which allows the entire 

time domain solution to be expressed as a single complementary error 

function. The "constant" K is actually frequency-dependent in the mid- 

range.  Karam [20] used the time transform of the known low and high 

frequency asymptotes obtained from the equivalent circuit approximations 

and connected these with a logarithmic straight line of the form 

logi0(a/aH) = A + B logio T', where T' = tv/r0
2. This straight line patch 

is therefore made in the time domain and any correspondence with the 
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the mid-frequency range.  Karam approximated 

the transient behavior of a/aH 

rrequency domain is lost in 

>f a/aH for circular lines as [20j: 

for T'< 0.0125 

;(T')
m  for 0.0125 < T < 1.25 

/8y 

1 + ^ 
for i'> 1.25 

(103) 

where 

log 10 
/8> 

1 + 
Y-l 

and  K = (0.0l25)' 

A qualitativ Plot of a/aH versus , is given in Figure 28, along with a 

representation of Nichols' transformed solution.  It is emphasized that 

the dotted line of figure 28 representing Nichols' solution is only 

qualitative; if the exact transform of Nichols' solution were known, 

there would be no need for the straight line approximation.  Karam 

defines t{ = Tv/r^ and expresses the unit step response as 

pr = erfc c        r-r--r~> 
/t-Tn 

U(T'-T'O) 
(10U) 

This solution gives one of the simplest representations of the steP 

response of circular lines and shows very good agreement with the much more 

complicated analvtical and numerical solution of Brown and Nelson [22] 

for liquid lines.  Karam's solution is also in good agreement with his 

own experimental data and that of Kantola [2U] for air-filled lines. 

The pressure step response of liquid-filled lines obtained using the 
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results of Brown and Nelson [22] and of Karam [20] are plotted in 

Figure 29 for selected values of TQ.  Karam's results are applicable 

to liquids when Y is unity and the fluid bulk modulus KB is used to 

compute the celerity.  In [22,24], the nondimensional time is also 

defined as t'« tv/rQ
2.  It is seen from Figure 29 that the predicted 

responses are in good agreement over a wide range of TQ. 

Pressure (Flow) Response of Noncircular Lines to a_ 
Step Input of Pressure (Flowl 

Whereas Karam and others used the quantity v/r0
2 to nondimension- 

alise time, the characteristic time, tc = l/wc. will be used herein. 

Thus, T'and T'Q are redefined and a characteristic time equal to unity 

is introduced as follows: 

t • W0t • t/tc = 6T' 

10 • u), ,T = T/t- = 6T' (105) 

1 = wctc = tc/tc 

In terms of the redefined nondimensionol times, equation (104) becomes 

Pr = erfc 
TO 

^(T-Tn)' 

U(T-T0) (106) 

and the expression for the long and short time step responses become 

1/2. 
, 1 / Y10 

U(T-T0) (107) 
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prH 
= erfc' 

2  ,1/2 

6(T-T0) 
U(TT0) (106) 

The logarithmic straight lir.e approximation may be rewritten as follows: 

1 for T < 0.1 

o  
aH ~ 

KT
m for 0.1 < T 

/8Y 
for T > 10 

1 + Z± 
0 

(109) 

where 

% 
2 logi°   —TT     OTd    K = (oa> 

-m 

1 + 

Equations (106) and (109) approximately describe the step response 

of lines of constant axial cross section, either circular or noncircular. 

The key point is the definition and use of wc, since the ratio u>/wc 

(hence, T = t/tc) characterizes the response of the selected transmission 

line.  For long times, say one decade or more above tc (T 2 10), the 

line response is characterized by predominantly viscous, isothermal 

behavior. At one decade below tc (T < 0.1) the line performance is 

nearly inertial and adiabatic. Furthermore, the step response of all 

lines of the same nondimensional delay time TQ = u>cT may be represented 

by a single curve when plotted against T = wct. Equation (106) versus 

T is plotted in Figure 30 for several values of tg. The fluid has been 

assumed to be air at 80 F (y  = 1*4017),  Figure 30 represents either 

the pressure response downstream to an upstream pressure step input or 
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the flow response downstream to an upstream flow step input, i.e., the 

equivalent transfer function in the Laplace domain is 

Pr(s) _ Qr(s) _ l -*r(s) 
Po(s) = Qs(s)  s e 

(110) 

Pressure (Flow) Response of Noncircular Lines to a 
Step Input of Flow (Pressurel 

Two other transfer functions are of interest in determining the 

response of semi-infinite lines.  These are:  (1) the pressure response 

to a step input of flow, and (2) the flow response to a step input of 

pressure. The respective Laplace transfer functions are: 

Ms)  1 „ , , -tr(s) 
0^71 = Ws) e (111) 

Qr(s) 

rvFT 
l v ,. -iris) 
- Vn(s) e (112) 

and it is noted that a convolution integral may be used to solve for the 

time domain response.  Karam [20] has used the following equations to 

approximate these responses: 

?r 
T p p 

2o<A> S=- (T-A)d> * *r (T> 
0        s s 

rT 
Z0(X)dA U13) 

(t) Y0U) «5- (i-X)dX 
S       J n 

(X)dX 
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The approximations given by the terms on the right hand side of 

equations (113) and (ll1*) are made to simplify the results by avoiding 

computations of the convolution integral.  These approximations are 

based on the observation that Pr/Fs(t) rises fairly rapidly after the 

nominal time delay T and is essentially constant thereafter, especially 

for small T, whereas Z0(YQ) is essentially constant for small t, and 

varies inversely (directly) as n for large T.  It can be seen in 

Figure 30 that for large TQ, Fr/Fs(t) does not rise rapidly.  Thus the 

validity of the approximations decreases with increasing TQ.  Fortunately, 

lines of large TO are not practical transmission lines; this conclusion 

will be substantiated and illustrated in a subsequent discussion. 

Using the large and ml] s approximations of -0ls) and Y0(s\ corresponding 

to short and long time, respectively. 

. JL . ATE? . A| E . £!_ ' . Z  AJ^£ Y0.    \  Ci«     ^ C,  >La-s     sD  |  ya 
(UM 

-oK " y 
°H so Uli"> 

The integrals on the right hand side of equations (113) and (UM) mav 

be easily evaluated using the inverse Laplace transform II ] and the 

approximations of equations (.11?) and (116),  Thus 

Zo,<*)dA - L 
3 n i 

i 

-'SO  h 
T-l 

(117) 
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'v»» •i"l[ip]-v. (118) 

\OL(x)dx = r1 [¥ {äT]= »- (ü^ (119) 

0 
VA)dX = rl[¥]   r *«o 

For T' = tv/r0- and T = uct equations (11?) and (129) become 

(12C) 

'<*l 
(X)dX w < (121) 

ft 

0 
i^u)« - vso  ^^r   • Y,0 d^£ (122) 

It is convenient and more realistic to construct a single continuous 

function to describe the behavior of the integrals of Zc and  Y0, 

Karam [20] has found that equations (1181 and (121) may be combined as 

follows to give a closer approximation of the overall behavior of the 

integral of Z0. 

1/2 .1/2 

r^-(i^) -(-^) 
Similarly a continuous function approximating the integral of ¥_ is 

obtained in terms of t' and 1 as 
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•so 
\0(\)d 

8TTT' 
1 + 

KLTTT 
-1/2 

(12«*) 

Equations (123) and (12«*) versus T' are plotted in Figure 31, along with 

the asymptotic limits given by equations (116), (12C), (121), and (122), 

for air-filled circular lines with n • l.«*01". It is seen that the 

two continuous functions cf equations (123) and (12u) are properiy 

bounded by the respective asymptotes.  Using equations (113), (11«*), 

(123), and (12«*) the desired step responses are obtained in dimension- 

less form, as 

1/2 1/2 

^/JEN. !£(T.)(i + S&-)      slE(T)(1 + ^\ 
-so \Qs /  rs     \    *T /     ^s    V    Y* / 

(125) 

'SO 
(*)•*«">( 

1 t 
8TTT' 

l/: 

(T)  1 + 
KL17-! 

-1/2 

(126) 

Equations (125) and (126) are plotted in Figures 32 and 33, respectively, 

along with the results of Brown and Nelson [22] for liquid-filled lines 

(y = 1) and T' = tv/r0~.  It is seen that the two approaches are in 

good agreement over a practical range of t'.  The above step responses 

are adapted to non-circular air-filled lines as was done for Fr/Fs, and 

the results are shown in Figures 3U and 35.  In these latter figures, 

the dimensionless times are based on the characteristic frequency, 

i.e., T = wct. 

I 
86 

-•--•-»- • —    ••     - 



„-[/H *   \P(\)°A 

aJ 
T 

§ 

p—T 

J L 
o o 

ISC 

1          —*      " 
«0 U 
CN • rH 
rH •J 
W in 

W             -^ .r* 
V  m * k- 
+J     C   CM V C   O H +> 
*J .« >- m^m o 
ii. ¥• ? Icr 1 
tfl   O" • J= 

«C   U] <-' 
1 H                           * 1 
1 
1 

— 0 

0- 1 i 
4' 

wl 

+  T • XP(X) Or- 

;'TI *J 

'S" 
T 

o o 

4' 

M 
6 
»i C 
<- IT 
<T> • 
e «-• 

x g 
0 -v 

< 1= 

•0 
4' 4' 
N (.' 

.-< C 
rt IV 
IT T 

r *' 
5 £ 

4' 



r -p 

4' 

IM 

s- 
J 
L 

8 
U. 

4' 
*-• 

M 

IT 

0 

4' 
a. 

3 .• 
H 
4' 
U a. 

• -< IT 
in —< 

ID 3 
a. v.' 
E E 

CM 
<*1 

i 
——. 



ß)M 

89 



I • I " ' '• —-" 
•  -••• 

--} l        WTTI III     1— III! Mil 1    - o 10 
•" | o S 
•• ^ +J 
w» •H 
- E < - 
• 

0 

o 
o 

c 

ij 
•     ~ CM • — 

o •o m 
II r4 $ m 

.-1 m 
o rH 

~ H •H 

" it 

ID                                                 \\\ o 

•H 
< 

mm.   * 

80
° 

F 
01

7 
n 

 (
1
2

 

iH 

o 

fa 
o 

^"^^*" »a                             v\\ • o 
• u    • -H                                  m\ ID iH rH • • H •*->                                          ll\ • fa 
• ">                                               l\\ 
_ k    II     3                                                   1\\ 

•H       a*                                i\ 
HH 

0 <  >- w                                 1\ ID 4- 

" CM 
3 

J          -l-J 
3 

1                 | II 
a c 

i—i 

H 

t- 

0) 

00 

m    — __ *~~i 
10 • ID mm O — 

O 0 "" • +J 

1 ID ai 
~ I CM 

O 
  en 

c 

V^ • o 
a. c 
w o 

H 
O 

0)  •!-! 

