<

AT No.—

_PAUIMUNICATIONS

-4

mﬂ\\ 3"—;‘

k & 100 06
: MPUTER SYSTEM MANUAL

FOR FURTOT TR T, o o

c 15 APRIL 1978
g
<
5C
T
- \ _
<< “COMMAND
= c it & CONTROL

{ TECHNICAL
CENTER

g 7~ .z

THE QUICK-REACTING GENERAL
WAR GAMING SYSTEM (QUICK)

VOLUME Iii

DDG FiLE copy

S P ——
SORTIE EENERATION SUBSYSTEM

265

DEFENSE * PROGRAM MAINTENANGCE MANUAL

AGENCY

THIS DOCUMENT HAS BEEN
APPROVED FOR PUBLIC
RELEASE AND SALE; ITS
DISTRIBUTION 1S UNLIMITED.

78 06 27 118

A R

st swmran

e

2
ot -
-

(e ST

=71 '
oI i/ /

COMMAND AND CONII(EIT‘TECHNICKIT‘

™

N
"y

R -
Computer System Manual)CSM-MM-9-77— VOL” -

//'\\\ : -
(L 15 Apr 1978 [

JHE CCIC QUICK—REAC‘I‘ING GENERAL WAR GAMIVG SYSTEM

.- -

@ P ,

Volume III g Weapon Allocation Subsystem o

Program Maintenance Manual _ \

T “:/ K © -5 o /— [

[N Y AT Y
| JH

APPROVED BY:

SUBMITTED BY:

B2 A %]

C G THOMPSG
Project Offic? Captain, U, S. Navy
Deputy Director, NMCS ADP

Copies of this document may be obtained from the Defense Documentation
Center, Cameron Station, Alexandria, Virginia 22313

Approved for public release; distribution unlimited.

gl i » S N

e e

S e e
P s

ERs
- ——

U

R M ™ e
T - A e

Tr—g

g

[S TR

o

ACKNOWLEDGMENT

This document was prepared under the direction of the Chief for Military
Studies and Analyses, CCIC, in response to a requirement of the Studies,
Analysis, and Gaming Agency, Organization of the Joint Chiefs of Staff.,
Technical support was provided by System Scilences, Incorporated under

Contract Number DCA100-75-C~0019.

ii

— A .t emE

YR me e e

T
["

A
%
i
§
~\f Section
i
? 1.
¢
i
B
. 2.
4
{
4
y
¢
:
E !
H
{
;
:
|
, 3.
!

CONTENTS
ACKNOWLEDGMENT........ cevees ceenes cerees ceseensensans
ABSTRACT.vveveneecnsennnnas Ceseseseasenn cerennaes
GENERAL.....e0vveeus et ieeartesenesanans s reaenees
1.1 Purpose...... e et eseescsereserrertseeasacssenns
1.2 General Description......... ceesesancaas sesesene

1.3 Organization of Maintenance Manual, Volume III..

PREPALOC MODULE.....cow. N esesesescssanssenseacse s .o
2.1 PUIDPOSE.vciissevsessensranss tecesecasenns Cesanes
2.2 INPUL..eceeensssnorssccaorsconasssssonsssossscaans
2.3 OULPUL.coetveovvnsnsssnsnosassacens tesecnnrosans
2.4 Concept of Operationi.eiveeeecsss Ceerstsenaans .o
2.5 1Identification of Subroutine Functions..........

2.5.1 Subroutine FACTORCG..:veveoveess ceaeae ceseus

2.5.2 Subroutine FIXWEP...evveevrscnnoanconns teeee

2.5.3 Subroutine PENROUT...vevvecees Cevevererreenns

2.5.4 Subroutine DEPROUT....eveecvensersvosscassns .

2.5.5 Subroutine WEPREP......... Ceseseenas teearaen

2.5.6 Subroutine TGTPREP...cveeeveeesrononnes ceren
2.6 PREPALOC Internal Common BlockS....cceeveses ceen
2.7 Subroutine ENTMOD...sceevessscnstcnsscescocannas
2.8 Subroutine DEPROUT....ivevevrsessonsovonsone cees
2.9 Subroutine FACTORCG...vvevenans Ceesettrenans ceee
2.10 Subroutine FIXWEP...vvessteteveneasssrssccannons
2.11 Subroutine MAKECHG....... tesestvseennane Creesena
2.12 Subroutine PENROUT..... et erterecietssaraasaaeenn
2.13 Subroutine TGTPREP . :vevevrvsosasons Ceeesans e
2.14 Subroutine WEPPREP..::vvevvronsnnons Ceeseseee ces
ALOC MODULE: s v eetvoeansnnsnnns cesessavreesssearasesnes
3.1 PUYPOSE.irsvoncnssnansss Creeeeeseaesianerns teee
3.2 INpPULeicverenroorssovsononns Ceersanne NN ceee
3.3 Output.eceeeesvnctooveosonse esans ceseaeann cerane
3.4 Concept of Operation........... cesessaeennas cene

3.4.,1 Overlay ALCINT........... teesenaas Ceesaaeenn

3.4.2 Overlay ALCMUL...c.uoevenenocencsancoansoisos

iii

R e

Page

£

—
O~~~y N w

Ul LB D 0N
O ONWO &

(=)
)

oo oo
W

Section

3.4.2.1 Subroutine MULCON..........e0vue... e

3.4.2.2 Subroutine STALL..........oiviriieinnnns

3.4.2.3 Subroutine WAD,,............coiviiinvnnnns

3.4.2.4 Subroutine WADOUT,,..........covveunnn. .

» 3.4.2.5 Subroutine PREMIUMS Cieeeceeenaa
3.5 Common Block Definitions.......evvevvvennerennn

3.6 Subroutine ENTMOD......cieiiteeennrnennnnnonnans

. 3.7 Subroutine INITAL.....covveveeeen. Ceeeven ceesens
3.7.1 Subroutine CNCLST.........oiiiiiiniennnenene

3.7.2 Subroutine DATGRP..........cc.viivee.. Ceeeies

3.7.3 Subroutine FLOCRS.......cievrevecrencnsonans

3.7.4 Subroutine MRVRST,............ Ceeeesneenne eee

3.7.5 Subroutine PRNPUT.........ivvveerenoanncnens

3.7.6 Subroutine RDMUL........cevtiviivenennnnaans

3.7.7 Subroutine RDPRNZ...........ceieeeeeannns .o

3.7.8 Subroutine RDSET.........cc.ciiieiteerenannns

3.7.9 Subroutine RDSMAT.............. cieeceereanen

3.7.10 Subroutine RNGALT ., ..e.vieeeeveccrscncensnans

3.7.11 Subroutine SETABLE,...... cheteeseseetsecnacns

3.7.12 Subroutine TIMEPRT...eeuivveereercsnssnsosnse

3.8 Subroutine MULCON...ceveenvoonn cecertreceran e

3.8.1 Subroutine ADDSAL.ecescestoscssoccosoccncosns

3.8.2 Subroutine ASGOUT «veetscesavsssassscssasocns

3.8,3 Subroutine BOMPRM.:soeressscososnsscsocnsvans

3.8.4 Subroutine MYAPOS e.vevesecsassosoncansssasae

3.8.5 Subroutine PRNTALL ivevecercsssrossonssonosas

3.8.6 Subroutine PRNTCON....veeevesenossocnossosen

3.8.7 Subroutine PRNTNOW...vcceeesesesccnansassons

3.8.8 Function TABLEMUP ¢..veevecerroncrnvssnnsacosns

3.9 Subroutine FRETGD vevesteassnssoasstscnsanrsonses

3.9.1 Subroutine CRDCAL...,¢cveesersnvorosssusvoose

3.9,2 Subroutine FLGCHK.....voveevvervence cesevane

3.9.3 Subroutine INICRB...eoeececnssestsccoscosses

3.9.4 Subroutine NXSPLT.....eeeevvssescarssssascns

3.9.5 Subroutine PKCALC,....ieeveevronnrsoncnonsansns
3.9.6 Subroutine PRNTOFcvenenconcnssnssnssasnes

3.9.7 Subroutine RECON,,............. Ceeeenenenens

3.9.8 Subroutine SETPAY

% 3.10 Subroutine SCNDGD..... et e eererer st eet e
3.11 Subroutine STALL..... Ceeean DN eeane

3.11.1 Subroutine FORMATS....... e e ceeaus

3.11.2 Function FMUP........... et eeees

. 3.11.3 Function LAMGET..,... Cerer e et
3.11.4 Subroutine PREMIUMS,..... e Ceveseann .

3.11.5 Subroutine PRNTOS.............. Ceteceeteane

3.11.6 Subroutime SALVAL.......... vt iereesesarens

iv

S

.

b
-

Section

3.11.7 Subroutine SPLIT........
3.11.8 Subroutine WAD..........
3.11.9 Subroutine WADOUT..... .o
3.12 Subroutine DEFALJC,.........
3
3

.12.1 Subroutine PRNTOD.......
+12.2 Subroutine RESVAL...... .

Identification of Subroutine

5.1 Subroutine EVAL2.........
5.2 Subroutine TGTHODIF......
5.3 Subroutine WPNMODIF......

Subroutine EVAL2............
0 Subroutine PREVAL,,.........
1 Subroutine SSSPCALC,........
2 Subroutine TGTMODIF,........
3 Subroutine WPNMODIF,,.......

Purposevivheh vieaans

OUtPUL s ettt ittt et i tiasnvnns
Concept of Operation,.......
Identification of Subroutine
.5.1 Subroutine PROCCOMP.....
.5.2 Subroutine SUMPRN.......

(S, 8,
. . .
wmmmmwmum\lommwbwwh‘

InpuUt L ieir it ietenrrrannnnn -

Common Block Definition......
Subroutine ENTMOD..ccveeevnee

.7.1 Subroutine COMPRESS.....
.7.2 Function CUMINV,,.......
.7.3 Subroutine DGZ.,...c.evvese

.7.4 TFunction ERGOTl.........
.7.5 Subroutine FINDMIN......
.7.6 Subroutine F2BMIN,......
.7.7 Subroutine GRADF.........
.7.8 Subroutine MOVE....vve0.
.7.9 Subroutine PERTBLD «ccavews

D I IR AT B A PR e e
oooooooooooooo 4o 000
oooooooo ssc et s 00000

...................

Functions.eceeesces

...................

5

4.

4.

4.

6 Common Block Definition....... Ceesisevscecestens
7 Subroutine ENTMOD.....oivivvecnnnnnns Crteaaeeene
.8 Subroutine EVALPLAN....... it iiiiiintnnnnnnnnns
9

1

1

1

1

oooooooooooooooooooo

oooooooo LI I R A A Y

ooooooooooooooooooo -

Functions..........

oooooooooooo es 000000
P2 00 0000000008000
LR A R A AR B A A A IR
s 0000000000000
P00 0000000000000
LR I A A A A N N N]
Ce s et s NP e
S et ettt 0000 0000
L I I A S Y I I B B I
L N N N)
P9 B IS ITIVICEIIEIOEN SRS

S8 00 s s eI I IIIPRTIOYS

Page

275
278
303
KRR
322
324

329

329
329
329
329
329
329
330
330
330
335
337
342
351
353
355
360

365

365
365
365
365
366
366
366
366
369
374
376
378
383
385
391
393
395
397

PO

TRV W

Page

PO N0

Section

399
404
406

0 Subroutine PROCCOMP. cvevveavocscanoanssncnns
1 Subroutine SEECALC . svsesssssssssessancsccs
2

v\

7.1
: 7.1
1 Sn?ol Subroutine VAIJ...-ooooo--o.o0vono--.-no--a.
; 5.7‘13 Fu“ctionVMARG..'l‘l.."'l.'..."....‘l.l.l “08
. 5.7.14 Subroutine WEPGET.....c.cccvvoaveocmnanenres 410
:t 5.8 ubrOUt\ine SU}mRN.‘....."'.'..I..'.l...'.'....l ,'12
&] APPENDIXES
i A. ALOC Analytical Concepts and Techniques,....ceeseee 423
i
! B. Optimization of DGZs for Complex TArgetS.......cee.e 497
C. Generalized Lagrange Multipliexr Method

For Solving Problems of Optiwmum Allocation

OF RESOUTCES, 4ovonesossnsnssnssssnasseosonsseessss 501

tesenssese 913

PP L A

DISTRIBUTION.O‘..'ll..'....."..".....
515

RN .l...'l‘t..'!‘.l\.b."....l. RS

DD FOR“! 1473..".-.'0.0.

vi

e 4 T M e S
e - el s, g, . . - S

Figure

Lo~V SN

ILLUSTRATIONS

Major Subsystems of the QUICK Systemc.o..vvnvvn...
Procedure and Information Flow in QUICK/HIS 6000
Module PREPALOC tecesaierescessrnne
Subroutine DEPROUT it iiviecesecaceoossossanaosons

Subroutine FACTORCG ...vevvvnne

080 sacs 00000000

Subroutine FIXWEP ettt errtetettecertecstunaans
Subroutine MAKECHG ... teeevruieorannonsarsscesnncnnnas
Subroutine PENROUT ceeene et rseasateseraa
Subroutine TGTPREP svtvvtvevevercaoanosooconconasnsnns
Subroutine WEPPREPc00v0uus Ceecerecstrrasenresane
ALCMUL Calling Sequence Hierarchy cessnnsee
Subroutine MULCON00vvveeee cesersaveneses cesenes
Subroutine STALL ., .vvvireseriecennencanns teviaseanans .
Subroutine WADOUT ccvvr it iieiiinenrinsoanonans ceecsaes
Subroutine ENTMOD «cvo.vvennnnnns tesereatsecasneen ceee
Subroutine INITAL ¢iciveevoes Ceeeesas tretecesecrsnaens
Subroutine CNCLST vt iiiiivnrcneannsss creereianns ceaa
Subroutine DATGRP Citet et tesieteasatstnarernnea
Subroutine FLOCRS .iverveerrtorsssosctssesstssesacasanas
Subroutine MRVRST cresrarsertescesesransn
Subroutine PRNPUT et eseareear e N
Subroutine RDMULvevvecooccnns Ceeereracerans cetenn
Subroutine RDPRNZ, Entry RDPRNZ ceresoas
Subroutine RDSET .. veerervteeerooncennoososaseeens ves
Subroutine RDSMAT ,......ccviivennn teeesans Ceeteraae .o
Subroutine RNGALTciivevennnnn Cetetenenns .

Subroutine SETABLE 4..vitivneenernnernnreanrsonses e
Subroutine TIMEPRT ,......... Ceeseeretetsrerasrennen .o
Subroutine MULCON Summary Floweeceenvececesncess
Subroutine ADDSAL tivviniertetitrtocsesensscnrsnone e
Subroutine ASGOUT ..vvevevorsetoteesssssnansoconnsenss
Subroutine BOMPRM Seesetataer it ettt et ene
Subroutine MYAPOS.......c.c0vvns sh e rarsieseesaa . .
Subroutine PRNTALL Ceereireeenrarenas e .
Subroutine PRNTCON et ieteane crert e ae e e e .
Subroutine PRNTNOW +eevererns et reir e
Function TABLEMUP et erasreean ceesens cen .
Subroutine FRSTGD0o00evvennnn. O,
Subroutine CRDCAL Crteceiereetieteetaenes
Subroutine FLGCHK ,.......... i reee e ereceecs e nas
Subroutine INICRD et eeetesiteetircserentenes
Subroutine NXSPLT Ce ettt sttt etes e naans .e
Subroutine PKCALC ... it iiieninnnnrnrnnrennnnns e

vii

.- 2
Al

Figure Page

44 Subroutine PRNTOF............. ceanae cetericter i ee. 237
45 Subroutine RECON et tereebeeean. e, ve. 239
. 46 Subroutine SETPAY. .. vvttrrveeenerceneennenses eveeea.s 243
; 41 Subroutine SCNDGD e Ceeeieneeeaas ceves 246
P . 48 Segment STALL ,...... eeenan Creeeerastsieta et . 253
49 Subroutine FORMATSiviviiveennannans Ceeseecanes 259
50 Function FMUP ,,...0cvvnn. Ceeerennan Cerereraeens ceees 261
51 Function LAMGET e.vvvvvrvennrvannnns tetseraacenennan . 263
. ¢ 52 Subroutine PREMIUMS B, eevees 265
< - 53 Subroutine PRNTOS ceereacae . B A
! 54 Subroutine SALVAL Ceeeeen e . 270
: 55 Subrouting SPLIT ¢evvvrervoreennvovennnanans cenreesens 276
56 Subroutine WAD s.vvivvrnennrennns teasesssracnssaesees 289
57 Subroutine WADOUT v.vvveeenrvcranosncanes ceeinseeeaas 3006
58 Segment DEFALOC...... ceverseanna A X W
59 Subrcutine PRNTOD 4y evvveevrcrsosrarstorcnsossooseennes 323
60 Subrouting RESVAL v.ieieetnceennersvcoenossonsveceenes 327
61 EVALALOC Module sevenevevecnens eeecessaases cresncane . 336
62 Subroutine EVALPLAN L vv. vttt eevensocoeesasreconaness 338
63 Subroutine EVAL? vvoeevrnncrvarcocsstocsccsvccconnsone 3bb
64 Subroutine PREVAL ¢ voeetersvvnrsrvovcescscorosveserseee 332
65 Subroutine SSSPCALC v evetvrercccasesosersensoosses ceee 354
66 Subroutine TCTMODIF ¢vveveveorsrsrroncecsonns eereesssee 356
67 Subroutine WPNMODIF vovevevsecoosoconcsososscsornnsees 361
68 Subroutine ENTMOD evecvoroeocossocorosnvsoccenss ceesees 371
- 69 Subroutine COMPRESS stveereevorosecscsesssovanneoannas 375
B 70 Function CUMINV o . ceivnvenninnircononananeecnnss eeee 377
L 71 DGZ Calling Hierarchy «e.eveveceseeesenrasancsvenness 379
C 72 Subroutine DGZ .. cvevieeviorosrnsessonnecnnsns cee.es. 380
| 73 Function ERGOTL vevevvessrsoocnsoevosonnosoncesesanes I8
& 74 Subroutineg FINDMIN & ouuuuvuerneveenensneennenseonnass 387
i 75 Subroutine F2BMIN ¢t civverrvencroesirascaenrrsnannes . 392
\ 76 SUbTOULINE GRADF 4 4viveereraoeroonocnnenrnoencnsences 394
77 SUbTOULINE MOVE seeertvossecscossoscrsovesscrorsnscess 396
78 Subroutine PERTBLD soeieieeriecrstnrevenctossacassnne 398
79 Subroutine PROCCOMP ¢ evevevsisoevorsresnnnsns cecasass 400
80 Subroutine SEECALC esesvesosracosvscososancsssearssss 405
81 Subroutine VAL ¢cocereontsostvarosonsassossssscrssaese 407
82 Function VMARG,....... . 103
83 Subroutine WEPGET o.ievvvveernensnnsranossranennaness 411
84 Subroutine SUMPRN 4. vvveereveveecnnsnornconcesssaree 413
85 Typical Bomber Flight Route ,...eeeeevescesrcnoceanss 424
86 Illustration of Attrition Attributes (Used in
Program POSTALOC) s .uvvivvanarenconesrononnconanses 427

EaAR o e

viii

A

T TR

Number Page
1 Module PREPALOC Common BlockS.iveiseevsoiocsconenneenns 8 !
2 Format of Weapon/Target Data File -- File Code 15.... 62
3 Random Access File from DATGRP.....cvvvveivnrnnnnens . 64
4 INACTIVE Array File (File Code 21)...... Ceeeseeennna . 66
5 ALOC Module Common BlockS...i.eceevenn Cesesessiana veo 84
6 Calculated Formats for Variables......e.cceveunen ves. 258 '
7 Illustrating Calculation of Actual Payoff on Target.. 280
8 Illustrating Quantities Calculated for Potential
Weapon Added and Deleted Payoffs.......... siseeeae. 282
9 Illustrating Quantities Pre~Calculated for Each
Potential Weapon Before WAD 15 Called........ Cesens 284
10 Module EVALALOC Common BloCKS...vceeestevecossanonnns 331
11 ALOCOUT Common BloCKS...vevesesseeransonns Cressseasan 367
12 Failure ModesS..svseseesnconarsonnconenns Ceveserracas . 440
13 Weapon AttributesS..veeversienrseeneonas creteerrenns oo 440
t
ix

TABLES

/

< N N
et 83020 e

e

LD I radia A 2 o o

S

i
b
i
¥
{
€

ABSTRACT

;{‘;;\e computerized Quick-Reacting General War Gaming System (QUICK) will
accept input data, automatically generate global strategic nuclear war
plans, provide statistical output summaries and produce input tapes to
simulator subsystems external to QUICK, QUICK has been programmed in
FORTRAN for use on the CCTC HIS 6000 computer system,

The QUICK Program Maintenance Manual consists of four volumes: Volume
I, Dats Management Subsystem; Volume II, Weapon/Target Identification
Subsystem; Volume IXII, Weapon Allocation Subsystem; Volume IV, Sortie
Generation Subsystem, The Program Maintenance Manual complements the
other QUICK Computer System Manuals to facilitate maintenance of the
war gaming system. This volume, Volume III, provides the programmer/
analyst with a technical description of the purpose, functions, general
procedures, and programming techniques applicable to the programs and

subroutines of the Weapon Allocation subsysatem, ’\%Companion documents are:
i/

\\
3\
\
\

a, USERS MANUAL
Computer System Manual UM 9-77, Volume I

Computer System Manual UM 9-77, Volume II
Computer System Manual UM 9-77, Volume III
Computer System Manual UM 9-77, Volume IV
Frovides detajled instructions for applications of the system

b. TECHNICAL MEMORANDUM
Technical Memorandum TM 153-77
Provides a nontechnical description of the system for seniorx

management personnel

P
et N S i e s,

SECTION 1. GENERAL

1.1 Purpose

This volume of the QUICK Program Maintenance Manual describes the mod-
ules which are part of the QUICK Weapon/Allocation subsystem, detailing
the modules, subroutines, and functions which it comprises. The infor-
mation contained herein is presented on a module-by-module basis. The
module-by-module discussions are structured so that a maintenance pro-
grammer can understand the program functions and programming techniques.
The computer subjects are structured to inform the maintenance program-
mer of overall system programming techniques and conventions.

1.2 General Description

The Weapon Allocation subsystem operates using the integrated data base
as defined by all modules up to PLANSET of the Weapon/Target Identifica-
tion subsystem and produces a plan using the weapon resources specified
to maximize the expected terget value destroyed. The subsystem consists
of modules PREPALOC, ALOC, EVALALOC, and ALOCOUT, as shown in figure 1,
Figure 2 shows the relationship of the Weapon Allocation subsystem to
other QUICK subsystems in terms of procedural and information f£low.

The modules and supporting subroutines of this subsystem are used to
define information for use in later processes and allocate given weap-
ons to targets to optimize expected value destroyed. The integrated
data base 1s updated as each module is exercised in sequence, The final
output provides proper inputs necessary to execute the Sortie Generation

subsystem,

The first module, PREPALOC, precomputes much of the information required
by later processors., In addition, it provides capabilities for planning
factor modification and fixed weapon assignment specificatiom.

The next module, ALOC, performs the allocation of weapons to targets.
Using a generalized Lagrange multiplier method, an optimal allocation
is generated subject to several fcrms of user-input allocation con-
straints. These constraints incluée specification of minimum and maxi-
mum desired damage levels, rostriction of weapons to specified subsets
of the target system, and specification of weapons allocated to speci-
fic targets by the user. Within these constraints, the program gener-
ates the allocation which maximizes the expected value destroyed in the
target system, Module ALOC is also referred to as the allocator.

The main function of module EVALALOC is to provide a summary of the
allocation produced in module ALOC and to calculate an expected-value
estimate of its results, In addition, the module has the capability
of evaluating the effect upon the results of variations in input values
for weapon and target parameters, Module EVALALOC may be run either
before module ALOCOUT or after module PLANOUT,

e ey

i R m e e mmen

| —

SUBSYSTEMS

DATA MANAGEMENT SUBSYSTEM

CENTRAL OPERATIONS PROCESSOR
DATA

EDITDB

REPORT

SRM

ET™

GENERAL UTILITIES

WEAPON/TARGET
IDENTIFICATION SUBSYSTEM

JLM
DBMOD
INDEXER
PLANSET

WEAPON ALLOCATION SUBSYSTEM

PREPALOC
ALOC
EVALALOC
ALOCOUT

SORTIE GENERATION SUBSYSTEM

FOOTPRNT.
POSTALOC
PLANOUT
PLOTIT

FUNCTIONAL PARTS

EXECUTIVE SOFIWARE

DATA BASE PREPARATION

PLAN GENERATION

1

Figure 1, Major Subsystems of the QUICK System

U,
\

s -

e i e . ——

R e Y

Key

B el COr Flow

enmeesemneeem ProcOdure Flow

- m v va e v = Infotwat fon Flow

User
Tuput
um\

WICK Integrated \
Weapon/Target Data Base - Data
b Tdentification e P Central el Managemaut
Sthsysten Operationa Processor Subsysten
(cor)
Usax
Cenexated
Repoxts
[U—_
Strategle
]
|
1
\
\ \
! Waapon
L e o AldoCAELION o e
Subsystem
. \
Sortie
Ganeration
Subsysten

I3
l

\

Danage
. Asseasmant
or Extarnal

Simulations

Figure 2. Procedure and Information Flow in QUICK/HIS 6000

)

ALOCOUT optimizes the location of aim points for target complexes and
collects all the strikes assigned to each weapon group by the allocator
so that detailed plans for each group can be formulated by FOOTPRNT and
POSTALOQC,

1.3 Organization of Maintenance Manual, Volume ITI

Each major section of this manual detalls a module along with the sub-
routines and functions which comprise the module, Major subsections

arxe:

a. Module input - details what chains must be created prior to
module execution

b, Module output ~ details what chains will be updated by each
module

c¢. Functional description - details the macro function of the
module and the associated major subroutines

d. Common blocks = detail the contents of all internal common
blocks., All common blocks used to communicate with the COP
are given in Program Maintenance Manual, Volume I, appendix
A, These are: Cl0, cl5, €20, €30, C40, €50, ERRCOM, INS,
IPQT, OOPS, STRING

Within the QUICK system the COP is viewed as the operating program,
Based on user direction, the COP will 2xecute overlay links or modules
which perform the objectives of the user requests, Each overlay link
is called through knowledge of the command verb and within each link
the first subroutine is called ENTMOD (for entry module). That is,
there are as many subroutines called ENITMOD as there are modules. Con-
fusion is avoided by executing the correct overlay link. Subroutine
discussion, then, is initiated with ENTMOD whose meaning, or functionm,
varies according to the overlay link,

Comments on the QUICK integrated data base can be found in Program Main-

tenance Manual, Volume I, section 2, It will be assumed within this
manual that the reader has an understanding of QUICK: data base.

Each section discusses the computer programming aspect for the appro-

priate modules, Attached appendixes presents mathematical algorithms
empioyed within the Weapon Allocation Subsystem,

o

e A ———e

T T U,

L ammmn e

w

T AN o ot et

e mm——
e . w

SECTION 2, PREPALOC MODULE

2.1 DPurpose

The purpose of this module is to perform preliminary calculations on the
weapon and target data as stored within the integrated data base, The
output data from PREPALOC will be in a form convenient for use by the
remaining processors of the plan generator, In addition, the user may
select options to modify some of the data at this stage of processing.

Module PREPALOC has three major capabilities: updating of geographic
and weapon group data, modification of target values and damage con-
straints and preparation of data for the fixed weapon assignment capa-

bility of program ALOC,

The basic raw geographic data must be data base defined prior to any
execution of PREPALOC. Using this data, PREPALOC will calculate and
store distances and attrition between all doglegs for use within proces-
sors to follow. Based on user inputs, the number of weapons within
bomber or missile MIRV weapon groups may be adjusted.

The second major capability of this module 1is the modification of the
target characteristics, VIO, MINKILL, and MAXKILL, VTO {is the value of
the target relative to all the others, MINKILL is the minimum fraction
of target value that must be destroyed, and MAXKILL is the maximum de-
sired fraction of target value destroyed., Any of these parameters may
be changed for any target, The change requests can change these parame-
ters for a single target or for a set of targets. The set of targets
for which a change 1is requested is identified by target class, type, an
individual identifier (target designator code (DESIG)) or any combina-
tion of these, Tor complex targets, the class, type, designator code,
and index of each component will be checked to determine if a target

parameter for the complex is to be changed,

In addition, the user can speclify the helght of burst to be used in any
weapon/target combination. The user selects either a ground burst or an
air burst at the optimal air burst height. In the absence of any user

specification, the most damaging height of burst is used.

The third major capability is the request for allocation of specific
weapons to specific targets. This fixing of weapons to targets enables
the uger to determine part of the weapon allocation while leaving the
allocation module free to determine the remaining allocation, In addi-
tion, the time of arrival at target or launch salvo number can be fixed
for missile weapons. This information will be passed to module PLANOUT
which will adjust launch time accordingly. The fixing of weapons remains
in effect for the remainder of the plan generation process, Later pro=-
grams will retain the assignments as best possible. (For example, it is
possible to fix a set of weapons from a weapon group with multiple inde-
pendently tarxgetable reentry vehicles (MIRV) in such a manner that there

are no feasible footprints that cover that target set adequately., In
that case, some of the fixed agsignment requests must be ignored.)

2.2 Input

The entire integrated data base must be completely defined prior to
PREPALGC execution. This includes the storage of all targets, related
geographic data, weapon type and group characteristics and other sup=-
porting data such as warhead and payload information,

2.3 Output

Creation of new records occurs if the user specified fixed assignments.,
For these cases, records called 'ASSIGN' which stores the fixed assign-
ment under the proper target and weapon group linkage are created. Also,
new records (RDDIST, TPDIST and TDDIST) defining the distance between
cach depenetration corridor reqovery base intersection, each penetration
corridor target intersection, and each target and the optimal depenetra-
tion corridor, are created.

If any of the target modification options are employed, the necessary
target records will be modified accordingly. Alsoc, weapon group attri-
butes may be altered if overallocation is specified.

For all executions, distances and attrition rates associated with each
penetration corridor will be calculated and stored. Similarly, depene-
tration distances between doglegs as well as the distance from depene~-
tration corridor to recovery bases are stored,

2.4 Concept of Operation

The flow of execution within PREPALOC is strictly sequential, Subrou-
tine ENIMOD reads user's inputs, stores values, and executes each major
(see below) subroutine, Once a major subroutine has been executed and
a return to ENTMOD made, that subroutine will not be executed again.

2,5 Identification of Subroutine Functions

2,5.1 Subroutine FACTORCG. Callad by ENTMOD immediately after all text
English adverbs have been processed. FACIORCG will read any user target
modification request and modify the appropriate IDS records,

2,5.2 Subroutine FIXWEP, User fixed assignments are raad by this sub-
routine and the IDS racord called ASSIGN created.

2.5.3 Subroutine PENROUT, For each penetration corridor, distance and
attrition for each dogleg within a corridor is stored.

2.5.4 Subroutine DEPROUT. This subroutine calculates depenetration
corridor, recovery base distance. For each deper.stration recovery base
intersection, a8 new IDS record called RDDIST is created,

st = Sl s A e

,‘
-

————

-~

e e e

2,5.5 Subroutine WEPREP, Weapon group counts are updated, if the user

specified overallocation,

2.5.6 Subroutine TGTPREP, In addition to performing summary prints,
fixed assignment records modification continues by adding the salvo

number, 1f necessary,

2.6 PREPALOC Internal Common Blocks

All common blocks used internally by PREPALOC are given in table 1. For

definition of common blocks that communicate with the COP, see Program
Maintenance Manual, Volume I.

Al
t
i
+
l
i
i

ASSOCIATED
COMMON

ASMTYPE

CLASSCOM

CRLENGTH

DISTEF

GAMFLAG

IGPREF

IONPRT

ISIMIYPE

IWEPREF

NFIXREQ

NUMCOR

PAYTYPE

REPOINTS

Table 1. Module PREPALOC Common Blocks
(Part 1 of 2)

VARIABLE

OR _ARRAY

ASMTYPE (20)
CLASSNAM(15)
CLASSREF(15)
NTARCLS

CRLENGTH(30)

DISTEF(50)
DISTEG(50)

GAMFLAG(9)

IGPREF(250)

IGEQOPRT , ICRPPRT

ITARPRT (2, 2)

ISIMTYPE(100)

INEPREF (100)

NFIXREQ

NCORR
NDPEN

PAYTYPE (40)

RFLAT (20)
RFLONG(20)

DESCRIPTION

ASM type names

Target class names

Header reference codes for target
classes

Number of target classes

Precorridor distance; indexed by
penetration corridor number

Length of depenetration corridor
Distance from depenetration corridor

entry to recovery point

Flag indicating value for planning
parameter was input. Planning
parameters are: INITSTRK, CORMSL,
CORBOMB, PEXBOMB, EXNBOMB, PEXMIRV,
EXNMIRV, PEXMISS, EXNMISS

Reference codes for weapon groups

If zero, suppress nonstandarxd geo-
graphy and weapon group print

Lower and upper target number print
requests

Weapon system type name

Reference codes for weapon type
records

Number of fix assignments implemanted

Number of penetration corridors

Number of depenetration corridors
Payload type names

Refuel latitude and longitude points

L

[P IRI }

o e
1

g e e e
.

i

T

e P T

ASSOCIATED

COMMON

SUMNEW

WAROUT

WHTYPE

Table 1,

VARIABLE
OR_ARRAY
SUMNEW

IWARFL

WHTYPE(50)

(Part 2 of 2)

DESCRIPTION

Sum of values after implementing
value change requests

Logical unit number for war gaming
output

Warhead type names

© o e vam—

e]

L
Tt e v R e

-

P

o ol e

RS NI, P SOt D

e e -
e

e L

I

,
B S

" e e oo

——

2,7 Subroutine ENTMOD

PURPOSE: To control overall flow of processing

ENTRY POINTS: ENTMOD (first subroutine called when overlay link
PREP is executed

FORMAL PARAMETERS: None

COMMON BLOCKS: ¢io, €15, €20, €25, C30, CLASSCOM, ERRCOM, GAMFLA,

IGPREF, IONPRT, ISIMIY, IWEPRE

SUBROUTINES CALLED: CINSGET, DEPROUT, DIRECT, DLETE, FACTORCG, FIXWEAP,
HDFND, HEAD, INSGET, KEYMAKE, MODFY, NEXTTT, RETRV,
TGTPREP, WEPPREP

CALLED BY: coP

Method:

FNTIMOD retrieves and stores target class names and assoclated reference
codes into arrays CLASSNAM and CLASSREF., Upon storage completion, each
major subroutine (see figure 3) is executed and then processing ends for

PREPALOC.

10

e T A —————

. e -
z

START

Retxriave
Attacking and
Dafending
Sides

Delete Any
Previous
Formad Linkage

!

Retriave
Names and
Ref Codes of
Target Classes

600
Store Dufault
Value for
ccassary Gaming
Paramaters

740

Save Raference
Code of Weapon
Group Records in

Array IGPREF

Figure 3, Module PREPALOC (Part) of 3)

11

840

Save Weapoun
System Name in
Array
TSIMIYPE

l
1060 +

Read User
Inputs and
Starting
Adverb Indexes

Read and
Store Print
Options

%

all FACTORCG 1
Oxder to Honor
User Directed
Modification

N

#

Print Final
Game Variable
Values

!

: Call FIXWEAP

‘ For Fixed

: Weapon
Assignments

Figure 3. (Part 2 of 3)
12

call PENROUT

for Penetration
Corridor

Calculations

Y

call DEPROUT
for Depenetra-
tion Corridor
Calculations

1

Ccall WEPPREP
for Weapon
Calculationsg~“

Y

Call TGIPREP
for Target
Calculations

\

Print
Target
Planning

'

Accumulative

Target Value

by Class Into
CLASVAL

Y

Print
Geography
Data

Figure 3. (Part 3 of 3)

13

2.8 Subroutine DEPROUT

t PURPOSE: To compute and print depenetration corridor data
g§ ENTRY POINTS: DEPROUT

§§ FORMAL PARAMETERS: None

?f COMMON BLOCKS: €10, €i5, €30, DISTEF, ERRCOM, IONPRT, QOPS,

: REPOINTS

SUBROUTINES CALLED: DISTF, HDFND, NEXTTT, RETRV, STORE, ORDER

!
4 CALLED BY: ENTMOD (of PREPALOC)
|
: Method:
DEPROUT calculates and stores depenetration corridor information and
% recovery base information associated with each depenetration corridor
as well as storage of refuel points.

Individual depenetration corridors are chained and corridor length deter-
mined and stored. Following which, each recovery base associated with
the corridor is queried and distance from depenetration exit point to

recovery bases stored.

Subroutine DEPROUT is illustrated within figure 4.

e
#
R s T

e e e Yo

14

| |
|
| o1
B ¥
|
{
3 .
|
| START i
Retrieve l‘
. Depenetration :
Corridor :
Header
Call NEXTTT
for Next
Depenetration
Corridor
End of
Chain? ;
v {:;
Print
Depenetration i
Corridor Data 5:
t
)
o Call NEXTTT :
220 for f
! Dogleg L
;]
Print if
. Dogleg ?
E Data f
- r-
| 5,
! !
f |
{ Figure 4. Subroutine DEPROUT (Part 1 of 5) a
i !
: 15 N
' -
! \
N |
Lk o ;
v H
i e e e e+ !,
= = o

|

Store LAT
and LONG
of First
Dogleg

\

Call DISTF
to Compute

ﬂ Distance

Save LAT
and LONG

Figure 4.

(part 2 of 5)

o i o o e 4 % e e e

e e

[

Do for Maximum
Recovery Bases
per Depenetra-
tion Corridor

Any More
Recovery Base
for This
Corridor?

Done

s \Yes

Ratrieve
Recover,
Base on

CALC Chain

400

Recavery
pase Exist?

call DISTF
to Compute
Distance

Mespage

<_/[77 Print
/ Ep:0Y

Figure &, (Part 3 of 5)

17

S

- o e . -

570

Sort
Distances
to Recovery

Bases

%

Store
Distance
Within Record
RDDIST

!

Compute Distance
From Corridor ﬂ

Entry to Recover
Base (DISTEG)

Figure 4. (Part 4 of 5)

18

o

1

Print
Depenetration
Coxridor Dat

Retrieve
Refuel Point
Header

1200

Call NEXTIT

- for Next

Refuel Point

T

Store LAT
and LONG cf
Refuel Point

Figure 4. (Part 5 of 5)

19

End of
Chain?

Maximum
Number of
Refuel Points
Exceeded?

YYSS

Print
Error
Message

- de e

2.9 Subroutine FACTORCG

PURPOSE: To read and process user input factor change
requests

ENTRY POINTS: FACTORCG

FORMAL PARAMETERS: LOCSET - Pointer to INSGET's arrays for location

of 'SETTING' adverb

COMMON BLOCKS: €10, C15, C30, CLASSCOM, ERRCOM, GAMFLAG, ISIMTYPE,
00PS

SUBROUTINES CALLED: CINSGET, HDFND, ITLE, MAKECHG, MODFY, NEXTITT,
RETRV

CALLED BY: ENTMOD (of PREPALOC)

Method:

FACTORCG reads the user directed factor change requests and calls sub-
routine MAKECHG to implement each change. VALUE, MINKILL, and MAXKILL
may be changed. Also, if it is desired to override the calculated op-
timal height-of-burst (attribute IDHOB) this may also be accomplished.
These -attributes may be reset through various combinations of target
data subsetting. Permissible requests include the setting of attributes.

o DESIG - A single target record is to be updated
o TYPE - All targets that equal the input TYPE are to be updated
o CLASS =~ All targets that equal the input target class name are

to be updated

0 CNTRYL ~ The height-of-burst of all targets located within the
input country location are to be updated

o IREG - The height-of-burst of all targets located within the
input region are tc be updated

The last two requests recognize only height-of-burst requests. Other-
wise, any combination of target subsetting 1s permissible but there is

a ranking order in the final storage of input values. The order of pri-
ority is: DESIG, TYPE, CLASS, CNTRYL, IREG. That is, if a given target
is to have an attribute updated by more than one input target set, the
cited order applies. For instance, consider inputs that request updat-
ing attribute VALUE to 40 for TYPE=TITAN and to 50 for CLASS=MISSILE.
Since TITAN's are in fact missiles, the ranking order resolves any con-
flicts and, accordingly, all target records where CLASS=MISSILE will
have VALUE=50 except for those records where TYPE=TITAN in which case

VALUE is set to 40.

20

A o TN, S——— v v me————

b e v <= e

ar

. |
R . S

TERKRTT)

FTMW T

= T
S v 0 . el enrat il bty - s

¥

All code implemented within FACTORCG up to statement number 1500 reads
the input requests (by calling subroutine INSGET) and upon proper defi-
nition, the changes are made by calling subroutine MAKECHG.

Changes are not made as read. This is because of the rule that once a
complex target has been changed, its components may not be separately
changed for the same factor. (All of its components are, however
changed by a similar ratio as the complex target as part of the change
to the complex target.) Changes are made first for individual targets,
then for targets based on TYPE, then CLASS and so on. Local parameter
ICRIT equals 1, 2, 3, 4, or 5 defining 1f the latest input defines tar-
gets to be updated on a region, country, class, type, or DESIG, respec—~
tively basls. A second parameter called NOWCRIT (and assuming the same
values as ICRIT) is initially set to 5 to show that only targets speci-~
fied by DESIG are to be updated. If ICRIT does not equal NOWCRIT, proc-
essing is delayed and 1f this condition exists array ICRFIRST (ICRIT)
1s set to the first location into INSGET's array that defines a change

request at ICRIT level.

Upon processing all inputs, NOWCRIT is decremented by one and processing
reinitiated for that level of priority.

The generalized nature of inputs does not demand any one order of input
definition. That 1s, for say a DESIG, VALUE intersection setting, the
user may within the command sentence define either DESIG or VALUE ini-
tially; neither order of input ls more powerful than the other. There-~
fore, the design must recognize that changes may not be honored until
necessary data has been read. Accordingly, the following parameters are

used to control processing:

o IFACTOR - =1, updating attribute VALUE
=2, updating attribute MINKILL
=3, updating attribute MAXKILL
=4, updating attribute IDHOB

ICRFLAG - =0, a subset of targets pertaining to an input factor
has not been read
=], a subset of targets has been read and was of the
correct processing priority
=2, a subset of targets has been read but it was not
the correct processing priority (or a typographi-
cal error was detected). Request change is de-

layed

o]

o IFACFLAG - =0, an attribute to be changed has not been read
=1, an attribute to be changed has been read and may

be processed
=2, an attribute to be changed has been read but a

typographical error exists

21

o

PN

i %

A NS LR

7

o o e e =

-2

T 7 =
e i e e i ey ot

ERATET W

P

. s
o it o

\

Upon proper conditions, a change request is honored. If an individual
target record is to be updated (ICRIT=1), the record is retrieved and
MAKECHG is called for target modifications. Otherwise the correct tar-
get record level must be retrieved, for subroutine MAKECHG will chain
the individual target record chain with the assumption the next highest

IDS record level has been retrieved.

Subroutine FACTORCG is i1llustrated in figure 5.

22

N
hr et e A Twar o

- - — T
N T e

[R S

e A

RCNN N

—— et e

Set NOWCRIT
for Factor
Changes Based
on DESIG

Y

Set ICRFLAG
and IFACFLAG to
Control Flow

of Processing

=

Call CINSGET
to Read an
Instruction

Code

Q
Set NOWCRIT
i of N\yey | w0 comsiter | o (¥ ionity
Next Lower Level
Indicator? of Priority Considered?

Any Factor

Changes for
This Level of
Priority?

Alphabetic No

Input?

Numeric
Input?

Print
Error) RETURN
Message

Figure 5. Subroutine FACTORCG (Part 1 of 10)

23

Call CINSGET
to Read
Attribute
Number

Attribute
Equal
DESIG?

Attribute
Equal
TYPE?

Attribute
Equal
CLASS?

Attribute

Equal
CNTRYL?

Print
Error
Message

Yes

Yes _

Yes

Yes

Figure 5,

Set ICRIT
ta 5

Set ICRIT
to 4

Set ICRIT
to 3

Set ICRIT
to 2

24

(Part 2 of 10)

P

r

Correct Level
of Prioxity?

Call CINSGET
to Read Vaslue
of Input
Attribute

Actribute
Defining Factor \ No
to be Changed
Input Yet?

Factor to

Level of Priority,

Change Re-
quest for This

Received

No

Save INSGET
Location of
Change
Request

\

INSGETs Arrays

Advance Y
Pointer to

Y

Set ICRFLAG and

I FACFLAG Indicat-

ing Level of
Priority

be Changed
Correct?

Figure 5. (Part 3 of 10)
25

s Pt honen S Ml See e et B

She o

—~

s e 1 8 s

o e

atan

S

T = 7
A s s

.

.

e

X
e e e - ot Ao et oot by i o

e o

oo e e o b

Ny

Call CINSGET
to Read
Attribute
Number

Attribute
= TDHOB?

IFACTOR = 4

Call CINSGET
to Read
Value for
IDHOB

Attribute
Defining Subset
of Targets
Input Yet?

Subset Definin}
Attribute of
Correct Level
of Priority?

Figure 5, (Part &4 of 10)

26

B . I

PR R

Attribute
=TREG?

ICRIT=1

Attribute
=VALUE?

Attribute
=MINKILL?

Attribute
=MAXKILL?

Correct Level
of Priority?

Call CINSGET

IFACTOR=1 —-%’T to Read Value
for REGION

IFACTOR=2 > @

IFACTOR=3

Store Non-
efault Planning
Parameter Read

Planning
Parameter?

Print
Error
Message

Fignre 5.

Value of Plan-
nine Parameter

Advance Pointer
to
INSGETs

Arrays

27

200

(Part 5 of 10)

Call CINSGET
to Read Change
Value Factor

Attribute
Defiring Subset
of Targets
Input Yet?

pefining Subset
of Targets of
Correct Level
of Priority?

Yes

168& :
Adjust Value
of Factor If
Not in Correct
Range

Figure 5. (Part 6 of 10)

28

[——

¢
O

-

Attribute

of Targets
Equal DESIG?

Value Input

Retrieve
Target on A Weapon
CALC Chain Type?

1570
Done

All Target
Classes

iYes

Call
MAKECHG

Do 1590 For
00— Target Class

TY \
PE Equal No

Set Burst
Type

Retrieve

Headex

1580 *

Call NEXTTT
for Next
Target
Type

Stored Target
Type?

Error
Message Call
MAKECHG

Figure 5. (Part 7 of 10)

29

b vt s A < 8

[P

[R

Attribute
pe fining Subset\ No
of Targets Equal
CLASS?

Factor to
be Chaunged
IDHOB?

Target Class Print Print
Bxist? Errox Errox
Message Message

Ratrieve Targey
Class
Header

1630 *

Call NEXTIT
For Next

Target
Type

End of
Chain?

call
> MAKECHG

Figure 5. (Part 8 of 10)

30

- e -

! |-
; H
i

-

!

| ‘I=:>

A'; ?
& :
; Do For All ’
; o For ‘
32) 180 Done Target | e ,
: Classes 1690 '
i \

% - +Do)
¥

i

: Retrileve

; Target Class

; Header

X \

S 1680

Call NEXTTT

2 For Next
S Target Type
, Recoxrd

End of
Chain?

to ety et

'
i ’
E i
a :
o CNTRYL ;
. Equal Stored L
wi Countxy X
. Location? !
x |
%

\‘_, Call

. MAKECHG
i
*i Figure 5. (Part 9 of 10)

31

Print /
Errox /
Message _J/

Factor to
be Changed
IDHOB?

Retrieve
Region
Header

1730 *

Call NEXTTT

for Next
Region

Priunt
Error
Massage

IREG
Equal Stored

Region?
_/

Yes

call
MAKECHG

Figure 5. (Part 10 of 10)

32 ,

2.10 Subroutine FIXWEP

PURPOSE : To read and process fix assignment requests
ENTRY POINTS: FIXWEP

FORMAL PARAMETERS: LOCFIX ~ Pointer to INSGET's arrays for location
of 'FIX' adverb

COMMON BLOCKS: €10, €30, ERRCOM, IGPREF, OOPS

SUBROUTINES CALLED: CINSGET, DIRECT, HEAD, KEYMAKE, MODFY, NEXTIT,
RETRV, STORE

CALLED BY: ENTMOD (of PREPALOC)

Method:

Subroutine FIXWEP creates record type FIXASG records for all user re-
quested fix assignments as defined by a clause introduced by the adverb
FIX., Each created record stores the weapon group number and, if defined,

the downtime or salvo number.

The FIX clause recognizes attributes DESIG, GROUP, and the optional down-
time attributes ARRIVE or SALVO. Insertion of values for these two
attributes (and optionally four) is sufficient for record creation., How-
ever, to provide ease of input values, the user may specify two DESIG's
for one GROUP input. This mode of operation implies that a range of
fixed assignments will be made and that range defined as all the targets
that fall within the interval of the two DESIGs. The subroutine first
reads INSGET's arrays and checks for values of necessary attributes and
then, if error free, a fixed assignment record is created,

Since attributes may be defined in any order (that is GROUP appears be-
fore DESIG or vice-versa) the implemented design must delay processing
until all attributes necessary are defined. The following local pzram-

atar control input processing:

BEGDESIG - Zeroed at the start of the input search for each

o
phrase and reset to the value of the first input
DESIG

o TERDESIG - Sat to the value of the second DESIG, Lf it exists

0 KGROUPNO - Requested weapon group number

o IOPTION - =1, at start of each phrase;
=2, if a range of DESIG's was input

a3, 1f ARRIVE defined
=4, if range of DESIG's and ARRIVE defined

33

O S ———

Fixed assignments are now stored within the data unless:

a. If an attempt is msde to fix a bomber weapon on a target with
more than 30 fix requests, the request will be ignored, since
only targets with terminal ballistic missile defenses undergo
a saturation missile attack. The allocation procedure will
not allow a bomber to participate in such an attack.

b. If an attempt is made to fix more weapons than are present in
a group, the excess requests are ignored.

c. If two DESIGs were input and the alpha portions did not match,
the requests are ignored.

d. If non-lead (either for complexes or multiplier) targets were
to be fixed and the representative target could not be found,
the request is ignored.

e. If the target record or if the group number is invalid, the re-
quest 1is ignored.

Subroutine FIXWEP is illustrated in figure 6.

34

R

[PPSR

- v s -

A >
I AR

e T v &

< T
- e A o fon, oMt

Set Flag

(IOPTION) Which
’ controls Flow
of Processing

- '

call CINSGET

3 to Raad an
Instruction
Code

End of
Clause
Indicator?

Yes ‘sli’

No

End of
Relational
Phrase?

Yes
650

No

260

Alphabetic ves
Ingtyuction A
Code?

No

) 400

Numeric No Print

Yes
440 Instruction Exrrorx
Code? Message

Figure 6. Subroutine FIXWEP (Parc 1 of 7) @

35

e

s e o o= open s m

— e e e

Call GCINSGET
to Read
Input

Input
Attribute
DESIG?

First DESIG
in Phrase?

Set La~%t DESIG
Found to TERDESIG

%

Print
Error
Message

Set Flag
to Indicate
String of

DESIGs Input

Set IOPTION

Figure 6. (Part 2 of 7)

36

- e v e, T

P SN,

Print
Error
Message

Print FTix
Assignment
Data

RETURN

220

Ccall CINSGET
to Read
Input

Store Weapon
Group Number

Input
Attribute
=ARRIVE?

es

Input Attribute
=SALVO?

Yes

Input
Attribute
=ARRIVE?

600 540
Set OPTION
Set Salvo to Indicate
Number Arrival Time
Input
Figure 6. (Part 30f7)

37

. e e e e -

i
ANT
y
4
@ i |
e
String Yes Correct No Print ‘e
of DESIGs Error ,
[Entered? Format? Message b
% No
: l
H i
i L
g @ Ye | |

.

Group No Print / C
Exist? Error
Message J [

{: S
{ :
1 Yes |
, o |
) i
! {
i f
t
P |
! \
j
!
: |
!
3 b
! o
ﬁ Lo
o
¥ ; “
! :
vt l‘
2 '
! Y
| Figure 6. (Part & of 7) :
‘ {
i 2'
133
* 38 "
‘ z
l ;J
| |

. . 444“4
o e g <o At B AR e L T T

. Target to
Call HEAD Element of be Fixed
tocﬁ;;iihve Multiple Lead Target
P X .
! Target? :
b Target Record 8 of Complex :
§ ‘ , No
| ;
} @ . ’
;
)
‘ i
; i
'1 |
! Figure 6. (Fart 5 of 7) '
|
; 39 };
L 3
| i
i 4 - —] ';
- .

714

Retrieve
Taxrget
on
CALC Chain

Elewent of
Complex or

Multiple
Target?

% Yes

Print
ErTOT J/

Call DIRECT

ot to Retrleve
Target
*\Yes

of Multiple
Lead Target

825 ‘%
of Multiple

Print /
Exrror
Message

Yes

All Weapons No]
in Group ’
Fixed?

900

More than
30 Weapons No
Fixed on
Target?
+Yes

| 815
Store
Multiplicity
and Lead DESIG
Retrieve
|
l
|
|
|

Yes

Print
o Error
1 Message

Ccall DIRECT

to Retrieve
Group Record

weapon From q
Bomber Group No UnTaerfe:S?Ed
to be Fixed? g

870

Print
Error
Message

'

‘ e

i

’
'

i @

v

i

k Figure 6.

(Part 6 of 7)
40

4
- e ——————— e o v =

P s o e v v e iy e T
3

e A —————T——tans >

1000

1000

Call MODFY to
Store Target's
Number of
Fix Assignments

Y

Call STORE
to Create
rix Assignment
Record

string of
DESIGs
Input?

%Yes

Last Target
of String
Just
Processed?

+No

Calculate
Next DESIG
of String

Figure 6. (Part 7 of D

41.

C e wam e eeaan A e s e o

o e -

rtnrn e 2 A T r

|

2.1J1 Subroutine MAKECHG

JPURPOSE: To make changes to the data base for valid factor
change requests

ENTRY POINTS: MAKECHG

FORMAT PARAMETERS: ICRIT ~Indicates type of subset of targets to ba

changed (1, 2, 3, 4, 5 for region, coumtry

location, class, type, single target,
respectively)

CRWORD ~Valua of subsat

IFACTOR-Indicates attridute to be changed (1, 2,
3, 4 for VALUE, MINKILL, MAXKILL, height
of burst, raspectively)

FACWORD-New value of attribute

COMMON BLOCKS: C10, C30, SUMNEW

SUBROUTINES CALLED: DIRECT, HEAD, MODFY, NEXTTT

CALLED BY: FACTORCG
Method:

Subroutine MAKECHG wmodifies target record(s) as directed by subroutine
FACTORCG, Depending upon the level of processing (parameter ICRIT)
either the TGITGT or TGTREG chain is querfed, Whan FACTORCG calls
MAKECHG the correct next highest IDS record has been defined, By
stepping through the targets, modification is accomplished.

If a factor is changed on the main target of s complex, the factors for
each component are changed appropriately. For example, if the value of
the complex is doubled, the value ¢f each component ia doubled. This
procedure is followed to allow the user to change one factor for the
entire complex and other faxtors by component, If a factor is changed
for a complex component individually (not through the main target)

that factor is checked on sll the remaining components, The method
used in determining VALUE, MINKILL, and MAXKILL for a complex targat

is identical to that used in subroutine CALCOMP of module PLANSET, For
height-of-burst spacifications, only the main target of a complex is
chacked,

If attribute VALUE is the factor to be updated, paramater SUMNEW is re-
defined for further normalizing calculations,

Whenever a factor is changed for a target, the attribute IDHOB is

'marked' so that the same factor is not changed again by a change

raquest of lower priority. IDHOB is 'marked' by packing a 1 in an
octal digit as shown below:

42

il

TFACTOR Factor Changed Position of Octval Digit

: 1 VALUE 000 001 000 000

| 2 MINKTLL 000 010 00G 000

| 3 MAXKTLL 000 100 000 GOO

(f 4 IDHOB 001 000 000 000
’ The formula

f IDHOB/MSHIFT (IFACTOR)~8*IDHOB/MSHIFT (IFACTOR+1)

) merely yields the value to the appropriate octal digit (of IDHOB) given
IFACTOR,

Subroutine MAKECHG is illustrated in figure 7.