-— L • 
O 

ai  v 
u (.0 
3 
V)    10 ID — 

• O an W   w 
I 

v 
o ** £2 

- On o 
ID 

•• OX 
o 

*~" , 
m v. o mm j- 

-     • 
CO 

o - E 
o 3 • bO 

| i        hin i i   I     i II11 1 1  1 1 •H 

o 
o                                    c H    • 

•                                                           1 • 
O                                                M O 
>-{ 

m°-¥ 

90 

  



iinjUMlip i    ii  in I    i«11111 

c~r 

L 

J L 

^_ 

o 
3 

ID 
O 
o 

ID 

s 
O 

o 
o 

ILOLU   I 
o 

In I I t i   I    i 

& 
?» 

'S 
(A 
O 
C 

.H 

01 

I 

o 

1 
w 
01 

E 

a. 

a. 
0) 

to 

Is 
4> 10 
K n 

IE 
in 

O 
HO 
O   • 

ft) 
OSr, 

91 

J* 



Physical Implications of the Fluid Line Step 
Responses and Dimensionless Parameters 

It is of interest to briefly discuss the physical implications of 

the various step responses and dimensionless parameters presented in 

this section.  The responses apply to semi-infinite lines, and 

therefore represent waves travelling in one direction only, with no 

reflections.  However, the basic linearity of the results allows 

superposition and application to problems involving reflections, as 

illustrated by Karam [20] and Brown and Nelson [22].  The flow response 

to a pressure step input must eventually reach zero (no flow) since the 

impedance of the semi-infinite line is infinite.  Similarly the 

pressure response to a flow step input must eventually increase until 

the line is ruptured.  For lines having the same TQ, the responses 

will be the same when plotted against T.  However, the actual delay 

time, T, and rise time of the res.pcr.se will be shorter for a line 

cross section of higher u>c.  In other words, lines of the same i o «nd 

working fluid properties but different ioc necessarily imply different 

axial locations (lengths;) along the semi-infinite line.  H tollowr. 

that the distance along the line will be shorter for the line of higher 

ioc.  The line of higher u>c will also attenuate high frequencies at a 

more rapid rate, and will approach the behavior of the diffusive RC 

line more rapidly.  For signal transmission, lines of higher u>0 should 

be avoided, as these are accompanied by larger attenuation per lint- 

wavelength at any physical frequency. 

As IQ becomes large, say i(j J 1, the line becomes- essentially I 

diffusive RC line, with R - Rv and C 
z Cj«  For a circular1 line el 

i)2 
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1/8 inch inside radius filled with air at 80°F (Table I properties) 

and To = wcT = 1, the corresponding length is 122 ft and T is 0.107 sec. 

For the same line cross section and to, but filled with water at 80°F, 

the corresponding length is 9,576 feet and T is 1.94 5 seconds.  It is 

unlikely that signal transmission would be of interest over such long 

fluid lines.  For such lines, treatment as a lumped RC line would be 

sufficient for most purposes. 

Summary of Transient Responses 

In this section a method was presented for determining the 

transient response of semi-infinite fluid-filled linesof arbitrary but 

constant axial cross section.  The results were presented in terms of a 

characteristic frequency which depends only on the laminar steady flow 

resistance and conductance of the arbitrary line.  Equivalent circuit 

parameters (R, G, L and C) were developed and used to obtain the time 

transforms of the various combinations of pressure and flow responses 

to step inputs of pressure and flow.  Results were compared with those 

of others for both compressible and incompressible fluids. For non- 

circular lines the results are shown for air at 80°F.  It is noted 

that the results are restricted to laminar flow. Similar results for 

the various step inputs propagating through fully developed turbulent 

mean flow are presented in Section VI. 
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V.  Laminar Oscillatory Flow Combined with Steady 
Developed Mean flow 

Background 

Several investigations have been completed concerning the trans- 

mission of small oscillatory signals through fully developed mean flow. 

A majority of these have been directed toward the superposition of 

laminar oscillatory signals on fully developed laminar mean flow [2,3,U]. 

Recently, investigations concerning the behavior of oscillatory signals 

combined with fully developed turbulent flow have been completed [15, 

25,27].  Most of the recent efforts have been restricted to incompressible 

adiabatic flow in circular lines. 

Nichols [3] obtained the small-signal frequency response of fluid- 

filled circular lines including frequency dependent dispersion of the 

propagation speed and distortion of the oscillatory signal wave shape. 

In addition, heat transfer effects were included.  In essence, Nichols 

separated the steady and oscillatory fluid parameters (as was done in 

Appendix C) and subsequently solved the oscillatory flow problem; 

nevertheless, his solution is applicable to flows combining steady 

developed laminar mean flow (Hagen-Poiseuille flow) and laminar 

oscillatory flow.  Holmboe and Rouleau [28] have shown that if the initial 

conditions are assumed to be Hagen-Poiseuille flow then the governing 

differential equations may be placed in a form which is identical to 

Nichols' equations. The results of Brown [2], expressed in both the 

Laplace and time domains, are identical to those of Nichols for the 

special case of sinusoidal excitation signals. 

9U 
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More recently Brown, Kargolis and Shaw [15] have obtained the 

rrequency response of liquid-filled circular lines carrying fully 

developed turbulent mean flow.  The authors developed two and three 

region viscosity profiles which resulted in fairly complicated solutions. 

It is noted that at high Reynolds numbers and dimensionless frequencies 

there were significant gaps in the frequency domain solutions wherein 

the attenuation of the oscillatory signals was not predicted by any of 

the authors' models.  Recently Funk and Wood [2b] developed a single 

boundary layer model to account for the transient viscous efiects and 

applied this model to small amplitude sinusoidally disturbed turbulent 

flow in circular lines.  The authors developed a transfer function 

relating the local boundary layer velocity gradient to the core velocity 

of the flow.  The model is comparatively much simpler than that of Brown, 

tt a!. [15]; nevertheless it gives values of frequency dependent signal 

attenuation which are in excellent agreement with the theory and the 

experimental data of Reference [15].  It is noted that the utility oi the 

model given in Reference [25] is limited to the high frequency regime and 

constant phase velocity; Funk and Wood suggest the use of a quasi-steady 

model (i.e., a constant LRC model) at low frequencies.  It will be 

subsequently shown that the model of Funk and Wood is closely related to 

the high frequency approximations developed by Nichols [3] and karatn [20] 

for laminar oscillatory flow combined with laminar steady flow, and to th<? 

concept of a characteristic frequency and radius previously developed 

herein. 

Trikha [29] has suggested that the frequency dependent part oi   the 

friction in turbulent flow may be approximated as the frequency dependent 
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part of the friction in laminar flow for a limited range of Reynolds 

number (in this matter, see also [7]). 

In this section a simplified model of combined steady turbulent and 

small signal oscillatory flow is developed which is based on analysis of 

the components R, G, L, and C of the equivalent electrical circuit, 

Figure 2, and also on the concept of a characteristic frequency. A 

method of determining the frequency response of lines of either circular 

or noncircular cross section carrying fully developed turbulent mean flow 

is developed.  The results are presented for a dimensionless attenuation 

and frequency.  For the circular line model, results are compared with 

those given in [15,25]. 

In Section VI, Karam's approximate method [19] is adapted to lines 

of both circular and noncircular cross section carrying turbulent mean 

flow and the pressure and flow transient responses of the lines to step 

inputs are estimated.  Before proceeding with the broader purposes of 

this section, it is instructive to review the physical aspects of 

combined oscillatory flow and steady, developed mean flow of compressible 

or incompressible fluids in a semi-infinite circular line. 

Physical Considerations of Combined Oscillatory and 
Steady Developed Mean Flow 

A large body of literature exists concerning steady, fully developed, 

laminar or turbulent flow in circular lines, from which one may select 

flow relationships ranging in complexity from relatively straightforward 

to very complex.  For turbulent mean flow, elegant theoretical flow 

descriptions involving statistical approaches and correlation techniques 

have been proposed.  However, these descriptions have failed to yield 
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».olutions except in the simplest BMM<  The approach taken herein is 

to develop the DMMUm steady tlow parameters fron» the more useful 

pheuomenologioal desoript iout. ot steady turbulent mean flow.  In this 

approach, the texts ot Schlichtin& laOj and Hinz» LJl 1 are partioularlv 

Useful. 

for small signal excitation of developed turbulent flow, the steady 

tlow velocity profile will not he greatlv altered by the super impose»! 

oscillatory signal provided the steady t low Reynolds number is suffi- 

ciently large, and the oscillatory signal amplitude is relatively small. 

Sttady and Oscillatory Boundary Layers 

1'or steady developed laminar flow in a circular line or dud t he 

boundary layer is presume.! (.• extend trom the wall to the center! ine ot 

the circular cross section.  Thus the steady tlow laminar boundary layer 

thickness denoted tfv. , is always equal to the radius ot the circular 

lin«' (fryI ' '"o*« "'*,u' '•'• ,u'f dependent on th*. laminar tlow Reynold« 

number.  The classical Hagen-VoiseuiIle velocity prof11« is obtained 

tor .-ill laminar flow in circular liner;.  However, tor steady developed 

turbulent t low the assvviated velocity profile an.! boundary layer thick 

lie.-.:, will depend, .MI t he Reynolds number.  As the turbulent flow Reynolds 

number increases, the associated velocity profile changes shape and 

approaches a plug-flow profile.  Simultaneously the associated turbulent 

boundary layer thickness »V, decreases, indicating large velocity 

gradient;: at or near the wall and large resistive losses.. 

I'or laminar Oscillatory flow, the dynamic boundary layer thickness 

will vary with t re.|uenov .  Nichols 1 .') proposed a boundary layer thick 

Hi':.:,, t» • » -vv .i>, lor circular lines.; and it is seen that the oscillatory 
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boundary layer thickness decreases with increasing frequency.  Similar 

effects occur in electrical conductors where 6W is called the skin depth. 

At low frequencies the oscillatory velocity profile approaches the 

classical Hagen-Poiseuille distribution. 