43.

PO P T P

CI—

e vpas ot ook

T R

Yaes

=

Y

Subset of
Targets to be
Changed Equals

DESIG1

‘LNO

Sat RCHAIN
Equal to Chain
to be Processed

4

Call NEXTITI
on
HOHATN

End of
Chain?

I

A’%No
40

Target in
Complex or
Multipla
Taxrget?

End of
Chain?

& et e e =

Figure 7.

Call NEXTTIT
for Next
Element of
Multiple

Yes

No

Call HEAD
to Retriave
Complex Targat
Racoxd

1

Target in
Complex
Target?

Yas

Subroutine MAKECHG (Part 1 of 5)

4

[N .
e @ e

o v o makd

- it s -

!I J;_;. v

BREAR -
-

Taxget
Representative

Target for
Complex?

Subset of'
Targets to be
Changed Equal

No

Set Flag
(HSWITCH) to
ndicate Complex
Taxrget

CLASS or TYPEL
Yes

(1‘;: Cmnge;i >_152,< Factor Changed !
IDHOB? for the

360

//—7 Was This \\\ N.
o

Call DIRECT
to Ratrieve
Targot
Record

\Complex Target
Yes

Call DIRECT
to Ratrieve
Target Record

~

430

Figure 7. (Paxt 2 of 5)

45

4

Sat Flag
(HSWITCH) to
Indicate
Individual
Taxgat

P N

Cor o

490 No
Element of
Multiple
Target Being
Considered?

Yes

Complex
¥o /' Target Being
Considered?

lYes

Call DIRECT

] to Retrieve

Target
Record

Set VALUE
Equal New
Factor Value

Accumulate

Values

etf—— New Sum of’

- Was This
Yey Factor Changed
for Target?

500 l) ("

a .

cd e ——

-

Set Flag in

Target Record
for This Factor 5

Yes

Figure 7. (Part 3 of 5)

46

actor to
be Changed
VALUE?

Factor to
be Changed
MINKILL?

Factor to
be Changed
MAXKILL?

560 &

Set IDHOB
= Requested
Value

Yes

Yes

Complex

Target Being
Considered?

Call MODFY to
Change Value
of Factor
‘for Targetl

Element of
Multiple
Target Being

Set MINKILL
= New Factor i
Value

Set MAXKILL
= New
Factor Value

Yes
Subset of
Targets to be
Changed Equel

DESIG?
Target
Element of Yes

Factor to be
Changed IDHOB?
\\\>Comp1ex?

Figure 7. (Part 4 of 5) @

47

S e At v o AT i >
et e v s N T S I " AN

920
! call MODFY to Call HEAD Call NEXTIT
Change Value to Ret¥ieve for Next
of Factor for Complex Element of ¢ e
f omplex Target Target Record Complex
| % %
Factor to be Yes Yes //[_?ﬁnd of
Changed IDHOB? — y Chain?

? No No
‘. 710 * ‘

Chain?

H
; C;ltl FEXTIT to Accumulate New
‘ etrieve Next values for VALUE,

1§ Element . MINKILL and
1 of Complex MAXKILL for

! l l Complex Target
- End of

j 960

|

Call MODFY
_ to Change

‘Fo
Factors for
740 i Complex Target
; Adjust Value of Call DIRECT |
Factor for to Retrieve . l
Element of Target '
Complex Record
Call DIRECT

to Retrieve
Target Record

!

f . Call MODFY to

ﬁ Le]| Change Value
S for Element

of Complex

|

| Figure 7. (Part 5 of 5)

48

" , -
T

‘.v)

s o

o et gt e T T

G YR
& Y e ety

R

F‘f ——— T
' 3 -
L e - -

2.12 Subroutine PENROUT

To compute penetration corridor data gn? print

PURPOSE:
results,
ENTRY POINTS: PENROUT

FORMAL PARAMETERS: None
€10, €15, CRLENG, IONPRT

COMMON_BLOCKS:

SUBROUTINES CALLED: DISTF, HDFND, MODFY, NEXTTT, RETRV

CALLED BY: ENTMOD (of PREPALQC)

Method:

Subroutine PENROUT retrieves each penetration corridor record and cal-
culates the distance (DEFDIST) and attrition (ATTRPRE) in each precor-
ridor leg. Results are stored within record PENCRD, If user direct,

prints are produced.

Subroutine PENROUT is illustrated in figure 8.

49

T
Lo

el ke amattsrt e bt et~ e ¢ eSOt S 1t e o W_A_AJ'

e Do .

Modify
Record

End of
Chain?

Figure 8.

START

Retrieve
Penetration
Corridor
Header

Y

Call NEXTTT
For Next
Penetration
Corridor

900

Print
Penetration
Corridor
Information

ber of Penetra-
tion Corridors
Exceeded?

Print
Error
Message

Initialize

Y

Call NEXTTT
For Next
Dogleg

Subroutine PENROUT (Part 1 of 2)

50

i e A pe o e s

Save LAT,
LONG And
Attrition For
This Dogleg

Lo et Bown

. s e -

= en brvme e s

Call DISTF
To Compute
Distance

525

Yv e e a

Store Low
Altitude
Indicator For
Last Dogleg

Any Attrition
For Last
Dogleg?

NMaﬁimnmf Increment
t umber o Index (L) Of
f Defended Defeﬁdid
Sections
Exceeded? Sections

Accumulate
o Distance And | g
; Attrition For
: Defended Section

!

Store Low

¥

' Altitude
Indicator For
Last Dogleg

Figure 8. (Part 2 of 2)

51

e e ——

- U SOV

S

t
i
1
¢
¢
1
t
¢

'n
D
e -

2.13 Subroutine TGTPREP

PURPOSE: To update target attributes and perform salvo
calculations,
ENTRY POINTS: TGIPREP

FORMAL PARAMETERS: None

COMMON BLOCKS: c10, cl15, €30, DISTEF, IONPRT, ISIMIYPE, SUMNEW

SUBROUTINES CALLED: DIRECT, DISTF, DLETE, HDFND, HEAD, IGET, IPUT,
KEYMAKE, MODFY, NEXTTT, RETRV, STORE, TOFM

CALLED BY: ENTMOD (of PREP)

Method:

Reference Codes of target records to be processed are contained within
the LIXSTXX chain, Each target is retrieved and attributes modified.
If the user requested a height-of-burst for the target being processed,
it is stored accordingly. Also, each target value is renormalized in
order to guarantee the sum of all the target values equal 1000,

The distance from the target through the depenetration corridor and the
distance to recovery is computed and the minimum distance storasd within
the TDDIST record. The penetration point associated with the target is
the point which minimizes the sum:

(2*DISTD) + DISTR

where DISTD is the distance from target to the depenetration point and
DISTR is the distance from depenetration point to recovery.

Also the distance from each penetration corridor to the target and the
corridor attrition are placed within the TPDIST record.

If there are fixed weapon requests for the target being processed, the
MYASGN chain is queried for definition of specified downtimes and, if
applicable, the salvo launch number is determined., Fixed assignment
modified is made to the ASSIGN record.

Subroutine TGIPREP is illustrated in figure 9.

52

R P p————— e S

I NN PO Wi SN oS

-

Retrieve
Target Number

Chain Header

Y

Call NEXTTT
Foxr Next
Target Number

End of
Chain?

No

Y

Call DIRECT
To Retrieve
Target Record

Target In
Complex Or
Multiple
Target?

Modify Target
Value And
INDEXNO

Target In \

Multiple
Target?

Save
Multiplicity
Of Multiple

Y

Call HEAD
To Retrieve
Target Record

53

7 b

[V U

& e

4 | = 3 | [
R TUUUU VLY R AR U R A .

Y

Normalize
Target
value

User
Specified IDHOB
For Target?

Reiove
Flag From
IDHOB

Compute
IDHOB

Y

Store

Target —
Attributes

Element Of
Complex?

Modify
COMPTG
Racord

Modify
Target
Record

=

Figure 9. (Part 2 of 3)

54

e

L

Find
Nearest
Depenetration
Corridox

00

Store
Distances

Store Distance
To Panetration
Corridor And
Attrition

Print
Target
Data

Figure 9. (Part 3 of 5)

55

.-

i

PO il

UL L A

i

Retrieve Next
Fix
Assignment

Store
Salvo
Number

Retrieve Weapon
Group
Record

Figure 9.

¥

Salvoed
Missile
Group?

Salvo
Specified?

Down Time
Specified?

Set Salvo
Number (MYSAL)

56

Set Salvo
Number

Compute Salvo
Number (MYSAL)
And Launch
Time

(Part & of 5)

oo e e s

e

L
PPV : SPUY PP [V

s

L v+ s —

i i, i

e bt e e A i e e

[N

Retrieve
Pointer

(INDEX)

Into NSAL

1440

Salvo
Available?

Update Arrays
NSAL And
NSFIX

No

Update Salvo
Number (MYSAL)

All Salvoes

Queried?

Print
Error
Message

Figure 9. (Part 5 of 5)

57

- bt

N

e e ot et e bt s g

P S

2.14 Subroutine WEPPREP

PURPOSE : To update weapon group data and print data,
ENTRY POINTS: WEPPREP

FORMAL PARAMETERS: None

FORMAL PARAMETERS: None

COMMON BLOCKS: ASMIyYP, €10, Cl5, C30, CRLENGTH, IGPREF, IONPRT,
ISIMIYPE, NUMCOR, REPOINTS

SUBROUTINES CALLED: DIRECT, DISTF, HDFND, HEAD, MODFY, NEXTTT, RETRV

CALLED BY: ENTMOD (of PREP)

Method:

The number of weapons in each group is incressed according to the
position specified in common /GAMEVAR/. The destruction before launch
probability is then modified by a factor to maintain the same number of

expected launched weapons as before.

Foxr bomber groups, the basic overallocation is reduced if there ara

less than 15 bombers in the group. If so, the overallocation is multi-
plied by the ratio of the number of vehicles to 15, This has the effect
of reducing the overallocation for small bomber groups.

For bomber weapon groups that contain ASMs, array EXPASM defines the
fraction of weapons in each group that are ASMs rather than bombs,

Arrays MAXSLV and NSAL are calculated for salvoed missile groups.
MAXSLV contains the maximum salvo number for each salvoed group and
NSAL the number of weapons in each salvo, The NSAL array is packed

inzo three words, fou. bits per salvo,

Upon storing all data, weapon group information is written onto BASFIL
followed by parameters that described the percentage of weapon overallo=-
cation and, finally, naval weapon group data is written,

Subroutine WEPPREP is illustrated in figure 10,

58

IS

s
R

o .

e

i

Rt

LGRS g

Retrieve
Penetration
Corridor Header

Do 1200 For
All Weapon | Done
Groups
*'Do

Retrieve
Weapon Group
Record

250 *

Retrieve
Payload
Data

Y

calculate

Overallocation
(FAT)

oo Y

Find Fraction
of ASMs
Within Group

Figure 10. Subroutine WEPPREP (Part 1 of 2)

59

e -

per

- e -

o g8

e e e+ vramn o en o e A Ao e MR 2o Al et -

PP P N S T

Modify Weapon
Groups
Record

Y

Find Minimum
And Maximum
Salvo Number

Y

Place Salvo
Count Into
NSAL

Bomber
Group?

Store Refuel
Time

1060 *

Print

Distance To
Penetration
Corridox

Figure 10, (Part 2 of 2)

60

- el Ll
et g e i st g oo

SECTION 3. ALOC MODULE :
|
3

3.1 Purpose :
[

The major purpose of this module is to determine the optimal allocation

of weapons to targets, using a Lagrange multiplier technique., The wea- !
pons are divided into weapom groups -- each group containing weapons of
the same characteristics which are geographically close. Thus, except
for time launch interval constraints for some "salvoed" missiles, wea-

- pens are considered identical within groups. Each target is considered
individually for weapon assignment. The order of investigation is the
order of the TARCDE records on the LISTXX chain which was determined by
the PLANSET module. When all targets have been processed, another pass
over this chain begins., This process continues until the Lagrange method
has allocated all the weapons to targets. The assignments are stored as
ASSIGN records in the integrated data base during the process. ’

e 1y _
R . ST N

e P

The user is able to specify weapon assignments through the FIX adverb to
the PREPALOC module. 1In this case the ALOC module will optimally assign
those weapons which have not been fixed., In addition, there are capabil-
ities which allow the user to modify weapon range values, to restrict the
use of MIRV weapons by target class, and to restrict the use of any weapon
group by the value of either of the target attributes FLAG or CNTRYL.

~ \ —
O _
P

[P

i oot 4

3.2 Input

The precondition of the integrated data base required is that the PREPALOC i
module has to have been executed. Furthermore, there is an optional input |
file -~ the Weapon/Target Data File. The Weapon/Target Data file contains ‘
the information relating each weapon group to each target. The Weapon/ |
Target Data file, if not input, is created by the FRSTGD subroutine on]
pass one and may be retained for later executions of ALOC. One record is

produced for each target whose length depends upon the number of weapon ;
groups and the targets number of hardness components (length = number of ‘
groups x (3 + 2 x number of hardness components) + 1). This is the file
which is created in pass one and may also be used in subsequent rumns (see
RECALC Mode: Users Manual, UM 9-77, Volume III). The format for the
Weapon/Target Data file -~ file code 15 -- appears in table 2,

3.3 Qutput

As a result of its execution the ALOC module creates ASSIGN (record tyﬁe'
70) records in the integrated data base. Further, the attribute NUMALOC
is updated in every group to reflect the actual number of weapon allo-

cated from that group.

P

3.4 CGoncept of Operation

In order to conserve storage, ALOC is broken up into two main overlays.
The first overlay is called ALCINT, This overlay reads any user input,

61

B e e ——

o e s o e v

o el s b s o

PR ep e ——

s Nt ittt

R e T

Table 2. Format of Weapon/Target Data File -~ File Code 15

WORD
1
*
2 ~(NWEPGRP + 1)

(NWEPGRP + 2)
(2 x NWEPGRP + 1)

(2 X NWEPGRP + 2)
-(3 x NWEPGRP + 1)

(3 x NWEPGRP + 2)
- (4 x NWEPGRP + 1)

(4 x NWEPGRP + 2)
-(5 x NWEPGRP + 1)

(5 x NWERGRP + 2)
-(6 x NWERGRP + 1)

(6 x NWEPGRP + 2)
-(7 x NWEPGRP + 1)

*kk

DESCRIPTION

Target Number
Time of arrival of group or target

Corridor used by group or reason group is
inactive

Penetration probability of weapon to target

Kill probability of weapon against first hard-
ness component

Kill probability o£ weapon against second
hardness component *

Alternate kill probability of weapon against
first hardness component

Alternate kill probability of weapon against
second hardness component

Number of weapon groups

Kk

Does not appear 1f target has only one hardness component

Fokk
(4 x NWEPGRP + 2) =(5 x NwiPGRP + 1) if target has only one hardness

component

62

—

e oy s WA LT et

AP

e

T s
£ i it et - b, S

R N

;
t
N
LY
s
i

{

i
L}
T

including restrictions, modifications, print request and so on. Further-
more, the weapon data 1s extracted from the integrated data base. The
second overiay (ALCMUL) controls the determination of the allocation.

The driver routine of this overlay is MULCON. Within the second overlay
there are four segments. The first, FGD, obtains target data for pass
one. The second, SGD, obtains target data for passes two and beyond.

The third segment, STAL, principally routines STALL, WAD and WADOUT,
allocates to targets without terminal ballistic missile defenses. The
fourth segment, DEFAL, principally routines DEFALOC and RESVAL handles

ballistic missile defended targets.

3.4,1 Qverlay ALCINT., The routines in this overlay are straightforward
and need little explanation beyond that below. However, the routine
DATGRP places information on a random access file (file code 25) which
is used by the FGD segment. Table 3 shows the format and content of
this file., This random access file is indexed on group number.

3.4,2 Overlay ALCMUL. The design of the weapon-to-target allocator
utilizes a hierarchy of subroutines operating at different levels of
detail. Figure 11 illustrates this hierarchy., The major functions
assoclated with these subroutines are summarized below and related to

the overall concept in subsequent paragraphs.

Subroutine MULCON is the first subroutine in the hierarchy and is re-
sponsible for the control and adjustment of the Lagrange multipliers.
MULCON monitors the rate at which various classes and types of weapons
are being allocated to the target system and makes appropriate adjust-
ments in the values of the Lagrange muitipliers. In this role, MULCON
does not need any detailed information concerning actual allocation. It
is concerned only with the actual rate of allocation of the available
inventory as the targets are processed. To obtain the assignment of
weapons to each successive target, MULCON simply calls subroutine STALL
(Single Target Allocator) for targets without missile defenses, or sub-
routines STALL and DEFALOC if the target is defended. STALL and DEFALOC
utilize the current values of the multipliers to make an allocation to
the next target, then return control to MULCON,

The data acquisition for the allocation process is performed by the
FRSTGD routine on pass one and SCNDGD on all other passes. Each of
these routines brings in the proper IDS records for the next target

and prepares the weapon data for that particular target. The Weapon/
Target Data File is read (or on the first pass in the RECALC wode cal-
culated). On the first pass, FRSTGD then creates a record on file code
21.which, principally, contains the INACTIVE array (see table 4). If
the user has requested range modification, FRSTGD may also write a re-
coxrd onto file code 22 in the same format as file code 15 (table 2).
This new file serves as a source for replacement record for file code
15. SCNDGD reads each of these flles in order to obtain the appropriate

information.

63

- T
v v At

WORD

1
2-10
11-160

161
162-185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

Table 3. Random Access File from DATGRP

DESCRIPTION

Group type index number
Logical flag restrictionms

Country location restrictions (logical switches matching
countries in Block CNCLS)

Switch -~ true if group is a restricted MIRV
Logical MIRV restriction switches
Range multiplier

Refueled range multiplier
Minimum range replacement value
NALTDLY for group

ALTDLY for group

GLAT for group

GLONG for group

GREFCODE for group

GYIELD for group

RANGE for group

CEP for group

SPEED for group

RANGED for group

RANGER for group

RNGMIN for group

GREFTIME for group

TOFMIN for group

CMISS for group

64

——.

< START ‘

),

e ————— e RO W

65

Filrst All Other
o e e o DA = = = =
FRSTGD Pass Pagses SCNDGP
Y
Terminal
Missile MULCON Targets
pefense
\
]
\ Y
DEFALOC ASGOUT STALL
\ \
RESVAL WAD
A
Y
WADOUT
PREMIUMS
A Routine Used
In Many
Places
Figure 11. ALCMUL Calling Sequence Hierarchy

|
i 5
‘ i
. N
| Table 4. INACTIVE Array File (File Code 21) :
ﬁ }
WORD DESCRIPTION
Target number t ‘
2 Length of file 15/22 record -
' 3 Logical switch -- 1if true, file 22 contains alternate data 5
recoxrd ,
! +
! 4-253 INACTIVE array
h
!
A
5’ +
: |
8 |
B ?
§ | ?
i
P 1
. E
b 1
a "
. '
}
i a
| i
} ;
l ’ |
!
| 66 3
i)
; i
= i

-y

e b ki g ane s

v e x

The ASGOUT subroutine is called by MULCON to insert the allocation tuv a
particular target in the integrated data base. ASGOUT makes sure that
the allocation indicated for the target is that which has just been com-
pleted.

Subroutine STALL is the next subroutine in the hierarchy when dealing
with targets without missile defenses. STALL utilizes the values of

the multiplier supplied by MULCON and generates an appropriate alloca-
tion of the weapous to be specified as single target. It is not re-
sponsible for computing payoffs and is not responsible for actually add-
ing or deleting weapons. When STALL has determined that a single weapon
should be added, or deleted, it calls the Weapon Addition and Deletion
subroutine WAD. WAD then adds or deletes any weapon as specified and
corrects the residual target value. In addition, before returning to
STALL, WAD examines every other relevant weapon group and calculates the
potential change in payoff, if a weapon from that group was added or
deleted. This information on potential payoffs is used by STALL in de-
termining whether other weapons are to be actually added or deleted. When
STALL has achieved an allocation of weapons to the target appropriate for
the current values of the multipliers as supplied by MULCON, it returns

control to MULCON,

While the allocations generated by STALL are determined by the values of
the Lagrange multipliers and the target payoff functioms, there is no
requirement for STALL to be involved in the calculation of these ~tan-
tities. Thus, the structure of STALL can be independent of the letails
of the operation of either WAD or MULCON.

Subroutine WAD (weapon addition and deletion) is the next subroutine in
the hierarchy and is responsible for the mechanics of addition and dele-
tion of weapons and for the actual calculation of nayoff for targets
without missile defenses.

Subroutine WADOUT is called by WAD to summarize the output of WAD for
STALL. WADOUT calculates an overall b-nefit for using each weapon by
adding the current premium for using weapons from that group to the po-
tential payoffs computed by WAD. These benefits are then compared with
the current prices (or Lagrange multipliers) to produce the summary data
actually used by STALL. Thus STALL, in fact, is attempting to maximize
(PAYOFF + PREMIUM - COST) rather than just (PAYOFF - COST). The intro-
duction of the premium provides a flexibility which is used to acceler-
ate convergence to an allocation that exactly matches the stockpile.

Subroutine DEFALOC p<iforms the same function as Stall for targets with
terminal ballistic missile defense. The complication that necessitates
a separate subrouvtine is the nonconcave payoff function for defended
targets, DEFALOC determines whether it is more profitable to attack

the target with missiles until the interceptors are exhausted than to

use the STALL allocation., If it is not profitable to exhaust the defense,
then the allocation job is turned over to STALL, after setting the missile

penetration parameters to reflect leakage through the defense. In the

67

Ay

e

I s

P I

e s s me et s

-

e SN, el oo

P

o o vt e

event an exiiuustion tactic is most profitable, DEFALOC calls subroutine
RESVAL t» calculate the payoff against the defended target with a spe-
cified mix of weapons.

QS outine RESVAL calculates the damage to a ballistic missile-defended
target when attacked with a specified mix of weapons. The attacking
missile payloads may contain decoys and electronic penetration aids

which degrade interceptor effectiveness, The target is defended with a
prespecified nominal number of terminal interceptor salvos with kill prob-
ability PKTX against unhardened warheads, Uncertainties may be intro-
duced into the number of interceptors by specifying two probabilities
PK(1) and PK(2) that the actual number of interceptors will be RX(1)

lower or RX(2) higher than the nominal number.

A1l of those factors discussed under WAD are considered in RESVAL except
correlations in weapon failures.

Subroutine PREMIUMS is the final subroutine in the hierarchy. It is

called to calculate the current premiums for adding or deleting any weap-
on. The premium reflects whether the weapon is currently overallocated
or underallocated, The size of the premium and the way it is calculated

change as the allocation progresses.
The remainder of this section treats the subroutines one at a time.

3.4,2.1 Subroutine MULCON. The flow of operations in MULCON is illus-
trated in figure 12, The diagram is broken into two parts. Part I is
the main bookkeeping loop. Part II is the computational loop.

The loop shown at the beginning of part I of figure 12 has two branches.
The left branch is used only on the first pass over the target system,
All succeeding passes use the downward branch. On the first pass, the
raw data on target characteristics for each target are read in by sub-
routine FRSTGP. Then the basic information on capabilities of each weap-
on with respect to the target is computed. Since these data are inde~
pendent of the allocation to the target, they are stored on files to
avoid recomputation of the data on later passes. Just before weapons
are actually allocated to the target, the allocation previously recorded
for the target (in the initial pscudoallocation) is removed by deleting
it from the running sum used to estimate allocation rate. That is, the
contribution of the target i to}iN(i,J) * W(J), known as RUMSUM, * and

W(i), known as WTSUM, is removed.

In block 25, after STALL and/or DEFALOC has been called for an allocation
to the target, the running sums are augmented by the new contribution of
the target i using the new (and usually much larger) target weight W(i).
Subroutine BOMPRM is called to update the ASM allocation fraction for the
bomber groups. Finally, subroutine ASGOUT updates the integrated data

file with the new allocation.

68

SAR 2 aal) p vt -

LRV A

r e e e —————
o B

T Rt A e i e e Al AL
. o et o

st A oo s et et

T AR R T s T T r e e e e
P

Call FRSTGD

for Data

Decrement Running
Sums By Pseudo
Contribution
0f Target

Decrement Running
Sums By Prior
Contribuiion Of

Same Target

Missile

DEFALOC Defense?

25 \ No

Update Running Sums
And Other MULCON

i Variables For

Current Allocation

A

ASGOUT

No Did Target Yes

Split? /

Figure 12. Subroutine Mulcon
Part I: Bookkeeping Loop

(Part 1 of 2)
69

Saadise

%
f
|
]
!
|
|

Is It
Last
Target?

es
Y

Rewind Files And
Interchange READ
And WRITE Units,
Set NPASS = NPASS+1

<@
Y

A

Update Total

N

A

N Weight For

; Next Target i

i /// Time To No %

* Recalculate :

§ Multipliers For

% Next Target? i

P [Yes -
;

| O

| 1

| |

; B4

t)

{ ;

i \

; b

I (I

Figure 12. (Part 2 of 2) !

)

' |

s b
i
§
|

: 70 '

§ 4

| |

\: - ;

e ——— g

PApree———m——————y

Calculate Revised
Allocation Error
Estimates For Each
Attribute Category

bt s v o

e v wnd Fb e

e et it b e e

VM.* —
3 -
’

- o B 87

A =
o et e e e - ———r

Do All Error Recalculate
Estimates Have Actual
Same Sign? Multipliers
; Update
Dgterm1ne Integration
Desired Rate .
Periods
To Correct ErroT
} 27 *
Determine Evaluate
Correction In PROGRESS
Local Multiplier

Go To
Next

Attribute

Class

Figure 12.

Yes
PROG =17 —
RESS=1 Skip Change Of Multipliers
No
Do For All D
F_____» Attribute [=22° —
i All
Categories Classes |Categories
Done { Done

e = = e ——

Computation Loop

e —

e e i i

o e o et e

[P

T

A g i e st

-

e e

o, o -t oo e it N S en e moers i e e

e —

L

e i e TSP

S e s e me e gy < e
i =
- Y b s e e e rm s e e ctienate . arin —

e

e

LTS

Agaln, after the uwew allocation has been made, it i3 added {nto the vun-
ning sums, Of course, multiple tavpets (single target roecords on the
file which reopresent several ldentical tarpets at slightly difterent
locationy) are subtvacted from and added to the sums as multiple tarpets,
buring the ¢ osing phase, these targets way be separated to allow
different alloentions to the separate targets. Provision is wade at the
end of ASGOUT t. reeycle and process later olaments of the same wmultiple
target 1rf such a split occurs during the allocation to the target. Be-
fore passing oun to the next target, the curreat value of the target
woight 1s revised,

After overy two to four targets, the Lagrange multipliers are updated
by transferving coutrol to the multiplicr computation loop $hown on
[igure 12, The error in the vate of allocation for cach collection of
weapous J {8 estiwated. Three scparate vstimates are wade correspond-
fng to diffeving rates of fncrease of the tarpet wodphts, 1f all osti-
mates have the same sipn, then a small adjustwaent of the wultiplicr in
the indicated dirvoction is made.

The revised local multipliers are then used to recaleulate the Laprange
multipliers. Duriug the closing phase (PROGRESS = 1), the loeal wulti-
pliers are not changed so the actual asmltdpliers rowain unchanged. The
rate of change of the target welight fs adjusted depending on the appareat
gize of the current ovror in the allocation vates,

Fiunally the progross of the allocation is evaluated and flaps are sot
if the wnde of oporation s to chanpe.

3.4,2.2 Bubroutine STALL. STALL {8 basieaily a vory simple routine.

It {3 not respousible for computiung pavoeffs, The payolfs are computed
by WAD and sunmarizad for STALL by WADOUT,
sisty ouly of the summary data provided by WADOUT, ‘'These data consist

of only the followinp variables:

a. PEPMX the waximuma poteuntial profit available 1€ a weapon s
added, and TPIMX the index to that weapon

bo PVRMX tho maxfvaum offfcioncy for any potential weapon that
could he added, and 1PVRMX the fndex to that weapon

. DBMN the wiofwom diffevential profit produced by any weapon
on the tavpet, and IDPMN the ifwdex to that weapon,

Actually, of course, the protits and etficiencies ment foned above me
based on 4 modiliod pavotl (or BENEFTT) computed oy WABONY, which in-
cludes the actual pavoll from WAD topether with the promasms lov stave=
ing close to the destred allocation rates. Thus, t! ~oughout the alloca-
tion, the oporation of STALL vemafus the sawmes {8 simpl tries to wmax-
{imize this modified payoff, Changes in the wade of the allocation ave
thus accomplished in WADOUT simply by changing the way the pavotls are
maditied, so no change in the lople of STALL {s vequired,

b

R - e —— s a5

Thus, the {nput to STALL con-

Y G et

s T
e & £ ot

‘
|
i
LI
i
1
H

R U

To obtain the initial values of these quantities, STALL makes an initial-
fization call on WAD. Then it adds the weapons which have been fixed to
the target by the user. STALL also calls subroutine TNITSAL. This rou-
Line Initlallzes the Lagrange multiplicers and preferred salve lndicator

for the salvoed missliles.

On the basis of the values delivered by WADOUT, STALL decides whether to
add a weapon, After each call on WAD to add or delete a weapon, a new
set of variables 1s delivered by WADOUT, and STALL uses this revised in-
formation to decide whether more weapons should be added or deleted and
{inally when to terminate the allocation,

Figure 13 illustrates the operation of STALL. As part I of the flow
chart shows, a speclal option has been provided so that, in the case
where IVERIFY = 2 and PROGRESS = 2, the normal operation is short cir-
cuited and STALL simply duplicates the previous allocation to the target
so that with one additional pass the allocation can be evaluated with

different correlation coefficients,

In all other cases, the normal allocation procedure is used. This pro-
cedure consists of four parts:

I. Set up and single weapon allocation phase
L1, Fixed weapon processing
III. DMultiple weapon laydown loop

IV, Multiple weapon refinement loop.

The most time~consuming part of subroutine STALL is the multiple weapon
refinement loop. This phase tests many permutations of weapon assign-
ments which could be made. The full testing of every single target
allocation can considerably slow down the operation of the allocator.
Therefore, a way of terminating the testing nas been provided, through
the user-input parameter QUALITY. The maximum number of weapons which
will be removed in any testing process is not permitted to exceed NUM *
QUALITY where NUM is the number of weapuns allocated to the target.
There QUALITY is a measur:¢ of the fraction of the weapons which can be

removed, If QUALITY is set to 0, the refinement operation is skipped

¢, rely,

Since the program provides only finite arrays to list the number of weap-
ons assigned to a target and for WAD to compute surviving target value
for different times of arrival, there is always the possibility that the

arrays provided might be exceeded,
a test is made to be sure it will not overflow these arrays.

If the maximum number of weapons would be exceeded, then the least prof-
itable individua) weapons are removed to make way for the most profit-

able weapons.
73

Therefore, before any weapor is added,

If the number of time-of-arrival columns would be exceeded,

cenmaerer
i EZONRE Y
LSV iy

PO RS

Iy e

Initialize

To Initialize To
Zero Weapons

x
;| Salvo Save INITIAL Value
; Numbers - 0f TOA Exrror
% : Is Allowance
£y PROGRESS=2
{: And Enter To
%; Verify=2? Recycle
t Duplicate With Larger
o ! 01d Allocation No Normal TOA Exror
) ‘Allocation
1 For receval= Allowance
{ uation Are There
| Fixed Gall WAD, WADOP=1,
! Weapons?

YES

Are There
Fixed
Weapons?

Call WAD, WADOP=1
To Initialize To

:
| #
;

Zero Weapons

)

!

% 1
! Are There An

! DowFor ﬁ; . DONE s No _/ Potential lyy
‘ P esaggs&y \\\ “"profitable"

5 Xss*"ne Weapons?

| bo l YES

ball WAD, WADOP=3, T
Add Most "Efficient"
Weapon G=IPVRMX

Call WAD, WADOP=3
To Add Specifiled

E{ Weapon

. \

5 K L

! ~
o
- Figure 13. Subroutine STALL
¥ Part I: Setup and First Weapon
' (Part 1 of 2)

T4

RESTORE
Restore Values
0f lLaGrange

Multipliers

Fxit
Routine

eset To 1nitial
TOA Error
Allowance

Call WAD, WADOP=

For Optional Print
Of Final State

RETURN

Go To Multiple
Weapon Laydown
Loop

Are There Any
Additional
nprofitable"
Weapons?

NO

as Weapon Now Un
Target Also

Estimated As Most

"profitable"?

4_4_%N0

Figure 13. Part I

call WAD, WADOP=4,
And Then WAD, WADOP=
3, To Substitute The
Most "Profitable

ingle WeaponG=IPPMX

(Part 2 of 2)

75

R

128
Save Initial
Value Of TOA
Error Allowances

y

Call WAD, WADOINI
To Initialize Yo
Zero Weapons

130 Y
Do For ail | Done
Fiaed We sons
41)0
125 .

Get Group Number Yes First No Get Group Number
From IG Array Pass? [From 01d Aliocation
126 6
Sct RWADOP=3

Get Nusber Of Woapons
From KORR Array

!

Do Tor All Weapons | Done

A Plor mis Assignment

e

| urficicm. No Pf»:‘;t lgl;_;);v
Rnn ge? Message Request

s
445 ‘Y"

Sct STALPRIN,
Inactive Flag

443

T - . x e

Call WAD, VADOP=3
Yo Put Wespon
Dova

Do For All
-t Target
Multiples

o
449

Increment Set Group,
Rumber Of Arrival Timc,
Fiaed Missiles And Index Data

r

o e o e 7 o ety o

Figure 13. Part II: Fixed Weapon
Assignment Processing

76

T

- L e .,-_-.‘-,‘ A e g s AN ..

T e e < o

PR

Relax Ervor No
Limit On TOA

Try
Again

Still Space In

TOA Arrays?

Yes

No

Go To Allocation
Refinement Loop

Still Less Than
Maximum Number Of

Weapons On Target?

‘ch

Note

Call WAD, WADOP=3, To
Add Most Efficient Weapon
G+IPVRMX, Tentatively

G As A Refinement

Tried IGTRIED(1)

i

Call WAD, WADOP=4
Delate Laast No
Profitable Weapon
N IDEMN

1

Are All Weapons
Allocated Still

Profitable? >

+Yes

Is There Another
Profitable Weapon?

*nm

Substitute
Best Single®<
Weapon

Figure 13.

No ,/(Is More Than One
\ Weapon Assigned?

Yes

Go To Allocation
Refinement Loop

Part III:

Multiple

Weapon Laydown

77

Yes

N

» e ——

i

FOTEN

LN T SN

o A e

Y o o we e s s ot
- ;

R nan s A 2

et

S

e

Weapons To Remove; Sot
Number Of Weapons Tested
(KOWNT=0); And Set Veri-

52

Delete least

46
Sot Maximum Number Of

fication Pointer IPOINT 49
Storc As Only
ot Verificd Weapon et
47 v IGYRIED(1)2G
Jdnitialize To
Only One Weapon 57
Verified And.Stored Storc As A Verified

Profitable heapon
Nivs 0PN

51 {

Reset Number Of

Weapons Verified
@'b And Stored To
Zero

Select
Best Single
Weapon

Yes

S8

Is Only One
Weapon Now
Allocated?

Yo

65)
Increment Total
! Weapons Tested
{(KOUNT) = KOUNT+ 1

y
1s KOWNT:GT:

All Weapons Been
Verified?

No

QUALITY*NUM Or Have\ Ye$

Increment Pointer,
IPOINT To Next Group
To Verify; If Lnd Of

List, Recycle

— X
Has A Weapon
From This Same
Group Already
Boen Verifred?

Yes

4

Increment Nunmber
-t 0f Weapons Verified

N1RIED

Fi

Lo e ?

Weapon And Increment
Number of Woapons
Verified And Stored
(NTRIED And NSTORE)

All Weapons
Now Allocated
Profitable?

Yes

Any Other
Potentially
Profitable
Weapons?

33

Still
Space In TOA
Arrays?

No

Toss Y
Relax
TOA trror
Limit

Start
Over

Call WAD, WADOP-
fo Delete Weapon
To Be Verified

Is This The Same
Weapon As That Just
Noleted In Veri-
fication Lffort?,

56
Call WAD, WADOP=3
Add Host

Profitable Weapon
GeIPPMY

9 Yes
Still Less
Than Maxinum
hupber Of Weapons
On Target?

No

llave All
Weapons Been
Removed Once?

Yes

No

-
Would Woapou
Just Added Bc
Rezoved Again?,

Substitute

Most Profitable

Weapons, Rogasdless
of Ufficiency

gure 13. Part IV: Allocatiom
Refinement Loop

78

e

Lhe

PR PN

(e bt il Yo

the error criterion for treating slightly different times of arrival in
the same column is relaxed, but the allocation to this target must be

reinitialized and repeated.

3.4.2.7 Subroutine WAD: When the next target is to be processed, WAD is
called with the control variable WADOP set to L. This results in the
initialization of the allocation for that target, starting with zero
weapons assigned., STALL examines these data and determines what to do.
On all succeeding calls, the print options 9 and 22 are available to
print the decision made by STALL, together with the data (previously
given by WAD to WADOUT) on which the decision was based. If STALL
decides to add a weapon, WAD is called with WADOP = 3 and with the
variable G specifying the group from which the weapon is to be added.
STALL later decides to delete a weapon, WADOP is set to 4, and the
variable NW is set to specify which weapon in the list of those assigned
(the NWth weapon in the list) is to be deleted. Finally, when STALL
decides the allocation is complete, a dummy call WADOP = 2 is made to
permit a print of the data which caused STALL to terminate the allocation.
The option WADOP = 5 should never be used. It is provided simply to
catch any erroneous calls (WADOP > &) on WAD,

1f

Each of the main options (WADOP = 1,3,4) causes control to pass to an
internal control routine, which in turm makes calls on appropriate

local subroutines in WAD, The structure of these routines is governed
strongly by the objective of speed and efficiency, and need not be dealt

with here.

3.4.2.4 Subroutine WADOUT: Much of the logic of the subroutine is
concerned with the decisions of which weapon groups to make INACTIVE to
save time in the computations in WAD., The variable INAGTIVE outside of
WADOUT is interpreted as true so long as it is not 0. That is, only
weapon groups for which INACTIVE = 0 ave processed. TIf INACTIVE = 100,
it implics that the range is inadequate, and the weapon will be
inapplicable regardless of its Lagrange multiplier. This value of
INACTIVE is set permanently where the weapon-tavget interactions are
computed in subroutine GETDTA. Inactive = 2000 or 30000 is used

to note weapons that are inapplicable because their cost (LAMEF)

is too high for the target. These must be reconsidercd each time a
target is processed. The flow of the program is illustrated in

figure 14.

Basically, the subroutine begins with a do-loop over all weapons cur-
rently assigned, to compute the marginal BENEFIT associated with these
weapons. At the same time, it tags all the weapons assigned by setting
INACTIVE to -100 to avoid any possibility that any weapons currently
assigned will be made inactive. It then enters a do-loop over all
potential weapons to evaluate the marginal potential BENEFIT associated
with these. It skips any weapons already set inactive (INACTIVE =
100,2000,30000) and processes the remainder (INACTIVE = -100,0), It
also skips salvoed missiles if there is no available salvo because of

79

—FTh

T T Eg e
PR

[T S

o
PR

P
Do v b oy ok A e n

=

(83
[S N S

T

4]

LRI S

<

e e ot bt s

|
|

START

Call PRNTALL(13)
Display WAD
Arrays (Oprional)

y

Flag As First
NADOUT Pass, Set
FLAG=}

y

Set VEffective”
Surviving Value

10

From
Next
pPage

Any Profitable
Weapons?

120 ~
Has Maximum
Allowable Cost
Been Used?

Increase ALPHA By A
Factor To Increase
Effective Value

Y

VTEF2VIMIN
- Recycle Note This As

- Secondary WADOUT

3 Y Pass, Set FLAG=0
Do For All Done Next
s Weapon Groups Page

Assigne) y
Do To Scan Potential RETURN
Weapons For BENGFIT

Tag Groups‘ﬂssigned
To Remain Active,
Set [NACTIVEx-100

31 Y

Set "Effective”
Value If Weapon
Delated,

And Set Some Inactive,
If Appropriate

VTDEF2VIMIN

33

Calculate BLNEFIT From
Weapon (Difference In
Effective Value Minus
Premiun For Deleting [

16

Calculate "Profit"

15
oes Weipon Destroy No Set Large
H Fraction Of Value Negative Profit
t) Greater Than MINDAMAG?, For Weapon
Yes
14 A

“®and Note Weapon IDPMN With

BENEFIT-COST For Wcapon

Minipum Profit HPMN

Figure 14. Subroutine WADOUT (Part 1 of 2)

80

U

ol e

<

From
A Sheet !

Do For Done
»4 All Weapon

Ves 1

Groups
Do

/is GroupSalvoed
1ith no Available

40
Set "Lffective” Value
| Of Weapon G If Added

VIPEER> VIHIN

43 A

Calculate Potential Benefit
of Adding Weapon (Difference
fn Effective Value Plus
Premium For Adding It)

Salvo ? \
No
sy
Inactive Test \Act ive
INAC"_‘y-o,-wo o
2000 Conditionally
37
Make Active
INACTIVE=O

‘Set Inactive

=20
INACTIVE=200 COST And Note Weapon
IPVRMX With Maximum
69 Value PVRMX
Make Active Set \
INACTIVE~O
L Yus i
Does l\:.\pon
Yes Efficiency Destroy Fraction 1}
\ A Greater Of Value Greater
Than 1.0? Than MINDAMAGP?,
No
72
75
Make Conditionally
Inactive, Set
INACTIVE=30000
3
Neapons
On Target
Profitable?

S
Calculate Potential Pro-
fit (PP) BENEFIT-COST And
Note Neapon IPPHX With [¢
Maximum Value PPMX

6 \
Calculate Potential
Efficiency (PVR) =BENEFIT/

Figure 14, (Part 2 of 2)

81

K.

z,

”ZW_ pl

salvo overallocations in all salvos. Those not currently assigned to
the target (INACTIVE # - 100), and not showing potential profitability
are considered to determine whether they should be set inactive,

If a weapon is not potentially profitable when no weapons are assigned
to the target, it is presumed safe to set it inactive (INACTIVE =
30000). If there are other weapons on the target that are unprofitable,
the decision to make a weapon inactive is postponed until these are
removed. Otherwise, any weapon whose cost is a factor of 10 higher
than its potential payoff is made INACTIVE -- it being presumed that
even with replacement (or substitution) of weapons by STALL such a
weapon is very unlikely to become attractive. The value of INACTIVE,
however, is set to 30000 (conditionally INACTIVE) rather than 2000.
Ordinarily this is treated exactly the same as INACTIVE = 2000. However,
if before exiting from WADOUT it is found necessary to recycle (using

a revised value of ALPHA in order to achieve a specified MINKILL),

then a flag, REEVAL, is set and those weapons with INACTIVE = 30000 are
reconsidered. In some cases, they may turn out to still be applicable
because of the increase in effective target value. However, if an

exit from WADOUT occurs with INACTIVE # 0, it must necver be set

back to 0 during the remainder of this allocation to the target.
Otherwise, incorrect computation would occur -- as a result of trying
to do various steps in the computation in WAD despite having omitted
earlier steps when the weapon was treated as inactive,

Therefore, any weapon group encountered by WADOUT with INACIIVE = 30000
is immediately set to INACTIVE = 2000 unless it is a case of recycling

with a new value of ALPHA,

WADOUT, however, has two other subsidiary responsibilities, It is
responsible for modifying, when necessary, the six variables transmitted
to STALL, so that STALL will not try to exceed the MAXKILL specified for

a target, and so that it will continue to add weapons until any

specified MINKILL is achieved,

To make it possible for QUICK to match target kill requirements

specified for simpler models, where both correlations and time dependence

are ignored, a user-input parameter IMATCH is provided in which MINKILL
and MAXKILL are interpreted in terms of an oversimplified target kill

estimate VTZ0.

If the parameter IMATCH is set nonzero by the user, the internal paraw-
eters VIMIN and VTMAX are modified. These parameters are defined as:

VTMIN = Orfiginal tavpet value * (1 - MAXKILL)
VIMAX = Origina' target value * (1 - MINK1LL)

Their default values are VIMIN = 0, VIMAX = original value,

82

e B i, b e+ B e,

3 Cars e
[T SV

i

Rl
AN o Bt 5

[N

7

Ce e e e e\

b it

Ty .
Bk ekem—— o 2 torare e,
v n et nt e

et ly

R

o 12 gt 31 Aot

—

-

If the IMATCH parameter is used, VIMIN and VIMAX retain their default
values until the Oth order calculation VIZO indicates that MINKILL or
MAXKILL have been reached. Then VIMIN or VIMAX is set correspondingly

and thereafter operates as usual.

In any case, WADOUT modifies its calculations so that every weapon placed
on target destroys at least that percentage of original target value spe-
cified by the user-input parameter MINDAMAG.

3.4.2.5 Subroutine PREMIUMS. The purpose of this subroutine is to com-
pute the payoff premium required by STALL to avoid unduly large devia-
tions from the desired allocation rate. During the closing phase, the
premium is also used to cause STALL to close in to an allocation that
exactly meets the stockpile constraints. PREMIUMS is called with one
parameter which specifies for which group a new evaluation of the pre-
miums (PREMIUM(G) and DPREMIUM(G)) is desired. The call results in the
replacement of the old value of these premiums by a new value.

3.5 Common Block Definitions

The common blocks internal to the ALOC module are shown in table 5.

83

ko g

SR

c e v o ke e g

- T SN

—— e e

PR

G OO

BLOCK

ALERUN

€33

CNCLS

CONTRO

CORSTF

Table 5. ALOC Module Common Blocks

(Part 1 of 10) ;\
.
ARRAY OR VARIABLE DESCRIPTION p
ALERREST(380,3) Estimate of allocation errors ;
RUNSUM(380,3) Running sum of target weight times =
weapons allocated i
NBLN Number of ballistic interceptors
TMULT Target multiplicity (0 if multiple
target becomes split)
VT Target value remaining
TGTWT(3) Weighting values
PAYOFF Target value destroyed
COST Sum of weapon values allocated
PROFIT PAYOFF - COST §
DPROFIT Change in PROFIT from last pass |
WRTEST Test parameter
CNTRY (150) List of country codes P
CLSS(20) List of target classes LE
NCNT Number of country codes by
WADOP WaD option ;
PROGRESS Measure of allocation progress :
NPASS Allocation pass .
COSCOR (30) Cosine of corridors orientation point
latitude
DPLAT (30) Difference between latitude of orienta- o
tion and origin L
DPLONG (30) Difference between longitude of orien-
tation and origin
CORLN (30) Distance from orientation to origin F
TDEFDIST (30) Total precorridor attrition - é
ATTROCOZ (30) Corridor attrition rate %
ATTRSUZ (30) Corridor suppression rate %‘
HILOATZ (30) Ratio of high to low attrition ;]
CRLENGTH (30) Corridor length .
84 E;
I
b

T T e e :..’

i

e

R e e gy~ resrevee e

BLOCK

ARRAY OR_VARIABLE

PR,
&

CORSTF
(cont,)

R v

m 4w e o
L)

CURSUM

Atd,

Sy Gttty s o e o .

DEFCOM

DEFRES

ORGLAT (30)
ORGLONG (30)
DISTCDZ (30)
ATTRAD (30)

CROSSDST (30)

ENTLAT (30)
ENTLONG (30)
DISTDG
MAXGOR

CSALL
CSREG(5)
CSCLAS (2)
CSTYPE (120)
CSGRP (250)

CSOTH(2)

RATM
ISALFX (250)
NSL(250)
RATE (250)

NOWEP (250)
VTDX

NTX (3)
PX(3)

(Part 2 of 10)

DESCRIPTION

Origin latitude
Origin longitude
Distance from origin to target

Sum of precorridor and corridor attri-
tion

Perpendicular distance from axis to
target

Entry latitude
Entry longitude
Distance from target to recovery base

Number of corridors

Number of targets assigned to all weap-
ons

Number of targets assigned to weapons
from a given region

Number of targets assigned to weapons
from a given class

Number of targets assigned to weapons
of a given type

Number of targets assigned to weapons
from a given type

Number of targets assigned to weapons
with a given alert status

Highest return rate from DEFALOC
Storage for fixed salvo numbers

Number of salvoed weapons available
Rate of return for missile on defended
target

Number of weapons assi;ned by DEFALOC
Surviving target value

Terminal defender estimates

Probability of NTX

85

! Ktk gias

MBS AU L

" s

S NSRRI TN

JRONVE

-

B L

TEE LT pi e vy e

‘ ’w. -
'
«

BLOCK

Table 5.

ARRAY OR_VARIABLE

DYNAMIC

FIL21

FIRST

FLGSTF

FORMTT

GRPHDR

1G(30)
KORRX (30)
RVALX (30)
PENX (30)
TOARR (30)
ISAL(30)
NUMFIX
NUM

JIG

ILENTH
1228
ICTIVE (250)

FIRST
END
F22LSW

LFLAG (63)
LCNTRY (1042)
NMMRY
MRNAM(100)
LCLAS (67)
RNMUL (250)
RNRMUL (250)
RNMIN (250)

INWORD
NFORMAT

IWGHDR

(Part 3 of 10)

DESCRIPTION

Contains allocation

Group assigned

Corridor assigned

Relative value of assignment
Penetration probability
Time of arrival

Salvo number

Number of fixed assignments

Number of assignments

Target number
Length of record on file 15 (oxr 22)

Indicates need to read file 22
Storage for INACTIVE array

Indicates first target of pass
Indicates end of target 1list
Indicates file 22 in use

Packed logical flag restrictions
Packed logical location restrictions
Number of restricted MIRV groups
Payload table name of restricted MIRV
Packed logical MIRV class restrictions
Range multiplier

Refueled range multiplier

Range minimum replacement

Value which needs a format

Format for INWORD

IDS Reference Code for weapon group
header

86

e e e e

| S

e ————

~
o alle

[SR

et i o

@ meor o i s e

INITSW

LACB

MULTIP

ARRAY OR VARIABLE

ITYPE
LFLAG(9)
LCNTRY (150)
IMRSW
LCLASS (24)
RMUL

RRMUL

RMIN
GPARAM(15)

RECALC
PUNSW

FLAGSW
LOCRSW
RMODSW
MRVRSW
PUNIT

LALL

LAREG (5)
LACLAS (2)
LATYPE(120)
LAGRP(250)
LAOTH(2)

CTMULT
NSPLITS

“Table 5. (Part & of 10)

DESCRIPTION

Contains record from file 25

Group's type index

Flag restrictions

Location restrictions

Indicate if group is restricted MIRV
MIRV restrictions

range multiplier

Refueled range multiplier

Minimum range replacement

Contains the following group param-
eters in order: NALTDLY, ALTDLY,
GLAT, GLONG, GREFCODE, GYIELD, RANGE,
CEP, SPEED, RANGED, RANGER, RNGMIN,
GREFTIME, TOFMIN, CMISS

Indicates RECALC mode

Indicates output of final lambda's is
desired

Indicates flag restrictions
Indicates location restrictions
Indicates range modifications
Indicates MIRV restrictions
Logical unit on which final lambdas
are to be output

lLambda for all weapons

Lambda for a given region
Lambda for a given class
Lambda for a given weapon type
Lambda for a given group

Lambda for a given alert status

Current target multiplicity

Number of splits in current multiple
target

87

S

R b S

- -

o r e St A= e -
o~ e o e 0 S e SR gt A x4

——

NALLY

NOWPS

PAYOFF

PAYSAV

Table 5.

ARRAY OR VARIABLE

ISPLIT
NSPREC

KIMULT

NALL (250)

RNALL(250)

NOALL

NOREG (5)
NOCLAS (2)
NOTYPE (120)
NOGRP (250)
NOOTH (2)

OPROFIT
SPAYOQFF
SUMCOST
SPROFIT

GSCC (100)
GSREL(100)
GSEASM (100)
GSLINT(100)
NGSWHD (100)
NGSDEG (100)
GPAYALT (100)
GYLDASM (100)
IWHOB (100)

(Part 5 of 10)

DESCRIPTION

Index of current split

Index of file 25 record used for this
target

Split range indicator
Number from group allocated on this
pass

Number from group currently allocated

Number of weapons total

Number of weapons in a given region
Number of weapons in 2 given class
Number of weapons of a given type
Number of weapons in a given group
Number of weapons with a given alert
status

Profit from ald allocation

Sum of all payoffs

Sum of all costs

Sum of all profits

CCREL for payload
REL for payload
EXPASM for payload
LCHINT for payload
NWHDS for payload
DECOYS for payload
PAYALT for payload
ASM yield for payload

Pay load hefght of burst
0 = for ground

| = for air

2 = if not preset

88

Sran e ad

o

T

[r——r——

[———

BLOCK
PNAV

PREMS

PRNTCN

PRTMUL

REFPNT

SALVO

Table 5.

ARRAY OR VARIABLE

GSPRNAV (100)

PREMIUM(250)
DPREMIUM{250)
SUMPREM
TRENEFIT
IDO(40)
INDEXPR (40)
JPASS (40)
JIGTP (40)
LPASS (40)
LTGT (40)
KTGTFREQ (40)
1COUNT (4 0)
MAXREQ
MPRNT

NREQ

PROCMULT

DELIRFV
SDELYEFF
VALWPNS
VALERR

RFLAT(10)
RFLONG (10)
NSALW
MXSAL(75)
NSALAL(450)

LXTHAVE (50)

(Part 6 of 10)

DESCRIPTION
PKNAV for payload

Proamium for using weapon
Promium for deleting weapon
Sum of promiums

Total benofit

Print request activation switch
Print request selection number
Print request first pass

Print request fivst target

Print request last pass

Print request last tavget

Target print frequency

Print request frequency cownter
Maximum number of vequests

Number of array entries

Number of requests

Current fractlion of wultiple target
class

Increase in profit/VALWENS

Sum of DELIEFF

Sum of all weapon values (lambdas)

Value of surplus plus deflcit weapons

Reofuel point latitude
Refuel polint longitude

Nuwmber of salvoed waapon groups
Maximum salvo number per weapon group

Runndng suwms of salvo allocation (six
words pev salvood group - packed four
sumg per word)

Packed logical switch indicatiung salvo
with weapons

89

el A

R e T L S YV VU

e e a it e e

BLOCK

ARRAY OR VARIABLE

I.'F_,JL_ o

SALVO
(cont.)

SPLITS

SMATAD

SURPW
TABLE

TGTSAV

WADFIN

*
SAVLAM(250)

*
MYSAL(250)

*
P(250)

27(203)
SPLTMD

NB LNX
T™X
INDEX
STARG(3)
IOFF
NTOTGT
SPDAT

SMNOMIRV (3)
SMATMIRV (3)

SURPWP (250)
TABLE (101)

TGTLAT
TGTLONG
TGTCLS
VO (2)

VTP (250)
DELVT (30)

NUMO
1G0(30)

(Part 7 of 10)

DESCRIPTION

Storage for salvoed weapon lambdas
(contains average payload difference
for bombers -~ AVDE)

Available salvo (contains bomb/ASM
selection for bombers - ISETPAY)

Balance parameter (contains current
utilization of ASMs for bomber ~ FASM)
Buffer for file 25

Switch to indicate data modified since
last read

Number of splits

Not used

File 25 index

Starting target numbers of split
Offset of data in Z2

Number of targets - all splits

Not used

SMAT parameters for non-MIRVs
SMAT parameters for MIRVs

Estimated weapon surplus

Table of square root law K-factors

Target latitude

Target longitude

Target class name

Target value per hardness component
Value remaining at target after weapon
added

Difference in surviving value

Numbers of old allocations

Group numbers of old allocation

* For bomber groups these arrays are equivalenced to arrays AVDE, ISETPAY
and FASM.

90

.
tick,

A

e et

I

BLOCK

WADFIN
(cont.)

WADLOC

WADOTX

Table 5.