When laminar oscillatory flow is combined with steady mean flow, 

it is assumed that an interaction between the steady flow boundary layer 

and the dynamic (oscillatory') boundary layer will occur.  If the steady 

flow boundary layer thickness is less than that of the oscillatory flow 

(i.e., 5vt < 6a, or 6V < 6U,) then the oscillatory flow will be dependent 

upon the steady flow profile.  On the other hand, when 6W < 6Vp (or 

6W *  5vt^ the behavior of the oscillatory flow tends to become independent 

of the mean flow. This observation is substantiated both analytically 

and experimentally by the work of Brown, et al. [15], Pranke, karam and 

Lvmburner [1*0, and others [9,25].  Stated in other terms, the behavior 

of the oscillatory signal in the low frequency region depends on the 

mean flow whereas in the high frequency region the behavior of the 

oscillatory signal becomes essentially independent of the mean flow and 

dependent on the oscillatory signal frequency (u).  For the experimental 

data available, the high frequency behavior appears to approach laminar 

oscillatory flow behavior [15,27].  it is further assumed that for any 

steady flow there exists a frequency at which the dynamic and steady flow 

boundary layer thicknesses are comparable (6U, • 6V).  In this region, a 

transition from essentially steady flow dependence to frequency 

dependence takes place, or vice versa.  Similar qualitative behavior 

would be expected concerning the temperature profiles, particularly for 

fluids with a Prandtl number near unitv.  For circular lines Nichols [3] 

defines a thermal nonadiabatic skin depth as 6-p = » 2vj>/ti> which is seen 
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CO he trequencv dependent.  At low frequencies the heat transfer behavior 

of the oscillatory flow will depend essentially on the mean flow, 

wnereas at high frequencies the heat transfer will depend essentially 

upon the oscillatorv frequency.  Much of the discussion of the frequency 

domain equations in Section IV applies qualitatively to the above 

discussion.  It is not intended to extend the discussion of the various 

boundary lavers any further, since ultimately a model for circular and 

nonoircular lines with mean turbulent flow is sought.  Tor certain non- 

circular liner., next than one <$u, or 6V ip involved and it is more 

convenient to eliminate the dependence of the flow on the geometric 

cross section of the line.  Py integrating the various parameters over 

the appropriate cross section, geometry dependence may be essentially 

removed, as was previously done in developing the characteristic frequency 

and components of the equivalent electrical circuit for laminar 

oscillatorv flow. 

A Meat» Flow Characteristic Frequency for Circular Lines 

The concept of a characteristic frequency which divider- the flow 

into regions of viscous, isothermal behavior, and inertial, adiabatic 

behavior has been discussed in Section III for circular and noncircular 

lines.  It is desired to extend this concept to lines of arbitrary 

cross section, carrying combined oscillatory and steady turbulent mean, 

flow.  Returning to the equivalent electrical circuit, Tigure ?, and 

keeping in mind that the underlying steady flow determines the low 

frequency behavior of the oscillatory signal, it is necessary to determine 

R, L, £, and C for the underlying steady flow. The low frequency 

PM is ratio«', Kv« i-"5 dependent on the mean flow. 
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-3p   -3p 
3z    3z 

Au 
(127) 

and similarly for the inertance. 

KL ' La = (t)2 dA (128) 

If the underlying mean flow is fully developed laminar, it was previously 

shown that for circular lines 

*vj 
STTVI M 

Lvt = * La 
6v 

u)C£ = —r 

where subscript I denotes laminar flow conditions.  These parameters do 

not depend on Reynolds number.  For turbulent mean flow, the shape of the 

velocity profile is a function of the friction factor and Reynolds 

number.  The defining relation for the steady flow friction factor, f, 

for laminar or turbulent mean flow in circular or noncircular lines, is 

-3p   f 1 -j 
« I —— — DU"" 
3z  Dh 2 

p (1291 

From equations (127) and (129), the laminar or turbulent steady flow 

resistance of any line of arbitrary but constant cross section is 

fpü _ (fRe)u 
2AD, 2AD, 

(130) 

The simplest form of the relation between f and Re for developed turbulent 

flow in both circular and noncircular lines is the Blasius relation. 

f = a316U/Re 
!/«• 

(131> 
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where the Reynolds number, Re is defined in terms of the hydraulic 

diameter: 

Re 
pür>h 

(132) 

Equation (131) gives good accuracy up to Re < 5*10- [30], and is used to 

compute f herein. Using Equations (130) and (131) the turbulent viscous 

resistance of lines of arbitrary cross section, Rv»t becomes 

_   0.316UU ,_, Si/H 
Rvt •  r- (Re) 

1  2ADh* 
(133: 

Trom hinze [31], the steady turbulent velocity profile in circular lines 

may be expressed as a simple power law, 

umax  \ro/ 

where n is a function of Re, y 

(13*») 

r, and umax is the maximurr 

(.centerline) velocity.  Further, the work of Nunner as presented by 

Hinze [31] shows that the exponent n may be expressed as a function of 

f only, 

n 
(135) 

Equation (135) is shown to be in good agreement with the experimental 

data of Nunner, Nikuradse, and Laufer, for both smooth and rough circular 

line* [31].  from Schlichting [30], 

u         2w 
"max ~ (n+DÜn+l) 

(1361 

I 
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Thus 

u "     2n:     L ro J 

1/n 
(137) 

rhe turbulent viscous inertance, LVt, becomes 

't   A [fl ^ •L- ^7%r •l« •"t • •" U36) 

and KLt is seen to be a simple expression.  In terms of the friction 

factor 

vt  (/f • D(/f + 2)- 
Lt " L— =  In  La       U(2/f + 1) 

(139) 

The value of KL,- will be near unity since the steady turbulent velocity 

profiles are similar to inertial or plug flow profiles.  As Re becomes 

large, it can be seen that u/ü and K^t approach unity, while n •*• °° and 

f -* 0.  It is further noted that KLt near unity implies that Lv-t does 

not differ much from La, and the assumption that the frequency dependent 

inertia is in fact constant (L = La, or L = LVt) is a good approximation, 

particularly at high Reynolds numbers.  The approximation LVt = La is 

particularly useful in dealing with lines of arbitrary cross section 

carrying turbulent through flow, where expressions for u/u are either 

very complex or unknown. 

A broad range of values of KL for circular lines, together with 

closely related parameters, were obtained using equations (131), (135) 

102 

-*m. 



i »im.   '  • •'."•'< 

and (139), and are included in Table VI.  It is seen that the tabulated 

aata is consistent with the preceding discussion of K^ . 

TABLE VI 

Turbulent Steady Flow Inertance Taczcr  \^i ) fflf Circular Lipes 

Re f fKe n *Lt 

1,000 0.056265 56.3 4.2158 1.0500 

5,000 0.037627 188.1 5.1553 1.0352 

10,000 0.0316UC 316.* 5.6219 1.0302 

50,000 0.021159 1,057.9 6.P'%'1 1.0:1: 

100,000 0.017792 1,779.2 7.4969 1.01 so 

500,000 0.011699 5,949.3 9.1675 1.0125 

1,000,000 0.010005 10,005.0 9.9973 1.0106 

1 

Characteristic Frequency and Radius - Turbulent Mean Flow 

Proceeding as in Section 111, a set of characteristic frequencies 

and radii based on turbulent mean flow quantities are defined as 

(1H1) 

Rvt Al 6v U40) 

where subscript t denotes turbulent mean quantities. 

It is more convenient to use the characteristic quantities defined 

in equation (.141), since these quantities (i.e., adiabatic inertance-* 

are more easilv determined, and are consistent with the previous 

discussion and other publications on the subject [3,25].  Both u>0.. 
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and u)v are dependent on the turbulent friction factor and Reynolds 

number.  In essence, the circular line carrying fully developed turbulent 

flow is replaced by an equivalent smaller line of radius rv or rc 

carrying fully developed laminar flow, of the same characteristic frequency, 

Nichols' frequency domain solutions [3], applicable to circular 

fluid lines carrying either developed laminar mean flow or no mean flow, 

are to be used to solve the normalized frequency-dependent performance 

of both circular and noncircular lines carrying fully developed turbulent 

flow, and are repeated herein for the convenience of the reader.  The 

impedance, admittance, propagation operator and characteristic impedance/ 

admittance are 

•1 

1  = ju)La 

j»C. 

u1*:) 

(1H3) 

r = •/z? • a • jfl (ium 

vr = l/Y, (1H5) 

To use the above solutions as stated, the radius rG is replaced bv one 

of the characteristic radii, equations (1U0) or V1U1), and for 
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turbulent tlow the further assumption vy - v is made.  This, assumpt ion 

LBtpliea a Prandt 1 number ot unity which La thought t.' he more repre- 

sentative ot turbulent processes [30,9l3<  'V11 e- adiabatic inertdiice an.I 

I apao itance U.rt, C^) are computed frOA t he actual line propert ies, 

Equations (111) through vl»»»ti are the same equations which were used 

to i. loselv approximate tUta normal iaed frequency dependence ot both 

. ircular and nonoircular lines, carrying •ithW laminar or no mean tlow, 

and the results were shown in Figures ltf, IM, _'i< % 4ml .'!>.  These 

normal i;*.ed results will remain the same, when plotted against the 

Characteristic trequency ratio, HI UIV( . 

As mentioned in Section 111, t or a given value ot the argument ot 

the IUMJ functions, »ui'v r tor equivalent lv , u> u\. or ti/ttu)« the 

normal i .'.ed frequency dependence will he the same when plotted Against 

this argument.  SillCC it now is inteiute.l to apply the Above modeling 

approach to circular and noncirculer lines carrying turbulent through 

'.low, it is necessary to closely examine t he range ot validity and 

application ot thia approach. Tha Following development will address 

the low, mid, and high trequency domains relative to the turbulent 

viacoua charactariatii   frequency! u»v  , and Nichols' solutions. 

l.ow Frequency domain  Turbulent Mean blow.  lor »> ••» »1..  a 

.(ii.t.-.i steady constant l.Hv' model is the simplest Approach, as suggested 

by brown, et ai. t I'• 1 and bunk and Wood [253« Tha equivalent electrical 

, iv.'iiit is comprised ot the constant value elements, K   KVfl 

L»(" iv. 1, 1'.     »v, and C •  Ci  •  >^'rt-    the  Low frequency serial 

imped.nice and shunt admittance ara 

L05 

 . ... -*.. 



n 

zLt   •  Rvt  +   j wLa  =  Ryt H*]-*-!1-'*] 
<Lt  = G + juCi = juyCj 

(1*6) 

(147) 

From equations (141) and (146), it is seen that as w approaches zero, 

^Lt approaches the steady turbulent DC resistance, RVt» equation (133). 

The low frequency propagation operator and characteristic impedance are 

12 
1148) 

(1*9) 

For very low frequencies, U>/ü>V << 1, the above expressions may be 

further simplified: 

°Lt ' lj7^Cl   P~— ^2^(1-3) 

(150) 

(151) 

A where P — » zs0 • Vmrt?> 

To facilitate discussion of the constant LRC model and comparison with 

recent work, the dimensionless frequency, fi, and normalized attenua- 

tion, ag , for circular lines introduced by Brown, e_t al. [15] will be 

used.  These are 
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(152) 

Ub3) 

Using the constant LRC model, equation 1148), and the above parameters, 

it can b«* seen in figure 36 that a principal effect of increasing the 

:.teadv turbulent Reynolds number' is to increcise the attenuation at .ill 

Irequencies, up to the laminar reference curve.  Figure 36 shows the 

extension oj the constant LRC curves beyond the laminar limit, and 

also indicates that for a given Reynolds number a plateau is renched, 

afttr which the LRC model fails to predict further increases in 

>it tenuation. 

To obtain the limiting value of a, denoted a^. for the constant 

LRC model and large values of w, Pj,- is first rewritten using 

equation« (l^t't and U47"), and then expressed in terms of its modulus and 

phaat angl«, 

'Lt   •        VV^t piFi 1 - j 
"Vt 

Lt *G$i [j • {^f)\     IS f "arctan "TJ 

(15«0 

(155) 

l\>i large values of w/wv , or small u>v, /u>, 

\' (-) 
• 1 
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Taking aM as the real part of 1*1^, and using the relations RVt 
= 

">vtLa. Cj • *Ca, and /CaLa = l/ca; 

°M u)/rCaLa cos [_2   2 w J   ca     l_2 u J 
CISC) 

Using the small angle approximation, sin6 • 6, 

r-  rlWvti 1^/- (is?) 

Similarly, for the plateau phase la'g, B^, 

ßM 
u, r    . TTI  1 wvtl  w r~ (158) 

The asymptotes of value aM for each Reynolds number are also plotted 

in Figure 3b, and it is seen that a^ is an accurate representation of 

the constant L.RC attenuation in the mid-frequency range.  Equating th* 

expressions for a given by equations (150) and (157), the low frequency 

corner, or break frequency ratio, w/u)vt 
= 1/2, is obtained. 

To convert to Brown's dimensionless frequency, used in Figure S6, 

R = 8 
(*)' 

u)  _ R2u) 
u>vt   v 

(159) 

The locus of break frequency ratios in terms of ft is 

«LB " u w (160) 
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This locus is also plotted in Figure 36.  An expression for the 

dimensionless frequency 8 at which the aM asymptote intersects 

Nichols' laminar reference curve, Figure 36, is obtained by equating 

ay, and a^, equations (157) and (96), respectively.  Equation (98) was 

derived from laminar theory, and contains developed laminar flow 

quantities, denoted by subscript I. 

1 "vt r 

2 Ca 
Y ' cl L1 + ^J "WWV| (161) 

which can be rearranged to give 

M 
ID V., 

•HB 

Uy <^t 
U)V£ b< tf 

(162) 

For incompressible flow, y  » 1, and equation (162) becomes 

01 

li>V, 

u)vt 
M —-  = M 

HB w (163) 

In terms of Brown's dimensionless frequency, see Figure 36, 

"HR - e 
R 

rv. uiv. 
J2L 

• >?i w (16*0 

and for incompressible flow 

"HR = 32 
_R_ 

(165) 
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The entire set of constant LRO model attenuation curve;.. Figure $6, 

»•an be reduced exactly to a single curve, Figure S7, valid for all 

Reynolds numbers and line cross sections bv using the dimensionless 

frequency ratio w/wv and expressing the dimensionless attenuation as 

(166) 

where o.^* is the real part of  Pj,* in equation l!50t. 

rVt*c« 

It is seen from equations vlbc), (157), and (It-»), and shown in 

Figure 37, that ä^* and all asymptotic parameter? are principally 

fu&CtlOQS of wv or u)  a>v •  Equation (1(6), with o>]t determined trotii 

equation ll1*^ and K ^ >>, is plotted in Figure 87, together with in- 

appropriate asymptotes and corner frequencies.  A second curve, which 

has been normalized such that the plateau value of dimensionless 

attenuation is unity (K • **>}   *>.   is also shown in Figure S7.  It CM 

:••• shown via considerable algebra that this curve is also identical 

to the r*tio >> c ca vor »•> & \v^ obtained when vising the constant 

LRC nodcl. 

Mid-Frequency Domain-Turbulent Mean Flow 

It '. v     La vised in place of r0 in equations vl^.
M through il^O. 

Nichols1 circular line theory predicts the low frequency attenuation 

very accurately at OJP below the low frequency break u> u>\.  - 1 *t), 

and can be adjusted to predict the high frequency parameters also. 

However, in the mid-1 requency range, N * iov , Nichols' theory does not 

predict the extent of the attenuation plateau; in this region the 

constant LRC model is used and the plateau extended approximately to 
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the high frequency laminar reference.  Accordingly, the results 

plotted in Figures 36 and 37 and the equations describing the constant 

LRC model are extended to include the mid-frequency range.  This model 

is easily understood and applied, and is in sufficient agreement with 

experimental data [15,27,32].  Furthermore, in the region of the inter- 

section of  the constant LRC model plateau and the high frequency 

laminar reference (called the high corner or high frequency break), 

experimental anomalies have been encountered which are not amenable 

to linear analysis.  In a recent paper by Margolis and Brown [27], 

unexpected and dramatic variations in both attenuation and phase 

velocity were encountered in the transition region between the quasi- 

steady (constant LRC), and high frequency (laminar oscillatory) regions 

of flow in water-filled circular lines carrying turbulent mean flow. 

This same behavior was also observed by Vining [32] in a recent 

experimental investigation involving air-filled rectangular lines 

carrying turbulent mean flow.  Vining and the author conducted a thorough 

search for experimental anomalies or errors to no avail.  The data was 

repeatable rrom day to day, after extensive experimental equipment 

i^eplacement and recalibration.  A similar exhaustive search was made by 

Margolis and Frown, and they were eventually persuaded that the experi- 

mental data was correct.  Details of the cited behavior and discussion 

of the possible causes are best given in [27,323<  However, the 

behavior is worthy of illustration, see Figures 38 and 3^.  It is 

Strongly suspected that resonance phenomena involving coupling between 

tUt>bul«11t vortices and the superposed oscillatory signal is ; resent. 

In 127], and as seer, in Figures 38 and 39, the experimental tat« 

corroborate! the use of a quasi-steady model for dimensionless trequenev 
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ratios below and up To the transition region, and the use of a laminar 

oscillatory model at ratio? above this region.  The experimental evi- 

dence in ['."7,323 further emphasizes the futility of attempting, to 

develop a rigorous, complicated, smooth transition model as was done 

in [15,25j; attenuation and phase velocity behavior in the transition 

region is tar from smooth.  Fortunately, the transition frequency 

bandwidth is predictable l?"7], and can be avoided in any attempted 

transmission ci   information through the developed turbulent mean flow. 

In view of the experimental evidence, it is thought sufficient To use 

the constant LRC model for dimensionless frequency ratios in the mid- 

range and  up to those at which the laminar oscillatory model become:, 

valid. 

High Freouency Domain - Turbulent Mean flow.  In the high frequency 

domain (u> » Vy*.)» the flow becomes frequency dependent.  At high 

frequency, the laminar oscillatory boundary layer becomes considerably 

thinner than the equivalent mean flow boundary layer (6tt « 8y*) e4 

previously discussed in this section.  Thus the high frequency behavior 

becomes essentially independent of the mean flow, and approaches the 

laminar oscillatory behavior associated with the line being investigated 

The normalised laminar oscillatory behavior of both circular and 

nonoircular lines was shown to be nearly identical when plotted, against 

the laminar characteristic frequency ratio u>v  • KV(; la.     It remains to 

determine the transition from middle to high frequency SBC to normalise 

the high frequency domain results such that they are applicab e to 

circular and nonoircular lines carrying laminar or turbulent mean flow 

over a practical range Oi Reynolds number.  Results ai'e  sought which 

are similar to the single curves of Figure 37.  These curves include 

I 
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both ION and mid-frequency performance of circular and noncircuiar 

Line: carrying * compressible or incompressible fluid at th« specified 

Reyncids number. 

If Nichols' equations t.1-2 through 1U5) are used together with rvt, 

the predicted high frequency attenuation is too high, as shown in 

figure HO.     Thus rv cannot he used as the characteristic radius in the 

high, frequency region unless other adjustments are made.  Experimental 

evidence supports the use of the laminar oscillatory model in the high 

frequency regions, and the following development will provide the 

matnematicai relationships and adjustments needed in the high frequency 

domain. 

Equation (.luO may be expanded using equations (.l^rl and (143) 

with v = vj to give 

1 '2 

j(4)       (167) 

A/ - 

.„   Id) fit (Y-1) J(»)      iw 
a + -|p = —   : r—i  = *— B 

C,     1 - J(o>)  J      ca 

where 

«•> • && (168) 

and 

i?* 3/: (169) 

The normalized impedance ratio is obtained from equations (112)« (1U3), 

(1*5), and (36): 

=o   ir      ir TI/: 
i— =   1 - J<+) [ I 1 • (y-1) J(t>)jj h(f) (170) 
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It is clear that the argument $ completely determines the bracketed 

expression of equati . (167) and all of equation (170).  The modulus 

of <$•  can be rewritten in terms of the characteristic radius and 

frequency as 

•<• fsv^-^fir-»^ (171) 

where rv = rD, rv^ or rVt, and similarly for u>v. The argument $  depends 

only on u>/wv, or its equivalents.  However, from equation (167) it is 

seen that r also depends on w/ca.  Supposing two lines of the same 

characteristic frequency ratio, but different uiv, i.e., 

M 
u>v (Dv 

and 4  ttv 

implies 

2i 
0)2 wv. 

, for all u>. (172) 

Consequently, a (and ß) may be adjusted between linos of different 

characteristic frequency to obtain the proper values: 

uiv 
8] • 

u«v„ V'l 
a-> (173) 

It follows that ii single baseline curve can be constructed to describe 

the liigti frequency attenuation of tl] lines. CSTTying either laminar 

or turbulent mean flow.  One form of this curve [y.  obtained bjJ 

IIP 
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tiorma 1 i v. iny. *,   equation   (167),   in a manner  • imi lar   to  brown   I .1! 1: 

_i  a   a    , \<v.i\    [JB\f)J   -     — Krai    M«     1*1—I (17*0 
v      v e« »v    [_  VI "V/ _ 

when a • a(x\v)< Equation (17*0 ahowe that the noniu i Laed attenuation i:- 

a function of w/wv only,  lqn.it ion t 1 "*l+ ^ is plotted in Figure '< 1 .  The 

high fvequenov behavior ar- thOMA in FigUM 't 1 (above ui/inVl • .t). mav be 

adjusted to the Appropriate Laminar reference (eeyjaptota) by using tha 

known high  frequency  behavior and  the approach  leading  to equations   il'V 

and (173), or by noting thai  the c^wact character ist io frequency ratio 

at high frequenciaa i.,; M/UV», whathar the underlying steady t low la 

laminar or turbulent, and  Interpreting Figura m accordingly• 

It is convenient to normalise a tUCh that the onset oj frequency 

dependent behavior bagina at Unity value on the mid-frequency plateau 

•nd loins the laminar oacillatory limit curve o! the fluid line being 

conaideredi The normelised high frequency attenuation is to be determine. 

in terms ^\   ..> u\, .  The appropriate asymptotes are given in equation.': 

(1S7) and r'!;1 io\-   the middle and high frequency regions, respectively. 