ARRAY OR VARIABLE

Iop

T0OPS

NWP (10)
VALQ(10)
MU (10, 2)
SI6(10,2)
V(11,2
$(10,2)

v§(10,2)
VSN(11,2)

LTOA (250)
TADDTOA (250)
SIGP(250,10,2)

DSIG (250,2)
SIGD(30,10,2)

DVRMX
IPVRMX
PPMX
IPPMX
DPMN
IDPMN
NUMMAX

NW

TPMK
NTOA
NOTAMAX
VIMIN

(Part 8 of 10)

DESCRIPTION

Number of adds and deletes on this tar-
get

Sum of IOP

Number of weapons in TOA set
Unattritioned value at TOA

Sum of means through TOA set
Sum of variance through TOA set
Unattritioned component value

Component survival probability through
TOA set

=(V(N,JH)-V(N+1,JH) * S(N,JH)
= VSN(N-1,JH) + VS(N-' JH)
TOA index for xsroup

1 if new TOA set required

Increase in variance for TOA set if
weapon added

Temporary contribution of weapon

Change in variance if weapon deleted

Maximum efficiency

Index of weapon achieving PVRMX
Maximum profit

Index of weapon achieving PPMX

Minimum profit

Index of weapon achieving DPMN

Maximum number of weapon allowed per
target

Number on target

Largest potential profit
Number of TOA sets
Maximum TOA sets

Lower target destruction minimum

91

e

it e St

Sk

N7

BLOCK

ARRAY OR VARIABLE

WADOTX
(cont.)

WADWEN

WEPSAV

WPFIX

B SE— .

VIMAX
ALPHA
VTEF

VTZ0
VTO
STALPRIN
G

N

INACTIVE (250)
TOA (250)
TVALTOA (250)
VTOA (250,2)
MUP(250,2)
RISK(6,250,2)
SSI1G(250,2)
MORR (250)

PEX (250)

XMUP (250,2)

ILAW

IP(250)

GSSBL(250)
1IGTYP(250)
IGLERT(250)
FGREG (N

NWENS (250)
NFIXEZ (250)

(Paxrt 9 of 10)

DESCRIPTION
Maximum acceptable surviving target
value

Factor on value required to justify
VTMAX

Maximum of target value remaining aund
VTMIN

Total surviving target value
First target component value
Stall print code

Group Number

Allocation number

Active group switch (0 = Active)

Time of arrival on target

Value of target at arrival time

Value per component at TOA
Contribution of weapon to mean if added
Relative risk of weapon interaction
Square root of ln of SSKP

Optimal corridor

Penetration probability

MUP for alternate warhead - (ASM for
bomber group, single warhead for MRV)

Damage law in use

Group payload index
Group SBL

Group type index

Group alert status index

Group region fwdex

Number of weapons in group

Number of fixed assignments

92

P .

WPFLIX
(cont.)

WIS

XFPX

table 5. (Part 10 of 10)

ARRAY OR VARTABLE

NMTYP(120)
LAM(250)
1TCL(120)

WIFAC(3)

WTRATE (3)
WISUM(3)
PENALT (30)

DESCRIPTION

Type names
Group lambda

Weapon type class index (l=missile,
2=bomber)

Divide into »ld weight for commeasura-
bilicy

Rate of increase of weights

Sum of weights
Penetration probability for corridor

e

P

oL ?

e | V)

3.6 Subroutine ENTMOD

PURPOSE: Entry module for ALOC

ENTRY POINTS: ENTMOD (first subroutine called when overlay ALOC
is executed)

FORMAL PARAMGTERS: None

COMMON BIOCKS: €30, CNCLS, GRPHDR, INITSW, LACB, NOWPS, PAYSAV,
PRNTCN, SALVO, SMATAD, TABLE, WEPSAV, WPFIX,
00PS

SUBROUTINES CALLED: INITIAL, MULCON, RANSIZ

CALLED BY: MODGET

Method:
First RANSIZ is called to set the record size of file 25. Next the
ALCINT overlay is read in and executed. If no input error has been

detected, the ALCMUL overlay is executed. Finally, the final multi-
pliers are written (or punched) if the user has so directed.

Subroutine ENTMOD is illustrated in figure 15.

94

< START ’

A

Call RANSIZ
. To Set Size
For File 25

A

Call LLINK And
INITIAL To Perform
Initial Functions

Yes In

frod
=

~
c
r
-

Call LLINK And
MULCON To
pexrform Allocation

4/ Copy Of

Final \. Yes Write Lambdas

Lambdas] Onto Desired

: / Output Unit
pesired?

No

y
\ »{ RETURN
N ,_)

(o r—g

Figure 15. Subroutine ENTMOD (ALOC)

95

*
3.7 Subroutine INITAL

PURPOSE : Driver for initialization overlay

ENTRY POINTS: INITAL (first subroutine called when overlay
ALCINT is executed)

FORMAL PARAMETERS: None

COMMON BLOCKS: C15, C30, C45, INITSW, LACB, SMATAD

SUBROUTINES CALLED: DATGRP, FLOCRS, HDFND, INSGET, INTPRN, MRVRST,
PRNPUT, RDMUL, RDPRNZ, RDSET, RDSMAT, RETRV,
RNGALT, SETABL, TIMEME, TIMEPR

CALLED BY: ENTMOD

Method:

First all switches are initialized to a "False" value. Next, various
headers and tables are retrieved, Thus each input clause in turn is
retrieved. Each clause is analyzed by an appropriate subroutine except
the RECALC and PUNCH clauses which are handled by INITAL. Once all
clauses have been examined, the input is displayed by PRNPUT. Then
DATGRP is called to retrieve the group data and set up the payload and
type tables. Finally, the SMATAD block is built, and SETABL called if
the square root law is being used.

Subroutine INITAL is illustrated in figure 16,

*
First subroutine of overlay ALCMUL.

96

< START ’
N———j

A

Set All Switches

In INITSW Block

to "False“. Set
PUNIT To Punch (43)

A

Retrieve NUMIBL,
ALCPRM And
Target List Header
TARNUM

\

Retrieve SMAT
Array and Obtain
Number Of Adverbs

\

Call INTPRN
To Initialize
Print Controls

\

Set All Starting
Lambdas To 1
(Block LACB)

Figure 16. Subroutine INITAL
(Part 1 of 4) ;

97 i

¢

Do For All Done
Adverbs

\

> 12
\ Do
Yes | Set RECALC
;?fAﬁg | Mode Switch
exb? To "True"
No
2 \
SETTING Yes Call
Adverb? RDSET
3 | No]
ONPRINTS _\\ tes | Call
Advéiii__//f_v RDPRNZ
No
\ 4
FLAGREST
: Call
Or LOCREST
 dvech? FLOCRS
No
5
RANGEMOD
Call
Or MINRANGE
Adverb? RNGALT

Figure 16. (Part 2 of &)

98

e e e ————

11

e e i e e v e it e

. e = =

e e« g

 ——

B 2 S kT L

Db i ot - o 5 e oA

PO S

e s e o ot -
s e i e ottt 4

10
MIRVREST Yes call ,
Adverb? MRVRST
O 7
Yes
READMUL e call »
Adverb? RDMUL
‘L, Mo 8
SMAT Yes call >
Adverb? RDSMAT
No
A
To “"True . N
Number _NOy)
Set To Input?
Look For Unit
Yes
\
Set New
value In |—>{ 1}
PUNIT

Figure 16. (Part 3 of 4)

99

— ————————-

Call PRNPUT
To Display
Input

7

B A S Ny Sro=psrarapemesm e

Call DATGRP
To Assemble
Group Data

A

D

Set Values
In SMATAD
Block

Is Damage

Law
"SQUARE"? /

No

Call
SETABL

-t
y

Call TIMEPRT
To Display
Initialization
Timer

4
RETURN

Figure 16. (Part 4 of 4)

100

S e

RS

DR

— e se

- st B
[— PP S

3.7.1 Subroutine CNCLST

PURPOSE : Build tables of the classes and country locations

in the tsrget list

ENTRY POINTS: CNCLST

FORMAL PARAMETERS: None

COMMON BLOCKS : C10, €30, CNCLS

SUBROUTINES CALLED: DIRECT, HEAD, NEXIIT

CALLED BY: FLOCRS, MRVRST

Method:

First the DONE switch is checked to see 1f call is necessary. Then the
target list is examined. Each member of the chain may represent either
a single target or a complex. If the entry is a single target its class
is recorded in the CLSS list, In either case, the country location is

added to the country location list (CNTRY) if it was not previocusly en-

tered.

Subroutine CNCLST is illustrated in figure 17.

101

——t

PR — g

JE T S . L

et e

PO O R

S =
@ oAb et I, A

¢
!
|
'
f
'
{
i
[
t A
i Call DIRECT
. To Retrieve
; TARGET Or
y CMPTGT Record
i
: Figure 17. Subroutine CNCLST (Part 1 of 2)
: 102
|
0
L

4 START ’

Called
Previously?

\
Was
Routine \ Yes

Blank Out
List Of Target
Classes

\

Call HEAD
For Target
List

A

Call NEXTIT
For Next TARCDE

Y

Record In List

v Call HEAD
es For TGTGT And

e -

. TARGET ;
Retrieved? TGTTYP Chains
To Get Class
. No
» ‘ ‘
Make Sure Store CLASS
Location Code [* Indexed On
Is In List TICLASS

Figure 17. (Part 2 of 2)

103

() T

3.7.2 Subroutine DATGRP

PURPOSE : Assemble weapon data, build payload tables and
initialize salvo arrays

ENTRY_POINTS: DATGRP

FORMAL PARAMETERS: None

COMMON_BLOCKS : C10, C15, €30, CNCLS, FLGSTF, GRPHDR, INITSW,
LACB, NOWPS, PAYSAV, SALVO, WEPSAV, WPFIX

SUBROUTINES CALLED: DIRECT, GLOG, HDFND, HEAD, NEXTIT, REIRV, SLOG

CALLED BY: INITAL

Method:

After various counters are set to zero, the following process is fol-
lowed for all weapon groups. First, the TYPE and CLASS are determined
and some group attributes are saved. Next the payload for the group is
examined and compared with the payloads of previous groups. New pay-
loads are stored and old payloads are indicated via the index in array
IPAY. Next the values for file 25 are determined. This file contains
any flag, location or MIRV restrictions, range modifications and group
parameters that will be required on the first pass. Next, the weapon
totals in block NOWPS are updated and the group lambda calculated. Fin-
ally, if this is a salvoed group, the salvo arrays are initialized. This
final process includes the unpacking of NSAL (9 weapon salvos per word)
and repacking into NSALAL (4 weapon salvoes per word).

Subroutine DATGRP is illustrated in figure 18.

104

o A, b

g T

PINYURP RN

T e % s

b e ———

|
|
i
>€
!
i
4 Type
¥ Name In
i Type List?
; i
‘)
o A
; f
‘ Figure 18. subroutine DATGRP (Part 1 of 6) i
: 105 !
S ;
i ;
i i

< START }

A

get Counts To Zero
And All Salvo
Switches To tralge"

A

Call HDFND And
RETRV For The
Weapon Group Header
And Save Its
Reference Code

K

Call NEXTIT
For Next
Weapon Group

T 7 i W o S it 4 P # e 2o

P

s

S VS OO

P

44"4,4444“4l~4~l_v‘444¥A44,4
< e b et A

1 e S+ A S AR

©r v e e et

Add Name
To Type List

A
Call DIRECT
And HEAD To
Obtain Weapon
Class
Save Class Get Class
Index In Index From
ITCL ITCL
> A
7

{

Final Region Code And
Save SBL, Type Index,
HOB Indicator, And
Alert Status Code

Y

Set Up Basic
Quantities For
Payload

Call HEAD
For Payload
Table

Figure 18. (Part 2 of 6)

106

P

g -~

- ——

oA

IR

3 “.,

B et e e v e e o o

i

Call NEXTIT
For Next
Payload Item

End Of
Chain?

No
\

Call HEAD For
Item Data
And Class

Y
< FACTOR?

No

A
< ASM?
\

Yes

Save Yield,
CEP And
Reliability

Save Decoys

And Payload
Altitude

Save Number

Loaded

—

Figure 18. (Part 3 of 6)

107

e e —————

Check All Saved
Items Against
All Previously

Saved Tables

New
Table?

No
\ 4

Set Index Of
0ld Table In
IPAY

15

Store New
Table Setting
New Index
In IPAY

Yes

Store Flags
In

Restrictions!?

FLAGOUT

Store Location
Restricticns In
CNTOUT

Location
Restrictions?

Yeas

108

Filgure 18, (Part 4 of b)

22

No MIRV
Restrictions?

Yes

Is This
Group A

Restricted
MIRV?

Set MIRV

Yes Restriction In
CLOSOUT And
Turn On MRYSWO

HF‘.’:*,<M PR

A
Range Set RMULO,
RRMULO And

I;
Modifications? RMINO
Ne
27 J&— .
Add Group

Parameters To
File 25 Format

rite File
25 Record
Indexed O
Group

109

Figure 18. (Part 5 of 6)

File 25

&
PR AU RN .

)

PN T W

i, it s,

-

° ‘

Set Number Of ;
Weapons and Fixes A
Based On FIXOPT

Y

Calculate Weapon
Totals And Starting
Group Lambda

\L__\
No
Salvoed

Group?

Yes

A

Set MXSAL and Unpack
NSAL and Repack Values
Into NSALAL. Set ‘
SAVLAM And MYSAL And
Calculate P

Figure 18. (Part 6 of 6)

110

S — - - _

3.7.3 Subroutine FLOCRS

To set flag and locatiom restriction switches

PURPQSE :
based on input clauses
. ENTRY POINTS: FLOCRS
FORMAL PARAMETERS: NDEX - Starting point of clause
IXBR - 1 = FLAGREST call
. 2 = LOCREST call
COMMON BLOCKS : CNCLS, FLGSTF, INITSW, QOPS, ZEES

SUBROUTINES CALLED: INCLST, INSGET, SLOG

CALLED BY: INITAL

Method:

The method is the same for both types of call., Fivst, if this is the
first call of this type, all switches are set to indicate no restric-
tions. Next, the input is analyzed collecting group numbers, setting
the ITYP switch (used to distinguish INCLUDE and EXCLUDE functions)
and collecting either flag numbers or indexes of country codes. When
either the clause ends or a new setv of restrictions beging, the last

set is used to supply values for the switches involved.

Subroutine FLOCRS is illustrated in figure 19.

111

TS

[—

3]
AT e o st b b~ o a o L

e e, o -
e A bt s 2 em o+ o v

Flag No
Restriction
Call?
Yes Yes
1 \ Y
Y
es First Call
Call? CNCLST
No
\ Y
Set All Set All
Flags To Location
True Flags To True

Initialize Index,
Group Count,
Selection Count
And Set ISW=1

Y
Call TINSGET

For Next
Input

Instruction

Figure 19. Subroutine FLOCRS (Part 1 of 4)

112

PN

~
P

e St s = e g

LYY o

R T e e s e o -

~

-

* Yes /

L6 ~-<'Eerminates?

: No
A
\
Yes Yes
Operator? Expected? 8
No
] Write
' Error
Message
A
< Special 0
Word? Expected? 'FETURN

: No
| \L___1
; Yes New
{ \ Set?

- No

\
Group Yes
) Number?

Figure 19. (Part 2 of 4)

113

e

o =

” o -

W n e AN W T IR ST ST et Syt b, AR

W ey fo e e T 8

S VAU

e s M rt s sn e e o

Country
Code Or
Flag?

Flag
Call?

No
\

o

Add To
List Of
Flags

Final Country

Code In
Table

Add Index

To List Of
Code Indexes

Comma; Reset

ISW For
Report Input

(5)—

Set ITYP

Based On
Special Word

i -

Add Group
Numbexr To
List

Figure 19. (Part 3 of 4)

114

oo

PRI PRPU U

e Tamm o e iy

[T SR W A L T

O

¥ T
N s o el

eI

o

1

<7 B
[EUNUPRN, S

e T TN

N

I

16

set All
ITYP No Indicated
Indicate = switches
?
INCLUDE;J/r* To False
Yes
Y
Set All
Switches Not
Indicated
To False
-~ \
WL___“\\
End Of No Reset
Clause? i Counters
Yes
* (19)

‘ RETURN)

Figure 19. (Part 4 of &)

115

3.7.4 Subroutine MRVRST

{\ PURPOSE :
[
|
! ENTRY POINTS:

FORMAL PARAMETERS:

B COMMON BLOCKS :

j SUBROUTINES CALLED:

To read user input MIRV restrictions

MRVRST
NDEX - Index of beginning of MIRVREST clause

CNCLSZ, FLGSTF, INITSW, OOPS, ZEES
CNCLST, INSGET, SLOG

INITAL

} CALLED BY:

{ Method:

After calling CNGCLST to build the class and country code lists, the
| MIRVREST clause is examined. Each MIRV payload table name is compared
1 to those previously entered. New names are added to the list of pay-
load table names and all switches pertaining to the new name are set
to indicate exclusion. The class names which follow the payload table
name in the input clause are used to reset the exclusion switches.

Subroutine MRVRST is illustrated in figure 20.

116

LT
ik

L S U

P o ael © e e e
v

B e e e wm aae S

5

o emeShrs e Vs i

o bR e

PRy ————

< START)

\

Call
CNCLST

b

Set Switch
MRVESW To True,
ISW To 1

\

Call INSGET

- -

g i |

For Next
1 Input Item
End Of N\ Yes
Clauge? o » RETURN
No

A

Operator? No

Yes
\
. No
. Parenthesis? ™\ 1SW=27

\

\ o e et e st 2ar = S o et e s gt

B Set
ISW=2

Figure 20. Subroutine MRVRST (Part 1 of 2)
117

e e g m

No ISW=1?
Yes
¥ 6
Is Name Yes
In List Of
Payload Names?
Yes No
8 Y
Add To List And

: Set MDEX < Set All Switches
;o To Index
1 To False
l'é

' 9

% 1s Name Write

i \ In Clause Name Error

t List? Message
| i Yes
L \
I ~
i Set Proper
i Switch To RETURN
’i True
|
t
!
J\i N
!
!
é Figure 20. (Part 2 of 2)
P 118
P
{
Loy
| |
|

SRS Yokl adh feta Mhes Made. = -

Fole Me L

et et 4 e et e A A e Sy R & Nt 4 . - e e = e s
o B R L LITE TR e POV

e i R et o bt A i o e A ViR e -
. - v

.

.

3.7.5 Subroutine PRNPUT

PURPOSE:
ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method:

To display input user options

PRNPUT

None

C30, C45, CNCLS, FLGSTF, INITSW, PRNTCON
GLOG

INITAL

This routine prints a formatted display of allocation parameters (includ-

ing the SMAT array) and selected print requests.

Displays also appear of

any user input restrictions or range modification if there has been input

of this type.

Subroutine PRNPUT is iliustrated in figure 21.

119

tealy]

e i s

T

e

A e = e o

‘ START ’
Print
Recalce \ Yes 7// Recale

7
Mode? / Message
No
P y
ve
Print ALOC
Parameters And
SMAT Array
Range Yes ‘// Print
Modifications? Range
/ Modifications
No ,
y
Print
Flag Yes o Flag
Restrictions? / 7 Restrictions
No \
A
Print
Location Yes . Location
Restrictions? ’7 Restrictions

Figure 21. Subroutine PRNPUT (Part 1 of 2)

120

MIRV Yes __/— Print
- Restrictions? > MIRV
s estric /' Restrictions
Y
Print
Print
Raquests
RETURN

Figure 21, (Part 2 of 2)

|

|

]

| 121

|

o

|

o

: f tad e —————

e

SRS R Sy Al S S

et St S

3.7.6 Subroutine RDMUL

PURPOSE : To read user inputs for starting weapon values

(lambdas)
ENTRY POINTS: RDMUL)
FORMAL PARAMETERS: NDEX ~ index of beginning of READMUL clause : ?1
COMMON BLOCKS: LACB, OOPS, ZEES 1 ﬁ
SUBROUTINES CALLED: INSGET . '
CALLED BY: INITAL
Method: |

The READMUL clause is scanned and its instructions carried out., Data
will appear in two forms. First a logical unit containing previously
saved lambdas may be read. The format of this input is compatible with

the output of the PUNCH adverb.

(The second type of input consists of an identifying item (such as GROUP) j
' an index and a value. These values are entered in block LACB as per the

identifier and the index.]

Subroutine RDMUL is illustrated in figure 22.

122 o

. I T

>

- R, - s e o e e o e ey e = PR e
i ‘
__ . .

-~ -

[

(START >
\

Call INSGET)

For HNext)
Input Item .

\)
\ i
End Of Yes
Clause? / > ;ﬂ

No ‘
) .f
Special No ;j
Word?
Yes ’

No
"oLD"? -——><:::>

Yes ;

[@
Does An Yes =

"=t Follow?
No
Write
./ Error

2 "| Message

| |
1
!

P :
RETURN /< |

< -~

73]

-

|

Figure 22, Subroutine RDMUL (Part 1 of 4)
123

LRI ok 4 il A st v momtS,

|
i

[P U

|
]
¢
|
;
i
}
|
{
oy
|
[}

Call INSGET
For Unit Numbev
Of 01d File

4

/ Read

» old
File

\

{ End Of File? Yes

No

Is First
Word Of Recoxd
Proper Flag?

Yes

lasert Input

A

Value In
LACB Block

Figure 22. (Part 2 of 4)

124

Yes 3! gat IBR=l

VALLM?

No

&8 —»| get IBR=6 >

"OTHER"?

Alphabetic
Follows?

()
()

L
"CU\:D—YL‘ set IBR=3 |— ™
No

Y
'TYPE"? >

{ 2 !_’}—‘L_‘ Set IBR=4 19

Figure 22. (Part 3 of 4)

Yes
\
Attribute? N
Yes

125

Cocsrsid e

Je

aand by

[PP PR

e —aw

Numeric
Attribute?

"REGION"?

No
A

"GROUP"?

No

Yes

Set IBR=2

Yes

Set IBR=5

Call INSGET

For INDEX And
Preceding

Comma

<&

X

©

Y

Call INSGET
For VALUE And
Preceding
Comma

\

Store Value In
Black LACB
According To
IBR

Figure 22. (Part 4 of 4)

126

- e —

1T T

- -

3.7.7 Subroutina RDPRNZ

PURPOSE : To set print options based on user input
ENTRY POINIS: RDPRNZ, INTPRN

FORMAL PARAMETERS: NDEX = Index of beginning of ONPRINTS clausa

COMMON 51OCKS: 00PS, PRNICN, ZEES

SUBROQUTINES CALLED: INSGET

CALLED BY: INITAL

Mathod:

The method is best explained by examination of figure 23. As each item
is read from the clause, it is interpreted accowding to the current set-
tings of ISW and IBR, ISW keeps track of what the next item is expocted
to ba. IBR signifies whether the numeric items refer to option nuwbers,

targots or passes,
The INTPRN entry initializes the print optiouns.

Subroutiine RDPRNZ is illustrated in figure 23.

127

< START >

\

Set ISW=1 To
Indicate An Qption
Is Expected. Set

IBR=1 For Option

\

Call INSGET
e For Next
Input Item

End Of Yes
Clause? .

No

=
‘ m

Numeric?

No

<
[1-4
w

Branch
On ISW

0
5

Figure 23. Subroutine RDPRNZ, Entry RDPRNZ
(Part 1 of 7)

128

A = T i =

SWTP YR AP P)

P

b e aiert v

PRI PR

o e SRR

it e e e

e e Tem o e

r~

e

s

Is
Operator
"NOT"?

Yes

4 y

Set IBR=4
For "Not"
Option

Asterisk?

Yes

Y

Print

Error
Message

Yes

Y

IINOTII

Yes

A

Set ISW=3 To

Set ISW=3 To
Show First Target

Set ISW=1 And
IBR=4 For New

Show First Target
Or Pags., Set Or Pass. Set Option And
IBR=2 For Pass IBR=3 For Target "Not"
\

L. a6,
>

Figure 23.

\"

129

(Part 2 of 7)

S -

e e .
z a —_

~ —

Yes
Hyphen?

No

Set ISW=5
For Last Pass
Or Target

Asterisk

L -

Yes

Set ISW=7
For Frequency

Or
Comma? /

Figure 23.

130

(Part 3 of 7)

Numeric
Positive?

Reset Value
To
Positive

=7 From Value

26

Set Frequency

And IPDEX

¥

Set ISW=2For
Comma Ot
Asterlsk

"1,2,4, or 6@

Figure 23. (Part 4 of 7)

131

PN

Seragvmph by e, 1) e

f
'l #
]
]
Yes Set IBR=l Set Indicated . '
PR -]
|
|

For Option Option Off >
No
‘ L3
Set IBR=1
For Option
| \
.
) New Opticn\ yeg| ERter New
’ Number? Number In
! Table
’ Yo Y
| 15 y
|WﬁSet IPDEX oot
’ As Index To

Option Table

A

!

Set ISW=2
1 As Index To
; Option Table

Figure 23. (Part 5 of 7) ‘
i

i
P
|
t
!
1.
i

132

No

Figure 23.

20

Set Value
For First >
Pass
A
Set Value Set ISW=4
For Flxst |———>por Hyphen
Target yp
24
Set Value Fo Set .SW=2
Last Pass For Asterisi
Or Comma
Set Value For . SetF£2W=2
Last Target | Slash

133

!
¥

©

(Part 6 of D

- -

' L e P,

< START >

4

Set All Options Off.

Set Standard Limits

And Frequencies For
All Optiomns

A\

Turn On Optilens 1,2,
4 and 16. Set
Frequency For 4 At 50

\

RETURN

Figure 23. Entry INTPRN (Part 7 of 7)

134

e

(PR P

yrm e e = o -

3.7.8 Subroutine RDSET

PURPOSE : To read input SETTING clause
ENTRY POINTS: RDSET

FORMAL PARAMETERS:

COMMON BLOCKS:

NDEX - Index of beginning of SETTING clause

€30, OOPS, ZEES

SUBROUTINES CALLED: INSGET, UNCODE

CALLED BY: INITAL

Method:

The SETTING tlause is read.
pertains to ALOC parameters,
used to supply a new value,

Subroutine RDSET is illustrated in figure 24.

Each "load command" is examined to see if it
If so the accompanying "equals command" is

135

T —p———

1 Call INSGET
For Next
\ Instruction

< START)

A

A
End Of ,
< Clause? Yes RETURN
\ No

End Qf
Phrase?

No

\
<«-———l9i—< Loglcal?
No

Write
Rrrov
Message
U
RETURN

Figure 24. Subroutine RDSET (Pavt L1 of 3)

136

o £ sttt T

i
i .
No ;
Attribute? o
j

Yes 'y

Is It In ‘ §
The List Of "y
Aloc p
Params? !
Yes 4§

\

Save Type .
And Address e

&
5
' 1
)
: 3

Lo
b

‘ b

1

i

.

i {

N
! .
b
! Yeyt
P
&

+

i

i

.

|

.

L)

.

;

|

)

{

Figure 24, (Part 2 of 3)
t

137 ‘

Yes
Attribut:e?/ -—*@‘——ﬁ‘

No No !
 ; &
Was Load Alphabetic :
Type Value? .
Alphabetic :
!
No Yes K
\ Y :
' !
No Store In {
Numeric o
‘ . value? Block €30 -
\ Z
Yes "
¥
y:
| i
¢
, Store In C30 '§
| Based On ;o

Type ?
‘ 1) Y f§
| ,j
!
&

Figure 24. (Part 3 of 3)
138

- i
d _

3.7.9 Subroutine RDSMAT

PURPOSE:
ENTRY POTINTS:

FORMAT PARAMETERS:

CCMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method:

The SMAT clause is examined item by item.
betic or attribute causes either the IDEX or JDEX index to be set.

special word "ALL" also causes IDEX to be set.
encountered, is inserted =t the current settings of IDEX and JDEX, i.e.,
1f the "UPDATE" special word is encountered

at any point, the SMAT IDS record is modified at the end of the clause.

SMAT (IDEX, JDEX) =

value.

To resd user input values for the SMAT array

RDSMAT

NDEX - Index to beginning of SMAT clause
C45, 00OPS, ZEES

INSGET, MODFY

INITAL

Ignoring commas, each alpha-
The

A numeric value, when

Subroutine RDCSMAT is illustrated in figure 25.

139

OISO Rlar AU AOLY . ir-splrvas 2R A s Ans s,)
" P

BN C e e YA 2 S b sy o

N

-

(START >

Set UPDATE
Switeh To
"Falue!

\

O
4

Gall INSGET
For Next
Laput
ILtewm

\

End Of
Clausa?

-‘N_—J
No

Y

Special
Word?

Yas

Y

"ALL"

No

Yes

UPDATE
"Prue'?

Call MODFY
For SMAT
Record

< RETURN)

)

Yes

Sat UPDATE
Ta
"True"

Set IDEX=l
For “ALL"

I'igure 25,

140

Subroutine RDSMAT (Part L of 4)

K

. e —

BRI | e

e a0 Tl

o et . s P L

=

[V ON Y

Je e

Comma? !E%(:::>

No

I

No
Attribute?

No

No

6

Yeas
\ Yes
“GROT?_/ '

5 &
i " REGION" Yes -

Set
IDEX=2
For Group

Set
IDEX=3
For Region

No

'
7

“TYPE"?

Figure 25.

(=)

\\\ Yes

Yes

141

Set
IDEX=4
For Class

Set
IDEX=5
For Type

(Part 2 of &)

s

r.-a.. B Lt e L LI ST
B

Yes Set
"REL"? —————— JDEX=3
For Rel
No

Set

"PEN"? JDEX=4

For Pen

Write
Error
Message

Figure 25. (Part 3 of 4)

142

S 4, T o

D e T

R i

I e

Store Numeric
Value In SMAT

, »
Alphabetic? Indexed By IDEX
And JDEX
Yes
Y
Yes =
"ALERT"? S1;'aotr I;)lE;(rt() i
No
\
< "SBL"? Xes Septoingg;l i
] No
L
/ \ JDEX=2 >
nee's XEE > Se;orDCC—
No
\

Yes

Set JDEX=5
For STK

Figure 25. (Part 4 of 4)

143

P e ——

3.7.10 Subroutine RNGALT

PURPOSE: To read user input modification to range, refueled
range and minimum range

ENTRY POINTS: RNGALT

FORMAL PARAMETERS: NDEX - Index of beginning of clause
IXBR - 3 for MINRANGE call
6 for MODRANGE call

COMMON BLOCKS: FLGSTF, INITSW, OOPS, ZEES

SUBROUTINES CALLED: INSGET

CALLED BY: INITAL

Method:

On the first call the switch RMODSW 1is set and all values are initial-
ized. Then the input clause is scanned. ISW is set to indicate the

next expected item. When a group number is read, the previous quantities
are stored depending upon whether the call was from a MINRANGE or MODRANGE

call.

Subroutine RNGALT is illustrated in figure 26.

144

, ot -

<>

‘l

<First Cali? N =

No

Set
Defaults
I1SW=1

Call INSGET
For Next
Input Item

End Of
Clause?

No

\

< Operator?

Yes

Yes

Figure 26.

Parenthesis?

No

145

RETURN

Subroutine RNGALT (Part 1 of 3)

SN By o

S

e e
- .

PR

Branch

On ISW
8
=1 or & Set Both XXX Reset ISW
And YYY Depending Cn >
From Value ‘Type Of Call
=2 Write
Exror RETURN
Message
13
=5 Set YYY Set
From Value 1SW=2 w
=3
Y
‘(Set
1SW=4
Y
Yes Store Range
MODRANGE And Refueled g
Ccall?
Range
No
\
Y
Store ~
Range -><:i
Minimum
Figure 26. (Part 2 of 3)
146
f
i
-) -~ —_— -

cafle

P I

. Comma?

L]
Yes

Yes

Yes

IsW=2?

Yes

Set
ISW=5

No

Set
ISW=3

i Figure 26.

(Part 3 of 3)

147

1
;
\
)
L]
.
‘
P
‘
2

[—

3.7.11 Subroutine SETABLE

This routine initializes the table which is used

PURPOSE:
to calculate the weapon kill factors used in the
square root damage law.

ENTRY POINTS: SETABLE

FORMAL PARAMETERS: None

COMMON BLOCKS: TABLE

SUBROUTINES CALLED: None

CALLED BY:

Method:

INITAL

This subroutine fills common /TABLE/ with the data needed for the square
root damage law. The array, TABLE, contains values for weapon kill fac-
tors which will produce single shot survival probabilities between 0.0

and 1.0.

The table entries are defined as follows:

TABLE(L) is the square root kill factor for a single shot survival
probability of (i-1) * ,01. There are 101 entries in the table.

Let:

Then:

SSSP = Single shot survival probability
TB = TABLE array entry
SSSP = (1+4+TB)*exp(-TB).

During processing, function TABLEMUP will use this table to compute weap-
on kill factors. A simple heuristic root finder is used by SETABLE to
construct the table. The procedure is as follows:

Define x_ = 1.0
o
SSSP = Input single shot survival probability
Si = (l+x1)*exp(-xi) (see statement 1),

The procedure iterates on Xy such that

(l+xi)
* ERR (see statement 2)

*

where ERR = (Si—SSSP)/Si.

148

The procedure ends when ERR .000001. The table value is the xy which
produced the Si such that ERR met that condition (see statement 3).

Subroutine SETABLE is 1llustrated in figure 27.

149

e __..__.4..._N.._.‘__._..,_‘_;._ﬁ.“_qi...__n._.#....______.%..\

A e vl

[
¢
7
roA
4
:
K
3
b
M
2
!
B}
5
B
.
\r‘
ot
T
¥
\
vy
i
:
{
¢
H
4
'
!
'
1
s
3
d
*
&
|
[
H
N
!
i
N

START

Initialize
Variables

Y

Figure 27.

To 1.000
vDo

Set Test Value,
X, To 1.0

Y

1 L]

Compute

Y

Compute
Fractional
Error Using
Test Value

Is Error Less
Than .000001%

Survival
Using Test Value

Do 4 For
Survival Done
Probabilities
L From .001

Reset Test

{Value According

To Error

t < Save Test Value
In Table

Subroutine SETABLE

150

3.7.12 Subroutine TIMEPRT

PURPOSE:

. ENTRY POINTS:

FORMAT PARAMETERS:

. COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method:

This routine prints the amount of time spent in

the options which precede the ALLOCATE function.

TIMEPRT
None
None
TIMEME

INITAL

This routine first calls utility subroutine TIMEME with a -2 argument

to stop the clock while the heading is being printed.

After the head-

ing is complete, two calls on TIMEME are made to restart the clock (argu-
/ ment of -3) and print the time spent in each option (argument of Q).

K Subroutine TIMEPRT is illustrated in figuve 28.

/

B T VS —

151

Yl ttr iy ey spap pere S

i

START

Call TIMEME (-2)
To
Stop Clock

Print Timing
Heading

Call TIMEME(-B’
To
Start Clock

Y

Ccall TIMEME (0)
To
Print Times

Figue 28. Subroutine TIMEPRT

152

s Vet evdtrs SRS Ve i S B0 s

werdbin

w7

%
3.8 Subroutine MULCON

PURPOSE: The primary purpose of MULCON is to adjust the
Lagrange multipliers during the allocation. It
also monitors the progress of the allocation, and
controls the flow of the module throughout the
allocation.

ENTRY POINTS: MULCON

FORMAL PARAMETERS: None

COMMON BLOCKS: ALERUN, C10, €30, C33, CONTRO, CORSTF, CURSUM,
DYNAMI, FIRST, GRPHDR, LACB, MULTIP, NALLY, NOWPS,
PAYOFF, PAYSAV, PREMS, PRTMUL, REFPNT, SALVO,
SPLITS, SURPW, TARREF, TGT™SAV, WADFIN, WADOTX,
WADWPN, WEPSAV, WPFIX, WTS

SUBROUTINES CALLED: ADDSAL, ASGOUT, BOMPRM, DEFALOC, DIRECT,
FRSTGD, LLINK, MODFY NEXTTT, PRNTALL, PRNTCON,

PRNTNOW, SCNDGD, STALL, TIMEME

CALLED BY: ENTMOD (ALOC)

Method:

MULCON proceeds by making multiple passes through the target list until
the correct number of weapons have been allocated. During this process,
the Lagrange multipliers are modified to force the allocation to converge

to the given stockpile.

The flow of operations in MULCON is illustrated in figure 29. The first |
sheet represents the flow in five parts of the program; Part I, the in- ;
itialization phase; Part II, first pass processing; Part III, the main |
flow; Part 1V, processing after allocation; and Part V, multiplier ad- ,
justment. The flow diagrams are annotated with statement references to =
the FORTRAN listing and are in sufficient detaill to be largely self-

explanatory. In the following sections comments are made only where the

flow diagrams require some explanation. .

Part I: Initialization

The routine begins by calling utility subroutine TIMEME to initialize ,

the clock. NPASS and ITGT are initialized so that the print control)

routine PRNTCON will know what prints to activate, and then PRNTCON is

called to do so. A call for a summary print of starting multipliers j
i
]
}

(PRNTALL (11)) follows.

*
First routine of overlay ALCMUL.

TRTERCS

=,

153

O

B - e -

I
[
|
|
|
|
|
ir.

[z w—

T —

7

e S iten e SR R

The sensitivity of the allocation errors to the value of the local multi-
pliers is estiwated. With a fairly large value for the linear premium
PRM all sensitivities are about the same independent of the size of the
group; thus, PARITAL(QJ) is siwmply set to -1.0.

RUNSUM and WISUM are initialized as if the starting pseudoallocation
were exact, but the weight given te that allocation is reduced by the
square root of the number of targets so that it does not take too long
for data on actual allocation rates to produce a significant effect on

the estlimated rates,
Part IT: First Pass Processing

This scction deals with the target processing on the first pass. On this
pass FRSTGD {s called which processes the target, brings in the weapon
data and, 1i{ vecessary, calculates the Weapon/Target Data File. FRSTGD
also reads in any fixed allocation. Finally, the pscudoallocatiom is
ramoved from the rumning target weights.,

Part I1X: Main Flow (After First Pass)

This scction deals with the tarpet processing on passes after the first.
First a series of calls to PRNTALL performs fntertarget prints. Next
PRNTCON is called to reset print controls. Then, if this 13 not the
first pass processing continues. SCNDGD is called to process target
data, bring In the weapon related data and read in the old allocation.

If PROGRESS is 2 the varlable IVERIFY Ls checked. [If this is a verifi-
cation pass the llmits are checked and if not achlieved the pass con-
tinues, If all processing is complete PRNTNOW is called for final priut.
Then the weapon grovy chain s cycled and the attribute NUMALOC set

equal to RNALL for each group.

However, {f processing Ls to continue, the termination section is ignored
and the program gets ready to generate a new allocation to replace the
one just read. On the Flrst pass the old allocation is a pseudo-alloca-
tion and the replacement fs done elsewhere (sce Part IT). The replace-
went is accomplished by removing the contribution of the old allocation®
to all running sums before the new allocation s generated. This can be
done {n this simple way because the values of COST, PAYOFF, PROFIT,
TGTWT, and DPROFIT, then {n wmemory, are those just read in from the
TARCDE record and so they correspond to the old allocation, Since the
quantitics RUNSUM and WISUM were divided by WIFAC at the end of the

last pass, the old TGCTWI must also be divided by this same factor to
make (t commensurate before {t Ls subtracted out

The reason that REVCOST must be cowputed is that the values of the multi-
plicers have probably changed (unless PROGRESS = 1.0) since the prior

X]
The fixed weapons ave {gnored because they do not contribute to the
running, sums.

154

allocation; consequently a revised cost (REVCOST) of the allocation
based on the new multipliers is of interest, and is probably different
than the old cost COST. The reason for the test on PROGRESS before
correcting the cumulative differential profit will be discussed in con-
tection with Part IV of the program (part 5 of figure 27).

Subroutine ADDSAL is used to maintain the sums for the salvoed groups.

Part IV: Processing After Allocation

Before calling STALL,* CTSPILL is set to 0. (If some elements are
spilled, WAD will so note by setting CTSPILL equal to the number of
elements spilled.) The calls on TIMEME (5, 6, 7) before and after the
allocation cause the time spent during the actual allocation to be re-
corded in columns 6 and 7 of the TIMEME output print (number 23).

Before calling either allocation routine, however, the program must
check the number of fixed weapon assignments. The limitation of weap-
ons allocated to one target is 30 weapons on an undefended target and
30 weapon groups on a defended (i.e., terminal ballistic missi*e de-
fenses) target. Usually, MULCON calls both STALL* and DEFALOC™ on de-
fended targets and chooses the best allocation. 1If there are more than
30 fixed weapon assignments, STALL* should not be called. If the number
of fixed assignments is greater than 30, MULCON checks to see if it is a
defended target. If not, an error message is printed and the excess
assignments are ignored. Then STALL* is called. If it is a defended
target, MULCON sets a dummy low profit (except for verification) and

calls ounly DEFALOC. *

The additional details of the allocation required by later processors
are then recorded in /DYNAMI/. PENX and TOARR are required by EVALALOC,
while KORRX and RVALX are required by ALOCOUT, FOOTPRNT, and POSTALOC.
Subroutine BOMPRM is then called to update the ASM allocation fraction

array FASM.

The various running sums are then calculated. If DEFALOC has made the

. allocation, the KORRX array gives the number of missiles from each group
allocated to the target. If KORRX is positive, it represents the corri-
dor, If it is negative, it represents the number allocated. Then the

profit and cost data are recorded.
The following quantities are of particular importance:

PROFIT ~ OPROFIT

1}

DPROFIT

3 DPROFIT

fl

SDPROFIT

DELTEFF = DPROFIT/VALWPMS

SDDLTEFF = SDPROFIT/VALWPNS

*
STALL and DEFALOC are called via computer system subroutine LLINK.

155

e
‘

ey -

Br ke e e e n

TR g e
e e

These quantities are computed and the last two printed out in the stand-
ard ALOC print number 2 to help the user evaluate the progress of the
allocation.® The quantity OPROFIT represents the profit of the old allo-
cation to the target evaluated in terms of the present values of the
Lagrange multipliers. DPROFIT is thus a measure of the improvement in
profit using the new allocation. Until PROGRESS = 1.0 this quantity

is summed over all targets (one complete pass only) to give SDPROFIT.
Thus, when the multipliers have been near the correct values for one
full pass the value of SDPROFIT should be small. To provide a standard
relative value for interpreting these quantities, they are divided by
the value of all the weapons VALWPNS,

VALWPNS =) NWPNS(G) * LAMEF(G)

to obtain DELTEFF and SDELTEFF which measure changes in profit as a
fraction of the total value of all weapons.

The quantity of SDELTEFF, therefore, provides an estimate of how effi-
clent the allocation would have been 1if the allocation had been termin-
ated one pass earlier. Presumably, the current efficlency is substan-
tially higher, but SDELTEFF does not, at this point, give any indication
of how much. It is nevertheless of value in developing experience on
how soon the PROGRESS .75 phase can be terminated. When PROGRESS is
equal to 1.00 the multipliers are frozen and this role of SDELTEFF
ceases to be relevant. The quantity is then reset to 0. Thereafter it

- provides a measure of the effect on the profit of closing to the exact

stockplle. Usually during the closing phase SDELTEFF goes slightly
negative. However, since during this phase we continue to replace allo-
cations originally produced with slightly different values of the multi-
pliers, the value may go positive for a while until the closing forces
get large enough to force closure even at some loss of profit. Thus the
value of SDELTEFF at the end of the closing phase (PROGRESS = 1) measures
the loss in profit associated with closing. 1In the event that closing
requires more than one full pass, a test has been inserted which causes
SDELTEFF to continue to accumulate over more than one pass whan PROGRESS

= 1.0.

Finally when PROGRESS = 2.0 the quantity is again set equal to 0. If a
verification pass is carried out, SDELTEFF then measures any increase in
profit in the verification pass relative to the final allocation. 1In
this role it defines an upper limit on the inefficiency of the actual

allocation.

Ordinarily after all these calculations are performed ASGOUT is called
to store the results, However, if PROGRESS = 2 this step is skipped
since the Lntegrated data file already contains the final allocation.

*
The column labelled (P-0)/VWPS in print number 2 contains these vari-
ables: DELTEFF on the first line, SDELTEFF on the second.

156

N P,

At the end of each complete target, the tarpget weight is adjusted. If

it Is also the end of a pass, the target weight is still adjusted by
the same amount relative to other targets, but all target weights and

the value of RUNSUM and WISUM are renormalized.

After the target weights are adjusted, a test is made to see 1if it is
time to recompute the multipliers. If so, control is transferred to

point D of Part V.

Two other operations, however, require special comment. At the bottom
of the diagram a test is made to see 1f sufficient progress has been
made. If after three passes PROGRESS has not reached .75, it is assumed
that a problem exists and the run is terminated. In the middle of the
diagram, at the end of the first pass, the value of NOWPS(J) is reevalu-
ated omitting any weapon groups that could not reach any targets. This
allows the allocator to ignore such weapon groups thereafter, and avoids
an endless and fruitless effort to allocate these weapons by reducing
their Lagrange multipliers. The array TVALTOA provides a convenient
test, since it 1s initialized to zero and will remain zero only for weap-
on groups that have never been within range of any target.

Part V: Multiplier Adjustment

*

when it is decided to recompute the multi-
The first step is
At the same

Every fourth target or so,
pliers, controls passes to this adjustment routine.

to recompute all the allocation error estimates, ALERREST.
time SURPWP, the excess allocation estimate, Is reevaluated based on the
new value of ALERREST. Although SURPWP is continuously updated by the
operating program it is useful, especially in the early phases of the
program, to base it on the projected allocation rate estimates rather
than the actual weapons allocated, which at that time could be very mis-
leading. This provides a more rational basis for calculating the premi-~

ums at this early stage of the program.

If PROGRESS = 1.0, the change of local multipliers is omitted so that
the same values of the multipliers are retained. Otherwise control
passes over the local multipliers to the Do loop. Each multiplier is
changed only if all the estimates of error rate have the same sign.

In the early phases of the program (PROGRESS .LT. .75) better stability
is achieved by requiring, in addition, that the average allocation rate
to the last two to four targets (as computed from CURSUM) show the same

sign. This limitation is later removed, since it clearly would not work

well for weapon groups with very small numbers of weapons that might only

be allocated 20 to 10 times during a pass over the target system.

An estimate is made of CORRATE, the rate at which it is desired to cor-
rect the allocation rate. If the allocation rate 1s corrected too rap-
idly there will be a tendency to over correct before the effects of the

*
Every second target for PROGRESS equal to 0.0, 0.4, and 0.5; every
fourth target for PROGRESS equal to .75 and 1.00.

157

correction become observable in the values of the allocation error estim-
ates. This can produce oscillations. To estimate how rapidly to correct
the error, an estimate is made of the number of targets that would have

to be observed before an error of the observed size would be statistically
significant. Even if the multipliers were exact and the average alloca-
tion rate was correct, statistical fluctuations would be observed in the
allocation of each weapon group when the allocation rate was sampled for

a small number of targets.

Let n equal the expected or average number of weapons from a group avail-
able per target; i.e., n = NOWPS(J)/NTGTS. Then in M targets the ex-
pected number of weapons allocated should be just n(M). Suppose the
actual number observed however is n'(M). Then our estimate of the error
in the allocation rate ALERREST would be

ALLERREST = n' -n

Assuming a Poisson distribution, the statistically expected error in a
number of expected value n(M) is equal to v n(M). That is,)

@' @) -n (D)% = a1
o' -n)2 = /M

Solving for the number of targets M we have:

M=n/(n' —n)2

oY
M = (NOWPS(J)/NTGTS)/ (ALERREST (J))2

as the number of targets we should expect to sample to get a statistical
error estimate of size, ALERREST. If we wish to reduce the indicated
error by 1 part in M per target, our fractional correction in the allo-~

cation rate per target should be:
1/M = ALERREST® / (NOWPS(J)/NTGTS)

This, multiplied by a sensitivity factor SNSTVTY, is the first term in
the value of CORRATE. However, if the entire set of targets were ob-
served, the estimate would not be a sample but would be exact. There-
fore, even a very small value of ALERREST becomes statistically signifi-
cant if it is based on a sample of size NTGTS. Therefore, errors should
always be corrected at a rate at least equal to one part in NTGTS. This
explains the second term in CORRATE which is just 1.0/NTGTS multiplied by
a sensitivity factor FSNSTVTY (final sensitivity). This factor controls
the sensitivity of ~orrections %o the allocation rate in the final phase
of the allocation where the errors are small. Thus the desired correc-

tion rate is just:

158

e Aot T 0 —

e At s

T T e e i

CORRATE = SNSTVTY * ALERREST2 / (NOWPS(J)/NTGTS) + FSNSTVTY/NTGTS

This 1is multiplied by the number of targets processed between correc-
t lons MULSTEP to determine the fraction CORFAC of the error to correct.
In addition, a safety limit of 1/2 is used to avoid ever making a cor-

rection larger than 1/2 the estimated error rate.

However, even when it is known what fraction of the error in the alloca~
tlon rate we wish to correct, an estimate must be made of the relation-
ship of the allocation rate to changes in the Lagrange multipliers before
the size changes to make in the multiplier can be estimated. For this
purpose it is useful to have a model of the dependence of the allocation
rate on the value of the multipliers. We have assumed a dependence as

follows:

Rate = KA

Consider now two rates, the current rate Rg associated with a multiplier
Ap and a predicted rate Rj associated with a new multiplier Al. Thus,

we find

171 00
or
- -n
Ry/Ry = (A1 Ag)
?_‘O

(Rl/RO)

B A
GWEW

For small differences between ko and Al this implies:

i O . B

L = -n
RO - AO

Solving for the new value Al of A

®, =R/ (-n)

@+ ——)

A, = A

1 0 0

If we now identify a new variable R, as the ultimately desired allocation
rate, Ry as the new rate we hope to obtain with A, and Ry as the cur-
rent allocatlon rate -- then the above variables can be associated with

information already available as follows:

Rl -RO = CORFAC * (R2 —RO) = CORFAC * ALERREST

159

T e et Lo e

. en

[TR St e v g

RO = ALERREST + (NOWPS/NTIGTS)

If we now assoclate the FORTRAN variable PARTIAL with n and the local
multiplier LA with) this gives rise to the following procedure for
updating LA:

1A, = LA * 1.0 +

1 0 ALERREST (J ,NTPRD) + (NOWPS (J)/NTGTS)

[CORFAC * ALERREST(J,INTPRD)](-PARTIAL)]
This formula is well behaved if ALERREST is large and positive, but if
it is negative and as large as the expected rate (NOWPS(J)/NTGTS) (i.e.,
if the actual allocation rate is zero), then the denominator goes to 0.
In this case an infinite correction would be indicated. To avoid this,
the expected rate in the denominator is multiplied by 2 giving:

IA. = LA. * |1.0 + CORFAC * ALERREST(J,INTPRD)/(-PARTIAL)
1 0 : ALERREST (J,INTPRD) + 2 * (NOWPS (J)/NTGTS)

In the present version of the program the value of PARTIAL(J) has been

set equal to 1,0 for all the local multipliers LA(J). This choice is
based on the effect of the premium on the sensitivity of the allocation
rate to the value of LAMEF or). When the multipliers are almost cor-
rect, it is usually the case that most weapon groups are in-close compe-
tition with many other groups with very similar properties. Then a small
change in the multiplier LAMEF will produce a very large change in the
allocation rates, as the weapon group in question almost totally replaces,
or is replaced by, its competitors.

However, such a large error in the allocation rate will not actually
occur because as the error builds up the estimated value of the payoff
will be automatically changed by the premium. Thus, for constant values
of LAMEF, when an equilibrium allocation rate is reached, it must be
approximately true that the error in LAMEF is compensated by the premium.
That is, if Ao is the correct value for LAMEF then:

LAMEF -PREMIUM %'xo.
Since

SURPWP -.5 * CTMULT
= * *
PREMIUM = PRM * LAMEF NWPNS

we can define a relation between LAMEF and (SURPWP/NWPNS).

SURPWP -.6 * CTMULT | ~
O Ol 3 Y v =
LAMEF % (1 ~PRM ¥ TIPS) =)y

Since this relationship is the same for all groups it is reasonably sim-
ple to use the same value 1.0 of partial derivative for all local multi-

pliers.

160

- e e = o -

|

ARKAM e st £

Rt

e T

N

The values of LAMEF(G) are recomputed using the new values of the local
multipliers LA(J). At the same time it Is necessary to reevaluate the
summation of the value of all the weapons VALWEPNS = 2. LAMEF(G) * NWENS(G)

and the sunmation of the value of the error in weapons allocated.

VALERR =2 LAMEF(G) * ABSF(SURPWP(G)) using the updated values of
LAMEF.

The average number of targets over which allocation rates are averaged
(the integration period) is determined by the rate at which the target

weights are increased,

In estimating the rate with which to correct multipliers, it was computed
on a statistical basis that even 1f the allocation rates were correct an
estimated error of size ALERREST would be expected if the allocation
rates were monitored only over a small sample of M targets where:

M = (NOWPS(J)/NTGTS)/ (ALERREST(J)) >

Thus, if separate integration periods could be used for each local multi-
plier, M, as defined above, might provide a reasonable basis for deter-
mining the period. However, in fact, the same three periods (INTPRD = 1,
2, 3) must be used for all local multipliers LA(J). Consequently, the
value of the integration period used might be based on an estimate of
overall error rate. The corresponding relation is:

M = (L NOWPS (J)/NTGTS)/E(ALERREST(J))?'
G G

where the summations are taken over all weapon groups. The quantity,
LNOWPS (J), is identical with NOWPS(2) and so for efficiency the vari-

G
able NOWPS(2) is used.* While the expected value of (ALERREST(J))2 is
the same as . (ALERREST(J))2 the variance of the later version is much

less and it is therefore preferable as an estimator of the expected in-
tegration period, EXPINTPD.

To allow the possibility of using integration periods either longer or
shorter than the theoretical EXPINTPD, a desired longest integration

period DESINTPD is defined:
DESINTPD = EXPINTPD * RATIONT
where RATIOINT is an adjustable input parameter.
If this period were used exactly in setting the rate of change of the

target weight; i.e., WRATE = 1.0/DESINTPD, and WRATE would never become
exactly 0 as is required for a constant target weight. Obviously when

*
LA(2) is used for all weapon groups.

161

e e e

the change in the target weight becomes small over a full pass, the
WRATE should be allowed to go to 0. Therefore,

WRATE = (1,0/DESINTPD) ~(2.0/(NIGTS * RATIOINT))

the term 2.0/ (NTGTS * RATIOINT) is subtracted and if the resulting WRATE
1is negative it is set to zero. To avoid a situation where large errors
cause the integration period to become ridiculously small, a limit that

WRATE < .07 is set,

Moreover, after the allocation is well underway, PROGRESS > .5 the value
of WRATE is not allowed to increase. In the program WIRATE(INTPRD) is

used as a multiplier of the target weight; therefore, we all 1.0 to
WRATE to obtain a suitable multiplier for the longest period NINTPRD.

The values of the WRATE for the shorter periods are then derived from
this value to give a ratio of integration periods (roughly equal to

RINTERD) another input parameter.

The evaluation of progress is shown in the final sheet for the subrou-
tine MULCON. The procedure is very straightforward, and should be
obvious from the flowchart, It may be worth noting, however, that when
the allocation is finally complete, the index IFINTGT of the last tar-
get and the final pass IFINPASS, are recorded.

162

-~

START

Part 1
Initialization

Y

Part II ,
Read Data First irst Part III |
Pass. Set Up ass Do Inter-
target Prints

Weight Arrays

Y

Do Allocation

Figure 29.

Part IV

Increment
Running Sums

* Running Sums

Evaluate Progress

Part V

After
First

Pass

gl ———r|

Part I1I Cont.
Update Sums
Check for End
of Allocation

Reevaluate
Multipliers

'
H

163

Subroutine MULCON Summary Flow

e e s

i]}

SR

[,

T ——

START

Call TIMEME
To Setup
Timing

Y

Call PRNTCON
To Begin
Print Control

Y

Call PRNTALL
(11) For
Starting

Multipliers

Y

Set Initial
Values and Zero
Running Sums

Y

Initialize
Weights and

Initialize
Allocation
Counts

Figure 29. Part I: Initialization
164

e —

; Call FRSTGD
to Bring in
Data

Reset Weights

From Pseudo-
Allocstion

Y

Return Pseudo-
Allocated
Weapons to

Surplus

Figure 29. Part 1I: First Pass Processing

165

Call PRNTALL
For Options
4, 5, 21
and 23

Y | i

| Call
PRNTCON

Call SCNDGD
to Bring in
Data i

f
Save 01d
Allocation C

Progress P
N) ‘;
i

Figure 29. Part III: Main Flow (After First Pass) L
(Part 1 of 3) ‘

166

~ 4l

AR A i M A Y /A
. G A A N . ST
D e o et e e o W e e - < R
i
i
w
~~
o i
1
w ;
o |
o~
44
H
<
2]
S

167

4, 2, 23 for

to Update

Call PRNTNOW
NUALOC
Attribute
RETURN

Final Prints
Call MODFY
Part 1I1I:

D

Figure 29.