Theaa are used to define a new. extremely simple, tingla expression tor 

the middle and high t requency dimensionier^: attenuation.  The two 

asymptote:; are: 

"M '«M • l (175) 

a fn \r I '^\'< 

a 

and for O • i 

< 17». > 

ii» 
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aM •       2 l|\iovt/ \wVt/ 2  VrV£y    »u)Vt 
(177) 

Equations (175) and (177) are combined into a single function, called 

5Ht = 

°Ht iSL. Ah + 1 (178) 

This function represents the middle and high frequency dimensionless 

attenuation of laminar oscillatory signals in circular and noncircular 

lines, carrying fully developed laminar or turbulent throughflow.  The 

inclusion of -y in this equation also accounts for compressibility effects. 

Equation (178) is plotted in rigure 42.  The high corner (break) 

frequency occurs at the intersection of the two asymptotes, as previously 

shown in the development of equations (161) through (165). A new 

dimensionless grouping, the abscissa />f Figure 42, is formed which 

combines mean flow, geometry, and frequency dependent parameters.  This 

new grouping facilitates comparisons with previous work, notably that of 

Tunk and Wood [25], as discussed in the following subsection. 

Comparison of High Frequency Results with Previous Work 

In comparing the above results with those of Brown, et_ al. [15,??], 

and Funk and Wood [26,26], it is necessary to establish a common basis 

among the references.  This basis assumes:  (1) lines of circular 

cross section (rvt • r0 or R); (2) nearly incompressible fluids (> = 1); 

(3)  unity Prandtl Number (o = 1); (4) constant phase velocity (c • caU 

\ 
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(5) developed turbulent mean flow; (6) relatively small amplitude 

oscillatory signals; (7) small attenuation per line wavelength; and 

(8) high or near high signal frequencies (w/u>Vt > 1), for all turbulent 

Reynolds numbers.  Since Funk and Wood [25] have compared their work to 

that of Brown, et al. [15], the comparison herein deals primarily with 

Reference [25]. The dimensionless parameters of Brown, equations (152) 

and (153), will be used for overall comparisons, since these parameters 

have found wide use in the literature. 

The model developed by Tunk and Wood [25] assigns all viscous 

effects to a single fictitious laminar boundary layer whose thickness 

(A) is based on steady flow laminar and turbulent friction factor data: 

16 
TfReT, 

(179) 

where K is the radius of the circular line. All other effects are assigned 

to an inertial plug-flow core (i.e., L 2 La).  The model makes use of 

the eight assumptions listed above, and results in a single dissipation 

function (*) such that the attenuation can be expressed as 

a • 
v* 

RcaA 
(180) 

The attenuation itself is assumed to be small, and only first order eft vets 

are considered in the expansion of the dynamic pressure ratio: 

-a: 
^ 1 - a: (181) 
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The model of Funk and Wood still requires the computation of a complex 

transfer function relating the local velocity gradient to the core 

velocity, and also requires numerical integration of the dissipation 

function across the boundary layer.  Both of these requirements are 

avoided by the model given in equation (178) and plotted in Figure W. 

From equations (65), (75), (76), and (141) it is easily shown that for 

the same circular line carrying turbulent mean flow, 

«Vg  / rv-£ \   R\'£  (fRe)j ( I vt \   K 

\   R ' " R 
64 (ier> 

uVt  - n     «Wt ~ (fKe)t ~ (fRey)t 

The model of Funk and Wood and the author's model are related through 

the turbulent mean flow parameters. Comparing equations (179) and (182), 

A _ i/*vty 
R " 4 V R I (183) 

The relationship between • and the parameters developed herein is obtained 

by comparing expressions for the dimensionless attenuation.  From 

equation (180), 

R2c. R^c. v»   R 
RcaA ~ A 

(1841 

and from equations (178) and (183), 

R2ca R2c. 
a = aMaH 

, / R V -    R - 
t = u (r^) a«t = Ä °Ht 

(1851 

It follows that equivalence is of the form * = 5ft . From equations 

(178), (183), and (185), with f • 0 » 1, and rV£ = R for comparison 

with [25], 
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R^c a R r /r   N2      11/2        r 1I/2 

R2c 
R a = — t1 * • @f • I [- (tf] 

1/2 

(186) 

Lquation  (.186)   indicates the significant  influence of the steady and 

dynamic boundary layers on the line response.     At high frequency ratios, 

T.     R2c 
Lim 
or*»       v 

Lim 
a = iRc)2] 

1/2 
R       A 
A   *  f w VU> 

(187) 

and at low frequency ratios, 

"• Ü 0 « I Cl • o]
1/2 . | 

ur*0  v     A A 
(188) 

and the high corner (break) frequency occurs at A = 6Ü1.  From Nichols [3] 

and Karam [20], the high frequency laminar oscillatory attenuation was 

approximated by equation (98). Equation (98) reduces to equation (IS"1» 

as shown in the following development (> = o = 1). 

»•*[*•*] 4cT 'wwn 
a 

(189 1 

Using the definitions of wVJ and 8tt, together with equation (.189) and 

Brown's notation, gives 

R*Ci 

«H 
R'   (190) 
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It remains to show the equivalence of the mid-frequency asymptotes, 

i.e., that(R2ca/v)aM = R/A, with y  -  o = 1: 

R2C R4c, 
«M = 

2  C. 
Si 
2v 

K 
A 

(191) 

The last two terms of the above equation are identical to those of 

equation (183). 

The attenuation model embodied in equations (178) and (186), 

applicable to the middle and high frequency regions, constitutes a very 

significant simplification when compared to the models given in [150 and 

[25].  An appreciation of this model can only be realized by comparison 

with the cited references. 

The results of Brown, et al. [15,27], Tunk and Wood [25], and the 

author are plotted for comparison in Figure 43 at two Reynolds numbers, 

Re = lxio1* and lxlO5, for rv. = R.  In view of the experimental data, 

the author's model is as valid as any of the referenced models for 

circular lines, and is comparatively much simpler.  Furthermore, the 

model is applicable to any fluid line of arbitrary cross section, 

carrying laminar or turbulent mean flow.  The other models are not. 
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VI.  The Transient Response of Fluid Lines Carrvinc 
—^—     •    —— ^—^_      •  i 
Developed Turbulent Mean rI'~>w 

In this section, the high, middle, and low frequency models developed 

in Section V are transformed into the time domain using the general 

approach of Karam [19,20].  The methodology and form of the data is very 

similar to that presented in Section IV; much of the general discussion 

presented in Section IV concerning the various regions °* the frequency 

anc time domains is also applicable here.  Accordingly, or.lv major 

differences will be pointed out in the development and discussion which 

fellows.  In all developments of this section, unity Frandtl number is 

assumed. 

Frequency and Time Domain Equations 

The frequency domain is divided into three regions (low, middle, and 

high") based on the turbulent characteristic frequency ratio, ui.'u-v • 

Ry/La.  The regions are divided according to the value of the low and 

high corner (break) frequency ratios, as defined by equations (1501, 

(157), and (162): 

Low frequency: 
1 

< -r 
u>vt 

LB 

Middle frequency:  — < — 
It wvt 

V wv( 
(192) 

High frequency:     
«v. 

i« ">vt 

> u> VI 
Hp 
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It is seen that the regions are highly dependent on both the laminar 

and turbulent steady flow parameters.  A new characteristic time, tc = 

l/wv , is used to redefine the dimensionless time parameters, such that 

T = u\,tt • t/tc 

tc • u)VtT • T/tc (193) 

1 • Uv+tc 
= tc/tc 

The above frequency regions and dimensionless time parameters are 

used in developing, expressions for the various pressure and flow 

transient responses presented in this section. 

Line Attenuation Factor 

To facilitate the use of Karam's methodology, the attenuation in 

turbulent mean flow is expressed in terms of the three logarithmic line 

segments I asymptotes) corresponding to the three frequency regions of 

equations (192): 

ca ^ : u,Vt 

l wvt   - 

K.    > i*> 

»H,   •   ~  »^vC 

>u\.t   /rVt\ 

aw i 

I 

It ir. seer, that the high and low frequency attenuation are Ot   the for« 

a - K »u>.  Consequently, the solution* ot Metzger and Veto« [23] Hid 
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Karam [TO] may be adapted to obtain the various transient responses.  The 

attenuation ratio, a/au, is redefined as 

for T 

aH 
B- = I     kT 

where 

• = —  and 

(195) 

Pressure iFiow) Response to a_ Step Input of 
Pressure (Flow j, Turbulent Mean Flow 

The general solution for the transient downstream pressure (flow) 

response to a step input of pressure (flow) was given by equation (102), 

Using the attenuation ratios of equations ^195) above, together with 

equations (102) and (193), the generalized transient response may be 

exrressed as 

erf. 
®(Ö *0 
»ru-tn) 

t'(T-TC) (196) 

where subscript t denotes applicability to turbulent mear. flow conditions. 

The dimensioniess step responses for long and short times corresponding 

to equations (107) and (108) are, respectively: 
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PrT  = erfc 
HQ$(E") 

T
° • vi' 

/2J.r-ra) 
Ö(T-To) 

erfc 

1/2 
1 (YTQ- 
2 VT-T0 

U(T-T0) 1197) 

ana 

XU, = erfc 

VT 
to 

/2(T-TO) 

U(T-Tn) C19E 

For completeness, the intermediate or middle time solution is 

errc 

y /^vt\ , IT. 

= erfc 

•2(T-T0) 

2   1/^ 
1 (y  ToT > 
2 \2 T-tn> 

U(T-Tn) 

U (T-Tn) (199) 

It is seen that the middle and long time transient response is- completely 

determined for a given fluid, t,and to-  It is also noted that equation 

(197) is identical to equation (107); in the latter equation the times 

are  nondimensionalized with respect to u>c.  Equations (197) and (199) 

describe the transient response of arbitrary lines filled with a 

compressible fluid carrying laminar or turbulent mean flow.  for laminar 

mean flow, wVp • Rv./La is used to define the dimensionless time ti.e.« 

1 • wv.t); for turbulent mean flow, uiVt = Rvt/L.a is used.  The short 
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time response, equation (1981, retains some dependence on Die ratio oi 

the turbulent to laminar characteristic radii.  The physical interpre- 

tation is that the high corner break frequency, which essentially mark:; 

the division of influence between steady turbulent mean flow behavior 

and frequency dependent laminar oscillatory behavior must include 

influences from both phenomena.  The ratio i\, /rvc essentially adiusts 

the transient response to account for the various arbitrary line 

geometries and turbulent Reynolds numbers, and is there!ore not solely 

dependent on the turbulent characteristic frequency (%), 

Equation (19b) is plotted in Figure MM as a function of t - u>v,t, 

for two values of the ratio rv 'rv , which correspond to the following 

tabulated conditions for circular lines lrv  = K). 