0 et el SR e et ooy s

, o o e g ———e k. ot < b s a2

|
& |
o ¢
i ;
| "
1 s
i
: .
A Remove Earlier :
i Coutribution \
- to Weights !
| * i
; For Each Non- -
} fixed Weapon iun o
‘ 01d Allocation
. Remove Contxi-
" bution to
5 RUNSUM, SURPWP
f; and RNALL
a \
i‘ Revise Costs {
5‘ and Profits L
P [
>§ & [
%] .
} Salvoed Yes | Call ADDSAL
& Crouns? =3 to Reset f
: Sroup Stockpile 1
7 .
’3 <
| Update
; Payoffs 0
g
¥ ;
Figure 29, Part TIT: (Part 3 of J)
- |
168 §
: b
! i
i \
e e a

Py

.

PR

e .

'A
£

o P el

g RgAT

W‘(

1401

|

GCall PRNTALL
39,6,7,8 For
Input Data
For WAD

More Than
30 Fixed
\ Assiguments?

Terminal

CISPILL=0

Yo

Missile
De fense? /

No

Print
Erxor
Message

‘ call stauL”
To Allocute

Weapous

|

Call
TIMEME (6)
To Record
STALL Tiwe

Terminal
Missile
De Conso?

Yos

22

PROGRESS=2 and
IVERIFY=2?

Set Dunmy
Profit

!

Catll
DEFALOCY To
Allocate

Weapons

Caltl
TIMEME(7)
Ta Record
DEFALOC Time

$

Figure 29, Pant 1V

Processing Alter Allocation
(Part 1 of [}

For Weapons
Assigned, Record ’
Data In
DYNAMI Arrays

Call BOMPRM To

} Update ASM
Fraction Arxay

Record Target
Weight In
DYNAMIC Array,
Augment WTSUM

'

For Each Nonfixed
Weapon Assigned, Aug-
ment NALL and RNALL And
Associated Entries In
RUNSUM and CURSUM
Arrays

i
N
k!

. Record And

: Accumulate \
Payoff, Cost. 4 i

And Profit Data ‘

e

‘ « .
| f Oi
.

\ ! 4
Figure 29. Part IV: (Part 2 of 4) L

| 170 »

PROGRESS Call MODFY
oy to Update
TARCDE
Update Call
PROCMULT E ASGOUT

All Splits
Processed?

Satisfactory
Progress?

Figure 29. Part IV:

171

Reset to
Terminate
Allocation

!

Write Exrror
Message

(Part 3 of 4)

o

Yes Remove
Inactive
Groups
No
Setup For
Next Pass

40 *'

%

*

3 Reset Weights

: ° For New Pass
Update Target RTime To

y Weights ecompute

1 Multipliers

{

!

f

i

}

} Figure 29, Part IV: (Part &4 of &)

| 172

i

i

% 1

?

i e i

TS

R P

RO SO S -

s e

I

For All Integration Periods
And All Local Multipliers,
Evaluate Allocation Error

Estimates:
ALERREST (.J , INTPRD)

Y

For Each Weapon Group

Use Long Time Period

Estimate (NINTRPD) To
Estimate SURWP(G)

5 P
‘ Multipliers. (J) jone

No
b~

No

- Each Local

47

PROGRESS=1?

Do 46 For
All Local

|

Recalculate Actual Multi-
pliers LAMEF(G) And
Reevaluate Total Value Of
Weapons VALWPNS And Total
Value Of Allocation Error
VALERR

Did First Pass
Find Mo Targets

For This Group
(NOWPS<,5)?

Yes

Do All Exrror Estimates
For J Show Same Sign--

And On Finst Pass, Is This

Same As Error Since Last
Reevaluation?

*Yes

Estimate Fractional

Y

Calculate Sum
Square Of Error
In Allocation For

All Groups

Shorter Than Long Period

Calculate WTRATE
For Other Integration
Periods About RINTPRD

Or NTGTS

Y

Calculate The Integra-

tion Period (DESINTPD)

Needed To Make Observed
Error Significant

4

Use WRATE To Calculate
Weight Rate Factor
WTRATE For Long Inte-

gration Period

Y

!

Correlation Of S
Error Desired
Per Target

Y

Make
Correlation In

tore Old Weight Rate OWRATE
And Calculate New Rate 20

Based On DESINTPD But Reduced| | Do Not Allow

To Go To Zero When Integra-
tion Period Would Exceed
1/2 Pass

If PROGRESS >.S,

WRATE To Exceed
OWRATE

Multiplier(LA(J))

Figure 29, Part V:

Multinlier Adjustment and

Progress Evaluation (Part 1 of 2)

173

-

2 e g

/3

T —

gV S ——

I

*Yes

35 . Yes
Set MULSTEP=4
LP PROGRESS<1? PROGRESS=.75
m NWAIT=NTGTS
5 o *SETTLE

Increase
Closing Force

Y

ves/ More Than 1.5
Passes At PROGRESS

Is
IWAIT-GTNWAIT?

Yes

Equal To 1?
No
PROGRESS=1.,0
IWAIT=0
is Fraction Of SDPROFIT=0,0
Value In Error PRM=. 9

+LT+ERRCLOS?

Is Allocation No

54

Set

MULSTEP

No Yes Set Is WTSUM> *
<—£pkocasss=07 }—» \ULSTEPa2 NTGTS/27 0.00
Yes
Set
52 PROGRESS=. 4

Is WRATE< \No Y *
L OWRATE? $-10.40

51 Yes 53 Yes e
No Is No ¥

PROGRESS=. 5 0.5

< PROGRESS< ;>—>< WRATE=0? >—-> OGRESS —$»10.50

INAIT=IWAIT+ L’} 0.78"

-11.00

Within One
Warhead?

Set
PROGRESS=2

IVERIFY=2?

Yos

Change
Correlation
Factor

Record As Final
Tape, Final
Target, Final Pass

'

For Verification
Or Comparison, Set
SDPROFIT=0

* Note: Starred numbers are values of parameter PROGRESS

Figure 29, Part V: (Part

174

2 of 2)

*
/2,00

VPO e ———r———
P — e

o At

 om e oo+ttt o < imenmaaTott

[P SURDUIPAS: | W~ R ISV S WP S S N

- 2L

3.8.1 Subroutine ADDSAL

This routine updates the stockpile for salvoed

PURPOSE:
weapons
ENTRY POINTS: ADDSAL

FORMAL PARAMETERS: 1GP group number

10PT - option code
NUR - index to ISAL array
ISALIN - salvo number

COMMON_RLOCKS: DYNAMI, MULTIP, SALVO

SUBROUTINES CALLED: Nonme
MULCON, STALL, WAD, DEFALOC

CALLED BY:

Method:
eapon but a bombern ISAL is set to indi-

cate whether weapon is a gravity bomb or ASM. Otherwise the variable IDIFF
is set depending upon the option. From this the number in NSALAL (packed

4 per word) is either incremented or decremented.

1f the weapon if a nonsalvoed W

Subroutine ADDSAL is jllustrated in figuxe 30.

175

Sl o

EpY pe———

i
!
Q
{
:
i
i
‘
[
+
i
}
j
P
i, —

START

Salvoed
Weapon?

Bomber?

Set IDIFF To
Either Add or
Subtract a
Weapon Based
qon IOPT

Set ISAL
From ISETPAY

Update NSALAL
Based on IDIFF

RETURN

Figure 3C. Subroutine ADDSAL

176

e,

3,8.2 Subroutine a5GOUT

To update allocation assignment records in the

PURPOSE :
integrated data base
ENTRY POINTS: ASGOUT

FORMAL PARAMETERS: None

€10, C30, DYNAMI, MULTIP, SPLITS, PAYSAV, TARREF,
WEPSAV

COMMON BLOCKS:

SUBROUTINES CALLED: DIRECT, DLETE, MODFY, MYAPOS, NEXTTT, STORE

CALLED BY: MULCON

Method:

First a logical switch 1s set for each new weapon assignment to indicate
it is unassigned, Next each old assignment is compared to the new
assignments to see 1if all values, save RVAL, of the old assignment are
equal to a new assignment. If it does, the RVAL attribute is deleted.
Finally, an ASSIGN record is created for all the new assignments for

which there is no match.

Subroutine ASGOUT is i1llustrated in figure 31.

177

ol

Number
of Assignments
=0?

v‘les

Set Array For
Done Allocation
to “False"

Call DIRECT
To Retrieve
TARCDE

!

Call NEXTTT
to Retrieve Old
Assignment

Any New
Assignments?

Do for All

New Assignments

Same As
0ld
Assignment?

Figure 31.

Call DLETE To
Delete Old
Assignment

Call MODFY To
—Reset RVAL and [[——
Set DONE

Subroutine ASGOUT (Part 1 of 2)

178

Id

i e n e e

Number of
Assignments
=01

po for All

* 3 New Assignments

Assignment
Done?

Store Data
in C30

\

Call
MYAPOS

Y

Call STORE

* || for ASSIGN

Record

Figure 31. (Part 2 of 2)

179

Lo

T T

3.8.3 Subroutine BOMPRM

PURPOSE: The purpose of this routine is to maintain the
array containing the fraction of weapons all allo-
cated from each group which are ASMs,

ENTRY POINT: BOMPRM
FORMAL PARAMETERS: IDIFF = -1 if weapons are being deleted
+1 if weapons are being added
COMMON BLOCKS: C33, DYNAMI, MULTIP, NALLY, PAYSAV, SALVO, WEPSAV

SUBROUTINES CALLED: None

CALLED BY: MULCON, SCNDGD

Method:

This routine merely updates the ASM fraction array FASM in common block
/SALVO/. The important local variables are:

LXDONE(1l) = a logical array set true if a weapon has already been
processed to update FASM

TOIW = total number of weapons allocated from a group on the
target

TASM = number of ASMs from a group allocated on the target

FASM(G) is the fraction of currently allocated weapons from group G
which are ASMs.

The factor FASM 1is updated whenever the state of the allocation changes.
These changes occur when allocationus from a previous pass are removed

and when the allocation from the present pass is output. Thus, BOMPRM

is called from subroutine MULCON on each target, and by subroutine SCNDGD
for each target after the first pass.

Subroutine BOMPRM has one formal parameter IDIFF., If weapons are being
removed (previous pass's allocation), then the value of IDIFF is -1, If
weapons are beilng added, then IDIFF is equal to +l. In subroutine
SCNDGD, the call to BOMPRM with IDIFF equal to -1 is made after reading
the last pass allocation, just prior to the update of the running allo-
cation sums, The call from MULCON with IDIFF equal to +1 is made just

prior to the running sum update.

Upon entry to subroutine BOMPRM, the routine checks variable NBLN in
/C33/. 1If this variable is negative, the allocation in /DYNAMI/ was
made by subroutine DEFALOC and contains no bomber weapons. In this
case, the subroutine returns with no fucther processing. If the

180

o @ e =

I

allocation was made by subroutine STALL, the IG array of /DYNAMI/ is
checked, For each allocation in this array, the variable KORRX of
/DYNAMI/ is checked to determine if the weapon is a bomber. If not,
the next entry in the IG array is checked, If the weapon is a bomber,
then the value of GSEASM for the group is checked (in /WEPSAV/). 1If
GSEASM is equal to zero or one, then FASM is set to GSEASM and process~
ing continues with the next entry in the IG array. Otherwise, FASM is

updated for the group.

The ISAL array of /DYNAMI/ contains the indicator of bomb or ASM alloca-
tion (for-bomber groups only. This array is defined differently for mis-
sile groups), If the value is zero, a gravity bomb was allocated. A
value of one signifies the use of an ASM.

The total number of weapons from the group which are currently allocated
is kept in array RNALL of common /NALLY/. This array is updated twice
for each target, just following the call on BOMPRM.

Using these variables, the value of FASM is updated as follows:

number of ASMs allocated from group G (as determined
from the ISAL array) on current target

[

Define: TASM

number of weapons allocated from group G on current

TOTW =
target
Then,
(FASM ., * RNALL) + (TASM* IDIFF* CTMULT)
FASM = old
new RNALL + (TOTW * IDIFF * CTMULT)

Note that the variables FASM and RNALL in the above equation are arrays
indexed by the group aumber G, CTMULT, from common block /MULTIP/ is

the currenc target multiplicity.

Figure 32 displays the logic of subroutine BOMPRM.

181

42 5

TV T e et e er
o

§ T e e - JEERES
P

/\

/\

Yes
10

Set Processing

Indicator
DONE To False

'

Did DEFALOC
Make Allocation
Were Any Weapons

Allocated?

Do 1000 For Each _Doi.-
f Allocated Weapon

Has This Weapon r
Been Processed?
1 Is Weapon A
! Mlssile ?
Does This Group
Have Both Bombs
And ASMs?

Set Allocated Fraction
To Actual Fraction

Initialize Weapon
Counters

30

Set ASMs
Used To

< Payload Used? BOMB
sM
N

Increment Number
of ASMs Used

Zexro

50 *
Ts This End of
List of Allocation

(a0

90 *Yes
Update ASM Fraction
Array FASM

Figure 32. Subroutine BOMPRM (Part 1 of 2)

182

| Do 80 For Remainder | 2O0G @
of List

No Is This Anoth
Weapon From Same
Group?

Yes

Set Processing
Indicator TRUE

%

Accumulate

Total Weapons Used

¢

Bomb
Payload Used?
ASM
70

Increment No. of
ASMs Used

Figure 32, (Part 2 of 2)

183

e e it

e e oy e

Sy

¥
R I

. e ore makees o

G
st g

3.8.4 Subroutine MYAPOS

PURPOSE: To position records properly before storage of a
new 4SSIGN record.

ENIRY POINTS: MYAPOS

FORMAL PARAMETERS: None

COMMON BLOCKS: C10, C30, GRPHDR, TARREF

SUBROUTINES CALLED: DIRECT, NEXTTT

CALLED BY: ASGOUT

Method:

On first call the array of group IDS reference codes is set to zero.
From then on, with each call the saved reference code of the desired
group is checked, If it is nonzero it is retrieved. If it is zero,
the group chain is cycled up to the desired group, the intervening
groups also have their reference codes saved. Finally, when the proper
group record has been retrieved, the target record is retrieved,

Subroutine MYAPOS is illustrated by figure 33.

184

. e

e e e

- ——

Desired
Group?

Save Group
Reference Code

Figure 33.

Previously
Called?

Zero Array In

Which Group

Reference Codes

Are Saved

Is Saved
Reference Code
or Group Zero}

Call DIRECT
To Begin Search
of Groups

Y

Call DIRECT To
Retrieve Group

Call NEXTTIT
To Get Next
Weapon Group

No Yes

185

Call DIRECT
To Retrieve
TARCDE Record

Subrontine MYAPOS

ahn A

P
st

3.8.5 Subroutine PRNTALL

PURPOSE : This routine provides a way of calling the print
subroutine PRNTNOW that is conditional on the
print control flags set by PRNTCON,

ENTRY POINTS: PRNTALL
FORMAL PARAMETERS: IOPT -~ Print option number
COMMON BLOCKS: C30, CONTRO, PRNTCN

SUBROUTINES CALLED: PRNTNOW, TIMEME

CALLED BY: MULCON, WAD, WADOUT, FRSTGD, RESVAL, DEFALOC,
SETPAY
Methed:

To provide convenient control over prints in program ALOC almost all
print statements are contained in subroutine PRNTNOW. They are acti-
vated by calling PRNTNOW(IOPT) for the appropriate print option IOPT.
If it is desired to place the print under data-input control so that
the print will not appear unless a specific print request is included
in the data deck, this can be accomplished by calling PRNTNOW via a
call on PRNTALL. PRNTALL executes the request on PRNTNOW only if the
print control subroutine PRNTCON has set the corresponding print con-
trol flag IDO(IOPT) active (i.e., = 3),

For each call PRNTALL first checks to see if the print has been set ac-
tive by PRNTCON. If not, it immediately RETURNs (statement 2) to mini-

mize time wasted on inoperative print calls.

If the particular print is active, PRNTALL immediately calls TIMEME
(statement 1) to stop the clock which records active time in the pro-
gram, This makes it possible to do a test run with an unusual number
of prints and still obtain a valid estimate of what the running time
would be without such prints. After the call on PRNTNOW, PRNTALL re-
activates the clock before returning to the main program.

Before each print option (except 26), PRNTALL prints a heading identify-
ing the optional print.

Subroutine PRNTALL 1s illustrated in figure 34,

186

1<

1s Print
Flag IDO(IOP)
Set For Print?

RETURN

Call
TIMEME (-2)
To Stop Clock
For Active Tiwe

\V
Siip Header

No

Print

Identifying
Headax Fox

300

Call PRNTNOW
(T0PT) For

Actual Print
Requested

{

. Gall
TIMEME (=3) To

Restart Clock

For Act}va Time

! .

Figure J4. Subroutine PRNTALL

187

etk

S M,

SS— .
e wan

3.8.6 Subroutine PRNTCON

PURPQOSE : This routine sets the print control flags which
determine whether a given print request made
through PRNTALL will be executed.

ENTRY POINTS: PRNTCON

’ FORMAL PARAMETERS: None

COMMON BLOCKS: C30, CONTRO, PRNTCN

SUBROUTINES CALLED: None

-
et s o

CALLED BY: MULCON

Method:

The input arrays for the print requests were read in subroutine RDALCRD.
These arrays are:

i

-

INDEXPR The index to the print requested
{
; JPASS The first pass (value of NPASS in /CONTRO/) on which
| the request is to operate
!
l LPASS The last pass on which the request is to operate
}
o}
' JTGT The first target (value of TGTNUMB in /C30/) on which
the request is to operate on each pass
!
51 LIGT The last target on which the request is to operate
KTGTFREQ The frequency with which the print is to operate (e.g.,

! KTGTFREQ = 5 implies every fifth target).

F PRNTCON 1is called by MULCON before proceeding to process each new tar-
kt get. PRNTCON first reinitializes all print control flags to a nonprint
state (IDO = 1). It then examines the list of print requests to see if
any are operative for this target on this pass, For each operative
print the flags are set to print (IDO = 3, IFIPRNT = KIGTFREQ).

This arrangement makes it possible to request the same print at differ-
ent targets or passes with separate independent print requests, If
regular prints are requested with KTGTFREQ greater than 1, the first
print will not occur at JIGT but at KTGTFREQ -1 targets later, and
thereafter the print will occur every (KTGTFREQ)th target.

Figure 35 illustrates subroutine PRNTCON,

v
i
i
.
E
£ .
=
=
1.
=
=3
E.

188

‘
;
3

E AR e S L i e

O T il

START

01

Clear File Dump
fndicators

12 *

Clear All Print
Indicators For
No Print

|

5 NREQ

‘
|38}

If New Pass
Reset

L—FOUNT(IRLQ)t__J

Betwean First
and Last Target
And Pass?

No

Regulagz rin Yos

Incraement
1COUNT (IREQ)

ICOUNT (IREQ)
+GT+Frequency?

20 Yas
Set Print Flag

: IDO For This
Print Index To

Print
Set JCOUNL=0

Figure 35.

Do 22
. Done
IRBQ"]., SRR Pass

Record Present

Subroutine PRNTCON

189

-\
1

o b

i

P K

T

3.8.7 Subroutine PRNTNOW

PURPOSK: To produce optional printed output.
ENTRY POINTS: PRNTNOW

FORMAL PARAME.cRS: IOPT - Print option number

COMMON BLOCKS: ALERUN, C30, CG33, DYNAMI, MULTIP, NALLY, DAYSAV,
PREMS, PRTMUL, SALVO, SURPW, TGTSAV, lACB, PAYOFF,
WADFIN, WADOTX, WADWPN, WEPSAV, WPFIX, WIS

SUBROUTINES CALLED: ABORT, PRNTOD, PRNTOF, PRNTOS, TIMEME

CALLED BY: PRNTALL, MULCON

Mathod -

The formal parameter IOPT dotermines which print is produced, The re-
sult of the alternatives appear in the Users Manual, UM 9-77, Volume TII.
Options 1, 12, 13, 26, 27, and 28 vequire a subroutine be called which

contains the print function.

Subroutine PRNINOW is illustrated in figure 36,

190

Aok R,

Call

Yes

L4

Execute Print

Request Number‘-—————————a-J

2

es

Execute Print

Request Number pem—m—eeee g

4

No

i

{

H

1

| {'|||!|||EHII|’}
No

No

Yes,

‘ m
>
»

Execute Print

Request Number | -

5

? ¥ No

)

<

L
i

No

Yes

Execute Print

Request Number,__________;__

6

Exccute Print
Request Number
7

PRNTOF ' s

No

'
f °
i

191

RETURN

Figure 36, Subroutine PRNTNOW (Part 1 of 5)

A3
s 2kt K e il ey e, A

;

y

-

|

ﬁ ves Execute Print
‘ IOPT=8? Request Number
: 8 .
j :

-
: N\

Yes__

Figure 36.

(Part 2 of 5)

192

Executa Print
Request Humber >
9
Execute Print
Request Number e
10
Execute Print
Request Number L___ .
11
Call
PRNTOS
Call
PRNTOS RETURN

.
PSRN SR S ' RPN

S

Py

T T—

=
. i -

e e s

10PT=167

o)

N\

10PT=1917

v«o

10PT=227

v‘io

N D

10PT=231

Execute Prirnt

:Yes
Yes Execute Print
I0PT=217 Request Number
) 2%
>Yes

Yes
~Jw! Request Number .-.-—-—--—)1
16 .
Yes Execute Print
Request Number jpm—————r-3p
19
Execute Print
Request Number g
20
_.-——__.___.__—),'
Execute Print
Request Number]
22
es Execute Print
——J3=1 Rgquest Number RETURN
23

Figure 36, (Part 3 of 5)

e o s e ——————

133

(O AT Ny, v ERl
i b s A e i S e

TOPT=241 Yes

Execute Print

Request Number —————-——>'1
24 .
Execute Print
I0PT=257 Request Number >
25
No
Yes Call
=267 A e
IOPT=26 PRNTOF
\¥No
Yes Ccall
: =277
g T0PT=27) PRNTOD e R
i
: ‘¥No
E
F{ % Yes Call
o
k>
!
%
% Execute Print
| IOPT=?9? Reques;gNumber RETURN
4
e

Figure 36.

(Part & of 5)

194

o e e gl e

I3

PR LR -.‘

Yeos

Execute Print
Request Numbox
30

Figure J0. (Part % of

195

5)

ST

. L Y U,

3.8.8 Function TABLEMUP

PURPOSE : This function calculates weapon~target kill fac-
tors for either the exponential or square root
damage laws as a function of an input single shot
survival probability.

ENTRY POINTS: TABLEMUP

FORMAL PARAMETERS: § -~ a single shot survival probability

COMMON BLOCKS: TABLE, WADWPN

SUBROUTINES CALLED: None

CALLED BY: RESVAL, RECON

Method:

This function computes weapon kill factors by computation for the expo-
nential damage law and by a table lookup for the square root law. The
function uses the square root law only if the option is selected by the
user and the target has a radius greater tham O,

If the square root law is used on a target, the variable ILAW in common
/WADWPN/ is set to 100 by subroutine RECON. This variable is checckad by
TABLEMUP to determine which damage law 18 used. The exponential law use
causes ILAW to be set to 0.

The input formal parameter is a single shot survival probability, S. If
the exponential damage law is selected, the function returns the value
~LOG(S). If the square root law is selected, the function performs a
table lookup technique on the array TABLE in common /TABLE/. This array
was preset by subroutine SETABLE, The function performs linear interpo-
lation between the entries of the table. It returns the square of the
interpolated value. (The method of determining the kill factors used in
subroutine SETABLE is too slow for use in TABLEMUP.)

Function TABLEMUP is illustrated in figure 37,

196

L N

-

Which Damage
Law?

TABLEMUP=
-10G (S)

Square
Root Law

Calculate Table
Interpolation
Indices

|

Calculate
Interpolated
Value,Y

Y

TABLEMUP=Y 2

RETURN

Figure 37. Function TABLEMUP

197

g

ENEIIR ¥,

T

-

*
3.9 Subroutine FRSTGD

PURPOSE : Assemble allocation data on the first pass.,
ENTRY POINTS: FRSTGD

FORMAYL, PARAMETERS: None

COMMON BLOCKS:: €10, C15, C30, C33, DYNAMI, FIL21, FILL, FIRST,
GRPHDR, GRESTF, INITSW, MULTIP, PAYSAV, TARREF,
TGTSAV, WADWPN, WEPSAV, WPFIX, XFPX

SUBROUTINES CALLED: CRDCAL, DIRECT, FLGCHK, HDFND, HEAD, INICRD, MODFY,
NEXTTT, NXSPLT, PKCALC, PRNTAL, RECON, RETRV,
TGTCRD, TIMEME

CALLED BY: MULCON

Method:

This routine processes each target in target number order. Each call
causes the next target to be retrieved, Since each record on the tar-
get list points to either a target or a complex record, the next step
in the process is to retrieve the remainder of the target data. Next
the weapon data is acquired, This process depends to a great extent
upon whether the user has saved file 15 from a previous run of ALOC,

If so, this file is read in and unpacked. If not, the file is created
by cycling through the weapon groups and calculating the various needed
quantities. Much of the group data needed for this process is contained
on file 25 where it was stored by DATGRP, If the user has specified
range modifications, any information which differs from that on file

15 1s written on file 22 in the same format.

During this process, the INACTIVE array is set, This array has an entry
for each group and is either set to 0 or 100, O implies that the group
is available for allocation to the targat. 100 indicates that the group
is unavailable for one of several reasons: target out of range, time
decay requirements, and flag location and MIRV restriction, This array
is written onto unit 21,

The final step is to read in any fixed assignments to the target and up-
date the assignment records.

Subroutine FRSTGD is illustrated in figure 38.

*
First subroutine of segment FGD.

198

oy

TR ST T T,

Number
of Splits
=17

Flrst
Target of
Pass?

Initialize
Switches

Call INICRD
To Initialize
Corridor Data

No _ﬁ

RECALC Mode
or
Range Mod?

Call HDFND
And RETRV For
Target List
Header

Figure 38. Subroutine FRSTGD (Part 1 of 11)

199

Call NEXTIT
For Next
Target

Set END
Switch

End of
Target List?

Call DIRECT
And HEAD To
etrieve Target

Data
1

Y

Set Data In
TGTSAV
Block

T
3 Y

Set MISDEF
And TMULT

Y

E? Call MODFY To
5 Save TMULT
' Value

\f :

Figure 38. (Part 2 of 11)

200

o e M e

1

e o

Y

Set Split
Indicators

Recalc
or Range
Modification?

nall TGTCRD For

Target Related
Corridor
Data

¥

Length of File

Calculate
15 Record

Read In And
Unpack File
15 Record

Y

@

Figure 38. (Part 3 of 11)

[
[=]
Fa

Increment
Group
Count

End of
Group List?

Read File
25 Record / —<: File 25 O

Y

Store Weapon
Data From
File 25

Call CRDCAL
For Corridor
Calculations

Figure 38. (Part 4 of 11)

202

.

Set Damage
Quantities To
Zero

Penetration
Probebility

Nonzerxro

Call PRCALC
To Calculate
amage Quantitie

Y

Save Damage
Quantities In
QTK and QTK2

B

Penetration
Probability
Nonzero

Turn Active
Switch Off

Y

Range
Modification?

1 Figure 38. (Part 5 of 11)

203

U —

R

A
B

bk ot dakiniital

[

TR

Reset
Range

Y

Call CRDCAL
For New
Range

Y

Reset
Active
Switches

Group
Inactive?

Corridor
Altered?

First
Altered
Corridor?

Figure 38. (Part 6 of 11)

204

,
4
:
)
g
|
4
E
.
{

Set Switches
And Save
Normal Values

Store New
Values

Group
Inactive?

Call FLGCHK To
Check For
Restrictions

Restricted
Group?

Figure 38. (Part 7 of 11)

205

Store Damage
Quantities In
STK And STK2

!

Call
RECON

Set Active
Flag Off

¢

Call PRNTAL
To Print
Penetration

°

Figure 38, (Part 8 of 11)

206

Lk

. e 6N

2

i
| =
fag 4
H
3
i
.
) i
. N
Pack File
i 15 Record
i
|
4
¢ 23|
% /
. Packing For Jwrite File 22
g ‘ File 157 Record E
i Yes ‘
§ 20
3
. Write File 15 — T ;
g Record 3
i !
i ;
e .
: i
!
j ,
!
{
File 22 ’
. Necessary? .
H
£ E .
\,; a
: Reset To | ;
; ‘g . Modified |
; Range Data .
s 1
?, Figure 38. (Part 9 of 11) ‘
5 ;i
207 |
7 !
o ;
i !
R e e T ; |

Store
Inactive
Arxray

!

Write File
File 21 >\ 2

ot e ebs i R v o . I AR et s ot W aln 4r o fir e 8

o~

POV AN N,

Call PRNTALL
For Weapon
Data

.

Set For Search
of
Assignments

Y

Call NEXTTT
For Next
Assignment

End of
Assignments?

RETURN

Figure 38. (Part 10 of 11)

208

S e e e e

. ¥

<,_
PR

e am Swra

SRS N ML R RATEIT AR T ¢ IO

P

« v e o P mamem e

A SRR Zé‘?fﬂﬂ_ Rl

Fixed
Assignment?

Add to Fixed
Assignment List
And Set Values
For Assignment

Y

Call MODFY
For Assignment
Record

Call NXSPLT
For Multiple
Target

Last
Split
Processed

Figure 38. (Part 11 of 11)

209

i - w

B INES
.

P

R

3,9,1 Subroutine CRDCAL

PURPOSE:

ENTRY POINTS :

FORMAL PARAMETERS :

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method:

Calculate ponetration probability and pick bomber
corridor

CRDCAL

JORR - Corridor picked

XEN = Penetration probability
ZOA - Time of arrival

JCLSS - Class index of group

CG30, CORSTF, PAYSAV, REFPNT, TGTSAV, WADWDN,
WEPSAV, XFPX

DISTF, EXP, TOFM

FRSTGD

First a check is made for match-ups of naval weapons to naval targets,
Next, 1f the group is a missile, its corridor is set to zero and its
penctration probability and time of arrival are calculated,

For bomber groups, first tha PKNAV and IPENMO arc checked to soe if
group is restricted to corrvidors 2 and 1 respectively. Otherwise, cach
corridor in turn is examinaed to sec if it would provide the best route
to the target. Corridors which would make the distance tooe great arce
rejected, For the remainder, the penctration probability is caleulated
with the bombher using low altitude £light as much as possible. The
highest penetration corridor is chosen.

Subroutine CRDCAL is illustrated in {igure 39.

210

o

L e

e e

e e S,

13?

START

Zero Penetration
Array
PENALT

Figure 39,

No Naval

Weapon?

Naval
Target?

Naval
Weapon?

Set Penetration
To Zero

4

Return Corridor

Penprob And
Time of Arrival RETURN

Subroutine CRDCAL (Part 1 of 6)

211

~ s
o e e
s s

[P, - e
———— P

e

AP oo b < it 8

g oem S P e

[NS

Call DISTF
To Calculate
Minimum Distanc

Y

Missile
Group?

Minimum
Greater Than
Min-Range?

Y

Calculate
Delay Time

1

Missile
Group?

Calculate
Panprob, Time
Time of Flight

And Distance \

Calculate Range
And Range Limits

Naval
Weapon?

No

Target
In Range?

Yes

Fix Corrvider
at 2 8

Figure 39, (Part 2 of 6)

no
ot
ro

— e et

[

FZ’.‘, PR

Is Penetration
Mode=0?

Fix Corridor
at 1

Set Corridor

Analysils Range

For All But 1
and 2

Refueling
Bomber?

Set Start
Point At B
Refuel Point

Figure 39.

Set Corridor
Analysis For
Fixed Corridor

Set Start Point
At Base

ok

Calculate Dis-

tance To
Corridor And

Set Test Limits

213

(Part 3 of 6)

P Tl ol

>

Do For All
Corridors

Corridor Out
of Range

Fixed
Corridor?

Is Distance
To Target
Jithin Limits?

Penprob
Near 07

Preset Legs 1,
2 And 3

Calculate
Available Low
Altitude Flight

I

Negative Low
Altitude?

Calculate
Flytime And
Penetration Time

Set Gurvent
Calculated
Penetration at 0

Figure 39. (Part 4 of 6)

214

o A1 ..

P

R TERY LT

[

(alculate
Pre-Corridor
Leg Attrition

Rates

Calculate
Remaining
Rates

Is Payload
Altitude
Set at Low?

Go Low On
Leg 3

Find Worst
Leg And Go
Low
On It

Figure 39.

A1l Legs at Low)

Altitude?

Recalculate
Available Low
Altitude

(Part 5 of 6)

215

b

B

Available Low
Altitude
Negative?

Set Leg
Rate to 0

Recalculate Leg
Based on Frac-
tion of Low
Altitude

Calculate And
Store
Penetration

Best Corridor
So Far?

Reset Best
To This
Corridor

Figure 39, (Part 6 of 6)

216

-
p

=S

3.9.2 Subroutine FLGCHK

PO D e 5 L

To check flag, location and MIRV restrictions.

4 PURPOSE :
: ENJRY POINTS: FLGCHK
j " FORMAL PARAMETERS: FIND - True if group not restricted
False if group restricted
é] COMMON BLOCKS: €30, CNCLS, GRPSTF, INITSW, MULTIP, TGTSAV
ff) SUBROUTINES CALLED: None
| CALLED BY: FRSTGD
Method:
ig This routine uses the logical arrays stored on file 25 by DATGRP. Each
S type of restriction is checked for correlation between the group and the

current target,

Subroutine FLGCHK is illustrated by figure 40.

'S g T T
B Mt g, 1 st Bl A

——— v

217

N e e e e o -

S

e ko i A T T

Y s Ao o = o —

o e e e oo "o E

¥
;

8
e R A v g

b S ik S

START

Set FIND
Flag To
True

Flag
Restriction?

Yes

e Is Target
Flag 07

No

Is Group Yes

Restricted?

Location
Restrictions?

jies

g Is Group Y es

Set FIND
To False ‘ RETURN

A

Restricted?

Figure 40,

ot

Subroutine FLGCHK (Part 1 of 3)

218

PR

- MIRV No
Restriction?
- Yes
Group A No

estricted MIRV?

Yes

Target A
Complex or
Multiple?

Yes

Multiple
Target?

T No

oAl

- f Defended
Comp lex?

' qu

Group
Restricted?

Yes Group No

Restricted?

Yes

yes Group

Restricted?

. RETURN

Figure 40. (Part 2 of 3)

219

e v Kt s & Bbe sam st ke imn i A

Target
Defended?

Restricted

Find Class
Index

o b s BRI Ten -

Group
Restricted?

T R A e RS R St MK an € = A

R A NG)

Set FIND
To False

RETURN

Figure 40, (Part 3 of 3)

Bty G e

3.9.3 Subroutine INICRD

PURPQSE : To make preliminary geography calculations, first
for all corridors then for each target.

ENTRY POINTS: INICRD, TGTCRD

FORMAL PARAMETERS: None

COMMON BLOCKS: C10, €15, €30, CORSTF, REFPNT

SUBROUTINES CALLED: DELLON, DISTF, HDFND, HEAD, NEXTTT, RETRV, SORT,
TIMEME

CALLED BY: FRSTGD

Method:

Entry INICRD

First each penetration corridor has its data stored in commen block
CORSTF. As the legs of the corridor are queried, the length is calcu-
lated. Also, for each corridor various quantities required for computa-

tion of crossdistance are computed.

After all penetration corridors are processed, the refuel points are
saved in block REFENT,

Entry TGTCRD

First the chains connecting target to depenetration corridor are accessed
to find the shortest recovery distance. Next all penetration corridors
are accessed and attrition factors stored and cross distances calculated.

Subroutine INICRD is illustrated in figure 41.

221

[

R A\

e

DYDY

o e et e ey

[

3

—

A

[N £

START

orrldor Header

Call HDFND Or
RETRV For
fanetration

Y

Call NEXTIT
For Next
Corridor

End of

Chain?

Reset
Maximum
Corridor Number

Y

Save Values For
Attritions
And HILOAT

{

Call NEXTTT
For First
Corridor Lag

Figuro 41. Subroutine INICRD: Entry INIGRD (Part 1 of 5)

222

o

s & e

e A et a B aw e emess =

48

- &
A

”

IR A S

S o o e -

3 For Next Leg

T SR And Resot

Store
Valuas For
Corrvidor Origin
‘%

Gall NEXTTY

Store Butvy
W And Length

End of
Chain?

'v No

Compute Digtance

Computation
Poiunts

Loss Than 2}

Corrddor Numbor
1

Caleulato Cosdue,
pelta Latitude And
Longitude And Distance
Prom Ovlentation
To Corridor

Data

Sowmpute Suma
ar Precorvidor

Figure 41, (Part 2 of %)

221

.

s

e e e e = .4

Store Refuel
Point

(Part 3 of 5)

Header
For Next
Refuel Point

224

<:%i:>
Call HDFND &
RETRV For

Refuel Point
Call NEXTIT

Figure 41.

B satuming Lt
» - e L e it e

FRNTT SUPRUY | R e

- i 2 i e e e T

s ey

ol

AR
- a\emaatm e o e -

e

U

[U S

gl
b v ot A < e = oo

Call NEXTIT And
HEAD For
Depenetration
Distances

633 '*

Call NEXTIT And
Find Shortest
\ Recovery

Distance

666 '*

Calculate
Recovery
Distance

Y

Call NEXTIT For
Next Link Teo
Penetration

Corridor

RETURN

No

Call NEAD
For Corridor

Figure 41, Entxy TGTCRD (Part & of 5)

225

P

Corridors
. 1 or 27

,ﬁ

Store Distances

And Attrition
| Y

Calculate
5 Cross Distance

{
‘i\
I
P
| '
!
1
v Figure 41, (Part 5 of 5)
226
i
A
Q\ : . . — _

[

hon e

W e e e v

3.9.4 Subroutine NXSPLT

PURPOSE: To process input for split multiple targets.
ENTRY POINTS: FRSPLT, NXSPLT

FORMAL PARAMETERS: IBR ~ Returned from NXSPLT
1 = splits active
2 = splits ended

COMMON BLOCKS: C10, €30, G33, DYNAMI, MULTIP, SPLITS, TARREF

SUBROUTINES CALLED: DIRECT, MODFY, NEXTTT

CALLED BY: FRSTGD, SCNDGD

Method:

When a multiple target Is split during the allocation process (see sub-
routine SPLIT). The normal contents of block C33 (TARCDE record) are
replaced by split information and the old contents saved on file 25.
This routine is designed to process input for multiple targets which

have already been split.

Eutry NXSPLT

This entry processes tnbe next split (i.e., second or greater) of a multi-
ple tarpget. The first step is to sea 1f all splits have been processed.
If they have, the split information for block C33 is updated if necessary
and IBR set to 2 to indicate the end of the splits to the calling pro-

gram,

Otherwise, the next set of €33 data is obtained from the buffer and
KIMULT is set. Finally, the current assignments (fixed assignments on
pass one) are read in, checking the FIMULT attribute to assure that the

assignment applies to the current split.
Entry FRSPLT

This cntry processes the filrst split of a multiple target split on a pre-
vious pass. The split data is saved from block C33 into block SPLITS,
Then the process passes into the entry NXSFLT code to set KLMULT and

read the current assignments,

Subroutine NXSPLT is illustrated in figure 42.

227

START

Move Split .
Data Back
Into Buffer

Reset Block
C33 Data

Y

Call MODFY
For TARCDE
Record

Write
Out Split
Buffer

- File 25

Figure 42. Subroutine NXSPLT: ENTRY NXSPLT
(Part 1 of 4)

228

Ve e =

i

,
a . Increment Split \
X No. Determine ;

o First and Last

f! Number In Split '
'E Calculate CTMULT :

i @____’ Buffer Point

’ And KLMULT

!

Retrieve Block
C33 Data K
From Buffer 1

%

Ccall DIRECT

To Begin -
Retrieval Of j
Allocation

- +
Call NEXTTT

For Next
Assignment

e A e -

I

[

PR I UBUNVNSH U

Figure 42. (Part 2 of 4)

229

Fixed
Assignmtnt?

Increment
Fixed Count

Add
Assignment To
DYNAMI Block

Figure 42. (Part 3 of 4) \

230 5

Yoo T @ v

e e Ao

START

Save Split
Data From
Block C33

Figure 42,

l

Read €33

Buffer
From

File 25

- — - —| File 25

l

Set First And
Last Target
Number

ENTRY FRSPLT (Paxt 4 of 4)

A

H T YT

o @ e

IO,

u——
<

PN

3.9.5 Subroutine PKCALC

PURPOSE: To calculate iill probabilities
ENTRY POINTS: PKCALC

FORMAL PARAMETERS: STA - Array for normal PK
STB - Array for second PK

ICLSS - Class index of weapon group

COMMON BLOCKS: C30, PAYSAV, SALVO, TGTSAV, WEPSAV

SUBROUTINES CALLED: None

CALLED BY: FRSTGD

Method:

This routine calculates the kill probabilities (PK) of the weapon group
against the target using a standard approximation to the circular cover-
age function, Two PK's are calculated for each hardness component of
the target. The first PK is based upon the yield of the group as input
and the group's CEP. The second PK varies according to the class of
the weapon. For missiles it is the first PK adjusted by the number of
warheads which make up the group yield (for any types but MRV: the first
and second PK's are equal)., TFor bombers the second PK reflect the PK
of any ASMs onboard. Naval weapon's have their PK's input in .he attri-
bute GPKNAV, Average Destruction (AVDE) is calculated for bombers.

Subroutine PKCALC is illustrated in figure 43,

232

P ——

S LR

BT, o — <ot o it 4 e

L G,

Set Payload
Index And
Height Of

Burst

&

Do For Both

Hardness |Done o

Components

+Do

Set Weapon
Radius From HOB
And Calculate

Normal SK

+

Set Second SK
=Normal Or
Fraction For
MRV

%

Set Sigma
Factor Based On
Weapon
Radius

%

Calculate SD
Based On CEP
And
Target Area

Calculate
Average Destruc
tion For Bomber
With Mixed Load

RETURN

Figure 43. Subroutine PKCALC (Part 1 of 3)

233

R
PR

e o i e e

A e —

e et A o~ = s 2t i, <o i

IR T

ST e

Celculate
Normal PK Based
On SD And
Normal SK

Missile
Weapon?

Set Second
PK To
0

No

Calculate
Second PKBased
On. S And
Second SK

Calculate

Second PK Based

On ASM
Factors

Calculate This
Ccmponent,
Contribute To
Avg. Destruction

Figure 43.

(Part 2 of 3)

oot
PO

. >

=y

) =
¥
) No Naval f
Weapons? .
Reset PK's To

GPKNAV ;

’ No Bomber

f Weapon?
F f
Adjust Second i
§| PK For ASM !
, N
| X
| i
!
|
|]
‘ Store PK's :
By :
Component :
! §
: . |
| 5 ¥
‘2 S i'l
1 i
; * I}
| ¢
s
i é
: Figure 43. (Rart 3 of 3) i
| {
| s
‘ i
i t
% | 235 |
. . 1
i . B T T e !
-

e e e s < vee

e o % ot

3.9.6 Subroutina PRNTOF

PURPOSE : To produce optional prints for overlay FGD (options
1 and 26),

ENTRY POINTS: PRNTOF

FORMAY, PARAMETERS : IoPr - print option number

COMMON BLOCKS : C30, PAYSAV, SALVO, WADWEN, WEPSAV, WPFIX, XFPX

SUBROUTINES CALLED: Noue

CALLED BY: PRNTNOW

Mathod :

The formal parsmeter IOPT determines whether option 1 or 26 appears,
The result of these options appears in the Users Manual, UM 9-77, Volume

I1I.

Subroutine PRNTOY Ls illustrated in Fipure 44.

236

SN e e awe
Pt

. e sk e e e

L

START }

Execute Print
Request
Number 26

Execute Print

Request .

STU
Number l RLrlL RN
et —————————

Figure 44, Subroutine PRNTOF

237

P " ———— T

wa

o A‘_._..___.‘___v____x‘_.;___m;_w‘”
A

[v ea—a—,

R et pan e NIV

T e
e v

R

T r e e s by Ay

s

[

3.9.7 Subroutine RECON

PURPOSE : To reconstruct data for the WADWPN block.
ENTRY POINTS: RECON

FORMAL PARAMETERS : ICLSS -~ class index of group

€30, C45, FIL21, PAYSAV, SALVO, SMATAD, TGTSAV,

COMMON BLOCKS :
WADWEN, WEPSAV

SUBROUTINES CALLED: ALOG, SETPAY, TABLEMUP, VALTAR

CALIED BY: FRSTGD, SCNDGD
Method:

Subroutine SETPAY is called to select use of gravity bombs or ASMs from

the bomber groups. If ASMs are selected probability STK 2 is used iun Lhe

calculation of the survival probability STK and the MUP array. The MUP
3

XMUP, SSIG, and RISK arrays are comstructed according to the reguirzud
formulae,

The SMAT array is loaded depending upon whether the group is a MIRV,

Subroutine RECON is illustrated in figure 45.

238

-

e

i

AT

o st bt Aol 1 b S Vorn s

Kot s

CRaral T ¢
[NVIP TSNS Y

Call
SETPAY

Y

Bomber
Group?

R

Set SMAT
MIRV
Weapon? Axray For
) MIRV

RSP

Set SMAT
Array For

it i
PR P S S

-

i ‘,: Non-MIRV
1

Call VALTAR
g To Calculate
Fraction Of Value
When Weapon Arrives

#

| Calculate
‘ Value When
Weapon
Arrives

i) Make Group
Inactive

.
| m

_ Figure 45. Subroutine RECON (Part 1 of 2)

ey

239

- o o a

T Calculate Logs For
. ' RISK Array, Total

Reliability (RELT) '
And Its Log RELTL . ‘

Do For Both

(D] it oo
Components

I

*Do

g : Calculate Value At
i Arrival, Adjust PK And
{

e

Its Log. Convert PK's
To Exponentials.
Calculate Sigma '

Calculate
e RISK

Array

Figure 45. (Part 2 of 2)

240

Ty

3.9.8 Subroutine SETPAY

This routine sets the bomber payload indicators to

: PURPOSE:
specify use of gravity bombs or ASMs.
1
ENTRY POINT: SETPAY

Rl T 2 T AN

FORMAI. PARAMETERS: None

C30, CONTRO, DYNAMI, PAYSAV, SALVO, TGTSAV, WADWPN,
“EPSAV

<

COMMON BLOCKS:

_SUBROUTINES CALLED: None

R e e e i rn o e+ ot

CALLED BY: RECON

Method:

f This subroutine sets the bomber payload indicators (array ISETPAY in com—
E mon block /SALVO/). The setting calculation considers the allocation

’ rate of ASMs (array FASM in /SALVO/), the actual fraction of ASMs in each
group array GSEASM in /PAYSAV/, the damage difference between the weapons,
the average damage difference (array AVDE or /SALVO/), and the state of
allocation progress (variable PROGRESS in /CONTRO/).

Five local variables are of some significance to the calculation. The
variable IPREF is used for temporary storage of the payload indicators.
i A zero value specifies use of a bomb; a value of one specifies use of an
: ASM. The variable DEA contains the expected damage (ignoring the same
vehicle planning factors) if a bomb were used. Local variable CONPAY is
used to weigh the difference in allocation rates relative to the differ-
ence in allocation rates relative to the difference in damage expectan-
local variable PAYSENS is used to calculate CONPAY.

AR

cies.

The variable CONPAY is used to reflect the importance of the allocation
rate difference relative to the damage difference. As CONPAY decreases,
the allocation rate difference increases in importance relative to the
damage difference and vice versa. CONPAY is defined as follows:

_ PAYSENS

Thus, PAYSENS is merely a multiplicative factor, set internally by SETPAY
to a value of 0.1 which provides a base value for CONPAY. The denomina-
tor of the right-hand term of the equation represents the effects of allo-
cation progress. As the allocation proceeds, CONPAY decreases to put more
weight on the allocation rate differences. Variable CLOSE is a user input
parameter which determines the size of the closing forces. When PROGRESS
equals one, CLOSE increases to increase the closing forces. The table
below displays the values of the denominator for different values of
PROGRESS. CLOSE is set to its default value, 1.05, and CLOSER (another

241

S

NNt et vt e ot ot A i

input parameter) is set to its default value, 4.

Table CONPAY Denominator vs. PROGRESS

Denominator PROGRESS
1.02 A
1.275 .5
1.913 .75
2.55 1.00 (initial)
6.55 1.00 (after one pass)
8.55 1.00 (highest value of
denominator)

After PROGRESS equals on, the value of CLOSE increases by an amount CLOSER
for each pass at PROGRESS equal onme. The maximum number of passes with

this value of PROGRESS is 1.5.

When PROGRESS is zero or in a verification pass, the weapon with the
greater damage is selected for allocation. Also, the selection equa-
tions are bypassed if a group has only bombs or ASMs.

Figure 46 displays the logic or subroutine SETPAY.

242

—

2 e e ——— -

< REEALY

T

PSR

Tg!F‘

WY

W

< ST;TT)

Calculate
Control
Variable
CONPAY

:

Do 1000
For All
Groups

Is Group An
Active Bomber
Group?

Is Group All
Gravity Bombs?

Is Group All
ASMs?

Each

Yes Select ASM
R As

Do 10 For ————3=1 Accumulate

20

Select Bomb

Weapon

As |

Done @ RETURN

Weapon

Bomb And ASM

Hardness -
Component

ibone

Select Most

Damage

Progress Ot

Y

Load Preferred
selection Intd

Damaging Verificatio Indicator
Weapon Array
Figure 46. Subroutine SETPAY (Part 1 of 2)

243

469

.

R AP Y R 1 " A A e

r!,'f

ASM Which Payload BOMB

Is Underallocated?

100

Select ASM Select Bomb
as Preferred Weapon As Preferred Weapon

$

<i Is ASM More \\ Yes e Yes //ﬁ Is Bomb More -j>

Damaging? ‘J/f \\ Damaging?

‘No 4No

Calculate Allocation
Difference and Damage Calculate Allocation
Difference and Damage
Difference Ratios
Difference Ratios

! %

Yes Is Allocation Difference

Greater Than Modified ot Greater Than Modified
Damage Difference?AJ// \\\ Damage Difference? /

5 1 E

s Allocation Differencé\‘Yes

Select Bomb ‘ @ Select ASM
As Preferred Weapon As Preferred Weapon

Figure 46. (Part 2 of 2)

244

. Hawmsal o o

metamaia g

*
3.10 Subroutine SCNDGD

PURPOSE: To read in data on second and later ALOC passes
over the target list.

ENTRY POINTS: SCNDGD

FORMAL PARAMETERS: None

Cc10, €30, C33, DYNAMI, FIL21, FILL, FIRST, GRPHDR,

COMMON BLOCKS:
MULTIP, TARREF, TGTSAV, WADWPN, WEPSAV, WPFIX

SUBROUTINES CALLED: BOMPRM, DIRECT, FRSPLT, HEAD, NEXTTT, NXSPLT,
RECON

CALLED BY: MULCON

Method:

First, 1f this is the first target of the pass, units 15 and 21 and per-
haps 22 are rewound. Then the next target is read and all its data
accessed. Next files 21 and 15 are read in. If file 22 is in use for
this target it is read with its contents replacing those of file 15.
INACTIVE array is now loaded and the contents of file 15 (22) unpacked
into the WADWPN block. The previous assignments are now read and stored
in the DYNAMI block. Finally, BOMPRM is called to remove the assignments
effects from ASM totals and RECON is called for all groups.

The

The processing for split multiple targets is somewhat different.

Subroutine SCNDGD is illustrated in figure 47.

*
First subroutine in segment SGD -- all other routines appear in section
3.9.

245

P A A e d

AT DY

ESPEIN

st st v P

I e

(19"

Processing

Split
Multiple
Target?

Yes

A

Call
NXSPLT

End Of
Splits?

Yes

\
Unit 22
In Use?

_/

No

Y

Yes

Y
Rewind
Units 15
And 21

Call HEAD
For Target
List

Figure 47.

Call
NEXTT
For Next
Target

Y

End Of
Chain?

Yes

\
RETURN

Subroutine SCNDGD (Part 1 of 4)

246

Call
DIRECT And
For Target

Data

3

Y 1
Split Yes

Multiple >
Target?

Call
FRSPLT

No

A

Set Data
For Normal
Target

250 j«

Calculate
Data For
TGTISAV
Block

\

Read
File J|qg= = -=— — .
15

\
Read
File -
21

Figure 47. (Part 2 of 4)

247

AL L e s sttt Mt e s

Ve Lo

NN

« J.ﬁ 1

o ——

Read
File -
22

fFile 22
Needed?

No

\

Load
INACTIVE 4
Array

A

\

Unpack File

15 (or 22)

Into WADWPN
Block

Split
Multiple
Target?

Figure 47. (Part 3 of &)

248

e~ =

JR T T

s To e

enramnct ek SR % N o

e AP

I

W«_.wmm oo s A e

Set To
Read 1In
Assignments

10 \ 4

call

NEXTIT FoT jlg

Next
Assignment

Store
Assignment
In DYNAMI

Block

Call
BOMPRM To
Remove
Assignment

\

Increment

Counter

Weapon Group |

Figure 47.

249

Yes

(Part & of &)

Call
RECON

i e e s e S

s w

o

*
3.11 Subroutine STALL

PURPOSE:

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALIED BY:

Method:

*
This routine determines the sequence of weapon
additions and deletions requirad to achieve a
near optimum allocation of weapons to a target.

STALL

None

€30, C33, CONTRO, DYNAMI, MULTIP, SALVO, SURPW,
WADFIN, WADOTX, WADWPN

ADDSAL, INITSAL, RESTORE, WAD

MULCON

5TAIL controls WAD's addition and deletion of weapons by setting the
values of the following three variables:

WADOP

G

NW

in /CONTRO/
in /WADOTX/

in /WADOTX/

WADUP has the following options:

i

WADOP

WADQP

i

WADOP

WADOP =

1
2
3
4

Initialize allocation
Finalize allocation (optional print of results)
Add weapon from group (G)

Delete (Eﬂ)th weapon now on target

To ‘acilitate monitoring the operation of STALL, the variable STALPRIN
is :lso set to provide a unique indicator of the position in STALL

wheve WAD is called.

This variable is printed under the print option 22.

The Input data for STALL consists of the following six variables supplied
by WADOUT in /WADOTX/:

PPMX and IPPMX - the maximum potential increase in effective

profit for any weapon, and the index G to that weapon group,
respectively.

*
First subroutine of segment STAL.

250

e e o L

) S T
R T L A ORI | B

- v

g
-

.,\
&

W ‘;‘-,-w / AL

A i, s o e o

A e e e i ot v

e e e

B 2 S
A

PVRMX a-d TPVRMX - the maximum effective efficiency for any weap-
the index to that weapon group, respectively.

on, and

DPMN and IDPMN - the minimum marginal effective profit for any
weapon now assigned, and the index to that weapon in the 1ist of

weapons assigned, respectively.

The flowchart for STALL is in four parts., The filrst part contains the
setup and single weapon allocation phase. This phase provides a prowmpt
exit from STALL if the indicated allocation consists of one weapon or
less. This part also includes a dummy version of STALL which is used to
reproduce the prior allocation independent of current payoff data. This
option is used in place of the usual verification phase (when PROGRESS =
2) if IVERFY = 2. This mode of operation checks the effects of an alter-

nate level of interweapon correlation, CORR2.