TABLE VII 

Equivalent Circular Line Steady flow Parameters for 
figures MH, »»5, and H6 

rVj 
> Ke fRe 

K \rvc/ 
R(«Tvt) 

.14 4975 

.07998 

1.M017 

1. if 017 1*10(' 

316.«« 

1779.2 

.15760 

.02803 

.0935 

.0935 

The influence of rv /r  on the short time response is small and nearly 

negligible, as can be seen in figure MM.  In the middle or long time 

regions, there is no intluence, which is evident from equations (197) 

and (199).  For the large differences in mean flow parameters given in 

Table VII, the nearly unnoticeaMe effect on the pressure and flow 

parameters plotted in Figure MM indicates that the transient response:- 
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are very weak functions of P^/jTW. The equations developed in this 

section also apply to upstream and downstream flow transients; i.e., 

2z 
Qs 

and 

U(t) = Ps(t)u(t)  or  Qs(t)u(t) 

as appropriate.  Expressions for the remaining unit step inputs and 

responses of interest are developed in the next subsection. 

Pressure (flow) Response to a Step Input of riow 
(,Pressure), Turbulent Mean Flow 

The two remaining dimensionless transfer functions of interest are: 

1 /Ms> 
OlTs) 

i Zo(«) -nrt(s) (200) 
"so 

and 

Qr(s) 
v^TTT VrvT» 

l   *o<»> 
s Ysc 

,-ert(s) (201) 

As was done in Section IV, the approximations used bv Karam [20j arc 

adapted, with T • u\, t, and equations (113) and (ll1*1 are used to obtain 

the final time domain expressions.  Subscript t again denotes applica- 

bility to turbulent mean flow conditions. 

Approximations of trie characteristic impedance and admittance foi 

the long time Ismail •) and short time llarge t) regions, adapted to 

turbulent mean flow conditions, are respectively: 
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1 .1  Rvt I       J La «vt     ' .    «vt (202) 

JOH^   =   Y =      so nt       YOHt 

(203) 

Performing the required integrations yields: 

2OL (X)d(X)  = L -1 
zso     >    H>v+ 

-   22 so 1 u>vtt 

Y« 
=   2Z so w 

(20U) 

ZOH  (X)dX   •  L" [¥]• Jso 
(205) 

ft 

Y0.    (X)dX =  L -1 
Yso   Al VS 

s        ^ wvt 
vs0 K (206) 

YOHt(X)dX   =  L -M =  Y so 
(207) 

As before,  it  is convenient   to combine  the  impedance and admittance  into 

a single  function applicable to the entire   time  interval: 
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ft 

1 
20(X)dX V    W (206) 

so 
YQ(A)dX 

-1/2 

(209) 

Using the form of equations (113) and (11U) together with equations 

(196), (206), and (209), the desired dimensionless step responses are 

obtained as follows: 

i(H=MtM
1/: 

(210) 

Jso M-HM"' (211) 

Equations (210) and (211) are plotted in Figures 4 5 and 46, respectively, 

for the parameters given in Table VII. 

Physical Implications of the fluid Line Step 
Response with Turbulent Mean Flow 

It is of interest to discuss the physical implications of the 

dimensionless step responses shown in Figures 44, 45, and 46.  For lines 

with the same value of TQ, the computed responses will be identical 

for values of T Z  (-y/4) (u>V£/u>Vt)i 
and wiH be nearly identical for 

smaller values of T.  However, two lines of identical TQ and working 
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fluid, but different turbulent characteristic frequencies necessarily 

imply different physical lengths down the lines.  The line having the 

larger turbulent characteristic frequency will exhibit a faster rise 

to a given ratio of Pr/Ps or Qr/Qs» in a shorter length, and will 

approach a diffusive RC line more rapidly. Comparing the two circular 

pneumatic lines for the conditions of Table VII with to = 2, it is seen 

that an increase in Reynolds number from Re • 10** to Re = 106 decreases 

the adiabatic delay time (T = t/ca) by the ratio of 31.6/1!  The 

implication of this example is that increases in the turbulent flow 

Reynolds number greatly accelerate the transition to diffusive RC line 

behavior; consequently, high turbulent Reynolds numbers should be 

avoided in any attempt to transmit information. 

In terms of the equivalent laminar and turbulent steady flow 

boundary layers, equation (183), it is seen that the condition 

is equivalent to 

T*Tf 

for circular lines or 

1 ijl- 

for arbitrary lines.  Thus the break time between short time and inter 

mediate time domain responses is a strong function of the equivalent 

steady flow boundary layer parameters. 
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VII.  Conclusions and Recommendations 

This section contains a summary of the conclusions reached as a 

consequence of this work.  Recommendations for extensions of this work 

are addressed. 

Conclusions 

1. In general, the very close analogy between the small-signal 

response of fluid and electrical transmission lines has been 

reinforced for a wide range of fluid line geometries, mean flow 

conditions, fluid media, and heat transfer effects. The signifi- 

cant role of the equivalent electrical transmission line properties 

in describing the fluid line response has been demonstrated. 

Distributed line parameters such as resistance, inductance, 

conductance and capacitance, derived from the series impedance 

and shunt admittance of an equivalent electrical transmission line, 

are shown to be the key parameters in determining the line response. 

2. A closed form, distributed parameter, analytical solution for the 

small-signal frequency response of fluid transmission lines of 

annular cross section has been obtained. The solution considers 

shear flow effects, fluid compressibility, and heat transfer 

effects, and is applicable to blocked lines or lines carrying 

developed laminar mean flow. The solution was shown to be in very 

good agreement with experimental data for blocked annular pneumatic 

transmission lines over a wide range of annular radius ratios and 

signal frequencies.  In comparing the annular line results with 

those previously obtained for rectangular lines, it was shown that 

for large radius and aspect ratios the solutions converge. The 
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annular line solution contains the circular line solution as a 

special case. 

Lines of arbitrary cross section can be accurately modeled as 

equivalent circular lines having the same ratio of steady flow 

resistance to inertia properties.  The concert of an equivalent 

characteristic frequency and radius can be applied to transmission 

lines of  arbitrary cross section to predict both the frequency 

response and transient behavior of these lines, including either' 

laminar or turbulent mean flow effects.  In solving practical 

problems involving fluid systems, this equivalence should be of 

significant value in simplifying the system modeling task. 

The characteristic radius is analogous to the hydraulic radius 

used to represent circular and noncircular lines in steady flow 

analysis.  However, the characteristic radius more accurately 

accounts for  the actual viscous and inertial effects and was shows 

to be clearly superior to the hydraulic radius in modeling the 

frequency response of noncircular lines.  In view of the much closet 

agreement with existing data and analytical solutions for both 

rectangular and annular lines, the characteristic radius should N 

used instead of the hydraulic radius to determine the equivalent 

circular line for all noncircular lines. 

Very significant simplifications have been achieved regarding the 

modeling of the frequency and temporal response of circular lines 

carrying turbulent mean flow.  Comparison of the simplified models 

with existing models and experimental data on circular lines shows 

that the simplified models are as  accurate as any existing models 
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in predicting the frequency response.  Furthermore, the simplified 

models are not restricted to circular lines or incompressible 

fluids. 

6.  Of the four equivalent circuit components, the steady flow viscous 

resistance is the most influential parameter in determining the 

frequency and temporal response of fluid transmission lines.  For 

developed laminar flow, the steady flow resistance is determined by 

the line geometry and fluid, and is not influenced by changes in 

the Reynolds number.  For developed turbulent mean flow, the 

resistance is strongly dependent on the Reynolds number.  In all 

cases, the thickness of the frequency dependent laminar oscillatory 

boundary layer relative to the equivalent steady flow boundary 

layer is a key parameter in determining whether the frequency or 

transient response exhibits predominantly viscous, isothermal 

behavior or inertial, adiabatic behavior. 

Recommendat ions 

1. The small signal transient response of both circular and non- 

circular lines carrying laminar throughflow should be determined 

experimentally and compared with the analytical results presented 

in this work.  The experiment should include both compressible 

and incompressible fluid flow, and should be repeated for turbulent 

throughflow. 

2. More analytical and experimental work is also needed to extend th« 

applicability of the concepts.  The frequency and temporal responses 

of fluid transmission lines to large amplitude excitation signals 

are of particular interest.  The assumption of essentially constant 
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mean fluid properties and small perturbation of a steady mean flow, 

valid for small-signal excitation, would have to be re-examined. 

A possible approach would begin with a sensitivity analysis of the 

amplitude and frequency dependence in the initial formulation of 

the governing equations, followed by the addition of corrective 

terms to the simplified equations of this work to account for the 

first order dependence on excitation signal amplitude. 

An analytical model which adequately describes the behavior of the 

signal attenuation and phase velocity at or near the high frequency 

corner, or break frequency, should be developed. The anomalous 

behavior is associated with the transition of small-signal 

dependence from quasi-steady turbulent mean flow dependence to 

laminar oscillatory frequency dependence.  A companion experiment 

which would include flow visualization and high-speed photography 

of the disturbances might provide significant physical insights 

in developing the model. 
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Appendix A 

DC Resistance and DC Inductance of Fluid Transmission 
Lines Carrying Developed Laminar Flow 

In general, the DC resistance (Rv) and DC inductance (Lv) are 

determined from the steady flow parameters of the rigid transmission 

line. These parameters will be functions of the line geometry, fluid 

properties and steady flow profiles.  The DC resistance is defined by 

Rv = 
-3P/3Z.  -3P/3Z 

AO 
(A-l) 

and the DC inductance is defined as 

Lv = 
(!) 

dA La = KL'La (A-2) 

where u is the steady flow velocity (either laminar or turbulent); ü 

is the average velocity, ü = 1/A udA; and La = p/A is the adiabatic 

inductance. 

For circular lines, Rv and Lv are constants.  For steady developed 

laminar flow, Rv and Lv are obtained from the classical Hagen-Poiseuille 

flow: 

Rv = 
•3P/3Z _ o7TM (A-3) 

The Hagen-Poiseuille velocity ratio is [30] 

*• 2 i -m (A-«0 
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where r is the radial coordinate and r0 is the inner radius of the 

circular line. Using this ratio in equation (A-2), 

«M  

£ff -(kf\•- * (A-5) 

For annular and rectangular lines Ry and Ly will depend on the radius 

or aspect ratio, respectively. For the annular line [8], 

rQ
2/«u (-dP/dz 7-*H2t£§] (A-6) 

From which RVn is easily obtained as 

Xvn 
-3P/3Z _ _ 87TU fl+42    +    1  T 

" An2 [ ^ ln r*J 
(A-7) 

where r^ = r£/r0, is the radius ratio of the annular cross section. 