Before going into the normal allocation phase, the initial value of the
time-of-arrival error allowance DELTVAL is saved, so that it can be re-
stored if it is necessary to change it. This quantity determines the
maximum fractional difference in target value at the time-of-arrival of
weapons that are allowed to use the same time-of-arrival bin in the cal-
culations by WAD. If the indicated allocation would result in an over-
flow of the available time-of-arrival bins, this quantity is increased
by STALL and the allocation is reinitialized for another attempt.

Before performing any operations, STALL first calls subroutine INITSAL.
This routine initlalizes the arrays in common block /SALVO/. At the end
of the routine, subroutine RESTORE restores the multipliers for the sal-

voed groups.

The second part of STALL processes the fixed assignment data. It puts
the weapons down on target. After inftializing WAD, the routine checks
the pass number. On the first pass, the fixed assignments were placed
in array IG by FRSTGD. In later passes, they are in the IGO array. The
statements after 126 determine the number of weapons the assignment re-
presents, Tf DEFALOC has made an allocation on the previous pass, the
nunber of missiles allocated from each group is shown as a nepgative num-
ber in the KORRX array. If the KORRX entry is positive, there is only one
weapon assigned from the group. STALL then checks the INACTIVE flag to
see if the weapon can reach the target. If not, an error message is
printed and the assignment request is ignored. If statement 443, WAD is
called to actually put the weapon on target. If the weapon is a salvoed
missile, subroutine ADDSAL is called to modify the salvoed weapon stock-

pile.

For the fixed weapons, no change to the variable SURPWP 1s made as the
weapon is allocated, since th variable controls the allocation of only

those weapons used by the methematical allocator.

1f the fixed weapon cannot be allocated because of its active flag
(INACTIVE (G)) prevents allocation, the error message notifying the user

251

“

PR P

T Tu S

T e b o o s S e

of this fact lists the reason for the inactivity. The reason is contained

in array MORRX for all inactive groups.

The third part of the subroutine provides an initial laydown of weapons
if multiple weapons are indicated against the target. As this laydown
progresses two types of array overflows could occur. The overflow of
available time-of-arrival bins has just been discussed. It results in
simply restarting the allocation. The other possibility is that the total

number of weapons assigned could exceed the maximum number (30) permitted.

In this event, control is passed to the refinement loop- just as it would
be in the normal exit at the bottom of Part III.

Part IV independently checks for such a potential overflow (near state-
ment 59) and if it is threatened, a cycle of operation is generated
through the connector that results in removal of the least profit-
able weapons (statement 52) and replacement by the most profitable avail-
able weapons (statement 56). This sequence is terminated either by en-
tering the normal refinement process when the residual target value is
reduced so that _no potential weapons remain profitable (statement 54), or
by using exit after statement 59 if no combination of 30 weapons can
be found which will reduca the target value sufficiently.

The operation of the normal refinement loop, which cycles through the
branch at statement 71 until the tests at statement 66 are satisfied, is
discussed in detail in appendix A and will not be repeated here.

Figure 48 illustrates segment STALL.

252

Yos PROGRESS-£Q-2

(START -

Ccall 1EINSAL
Inftialize
Salvo
Arrays

AA//——TE

90 v

call WAD, WADODH!
fo Initialize
To Zcro Weapons

And
TVERIFY <EQ°27,

Are ‘there
Fixed Weapons?

No

129 Y

Save Injtial
—p Value Of
Do Normal TO\ Lrror
Allocation Allowance

Enter To
Recycle
With larger
TOA Error

Gall WAD, WADOP=1,
To Initialize »
To Zero Weapons Y

here

Yes

< Are |
4 Fixed Weapons?y

No

.Are There
Any Potentially
wprofitable"

y

o *lw

call JAD,WADOD=
To Add

Specified
Keapon

89 Exit Routine

A)lowance

\

Call RESTORE
Restore
Salvo
Arrays

;

1all WAD, WADOP~
For

Optional Print

0f Final State

)

Resct 1o &
Initial \
TOA Lrror A

91 \
Do 92 For All
Weapons hone L No
o Previously gl
Assigned

Weapons?
Yes

Call WAD, WADOPw3,
To Add Mos*
vifficiont"

Keapon G=1PVRMX

Are There
Any Additional
"profitablie™
Weapons?

Go To
Multiple No
Weapon 9
Allocation AA_I//Hns Weapon Now
Loop Yes On Target Also

A

©- "
10 \

Estimtted As Most
wprofitable?

Call WAD, WADQDL=4
Then WARQP=3 To
Substitute 1he Most

Figure 48.

wpyofitable" Single
Weapon Gr1IPMX

Segment STALL
part I: Setup and First Weapon

253

BtY

—

i o s oo 1y n N Sk e

oot e

o —————— s & o Vet PRt g 3 e ey

TR TR T - s T
ey r

PRS- S UEORS O

e o e

=

T

=y

=

o L o e b

e et = i s e

130 * °
| Do 123 For All Fixed |

28

Save Initial Value
0f TOA Errou Allowance

y

Call WAD
To Initislize
To Zero Neapons

Done N @
i}

Weapons

Do

125 124
Get Group Number Yes . No Get Group Number
From IG Array Farst Pass? From Old Allocation
* >.< ‘
126 Y
Set WADOPal3

443

call WAD

Weapon Down

Call ADDSAL
Increment
Salvo
Stockpile

Yes

/ 1s
Veapon
Salvoed?

4

Increment

Get Number Of Weapons
From KORR Array

¥

Do 133 For All Weapons

Done

Y

To Put F———"1 0f This Assignment

;Do

44
No Print
((F Sufficient Range? Error
Message

JrYes
445

4

Ignore Fix
Request

Set STALPRIN
And Inactive Flag

Stockpile |-
Counter

Figure 48, Part II:
Assignment Processing

254

Fixed Weapon

PR,

e

.

e v admen ok Sy 2

e
we et p o o

R

I e

=

T ————— A .
e - e et an s e ot e b A i S e £

A — ,
VUV A e N

Try
Again

85

t111 Less Than
Maximum Number Of

Weapons On Target?

GCo To Refinement
Loop

Enter

i

Relax Error St111 Space In
Limit On TOA TOA Arrays?

*Yes

Yes
31

Call WAD, WADOP=3
Weapon G=IPVRMX,

As A Refinement

Add Most Efficient
Tentatively Note G

Tried IGTRIED(1)

33 [

Call WAD, WADOP=[4
To Delete Least
Profitable
Weapon NW=IDPMN

32

No Are All Weapons
Allocated Still
Profitable?

37
() No <

Substitute
Best Single
Weapon

Figure 48.

Yes
36

Is There Another
Profitable Weapon

)Yes
?

No

Ts More Than One \Y&5
Weapon Assigned?

Go To Refinement
Loop

Part III: Multiple
Weapon Laydown

- ——

T AT Ry
s -t .

et e oo Brson A

’
A

46

Set Maximum Number

Enter
0f Weapons To Remove; Set

47

52

call WAD, WADOP=4,
To Delete Least
profitable Weapon

Reset Number of
Weapons Verified
Select And Stored To
Best 7

x ero
single
Weapon 58

‘EI’Yes

1s Only
One Weapon Now No

Allocated?

No

Increment
Total Weapons
Tested
(KOUNT):KOUNT+1

66
Is KOUNT-GT*
QUALITY*NUM Or Have
All Weapons Been
verified?

Yes

Increment pointer,
IPOINT To Next Group
To Verify; If End Of
List, Recycle

Has A Weapon
From This Same
Group Already

Been Verified?

LYes

64

Increment Number
Of Weapons
Verified, NTRIED

Nw=1DPMN
51 ‘I:I’ 48

Number Of Weapons Tested

(KOWNT=0) 5 Set
tion Pointer 1POINT

verifica-

initialize To
Only Onc Weapon
Verificd And
stored

All Weapons
Now Allocated

49

Store As Only
Verified Weapon
1GTRIED(1)=G

S7

Store As A Ver.
And Increment N
Weapons Verifi

stored (NTRIED An

jfied Weapon
umber Of
ed And

d NSTORK)

Yes

1s This The Same
Weapon As That Just
peleted In Verifi-
cation Effort?

No

pProfitable?
Yes
Any OtheT 56
potentially Ca.ll WAD, WADOP=3,
'roﬁiﬁpbleﬂeapons” To Add Most
' Yes profitable Weapon
G=1PPMX
55 59 Yes
still Space N Miﬁxlmhﬁz:\bzgm
1 ?
T n TOA Arrays Weapons On Target?
85 y° 80 No
Relax flave Al}
TOA Error Weapons Been
Limit Removed Once?
Exit
X 81
Routiné Would Weapon
Just Addcd
start Be Removed Again?
Over 1 No 8
Substitute
Most Profitable 0 °
_weaponé, Regardless
0f Efficiency Exit
Routine

73
Fall WAD, WADOP=4,
To Delete
weapon To Be
Verified

part IV: Multiple Weapon

Figure 48
Refinement LoOOP

256

g e

e

wFborn mpnmirist A o7 €

T M e it o ot ok et aan % e em e PONEN

- —=
R e S AN

3.11.1 Subroutine FORMATS

This subroutine determines the best 10-column BCD

PURPOSE:
format for a variable.

ENTRY POINTS: FORMATS

FORMAL PARAMETERS: None

COMMON BLOCKS: FORMTT

SUBROUTINES CALLED: None

CALLED BY: PRNTOS

Method:

The variable to be formatted is INWORD, the first word in common /FORMIT/.
(This word is equivalenced to WORDIN.) The best 10-column format is re-
turned in NFORMAT, the second word of common /FORMAT/. The resulting
value of NFORMAT can be used in a FORTRAN output statement such as:

PRINT NFORMAT, INWORD.

The names WORDIN and INWORD are equivalenced to allow correct specifica-
tion (real or integer) for any possible input. The name NFORMT is in-
ternally equivalenced to the variable name NFORMAT for convenience. In-
ternal to FORMATS, the absolute value of the input variable is kept in
INABS, equivalenced to ABSIN for type specification purposes.

To determine if a number is fixed or floating point, the first 12 bits
of the absolute valuc are tested. If a bit is set, the number is assumed
to be floating point, since all normalized floating point numbers have at
least one bit set in this range. Thus, if an Integer quantity greater
than 16,777,216 s input, it will be treated as if it were a floating

However, no variable input from FRNTNOW can have a value

point variable.
Table 6

of that magnitud:, so this restriction is never a handicap.
presents the returned formats for each range of input values.

Subroutine FORMATS 1s illustrated in figure 49.

257

T e e e e e e _

L A A - S S S

e At

=

o

F -
P 8 e e e M % e e e

i Sl

Table 6.

RAN E OF ABSOLUTE
VALUE OF VARIABLE, X

0 or Integer Variable

0 <X < 0.0001

0.0001 = X = 0.999999

0.999999 <X = 99.9999
99.9999 < X =< 9999.99

9999.99 < X s 999999.9

999999.9 < X

Calculated Formats for Variables

FORMAT OF NEGATIVE

110

E10.1
F10.5
F10.4
F10.3
F10.2

F10.1

258

FORMAT OF POSITIVE

110

E10.2
F10.5
F10.4
F10.3
F10.2

F10.2

.

i .

3
N

;-

§

' 2

\ INABS =
A - INWORD
}

) -

P L R
P
PN .

< e o ot e

= e e v s < 2

R

e

START

< 0 /1woro \ =0 JFORMT
7 HI10

RS *
3

INABS = INNORD

P

Mask INABS To Determine
If It Is Floating Point

4 Floating Point?A):\‘—o—F
Yes
]
{ Greater Than 999999.9 Yes
No
6
{ Less Than .00017 yes
No
7
< Greater Than 9999.99?
lNo
9
< Yes
Greater Than 99,99997
No
11

Yes
Greater Than 0,9999997
‘No
13

NEORMT = GHF10.5

14 16
Positive? Yool NFORMT =6 HEL0.2
No
NEQRMT = |
6HE10.1 RETURN
8
NFORMT = OHF10.2 | RETURN
10
NFORMT = GHF10.3 | RETURN
12
NFORMT = OHF10.4 | RETURN

RETURN

Figure 49. Subroutine FORMATS

259

a e e we mwe —o oo

T Ay

ST e e e i D e o

N i < s e e e

v e oadp o o L

3.11.2 Function FMUP

PURPOSE: This function computes a survival probability
given a sum of kill factors for all weapons
allocated to the target.

ENTRY POINTS: FMUP

FORMAL PARAMETERS: S - A sum of kill factors
COMMON BLOCKS: WADWPN

SUBROUTINES CALLED: None

CALLED BY: WAD, RESVAL

Method:

This function is a straightforward application of the two damage laws
used in the system. The law used on the current target is determined

by the variable ILAW in common /WADWPN/. If this variable was set
positive in subroutine RECON, then the square root damage law is used.
Otherwise, the exponential law is used.

The input formal parametexr S is a sum of the kill factors (each prepared
by function TABLEMUP) for all weapons assigned to the target.

The value returned by the function is defined as follows:
Expouential Law
FMUP = exp (-S) (statement 1)

Square Root Law

FMUP = (L + fS) * exp (- /s) statement 2)

Figure 50 illustrates function FMUP.

260

ST

Rt

<Which Damage\Powel‘ Law

Law? / Exponential Law
%Square Root

OV ST S

2 Law

P

FMUP = EXP (- /S)*(1 +/ S)

RETURN

— o YA

eraiNr.

Figure 50. Function FMUP

261

i e s [

b
i
~~d
4
td
o
?1.
]
i
i
‘w
.
:
i
i
FMUP = EXP (-S) "
¢
b

RETURN ;

3.11.3 Function LAMGET

PURPOSE: This real valued function calculates the Lagrange
multiplier for salvoed missile groups.

ENTRY POINTS: LAMGET
FORMAT PARAMETERS: LAM - Initial multiplier
P — Salvo balance variable

ISAL - Salvo number

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED 3Y: DEFALOC, SALVAL (entry INITSAL)

Method:

Note that this function is a real valued function. 1Its correct usage
requires that a REAL LAMGET specification be present in the calling pro-

gram.

The formal parameters specify the original or first salvo multiplier
(LAM), the salvo balance variable maintained by PUPDT(P), and the salvo

number (ISAL).
The returned value LAMGET is computed as follows:
LAMGET = LAM -P * (ISAL -1) * LAM

Function LAMGET is illustrated in figure 51.

262

il

Yo

s — e e o

-

LAMGET=
LAM

LAMGET=LAM-
(P*(SALVO-1))
*LAM

Function LAMGET

Figure 51.

263

£
3
:
{
LS
¥
P
4
Vo
P
!
c
LK
r
.
4

e A e b

e

N

AN S

2

K

3

£,

i T TSP ' SV N

o -

gz e i
1o L ARG e e
B e SIS V-

/

C e e e o

7"

PR .

S M a o e

P S

”Y A

3.11.4 Subroutine PREMIUMS

PURPQSE: This routlue calculates the premium used by WADOUT
in evaluating the benefit of using or not using
weapons from specific groups.

ENTRY POINTS: PREMIUMS
FORMAL PARAMETERS: G - An Integer group nuwber
COMMON BLOCKS: C30, CONTRO, MULTIP, PREMS, SURPW, WPFIX

SUBROUTINES CALLLD: None

CALLED BY: WAD, DEFALOC, MULCON, SPLIT

Method:

The forma! parameter G specifies for which weapon group the premium is
to be recomputed. Three modes are provided for the computation of the

premiums, depending on the value of PROGRESS.

PROGRESS < 1,0 A normal linear premium is computed which
keeps the allocator from producing alloca-
tions with unnecessarily large deviations
from the desired allocation rate (statement

12).

PROGRESS = 1.0 The normal premium is augmented by a step
function which strongly wotivates the allo-
cator to exactly match the stockpile state-

went 1).

PROGRESS > 1.0 The subroutine exists with a zero premium for
use in verification allocations (statewent (0).

Since the calculatton of the step function premium requives the quantity
SMALLAM = .5 * LAMEF(G) for the lowest value of LAMEF, this quantity is
evaluated only on the f{irst call of PREMIUMS after PROGRESS is 1.0 (state-
went 18). Thereafter (sivce the values of LAMEF are frozen while

PROGRFSS = 1.0) there i{s no need to recompute this quantity.

PREMIUM is subtracted from the cost of adding a weapon. DPREMIUM is

subtracted from the cost of deleting a weapon.

Where a weapon surplus exists (i.e., SURPWP(G) >0), PRFMIUM(GY>0.0 and
DPREMIUM(G) £0.0. Where a weapon deficiency exists (f.e., SURPWP(G) < 0),

the reverse is true.

Figure 52 illustrates subroutine PREMIUMS.

204

[C RO

b

a o
N s koo oo N e, b

e s T
e,

-
o s

o

pre
e s+ o s s —omem sl g,

PU

S

e S RURRR o N 5 S0

e

10

START

No Linear In Percent
)? Reduction OF Absolute
Allocation

Exit With Zerof y.q Is
Prewiuns For PROGRESS+ GT- 1.,
Verification

14

o~ Sct First=1.0

18

Calculate
SMALLAM=. S*MINIE
(LAM(G)) ;

Set FIRST=0.0

Y

12

Calculate Novrwal PREMIUM,

No

Is
PROGRESS Q- 1.0?

Yes
16

«1~—Jﬁ51<i FIRST+ Q- 1.0?
No

To Close To txact Allocation,
Augment PREMIUM With
Step Function--Positive For
Moving Toward Allocation

RETURN

Note

Objective, Negative For
Moving Out Of Desived Area
(- . 5<SURPWP<, §)

-~Where a weapon surplus exists, (PREMIUM) is positive,
and the premium for deleting (DPREMIUM) is negative,

--Where a deficiency exists (SURPWP<O), the reverse

is true.

Figure 52,

Subroutine PRIMIUMS

\ d
o A R oy it .Ag

4
e ant st e i oM oty v

Y b S o s+ gt

3.11,5 Subroutine PRNTOS

PURPOSE:

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method:

To produce optional prints for overlay STAL (op-
tions 12 and 13)

PRNTOS
IOPT - Print option number

€30, C33, CONTRO, DYNAMI, FORMTT, PREMS, WADFW,
WADLOC, WADOTX

None

PRNTNOW

The formal parameter IOPT determines whether option 12 of 13 appears.
The result of these options appears in the Users Manual, UM 9-77, Vol-

ume III.

266

< %

[G

‘ START)

Execute Print]
Yes

Request
Number 13

No

Execute Print
Request

Number 12 +

Figure 53. Subroutine PRNTOS

267

3.11.6 Subroutine SALVAL

PURPOSE : This routine selects the preferred salvo for each
salvoed missile group, saves, and restores the
appropriate Lagrange multipliers.

ENTRY POINTS: SALVAL, INITSAL, NEWSAL, RESTORE

FORMAL PARAMETERS: None

COMMON BLOCKS: C30, CONTRO, MULTIP, PAYSAV, SALVO, TGTSAV, WADOTX,
WADWPN, WEPSAV, WPFIX

SUBROUTINES CALLED: GLOG, LAMGET, VALTAR

CALLED BY: STALL, DEFALOC, WAD

Method:

There are three entry points, INITSAL, RESTORE, and NEWSAL. Entry
INITSAL is called at the beginning of automatic weapon allocation in
STALL or DEFALOC. First, it saves the multipliers 1AM for each sal-
voed group in array SAVLAM., Then, for each group and each salvo,
INITSAL determines the salvo number and cost of the best salvo. the
profit of each salvo is defined as

PRi = VTARi -TLAMi
where VTARy is the value of the target at arrival time of salvo i and
TLAMj is the value of the multiplier for salvo i as determined by func-
ticn LAMGET. The salvo with the highest PRj is selected as the best
salvo. The salvo number is entered in array MYSAL in common block
/SALVO/ and the cost Lj replaces the multiplier for the group LAM.
Entry RESTORE merely restores the original values of the multipliers
(SAVLAM) back to the multiplier array LAM. Entry NEWSAL checks the
current allocation and running sum for the weapon just added or deleted.
If the salvo has been completely allocated, NEWSAL flags the salvo as
unavailable. Entry SALVAL is never used.

Entry INITSAL

This entry 1is the most complex of SALVAL. The local variable IAM is set
to "INITSL" to flap the exit points after statement 420 and at statement
500. The first processing (DO loop to statement 10) saves the Lagrange
multipliers (LAM) fu the SAVIAM array in /SALVO/. The major processlug
in INITSAL occurs in the DO loop to statement 100 over all the salvoed
proups, Within this loop, the DO loop to statement 00 javest [pates
each salvo to determine its worth, Array THAVE in /SALVO/ is used to
exclude salves from consideration. If IHAVE (X, J) is false, then
salvo I in group J does not have any available weapons and is ignored.
If weapons were available, a jump is made to statement 420 in entry

268

——
n
YRS Y

P s

N aT e

T = = -
e e o i sopctrnrat e o

A+ e

s

P S .

NEWSAL. That section of code, described later, determines if the salvo
to be considered is overallocated beyond its limit., If so, the salvo

is not further considered. If the salvo is available, function VALTAD

is used to obtain VTAR the target value for the salvo. Function LAMGET
is used to calculate TLAM, the multiplier for the salvo. The best salvo
is the one with the highest positive difference between VITAR and TLAM.
When this maximum is selected, MYSAL in /SALVO/ is set to the best salvo
number, LAM in /WPFIX/ is set to the appropriate multiplier. The arrays
TOA, 'TVALTOA, and VTOA (in /WADWPN/) are set to correspond to the arrival

time of the best salvo.

Entry INITSAL is illustrated in part 1 of figure 54,

Lntry RESTORE

This simple entry point uses a DO loop to statement 1000 to restore the
original values of the Lagrange multipliers (SAVLAM) to the multiplier

array (LAM).

This entry is illustrated in part 3 of figure 54,

Entry NEWSAL

This entry is used after each allocation of salvoed weapons to determine
if the salvo is still available, Each salvo has a maximum limit of
overallocation., Before PROGRESS equals one, this limit is +225 whicn

is the largest number which can be stored in the NSALAL array. (A de-
scription of the structure of the NSALAL acray is contained in the Method
section of subroutine ADDSAL, in this chapter.) When PROGRESS equals
onc, a more severe limit is imposed in order to accelerate closure to
the stockpile, In this case the limit is zero. That is, a salvo is
available only if it is underallocated.

To exit from this entry, local variable IAM is checked. If it is
"INITSL," then the original call was to INITSAL and control passes to
statement 220 in entry INITSAL. If it is 'NEWSAL" the routine exits,

Note that if a salvo is unavailable because of limit on a call to NEWSAL,
the routine attempts to find the closest lower available salvo., If none
can be found, then MYSAL is set negative to flag that no salvo is avail-

able for this group.

Entry NEWSAL is illustrated in part &4 of figure 54,

- In line function IHAVE extracts information from logical array LXIHAVE,

269

st S et st i

P

TP T

*
R S ok

b L6

3 ¥
bt e o g
e o ot Sl

‘ START Eantry INITSAL

10

cave Values Of
Multipliers
For Salvoed
| Groups

_ > po 100 For Done
Each Group

Set Salvo
Index To
Zzero

Is Group
Salvoed?

Is Group

Active?

Save Launch

Timing And

Initialize
Profit

Do 300 For
Donel Each Salvo
[n Group

-t

Are Weapon
Available?

Figure 5&4. Subroutine SALVAL
(Part 1 of 5: Entxy INITSAL)

270

e

el

220

VALTAR
Calculate Tar-
get Value At
Arrival Time

Is Value
Zero?

LAMGET

Compute
Multiplier

%

Calculate
Profit Equal
To Value Minus

Multiplier

Is This
Greatest Profit
So Far?

Save Salvo Num-
ber, Multiplier,

- TOA, Values,

And Profit

Figure 54. (Part 2 of 5)

271

AN

A et 338 e Ao 2 Bt e AT .
ok B Ao e 4t

B

S

g

TSI

Al

A nin o g bl H e

Done
t RETURN

%
B
~§ START
;o
|
3 Do 1000 For
i ————3=1 All Salvoed
A Missile
Groups
Do
| Restore
Saved
Multiplier

Figure 54. (Part 3 of 5:

272

Entry RESTORE)

S 8 e s e

START

Save Entry
Name And
Select
Salvo

Is Group
Salvoed?

Figure 5&4.

Calculate

Indices To

NSALAL And
KAYSAL Arrays

+

IGET
Retrieve
Current
Stockpile

!

Set Array
Overflow
Limit

(Part &4 of 5:

273

Entry NEWSAL)

TS
" ‘w%ﬁwmm i Mv

M M b gy hE e SY

oy o M,

I

|
@ i

Yes Set Limit To Decrease
—» Allow No Salvo Number .

Qver- By One
allocation

et

Is Progress
1.0?

Is Salvo NQ

Available?

T et b $0 e vy e st

No Available
Salvo

+

RETURN

Figure 54. (Part 5 of 5)

@ Set MYSAL Neg- .
ative To Show :

274 -

et oot

Ten weree wh o [
:

[EPNR.

FESUSVA S,

et s i i

ST

[N

Zam
s

7

== —
et e e bt et o e, et ity

e —

T i
RSP

T

Vi
I A

!,-'«-—-. R :2\-?“ .

3.11.7 Subroutine SPLIT

PURPOSE :
ENTRY POINTS:

. FORMAL PARAMETERS:

COMMON BLOCKS:

. SUBROUTINES CALLED:

CALLED BY:

Method:

To split multiple targets for allocation purposes.
SPLIT
NEWSP - Number of targets to be split off

€30, €33, DYNAMI, MULTIP, SPLITS, SURPW, WADFIN,
WADWPN

PREMIUMS

DEFALOC, WAD

If target has not been split before, the index*and offset™for its file

25 record are calculated and the record read in,
in the file 25 buffer and the split data set into bleck C33.

The C33 data is stored
If target

has been split before the new split is set up using the data from the

old split and rearranging the file 25 buffer.

In either case, the weap-

on surpluses are adjusted and the premiums recomputed.

Subroutine SPLIT is illustrated in figure 55.

*
C33 data is stored on file 25 after any weapon group records. There
are five C33 sets possible per multiple target and three target data

sets per file 25 record.

275

¢ e

U

PRI e a——

J e

o il D e g s e

o sty e peree < e

et e emtls e s

ey T—— -
© o oot o e

Split Indicator

Size Of Remainder

Turn On New

And Calculate

No
2
Yes
Calculate
File 25
Index And]
Offset ,
H
Read Index i §
4/
i
%
Store Block \ }
C33 Data
In Buffer %
Set Basic .
Split Data !ﬁ
Into .)
Block €33 ‘
i
‘(/)
8
Figure 55. Subroutine SPLIT (Part 1 of 2) é
'y
;
276 |
i s

o eh Al ampact et 2l

L R S L)

| ‘_
et drtors e v o —u i

Calculate
New
Split Data

!

Move Contents
0f 01d Buffer
To New Buffen

Reset
Weapon
Surpluses

!

Call
PREMIUMS
To Reset
Premiums

Figure 55. (Part 2 of 2)

277

g e

£

R W P g

e e em o a—

I MO

3.11.8 Subroutine WAD

PURPOSE :

COMMON BLOCKS:

This routine carries out the addition and deletion
of weapons as specified by STALL. After each
change in the allocation to a target WAD computes
the surviving target value VT; for each potential
weapon G, the potential surviving value VIP(G) if
a weapon for that group were added; and for each
weapon currently on the target, the potential sur-~
viving value VID(NW) if a weapon from that group
were deleted.

ENTRY POINTS: WAD
< FORMAL PARAMETERS: None

C30, C33, CONTRO, DYNAMI, MULTIP, PREMS, SALVO,

SURPW, TGTSAV, WADFIN, WADLOC, WADOTX, WADWEN,
WEPSAV, WPFIX

SUBROUTINES CALLED: ADDSAL, FMUP, NEWSAL, PREMIUMS, PRNTALL, SPLIT,
WADOQUT

CALLED BY: STALL

Method:

The surviving target value VT is given by:
J=M N=NN

= 2 Z [vaw,) vy + 1,07 * s®,J)
J=1 N=0

| where

S(N,J) = FMUP [(MU(N,J) ** 2)/(MU(N,J) + SIG(N,J))]

. The function FMUP(X) is defined as follows:

Exponential damage law:
S(N,J) = FMUP(X) = exp (=X).
Square root damage law:
S(N,J) = FMUR(X) = (1 +VX) (exp (-VX)).
The index J is over the hardness components, and the index N is over the

time of arrival bins., V(N,J) is the unattrited value of the Jth hard-
ness component at the time corresponding to the Nth time-uf-arrival bin.

278

AN e e ek . e e e oy s

T g G e ary e
- - -

Nt s

o o com

T

e P

2T

MU(N,J) is the summation of MUP(G,J) for all weapons arriving at the
target through the Nth time-of-arrival bin,

SIG(N,J) is the summation of all the cross terms (relative to the Jth
hardness component) between all the weapons on the target by the Nth

Lime~of-arrival bin.

‘The caleculations indicated above are carried out by WAD in sets of
scratch arrays and computation arrays that make it possible to retain
all intermediate values in the calculations. The resulting scratch pad
i1s then referved to and used wherever possible in computing the modified
value of VI,VIP(G) if a weapon G is added, and the modified value of

VI,VID(NW) in the (NW)th weapon is deleted.

Table 7 will help to visualize the scratch pad results that are stored.
This illustrates the calculation at a time when there are three weapons
on the target (NUM = 3), which use two time-of-arrival bins (NTOA = 2),

and there are two hardness components (M = 2).

The first time-of-arrival bin always corresponds to O time and reflects
the maximum target value, VAL(1l) = 100, in the example, Bin number 2
corresponds to the first actual time of arrival and it contains two wea-
pons NWP(2) = 2, but the unattrited target value at that time is lower,
VAL(2) = 60. Thus, 40 units of value are assumed to escape before the
[{irst two weapons arrive, Similarly, an additional 20 units are assumed
Lo escape before the last weapon arrives. The total value, 100 units is
assumed to be distributed 80-20 between the two hardness components
(Vo(1) = 80, vO(2) = 20). The calculation is carried out in parallel
for the two harvdness components JH = 1, JK = 2, The total surviving and

escaping value for each component, VSN(4,J), is added to obtain the total

surviving value:
VI = 57.6 = 48,0 + 9.6

The Intermedinte computation values not previously defined, VS and VSN,
are defined as follows:

vs(N,I) = [v@e,d) vy + 1,0] * SO,

NI=N
VSNQN + 1,3) =), VS(NL,J)
NI=1

These calculacions which constitute the core of the calculations of WAD
are carried out in statements 400 through 406 of WAD,

It is useful to visualize how this computation (as illustrated in table
7 would be revised if a new weapon were added. The new weapon might
have a time of arrival between bins 2 and 3, 1In this case a new column
3 would have to be created for the weapon and the contents of columns 3
and 4 would have to be moved over. MU, SIG, and S for column 2 would be

unaffected by a weapon arriving at a later time and would remain unchanged,

279

B - J!

e s s

[U PR

VT
NUM
NTOA
M

Ju=2
V0 (2)=20

o onn

T1lustrating Calculation of Actual Payoff on Target

Table 7.
TIME OF ARRIVAL CELL 1 2 3 4
NWP(TOA) 0.0 2.0 1.0 0.0
VAL (TOA) 100.0 60.0 40.0 0.0
Hlardness Element
JH=1 v (TOA,J) 80.0 48,0 32,0 0.0
VO (1)=860 MU(TOA,J) 0.0 .90 1.70
SIG(TOA,J) 0.0 274 .385
S (TOA,T) 1.0 .50 .25
VS (TOA,J) 32.0 8.00 8.00
VSN (TOA,J) 0.0 32,00 40.00 48.0

llardness Element

V (T0A,J) 20,0 12,0 8.0 0.0
MU (TOA ,J) 0.0 2.0 3.0
SIG (TOA,J) 0.0 .48 L915
S (T0A,J) 1.0 .20 .10
VS (TOA,J) 8.0 0.80 .80
VSN (TOA, J) 0.0 8.00 8.80 9,60
57.6
3
2
2

280

o

[=Ne]

[

AR T TR
)

o e e e

However, the value of VS would be changed since the value of V(N + 1,J)
should now reflect the tarpet value fov the new column 3 and would be
Wipher than the 32,0 aow shown for column 3,J0 1. The value of MU

and LG tn the new cotumn 3 would be the sawe as that o column 2 ex-
cept that MU would be augmented by MUP(G,d) tor the new weapon and 81a
would he augmented by the croas term between he new weapou and all other
weapons on the target at that time. The same rule ol course appliecs for
all suceeeding tlme-of-arrival bins., In each following column (includ-
Ing old column 3, now 4) the previous value of MU is increased by MUP
tor the weapon added, and the value of SIG 1s increased by the cross
terms between all weapons previously on the target and the weapon added.

Of course, the new weapon might fit into one of the existing time-of-~
arrival bins. In this case it would be unnecessary to make a new column,
and 1t would be unnecessary to recompute VS for the previous column, The
value of MU and SIG would simply be augmented in the corresponding col-
unn and In all succeeding columns as before. Naturally, after the values
of MU and SIG are revised, the value of S must be recomputed and the VS
and VSN must be revised in the columns affected,

We now recall that WAD is i1equired to provide potential weapon added
tarpet value VIP(G) for every weapon group each time a weapon is added
or deleted, Obvlously the calculation every time of all the above cross
torms could be very time consuming. Moreover, precalculation of all in-
dividual cross terma for 250 weapon groups would be equally lmpractical,
The techulque adopted, therefore, was to calculate cross terms for each
weapon group, but only with the weapons already on the target., Since
the process of augmenting the values of SIG must be carried out indi-
vidually for each time-of-arrival bin, the resulting data are stored

by time-ot-arrival bins., That is, for each weapon group G and each
time~ot-arrival column, N, data are stored which indicates the amount

by which SIG would be Increased in that column 1f the weapon G were
added, These data are stored in the array SIGP(G,J,N). Using these
data, the effective augmentation of SIG to calculate VIP(G) for each
weapon group G can be accomplished simply by adding SIGP for the appro-
priate column, and the augmentation of MU is accomplished simply be add-
ing MUP for each weapon G,

Table 8-A may help to visualize how these data are used, Each potential
group G 1s tagged with the index ITOA(G) of the time of avrival column
it would occupy if it were added. In addition, it is also noted whether
the weapon would generate a new column (IADDTOA=1) or share the column
with the weapons already there (IADDTOA=0). The situation illustrated
here in table 8 corresponds to the same one illustrated in table 7, No-
tice that for each weapon group G the arvay SIGP(G,J,NI) ~ontains a sig-
nif{{cant (usuatly nonzero) data for NI ITOA(G) -IADDTOA, The extra term
fn the column NI = ITOA(G) -1 for rows 1 and 5, where the weapon group
would vequire a new column (IADDTOA=1), is to provide a term requirnad
for the new columns 1§ this weapon were added., Since addition of this
weapen would move all columns (including its own) one position to the
right, the resulting term would be in the proper position after moving,
even though it is In an incorrect column at present,

281

R — -

i

o eee g bbcih]

PO

Table 8. Illustrating Quantities Calculated for
Potential Weapon Added and Deleted
Payoffs

A. Data on All Potential Weapons

o VIP TITOA IADDTOA J DSIG, 3 NI=1 NI=2 NI=3 NI=4
©G) (6 (6)

1 2 0 1 .021 0.0 042 .063
2 .103 0.0 .206 .659
2 3 0 1 .052 0.0 0.0 45
2 .660 0.0 0.0 4.23
3 2 0 1 274 0.0 .548 1.653
2 .780 0.0 1.560 1.880
4 3 0 1 .005 0.0 0.0 .010
2 .020 0.0 0.0 .040
5 4 1 1 .003 0.0 0.0 .007
2 .009 0.0 0.0 .018

B. Data on Weapons Now on Target
(As Candidates for Possible Deletion)

SIGD(NW,J,NI)
NW IG (W) VTD (NW) J NI=1 NI=2 NI=3 NI=4
1 2 1 0.0 0.0 - .105
2 0.0 0.0 -1,32
2 3 1 0.0 - 274 - .052
2 0.0 -1.560 - .660
3 3 1 0.0 - 274 - .052
2 0.0 -1.560 - ,660

282

AN

[PV SIUICUNVN TNy

U PN

ST

"~ -
C g
»

e

e

Just as the information in table 8-A is used to provide values of SIG
for computing VIP(G), the array SIGD in table 8-B is used to provide
values of SIG for the computation of VID(NW). This table contains an
entry for cach weapon currently on the target. The array IG(NW) in this
case Indicates that three weapons have been assigned, first {rom group
2, then group 3, finally another from group 3. The role of SIGD exactly
parallels SIGP; that 1s, to obtain the potential value of SIG 1f a weap-
on were deleted SIGD is added to SIG in each column. Since SIGD is
negative, this has the effect of cancelling out the cross terms for the
weapon that would be roemoved, 0f course, if removal of the weapon would
reduce the number of weapons in a time-of-arrival column to 0, the fol-
lowing columns would be spaced back to avoid unnecessary columns,

In summary, table 7 contains the scratch pad data used to calculate the
actual payoff. Table 8-A contains the corrections SIGP for SIG needed
to calculate the corresponding weapon-added estimate VIP(G) for each
weapon grouvp (. Table 8-B contains the corrections SIGD for SIG needed
to calculate the weapon-deleted estimate VID(NW) for each weapon NW now

on the taryet.

These arrays SIGP and SIGD are kept continuously up-to-date as weapons
ave added and deleted. TFor example, as illustrated in table 8, the

last weapon added was from group 3. Thus the last set of cross terwms
computed would have been the cross terms between group 3 and every other
proup. These cross terms are shown in table 8-A in the array DSIG(G,J).
When the last weapon from group 3 was added, these terms were computed,
and for cach weapon G they were added into the array SIGP in all time of
arrival columns where both the weapon G and the weapon 3 would be pre-
sent. TIn the array SIGD the same quantity:

DSIG (IG(NW),J)

is subtracted out for cach column where both weapons are present, thus
removing the contribution of the weapon, IG(W), to SIG in the calcula-
tion of VID(NW).

Whenever it is decided to add or delete a weapoun from a group, KG, the
local subroutine CALSG is called to calculate the array DSIG(G,J) to ob-
tain the cross terms between KG and all potential weapon groups G, CALSG
is contained in statements 100 through 108 of WAD.

Table 9 (only partly filled out) illustrates some of the input data re-
quired by WAD. The array RISK(IAT,G,J) is used in calculating the cross
terms DSIG, However, those elements contribute where the particular

attribute (class, type, etc.) is shared,

The shared attributes between weapon groups Gl and G2 are determined by
checking whether JATTRIB(IAT,G1) = JATTRIB(IAT,G2).

The [lowchart for WAD consists of 14 parts. Part I shows the overall
flow of the subroutine, The main processing by the subroutine is

283

0°C z w.m
0°g 1 0°01 c°1 z < w
6°L r4
g'1¢ 1 L° 6% cc* 0 Vi
0°z1 ¢
g'gy 1 0°09 £z7° 0 € ,
0°g z !
o°ze 1 0°0Y ne* v} z
0°0T ¢
ooy 1 0c gc” 0 1

191y 34XL SSVID NOIOZ¥ dno¥d A1y (£€9) (£9) (£°D) (o (9 6)])] {9

9=1¥1 G=1vi %=1V ¢=1V1 z=1¥1 1=IVI 9ISS dml VOILA £ WHOX X3ad VOI-IVAL VOI AATLONT D

pai1eD ST aAYM 2103249 uodeay TeBIauslod yoed 103 pa3eInoied-21d gatatauenp Supleiszsniii 5 2149EL

controlled by one of the controel programs depending on the WADQP option
chosen (initialize, add, or delete). The following three parts each
illustrate the operation of one of these control programs, Each control
routine utilizes a number of other local subroutines, as well as exter-
nal routines (sce figure 56).

The Add Weapon Control routine (Part III) will be used as a vehicle to
1lluatrate the operation of the program. Once the operations of this
routine are understood, the corresponding operations in the other rou-
tines should be obvious,

The routine first checks to be sure that the number of weapon additions
and weapon deletion operations, IOP, on this target does not exceed 100,
If it does, it is assumed that STALL and WAD are caught in an endless
loop probably repeatedly adding and deleting the same weapon, so the
processing of the target is terminated, In principle, such looping
should not occur. However, it has been found that errors in reading
file data for one target, or a random machine malfunction, or inconsis-
tencies in the data supplied to the program can sometimes result in such
a situatlen. This makes it possible Ffor the program te proceed to the
next targoet rather than aborting the entire run, However, when this
happens, the LOOP flag is set nonzero., This causes the print in state-
mont 41 to appear during the initialization of every succeeding target,
so that the usexr 1s sure to notice that the diflienlty occurred,

tovever, assuming that no such loop has occurred, the routine adds the
Lapvange multiplier for the weapon added te the COSYT of the allocation
and also updatoes SUMPREM, the sum of the premiums for the tavrget. (This
Llast variable SUMPREM, as well as the variables TBENEFIT and TPMX near
statoment 14, are computed only to provide a consistency check on the
treatmont of promlums, These variables are not essential to the opera-
tion of the program,) Notice that these variables and almost all other
variables used by WAD such as VI, VTP, VID, PAYOFF, PROFIT, etc. ave
computed (evon for multiple targets) as if the program were dealing
only with a single siwple target. Tt is necessary to take target wmulti-
plicity dnto account only when dealing with variables which accumulsate
the total cost, total payoff, or total consumption of specific weapon
groups over the whole tavget system,

The PREMIUMs used by the allocator, however, depend on just such a vari-
able == namely SURPWP(G), the avallable surplus (positive or negative)
of umusad weapons in oach group G, Consequently, whon a weapon G is
addad, the PREMIUM for that weapon group must be recaleuwlated, Before
it 1s vecalculated, SURPWP(G) must be vevised as it is in statewent 7

to reflect the multiplicity of the tavget; i,o0,:

SURPWP(G) = SURPWP(G) ~CTMULT

The variable CTMULT, curvent target multiplicity, 1s used rather than
the initial wultiplicity TETMULT, bLecause when PROGRESS 1s equal to 1.0

a muitiple target can be split into geveral parts of reduced multiplicity,

285

oniad

T bt ettt et n i st

U
POV,

7T

LRV o

e

The local subroutine SPLIT (Part VI) which begins with statement 9 is '
responsible for determining if such a split is needed, and for carry- .
ing out the adjustment of bookkeeping on the arrays SURPWP and PREMIUM

if it is. To avold unnecessary computation by WAD, SPLIT is designed

to minimize the number of times multiple targets are split up. The !
intent is to avold separating multiple targets, unless retaining the !
full multiplicity of the target during the allocation of the weapon in- \

dicated would cause a weapon surplus >.5 weapons. Such a change in .
SURFWP should cause the step premium for the groups to change from posi- i
tive to negative. Obviously it would be a mistake to keep allocating as
if the same premium would apply. Therefore, when this happens the tar-
get is split into two parts. One part, CTMULT, containing the largest
multiplicity that could be allocated a weapon from one group without i
causing the premium to go negative, the other part, CTSPILL, containing
the remainder.

After this is done, it 1s necessary to correct the value of SURPNP and
recompute the premiums, To understand what is required to do this, we
must recall that when MULGON began the allocation to the target on this
pass, it removed the weay»mus previously assigned to all the elements ot
the multiple target and tuus increased SURPWP by the multiplicity for
each weapon previously assigned. If a decision i now to be made that
only part of the target is to be dealt with, the old allocation should i
in effect be restured for the remainder of the target elements, Thus,

in statement %1il, SURPWP is decreased by the change in multiplicity for

each weapon previously assigned. Conversely, while the present alloca-

tion was proceeding, SURPWP was being decremented by the multiplicity

for each weapon assigned. If we now intend to interpret the allocation

as applylng only to a part of the total multiplicity, then the value of

SURPWP must be increased as as in statement 908 by the change in multi-

plicity for each weapon already assigned. Finally, since the value ol

PREMIUM(G) depends not only on SURPWP(G) but also on CTMULT for the tar- :
get all premiums are recomputed (statement 930), This completes the v
bookkeeping corrections made by SPLIT. A slightly different version of 3
SPLIT beginning at statement 21 is used by the deletion control routine.

In this case the question is whether deletion of the weapon group for

the full multiplicity would cause a deficit > .5, Aside from this ob-

vious change in sign, however, the operation 1s essentially identical,

In both versions of S2LIT, subroutine ADDSAL is used to modify the stock=-
pile for salvoed missile weapons.

When SPLIT has completed its work, the program proceeds as usual to up-
date SURPWP for the weapon now being added and PREMIUMS (G) 1is called an |
usual, &

Both the add and delete weapon processes exit WAD through statement 1.,

At this statement, WAD cul!ls: 1) ADDSAL to update the salvoed weapon .
stockpile; 2) NEWSAL to determine if the preferred salvo {s still avail-

able, and 3) WADOUT to calculate the decision variables for STALL, Attw

these calls, WAD updates the payoff, cost, protfit and benefit variables.

286

N
LRSS G P S

The maln functioning of WAD, however, proceeds after the stockpiles have
been set and premiums calculated for each weapon group. This function
consiscs of updating all the arrays in tables 7 and 8 to reflect addition
of the weapon G, The process 1s accomplished by calling a series of lo~
cal subroutiues,

First CALSG (Part VII) is called to compute the cross term array, DSIG,
fn table 8-A. Then ADDSIG (Part VIII) is called to update the arrays
SIGP and SIGD, For maximum efficliency, the revision of the arrays, SIGP
and SIGD is done one column at a time, working from right to left and
dealing only with those columns affected by the weapon G, If the weapon
¢ adds a now column, the column NI = NWRT where the augmented results
are yritten will be displaced one column to the right of NI = NRD where
the original data were read. However, before actually updating these
two arrvays in each column, the data currently in SIGP in that column are
used to update SIG in table 7, Since this value of SIGP was required to
add the weapon G, the negative of it would be required to delete it.
sonsequently, at the same time SIGP is simply negated and stored in SIGD
to produce a new row (NW = 4) for the weapon G in table 8-B., All of
these operations required to update SIG, SIGP, and SIGD are done in
series for the same read and write columns, one column at a time uniil
the updating is complete,

Next, ADDIND (Part IX) is called to update all the indices to reflect
the addition of the new weapon. The indices which must be updated are
in table 7 NUM, NTQA, NUWP, VAL, in table 8 ITQOA, IADDTOA.

When this has been done the payoff computations begin. CALPAY (Part
X1I) is called {irst to calculate the actual payoff (table 7)., Since
this involves on y one calculation it is done in a very straightforvard
wvay and 1s completely recalculated for all columns, Thus, the subrou-
tine CALPAY is very straightforward and easy to understand.

The updated information in table 7 is then used as a basis for caleulat-
ing the weapon added payoffs (CALPOT, Part XIII) and the weapon deleted
payolfs (CALDEL, Part XIV). To avold any need for additional arrvays to
store {ntermediate results these caleculations are done (both by CALPOY
and CALDEL) one weapon group snd one hardness cowmponent at a time work-
ing straight down the lists in table 8, For each group and wvach hard-
ness component the caleulations then work from left to right dealing
only with columns affected by the new waapon., For the columns in table
7 that would be affected, revised values 81 of § and VSN1 and VSN are
computed working toward the right to ocotain the final values which can
be added to obtain the revised value VID for the weapon deleted calcula-
tions,

When all payoffs. have bheen calculated, WADOUT is called suwmarizing the
results for STALL, and finally the actual PROFIT, and PAYOFF, BENEFIT,
ete., are computed and stored so that they are avallable to be printed
if such information is requested. WAD then returns contvroel to STALL,

AN

P

e

iy DL R

=7 \
I L L T O

N

m e b ep———r— o

The control routine for weapon deletion exactly parallels the above pro-
cedures except that SUBSIG and SUBIND replace ADDSIG and ADDIND, SUBSIG
parallels ADDSIG almost exactly except that the order of processing col-
umns is reversed to avold writing over essential data as columns are

spaced back, SUBIND differs from ADDIND mainly in that indices are de- .
cremented fnstead of incremented, .

The initialize control routine (part II), and the local subroutine

INITIALIZE {part V), are concerned with establishing the starting state

for the allocation to a target. After the discussion of the aad and

delete routine, the flow diagrams should be self-explanatory., However, :
a couple of comments may be appropriate, For computing efficiency the

initialization is limited to the minimum required to provide the start-

ing state. Many cells in SIGP and SIGD are not initialized and irrele-

vant data will remain in many cells. Thus on targaets after the first :
target during the allocaticn, many cells shown in table 8 with irrele- "
vant zeros, may in fact contain irrelevant data that will not be refer-

enced. Particular attention is called to rows containing inactive weap-

ons. These rows will not be reinitialized at all and thus will contain

much irrelevant data for prior targets.
On the initialization call, the only nontrivial payoffs that need to be
computed are the potential weapon payoffs VTP(G). Since at this stage

these all involve only one weapon, the correlation cross terms are irrele-
vant, Consequently the simple formula,

S = FMUP (+ MUP(G))

can be used,

288

‘\—-—”

O D VG

e e s b i o o

i ————— o+ e

] y

Initialization
Skip Print

Durmy Call
To Print
Final STALL
Decision
PRNTALL(9)

WAD
Sumnary Flow

YADOP=117

Yes

Call PRNTALL(9)
Optional Print Shows
Decision By STALL And

Prior Payoff And
Potential Payoff
Supplied To STALL

Y

3

Error (WADOP>4),
Set Loop
Negative As
Error Flag

43

Initialize Control

Initialize All WAD
Arrays For Zero Weapons
On New Target; Set
Surviving Target Value
(VT=V10); Calculate
Potential Target Value
If Any Single Weapon

Add Control

Add One Weapon From
Specified Weapon

Group (G); Calculate
Surviving Target Value
(VT) And Potential
Value If Any Single
Weapon Added (VTP(G))
Or Deleted (VTD(NW))

Delete Control

Delete (Ni)th Weapon
As Specified; Calcu-
late Revised Target
Value (VT) And Poten-
tial Value If Any
Single Weapon Added
(VIP(G)) Or Deleted

[P

M

Added (VIP(G)) s

[

}

| 43 i

‘l N

: RETURN

: ;
;E i
[[}
| ?
B 5
Ic‘ Figure 56. Subroutine WAD { ‘
] Part I: Summary Flow P
! |
v‘: . .
b |
Vo §
¥ 289 B
é y

LS OANINLT AN
N\

TR

b el _(8m e e g AVes AR et A ‘n e

LA L
N b e i rn Vi o ¢ 2/

16

Initialize
Cost=0.0
SUMPREM=0.0

Y

Set Kill Level
Specifications For
Target--Inplementing
MINKILL, MAXKILL;
Initialize Target Value
Factor (ALPHA=1.0)

Y

Initialize Maximum Potential
Benefit (TMPX=0.0) And Number
Of Weapon Additions And
Deletions Counter (I10P=0)

2 Y

Call INITIALIZE®
Initializes Internal
WAD Arrays And Calculates
VTP(G) For All Groups

4 Y

Call WADOUT
Uses VIP(G) To Calculate
Decision Variables

¥

Initialize Payoff And
Profit To Zero; Sect
MAX Benefit From
WADOUT (TPMX=PPMX)

No /Hlas Loop \ Yes

RETURN

RETURN d

Figure 56, Part II: Initialize Control

*Local Subroutine

\ Occurred?/

290

display Er

Flag

= —————

BAK

AT

[ARY4

o e e . e e e

|

T et i et e

Add LAMEF(G) To Cost For
Target And Add Premium

OF Premyums For Target

For Using -0 To Sum

Is I0P-GT+1007

Call SPLIT

Splits Multiple Targets Into
Lower Multiplicity When Uesir-

able For Closing To Exact
Weapon Stochpile

beeronse SURPRP(G)
Tor Weapon Greup L‘

Alded--By Current
Tavget Maltiplicity

i

901

Assume Program
Looping--Sct
I1llegal NTOA

RETURN

\

Cull PREMIUMS(G)
To Update PREMIUM(G)
For WALOUL Reflecting
Chango In SURPRP(G)
Call PRNTALL(20)
For
- WADOUT Results
Call CALSGY
for Bach Weapon Group Y. 3 T
Calculates Addition DSIG - ’ 1
Ta Correlation Term Undate Profit
For Weapon (G) pe) s
: ¢ Payoff, Benefit
Call ADDSIGY 1
Updates MU And SIG In Call WADOUT
Payoft Bstimate, Add DSIG Calculates Decision
Into Potential Payoff Variables For E l
katimate STALL.
8] 10
Call Abbn® & Calls
Updates Al Indices To CI\L&‘M Actunl Payoff
Refleet Addition Of 1 { CALPGT Weapon Added Payoffs
Woupon (G) CALDEIY Weapon Deleted Payoffs
12
. NIWSAL
: ADDSAL w| | Chock Availa
12 Updato Salvoed|] bility Of Pred
Stockpile ferred SALVO

*Local Subroutines

Figure 56. Part III: Add Weapon Gontrol

251

18

Subtract LAMIF(G) From Cost

For Target, And Add Premium

For Deleting (G) To Sum Of
Premiums For Targot

21

Call SPLIT
Yos Splits Multiple Targets
> Into Lower Multipliecity
When Desirablo For Closing
To Bxact Weapon Stockplle

Is
PROGRESS.EQ.1?

19
For Weapon Group Deleted
Inerease SURPWP(G) By
Current Target -
Multiplicity

120 Y

Call PREMIUMS
Updates PREMIUM{G) To
Reflect Change In
SURPWI(G)

Y

Call CALSG®
For Bach Weapon Group
Calculates Reduction DSIG
In Correlation Term

20 *

Call SUBSIG®
Updates MU And S1G In
payoff lstimate, Subtract
DSIG As Required In
All Bstimates

22

Call SURINDW¥ * Call:

Updates Indices To b CALPAY Actual Payolf
Roflect Deletion CALPOI Weapon Added Payoffs

0f Weapon (6) CALDELT Waapon Dolotwd Payoffs

*Local subroutine

rigure 56, Part IV: Delete Weapon Control

292

.
E
g .

| START

50

ﬁﬁ Tnitialize Number OF
: Weapons (RUN) And Number
of Time Of Avrival Colwmns
; . To Zero, And Set Target
value In Zeroth Column

N i
}
. In Tablo I,
: Initialize MU,
$1G, V. S, VSN

Y

Initialize Total
Surviving Value
VT And V20

Y

Do 57 For All Groups
) Not Permanontly Donw
Inactive For This

)
4 Target (INACTIVE£100)
. Do
1| 58 ‘
B
i Sat Active
E? {INACTIVE=()

Y

Initialize Potentlal Time
af Avrival Column For
fiach Woapon (ITOA(R)=2)
And Note New Columr Yould
Be Roquired TADDTON{G) =)

H

[!
i Call PREMUINSLG)
j

< R e et

To Calculnty
PREMIUM For Group G

y

Calculate Potential surviving
Target Value In an
: Hardness Components 1f
weapon (G) Aded (VIREG)
And Initialize Correlation
Terms To Zerd

Figure 56. Part Vi Local Subroutine
INITIALIZE

293

..._,
Vebam

H
?‘r.;
.
!
~§ [Called in Closing Phase of Allocation, Before Adding (or Deleting*)
' a Weapon--Splits Multiple Targets into Lower Multiplicity When Tt
! Will lielp to Meet Exact Stockpilel
| START
| =
2 Determine Whethexr The Stockpile
i Target: (-.5)SSURPWP(G)<(.5)
} Could Be Achieved If Weapon G Were
| Added (Or Deleted) Only For A Sub-
: sct Of This Multiple Target
' Could Stockpile\No >
; ' Be Met?
‘ Yes
| 907
Reduce Current Target Multi-
plicity (CTMULT) As Required
And Increment Elements
E Spilled For lLater Processing
: (CTSPILL)
‘ '
E Call
| SPLIT
911 *
Coxrect SURPWP(G) TFor

Multiplicity Now=--
And On The Previous Pass

RETURN

¥
Separate Copy in Program with Change of Signs for Weapon
Deletion.
Figure 56. Part VI: Local Subroutine SPLIT

294

e

S

TR ek st <t e MG it o e
A .. . i Bea.. - o
- A R

e e

100

START

Done
Do 108 For All .
4 Active Weapon Groups | RETURN

101

400

Accumulate Total Shared Retween
This Group And Group G Added
(Or Deleted) Summing Over All
Common Risk Attributes IAT=1,

NAT To Cover Identities By Class,

Type, Region, Alert Status, And

Group--Take Minimum Value Of The

Two Since Shared Risk Cannot Exceed

Total Risk For Least Risk Weapon

|

Figure 56.

Part VIX: Local Subrvoutine CALSG

295

d
N eman ew o s g eean

A
]
LT PR A S A

L

START

Initialize Read
Colunn (NRD) To
Last Column+l

202 *

Decrement Read Column
> (NRD) By One, And Set
A Write Column (NWRT)
Relative To Read

Y

Does Write Column
Now Precede Time
Of Arrival Column Fory,
Weapon Being Added?

*bm
204

For Hach Hardness Component,
Augment MU And SIG In Table I;
1 Estimate By MUP And SIGP For
Weapon Added--Move MU, SIG,

And V To New Column

206 ;

In Table 1 Move VAL And
NWP To New Column, And
Add A New Row For Weapon
Added In Table 11-B

210 *

For All Other Weapons In
Table I1-B, Augment SIGD
By Negative At
Interaction Texrm DSIG

224 %

For All Weapons In Table

‘¢————————— 1I-A, Augment SIGP By
Interaction Term DSIG

232

RETURN

This subroutine updates values for MU and S1G in all Time of Arrival
columns affected by now weapon G, If weapon G adds a new column, it
also moves the data one column to the right by writing in a colum
with an index one larger than the index of the column being read.

Figure 56. Part VIII: Local
Subroutine ADDSIG

296 ‘e

“

-
ety

START

250
Did Weapon Added
Add A New Time Of \ No

Avrival Column,
TADDTOARO0?

+Yus 270
Inerement Number Of
- Weapons (NUM) And
e Allnicﬁtcrgﬁou 'S Done -] Update Number Of Time
A 258 ol 0f Arrival Columns
(NTOA)
3 g -
£ Is I'TOA For This 2l ‘
After, ‘or
Group Before Or After If New Column Ad%ed
Column Added? Initialize VALNNWP=0
And V In Table I Forxr New
Colwnn And Initialize V,

260 + Before To Zero For Last Column+l
D

oes Difference In *
Target Value Justify No 276
Separate Column? Increment NWP For
Column In Which

Yes Weapon Added

Before
e
RETURN

Before Or
After Weapon
Added?

256

L._> Increment ITOA

266 +

. / Sct TADDTOA
'} “ .Y
To Zero

Figure 36. Part IX: Local
Subroutine ADDIND

297

B Y >4

by

R e o e

e T,

START

300 y
Initialize Read (NRD)
To Time Of Arrival
Column (ITOA) Of
Weapon Group Deleted

A 302 4

If Weapon Deleted Is
Only One In Its Column
(ITOA), Set HWrite Column

NWRT=NRD-1 To Delete

Y

Does NKRT Precede No
ITOA Of Group
Deleted?

Yes
1306

If This Group Had Same
ITOA As Group Deleted, Then
Update SIGP In Tables 15-A
And 15-B And Store In Prior
Column To Preserve Data On

Lost ITOA Column

305

For Each Hardness Component
Decrement MU And SIG In Tablel4
For Weapon Deleted--Space Back

In TOA Column If Necessary

!

In Table 14, Move
JVAL And NWP Back One
Column If Necessary

310 ‘

In Table 15-A, Decrement SIGP
By DSIG For All Columns After
And Including Affected Column--

Space Back If Column Removed

314 ‘

In Table 15-B, Decrement SIGH
By DSIG For All Columns After
And Including Affected Column--

Space Back If Column Removed

322

Reading Past
Last Column?

304

Column (NRD)

Figure 56,

RETURN

318

In Table 15-B, Reep Table Com-

. pact By Spacing IG And SIGD
Tnerement ReudL‘________ Data Below Row For Doletued

Weapon Up One Row

Part X: Local

Subroutine SUBSIG

298

- —— o
s DAL i 21t sl

"

- men e

350

Td Weapon beicted No
Subtract A Time OF Arrival
Colunu ISUBTOAR=1?

552 *Yes 361
5 : Decrement Number OF
i ‘ ﬁxsﬁxm Done i > Weapons (NUM) And Correct
E G s Number Of Time OF Arvival
rovp Colums (NTOA)
.) ~
o4 y

1€ Column Removed, Reinitial-

fze VAL And V In Table 1 For
Last Columu+l--Otherwise

Docroment Number Of Weapons
In Column (NKP(ITOAK))

i €«
353 ¢ 356
1s Group In No Boes Group Lome No
Column Deleted? After Colum Deloted?
(1TOA(G) > ITOAK)

e . e -

g (l'l‘DA(G)anOAR)
Yes ‘\"’5

" 354 * 358
;' Note That This Group pDecroment Time
{ Would Now Require A Of Arrlival Index

New Column, Seot (1TOA(G)=1TOA{G) -1

(h\llanA(G) «1)

S Y ‘

o

[PV v

o

Figure 56. Part XI: Local
Subroutine SUBIND

299

s st

e

i

Py
S e — b

START

400

Store Total Done Do 406 For

Surviving [« Each Hardnessf<t
Value (VT) Component (J)

"Do
406

Do 405
From Rirst Done

RETURN i B To Last TOA [™
Column (N)

Accumnlate
Total Qver
Components (J}

‘[m

Calculate Survival Probability
Through This Time Of
Arrival (S(N,J)); Apply This
Survival Probability Only To
That Value Available Now But
Not At Next TOA Intexrval And
Accumulate Surviving Values

Y

Calculate Zeroth
t—————— Qrder Survival
Value VTZO

Calculates Actual Surviving Target Value, VT:

3

VI = 30 %, SN x [VINLT) - V(N+LLT)]

Js N=
(LM (1,NTOA)

and Zoroth Ordox Surviving Value, V120;

VIZ0= 30 S(NTOA,J) * VO(J)
J

Figure 56, Part XII: local
Subroutine CALPAY

300

:
START

501

. Do 512 For Done
3] All Active
' 'y Weapon Groups RETURN

Do
502

Initialize Potential
Target Value

VTP=0
Accumulate Potential Do 510 For
Value Surviving | 2o"® . .
l.t——| Each Hardness |ag
VIP= Y VSNI Component *
Do
503

If This Weapon Would Add New
TOA Column, Calculate
Revised Value VS And VSN
For Preceding Column

504 J

For Each TOA Column After And
Including That For This Group G,
Calculate Revised Probability
(81); If This Weapon Added
(Increment MU And SIG Of CALPAY
By MUP And SIGP For This Weapon)
--Accumulate Revised Survival
Value VSN1 For This Component

' .

Figure 56. Part XIII: Local
Subroutine CALPOT

301

S —————————— —

L el . .

START

602
Do 612 For All D -
—p Weapons Now one RETURN
On Target
Do
610
Accumulate Potential | pope|l Do 610 For
Value Surviving, at——] All Hardness |
VID = Y, VSNI Components *
604 * Do

If This Weapon Would Delete
A TCA Column, Calculate
Revised Values For VS And VSN
In Previous Column

606 ‘

For Each TOA Column After And
Including That For This Weapon, Cal-
culate A Revised Survival Probability

S1 If This Weapon Were Deleted
(Reduce MU And SIG Of CALPAY By MuP

And SIGP For This Weapon)--Accumu-
late Revised Survival Value VSN1
For This Component

@

Figure 56. ©Part XIV: Local
Subroutine CALDEL

302

Anmhirne o

e aemeie
. e —— e

R

3.11.9 Subroutine WADOQUT

. PURPOSE : Tiis routine summarizes decision alternatives for

: STALL by combining payoff data produced by WAD
with the weapon cost data (Lagrange multipliers
minus premiums). It also contributes to the effi-
ciency of WAD by making inappropriate weapons in-

) active.

E ENTRY POINTS: WADOUT

FORMAL PARAMETERS: None

COMMON BIL.OCKS: €30, C33, CONTRO, DYNAMI, PREMS, SALVO, WADFIN,
WADOTX, WADWPN, WPFIX

v e s e v

SUBROUTINES CALLED: PRNTALL

? CALLED BY: WAD

5 Method:

The output data produced by WAD consist of the following parameters for
STALL that are recorded in /WADOTX/:

PPMX and IPPMX ~ the maximum potential increase in effective
profit for any single weapon; and the index G to that weapon

X group, respectively.

Al il ., At

PVRMX and IPVRMX = the maximum effective efficiency of any
potential weapon; and the index G to that weapon group, re-

spectively.

DPMN and IDPMN - the minimum marginal effective profit for any
weapon now assigned; and the index NW to that weapon in the

list of weapons assigned, respectively.

!
!
'
W
!
1
§

It also produces the array INACTIVE(G) in /WADWPN/ which is used by WAD
to determine which weapons groups need not be processed,

The input data from WAD consist of:
VT - the surviving target value in /C33/

. VID(N) - the potential weapon deleted surviving target value
(also in /DYNAMI/ (equivalenced to RVAL)

VIR(G) -~ the potential weapon-added surviving target value in
/WADFIN/

303

e

et o - ey e

=

L

SN

St O et 1 e et narn

e i P s b . i <A «

S T ek e e i P o -

The input data on weapon costs consist of LAMEF(G), PREMIUM(G), and
DPREMIUM(G).

WADOUT also initializes VIMAX and VIMIN of /WADOTX/, and MAXCOST which
reflect the MINKILL, MAXKILL specifications for each target.

The quantities ALPHA and VTEF of /WADOTX/, are essentially local vari-
ables for WADOUT. They are included in this common block for use by
PRNTNOW, and in the case of ALPHA, to allow WAD to reinitialize it to

1.0 for each new target.

The flow diagram, figure 57, is in three parts. In part I, the user-
input parameter IMATCH is used to detexrmine the method of computing
MINKILL and MAXKILL, TIf IMATCH is 0, then the damage calculations used

to determine residual target value for purposes of MINKILL and MAXKILL,
use time dependence of target value, If IMATCH is nonzero, then MINKILL
and MAXKILL are computed relative to the original target value. In addi-
tion, if IMATCH is 100, then the routine prints the WADOUT variables, VTO,
VT, VIZO (original target value), FLGMN, FLGMX, SVIMIN, SVIMAX, VIMIN,

VIMAX, and ALPHA.

The Do loop ending at statement 18 is used to flag all groups with fixed
weapons on this target as active. This prevents their being removed dur-
ing processing and maintains the validity of the damage calculations,

In Part II, the processing begins by evaluating the actual effective sur-
viving target value VIEF, It then scans all weapons currently assigned
to calculate the output quantities DPMN and IDPMN. If any weapon now on
target fails to destroy a fraction of the original value greater than
MINDAMAG, the weapon is flagged for immediate removal (statement 15).

At the same time, the groups already assigned are flagged with INACTIVE

= -100 to eliminate any possibility that they would be erroneously set
inactive, (WADOUT never exits with INACTIVE set negative. A weapon
group flagged with a ~100 is always reset to INACTIVE = 0 before the rou-

tine exits.) (Do 14 loop)

Basically, the processing in part III is concerned with scanning all po-
tential weapons to calculate the output quantities PPMX, IPPMX, PVRMX,
and IPVRMX. Any weapon which would fall to destroy a fraction of the
original value greater than MINDAMAG will be ignored in these calcula-
tions. Thus, it could never be allocated to the target.

In addition, if a weapon is a salvoed missile but no salvo 1s available
(L.e., MYSAL(G) less than or equal to zero), or if the group has no weap-
ong, then it is not cousidered as a potential weapon,

At the same time, however, the values for the array INACTIVE(G) are es~
tablished. The INACTIVE array for each target is permanently stored on

the WPNIGT files, as it was originally computed by GETDTA, with only
two values =-- zero for wcapons in range of the target, and 100 for

304

e e —————— =~ -

P

i
-
o
: weapons out of range. Consequently, when these data are read on suc~
X cessive passes for each target, these initial values are automatically

L restored,

External to WADOUT the INACTIVE array i{s treated as if it has only two
values - zevo for active weapon groups, and nonzero for Inactive groups.
WADOQUT makes wecapons temporarily inactive velative to a specific target
by setting INACTIVE equal to either 2,000 or 30,000.

[f WADOUT exits with elther value, 2,000 or 30,000, the weapon is treated
as temporarily inactive in exactly the same way. The difference between
2,000 and 30,000 is relevant only if WADOUT recycles without exiting.

WADOUT will recycle if, after all potential weapons are examined, it is
found (upon return to Part 2) that there are no potential weapons that
appear profitable and, woreover, that the required kill probability,
MINKILL, has not been achieved. In this case the value of ALPHA is in~
creased to make the target seem more valuable and the evaluation is re-
peated. When this occurs, weapons tentatively set to INACTIVE = 3G,000
arce reset to 0 and the decision to inactivate them is reexamined.

If WADOUT exits with INACTIVE = 30,000, it is always set to 2,000 i{
WADOUT 1is called again.

The operation of Part IIT of WADOUT can now be summarized as follows.

In the execution of this Do loop inactive weapons, INACTIVE = 100, 2,000
and 30,000 (30,000 except on a recycling pass), are skipped. All active
wveapons, INACTIVE = 0, ~100 (or 30,000 on a recycling pass), are evalu-
ated. Those for which INACTIVE is no. negative are then considered to
determine whether they should be made inactive.

This consideration (lower half of the flowchart) is as follows:

a. Any weapon that still shows a positive potential profit remains

active,

b. Any weapon which does not show a positive profit against the
full target value (in the absence of other weapons) is made

Inactive.

If there are other weapons on the target the weapon remains
active unless 1its efficlency is less than .1, This reduces
the chance that an inactive weapon could becowme profitable Lf
some other weapon currently on the target were removed.

d. If the efficiency is less than .1, it is made inactive unless

there are already unprofitable weapons assigned. In this case
the decision to make it inactive is postponed until these un-
profitable weapons are removed.

B TR
) VP P St

<

5
§
k%

305

[

P e e i e

— o

>
LY
.
* m

Call PRATALLUIY)
NAD Arvays

: Y

e f

' IN€\< Is IMATCH Parameter
‘ Nonzewa?

Yos
390 450 700

; Is This An N -
< Initialization >—°> “as Ml:l{k:l;l.
) Call On WADY cen § o
[No

; 400 : *‘10!) AGQ Yes Set

; Rolnterpret VIMIN -y MINRILL
And VTMAX To Tgnore Time Mot MINKILLY Met Flag|
Dependence And Correlations

600 ‘
% Set Reevaluation Flag,
RELVAL To . BALSY, et

" ! a

R e

Has Latest
Weapon Met

Set MAXKILL
Mot Flag

Y Y

Ts IMATCH Parameter Yaos Print Variable J
} qual To 100t Values
¢ No
‘ § §02 l‘ ! *
0
Roset liffective

-

Dass Current Damage Yos
AR Remafning Value
Leval Moot MANKILLY ; To NAXKILL Restdual

-

7 No
~Set Lifectlve Remalning
Value To Gurrent

s Damuge Level I
o Initlalize Waapon
i Dolotion Indices

' e T bone | et lndex of
. Do 18 For Lach Fixed o| vivst Nonfixed
§ RNeapon '
. Weapon

+ Do

i 2

7

et

Set inactive Flay To-100
To Neep Group Active

Flgare 57. Subroutino WADOUT
(vart 1 of 5)

306

TET

TR
o s .

B e

T
s s o e+

Do 14 For All Remaining
Weapon Groups Assigned

!

Tag Groups Assigned To
Remain Actilve,
Set INACTIVE = -100

31 *

Set "Effective"
Value If Weapon Deleted,
VIDEF = VTIMIN

33 *

Calculate BENEFIT From
Weapon (Difference In
Effective Value Minus

Premium For Deleting It)

Does Weapon
Destroy Fracticen Of

Value Greater Than
\\ MINDAMAG?

{ Yes
16

Calculate "Profit"
BENEFIT-COST For

et Weapon And Note

Weapon IDPMN With
Minimum Profit DPMN

Figure 57. (Part 2 of 5)

307

v = ——————

Done

To Scan Potential
Weapons For BENEFIT
And Set Some Inactive,

If Appropriate

15

Set Large
Negative

"Profit"

For Weapon

A e

¥

o

AR

i

L T 'S S

M

e

Do 10 For Done
—3»{ All Weapon ’—<::>

Groups
v Is Weapon
: es Salvoed And No
Available
Salvo?
No Any
foitt— Weapons
In Group?
Inactive Active
=100,2000 =0, -1000
e ——
Conditionally
Tnactive=30000
37
First N Make
WADOUT Pass? N0 ! Active
REEVAL=,FALSE, INACTIVE=0
L-F= Set
Inactive
INACTIVE = 2000

Figure 57. (Part 3 of 5)

308

PO

Any Yes

proritable
Weapons?

Has
Yes

Required
MINKILL Been
Achieved?

Has

Maximum Yes

Allowable Cust
Been Used?

Increuse ALPHA By
A Factor To
Increase Effective
Value

Is ALPHA
Too Large?

130

Note This As
Secondary WADOUT
Pass, Set REEVAL = ,TRUE.

Recycle

Figure 57. (Part 4 of 5)

309

e

ey -~ -

' 40

Sot "Rffective"

* | valua of Wcapon G
If Added

VTI'EF = VTMIN

43 \
Calculate Potential
BUNLFIT OF Adding Weapon
(28 fforence In Bffactive
Valuo Plus Yeeoriun For
Mding T18)

Beoos Weapon
Nastroy
Fraction Of Value

Greator Than
MINDAMAG?

Yes

5 \
Calculate Potential
profit (PP) BENLFIT-COST
And Note Weapon TPRIN
with Mavimum Value PRMX

I3 \
Calculate Potential
Efficioncy (PVR) = BENKFIT/
COST An. Note Weapon
IPVRMX With Maximum
Value PURMX

\ SR
Make Active -100 Test
Set ot —— INACTIVE
INACTIVE = O ?
0
20)

18

Bfficioncy
Greator Than
1,07

Are Any
Woapons On
Targat?

Is
Efficlency
This Group Loss
Than L1

No Waapoun On
Taryet

Profit tablu ?

Yae

Make
N Conditionally d
! ¥ Tnactive, Sol -

|_macmve_« 30000

Figure 57. (Part 5 of 3)

310

e ek e

s

Y

—— o

*
3.12 Subroutine DEFALOC

e ia e

*
The purpose of this subroutine i1s to allocate

PURPOSE:
‘ missiles to an individual target which is defended
o with terminal ballistic missile interceptors (i.e.,
. MISDEF >0).
]
} ENTRY POINTS: DEFALOC
5 FORMAL PARAMETERS: None

! COMMON BLOCKS: C10, €30, C33, CONTRO, DEFCOM, DEFRES, DYNAMI,
PAYSAV, PREMS, SALVO, SURPW, WADFIN, WADOTX,

WADWPN, WEPSAV, WPFIX

ADDSAL, HEAD, INITSAL, LAMGET, NEXTIT, PREMIUMS,

SUBROUTINES CALLED:
PRNTALL, RESTORE, RESVAL

R CALLED BY: MULCON

Method:

‘i When MULCON has read in data associated with a new target, it examines

{ MISDEF to determine if the target is defended with terminal ballistic

{ missile interceptors. If MISDEF = O, indicating no defenses, it pro-

§ ceeds to call STALL for the allocation of weapons. If MISDEF >0, then

: there are terminal interceptors present; DEFALOC is called after call-
ing STALL to allocate the missiles to the target, and the most profit-~

able allocatlon (STALL or DEFALOC) is chosen.

i
j The input variables describing the target's local ABM capability allow
{ uncertainties to be introduced in the number of interceptors present.
, MISDEF is the nominal number of interceptors on the target, each with
o kill probability PRTX against unhardened warheads, and RADPK is the ran-
‘ dom area defense kill probability. In addition, four other parameters
~§ are defined (the same for &ll targets) which introduce uncertainties in
by MISDEF. RX(1) (input as LOWFAC) is a factor which, when multiplied by
f MISDEF, gives a lover estimate of interceptors which has probability ok
PX(1) (input as PROBLOW) of occurring. Likewise, RX(2) (input as
HIGHFAC) and PX(2) (input as PROBHIGH) define the overestimate of in-
[terceptor avallability. Thus, if there is imperfect knowledge of the
) terminal ABM capability, the allocator can hedge against these uncer-

E

i

{

b

{g tainties when assigning weapons.
4
;) In addition to the target-associated ABM data, it is possible to de-

‘ scribe penetration aids suitable for the various missiles by means of

f the payload table., Tor a particular payload index IPAY, the following ;
! variables are defined which describe the terminal missile defense pene- !

tration aids:

%
This subroutine is the first of segment DEFAL.

311

L

NWHD = Number of warheads per independent reentry vehicle.

NTDECOYS = The number of aim points the terminal defense sees
for each independent reentry vehicle (in addition
to the warheads). These are terminal decoys.

XDEG = A factor by which the PKTX is multiplied to obtain

terminal interceptor kill probability against this
weapon type. It reflects additional hardening of
the warhead or electronic penetration aids which
can degrade interceptor effectiveness,

The first decision in DEFALOC concerns the verification pass. If PROGRESS
= 2 and IVERITY = 2, the current call on DEFALOC is a part of verifica-
tion pass to determine the effect of a new correlation factor. Since
DEFALOC does not consider interweapon correlations, no processing is doune

in this case.

Before allocating any missiles, DEFALOC determines if STALL has been
called. STALL will not be called if the number of fixed assignments
exceeds 30. If STALL was called, the surplus weapon indicators SURPWP
are reset (statement 76) as if STALL were not called. This procedure
provides for the correct premium computations in RESVAL.

As part of the initialization, DEFALOC calls INITSAL to set the arrays
in block /SALVO/ for this target. In removing the weapons allocated by
STALL, routine ADDSAL was called to restore the salvoed weapons to the
stockpile. After calling INITSAL, DEFALOC computes the maximum number
of weapons that can be allocated from each group because of salvo re-
strictions (NSL(G)). For nonsalvoed groups, NSL(G) is set to the num-
ber of weapons in the group, NWPNS(G). For salvoed groups, NSL(G) is
set to the difference between the current stockpile and the maximum
stockpile. Before PROGRESS = 1.0, the maximum stockpile is 225 more
than the available number. During the verification pass (i.e., PROGRESS
greater than 1.0) NSL(G) is set to 1000 for all groups.

If there are fixed assignments on this target (statement 79), DEFALOC
assigns these weapons first. On the second and later passes (statement
78) the operation is relatively simple. The old allocation contained
in the IG and KORRX arrays of /DYNAMI/ is loaded into the IFW array and
the NOWEP array. The NOWEP array defines the potential DEFALOC alloca-
tion. If the number of fixed assignments exceeds 30, the value of the
KORRX array is equal to the negative of the number of weapons assigned
(see statements 72 to 96). This procedure allows specification of wore
than 30 weapons within the 30 elements of the IG arvay. If the fixed
assignments are less than 30 in number, each entxy in the TG arrvay

represents one weapon.

Processing differs if there are fixed assignments on the {irst pass.
The Do loop starting at statement 97 and continuing to statement 85
allocates each fixed weapon. There ave several tests made on proposed

312

T e ateiinr ioe, et

P P .

fixes in this loop. First, if the fixed weapon is a bomber, DEFALOC can-
not be used since it allocates missiles only. Statement 40 tests if
STALL were called. 1If so, the STALL allocation to this target is used
without further DEFALOC processing. If STALL was not called by reason
of an excess of 30 fixes, statement 41 prints an error message and the
fix request is ignored. If the fixed weapon is a missile, its active
flag is tested in statement 50. If the weapon cannot be allocated, an
crror message Ls printed® and the request ignored. Otherwise the weapon
is aseigned. A group counter is kept (statement 86) to determine the
number of unique groups represented on target., Statement 91 assigns the
weapon. The following statemeints increase the total cost and number is
computed in array ISALFX(G) for all fixed salvoed weapons. For salvoed
fixed weapons function LAMGET is used to calculate the weapon cost.

After assigning all fixed weapon requests currently input, DEFALOC deter-
mines if there are more requests to be read in the first pass. This is
done by continuing to cycle the ASGWPN chain, IFIXEND is used to indi-~

cate when this process is complete.

Statement 75 is the exit from the fixed assignment processing. The DO
loop from statement 75 to statement 74 places each fixed weapon into

the IFW and KORR arrays to be saved for later use. In addition, the
expected number of objects (warheads and terminal decoys) perceived by
the terminal defense is computed and stored in variable NOBJ., The avail-
able number of weapons, NSL, 1s also documented.

Before allocating any weapons to the target, DEFALOC calculates an approx-
imate maximum rate of return for attacking the target with the best mis-
siles available, using exhaustion tactics (statement 84).

The missile allocation proceeds as follows: first, those missiles with
the cheapest terminal objects (warheads and terminal decoys) are allo-
cated untll the terminal interceptors are exhausted. Then each missile
type in turn is tried to determine which type has the greatest payoff{
per unilt cost when added to this exhausted mix of weapons.

Since the payoff function for a defended target is generally not convex,
one cannot look at only the rate of return of the next missile to deter-
mine whether the target is profitable to be attacked. Rather, it is
necessary to allocate weapons beyond the exhaustion point and then search
for that allocation which yields the highest average rate of return. If
this average rate is greater than one; i.e., a profit is realized by
attacking the defended target, then the allocation can actually proceed.

The exhaustion phase of the allocation is carried out in the statements
between statements 400 and 600, The postexhaustion phase starts at
statement 600 and continues to statement 2000.

*
This print includes an indication of the reason for the weapon inac-
tivity. The reason is placed in array MORRX for all inactive weapons.

313

] PP

o e —dn

& T e N e ks w7 A o T

Nt rm R e e v el - o womv—

In all calculations of target damage, subroutine RESVAL is called to
determine the residual target value (VIDX) for the specific mix of weap-
ons allocated at the time RESVAL is called. Appearance of VIDX in the
flowchart implies a call on RESVAL. The program, however, can only allo-
cate missilas from a maximum of 30 groups in total, which must be kept in
mind when specifying target defewses. That is, 1f 30 groups cannot pro-
vide sufficient objects to exhaust the defense, this tactic is excluded
by the allocator. In addition, only 40 percent of the weapons in any one
group can be allocated to a single defended target.

At each stage of allocation, DEFALOC determinys that the number of weap-
ons allocated from any salvoed group does not exceed the number avail-
able for allocation. Array NSL is decremented for each allocation, When
it reaches zero, all the available weapons are allocated.

When DEFALOC has completed its laydown, it compares the resulting profit
to the STALL profit. If the STALL profit is greater, DEFALOC sets NBLN
= MISDEF, and vrestores the STALL allocation. If DEFALOC has a greater
profit, it sets NBLN = -MISDEF, If only one of the subroutines has pro-
duced an allocation which met the required MINKILL, that alleocation is
chosen regardless of profit. Then DEFALOC loads the IG and KORRX arrays.
Flrst, the fixed weapons are placed in the arrays and then the nonfixed
ones. In all cases, the KORRX array contains a negative number corre-
sponding to the number of missiles allocated from the group specified

in the corresponding position of the IG array. Subroutine ADDSAL is
used to modify the salvoed weapon stockpile.

This subroutine also calculates a modifled value for deleting a weapon
from the target. This value, DELVT in /WADFINAL/, is used by MULCON to
compute the velative damage caused by each allocation, RVAL. For fixed
weapons, the value of DELVT is set to the origiral target value, VTO.
For all other weapons, DELVT is equal to the difference between the
final residual value, VIDX, of the entire allocation and the residual
value if all nonfixed weapons of the same group were removed.

Figure 58 illustrates segment DEFALOQC.

314

PN

PROGRESS=2 .
TVERLFY=2? Cl

Initialize

e e e

Variables

Was STALL
Called?

§ Yes

{ 76

% Remove STALL

f‘ Qontribution

{ To

s SURRWP

% 84 *

. Determine

! @____.’- Highest Rate

0f Return

For Missiles

Figure 58. Segment DEFALQC
part I: Normal Processing ;

(Part 1 of N

315

.
s
!
s
i
t

Is Defense
Exhausted?

wo 1"

Add Best
Missile

Recalculate
Rate For
Best Missile

507 *

Determine
Highest Rate
Of Return

Yes

For Missiles |

30 Groups
Allocated?

1)

I

Figure 58.

Call RESVAL To

Calculate Pay-

off (Original
Value-VTDX)

()

316

(Part 2 of 5)

-

900

900

Calculate Best
Rate For Missiles

* Rate = (PAYOFF+
PREMIUM/COST)

1200 \
Allocate s
Yes / pest Rate
Best >1.0?
Missile o

Is MINKILL
Satisfied?

Call RESVAL To
Calculate Pay-
off (Original

. Value-CTDX)
{ 3000
Tg Do
Allocation Allocation
Better? Bookkeeping

STALL

4000

Restore
STALL
Allocation

Figure 58. (Part 3 of 5)

317

e Y St e e 2 naisetse

PRSI P

[y,

AC

()
7y

Initialize
Cost And
Index
Variables

INITSAL
Initialize
Salvo
Arrays

!

Do 779 For
—-| All Groups

Are There
Fixed

ssignments

*Do

Set Number Of Weapons
Available (NSL) To
Number In Group
(NWPNS)

Set Number
Available
To 1000

Is This
A
Verificatio
Pags?

No

No Is Group

\ Salvoed?

Yas

Figure 58. (Part &4 of 5)

318

-

Set NSL
To Zero

Is A Salvo
Available?

IGET
Retrieve
Nutnbex
Allocated

| w

Set Limit
As 255

Is

Progress
1.0?

Set Limit
To Zerxo

e

Sat NSL As
. Difference
AC } Between Limit
And No.
Allocated

Figure 58. (Part 5 of 5)

319

e st g e e ey em s =

s et s ey A e o

S e g

o

9
First Pass?

®
7

Yes

91

©

Do 85 For

All Fixed =€

Weapons

Figuve 58,

Do

Bomberxr
Weapon?

Sufficient
Range?

New Group?

Print
Error
Message

Yes
Was STALL
Called?

Print
Lrrov
Message

Countar

Part Il

91

Increment fe————yme{ Put Weapon | -

Down

Processing (Part 1 of 2)

320

Fixed Weapon Assignment

o -
v Flam

More Than \ Yes Put All
30 Fixed)—™={ Yeapons Down

Weapons?

72

KORR< 0

5 Y

Put All
Weapons Down
KORR=0

i KORR Arrays Wit

Load IFW And ‘

Fixed
Assignment

'

Calculate Number
Of Obhects
Seen By
Dafense

Axe There
More
Assignments

Call NEXTTT
On ASGWPN
Chain For
Remaining

Asslgnments

Figure 58, Part II; (Part 2 of 2)

321

3.12.1 Subroutine PRNTOD

To produce optional prints for overlay DEFAL.

PURPOSE:
(Options 27 and 28)
ENTRY POINTS: PRNTOD
FORMAL PARAMETERS: IOPT -~ Print option number
? COMMON BLOCKS: C30, DEFCOM, DEFRES

SUBROUTINES CALLED: None

CALLED BY: PRNTNOW

Method:

The formal parameter IOPT determines whether option 27 or 28 appears.
The result of the option appears in the Users Manual, UM 9-77, Volume

ITII.
Subroutine PRNTOD is illustrated in figure 59.

! 322

4 -
E -. R e T e . . R

—

AT W g

Ve

L X

et

P

I0PT=28?

Execute Print
Request
Number 27

r—

Execute Prin
Request
Number 28

RETURN

Figure 59.

Subroutine PRNTOD

323

[P Vs oo g e o
S ———

B et T VS S e PRSP T—~

St e o e v —— e

T e v s L0 e o

3.12.2 Subroutine RESVAL

PURPOSE: This routine calculates the surviving value of a
target defended with terminal ballistic missile

interceptors when attacked with missiles with or
without penetration aids.

ENTRY POINTS: RESVAL

FORMAL PARAMETERS: None

COMMON BLOCKS: C30, DEFRES, PAYSAV, TGTSAV, WADWPN, WEPSAV

SUBROUTINES CALLED: FMUP, PRNTALL, TABLEMUP

CALLED BY: DEFALOC

Method:

RESVAL first orders the weapons by time of arrival on the target and
then computes the total number of expected terminal objects contained

in the weapons specified by NOWEP(G). (NOWEP(G) = number of weapons

of group G allocated.) The single shot survival probability of the tar-
get from a weapon from group G on hardness component J is equal to the
previously calculated XMUP(G,J) (common /WADWPN/). This survival pro-
bability «amust be modified for multiple weapon attacks. As the number

of attackers exceeds the number of defenders, the single shot survival

probability will decrease.

Three different levels of terminal interceptors (NTX(I)) are calculated
for each defended target, and a probability of the occurrence of each is

given by PX(I),* such that

3

2. PX(I) = 1.

I=1
These values are calculated from MISDEF, the nominal number of terminal
interceptors at the target, as follows:

xk
NTX(1) = MISDEF * RX(1l)

NTX(2) = MISDEF

*ok
NTX(3) = MISDEF * RX(2)

PX(1) is the user-input parameter PROBLOW. PX(3) is the user-input
parameter PROBHIGH. PX(2) = 1 -PX(1) -PX(3).

Kk
RX(1) is the user-input parameter LOWFAC. RX(2) is the uscer-input
parameter HIGHFAC.

324

- - e e e e s e -

The probability that a warhead from the weapon G is killed by the ter-
minal defense is then given by:

PKW(I) = PKTX * XDEG(G) if NOBJ NTX(I)
for 1=1,2,3

= E%%%§l * PKTX * XDEG(G) if NOBJ NTX(I),

where NOBJ is the number of warheads plus decoys in the attack and the
XDEG factor degrades PKTX for weapon group G. Hence, the probability
that target component J survives NOWEP(G) weapons from group G is given
by a calculation involving the use of the functions TABLEMUP and FMUF,

which are described in other sections of this chapterx.

The former function takes as input the modified single shot survival
probability,

MSSSP(G,J,I) = PWK(I) + ((1 -PWK(I)) * XMUP(G,J))
and computes the kill factor,
KF(G,J,I) = TABLEMUP(MSSSP(G,J,I)).

The kill factcrs for all the weapons allocated to the target from each
group are summed to generate the group total kill factor,

GTKF(G,J,I) = KF(G,J,I) * NOWEP(G) * NWHD(G).
(NWHD(G) is number of warheads per weapon from group G.) This factor is
input to the function FMUP to generate the probability that target com-
ponent J survives NOWEP(G) weapons from group G; i.e.,

S(J,G,I) = FMUP(GTKF(G,J,I)).

Hence, the total surviving target value is calculated from:

3 M NN
Surviving Target Value = », PX(I) 2. 3. VTOA(NL,J)
I=1 J=1 N1=0
N1
-VTOA(N1 + 1,J) * 11 $(G,J,I)
G=1
vhere
VTOA(N1,J0 = value of component J when weapon N1 arrives
NN = total number of weapon groups
VTOA(0,J) = V0(J) = value of hardness component J

325

p—

e ———

[SR ——

I e e S

e R SR U

S e e sy

and
VIOA(NN + 1,J) = 0.

The innermest sum over N1, the weapon groups, must be carried out in
order of the weapons' time of arrival; i.e., the first term corresponds

to the N1 with shortest time of arrival, etc.

Hence the residual target calculation in RESVAL takes into account (1)
uncertainties in the terminal interceptor stockpile, (2) target value
dependence on time, (3) multiple hardness components of the target, (4)
various penetration ailds and decoy capabilities of attacking weapons,
and (5) a detailed target-warhead interaction calculationm.

This apparently complicated manner of calculating the target survival
probability is required by the optional use of two damage laws. The
functions TABLEMUP and FMUP determine which damage law is being used on
the current target and modify their calculations accordingly. Since
subroutine RESVAL is called a very large number of times for each mis-
sile-defended target, certain intermediate results are not saved in
order to decrease execution time. In particular, the variables for the
modified single shot survival probability, MSSSP(G,J,I), the kill fac-
tor, KF(G,J,I), and the total survival probability, S(G,J,I), are never
explicitly saved. The group total kill factor, GTKF(G,J,I), is saved
in a temporary storage variable, S. Thus, these four intermediate vari-

ables do not appear explicitly in the program.

Subroutine RESVAL is illustrated in figure 60.

326

4 e

< START ’

Order Weapons
By
Time Of Arrival

P

Y

NTXI=
NTX(NNN) «PKTX

. _NTX]
PNK~PKTX NTXI 2 NOBJ PNRspres
4 y
\
Calculate:

M NN NN
VR = D Do [VIOA(NLJ) - VIOA(NI+1,d)] e AR

Jul N1=0

NNNaNNN+1

Figure 60.

VTDXe,
VTDX+V2«PX (NNN)

Subroutine RESVAL

327

RETURN

e e

SECTION 4. EVALALOC MODULE

4.1 Purpose

The purpose of module EVALALOC is to summarize the planned allocation of
weapons to targets and provide an expected value estimate of the results.
Provision is also included to evaluate the allocation for variations in

the values assigned selected parameters (planning factors) associated with

the weapons and targets. The evaluation can be made for either the whole
plan or for only targets in selected countries. EVALALOC may be run at
two stages of plan development, before module ALOCOUT or after module
PLANOUT. If run prior to the selection of desired ground zeros (DGZ)

for complex targets (accomplished in ALOCOUT}, the analysis of aim point
offsets is not included. In this case, the results produced by EVALALOC
represent an upper limit estimate which assumes that each target element
in a complex is directly targeted. When EVALALOC is run after module
PLANOUT, the weapon aim points offsets are available and are included in

the expected value computations.

4.2 Input

EVALALOC may operate-at any stage after weapons have been assigned to
targets. EVALALOC interrogates the target list, the weapon gr'up chain
and stores attributes necessary for the evaluation, and obtain: strikes

from the assignment chain,

4.3 Qutput

EVALALOC does not update the data base for use by later processors; its
sole output is a set of printed summaries which present the expected

value results of the planned weapon allocation.

4.4 Concept of Operation

Subroutine ENTMOD reads user inputs and executes subroutine EVAL2 for
each requested plan evaluation. Once executed, EVALZ controls all flow

for the given evaluation.

4.5 Tdentification of Subroutine Functions

4,5.1 Subroutine EVAL2. Subroutine EVAL2 processes the targets one at
a time. For each target (or target element of a complex target), the
assigned weapons are read from the data base and ordered by time of
arrival. Surviving target values are calculated (within subroutine
EVALPLAN), utilizing the same damage functions used in module ALOC
(subroutine WAD), except that correlations are ignored. After the
survival probability of each target is computed, the target weapons
are classified for summarization purposes.

S

329 L SR - e S VIR i

F

e’ i T

et -

4.5.2 Subroutine TGTMODIF. For each individual target, subroutine
TGTMODIF is called by EVAL2Z for determination of altering selected tar-

get parameters as user directed.
Similar to subroutine TGIMODIF but modifies

4.,5.,3 Subroutine WPNMODIF,
weapon attributes.

4.6 Common Block Definition

Common blocks used by EVALALOC are outlined in table 10. Common blocks

that communicate with the COP are given in appendix A of Program Mainten-
ance Manual, Volume I.

i
|
330

e s —

n e e e

2

- bt o S Rt i ot Ao % o s

[

S M

:
A,

BLOCK

CLAUSES

DAMAGE

/GROUPS/

Table 10. Module EVALALOC Common Blocks
(Part 1 of 4)

VARTABLE OR_ARRAY

ONPRINTS
SETTING
SORT
COUNTRIES
TGTMOD
WPNMOD

NALLTYPE(7)

ATTYPE(7)

SKDWPTYF (7)

DELWPTYP(7)

DELYLD

PLANYLD

VALDES
VALESC
SURV

VALFAC

NPASS
NAMECLAS (250)
NAMETYPE (250)

IWEAP (250)

DESCRIPTION

Set to -1 for each evaluation;
reset to starting location into
INSGET's arrays if the corre-
sponding adverb exists.

Number of weapons of category based
on FUNCTION scheduled against tar-

gets

Number of weapons of category based
on FUNCTION delivered to targets

Yield from weapons of category
based on FUNCTION scheduled
against targets

Yield from weapons of category
based on FUNCTION delivered against

targets

Megatonnage actually arriving at
the target

Megatonnage allocated to the tar-
get

Value of target destroyed
Value of target escaping
Fraction of the target surviving

Fraction of total complex value
represented by the target

Pass number of current evaluation
Class name of the group
Weapon type name of the group

Index based on attribute FUNCTI

331

. e

BLOCK

/Ot SRATOR/

Table 10.

VARIABLE OR ARRAY

(Part 2 of 4)

DESCRIPTION

GRPCEP (250)
GRPSBL(250)
WEPREL (250)
GRPKNV (250)
GRPYLD(250)
GRPREL (250)
ASMCEP (250)
ASMREL (250)
ASMYLD(250)
NGROUP

COMMA

LPAREN

RPAREN

EQUALS
DASH
SLASH

ALFOS

FLOFO

NUMATRIB

VALGRP

CEP of weapons in group

SBL of weapons in group

REL of weapons in group

PKNAV of weapons in group

YIELD of non-ASM weapons in group

REL cf weapons in group

CEP of ASMs in group

REL of ASMs in group

YIELD of ASHs in
Number of groups
Index number for

Index number for
parenthesgis

Index number for
parenthesis

Index number for
Index number for

Index number for

group

operator Comma

operator left

operator right

onerator equals
operator dash

oparator slash

Index number for alphabetic follows
and alphabetic input values

The same as ALFOS but for floating

point values

The same as ALFOS but for a numeric

attribute

The same as ALFOS but for the attri-

bute GROUP

332

e e e

e ot

e e Ay

BLocK

JSTRIRES/

/TYPeLs/

Table 10.

VARIABLE OR ARRAY

(Part 3 of &)

DESCRIPTION

16(30)
KORDOR (30)
RELVAL (30)
PENPROB (30)
TOA(30)

ISAL(30)

IHOB (30)
BLAT (30)
BLON (3C)
TSORTN(30)

DE(30)

TIMEVAL(30)

NSTRIKE
VOTYPE
VREMTYPE
VDESTYPE
VESGTYPE
SKEDTYPR
DELTYPE
VOCLAS

VREMCLAS

Group number of asslpgned weapons
Weapon penetration corrvidor
Relative value of weapon allocation
Waapon penetration probabilicy
Weapon time of arrival on target

Sulvo number of weapon. 1f bombers
equal 1 L{f ASM allocation

Desired heipght of burst
Offiset latitude

0f fset longdtude

Sortie sequence number

Survival probabflity of target after
arrival of weapon I

Survival probability of time depen-
dent tarpget value after arrival of
woapon I

Number of weapoun assipuments

Total target value for the type
Total remaining value {or the type
Total valuve destroyed for the type
Total value escaped [or this type
Mepatounage allocated to the type
Megatomnage delivered to the type
Value for the class

Value remaining for the class

333

- -

- ot vt

T

e e v v e e s

3 renfi ¢ aens s &

[y

AR
A

il

TR
e e o rmrsesanihe ety

s s . B

BLOCK

Table 10.

VARTABLE OR_ARRAY

(Part 4 of 4)

DESCRIPTION

VDESCLAS
VESCCLAS
SKEDCLAS

DELCLAS

Value destroyed for this class
Value escaped for the class
Megatonnage allocated to the class

Megatonnage delivered to the class

334

W A id e v wa

e o am $lon

ey

PURPOSE:

4.7 Subroutine ENTMOD

To conduct the flow of execution as user directed.

ENTMOD (First subroutine called when overlay link

ENTRY POINTS:
BVAL Is exacuted)

FORMAL_ PARAMETERS: None

COMMON BLOCKS: CLAUSE, QOPS, OPERATE

SUBROUTINES CALLED: EVAL2, INSGET

CALLED BY: COP

Method:

Subroutine ENTMOD controls the flow of each plan evaluation as user
directed. ENTMOD reads user requests and executes subroutine EVAL2
which in turn queries and evaluates all target weapon assignments. Any
number of target passes are possible within one EVALALOC execution. If
any adverb repeats itself, it is assumed the repeating adverb is for a

new allocation evaluation and, therefore, implies EVAL2 may be executed
for any previously read adverbs. Also, EVAL? is called upon processing

all adverbs.

Subroutine ENTMOD 1is illustrated in figure 61.

335

B N T e . i S S S S S St =S pyevor ey
e i e e e o e e e m e =« e e e I e
——— . . o Y. e [= - T
[A - i won e il -
T A e)

Obtain Verb
Number

Print
Error
Message

Evaluate
Plan
(EVAL2)

|

Correct
Verb?

All Adverbs
Processed?

Do 30 For
Maximum Number
0f Adverbs Per

Evaluation

Evaluate Plan
(EVAL2)

New Adverb
For Current Pla
Evaluation?

Store Pointer
Into INSGETs
Array

Print
Error
Message

Figure 61. EVALALOC

336

Module

[P

P e o

%

e e RE e

e e . -
vt o s e A Z
R e PR

4.8 Subroutine EVALPLAN

PURPOSE: To classify the weapons allocated to each target
and' compute the corresponding change in target
value after the attack.

ENTRY POINTS: EVALPLAN

FORMAL PARAMETERS: None

COMMON BLOCKS: CLAUSE, €30, DAMAGE, GROUPS, STRIKE

SUBROUTINES CALLED: ABORT, DIST, INITPR, INSGET, SSKPC, SSSPCA, VALTAR

CALLED BY: EVAL2

Method:

EVALPLAN is called once for each target to consider the damage done by
all weapons allocated to the target. When called, internal arrays are
initialized and the number of target value components is checked. If
the target has more than five value components, an error message 1is
printed and RETURN executed.

EVALPLAN determines if the target is defended by effective terminal bal-
listic missile interceptions. If so, EVALPLAN recomputes the penetration
probability for each missile allocated to the target before performing

target survival calculations.

For each assignment height of burst, CEP, YIELD, and REL are retrieved
from block /GROUP/ and stored locally.

1f this is a first pass, EVALPLAN classifies each weapon intec one of
seven categories: alert LRA, nonalert LRA, TAC, SLBM (combined with
SLCM), MRBM, IRBM oxr ICBM. The correct index for these categories has
been placed within array IWEAP by subroutine EVAL2, It then updates

arrays for summarizing prints.

For each weapon, EVALPLAN updates DELYLD and PLANYLD for all passes of
EVALALOC and calculates the value FVALTOA of the target at the weapon
time of arrival. Then it uses functions DIST and SSKPC and subroutine
SSSPCALC to calculate kill and survival probabilities SSK and SSS, except
for naval weapons where it uses PKNAV to calculate SSK and §SS. These
probabilities are subsequently used to compute values for PRODSS, a
hardness component probability factor; CUMDES, the value of each hard-
ness component destroyed and CUMESC, the value of each hardness compon-
ent escaping during the attack. The values of DE and TIMEVAL are then
calculated using these variables. TFinally EVALPLAN calculates the target
survival probability (SURV), the total target value destroyed (VALDES),
and the total target value escaping during the attack (VALESC).

Subroutine EVALPLAN is illustrated in figure 62.

337

START

Initialize
Internal
EVALPLAN

Arrays

+

Save Ground
Burst
Lethal
Radius

Number of

Greater
Than S

RETURN

Print Message
TOO MANY VALUEL

S e e e e

Value
Components? COMPS
Less Than 6
Probability OX
Recompute The
Penetration :
Probability Of Number Of
Each Missile Terminal Bal-
Allocated listic Missile
To The Target nterceptors?
More Than 0
Calculate Total
Compute Actual Number Of
Probability |ese———Reliable Inter-
0f Kill of ceptors Against
Interceptors The Weapons
Allocated To The)
Target
: Figure 62. Subroutine EVALPLAN
; (Part 1 of 4)
&
|
!
!
|
e e e T

e et = e i o e e e = enoron

SUUUIN. > USSP
o -

Reétore Ground
Burst Lethal
Radius

%

Calculate Targe
Survival
Probability
Value Of
Target
Destroyed, And
Value Of Target]
Escaplng During

all INITPROB To
Initialize

Arrays Tn
SSSPCALC

Done

The Attack

Figure 62.

%

The Target

*Do

Set Lethal
Radius
Accoxrding To
HOB

%

Set NWP Equal
To The
Multiplicity
0f The Weapon
(~-KORDOR(I) For

tcad

E;Iéulate RELT~
Relative Proba-
bility Of Kill

For Weapon |

339

(Part 2 of 4)

A i e r e i e w3

St X,

Do 90 For Eacﬁ
Weapon 90
Allocated To

- -
1

T S|

ban: i o ke s, o b e e o

ot o A B Bt

<

L

R

[

Save Yield and Delivery
Exrror Data For
Weapon

Is Weapon
An
ASM?

Reset Kill
Probability
Using ASM
Kill Factors

]

86

Classify Weapon
By Function -
Alert LRA, Nonalert
LRA, TAC, SLBM,
ICBM, MRBM, Or IRBM

Figure 62, (Part 3 of 4)

o m—

o e b 4 £ et it _“

P

M My oot v e et ne i

NP

o ———

Calculate Value Of
Target At Time
Of Arrival of Weapon
Over All Time
Components
(FVALTOA)

Do 95 For Each
Done

Restore Yield
3| And Delivery

Hardness
‘ Component Of
The Target
I ™~

'uo

Error Data
For Weapon

]

DIST, SSKPC, SSSPCALC
Calculate Survival Probability
Factor, PRODSS, Value of Hard-

ness Component Destroyed
CUMDES, Value Of Hardness
Component Escaping During

The Attack, CUMESC

Calculate Survival
Probabillity Of Target,
DE, And Survival Probability
Of Time Dependent Target
Value After Arrival
Of The Weapon

Figure £2. (Part 4 of 4)

341

S e e s 4 s i v e e <

. e Sr—
e

4.9 Subroutine EVAL2

To read target weapon allocation data, evaluate and

PURPCSE:
classify it, summarize it and store calculations
for summary prints.

ENTRY POINTS: EVAL2

FORMAL PARAMETERS: None

CLAUSE, C10, Cl15, C30, DAMAGE, GROUPS, OOPS,
OPERATE, STRIKE

COMMON BLOCKS:

SUBROUTINES CALLED: DIRECT, EVALPLAN, HEAD, HDFND, INSGET, ITLE,
NEXTTIT, ORDER, PREVAL, PTIME, REORDER, RETRV,

SORTIT, TGIMODIF, WPNMODIF

CALLED BY: ENTMOD (of EVALALOC)

Method:

EVAL2 begins by processing input clauses as introduced by adverbs
ONPRINTS, SETTING, COUNTRIES, or TGTMOD. For the print clause, the upper-
bound target number (ITGTMAX) to be printed is stored. Parameters PKTX
and LAW are set according to the SETTING clause. If COUNTRIES exists,
the method of comparison for target evaluation consideration resides
within parameter DESIRE. The beginning (ICL) and end (LCL) pointers
into INSGETs for the COUNTRIES clause are defined for further inter-
rogation. Finally, the TGTMOD clause is queried for syntax errors.

By chaining the weapon groups, attributes necessary for target-weapon
assignment evaluation are stored for use within subroutine EVALPLAN.

Weapon categories are indexed (array IWEAP) based on attribute FUNCTI
which serves for collecting items necessary for summary prints. Also

ASM data is stored, if applicable.

Now the individual target list (TARNUM) will be queried and tested
against the COUNTRIES clause for tests of inclusion within the current
evaluation. If tests prove satisfactory, target data is placed on file
unit 21. Only those items necessary for print or allocation evaluation

are written.

After chaining the target list, subroutine SORTIT, orders the targets
based on reginn, country location and DESIG consideration if adverb
SORT exists. By collecting target elements in this fashion, EVAL2 is
easily amendable to any new future sort requests. In addition, core
utilization remains minimal even with the restriction of open-ended

targets.

Individual targets record are now read from data unit SORTED and the wea-
Assignment

pon assignment chain (ASGWPN) queried for each target record.

342

Lyor

3t bR B S oL 1.

LISV

&

P N

—————— —

S e e

’w,—»—-‘- -

parameters are collected and eventually reordered by time of arrival which
is necessary for evaluation. If directed, subcoutine TGTMODIF wakes mod-
ifications to the targets as user directed. Finally EVALPLAN evaluates
the target's allocation. Individual target data items are printed, if

requested,

At this stage all evaluation and prints concerning the current target
have been completed. All that remains consists of storage of calculated
items necessary for summary prints. Rather than temporarily storing items,
results are written onto data file unit 22. Tive separate records are
written per target. The first word of each record defines the summary
report number. The second and third words always equal attributes CLASS
and TYPE. Elements beyond the third words depend upon the summary re-

port criterion.

After all targets are processed, data unit 22 is sorted based on the
first three words which is a sort perfect for print purposes. WNow sub-

routine PREVAL reads the sorted unit (LUNTAB) and generates reports.
Upon returning, control is passed to ENTMOD for consideration of remain-

ing passes.,

Subroutine EVAL2 is illustrated in figure 63.

343

Scan For
Syntax

Yes

TGTMOD

No/ Adverb Exist?

200

Figure 63.

'
}

b e ot b

START

[_;nitialize

Retrieve
NUMBTL
Record

"ONPRINTS'
Adverdb Exist?

No

SEITING

Adverb Exist?

Yes Store Print
Limits
Yes Store PMTX
and LAW

COUNTRY
Adverb Exist?

'No

Yes

Store INSGET
Pointer

Subroutine EVAL2 (Part 1 of 7)

344

e e
N .

|
f
'é ' ‘,
E 980 i -
H i
i
i Print Error Weapon :
! Message Group Header =
Exist? }
» 1
| .
: i RETURN
|
j Retrieve Next
. Weapon Group
] ,
L f
End of 1
Weapon X
Group? 4
X)
; Store Function i
Code in Array ‘ ; :
| IWEAP |
-
i ; 1
‘ 1
| Store ASM .
i Parameters
| |
: % ;
? . :
E Store Group ‘
J Attributes <
'
’ |
’ 210 !
' "
; Figure 63, (Part 2 of 7) 1
] 35 o
ot !
g |

- A e R

S SRV A —.

H
!
13
L]
i
3

985

Call WPNMODIF
If Requested

Print Error
Message

320

]
J

{

TARNUM
Header Exist?

Retrieve Next
Target Number

End of Target
List?

Retrieve Target
Record

Set Value and
CFLAG

Target Belong
to a
Complex?

Retrieve Next
Complex Element

End of
Elements?

Figure 63, (Part 3 of 7)
346

i Y “;-.- 3

A

N,

Lo}

Pt

o

]

Retrieve Target
Attributes

COUNTRY
Adverb Used?

Target in
User Selected
Country?

Write

Unit Necessary

21

Target Element
of
Complex?

Figure 63. (Part 4 of 7)

347

el
L N e N
o 7,

Y

:
;
|
|
.
;
,

If User
Requested,
Sort Target

Record

Read Target
Record

End of
Target
Records?

Store Data Base
pefined Target
Attributes

Save Weapon
Assignment
Attributes

Figure 63.

Retrleve Target
Weapon
Ass ignment

Ead of weapon
Assigaments?

348

s —————

(rart 5 of 7)

e o o

e =

Print
Target
Data

Sort
Assignments
Based on Time

of Arrival

If User
Directed,
Execute
TGTMODIF

Evaluate
Target
(EVALPLAN)

Detailed
Target Print
Requested?

Write
Necessary
Parameters For
Summary Point

B

Figure 63. (Part 6 of 7)
349

||

Copy File 22
—— s onto File 21

Sort Unit 21
for Summary
Prints

Print Target
eapon Assign-
ment Count

Print Tables
(PREVAL)

Figure 63. (part 7 of 7

350

4 e —

L TRV ¥ TR T PRI

o =)
S mm et buen "

ey e

B SRR s sl ool os? o o ot o -

4,10 Subroutine PREVAL

Print summary tables concerning the allocation.

PURPOSE:

ENTRY POINTS: PREVAL

FORMAL PARAMETERS: LUNTAB - IFile unit number where print related data
resides

COMMON BLOCKS: DAMAGE, TYPCLS

SUBROUTINES CALLED: None

Method:

Subroutine PREVAL's sole function consists of reading data unit (LUNTAB)

as prepared by EVAL? and generating reports as outlined within figure 64
Records on unit LUNTAB are sorted based on report code and within that
sort arranged according to class and type. The second and third level
sort orders ease the burden in producing counts for similar type and

class intersections. PREVAL, then, simply reads and prints.

Subroutine PREVAL is illustrated in figure 64.