The velocity ratio is [8 ]: 

[1-r*2] ln r* - [1-rf2] ln r* 

S  i [(l+r£2) in rj t (1-rJ2)] 
(A-6) 

where r* = r/r0 and the dependence on geometry is obvious. The notation 

r* • rj/r0 is generally used in the body of this work. However, for 

this appendix only, it is necessary to distinguish between the 

dimensionless ratio r* = r/r0 and r^ = rj/r0. Using equations (A-2) 

and (A-8), 
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8La 
Wn = KL« La = d2 

(l0r^[i-4(l,r«),|( 

f] . „ 4 (| rJ») . i (1 - #) 

*2\ 1 + ri ) 

(A-9) 

where 

d2= [(l + r*2) in r* + (l-^)]
2 

For the rectangular line [8] of aspect ratio a = h/b, 

(A-10) 

u -    sinoi 
  = 2    1     — cos(aiTi) 
hjf-9g\ i=l    <H 
tu\ 32/ 

cosh 
1 - 

C-tt 
cosh(^~J 

(A-11) 

where T| = y/h. 5 = x/b, and «j = i/2(2i-l)«/2(2i-l)  i - 1,2,3,... 

The average velocity is 

\ 

-A— = 2 I  -^ sin^i fe - tanh ^|] 
h5_/-ap\   i-i «i5     L       -> 

(A-12) 

The DC resistance for the rectangular line is easily found as 

•3P/3z      2u_ 

Q        "  aA2 

T «° /ai ai\ 
i   r      JL sin^ai (— -  tanh —J 

U=l °i5 
(A-13) 

The velocity ratio is given by 

coshl r  cosn(— en 

I —r ^"i11 X " cosh(ai/a) i=l ai        L J 
u _ -  , -     

oo To.      a;"l u   I   A sin*«* -| - tanh -i I 
i=l ai       L J 
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The DC inductance is 

jvr - Ä" (t)2- = £ 
+1 +1 

-1 '-1 

sinaj 

i=l    a° 
I   ::1^T^ cosain 11 - 

my coshpik 

cosh m d^dn 

(A-15) 

where d 
i=l «i* L  a aj 

The integrand is of the form 

[ yi(n)xi(e) 
i=l 

2        00      00 

• I  I yi(n)xi(C)yi(Ti)xj(C) 
j=l i=l J   J 

(A-16) 

where 

XiU) 

"I 
cosh — t 

a 

cosh — 
a 

and 

sinc^ 
yi(n) =  5— cosouri 

ai' 

The integrand is sufficiently well-behaved to permit interchanging the 

orders of summation and integration. Thus, the integral of equation 

(A-15) may be written as 

00 00 r+i 

»•II 
j=i Hi ]ml 

r+i 

yi(n)yj(n) dn Xi(C)xj(£)dt (A-17) 

-1 
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The integration is greatly simplified by noting that 

y^ntyjdOdn = 0, i i j 

i » 3 

(A-18) 

The integral is evaluated» and Lv becomes: 

4d2 
I      1 /3. 3£tanhii. tanh^^i 

i=l «I6 V   °i      a        a 
(A-19) 

It is of interest to include the case of steady developed laminar flow 

between parallel plates, because this case represents limiting values 

of both radius ratio for annular lines and aspect ratio for rectangular 

lines. As r^-* 1 (a-*- 0), the pairs RVn, LVn and Rv , LVr will 

approach the values obtained for parallel plate flow. Taking a unit 

width of flow between parallel plates where 2b is the distance separating 

the plates [30] and y is measured from the center plane between the 

plates,      \ 

1 9P /,o  2^ 
u= - 2y--5T(b-y } (A-20) 

-3P/3X , 
u • —r  b 

3u 
(A-21) 

And the DC resistance per unit width is 

-3P/3X  3y 

3  " 2b3 
(A-22) 
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The DC inductance is easily calculated as 

Lv = ^ La 
A ft)-•*( #[*-(*/]   *' s 1.2 L, 

(A-23) 

Thus, the low frequency (DC) inductance does not vary greatly over the 

range of aspect or radius ratios for rectangular or annular lines. 

With inside radius rj. = 0 for annular lines, KL • K^ = t/3. As 

r^ •» r0, Kr •* 1.2. For rectangular lines, KT has its maximum at 

a = 1 where KT  • 1.3785, and approaches KT  = 1.2 as a •* 0. 

A similar approach may be used to obtain the low frequency (DC) 

viscous laminar resistances and inductances for other noncircular lines, 

provided the steady flow velocity profile is known. 
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Appendix B 

High Frequency Approximations for Annular Lines 

First order approximations of the system variables describing the 

performance of annular fluid transmission lines at high frequency 

ratios (u>/wv >> 1) are obtained from equivalent circuit considerations 

and analysis of the asymptotic behavior of the Bessel function solutions. 

In general at high frequency ratios, the flow is approaching inertial, 

adiabatic behavior. As was pointed out by Nichols [3], the velocity 

profile is characterized by a large central plug wherein inertial 

effects are predominant, and a viscous skin region wherein viscous shear 

effects are predominant. The viscous region is characterized by a 

skin depth 6V which is proportional to /v/u>. As frequency (ui) increases, 

6V decreases. Similarly heat transfer effects may be separated into a 

relatively large adiabatic core region bounded by a nonadiabatic region, 

the latter being characterized by a thermal boundary layer thickness 

67 which is proportional to /VT/(D. For the annular line, there are two 

boundary layers and their influence on the velocity and temperature 

profiles vary with radius ratio. The behavior is described in the 

velocity and temperature profiles, equations (11) and (12), respectively. 

In general, the Bessel function JQI<)>•; I has its greatest influence on 

(  \\ the solution at the outer wall (r = r0) while Koufrj2 )    is most 

influential at the inner wall. At high frequencies the following 

inequalities apply: 
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J0(ro) >> J0(ri) 

Jj(r0) >> JjCr-i) 

K0(ri) >> K0(ro) 

Kj(ri) » KjCro) 
(B-l) 

J0(ro)K0(ri) >» J0(ri)K0(ro) (B-2) 

where for JQ»JI the argument (r) is presumed to be l/w/v rj Hand 

For the energy for K0,Ki the argument is presumed to be ( vWv rj   ). 

equations v is replaced by v.J.. 

With the foregoing approximations the parameters appearing in 

equations (11) and (12) may be greatly simplified. The coefficients 

B, D, and M of equations (13), (14), and (18) become: 

B ss B' 

D « D' 

H as M' = 

K0(ri) 

J0(ro)K0(ri) Jo^ro) 

-Jp(ro)    _    1  
J0(ro)K0(ri) 

= " K0(ri) 

[ J0(ro) 
+ : K0(ri) J 

(B-3) 

(B-4) 

(B-5) 

From [5,6] the first order approximations of the Bessel functions are 

given in Table B-I.  Using the expressions given in Table B-I and keeping 

only first order terms, the high frequency series impedance becomes 

ZHI " 3wLa i1 + ?<?[' (r*-l) + j(r*+l) 
$ 

-1 
(B-6) 

and the shunt admittance is 

(HI j-i^-Cs1)? 1?[<«*-»•*H| (B-7) 
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TABLE B-I 

First Order High Argument Approximations of J_Q »ill • JSo »ill 

Bessel Function Modulus Phase 

)(xj: = M0e je0 

JllxjZJ = Mie 
,3Bi 

K0(xj2    = N0e 

K^xj2j = Niej< 

J*0 

Mo 

Mi  = 

e  

»^rx 

x//2 
e 

/2ITX 

Nn = 

Ni   = 

-x//2 
e  

/TT/2X 

\ 8/2x/ 

V 8^2x/ 

V 8/2x ' 

fi    _    x      5 _1  

8/2x 

A/2x     V 8/2x / 

ft     -     x  4   3n  i      3 

/2 B     8/2  x 

*    - x      it 1 

/2       8       B/2X 

x       5TT 3 

Jl 8       8/2x 

The high frequency components of the equivalent circuit  are easily 

obtained from equations  (B-6) and (B-7) by separating real and imaginary 

parts: 

/2\iu La        1   1  
RHI =  Real(ZHI)  = = y •*) L 

r0(l-r*)      *• 

1W* 
(B-6) 

LHI =  Imag(ZHi)/w • I>£ (B-9) 

/2vTw  (Y-l)Ca      2 
GHI  -- Real(YHI)  •        

T
f  (1.g<t)* = \ ^ (^) Ca .<j  —5        (B-10) 

11-ri* 

CHI =  Imag(YHI )/u> • Ca (B-ll) 
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In the high frequency regime and using the approximations R/wL « 1, 

G/uC << 1, the attenuation a and phase lag ß are given by Weber [11] as 

XHI 
LG+RC 

2/LC 
ßHl = uiÄZ (B-12) 

Using equations (B-8) through(B-ll) in the above equations 

QHI = 
- LaCa/ü)ü)v 1S&(^) 

2/LIC 
(B-13) 

a^-a 

ßHI = w/LaCa 

The foregoing approximations are accurate to within 1% for u>/wv > 100 

and rj* < 0.9 and are accurate within 10% for u/wv > 10 and r^* < 0.5. 

The smaller is r^* the greater is the accuracy for a given range of 

uj/wv. 
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Appendix C 

Derivation of Small Signal Equations in 

Cylindrical Coordinates 

In this appendix, the continuity, momentum and energy equations 

governing the small signal propagation of pressure waves through a 

fluid-filled line are developed from the more general equations of fluid 

mechanics and thermodynamics. The equations are expressed in a cylindrical 

coordinate system (r, 9, z).  The radial, angular and axial velocities 

in this coordinate system are ur, ue, and uz, respectively, and u is the 

vector velocity.  In the following developments 

D  a    a  u© 3    _a_ 
Dt = Tt + Ur 3r" + r 36 + Uz 3z 

13 
V«u = — *— (rur) + — 

1 3u©  3u2 
r 3r r 36   3z 

9r2  r 3r  r2 3e
2  3z2 

Momentum Equations 

The Navier-Stokes equations of motion for a compressible fluid are 

as follows: 

fDur  ue2]  -3D  _     ["_,    %«  2 9ue~| p [^—~J= 8+ Fr + y L   T ' 7 ' ^•~l 

* ?*  fe (^-u) (C-l) 
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[_Dt J "  3z + Fz + pV
2uz + i (i -r— (V'u) •      *  3  3z 

(C-2) 

(C-3) 

The principal direction of small signal wave motion is the axial 

direction; thus, it is assumed that the flow is axially symmetrical.  This 

further implies UQ = 3/38 = 0.  This assumption eliminates the momentum 

considerations of Equation (C-2).  In addition, the body forces (Fr, TQ, 

Fz) are also assumed negligible.  The momentum equations are thus reduced 

to the following: 

[3ur     3Ur     9ur"l    9p  P
2ur   : 3ur  32ur  ur"| 

(C-U) 

f3uz 3uz 3uz") ap r s2uz       i   3uz       32uz"| 

1       3_   [*1 »<•I>>       5"z" 
f   3 "  3z   [r 3r +   3z (C-5) 