351

ey

——
S

PP

e e

[

B oo

T

e T

START

Calculate and Print Entries
In TARGET DESTRUCTION
SUMMARY For Each Target
Class and Target Type In
The Target Class

¢

Calculate and Print Entries
In SCHEDULE OF WEAPONS
ALLOCATED For Each Target Class
And Target Type In The Class

A
: ¢

Calculate and Print Entries
In SCHEDULE OF WEAPONS
DELIVERED For Each Target
Class And Target Type In The Class

¢

Calculate and Print Entries
In SCHEDULED MEGATONNAGE
Summary For Each Target Class
And Target Type In The Class

i
5
!
| ¢
}
|

T
PCiuiidh)
OV A

M e 4 et e £

Calculate and Print Entries In
; DELIVERED MEGATONNAGE Summary
; For Each Target Class And
| Target Type In The Class

f
G
;? f
; RETURN
| B
!

Figure 64, Subroutine PREVAL

352

o

e AL

4,11 Subroutine SSSPCALC

To calculate target survival probabilities for

PURPOSE:
multiple-weapon attacks. This routine will con-
sider either the exponential or square-root
damage law.

ENTRY POINTS: INITPROB, SSSPCALC

8588 ~ A single-shot survival probability

NWP ~ A number of weapons
J ~ Index to hardness component

FORMAL PARAMETERS:

COMMON BLOCKS : LAW, LITTLE

SUBROUTINES CALLED: None

CALLED BY: EVALPLAN

Method ;

The INITPROB entry point is used to initialize two local arrays which are
used in the calculations. This entry is called once for each target
before processing the weapon damage calculations in EVALPIAN. The formal
parameters have no effect on this entry point., The two local arrays are
indexed by hardness component. They are defined as follows:

Current fraction of Kth hardness component

CUMKILL(K)
surviving. Initialized to 1.0.

SUMSK(K) Current sum of kill factors for Kth hardness
component. Initialized to 0.0.

Entry SSSPCALC computes the multiple~weapon survival probability from the
single-shot survival probability. If the exponential damage option has
been selected, then the multiple~weapon survival probability is equal to
the product of all the single-shot survival probabilities for each weapon.

If the square-root damage law option has been selected, the routine checks
to see if the target radius is greater than zero. If not, the exponential
damage function is used. If so, the routine must calculate the square-
root kill factor corresponding to the input single-shot survival probabil-
The algorithm used for this is the same one that is used in subrou-
tine SETABLE in program ALOC, The algorithm is a recursive, one-dimensional
search procedure to find the appropriate kill factor, The new kill factors
determine a new sum, This new sum defines the new fraction of the target
that survives., The multiple-weapon survival probability is then the ratio
of the new fraction surviving to the old fraction surviving.

ity.

Subroutine SSSPCALC is illustrated in figure 65,

353

o e e mmae

T W e e e

RETURN

Entry
START SSSPCALC

Set SS Equal

X 1

2 Set Target Survival | yo Is Target Radius

: Probabilit?'p 58S Greater Than Zero
i To sSSP And LAW=SQUAREROOT ?
i

i Yes

i 2 *

; Initialize X To 1

i

Jg 15 >

To e™*, (1.+x)

e A2

Initialize CUMKILL
Array To 1 And
SUMSK Array To 0 i

RETURN

)

Figure 65.

e o el

e s e, e e

E Set Error-ERR-
* Equal To SS-SSS
X 55
4 20 *
Set X Equal Yes
» to : X+ (1+X) ERR Is |ERR{-EPS
it X Greater Than Zero ?
: 30 * No
9 Set
! SUMSK (J }=SUMSK(J)
%f + X2 Nwp
! ¥
’ Entay Set SS = vGUMSK()
START And TCUMKILL To

!

Set Target Survival
Probability SSS To
TCUMKILL/CUMKILL(J)
And Save Value
Of TCUMKILL In
CUMKTLL(J)

RETURN

Subroutine SSSPCALC
354

N

PRI T —

AN et bbby

gt e e S o

A 2 o i eoien e

- 5=
- At b .

4.12 Subroutine TGTMODIF

To enable the user to modify five target param-

"PURPOSE:
eters:

FVULN1 -- The hardness of the target compon-
ent

vozZ -- The value of the target at hcrdness
FVULNL

T(1-5) -~ Time components when value changes

FVALT ~- Fraction of value in first time
component

PEN ~~ Penetration probability of a weapon
allocated

ENTRY POINTS: TGTMODIF

COMMON BLOCKS: CLAUSE, C30, GROUPS, OPERATE, STRIKE

SUBROUTINES CALLED: INSGET, ITLE

CALLED BY: EVAL2

Method:

Modifications of target parameters are mede in accordance with the
TGTMOD clause as user directed. The target type may be ALLTGIS or
a specific class or type name such as MILITARY, BEAR, etc.

The penctration probability PEN is weapon~target dependent. If it is
Lo be modlfied, weapon type names to which the modification applies

follow the operator right parenthesis within the TGTMOD clause.

In all cases TGTMODIF modifies the specified target parameter for the
gpecificed target type by multiplying it by factor XTGTATT which is

also user defined.

Subroutine TGIMODIF is illustrated in figure 66.

355

N f
N

TR
o

ws ea s

e Aeprare ot

o Nt A -

[P\ U,

Store User's
Target Type
to be Modified

\

Stovre
Attributes to

/720)
1| be Changed
H/

t

Store User
value of
Attribute

No @

New Target

Yes

Modi fication
Data?

Determine

Number Which
is to be
Modified

Attribute Index

Target Type
fatch for This
Modification?

More
Modification
Data?

Attribute
Index
Numbex?

Figure 66. Subroutine TGTMODIF (Paxt 1 of 4)

356

788

Multiply V02
By Factox
XTGTATIT

{ |

{

N

F

{

1

(-

i

M . Number of
1 Hardness
52‘ Components?
i

. N

i - 780

i Multiply

’ Attribute V02
« By Factor
s XTGTATT
\

3

N
4

2 ; Recalculate

f Value FVULN1

R

! Multiply
Attribute HAZ ,
‘ HGZ By

Factor XTGTATT

e e emen e

o A e v e

Figure 66. (Part 2 of 4)

357

Multiply
Attribute T(I)
by Facotx
XTGTATT

A

B R R T T

o ot o T

| FVAL(L) =
e FVAL(1) .
i ?
d
Figure 66. (Part 3 of 4) %
%; 358 5
L
. é :
Evz ‘ g
L'l y |
Et RN 4“3

N
Nrd
r

,
+

Factor XTGTATT

Multiply
Attribute
FVAL(1l) by

Set FVAL(1)
To 1

%

Greater Than

FVAL(1)

One?

Do 810 For
Remaining
Values

B —

o =T

Yo —

825

Modify PEN Array
Only for Weapons
Which are
Bombers

Is Penetra-
-ion Probabil
/ ity PEN To
Be Changed For
ALLWPNS?

Is PEN To
be Changed
for Bombers
Only?

Is PEN to
be Changed
for Missiles
Only?

Yes

Modify PEN Axray
For Each Weapon
Type on The
Target
Modification Card

815

Modify PEN Array
For All Weaoons
Allocated to
The Target

Modify PEN Array
For Weapons
Which are
Missiles

Figure 66.

359

e e —— N

(Part 4 of 4)

N

N .

e L e R

4.13 Subroutine WPNMODIF
+

okt KA A 8 £ 1) AR el

To allow the user to modify reliability REL, cir-

| PURPOSE:

I cular error probability CEP, weapon YIELD, or DBL F
g probability. :
gr ENTRY POINTS: WPNMODIF . .
. COMMON BLOCKS: CLAUSE, GROUPS, OOPS, OPERATE

SUBROUTINES CALLED: INSGET, ITLE

3 4

CALLED BY: EVAL2
Method: -

WPNMODIF allows the user to modify specified weapon parameters for chosen

weapon types or for a selected weapon group. The weapon type name may be :
ALLWPNS, BOMBERS, MISSILES, a specific type name such as B-52 or a group C
number. Local parameter XWPNATT contains the multiplier which multiplies

the weapon parameter.

T

J ‘ Subroutine WPNMODIF is illustrated in figure 67.

-
o

sy

Ll Fan e e T D
o

360

R

P L

>

R
b m—— e o s

G L e

S S N

PR

REFRPRTRYF

o “

St s e

o _

D
L

100

Store Group
Number (NG)

o

200 |

Yes

START

fodification
TFor A Given
Group
Nunbex?

Modi fication
For All
Weapon Types?

Modified All

Yes
Bombers ox

Missiles?

-\
User Request
No_/ Equal WEAPON?

Store User
Requested

Wweapon Type

Figure G7. Subroutine WENMODIF (Purt 1 of 3)

361

o - e =

4
P

o

!
|
4

AN g s AT - T

e - —

Update
INSGET's
Array

210 —-—;n%

Stoxe
Attribute to
be Modified

%

Store Value of

_ Attribute
(XWPNATT) to
be Modified

Set Group
Limits

Do 510 For
@““ Defined 5 mj
. Groups

v

Additional
Data?

Figure 67. (Part 2 of 3)
362

v o e a2

AT

TR AT S
e i e

Weapons oY
Group?

fodiflcation
For Bomber
or Missiles?

on Weapon
System?

Jeapon Types
correct for
this
Modification

Multiply DBL,
CEP, or REL By
Factorx
XWPNATT

Figure 67. (Part 3 of 3)

v

< Fone ‘—“d

Nl

s
- v

P SV AL

SECTION 5. MODULE ALOCOUT

5.1 Purpose

Module ALOCOUT is responsible for selecting optimum DGZs (desired ground
zeros), also callea weapon aim points for weapon allocated to target com-
plexes. ALOCOUT, also resorts weapon assignments at the group level for

use within the Sortie Generation subsystem.

Module ALOC specifies weapon groups assigned to targets together with
associated targeting data. ALOCOUT extracts data from these records

and computes any aiming offsets required by the plan. For simple or
multiple targets, no calculations are performed. 1In the case of com-
plex targets which can have several elements at slightly different co-
ordinates, ALOCOUT employs subroutine DGZ (desired ground zero selector)
to select optimum aim points within the target complex.

5.2 1Input

ALOCOUT operates after module ALOC assigned weapons to targets. These
records (ASSIGN) in addition to the supporting data base structure must

be defined for proper execution.

5.3 OQutput

No new data base records are created during the exwcution of ALOCOUT.
However, the weapon assignment records (called ASSIGN) are modified in
two ways. First, for assignments to complex targets or for assignments
to clities with nonzero radius, offsets as determined within the module
are included within the ASSIGN record. Second, the assignment records
at the weapon group level are resorted for use within the Sortie Genera-
tion subsystem. For missile groups, the sort is based on decreasing
values of attribute RVAL, For bomber groups, the order is based on
penetration corridor index and within the corridor sorted based on
attribute RVAL. The penetration corridor that contains the largest
number of strikes appears first within the sort, followed by the pene-
tration corridor of the next largest number of strikes and so on.

5.4 Concept of Operation

ALOCOUT (that is, subroutine ENTMOD) operates with two overlay links.
The first overlay reads the target list (TARNUM) passes controls to sub-
routine PROCCOMP for offset calculations when applicabie and finally
supplies optional prints. After all targets have been processed con-
trols passes to the second overlay which consists entirely of subroutine

SUMPRN which reorders strikes at the weapon group level and, if requested,

produces prints concerning the individual assignments.

R P

R o N e ’
mg— N e i o -

365 ‘ PRECEDING PAGE BLANK

SISV Ve o

AN DL~ sl on v;& l\m » _:r “

e U VSR Foy

o ——————

R S

5.5 Identification of Subroutine Functions

5.5.1 Subroutine PROCCOMP. This subroutine controls the bulk of pro-
cessing for offset determination. It is executed by subroutine ENTMOD
only for those individual targets that require offset calculationms.
After offsets have been determined the assignment record (ASSIGN) is
updated to include the values. Then, PROCCOMP returns to subroutine
ENTMOD for acquisition of the next target and the associated strikes.

5,5.2 Subroutine SUMPRN. This subroutine constitutes the entire second
overlay of ALOCOUT. Its purpose consists of resorting the weapon strikes
at the group level and providing optional prints.

5.6 Common Block Definition

Common blocks used by EVALALOC are outlined in table 11. Common blocks
that communicate with the COP are given in appendix A of Program Main-

tenance Manual, Volume I.

366

b o

s
:
R T VT RON W, ENPRASSI A

O

g e - e o

t.‘

T

SF

e e om b s bt i

e S

v
At ey L

G

e e S oot g

e e e e

L S

RN |

R b o o

¥
A

s ot = ot o .

st

BLOCK

CITY

* TONPRT

ISKIPDGZ

Table 11.

VARIABLE OR ARRAY

ALOCOUT Common Blocks
(Part 1 of 2)

DESCRIPTION

ICITY

X0(J), YOQ)

VI(J)
RADL(J)

VTOA(J,I)

s(J,I)

VEFF(J,I)

X(1),Y(1)
PDEL(T)
ERDEL(I)
YDSCL(I)

VESC(I)

NI
NJ

IPINDAT

PRINCE(9)

ISKIPDGZ

Set to nonzero for targets with attri-
bute RADIUS not equal to zero

Coordinates of target element J
Initial target element values
Lethal radius of target element J

Value of target element J immediately
following arrival of weapon I

Survival probability of target element
J relative to weapon I

Effective value of target element J
relative to weapon I

Offset coordinates of weapon I
Probability of delivery of weapon I
Error in delivery of weapon I

Scaled yield for weapon I

Intermediate computational value used
in subroutine VAL for determination
of total escaping target value

Number of weapons for complex
Number of target elements for complex

User supplied print frequency for
print option 1

Set TRUE if user requested option

Use indicator for DGZ. WNormally it
is 0. Compress resets it to 1 if
more than 20 calls to it are made to
reduce the number of target elements
for a complex target; DGZ is not used
again for the target in thils case

367

~.~,..

PPN
-)

i .-

o

TR T e e

PSR

T ———— -

Yoy amion o

B S T o
b ~ T
e bt s, Sursim 2

T e

e

e

Lo b w e

BLOCK
JAZ

LOCFIN

STRIKE

WPGT

Table 11.

VARTABLE OR ARRAY

(Part 2 of 2)

DESCRIPTION

F(400,26)

LOCFIN

TOA(T)

IREFSTRK(I)

N

YDMIN

IGRP

Holding arrays for sort purposes

Starting location into IRSET's arrays
for adverb FINDMIN instructions

Weapon time of arrival to target
Reference code of weapon strike
Number of strikes

Minimum allowable weapon group yield

Group number

368

e e
= Hosatastar

o -

- T T e e

T
s ot D

P

A ~ -
St s i st 8o < o

o

B A

T

e e -

g

Dk

S

s

5.7 Subroutine ENTMOD

PURPOSE: Read user inputs, collect target weapon assignments,
and execute subroutine PROCCOMP for DGYZ determina-

tion.

ENTMOD (first subroutine executed when overlay

gyTRY POINTS:
ALOCOUT is called)

FORMAL PARAMETERS: None
CITY, Cl0, C15, C30, IONPRT, LOCFIN, STRIKE, WPGT

COMMON BLOCKS:

DGZ, DIRECT, HDFND, HEAD, INSGET, NEXTTT, PROCCOMP,

SUBROUTINES CALLED:
RETRV, SUMPRN, TIMEME, WEPGET

CALLED BY: cop

Method:

Subroutine ENTMOD reads and stores users input, walks the individual
target chain (TARNUM), collects weapon assignments for the current tar-
get, and calls subroutine PROCCOMP for DGZ determination if the target
represents a complex or is a city (attribute RADIUS greater than zero).
After processing all targets, subroutine SUMPRNT (second overlay) reorders
weapon assignments on a weapon group basis for use within the Sortie

Generation subsystem.

Module ALOCOUT recognizes user supplied adverbs FINDMIN and ONPRINTS.
FT™DMIN sets the number of iterations subroutine FINDMIN uses for off-

sct determination. ONPRINTS sets user options; results maintained in

array PRINCE.

ALOCOUT now walks the identical target chain (TARNUM) which module ALOC
made weapon assignments to. TFor each target, weapon assignments are
stored on chain ASGWPN. If no strike exists processing continues by
retrieving the next target on the list. Otherwise, for each weapon
assignment, subroutine WEPGET retrieves weapon related attributes and
updates necessary counts. Checks determine the nature of the target.
Offsets are calculated only if the target represents a complex or is a

city and has a nonzero RADIUS,

A complex target (or target complex) is a combination of target elements
sufficiently close in geographic location that a weapon on any one of
them will have some probability of killing other elements in the complex.
Such target complexes are targeted as a unit by the allocator which allo-
cates weapons against their total value, using one set of coordinates.

In order to maximize targeting efficiency against such a complex, opti-
mum aim points among the target elements must be selected. These aiming
offsets are specified relative to the first target element only and are

passed on in that form to subsequent modules.

369

Ru St Lol Lt

S

R e o T A PP U)

LR S S

TR ettt i e et ot et

When ENTMOD encounters a complex target, subroutine PROCCOMP is called.
PROCCOMP is responsible for assembling the data on a complex target in

a form that can be used efficiently for DGZ selection. Each target com~
ponent of the complex generates a standardized target element in the
arrays used by DGZSEL. (Targets with more than one hardness coniponent
generate more than one such target element, and targets with a specified
target radius will generate several elements spread over the area of the

target to represent a value spread over the area.)

Subroutine ENTMOD is illustrated in figure 68.

370

SESNSY

PR '

L.

< -

R

u

P

|

o e e e e it

o 7 5 PR
e o e v e o i FavaPemahon Pk S

PO

[RSUEUONPEIPUUNY. Al T T

g
e b

7

Read and
gtore User
Inputs

150 *

Initialize
DGZ

Retrieve IDS
Headers

Retrieve
Target

Target List
Exhausted?

No Assigned?

Yes

Any Weapons

Yes

RETURN

Print Timing
Data

1000 *

Print and
Reorder Strikes
(SUMPRIV)

Figure 68. Subroutine ENTMOD (Part 1 of 3)

371

———t e

- —

o

. e e m—

S

C e i e v e —

- £
- At e D P e b et LA
Ty e e At
eACY e e b e,

L

i.,.

Retrieve Target
Attributes

Figure 68.

Calculate
Target Value
(VONE, VIWO

Fill Time of

Arrival (TOA)

and Reference
Code

Collect Weapon
Attributes
(WEPGET)

+

Retrieve Next
Strike

Any Strike
Remaining?

372

(Paxrt 2 of 3)

o e e P e e - e o e e e < oo
-y [N - -

7~
(121
W
o
N H
o ° b o
Q ol ~
o~ o ~ 2 o
s Ho 0wl 8 © 24 i
B o = U5 FERE
[} =387
0 % w Q s @ .
i} CCLO ot 1]
&mT_ OR O
0 Ea 8°& &
(]
o3 %
&0 |
e :
= '

p—

[S e

PV T

B Uy

5.7.1 Subroutine COMPRESS

PURPQOSE: For computational efficiency and/or to avoid
exceeding maximum program dimensions, COMPRESS
recombines those target elements which are
near one another and have approximately the
same lethal radius.

ENTRY POINTS: COMPRESS
FORMAL. PARAMETERS: OPENTOL (type INTEGER)., If OPENTOL is O,

distance and lethal radius tolerances will not
be eased to decrease the number of target
elements, If OPENTOL is 1, the tolerances
will be eased.

COMMON BLOCKS: Cl, C30, ISKIPD
SUBROUTINES CALLED: IMIN
CALLED BY: PROCCOMP

When OPENTOL is zero, COMPRESS merely recombines target elements which
are close enough together that their lethal radii nearly coincide.
COMPRESS in this mode is called by PROCCOMP just prior to calling
DGZSEL in order to improve the efficiency of DGZSEL.

In the event that maximum program dimensions are reached, OPENTOL is
set to 1 by PROCCOMP; COMPRESS will then loosen its tolerances, if
necessary, to assure enough recombination of target elements to
eliminate the problem, at least temporarily. A print is also issued
in this csse which gives the number of times the tolerances were

doubled.
The flowrhart for COMPRESS is shown in figure 69.

~
s 2 et ki,

U e b bt uh WMLt sk ey

A ML o M A C AT m

N vy e

B O S e Sy

o st e =
2 s ¢ s it

T e e e o o e

3
e

START

Initialize Tolerance
Distance D2TOL And
Lethal Radius
Tolerance RADLTOL

Y

Less Than Two
<:: Target Elements RETURN

100 b}No

Do 1 For Each

Done

Pair Of Target
Elements

Do‘gq. “
Is Distance Between
Elements Greater
Than D2TOL?

3 *yNo
No i!\re Lethal Radilx
Of Elements
Sufficiently Close?/
4 *Yes

Recombine The
Pair Of Target
Parameters

1

Reindex Remaining
Target Element
Parameters

v

Is Index Of New

Yes Target Element No

Greater Than Other
Target Element
Indices?

Figure 69,

Open Tolerance
Option?

20 *Yes

Less Than 40
Target Elements?

8 *NO

Open The __J

Tolerance Further

7 %
No Tolerances Opened
To Reduce Number
0f Elements?

10 *Yes
/> Print
TOLERANCES
OPENED

RETURN

Subroutine COMPRESS

375

T

5.7.2 Function CUMINV

PURPOSE: To determine the value X such that Z is the
probability that x = X.

ENTRY POINTS: CUMINV

FORMAL PARAMETERS: Z - The probability that x <X

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY: PROCCOMP

Method:

Function CUMINV is illustrated in figure 70. By definition,

y pLE
Z= P[x.s X] = 7= ./Pe‘“f «dt for 0 < Z < 1
» n m

' 1
CUMINV uses the following approximation X for X:

- . . 2
s s [V - (Ay +Ag =V + A3+ V i]
1+By -VaeBy.V2iedg V3

wvhere
V =/ (1/Q9), Q=2 or 1-2 suchthat0<Qg.
and
A = 2.515517 By = 1.432768
Ay = 802853 By = .189269
Ay = .010328 By = 001308
376

5

et e A A et s o P brtes ot B ae

ey s e e e

A
5
H

AN M ek earnt il D it earond

PR RNY)

[

Ty

PRSP

Set X Equal
To Z

Set X Equal
To 1 -2

Is Z Less
Than .57

l

l

V=\) In(1/X2)

SUMN=2.515517+.802853'V+.010328'\/2

1

SUMD=1,+1 432788 +V+.189269-V2+,001308 w3

CUMINV= (V- SUMN/SUME) 2/ 1Z]

RETURN

Figure 70. Function CUMINV

377

h o e Am————

P,

'3

e e s b

An it

oty me i it s ke s

A S min i s >

i e

Py

5.7.3 Subroutine DGZ

DGZ is the controlling subroutine for the optienal

PURPQSE:
selection of DGZs for weapons allocated to complex
targets.

ENTRY POINTS: DGZ

FORMAL PARAMETERS: None

COMMON BLOCKS: Cl, TIONPRT, LOCFIN

SUBROUTINES CALLED: FINDMIN, INSGET, PERTBLD, SEECALC, SEEINPUT,
TIMEME, VAL, VMARG

CALLED BY: ENTMOD, PROCCOMP

The optimization of DGZs expliclitly considers the time dependence of
target value and the time of arrival of warheads. It does not rean-
alyze the correlation of delivery probabilities, which is assumed to
have been treated in the cross targeting provided by the allocator.
The selection of DGZs is a two-step process. First, the prescribed
warheads are assigned initial coordinates through a "laydown" process

in which each successive warhead is targeted directly against that

target element where the highest payeff 1s achieved, taking into
Second, a gen-

account collateral damage to all other target elements.
eral-purpose function optimizer FINDMIN is called which calculates the

derivatives of the payoff as a function of X and Y coordinates of each
weapon &nd adjusts the coordinates to minimize the surviving target
value, FINDMIN will exit elther after a maximum number of ilterations
(which are specified on an input card), or after it finds that it can
no longer make significant improvements in the payoffs.

On the first call to DGZ, the specification of the maximum number of
iterations for use in FINDMIN is set. Figure 71 illustrates the DGZ

calling hierarch; the subroutines are grouped according to how they are
used in the selection process. Figure 72 is the DGZ flowchart.

378

S e a——

—— e

st

Hg |
X i
i L
14 1
P ¥
§ ‘ _»| VAL ;
; .
]
: Called ' 1
j _p| WMARG }—®=| SSKPC For lnitial
4 { — Laydown
— |
! Lp| MOVE L ssKPC *
% \
!
)
i
i
SEEINPUT f
, Called !
; DGZSEL For Initial Laydown :
L Prints
g; ____p» SEECALC
| Called §
* p| PERTBLD To Perturb Initial :
La)’dOWT\ }
= !
P 4 ;
|
K Called For i
2! FINDMIN —p» SEECALC Hill Climbing !
/ Phase ;
§
{
\ F2BMIN MOVE SSKPC {
?. e e i 2
| .
by
3 2
| P
} VAL .
J t j
: b
€ B
t 1]
B f
‘ L GRADF |——p] VMARG | SSKPC L
| |
¥
b ? t
Figure 71. DGZ Calling Hierarchy b
. 1
{ '
'- 379 .
|
.} . t :
| B
t! ; t)
E» Ai e h e e re———— e e ~adm————— ;
R e

JESUE S D UUUHUP -
- B e e A P

START
40
Is This The Yes
First Call To Store IMAX
DGZ?

1008 M ylo
Set All Aim Yes Are All Weapons To Be
Point Offsets Assigned Aim RETURN
To O Point Offsets Of 0? :
1009 y No .

Initialize Survival
Probability Array
S Tol

VAL Determine Initial
Value Escaped And
Initial Effective Value
0f Each Weapon

Y

For Each Weapon
And Target Element,
Use VMARG To
Determine Marginal
Value Of Moving
Weapon To A New
Position

20 '

For Bach Increase

In Marginal Value,

Reassign Aim Point
0ffsets To New

" Position And Call

MOVE To Determine

New Survival Probability .

Figure 72. Subroutine DGZ
(Part 1 of 3) %

Ji

380

e e A——— | AL ————

Toitlalize \i Avcsy
With Valuos OF 0ffaet
Aln Point Coondlnates

W Noapans

1004
Ats Prints OF X - ;
nitial Awd Binal Yeos t‘.\n}lt&;h:xm‘n To
Nespon Layduwns rint Data Input ,
Specitied? From PROCCOMP ‘
No]
Cull SEECALC ‘
- = — To Print
Laydown Results
100 A
‘f“/' Une Targot
10057 '\ Element Op Less?
"
No
Use RINDMINY
1011 e

Call PERTMBLD
To Perturh
Weapon Laydawn

02 ‘

Call PINDMIN
To Optimiie Neapon
taydown Tn Sueh A Nay
that Suiviving Target
Value 1s Mininized

\

Refarmat Weapon Aim
Patnt Contdinates For
Teausfor Vo PROCUOMP

Are prints Of . ""‘""'
Initial Ant Funad Yes A ‘tgl‘l
Neapon Laydowas SEECALC |
Spovified? k
No

()

2
Figure 72. (Part 2 of +
L d

381

N LT

o a e n wrin

= e, SV 4

[

Lot e v A e e e e e o ot

c L e

—ve o

I

(o

Call TIMBME For
Timing Information

1007 ' 120

Is This The First No
Time FINDMIN Is RETURN
Used For This Target?
'ch

For Each Weapon
And Target Element
Use VMARG To
Determine Marginal
Value Of Moving
Weapon To A
New Position

Y

Would Movement Of
Any Of The Aim No
pPoint Offsets Increase
Destruction To
The Target?

120 'YCS

Reassign Aim Point
Offsets To New
position Then Call
MOVE To Determine
New Survival
Probabilities

()

Reset XG Array With
Alm Point Offsets
For Use By FINDMIN

Y 123

Are Prints Of Initial \ yeg Print Statement:
And Final Laydowns BETTER RESULTS
Specified? ARE ACHIEVED IF...

No

(3

Figure 72. (Part 3 of 3)

382

et

%
i
3
f 5.7.4 Function ERGOTL
PURPOSE: To return next number in wost unifomm ergodic '
series. (Numbers for up to 10 distinct
series can be called for concurrently,)
I ENTRY POINTS: FRGOT1, ERGOT2, ERGOT3 i
; FORMAL PARAMETERS: I - Index of the series for which the next .
i number is desived
COMMON BLOCKS: None
4
; SUBROUTINES CALLED: None
CALLED BY: PROCCOMP, PERIBLD
b Method:
iy
! Depending on whether the entry ERGOT1, ERGOT2, or ERGOT3 is used, the
N index L is set to 1, 2, or 3, respectively., Then the next number in
& the Ith ergodic series is calculated, This function is illustrated in
gg ‘ figure 73,
1
A
A
4 R
L ,
1 £
' i
3 |
|
t
2
3
|
? -
383

PSR " SR e PSP RSP AT

et e e et =

(ERGOT1 , ERGOT?2 m

Set L To 3

Set L. To } Set L To 2

1 ¥

10

Set J Equal To
{, The Index of
The Series

75 *

Print BAD
CALL ON Yes J Greater
ERGOT Than 107
12 ‘No

Calculate Next Term
In Jth Ergodic Series
Using Appropriate
phase Relationship
(According To
Value Of L)

Y |
()

Figure 73. Function ERGOT1

384

\ - o
ke o S ot ek SRR Satisa s Somaidbatiin S AP KM AR S N

il

-

5.7.5 Subroutine FINDMIN

PURPOSE: This subroutine uses a steepest descent method
to detexrmine a local minimum of a function of
several variables, An initial estimate of the
minimum position is input, together with various
tolerances. FINDMIN uses two auxiliary routines,
F2BMIN and GRADF, which define the function to be
minimized and its gradient, respectively. DGZ
uses FINDMIN to find the DGZs for complex targets.

ENTRY POINTS: FINDMIN

Initial guess at aim point offsets

FORMAL PARAMETERS : X0

N - Length of X0 vector

IMAX - Maximum number of iterations for FINDMIN

El,E2 -~ Tolerances for the minimization

X ~ Best aim point offsets as determined by
FINDMIN

Fl - Minimum value found for escaped target
value

IFTAG - Print control flag
~2 : DGZSEL computation value print is

produced
> 0 : FINDMIN debug prints will be pro-
duced

SUBROUTINES CALLED: F2BMIN, GRADF, SEECALC

CALLED BY: DGZ

Method :

Q%-., oE
Given a function F(Xl’ Xz), the gradients G, = o 1° and G, = dX2 , and
an initial guess (XOl, X0,) at the aim point offsets, FINDMIN finds the
local escaped target value F and its associated aim point offset coorx-
dinates (Xl’ X2). Each iteration consists of a function, F, and gradient,
(Gl’ Gz), evaluation followed by determination of the minimum function
value along the line associated with the modified steepest descent direc-

F is redetermined at each iteration and is defined in such a way
FINDMIN uses two subroutines

tion,
that it converges after two iterations,
during its processing. The first, F2BMIN, defines the escaped target

value function F in terms of aim point offsets X1 and XZ’ The second,

GRADF, defines the gradient components G1 and G2. In addition, at the

385

user's option, subroutine SEECALC is called after each iteration to print

the results of the optimization.

Subroutine FINDMIN is illustrated in figure 74.

386

START

Initialize Variance/
Covuriance Matrix (i)

¥

Pluce Current Aim
Point Offsets In X Array

Y

Cz11 F2BMIN To
Deternmine Initial Value
Of Escaped Target
Value - Fl: Store In FO

Y

Call GRADF To
Determine Gradient
Components For Initial
Weapon Aim Offsets

200 *

Place Gradient Components
In GO Vector And Initialize
Modified Gradient Direction

Vector -S- To Zero

Y

Calculate Values Of
§ Vector For Each Weapon

Y

DGZSEL COMPUTATION VALUES \Yes Call SEECALC

Print Requested To Produce Print
For FINDMIN? L
gl AJ
300 401 No oy

Produce FINDMIN lY°5 FINDMIN Dzbug
Debug Print 1 Prints Requested?
—5—
301 No

Calculate Scalar
Product of G And S
Vactors (GDOTS)

6 Y

Calculate Changes
In Aim Point Offsets
(bX)

Figure 74. Subroutine FINDMIN
(Part 1 of 4)

387

B

R

Store Current Aim
Offsets In X1 Vector

\

Divide Offset Changes
DX By 10

No

FINDMIN Debug Yes
Prints Requested

302

produce FINDMIN
Debug Print 2

Y

t

Has This Division
Been Done More Than
vector

Calculate New Trial
Aim-Point Offsots
And Store In X2

Six Times?
1

‘ch '
Call F2BMIN To
Determino Escaped
Target Value For
New Offscts (F2)

100
Reset FINDMIN Debug
Print Indicator To
-2 So These Prints

Will Be Produced

On Noxt Call

FINDMIN Debug
Prints Requested

NoL‘

304

Produce FINDMIN
Debug Print 3

]

'* Yes

20
Set F3 To F2 And Is Escapod Target
Store Current Offsots Value-F2 Less
(X2) In X3 Vector Than Previous
anuo-Fl

Have The Vector Double The Vector
Of Alm Point Offset of Aim Point Offset
Changos-DX-And Changes-DX-And
Calculuto Neutral Calculate New Trial
offsots From Xi; Store Offscts; Store New
New Offsets In X2 0ffsots In X3 Vector

._@

Y Y

Call F2BMIN To Call F2BMIN To
Detormine Escaped potermine Escaped
Target Value For Target Value For
New Offscts (F2) New Offsets (F3)

Y v

306

JOREN o VRPN PL TSN R JIE SOpy e sey M_Auh' P
" Lafres

o B

ety

Are F2 <F3 And

F24F11?

Produce FINDMIN
Debug Print 4

Yes

<l No FINDMIN Debug
bl Prints Requested
No

]

il
-

s <

§ O €

Figure 74.

388

(part 2 of &)

—— - e —me -
JRNY 8

e, < aciian

|

307

Set Fl To F2, F2 To F3,

Is Bscaped Target Yes
And Transfer X2 Offsets

Value-E3-Less Than
Previous Value-F2 To X1 And X3 Offsets Ta
X2

*No

. Find Sums SWMZ, fo)
SUM3, SMAG: 2

SWZ'SQRT“:(XZUJ-XI (J))zl

SUM3=SQRT[E(X, (3)~X, (3)7)

) SMAGRSQRT [E (X, () ?)

SWZ Is Dlstanco From X To

Xz; SWM3 Is Distance From

X, To X; SHAG Is

Magnitude of S

7

et i

Calculate Factor-C-To Ba
Used In Decxmin:\ ion
New Trial Alm Offscts

Y

Calculate New Alm Offsot

Chinges-DX-And New Trial '

Alm O£fsots X4 From X1 4
And DX

¥

Cal} F2BMIN To
Dotormine dscaped Target
Value Foxr New Offsets
(F4) NS
) 308 ‘
< FINOMIN Debug Yos Produce FINDMIN "

Prints Requested Debug Print § :

33 HO Y ,
Set FI To F4 And 309 ’
Calculate Alm Offsot 0 Is F4>F1 Ov
Increments -SIG- FA>E2T :

(SIG;=Xd, - X)) .
36 * Yos
Calculate Offsot o
) Np Increments-SI16
@ Is FI>F27 (SIGj- x‘j"‘j)
Yos
3 Y

Calculato Offsct
Increments-SIG @ ;
* (SIGJ- ij-xj) And i
Set 'l To F2

e '
1

Figure 74. (Part 3 of 4)

389

v ke 4 4 oeeregv——— - _— -
s H

NN ———

Calculate Now Aim
Offsots (Xjn Xj*SIGj)

y

Are New Offsots Within\ No
Rango Of Allowed
Toleranco?

52 * Yes

60
Have Maximum Number Yes
Of Iterations For
FINDMIN Been Used?

61 ‘No

Is Magnitude Of § \No
Within Tolerance?

Yes

RETURN

Call GRADF To
Compute Gradient For
New Offscts (G)

(]

Store Gradient
Changos in Y
Vectoxr_

‘Calculate Scalar
Product Of SIG And Y
(SDATY) And Roset Trial

Offset Vectors
-X1,X2,X3,X4 « To Zero

Y

(SDOTY=0?

66 +N°

Calculate New
H-Matrix Values

54

Sat Print Control To
-1 So DGISEL
COMPUTATION VALUES
Will Be Printed

vj Yes

RETURN

71

Sat H Matrix
Values Back
To Initial Values

(9

Figure 74. (Paxrt 4 of 4)

390

wr— e

PRSP

N Canne

R

T

e v s T e e i e A e <t

WE_M._M WW

]
|
i

5.7.6 Subroutine F2BMIN

PURPOSE:

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method:

F2BMIN defines the function which is to be mini-
mized by FINDMIN, (FINDMIN minimizes survival
probabilities of the target element and total
escaping target value.)

F2BMIN

XX - Vector containing offset coordinate for
weapons

T - Total escaping target value for this weapon
configuration

cl

MOVE, VAL

FINDMIN

The offset coordinates for all weapons are input and a call on MOVE is

made for each weapon to

determine new survival probabilities. Then a

call on VAL gives the new function value (total escaping target value)

as well as the new effe
are given, respectively

ctive values. The x, y coordinates of weapon I
, by XX(2%I-1) and XX(2*I).

Subroutines ¥2BMIN is shown in figure 75.

391

PR

i, A,

We

e)

[

START

Call

MOVE (i, X5 yi)

(For each i)

Y

Call VAL(F)

RETURN

(Deteymines Suxvival Probabi-
lity for all Target Elements
Relative to Each Weapon.)

(Determines Effective Values
of Target Elements for This
Weapon Configuration and Gives
Total Escaping Target Value.,)

(xi,yi) = Coordinates Assigned

to Weapon 1i.

Figure 75. Subroutine F2BMIN

392

Sm e e e oo

.

i A

A

T T

E =
o o v g e

o

A | S

zF:

o -

5.7.7 Subroutine GRADF

PURPOSE:

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method:

GRADF determines the components of the gradient
associated with the function which is to be
minimized by FINDMIN,

GRADF
XX - Vector giving weapon offset coordinates

G =~ Vector computed by GRADF giving gradient
components for each weapon

cl
VMARG

FINDMIN

Two calls on VMARG for each weapon (one for each coordinate) are made
to generate the gradient components,

Subroutine GRADF is illustrated in figure 76.

393

s Sl

[

e . ks - "

Sy e e e o

~

e R

| |
x 4
i ;
! ;
* | i
'
-
P
IR}
1
f Figure 76. Subroutine GRADF ‘
‘ 4
| {
| i
| ¢
| :
) } |
\ |
| 3
% s
§
} 394 f
N |
P |
¥ n f
P | '

-WMARG (i,x; + 001, ¥;)

.001

~VMARG (i,xi,yi + ,001)

.001

(for each i.)

e

R EID
aF

3y,

5.7.8 Subroutine MOVE

Subroutine MOVE determines the survival proba-

PURPQSE:
bility, for all target elements, for a specific
weapon moved to a given position,

ENTRY POINTS: MOVE ‘
FORMAL PARAMETERS: IM - Index for weapon .
XM - X coordinate of weapon aim point offset

¥YM - Y coordinate of weapon aim point offset '
COMMON BLOCKS: Cl
SUBROUTINES CALLED: SSKPC
CALLED BY: DGZ, F2BMIN
Method:

For weapon IM with aim offset (XM, ¥M) the survival probabilities,
S(J,IM), for each target element J, are redetermined using SSKPC,

Subroutine MOVE is illustrated in figure 77.

P

ek

Ldtan bz,

395

L

k.

MOVE (i,X,¥)

j 2 j 2
) -0) - R

riY.;-r A e—— (For Each i)

- * p
1 - py * SSKPC (1,A,e4,R) =S,

<D ’
i
!
g ‘ o
§ .
| §
: .
(x,y) = Offset coordinates for weapon I.
rj = Lethal radius of target J.
(xg, yg) = Coordinates of target J.
Y, = Scaled yield of weapon I. :]
P; = Probability of delivery of ﬁ
L weapon 1. Z
i !
% e, = Error in delivery of weapon 1.
1
|
¢
i .
| ¥
R
! i
| 3y
N A
‘ Figure 77. Subroutine MOVE %
;%. |
’1 !y
K :
| !
: 396 :
i ;
| R
{ ; }
P ~ . i
T e —— g
e |

LT U

R p— T

5.7.9 Subroutine PERTBLD

PERTBLD perturbs the weapon coordinates assigned

PURPOSE:
by the laydown algorithm in such a wmannex as to
assure a unique treatment by FINDMIN for each
weapon.

ENTRY POINTS: PERTBLD

FORMAL PARAMETERS: XG

COMMON BLOCKS: cl

SUBROUTINES CALLED: ERGOT1

CALLED BY: DGz

Method:

There is the possibility that, from some point on in time, all target]
element values become constant. In this case, all weapons input to t 8
FINDMIN with identical characteristics and later delivery times, which .3
have been assigned to the same target element by the laydown procedure, .
would remain together., To eliminate this problem, subroutine PERTBLD !

is called just prior to calling FINDMIN,

Subroutine PERTBLD is shown in figure 78.

Y

397

el =i

Do 1 For tach |
Neapon 1

} oo

Done

Find Lethal Target Radius,
R, Associated with Weapon i

; I Choose Smallest Value if not
Unique

z Fi "3:
—dm) —X

z

J

>‘: i1)‘f,

PR Y

J

v

Choose a Random Number, o,
0SeS),
Use ERGOTI(1).

- b] -
‘I(x = x)T ey)")2-'?

RETURN

Fjl « Bffective Value of
Target
Weapon

(xi. yg) » Coordinates of
Tatget

(x;)") » Coordinates Assigned
to Neapon I

v

(xga ¥y)

(l‘.)'i) * (%) (%‘) (? = x‘l F = Y‘)"

Last it

RETURN

Figure 78, Subroutine PERTBLD

398

i

5.7.10 Subroutine PROCCOMP

PURPOSE:

ENTRY POINTS:

FORMAL. PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method:

To set up arrays in common block /C1/ for the com-
plex target so that the subroutine DGZ can use the
arrays during the selectlon of optimal aim point
offsets for the weapons allocated to the tavget:
and to modify target weapon assignments records
for Inclusion of the computed offsets.

PROCCOMP

None

CITY, €1, C10, €30, TSKIPD, STRIKE, WPGT
COMPRESS, CUMINV, DGZ, DIRECT, ERGOT1, ERGOT2,
READ, MODFY, NEXTTT, QRDER, REORDER, TIMEME,
VALTAR

ENTMOD

When ENTMOD encounters a complex target, PROCCOMP 1s called in order to
assemble data in a form that can be efficlently used for DGZ selectlon.
Each target component of the complex generates a standavdized "target
element" In the working arrays used by subroutine DGZ (common /C1/).
Targets with more than cone hardness component generate more than one
such target element, and targets with a specified target radius will
generate several elements spread over the area of the target to repre-
sant a value over the area. For complexes, lndividual target elements
are obtained by walking the data base chain called 'CMPTGT'.

If the number of target clements so generated exceads the maximam pro-
gram dimensions (50), subroutine COMPRESS i{s called to recowbine target
elements near each other having nearly the same lethal radius. In any
case, [ov efficiency in DGZ, a call to COMPRESS Is made just before
calling DGZ. On return from DGZ, PROCCOMP modifles weapon assignment
records (ASSIGN) for definition of the computed offsets.

Subroutine PROCCOMP ies illustrated in figure 79,

399

Save Order Strikes
Representative l.eg—0oIJ By Time Of
Target Arrival
Attributes

Record Inftial
Value Of Target
Component Forvr

START

Complex

Target? For A City

Target?

150

Retrieve
Next Complex
Element

End of
Chain?

Save Complex
Element
Attributes

+

For Each Time
estf——— Component Calcu-
late Value

Each Hardness

Remaining

Figure

Subroutine PROCCOMP (Part 1 of 4)
400

79.

Second Call

Do For Each Done
Target tlardness 40
Component '

‘Do

) No Is Target Yes
Radius 07
50 s

50 \
Calculate Criticsl Set Random Ergedic
Radius For Area Offsets DX And DY To O
Target
Determine JA, The Go To INSERT I Block
Number of Target Of-Flow Diagran To
Elements For The Increment Elesent
Area Target Counter, To Reduce
Nunber Of Target
f————_—"‘ Elements 1f Necessary,
And To Calculate
Do For Each Done Initisl Aim Point Offsets
Target Elemint

*Do

Calculate Random ' 80
Ergodic Offsets,
DX And DY Continuo ‘ A
70 * 90 *
Go To INSERT I Block Continue

To Increment Element
Counter, To Reduce
L_ Number Of Target Ele-
gonts If Necessary,
And To Calculate

Initial Aim Point
offsets (Sco Sheot 4)

Figure 79. (Part 2 of 4)

P A

401

R it e

R U N ——

Call
TIMEME (=2)

Are All
_Yes/ Elements Of The
Complex

pall COMPRESS T

Reduce Number O
Target Elements
Without Opening

calculate Aim
Point Offsets
(DGZ)

+

Modify Strikes
To Include
Offsets

RETURN

Figure 79. (Part 3 of h)

402

A e ———

200

Increment Element
Countcr J

Too Hany
Target Elements?

Call COPWRESS
To Reduce Number Of
Target Elements

!

Has COMPRT3S Been
Called 20 Or More
Times For This Target?

3010

Print ABANDON
DGZSEL Message

1 No

210

Ca'culate Total Offset
X0(J),YO(J) For Element
J Relative To Nominal
Coordinates TLAT, TLONG

y

Record Nominal Lethal
Radius For Element

RAD (J) =H(JH)

Record Value of Element J:
VI(J)=VO(JH) /XJA
Note: XJisNumber Of
Separatc Elements To

Represent Area Of Component

Y

Calculate Value Of
Element J At TOA For
Each WPN, I, VTOA(J,I)
wVI(J)«FVALT(I)

v

[‘ END-INSERT I J

LVELIN

Figure 79.

403

©

(Part & of 4)

. e -

e e = e e -

vea

<.

ot e ket ot s e

R

—

g - e

Ny

[

5.7.11 Subroutine SEECALC

PURPOSE:

ENTRY POINTS:

FORMAL PARAMETERS :

COMMON BLOCKS :

CALLED BY:

Method:

To print the computation values relevant to the
selection of aim point offsets at various points
within the DGZSEL subarea of program ALOCOUT.

SEECALC
VESCLQOT : Total escaping target value

XX : Vector containing the aim point offset
positions for the weapons

Cl, WAROUT
DGZ, FINDMIN

When called by DGZ or FINDMIN subroutine SEECALC prints the title
DGZSEY, COMPUTATION VALUES and column headings. Then for each weapon
allocated to the target, SEECALC prints the internal weapon number, the
aim point offsets, and the survival of each taxget element relative to

the weapon.

At the end of the print for each target, the total escaped

targat value is printed.

Subroutine SEECALC is illustrated in figure 80.

404

-

R

START

Print DGZSEL
COMPUTATION VALUES

'

Print Column
Headings

v

Do 2003 ﬁbr Each Done Print TOTAL

‘_______>. Weapon Allocated ESCAPED TARGET
To Target VALUE= _

Weapon Aim Point
Offsets, And Survival
————— Probability Of Each
Target Element
Relative To This

Weapon

2003 ‘ Do
Print Weapon Number, ///// RETURN

Figure 80, Subroutine SEECALC

405

Py

ateoromons o

R s

P

a4, L,

oy e

et

e o
.

[S S ag e

[

<A s i e e e

. e e o = e

5.7.12 Subroutine VAL

PURPOSE:

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method:

VAL determines the target value which has
escaped for a given weapon configuration and
also determines the effective value, F 1 for
each target element as seen by each weapon.

VAL
VESCIOT
cl

None

DGZ, F2BMIN

This computation uses the effective values, VEFF(J,I), the survival
probabilities, S(J,X), and the time dependent target values.

Subroutine VAL is illustrated in figure 81.

406

e emy et oe e o e

—— o o

[S-S VI

T T e e et revsro s o s iy e e 2w oo of

m e e e

B

N e q o o o

START

E,

ji o

i-1
kgl (SJR) [VJ (Ti-l)-vj (Tl)]

(
G

nu
st
v -

ji

N+1

NN
v -
Z;Z

nn
Pms

- p=i+l

E..
ji

VJ-(Ti)

jk

3

ji

Ao}
U}
St
|]
i

P

- Value of target element j
after arrival of all weapons

- Value of target element j
immediately after arrival
of weapons 1 through i

- Survival probability of target
" element j relative to weapon k

- The effective value of target
element j as seen by weapon i

= Total escaping target value=VESCTOT

Figure 8L. Subroutine VAL

407

.] A\
R

e b e i e gy

I P

pr

s b s

L

S DIV ———

5.7.13 Function VMARG

PURPOSE:

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method:

Given a particular weapon configuration, function
VMARG determines the marginal value of moving a
specific weapon to a new position.

VMARG

IT - Index weapon
XT - X coordinate of weapon aim point offset
YT - Y coordinate of weapon aim point offset

Cl
SSKPC

DGZ, GRADF

A modified set of survival probabilities for all target elements for
this weapon is used to determine the marginal value.

Function VMARG is shown in figure 82.

408

B

o] S NICLNPIY N

A
I «A"

]

i b,

)
[}

NW

< START

02, 2
() - X+ g -)" —R

% (For All J)

7

'rjyi —A

1-p; SSKPC (I,A,¢,R) —=S5;

: Y -3 T Y :
Zj:lji(sji sji) VMARG

"]

i

(RETURN) |
b

(x,y) = Position of Wecapon 1

(xi,yi) = Coordinates of Target Elcment J

rj = Lethal Radius, Target J
3.:—
Y = Scaled Yield, Weapon 1 :
P; = Probability of Delivery, Weapon 1 5
¢ = Error in Delivery, Weapon 1 ‘
S.i = Survival Probability of Target J T‘
J Relative to Weapon | i
St = Survival Probability of Target J =
J Relative to Weapon I when it is ,

Assigned to Position (x,y)

Figure 82, Function VMARG

409

e e et

1

»

{

'

‘

N
'
'

i

5.7.14 Subroutine WEPGET

PURPOSE: Retrieve weapon attributes per assignment, and up-
date assignment counts based on corridor.

ENTRY POINTS: WEPGET

FORMAL FPARAMETERS: None

COMMON BLOCKS: Cl, €10, C30, WPGT

SUBROUTINES CALLED: DIRECT, HEAD, NEXTTT, RANSIZE, TIMEME

CALLED BY: ENTMOD

Method:

Subroutine ENTMOD executes WEPGET for each target weapon assignment.
WEPGE™ retrieves weapon related attributes (YIELD, CEP, etc.) and de-
fines arrays in common block /Cl/ for use by subroutine DGZ. Also, a
count of each weapon assignment categorized by group and penetration

corridor is updated.

The weapon attributes necessary for calculating offsets for each strike
are indexed at the weapon group level. That is, individual strikes
launched from the same weapon group have the same attribute values.
Therefore it is necessary to interface with the data base only once per
weapon group request. Upon initial extraction, these attributes are
written on an indexed random file for future reference.

i
f Subroutine WEPGET is illustrated in figure 83.

et o b
t

o 410

Initialize

Y

szggn Has Group
B ?
Attributes een Processed

Retrieve Weapon
Attributes From
Data Base

Calculate Delivery
Probability, Minimum
Yield, Delivery Error,

And Scaled Yield

Update Weapon
Assignment Count

%

- w e W - ‘qrite Weapon
@‘ /;tribu.tes RETURN

Figure 83. Subroutine WEPGET
411

. ———— TP S 5~

it

T —

[

X

et et b

5.8 Subroutine SUMPRN

PURPOSE: To sort weapon group assignment chains and print
out assignment summaries

ENTRY POINTS: SUMPRN

FORMAL PARAMETERS: None

COMMON BLOCKS: C10, C30, IONPRT, JAZ

SUBROUTINES CALLED: DIRECT, DLETE, HEAD, NEXTTT, ORDER, REORDER,

SORTIT, TIMEME

CALLED BY: ENTMOD

Method:

This subroutine replaces existing ASSIGN records which are in no parti-
cular order on the MYASGN chain with the same set of ASSIGN records in
the following sorts: For missile groups, assignments are sorted on
salvo number ascending, and, within salvo, on the value of the RVAL
attribute descending. For bomber groups, assignments are sorted on cor-
ridor with the corridor most often assigned occurring first, and, within
corridor, on the value of the RVAL attribute descending.

The method used is to cycle the weapon group chain and perform essen-
tially the same process for each group., First a recoxrd is read from
random access file 25. This record contains counts of the weapon groups
assignments. TFor missile groups the total number is in CORCNT(1l) and

-1 in CORCNT(2). For bombers the contents of CORCNT(I) corresponds to
the number of assignments to corrider I. At this point, if the group is
a missile group, the print header is produced. If the group is a bomber
group, the assignments are totaled and the proper corridor order is
stored in CORORD.

Now the assignments are read from the MYASGN chain and stored. The
method of storage depends upon the total number of assignments. If

the number is such that the data may be sorted internally, the data is
stored in array F. Otherwise, it is written onto a file. The sort keys
are created at this time. When the assignments have all been processed,
the old assipgnments are deleted from the MYASGN chain. Then the assign-
ments are sorted either internally by routines ORDER and REORDER, or
externally by SORTIT. Now each assignment, in sort is cither read frowm
the SORTIT output or retrieved from array F. A new ASSIGN record is
stored in the MYASGN chaln and the nssignment ig printed. The bomber
header 1s produced cach time a new corridor is encountered.

Subroutine SUMPRN is illustrated in figure 84.

412

«

\]

!

Call HEAD
For Weapon
Group Chain

%

Call NEXTTT
For Next
Weapon Group

g M———————

Call TIMEME
For Bomber
Process

Yes

No

No

Read Corridor -
Data File

|

Missile .
Process? .

Figure 84. Subroutine SUMPRN (Part 1 of 9)

Call TIMEME
Reset Process |eapmd For Missile

Indicator ISW=2

Missile
Group?

Process

Write Missile
Header

T

Missile Print
Desired?

Set ICOUNT To Zero
Set ISIZE To 1 If Number
0f Assignment Can Be
Sorted Internally.
Otherwise ISIZEs2

Rewind
Unit 21

Call NEXTTT
For Next
Assignment

Figure 84, (Part 2 of 9)

414

Call HEAD
For TARCDE
Record

%

Save TARCDE
Reference Code

%

Call DIRECT
And HEAD For
Target Data

24

Save Salvo
Number As
First Sort Key

Missile
Process?

Calculate
Recovery
Distance

i

Save Corridor
Order As First
Sort Key

Figure 84, (Part 3 of 9)

415

o g e

Save Inverse Of
RVAL As Second
Sort Key

#

Save Remaining
Data I SR
Arvray

Yes

Store Combined
Sort Key In
SKEY Array

%

Save Record In
SR In I
Array

File 21

No write SR Onto

File 21

A

Missile
Process?

Yes 4,,<:E::>

Figure 84. (Part & of 9)

416

- e s

P
- Write Page 3
Eject
Calculate NSTRK
Total Of
Asgignments

f

% |
[
LA
v

}
i
i Set ISIZE=l If
T Internal Sort. :
: TSIZE=2 |
Otherwvise P
! | '
Yes Rewind .

Tile 21

i
No ‘* i:
. |

e e o b e < oty =

Create Array CORORD
which Is Corridor Order
Based on Number of
Assignments To
Corridor

Figure 84. (Part 5 of 2

e

417

3
b
} i

[

2275

Call NEXTTT
For Next
Assignment

. Set ICOR As
gﬁgigg Jes —3»1Corridor Order
From CORORD

‘ Yes Call ORDER
ISIZE=1? 11 And REORDER To
Sort Assignment

T Set 21 AR
| Sort Input
: Un;ﬁ *
Dall SORTIT To Call NEXTTT
Sort ——3»4] And DLETE To
Assignment Remove Old
Assignuent

Figure 84. (Part 6 of 9)

418

A b WA AWK,

e e Bt 7

Yes
41

Move Next Set O
Data From F To
SR

Read Next —- e . —
Record From
Sort Output

Move Data From
SR Into
Block C30

\‘r

Call DIRECT
For Proper
TARCDE Record

+

Call STORE
For New
Assignment

Missile
Process?