Th wavelengths of interest are assumed large compared to the cross- 

sectional dimensions of the line, which implies that the radial component 

of velocity, ur, and its derivatives may be neglected.  The above 

equations are further reduced to the following: 
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3P       1   u 3_      ^2 
?T       3       3r       3z 

f3uz 3uz"j 3P      u       32uz f 32u2      i  3uz"| 
[— + U*~J = " -z*  3y^r+  U   [l^-^r 3F-J 

(C-6) 

(C-7) 

This assumption may be expressed as the following condition:  X >> r^ 

where r<j is the principal dimension of the cross section in the radial 

direction.  Since c = f\,  and f = u>/2n this condition is equivalently 

expressed as 

2TTC 
' rd (C-8) 

where c = speed of sound in the line.  It is next assumed that the 

pressure is uniform across any line cross section.  This assumption 

removes the dependence of P on r and eliminates the radial momentum 

equation 

3P  1  3_ (9*l)  _ 
3r " 3 U 3r \iz > 

(C-9) 

It is necessary to define the conditions under which the axial variation 

of uz is negligible, and to remove this dependence.  The pressure, 

velocity, and density may be written in terms of a mean value and a 

small perturbation about this value as follows: 

p • p t p' 

P = p + p' 

u = ü + u' 

(C-10) 
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and the subscript s has been dropped from velocity, since only the axial 

velocity remains in the momentum equation. Substituting these variable! 

into equation (C-7), and separating the steady and dynamic terms gives: 

90 
P   9? + PU 32 

90    3P  «4  a-ü 
+ x v  —— + V 82   3 32* 

[* 3:ü   1 lül (c-n) 

(p>p») |Y' • (Pu+pV+Qp'+uV) IT  • 4r • 32 
M  ?*u' 

* u r»v   12ü'l 
[•?  r >r J <c-i:> 

It is assumed that the steady p.*.rt of the velocity is constant in both 

the axial direction and time.  Thus 3ü/3t = 3Ü/32 = 0, and the above 

equations are rewritten as follows: 

0 = 
af ,  f;>-'ü  j aü 1 

(C-13) 

CP+p«} {J\ <P+p»)u' }j' 9P' *  ;>-'u' 
1 n [äT7 + r 5? J 

(C-lu> 

liquation (.C-1U) can be further reduced by neglecting higher order term:; 

involving products oi perturbation quantities: 

iu', 91" it  ;>-u' 
-* TU —r * vi 3 a  3 

;•>•.•• 

[•'•'u' i  1 iu'] (C-15) 

It i.-. now possible to solve the steady flow problem, equation U'-K<>, 

by standard techniques. The combined homoganaoua and particular solution 

for velocity il as follow:.; 
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r2 3F 
ü = C» in  r « C- + T— -r- (C-16) 

where Cj and C; are arbitrary constants, subject to the boundary 

conditions of  either circular or annular lines.  Tor circular lines, the 

boundary conditions are: 

ü remains finite at r = 0 

ü = 0 at r • r0 

(C-17) 

Applying these conditions to equation (C-16) leads to the well-known 

Hagen-Poiseuille velocity distribution: 

u • 
3F 
ft» ^T^o'-r') (C-18) 

For the annular line, the boundary conditions are: 

ü - 0 at  r • Tj (or r* = rj*) 

ü - 0 at  r • rc (or r* - 1) 
(C-19) 

where r* • r/r0 and rj  = r£/r0, and ri, r0 are the inside and outside 

radii which bound the annular cross section of the lino.  Applying these 

conditions to equation (C-16) gives the steady developed laminar (low 

velocity profile in an annular region. 

5  3z I (l-r*
?) - (1-iV 

Cn  r* "J 
(C-20) 

M 
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Returning to the dynamic problem, equation (C-1S), it is necessary to 

develop the conditions for which 

u  3-u'     3P* 
3  92:      3z 

(C-21) 

This is done by assuming the dynamic pressure to be of the following 

form: 

p  • Ape   eJ (C-22) 

and r is the propagation operator defined in Section II, which defines 

the lengthwise dependence of the dynamic pressure.  Differentiating 

equation (C-22) gives 

3P' 
3z 

= - ApT e 
•Tz    jut 

(C-23) 

To a first approximation, the axial sensitivity of the perturbation 

velocity is 

3u' .   1  3F' 
3z " 5ca

: 9t 

Substituting equation (C-22) into (C-24), then differentiating 

equation (0-2^)  with respect to z gives 

(C-?n) 

3:u' 
——~n— = - APT 

iu>  -Tz iwt -L_ e   eJ 
(C-25) 
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Comparing equations (C-21), (C-23) and (C-25) it is seen that 

4  32u'     9P' 
3 viP" <K ' 7» 

when 

pca
2 

3 
U) <<  11 

4 " 
(C-26) 

For air at standard conditions this amounts to requiring that 

w << 3.2*107 rad/sec.  The radian frequencies considered in this work 

are well within this restriction.  Using equation (C-26) in equation (C-15), 

and rearranging terms 

v 3_ ["  3u'~|  3u'    1 3P' 
~ r 3r |_r 3r J + 3t  ' ~ - 3z 

(C-27) 

Equation (C-27) is identical with equation (2), Section II.  The 

continuity equation is considered in the following development. 

Continuity Equation.  The continuity equation for a general 

compressible fluid expressed in cylindrical coordinates is: 

3p  13.    ..   13.   •,   3/   \   rs _£. t _ _ (prUr) + _ _ (Pue) « w (PUZ) e o (C-28) 

By previous assumption, ur = UQ = 3/36 = 0; thus 

fetfcC»*)-« (C-29) 

Expanding equation (C-29) gives 

do 3p 
3t + P — + Uz 3l = ° ^C-30) 
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Energy Equation. For a compressible fluid with constant thermal 

conductivity, k, the energy equation is 

Dh . DP __  |i +  + kv2T . , . 
Dt  Dt  3t 9r (C-31) 

where h is the specific enthalpy, q is the internal heat generation 

other than by viscous dissipation, * is the mechanical or viscous 

dissipation function, and qr is the radiation heat flux vector. For 

small signal propagation the dissipation * is assumed negligible. 

Radiation effects (qr) and internal heat generation by chemical or 

other like means (q) are not considered. With these assumptions, 

equation (C-31) reduces to 

PÜ . DP     2 
Dt  Dt  KV ^ 

(C-32) 

Expanding equation   (C-32) in cylindrical coordinates, 

t3h 3h      u6  3h 3hl     [ Z? 3P      u6  3P 3P"| 
3? + u^ 3r" + — 36 + uz "3TJ - [ 37 + U^ 3r" + r~ 3? + Uz Hj 

= k to + 1 |1 + 1   g + afTl 
^r2       r 3r      r2  3e2       3z2 J 

From the assumptions made previously on simplifying the momentum 

equations,  such  as ur = ug =  3/36 =  0,  the above equation becomes 

T3h 3h "I      TSP J 3P~|       ,   fa2T J   1  3T  .   3
2
T] p [at + u* si J " [St + u* alj r k [i?r + ? 3? + n*J 

(c-33) 

(C-3U) 
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Since only the axial velocity remains, the subscript z is dropped at 

this point. As before, the variables are defined as mean values and 

small perturbation quantities: 

P = P + P 

P « P + p' 

T = T + T' 

(C-35) 

These variables are substituted into equation (C-3U) to obtain the 

small signal energy equation. The result is 

32T 
at " 8t    * K[3r2        r 9r        3z2  J 

(C-36) 

Using the relation dh = CpdT and dividing by the quantity pCp gives 

3T 
at " pCp at 

= pCp [ar
2 + r ar h 322 J 

(C-37) 
-p        MV-p 

The Prandtl number o2 = uCp/k, together with the relation u/r « v, give: 

(C-3B) 
pCD  po2 

and vj is the thermal diffusivity.  Substituting equation (C-38) intc 

(C-37), and rearranging 

r 
a r ?T'l ßpf ap*  3T'    a2r 

^Lr^J + pt^ "^   TI^ 
(C-39) 

It is necessary to determine the conditions for which 

IT'    a2T' 
at 

IC-uö) 

165 

• 



I w~ 

Assuming the dynamic perturbation of temperature is of the following 

form 

AT e" z  e 
jwt (C-Hl) 

then 

and 

ill' 
dz2 

3T» 
St 

= r2 AT -rz nut 
e z eJ (C-42) 

jwAT e  z e -ra Äjut 
(.C-43) 

Since the modulus of r is approximately equal to w/ca it is seen by 

comparing equations (C-u2) and (C-43) that the condition of 

equation OC-UO) is satisfied when 

U) << 
ca
2a2 (C-u«+) 

Vj 

For air, c-  = . 7 so that the condition expressed in equation (C-^) 

is nearly identical to that of equation (C-26).  The final form of 

the energy equation is 

r 3r Ir 3r    3t 
BpT 3P' 

PCp w 

which is in agreement with equation (3), Section II, 

(C-U5) 
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Temporal Derivative of Density 

It is thought necessary to show the derivatioi of equation (22), 

since this equation is crucial to the development of the line shunt 

properties.  The density is assumed to depend on pressure and 

temperature, p = p(P,T). 

* • (£), * * (Si), dT (C-46) 

The isothermal compressibility e is defined as 

1 (W\     .  1 /3p\ 
" " v Vap/T " P V3P/I 

(C-*t?) 

where V is the specific volume.  The coefficient of thermal expansion 

ßp is defined as 

p VST/p 
5p -  v 3T 

(C-48) 

For an ideal gas, 6pT = 1 and eP = 1. 

Equation (C-k3)  may be rewritten in terms of the temporal 

derivative as 

*•»[«*-'•*] (C-U9) 

i 

From the definition of the specific enthalpy, h: 

dh '*•*(*) 

where e is the specific internal energy.  For a perfect gas 

(C-bO) 
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dh = CpdT       ana      de  = CvdT (C-51) 

Using equations (C-51) in equation (C-50) gives 

CpdT = CvdT + i dp - 2j (C-52) 

Rearranging terms and using equation (C-49) together with the ideal 

gas relations, ßpT = eP = 1, 

dt> ß2T 
(Cp-Cv)dT = « (1-ep) + - 6pdT = -2-i- dT 

P UP pe 
(C-53) 

-ÜI. = -fr"<*(xr) (C-5U) 

The pressure term in equation (C-4S) may now be expanded as follows 

(C-55) P£ iE. = fll ß^T 

9t (£)£ •  -  Y    Cp   3t 

Substituting equation (C-55) into equation (C-49) leads directly to 

equation (22) repeated here for convenience: 

i£. - EL i£ + a B 
at  Y It + B

P
P [pCp St   3tJ (22) 

The development of the remaining equations in Section II is relatively 

straightforward. 
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