Figure 84, (Part 7 of 9)

419

. Q

Set LFTX From FIXED
Set LOOP=1 or
-KORR, Tf KORR

Is Negative

Do For

Number Of
5 Times=1.00P

No

None

Write Out
Missile
Assipnment

Figure 84, (Part 8 of 9)

420

EVURpURSIS S ———-—

I

i
| .
i
|
j Bomber Print
L Desired? ,
} L]
%
New Write Out
Corridor? Bomber Header
Set TPREM, v
ATLOC And -
FIX
J’ f
i
Write Out : f
Bomber :
Assigament !
|
1
i
i
'
f
i
i
‘ Figure 84. (Part 9 of 9) f
,l 1
! !
421 §
i
[|
Col |
' |
l :
|
— e e o o |

P
S S ves—y

e mevn s

R S

APPENDIX A

ALOC ANALYTICAL CONCEPTS AND TECHNIQUES

This appendix describes the major amalytical concepts, techniques, and
algorithms employed within the allocator (module ALOC). Topics of dis-
cussion consist of explanation of corridor routing, weapon/target inter-
action, weapon correlation, weapon allocation, derivation of Lagrange mul-
tiplier adjustment, and derivation of formulae for correlation in weapon

delivery probability.

A.1 Corridor Routing

Penetration/Depenetration Corridors: In QUICK, bomber routing for pene-
tration and depenetration of enemy territory 1s controlled by the use of
flight corridors as reflected in figure 85. These corridors are estab-
lished by the user and are defined in the data base. The user is permitted
to specify a number (up to 30 per side) of alternative penetration corri-
dors that can be used by the bomber force. A penetration corridor is de~
fined by an entrance point and a corridor origin. From the corridor ori-
gin, the aircraft is permitted to fly in a direct route to the target.
The corridor also has a specified orientation or axis, which is used to
indicate the general direction of the defense suppression effort. There
will be a tendency for bombers to penetrate more deeply parallel to the
direction of the penetration axis than at right angles to it, since the
attrition rate will be less (see Bomber and Missile Defenses, this appen-
dix). The corridor axis is specified in the data base by a coordinate
for the origin and a coordinate for the axis orientation point (denoted
by the arrowhead in figure 85)., In addition, the user may establish pre-
corridor legs. This may be useful in order to avoid areas in which the

expected attrition is high.

The user must also establish depenetration corridors which define the
routing from enemy territory to a recovery base. A maximum of 50 depene-
tration corridors, each with up to four recovery bases, may be defined
for each side. The system seeks, for each target, the most convenient
depenetration corridor and associates it with the target. The depenetra-
tion corridor is specified in the data base by a depenetration point and
one or more depenetration legs. The system will search from the last leg
of the depenetration route and select an appropriate recowery base (see
Detailed Sortie Specifications, this appendix).

Under the corridor concept, the routing of long-range strategic bombers
is as follows. The aircraft is programmed to launch from its launch
base; fly to a refueling area, if there is one; fly to the entrance of
the penetration corridor; and fly down the corridor until it reaches the
corridor origin. From this point, the bomber is permitted to fly in a
direct route to the target. After the last target, the bomber is pro-
grammed to fly to the depenetration corridor entry point and fly down

the depenetration corridor to a recovery base.

423

f-SSSw—
<

- - s i e e i~ Jp—

H
i

'Y BOMBSR BASE Direction of Flight

~
~
~
~

™8 REFUEL POINT

o0

!
|
|
|
!
!
. k CORRIDOR ENTRY (First user-directed route point)

° \ PENETRATION ROUTE LEGS (Called precorridor legs,
o i.e., optional route

’} legs which control
/ bomber routing prior
/ to the corridor origin)
/ .
¥ CORRIDOR ORIGIN (From this point, bombers may

£ly direct to targets)

/ AXIS ORIENTATION POINT

/
o FIRST TARGET
\

N\
\

N\
0 LAST TARGET
~
~
~ ~
'@\DEPENETRATION CORRIDOR POQINT

\
N\
N\

N\
1\] DEPENETRATION ROUTE LEGS

—~=- Route if refueling is specified
and precorridor legs are defincd \\

in data base,
® RECOVERY BASE

~00~ If refueling is not specified and
precorridor legs ale not defined,
the bomber is routed in a straight
line from its base to the corridor
origin, In this case the corridor
origin is also the corridor entry

point.
Figure 85. Typical Bomber Flight Route

424

S e e o a
o

B2 T A et o Loy Y

In actuality, not all bombers travel through geographic corridors to
reach their targets. Two types, tactical bombers (those carrying nu-
clear weapons) and naval bombers (those restricted to attacking targets
in class NAVAL), fly directly from their launch point (or refuel point)
to their targets. However, to facilitate the creation of flight plans
Lor these two types of aircraft, two dummy corridors (one for each type)
are defined in the data base., While these corridors have no geographic
significance, their assigned parameters do reflect the attrition to which
aircraft will be subjected as they fly to their targets.

Corridor Attributes: The QUICK System allows up to 30 corridors per

side to be used in a war game. Each corridoxr is associated with a set
of type characteristics (attributes). These type characteristics, with
exception of attrition on precorridor legs (attribute KORSTY), are used
within the Plan Generator to establish the area attrition rates for
bombers (see Bomber and Missile Defense, this appendix). Following is
a description of the corridor attributes.

ATTRCO Normal attrition rate for high-altitude aircraft using
the corridor

ATTRSU A reduced attrition rate for high-altitude aircraft
applicable near the main axis of the corridor

DEFRAN Typical range of interceptor aircraft on bases near a
corridor (nautical miles)

HILOAT The ration of low altitude attrition to high-altitude
attrition (decimal fraction)

KORSTY Attribute used to control the mode of corridor pene-
tration (referred to as parameter k when used in the
calculation of curvilinear cooxdinates--see Basic
Sortie Generation, this appendix).

Bomber Defenses and Corridoxr Selection: In the case of bomber/area
defenses, the penetration probability is estimated on the basis of the
nominal attrition rates ascribed to the penetration corridors. Each
corridor is ascribed at least two attrition rates:

ATTRCO Normal attrition rate for high-altitude aircraft using
the corridor

ATTRSU A reduced attrition rate for high~altitude aircraft
applicable near the main axis of the corridor.

In addition, attrition rates can be specified if desired for any pre-
scribed legs between the entrance and origin of the corridor, and

425

= ——— " A —————— et
- .

R T UL

e Y ¥ S U

ik e i % et e

ENUPE.

attrition can be specified in the connection with penetration to defended
targets (TARDEFs). These attrition rates are used to estimate the pene-
tration probability. However, it is also assumed that the attrition
rates can be reduced by the factor HILOAT for portions of the route where
the aircraft can fly low. Any excess range available to the alrcraft at
high altitude is used to provide a low-altitude flight -- assuming a
conversion factor RANGEDEC between low-altitude and high-altitude fuel
consumption., The estimated low-altitude range is then allocated smong
the legs of the mission to minimize attrition.

To represent the effect which area and terminal defense will have upon
the successful execution of any bomber attack plan, a probabilistic
approach is used, The level of defense in a given area will directly
affect the probability that a bomber which travels through this area

will successfully reach its subsequent flight points., Therefore, each
section of geography over which bombers fly is characterized by attrition
parameters which reflect the level of area and local defenses for that
section. These parameters will, in turn, determine SURV(I), the proba-
bility that the bomber will survive to reach flight point I. Finally,
VALSORTY, the total value of a sortie, is defined as follows:

VALSORTY = £ SURV(I)*V(I)
all flight
points

wvhere V(I) = estimated value of reaching flight point I. This value
V(1) is the relative value RVAL generated during weapon allocation by
program ALOC (see Basic Sortie Generation).

The computation of SURV(I) for the formula is based on a simple expo-
nential attrition law, 1If the integrated attrition probability on each
individual leg to a point J is given by ATLEG(J), then the survival prob-
ability for the bomber to the point I will be given by:

J=1
SURV(I) = EXPF [- 3 ATLEG(J)]
J=1
The attrition ATLEG(J) includes both area and terminal attrition for the
leg. Figure 86 illustrates the attrition attributes and variables used

in the POSTALOC module.

The area attrition for each leg is computed by integrating the assumed
area attrition rate over the length of each leg. After the first tar-
get, this assumed area attrition rate per nautical mile is a constant,
equal to the data base variable ATTRCO supplied for the corridor,
Prior to the first target, the assumed attrition rate decreases expo-
nentially toward the limiting value ATTRSU which is also a data base
variable for the corridor. Thus the variable representing the asswmed
area attrition rate between the ortgin and the first target is giveun by:

426

—r—

T

AR e B v ol sttt cesond ety 1 :M«J..mem i
ekt

[rewe)

o e

IR I S

[

(00TVIS0d WeiBoxd UT posn) SSTATTICA pue $93NQTI3IV UOTITAIIY 3O UOTALAISATIL 798 SINZT '

-¥LIVOIIH 03083 2y1 £q patrdraina St .

uoxaex3duadag u0T3ITIIIT pouUMsSsE Yl ‘9pNIII[E MOT 3T
et e P uMo13 301 ® 3o uojadeaz Io 3971 Aue xo04 :93cN !
autod autod b
a3noy 23nod < r4 1 ut31I0 aoueIIUg
£29A009Y 1527 3€3713 191 191 JOoL I0pTII0) I0pTIIO0)
1y
93148LLY T 931 - _
-dLLv o~ !
~ i
JONVE43a .
(43nSYLLY) o
10137233V BITV | 1 _ !
" | pessoxddns | g8u7 x0pyax09313] # ’
P (d¥ODYULLY) '
UOTITIIAV BIXY m :
(D0TYLLY) ¢
UoTITIIIV i
jeutaIal |

- e o e

Rate = ATTRSU + (ATTRCO - ATTRSU) * EXP (- X/DEFRAN)

where X = the distance in nautical miles between the corridor origin and
the first target and DEFRAN is the typical range in nautical miles of
interceptors on bases near the corridor. Attrition rates (ATTRLE) may
also be specified for the precorridor legs leading into the corridor.

The terminal attrition ATTRLOC (see TGT2 in figure 86) is estimated
directly from the data base variable TARDEF. Each potential target

with a local (terminal) surface-to-air missile (SAM) defense is assigned
the attributes TARDFH and TARDFL. The value assigned these attributes
reflects the level of bomber defense, at high and low altitudes, pro-
vided by local SAM units. Considering the bomber's altitude (e.g., high)
the local attrition ATTRLOC is estimated as follows:

ATTRLOC = .1*TARDFH

Naturally, this local attrition is of concern only when the route point
characterized by this local attrition is itself a target for a bomb. It
produces no effect if the target with which it is associated i{s attacked
by an ASM (air-to-surface missile) that is launched from another route
point, Moreover, even if the sortie definition indicates that the ASM
is launched at the target from the vicinity of the target itself, it is
assumed that the actual launch point will be such that the aircraft will
not be required to penetrate the local defenses, Thus, any local attri-
tion associated with the ASM target is again ignored. Finally, it is
assumed that &ll local attrition is applied only to the incoming leg to
the target and that on any leg or fraction of a leg flown at low alti-
tude the attrition rates will be reduced by the factor HILOAT. 1In
order to estimate the expected value of the sortie, therefore, an esti-
mate must be made of how the available low-altitude range should be
applied (discussed under Basic Sortie Generation, this appendix)., Notice
that a change in the assumed attrition rate for any leg or part of a leg
will change the probability of survival to any point I (SURV(I)) which
is required to evaluate VALSORTY.

During the weapon allocation phase (rodule ALOC), detailed sortie infor~
mation (i.e., routing and sequential targeting) has not yet been gener-
ated. Therefore, bomber penetration of area defenses is treated as
follows,

In weapon allocation, only one target 1s under consideration per vehicle,
Therefore, in allocating low-altitude range among the legs of & mission
to minimize attrition, much less weight on attrition is placed after the
target has been reached, The algorithm assumes that the normal corridor
attrition ATTRCO applies to the entire route from the target to depen~
etration, and to a portion of the route prior to the target equal to

the perpendicular distance of the target from the main axis of the pene-
tration corridor. The suppressed attrition ATTRSU is assumed to apply
for the remainder of the route from the corridor origin to the target.

428

In computing the range of the aircraft, the normal range RANGE is used
starting from the centroid of the weapon group for nonrefueled aircraft
(IREFUEL=0) and from the specified refueling area for area type refuel-
ing (IREFUEL2® 0)., 1In the case of buddy refueling, the refueled range
RANGEREF is used, but distances are again measured from the weapon group

centroid.

The penetration calculation is implemented by dividing the aircraft
attrition elements into four "LEGS."

i}

1 Corridor entrance to origin (distance equal to sum of
all such legs with attrition specified -- attrition
equal to sum of attrition on all such legs)

LEG

Corridor origin toward target as far as suppressed
attrition (ATTRSU) is applicable

it
N

LEG

End of LEG 2 to target -- ATTRCO applies but is aug-
mented by any local attrition at a defended target

TARDEF

i
[#3)]

LEG

1
o

Target to depenetration -- ATTRCO still applies but
value of mission and seriousness of attrition (RATE) is
assumed to be less by a factor of approximately .25.

LEG

The available low altitude is then distributed among these legs, and the
penetration probability is estimated. To select the preferred penetra-
tlon corrider, a weight, .75, is given to reaching the target; the
remaining weight, .25, is assigned to reaching the depenetration corri-
dor. The corridor showing the highest value (¥ weight*penetration pro-
bability) 1s chosen, and the penetration probability to the target via
that corridor is recorded for the group. If the group has been speci-
fled for nonrecovery {IRECMODE = -1, the recovery distance is simply

set to zero,

On leg 3, the terminal attrition parameter TARDEF is modified by the
parameter TARFAC. TARFAC is & user-input parameter which allows adjust-
ment of the perceived terminal bomber defenses during program ALOC. The
modified terminal bomber defense attrition is therefore defined as;

TARDEF x TARFAC

This attrition is ignored when calculating the delivery probability of
an air-to-surface missile (ASM).

Missile Defenses: Ballistic missile defenses involve a simpler model.
Only a random defense is considered for area attrition of missiles.
Each warhead, regardless of its assigned target, has the same probabil-
ity of beiung destroyed by the random avea defenses., One random area
kill probability is input for each side,

429

e e v

R e I I
.
.. -
f

Y

Terminal defenses are modeled by a subtractive model. Bach target with

terminal defenses is assigned a number of terminal ballistic missile
interceptors. This number of interceptors (variable MISDEF) is input in
the data base via the attribute NTINT which must be defined for each

defended target.

The input variables describing the target's terminal defense capability
allow uncertainties to be introduced in the number of interceptors pres-
ent. MISDEF is the '"nominal"™ number of interceptors on the target,
each with kill probability PKTX against an unbardened warhead. 1In addi-
tion, four other parameters are defined (the same for all targets) which
introduce uncertainties in MISDEF. RXLOW is a factvor which, when mul-
tiplied by MISDEF, gives a lower estimate cf interceptors which has pro-
bability PXLOW of occurring. Likewise, RXHIGH and PXHIGH dcfine the
overestimate of interceptor availability. Thus, if there is imperfect
knowledge of the defense capability, the allocator cam hedgze against
these uncertainties when assigning wespons,

In addition to the target-associated defense data, it is possible to
describe penetration aids suitable for the various missiles by means of
the Payload Table, For a particular payload index, the following var-
iables* describe the penetration aids:

NWHD = Number of warheads per independent reentry
vehicle package,

The number of "aim points’" the terminal defense
sees for each independent reentry vehicle (in
additicn to the warheads).

NTDECOYS

An independent reentry vehicle package is a set of warheads and ter-
minal decoys that can be guided to a target point (or points) indepen-
dently, TFor missile boosters with a multiple independently targetable
reentry vehicle capability (MIRV), there may be several independent
RVs per bocster., Otherwise, each booster delivers one set of warheads

and decoys,

The penetration probability of any warhead is a function of all the mis-
siles allocated to the target. The model computes the total number of
objects allocated to the target, NOBJ, as the sum of all warheads and
decoys** allocated to the target. The number of perfect interceptors,

variable PINT, is defined as:

b3
NWHD is data base attribute NWHDS; NTDE(GGYS is attribute NDECOYS

ok
For each weapon, this 1s the sum of NWHD and NTDECOYS multiplied by
the product of the survival before launcth probability, weapon sysctom
reliability, and command and control vellability,

430

Ty

ot N

e s e
& . o <,

-

pre —
R R AT e eyt vy

o - — T

S

PINT=PKTX*[(PXLOW*RXLOW)+ (PXHIGH¥RXHLGH)+ (1~ PXLOW~PXHIGH)] "ISDEF

This variable is the expected number of objects to be removed by the
terminal defense intexceptors.

The penetration probability for any warhead is defined as

PINT
1.0 - [NOBJ]

Lf this probability is less cthan (1.0 - PKTX) it is reset to that value,

A.2 Weapon/Target Interaction

The quality of the plans, in terms of realism and sophistication, will
be a direct reflection of the realism incorporated in the payoff func-
tion. 1In order to producc plans of maximum realism, the payoff function

should reflect all the major factors that would be considered by an
experienced military planner. The design incorporates:

1, Time of arrival of weapons

Time dependence of target values, which can reflect a plammer's
uncertainty in the time of arrxival of weapons relative to

change in target value

2'

3. Weapon range limitations

4, Uncertainty in target vulnerability

Correlations in the =2ffectiveness of weapons of similar nature
reflecting such factors as reliabillity, DBL probability, and

defenge effectiveness,

To cvaluate the capability of any weapon group against any target, pro-
gram ALOC requires six basic numbers. These are:

The probability assumed that weapons in group G are

SBL(G)
not destroyed before launch

CC(XR) The assumed conmand and control reliability associ-
ated with the region for group G

REL (X) The assumed reliability for weapon type K used by
group G

PEN(G) The estimated penetration probability for weapons
from group G to the target

SRK(G,JH; The estimated kill probability of warheads in group G

1f delivered against the JIl hardness component of the
target

431

ti\

B

3

g
|
+
!

TVALTOA(G) The estimated target value at the time of weapon
arrival for weapon from group G (this factor is com-
puted from the time of arrival for a weapon from
group G, TOA[G]).

These numbers reflect the planning factors the user has specified for
the plan generation and do not necessarily reflect the values that the
user specifies for external simulation. The number is noted as "assumed"
where it is a direct user input supplied in the data base. It is de-
scribed as "estimated" where it is a derived quantity, based on other

input data.

Actually, the numbers reflect only two types of ilnformation ~- the tiwe
of arrival information, and the kill probability data. The single shot
kill probability is simply a product of the first five ftems. The break-
down of the single shot kill probability into these five separate fact-
ors, however, is required in order to estimate correlations in delivery
probability between several warheads delivered to the same target.

Most of the processing of weapon/target interactions deals with the six
quantities given above. These quantities are then used in the calcula-

tion of weapon payoff,

The basic payoff calculation is modified by the inclusion of weapon cor-
relation considerations. For each single weapon, four factors are cal-
culated: the single shot kill probability and three auxiliary quanti-
ties required by the correlation model (see Weapon Correlations, this

appendix).

I1f we define the overall single shot kill probability on one harduess
component J as: SSK = REL * ¢C % SBL * PEN * STK

then MUP(G,J) = - LOGF(1.0 - SSK)

and SSIG(G,J) - MUP(G,J)/~LOGF(SSK)

I£ the option to use the square root damage law is selected, MUP is
defined in a different manner, It is defined so that:

(1.0 - SSK) = (1 +{§fu—p'('c',‘5> *exp (- J’W"'})(G‘,ﬁ))

The use of the square root damage function is further explained in a
Inter section (see Multiple Weapon Attacks -- Squave Root Law, this
appendix).

MUP is in effect a measure of the effectiveness of the weapon against
the specified hardness component, If all weapons were independent, the
survival probability for the component with respect to multiple weapons
IG would be simply:

EXPF - (X MUB(IG,J))

(This is called the cxponential damage law.)

432

L bmn

-y

Y S gt o oo e e ot

YU
A e 3, s, 4.«:,\.....__-..»%‘“ .

If the square root law option is selected, then the survival probability

would be:
(1 +VDwe(e,) *exp (- YRUE(IE,)

The actual formula, using correlations, reduceg to this form in the lim-
Lt or no correlations but requires the array (SSIG(G,J) as an auxiliary

quantity.

Estimation of Correlation Factors, RISK(A,G,J): The mathematics of the
correlation calculation will be treated in detail below. Qualitatively,
however, the technique requires an estimate of the extent to which the
probability of failure for each weapon system is correlated with other

weapons of the same class, type, alert status, etc.

The RISK array provides an estimate of this information. For any weap-
the importance (or risk involved) in each failure mode (e.

on system,
8., SBL, REL) can be represented in an additive form by taking the log-
arithm of the associated reliability. Thus, the total risk of failure
5
for the weapon system -~ LOGF(SSK) —-- is given by: 3 SM(L) where:
L=1
SM(1) = - LOGF(SBL)
SM(2) = ~ LOGF(CC)

SM(3) = - LOGF(REL)
SM(4) = - LOGF(PEX)

SM(3) = - LOGF(STK)

An array SMAT(A,L) is input by the user at the beginning of the alloca-
tion to provide a nominel estimate of the fraction of each risk SM(L)
that is correlated with other weapons sharing each attribute A, where

the attributes A represent:

A=1 All weapons

A= 2 Weapons in the same group
A=3 Weapons in the same region

A=4 Weapons in the same class

A=35 Weapons in the same type

A=6 Weapons in the same alert status

For each weapon group G the RISK array by class, type, etc., is

433

S i s

e T

LN

e TR e

e e e e e

estimated (for each hardness component J) simply as:

RISK(A,G,J) = & SM(L)*SMAT(A,L)
L

This simple technique for considering weapon correlation is used because
it is a reasonable reprusentation of correlation and the allocaticns do
not seem very sensitive to the details of the correlations. Addition-
ally, input data for a more detailed representation would be difficult

to develop.

The foregoing three arrays are derived from

Adaptability of Input Data:
SBL(G), CC(KR), REL(K), PEN(G),

the basic six variables listed earlier:
STK(G,JH), and TVALTOA(G).

The techniques used to calculate these six basic quantities allow a
great deal of flexibility to adapt to new concepts in timing and pene-
tration strategy. Thus it can be expected that the specific form of
theixr computations will change as experience is gained in actual appli-

cations of the program.

use i1llustrate both the factors involved and

The computations now in
We will now consider the present

the flexibility that is available.
techniques for computing these six variables.

Planning Factors -- (SBL, CC, REL): Two of the six (CC and REL) are
contained directly in the data base, §BL 1s also in the data base --
except that the meaning there is probability of destruction before
launch, To retain mathematical parallelism with other reliabilities,
the SBL used here is defined as a probability of surviving and is
obtained simply as (SBL = 1.0 - DBL). Obviously the specific value of
DBL supplied in the data base should depend on both the alert status
and the probability distribution of warning times for which the planner

wishes to design the plan.

Evaluation of value at Time of Axrrival (TVALTOA(G)): The estimated tar-

get value at the time of weapon arrival for a weapon from group G,
TVALTOA(G) is computed using the formuls shown in the Time Dependent
Target Value Subsection of the Planning Factor Processing Section of
this chapter. TVALTOA(G) is equal to F(t) as calculated in the equa-
tion of that section, where t is the time of arrival of a weapon from

group G, called TOA(G).

The time of arrival is computed differently depending on whether an ini-
tiative or a reactive plan is desired, and whether a missile or bomber

is being considered,

In the case of a reactive plan it is assumed that all weapon systems
launch as soon as possible (subject to their specified delays) after a
The time of arrival in this case is com-

decision to launch is made,
PLAN DELAY is either

puted as PLAN DELAY + LAUNCH DELAY + FLIGHT TIME.

434

e LT

the alert delay or nonalert delay (ALRTDL or NLRIDL) specified for the
weapon in the data base, LAUNCH DELAY is computed as the product of
LCHINT and (SALVO ~1), where LCHINT is the time between successive
launches as specified in the data base and SALVO is the salvo number of
the launch (1 for first salvo, 2 for second salvo, etc.). (In the weap-
on allocation phase, all bombers are considered to be first salvo
(LAUNCH DELAY = 0) to conserve storage because LAUNCH DELAY would be
such a small fraction of total time of arrival,)

FLIGHT TIME is computed differently for bombers and missiles, For bomb-
ers this time is computed as FLIGHT DISTANCE/SPEED. For missiles, the
FLIGHT TIME is calculated as described in the Missile Flight Time Cal-
culation section of Appendix A, Program Maintenance Manual, Volume II.

For missiles, the flight distance 1s computed as the great circle dis-
tance over a rotating earth from the weapon group centroid to the target,
For aircraft, the distance is the sum of the great circle distances for

each leg on the following path:

1. Weapon group
2. Specified refueling area (if appropriate)

3. Entrance to chosen penetration corridor

4, All specified intermediate route points for the penetration
corridor (if any)

5. Origin of penetration corridor*®

6., Target,

In the cagse of buddy refueling or nonrefueling, the second point on the
path is omitted. (Note that the times of arrival used at this point
are approximate, Iin the case of bombers, in that they use a constant
nominal speed and do not allow for excursions to other targets on the

way.)

In the case of an initiative strike, the times of launch are coordi-
nated to reduce warning time, This is accomplished by coordinating

the plan relative to an assumed warning time. In the case of alert
missiles, the user specifies (in the parameter CORMSL) what fraction of
the flight time should have elapsed at the coordination time. With
CORMSL = 1.0 all missiles impact at the coordination time plus the
LAUNCH DELAY described earlier. With CORMSL = 0.0 all missiles launch
at the coordination time plus the LAUNCH DELAY described earlier, This

*
Alrcraft must fly to the origin of the corridor, but are not required
to fly along the corridor axis to the corridor axis orientation point

itself,

435

R ——————

g —

parameter is used in the weapon allocation phase. The sortie genergr
. tion phase, which constructs the detailed plans, may use we.e snphin-
ticated CORMSL data to achieve more highly coordinated missile at.acks,

' In the case of bombers, the user specifies (in the parameter CORBOMB)
the remaining flight distance to the entrance of the penetration corri-
dors at the coordination time., For alert vehicles, launch times are

, coordinated to make good this position at the coordination time -~

‘ except that no alert aircraft are held on the ground after the coordi-
nation time. The launch time and time of arrival for nonalert vehicles
differ from that for the alert vehicles by just the difference in the
alert and nonalert delays. In the sortie generation phase, the bomber
launch times are staggered according to the LAUNCH DELAY time described

earlier in this section.

Penetration Probability (PEN): The computation of this factor is dis-
cussed in the section entitled Missile/Bomber Defenses, this appendix.

Evaluation of Warhead Kill Probability (STK): The warhead kill proba-
bility is estimated as follows.

: The lethal radius for a one-megaton weapon against the jth target hard-
f ness component is computed using the VN function in program PLANSET and
is scaled to the weapon yield® using the 2/3 power yield area scaling
law, The kill probability is computed using the formula

! where

1]

lethal radius

f

2 2 2
Op = 9cgp * gt

GCEP= 0.8493*%CEP

ngt = R95/2.448 3

R95 = radius containing 0.95 of total target value. [|
B

*
For gravity bombs and missiles this is the yield calculated for the
group. (See Basic Yield (Bombers) and MRV/MIRV Payloads sections in
this chapter.) For ASMs, this is the actual warhead yield.

436

————

For gravity bombs and missiles, the CEP is the CEP of the vehicles, For
ASMs, the CEP is the CEP of the ASM as input in class ASM in the data
base. The lethal radius is calculated in module program PLANSET for
both ground burst and optimal air burst. The kill probability calcula-
tion uscs the larger of these radii unless the user specifies (in module
PREPALOC) the burst height (air or ground) for the target.,

This kill function is computed from a very general actual-range/kill-
probability law described in the Damage Function section of this appen-
dix. When the parameter W equals 3, sigma-30 damage curves are closely
approximated, appropriate to soft targets (below 15 psi); for W equal to
6, sigma-20 curves are approximated, appropriate for hard targets. The
use of these sigmas is inherent to the VN system as outlined in Physical
Vulnerability Handbook ~- Nuclear Weapons (U), Defense Intelligence

Agency (CONFIDENTIAL).

For weapons restricted to targets in class NAVAL, this calculation is
not performed., The value of the attribute PKNAV is used as the single
shot kill probability. (Note that these weapons are identified by a

value of PKNAV greater than zero.)

Multiple Weapon Attacks -- Square Root Law: When a number of weapons
attack a single target, there are two ways to consider the total expected
kill probability: the exponential (or power) law and the square root

damage function,

The exponential, or power, law considers the total survival probability
to be the product of the individual survival probabilities., This law
is not as appropriate for area targets as for point targets. The user
therefore has the option to use a square root damage function on area
targets; i.e., targets with a radius greater than zero. The square
root law operates as follows: For each weapon i, define a factor Ki as

follows:
Pg = exp (-{'KI) *(1 +{Ri)

where PS = probability that target survives one weapon of type 1,
(This K| factor is called MUP in this program,) If we have N; weapons
of type i, then the survival probability of the target, assuming inde~

pendent weapons, 1is
= - Y
By, = %0 (Nil(i) . (1+ NiKi)

weapons of type j also allocated to the target, the sur-

I1f we have N
ility, again assuming complete independence, is

vival probab

437

The weapons are not usually considered to be completely independent.
Thus, the sums, NjK; + ..., must be modified to consider interweapon
correlations. The method of modifying this sum is discussed in the
Weapon Correlations section of this chapter (also see Derivation of For-
mula for Correlations in Weapon Delivery Probability).

A.3 Weapon Correlations

A basic consideration underlying the need for cross targeting is the
existence of "shared risks" between weapons~-not only of the same type,
but also between weapons of similar or related types. For example, if
the enemy air defense is better than expected, the actual penetration
probability of all bombers will be lower than that planned., If ballis-
tic missile guidance systems prove to be operationally less accurate
than expected, the target kill probability will be lower for all such
missiles. These possibilities are illustrative of risks that are
"shared" by large numbers of weapon systems, Cross targeting is intend-
ed to avoid "putting all eggs in one basket." It is designed to increase
the probability that important targets will be destroyed even if most or
all of the weapons with certain identical characteristics fail to per-
form as planned. Cross targeting recognizes the fact that operational
percentages of success oxr failure for weapon systems cannot be pre-

dicted in advance.

The basic model used for cross-targeting analysis therefore recognizes
that operational performance reliabilities are uncertain, and treats
them as random variables., War plans are then developed on the assump-
tion that the actual reliabilities that may be encountered in practice
are unknown, and that they will in effect be selected at random for

each weapon type from appropriate probability distributions, Moreover,
it must be recognized that the reliabilities are not independently ran-
dom for each weapon type, because certain risks are shared by many weap-
on types. Thus, on a specific Monte Carlo selection, when one success
pexrcentage is low, certain other percentages should tend to be low also.
A satisfactory plan generation model also should be capable of consider-
ing these relationships between the success percentages for various

weapon types.,

To provide input data for the generation and evaluation of a cross-tar-
geting plan, it is convenient to express these relationships in terms

of risks that are shared in various degrees by similar weapon systems,
The QUICK Plan Generator deals with five possible fallure modes (table
12): survival before launch, launch or in-flight failure, command and
control failure, penetration fallure, and failure to kill the target
cven 1f delivered successfully. Each such failure mede can involve cor-
tain risks that are shared with similar weapons. For each such modc of
failure, the user can specify the extent to which he feels risks will

be of a type that are shared by all weapons of the same group, type,
class, region, and alert status., Residual risks that are not specified
to be shared in this way are treated as independent from weapon to weap-
on. 'Two weapons that share any attribute, such as type or alert status,

438

e

can have a certain amount of shared risk. The failure correlation model
used in the QUICK system considers each weapon to have seven attributes
over which to distribute the effects of the five failure modes. Table
13 shows the seven weapon attributes,

Associated with the attributes and modes is ¢ matrix which specifies

the fraction of the risk in each mode that is shared by weapons with

the same attribute. This failure mode/attribute matrix, the SMAT array,
defines the amount of risk shared by similar weapons and was referred

to previously as the correlation array.

The entrles in the matrix are the fraction of the risk of failure in

the failure mode that is assumed to be shared by weapons with like
attributes; e.g., class, type, region, and alert status., The sum of
each row of the matrix must be 1.0, Two weapons in the same group that
are identical with respect to all of these attributes will share iden-
tical risks except for the independent component. This array is used in
the QUICK Plan Generator to compute weapon delivery probabilities and
expected target damage when multiple weapons are assigned.

Nature of Uncertainties: The basic objective of cross targeting (vsing
more than one weapon type against a target) is to increase the probabil-
ity that the target will be destroyed even if most ox all of the weapons
of any given type fail to operate as planned. In other words, the cross
targeting 1is intended to hedge against the fact that the operational tar-
get kill probability for any weapon type is uncertain, In the conven-
tional oversimplified calculation of expected target destruction, uncer-
tainty in the percentage of targets destroyed is assumed to arise only
as a consequence of the random selection of statistically independent
individual weapon successes and failures (which are assumed to be drawn
from an ensemble of known overall reliability). However, in realistic
planning situations, these individual weapon-to-weapon statistical
variations account for only a very small portion of the total uncer-
tainty in the percentage of successes that will actually occur,

There are numerous other factors over and above this simple statistical
variation that introduce uncertainty in the actual percentage of weapon
successes, In the present model, all of these factors, regardless of
their actual cause, are lumped as contributors to a single uncertainty
which represents total uncertainty in each of the various planning fact-~
ors, Thus, within the model, the overall uncertainty is divided into
two separate parts. First, for each planning factor (such as in-flight
reliability, launch reliability, penetration probability, or probability
of surviving destructicen before launch), the uncertainty is modeled by
defining a probability distribution for the reliability factor., For any
specific war game, the actual reliabilities are considered to be drawn
at random £rom these distributions, After the random selection of these
reliabilities, there still remains uncertainty in the actual success
percentage. This second uncertainty derives from simple statistical
fluctuations in the success percentages that occur when independent
successes and failures are drawn from an ensemble of specified overall

439

e e ————— - er————

Ttable 12, Failure Modes

MNEMONIC DESCRIPTION

SBL Probability of survival before
launch

cC Reliability of command and control
system

REL Weapon system hardware reliability

PEN Penetration probability

STK Probability of target kill by war-
head

Table 13, Weapon Attributes

NAME DESCRIPTION

ALL shared by all weapons in the stock-
plle

ALERT The alert status of the weapon,
either alert or nonalert

CLASS Weapon class, elther bomber or
missile

TYPE Weapon type (e.g., B~52G, Poseidon)

REGION Region of launch base

GROUP Weapons of same class, type, region,

and alert status whose launch bascs
are close to one another

INDEPENDENT Shared by no two weapons in the
stockpile

440

e e et v e

S

g e o e e e o

reliability. However, in realistic planning situations, this latter
cause of uncertainty is usually relatively minor. The really serious
uncertainties and, in particular, the uncertainties that give rise to
the need for cross targeting, are above and beyond this simple statis-
tical variability. ‘'The following are examples of some of these impor-
tant factors that contribute to the uncertainty represented in the model
by the probability distribution for each of the planning factors,

1. The enemy strategy and tactics are unknown and these can have
major effects on the probability of penetration and the prob-
ability of destruction before launch both for individual weap-

on types and the force at large.

2, The basic system reliabilities in an operational environment
may differ from those estimated in a test environment, and even
the test environment reliabilities are not known exactly.

3. The actual success or failure percentages for one weapon may
physically influence the success or failure probabilities of
others-~for example, in defense suppression attacks and in

saturation tactics.

Weapon Failure Modes and Target Survivability: A programmed weapon can
fall to destroy a target for a variety of reasons (failure modes) such
as destruction before launch, launch failure, in-flight failure, pene-
tration failure, or delivery inaccuracy. Assuming that these various
failure modes are statistically independent, the overall reliability of
the weapon h (from group i(h)) will be simply the product of the reli-
abilities over all the possible failure modes j;

%z?%Mj

whersa

reliability for weapon h

B

Ry = reliability for weapon h with respect to failure mode j

The target will survive the weapon h with probability

Sn‘l'%=“?%mm

Assuming for the moment that all weapons programmed against the target
are statistically independent, the total probability of target survival

is given by

Semy - E(l - Imi(h)j)

441

In simplified analysis models where the reliability with regard to var-
ious modes of failure is assumed to be independent from weapon to weapon
(i.e., where the operational reliabilities are assumed to be exactly pre~
dictable), this relation gives rise te a very simple law for target sur-
vivability with regard to multiple weapons. Specifically, relative to
any target, one can define a single parameter Xh for each weapon h,
where

xh = - 4n sh

The Xp, in this equation can be thought of as a measure of the strength
of the weapon against the target. The probability of target survival
is then given by

$ = exp (-Exh)

This relationship is widely used in military analysis work. It has the
advantage that the effectiveness of wespons against a target can be
measured in tems of a single additive quantity, end the efficiency of
a weapon relative to its value can be measured simply by comparing this
quantity, Xh, with the weapon cost or shadow value,

However, as soon as onz admits the possibility of uncertsinty in the
reliability factors or of dependence of the reliabilities between waapon
types, the simplicity of this rulationship is lost. Since the X, ave
related, a simple sum will no longer suffice to determine target sur~
vival, The incremental effectiveness of each weapon depends in part
upon the other weapons which have been progranmed against the target.

It is no longer correct to increase the sum in the exponent as each
weapon is added., The entire expression for target survival must be
completely reevaluated with each weapon addition. Thus, the previous
equation must be expanded to the form

§ = exp l_%: &n <1. - E Ri(h)_’])] 22 (l - g Ri(h)j)

The computational complexity of this expression for S in terms of the
Ri(h 3 although undesirable, seems to be unavoidable in a practical
crosg—targeting model.

One obvious and superficially attractive way of avoiding the complexity,
however, may require some comment, It has been suggested that the com-
plexity can be avoided simply by considering the X), as the random var-
lables, and allowing the user to specify the statistical dependence
between the X; rather than the Ry.y4. Unfortunately, because of the
complex and unintuitive relationship3 between the ¥, that result from
mutually shared risks, this approach appears to place an impossible bur~
Jden on the user.

442

A simple example will serve to illustrate this point. Consider two
weapons, A and B, that share an identical risk of destruction before
launch., Weapon A is otherwise completely reliable, and weapon B has
numerous other more important failure modes, The small risk of pre-
launch destruction is the only risk that prevents the I for the reli-
able weapon from being infinite. Thus, the destruction before launch
risk completely determines the value of the X; for the reliable weapon,
but this same risk will have very little effect (even on a percentage
basis) on the X, for the less reliable weapon. Thus an identical shared
risk produces grossly different effects on the X for the two weapons.

It seems clear that if a model is to successfully deal with the statis-
tical dependence between weapons, the user must be permitted tou express
the relationships in terms of the sharing of risks, and the consequences
in terms of the X;, must be derived by the model. It is unrealistic to
expect the user to supply information directly in terms of the Xy,» even
though this might simplify the mathematics.

Correlation Input Information: The preparation of correlation informa-
tion for the QUICK Plan Generator is simplified for the user through the
uge of a hidden variable approach, The specific hidden variables ewn~-
ployed are generalized so that they can represent broad aggregations of
risk elements. This has the advantage that a standardized set of risk
elements can be used, and it is not necessary to redefine a new set of
hidden variables for each application of the system,

For the purpose of dealing with these risks, the QUICK system classifies
all possible ways a weapon can fail (to destroy its target) into the
flve generalized failure modes described previously,

Each weapon in the QUICK system is considered to be a member of a homo-~
geneous group of weapons which are considered to be identical with
regard to all parameters used in the development of a war plan, The
"weapon group" in turn is categorized as being of a particular: C(lass
(bomber or missile); Type (minuteman, B-52, Polaris, etc.); Alert Status
(alert or nonalert); and Gommand and Control Region. The various specif-
io risk factors that can contribute to each of the five failure modes
are also further classified as to whether they represent risks that
might be shared in some degree: by all weapons of the same class; by
all weapons of the same type; by weapons of the same alert status; or by
weapons which share any other weapon attribute, Thus for each general-
ized failure mode, the QUICK system operates as if there is a hidden
risk variable for each weapon attribute (see table 13, Weapon Attributes).
By the conventions used in QUICK, the risks represented, for example, by
the hidden random variable "Penetration Risk ~ Class Bomber" are avail-
able to be used only in the calculation of penetration risk for weapons
that are members of the class "Bomber." Another risk variable is avail-
able to be used for penetration uncertainties by all weapons that are of
class '"Missile.'" 1If there are penetration risks that are relevant only
for a subset of weapons within a class, there is another hidden variable
for each type and even for each group that can be used,

443

The risk correlation information supplied for the QUICK system thus
takes the following form. For each failure mode j and each weapon group
i, an expected reliability R;. is specified. The total risk, or var-
iance, associated with this reliability factor is thought of as being
divided into two parts, an independent risk and a shared risk. The
shared risk is shared by all weapons in the group and is a vesult of the
variance of the actual reliability R;; relative to the expected relia-
bility R;,. The remaining variance is identified as an "independent"
risk whicl is completely independent from weapon to weapon in the group,
The division of variance between "shared" and "independent" thus deter-
mines the width or uncertainty assumed by the Plan Generator for the
probability distribution of R;; relative to iij’ The larger the per-
centage of independent risk, tge lower the uncertainty in Rij'

The portion of the variance that is assumed to be shared within the
group is then further subdivided into portions that are attributed to
the hidden variables for weapons of that particular class, group, type,
etc. Thus for each failure mode, the risk attribution required by the
QUICK system consists simply of a specification of the portion of the
total risk that is to be associated with each of a number of weapon
attributes, Specifically, the user must specify the portion of the risk
associated with each of the seven weapon characteristics previously de-

scribed.

The summation of risk percentages attributed to each of the above fac-
tors must of course equal 100%. The following table illustrates a typi-
cal risk attribution array (SMAT) used as input to the QUICK system,

ALL GROUP REGION CLASS TYPE ALERT INDEPENDENT

SBL 0 .10 10 40 .10 0 .30
cC 0 .20 .30 .10 .10) .30
REL 0 .05 0 .10 .20 0 .65
PEN 0 0 .10 .20 .20 0 .50
STK 0 0 0 0 0 0 1.00

The fact that 100% of the STK risk variable is treated as independent

in this example implies zero uncertainty in STK; thus in this example
we are ignoring any uncertainty in weapon yield or CEP. The choice of
+30 for the independent component of the SBL as opposed to .65 for REL
implies the assumption of greater relative uncertainty in any SBL relia-
bility than is assumed in corresponding launch or in-flight reliabili-

ties, REL.

Since, by definition, each row of this array must add to 1.0, the final
column is obviously implied by the numbers in the other six columnms,

The actual input format for QUICK therefore omits the final column, so
the correlation or risk attribution data are actually supplied in the
form of a 5 X 6 array, known as SMAT. By convention, in supplying these
data for QUICK, the array is normally filled with numbers intended to

b4

- yo-

e

e e 5

i

o b < s e -
T et ot ettt oo

(&1

represent the maximum amount of uncertainty or shared variance that i
scems veasonable to comsider,

One other important simplifying assumptlon is made concerning the risk
attribul ton data supplled. 1o principle, one might think that the user
would [fke to specify different risk attributions by class, type, alert
status, etc,, for every individual weapon group., This approach would
provide maximum flexibility to control the factor weightings for each
group, but it would require a separate SMAT array for each of the groups
used (up to 250) in the QUICK system, To avoid this data burden, the
QUICK system actually uses only one SMAT array and the values used in
the array arve chosen to be a reasonably good compromisce for all weapon

groupe.

For missiles with a MIRV capability, a different weapon correlation
array is created, The user specifies what fraction of the variance
attributed to the INDEPENDENT attribute is to be added to the variance
attributed to the GROUP attribute for all MLRV groups. This specifica-
tion has the effect of increasing intragroup correlations for these
groups. Since this increased correlation {s applicable only to those
cvents which precede booster burnout, only the failure wodes which
affect the booster are modified, Thesc wodes are survivel before launch
(SBL), command and control reliability(CC), and weapon system reliabil-
ity (REL). Two SMAT arrays are stored, oue for MIRV groups and one for
non~MLRV groups. As cach group is processed, the appropriate array is
used In computing weapon/taxget interaction paramecters,

A4 Weapon Allocation

Weapon to target allocation is accomplished by one of two methods., The
user may specilfically assign some or all of the weapons fdentified for
the war game; those weapons not specifically assipned by the user are

automatically (mathematically) allocated by module ALOC. This program
allocates ccapous over the specified target system, using input data

concerning the structure of the target system, the fuventory and capa-
bilities of available forces, and the wac objectives and strategy. It
produces as output a detailed specification of the weapons assigned to

cach target.

The structure of the target system is represented by the location, value,
and estimated vulnerability and defense capability of cach target ele-
ment. The available forces are represented by such factors as range,
yield, accuraecy, reliability, penctration parameters, rvesponse tiwe,
speed, survivability, location of deployment, and inventory,

The allocator (ALOC) uses geuneralized Lagrange multiplicr optimization
techniques, With this approach, it is practical to use comparatively
detalled payoff functions reflecting realistic uncertainties and planning
contingencies that are usually ignored in autowatically gencrated plans,
The approach provides sufficient flexibility to include targeting objecc-
tives and cownstraints which may not have beon foreseen in the original

h45

{
}
g
i
i
i
i

[e

formulation of the payoff function.
The objectives and strategy reflected by the plan will be determined by:

The relative values assigned to various elements of the target

o
system, and the time dependence (Lf any) of these values

o Any minimum required kill probabilities which may be specified
for particular targets or groups of targets

o The poxtion of the available force specified (such specifica-

tion is optional) for allocation¥®

The realism and sophistication of the plans produced by such an optimiz~
ation depend in large measure on how completely the intended objectives
(with realistic contingency or uncertainty considerations) are reflected
in the payoff function. The design objective has been to provide the
flexibility needed for any reasonable payoff function. Some of the
factors included in the payoff function by the QUICK Allocator are:

1. The time dependence of target values

2. The uncertainties in target vulnerability

3. Correlations in delivery probability between weapons which
share the same uncertainties of accuracy, reliability, pene-
tration probability, and weapon survivability (for the second-

strike applications)

4, The uncertainty in target value and time dependence -- as a
consequence of the unpredictability of enemy actions

5. Uncertainty in the level of ABM interceptors defending the
target.,

In addition, program ALOC computes the marginal value of each weapon
allocation, This value (RVAL), whose calculation is described in the
Baslc Sortie Gencration section of this chapter, is used in the sortie
generation process to determine the worth of including a target in a

sortie.

* The same types of information are used to control the resources allo-
cated for defense suppression, In principle, the allocation of effort
to defense suppression targets should be chosen to maximize the de-
struction of othexr elements of the target system -- and should follow
as an automatic consequence of the values assigned to these other tar-
gets, However, such a ful automatic treatment of defense suppres-
sion is beyond the present state-of-the-art. Consequently, the user
nust specify equivalent values or required kill probabilities for
defense suppression as well as primary targets.

446

—— b e —— e

concept of Operation: The efficlent targeting of a limited inventory of

weapons 1s a combinatorial problem primarily because of inventory con-
straints. The fact that weapons used against one target are not avail-
able for others introduces a resource interaction between targets that
are otherwlse independent, The Lagrange optimization technique pro-
vides an exact representation of thils interaction, which permits the
allocation of weapons to be accomplished one target at a time., In the
Lagrange technique, the detailed resource interaction is represented by
a single Yprice" or value established for each type or group of weapons,
This "price" represents the value of the weapons in each group in rela-
tion to the specific requirements and objectives of each war plan, This
“price" (or Lagrange multiplier) corresponds to the minimum payoff (in
target value destroyed) that will justify the use of the wespon,.

The QUICK Allocator utilizes a resource allocation technique published
in Operations Research® which permits the application of Lagrange multi-
pliers to discontinuous or nondifferentiable Eunctions (such as the pay-

off targeting problems).

As applied to the targeting problem, the technique consists of assigning
a trial "weapon price' for each "group" of weapons in the inventory to
be allocated, (A "group" is defined here as a set of weapons which are
30 nearly identical both in characteristics and location that no dis-
tinction between them is necessary during the allocation.) The attacker's
"profit" on each target is then defined as the target value destroyed
minua the total "price" of the weapon or weapons expended. Weapons are
allocated against any target in such a way that this "profit" is wmaxi-
mized. (When the allocation against any target is complete, there are
no weapons in the total inventory which could achieve an added payoff
on the target in excess of their assiguned 'weapon price.'" Also, there
are no weapons actually assigned to the target which do not achieve a
payoff in excess of their assigned "weapon price.')

For wmissile groups which have a launch timing interval (attribute
LCHINT) greater than zero, the price for each salvo within the group
is modified as described in the Salvoed Group Multiplicr Adjustment

section of this chanter.

If the allocation were carried out this way for all targets, a certain
total number of weapons from each group would be assigned., This number
could be more or less than the actual inventeory available. lowever, the
resulting allocation would be a true optimum allocation for a hypotheti-
cal stockpile consisting of the weapons actually used in this allocation,
1£ the number of weapons allocated from any group were larger than the

* H. BEverett IIT, "Generalized Lagrange Multiplier Method for Solving
Problems of Optimum Allocation of Resources," Operations Research,
Vol. II, No. 3, May-June 1963. p. 399-417. For easc of refersuce, an
excerpt from this publication 1s contained in appendivx 1.

447?

L R

B

\ "’

P

actual group inventory, then the trial 'wespon price" is too low, and
the use of these weapons should be limited to those places whexe a high-
er rveturn is achieved. If too few were allocated, the trial "price" is
too high, and the weapons could be fruitfully employed where the payoff
is somewhat less, The trial "weapon prices' could then be adjusted

accordingly and a new allocation could be carried out until a satisfac- -
tory approximation to the actual inveatory is achieved. Many iterations :
throughout the target list would thus be required to establish the cor-
rect prices which would cause the desired stockpile to be consumed,

PR ——

SN/t

ok

In the mathematical allocator, the basic process described above is
speeded up in several ways:

T
S ST

1. The targets are processed in a random order, so that serious
errors in the initial trial "weapon prices' are detected prompt-
ly and are corrected by observing the rate of allocation for
each group of weapons, Thusg, it is not necessary to carry an
allocation to completion before correcting the trial "weapon

prices." .

R
s s

2. 1Initial allocation rates are monitored for aggregated categories
of weapons (i.e., weapons which share identical attributes),
rather than individual groups., Thus, statistically useful
information on the allocation rates is obtained from small sam-
ples of targets, and corrvections are applied to the '“weapon
prices" for all the weapon groups within the aggregated cate-

il T e

TH ST R e i o e ., o

gories,

3. Ordinarily, in such a process, it would be difficult to esti-

mate the size of the error in the *weapon prices" from the ,
] size of the error in the allocation rates. For example, a i

trivial difference in 'weapon prices' between essentially iden- !

tical weapons could cause the one with the lower "weapon price" !
to be used to the complete exclusion of the other. The QUICK
Allocator therefore incorporates a small "prewmium'' which pre-
vents such large and unnecessary deviations from the desired
allocation rates, where the difference in profit {s swall.
wWith the premium, a large ervor in the allocation rates can
occur only if the exror in prices is substantial, 1In this way,
the magnitude of the error in the "weapon prices' can be esti- .
mated from the allocation rates, and corrections of the proper h
size in the 'weapon prices" can be efficlently made. ’

Y

4, The {teration process in trial "weapon pricee" is terminated
wvhen "weapon prices' are approximately correct (typleally with- *
{n a few percent) even though the resulting allocation does not
accurately tit the available stockpile. The allocation is theu
ad justed to fit the stockpile by removing weapous excessively
allocated and substituting weapons underallocated., ‘this adjust-
ment of the allocation 19 done by adjusting the “premfums" in
the closing phase in such a way that the loss in "profit" {s ’

. 448

g —
T T

o I3 Iy =
W skt it rooey .

s e U .- :
T T e e T e e,
P -

kept as small as practical. It has been mathematically proven

in the preceding reference that the payoff for the resulting
allocation will not be degraded by this closing phase by more

than the observed loss of '"profit,"

This final approximation technique provides a powerful method for con-
verging rapidly on war plans which are near optimum. The extent of the
observed loss of 'profit" provides a valuable gauge of the efficiency
of any such approximation, (If a rigorous bound on deviations from
optimality is desired, it can be obtained by a final pass over the tar-

get list in which all premiums are removed.)

Adjustment of Multipliers: To understand the operations of the allo-
cator (module ALOC), it is helpful to think of the set of all targets
arranged in random order around a circle. Processing will continue for
several '"pases' around the circle until the multipliers have converged
to acceptable values, and the weapon stockpile constraints are met., To
start the process, initial values for the multipliers (i.e., "weapon
prices") are selected, and an initial pseudoallocation is made in which
the weapons are distributed uniformly (without regard for integer weap=
on constraints) over the target set, Thus, in the beginning it apoears
that weapons have been allocated at exactly the right rate. As each new
target is encountered, the pseudo allocation is removed, and actual
trial allocation is made using the current values of the multipliers.
Since the initial multipliers are not correct, this gradually produces
an error in the estimated rate of allocation. This error is then used
to determine how to adjust the Lagrange multipliers.
tistically significant information on errors in the allocation rates
becomes available most quickly for those groups where the number of
weapons 1s large, To accelerate the adjustment of the multipliers,
ALOC monitors the allocation rates for large collections of weapons
(i.e., weapons which share weapon attributes, see table 13) which include
many groups. When it is observed that the overall allocation rate for
such & collection is in error, the Lagrange multipliers for all the
groups involved are adjusted simultaneously. To simplify this, the
Lagrange multiplier, LAM(G), for each individual group of weapons is
expressed as a product of collective "local multipliers," LA(J). Speci-
fically, the Lagrange multiplier for a group of weapons is represented
as the product of the local multipliers for all weapons; all weapons of
the same class; the same type; the same region; the same alert status;
and a final local multiplier unique to the specific group; i.e.,

LAM(G) = LA (Jall) 1A (Jclass) *14 (Jreg)*LA (Jalert) LA (Jgroup)

Of course, sta-

The concept for monitoring the allocation rates is as follows. 'If
there are a total of NTGIS targets, and the total number of weapons in
a particulayr collection of weapons indexed by J (e.g., Jall’ Jclass) is

449

R Iy

T T e e e e et s S

e R 8 gt e et

- T _———

NOWPS (J), then the expected number of these weapons to allocate per tar-
get is just

Expected Rate = NOWPS (J)/NTGTS

If the observed rate is less, the associated multiplier LA(J) should be
lowered; if it is greater, it should be raised.

Particularxly during the early phase of the allocation, when the Lagrange
multipliexrs ('weapon prices") are changing rapidly, the allocation rate
will also change rapidly. Thus, in evaluating the allocation rate, it
is appropriate to place more weight on the allocation rate for more
recently processed targets. The estimators of allocation rate used by
the allocator, therefore, allow a variable weight to be assigned to the
targets, The estimated allocation rate R for any collection of weapons

J is computed as follows:

T NE,DM(A)
-1 _ RUNSUM
R() = W) = WTSUM
i

where W(i) is the weight assigned to the ithtarget* and N(i,j) is the
number of weapons from the collection J assigned to the i*" target. The
summation is always taken over all targets. However, in the early stages
of the allocation, the weight attached to each successive target is
increased quite rapidly, so that the estimated allocation rate is deter-
mined almost entirely by the most recently processed 10 to 20 targets.
As the Lagrange multipliers come closer to correct values, the target
welghts are increased more slowly and the allocation rate, in effect,

is averaged over a larger number of targets. Ultimately, the weight
attached to succeeding targets is held fixed., Obviously, after all
targets have been processed with identical weights, the above estimator
of the allocation rate becomes an exact measure of the average alloca-
tion rate and if multiplied by the number of targets would give the
exact number of weapons on all targets., Thus, the same estimating
machinery can be used in the final stage of the allocation as a guide

in converging to the exact stockpile,

Actually, for each collection of weapons J, three separate estimators of
the allocation rate are maintained. These estimators differ in the rate
of change of the target weights that are used in computing the estimates,
In effect, they correspond to averaging the allocation rate over differ-
ent numbers of targets. The algorithm requires that all three estimates
provide the same sign of the estimated error rate before it will change
the value of the Lagrange multipliers. This feature provides a conser~
vative approach to changes in the multipliers and reduces the chance of

overcorrecting,

*Target weight is initialized at 1.0 and modified during processing, as
described Calculations, Lagrange Multiplier Adjustment,

450

R TN

The allocation process evaluates its own progress in converging the mul-
tipliers and determines when to terminate the process. The variable

which reflects this evaluation is called PROGRESS. PROGRESS is an arbi-
trary variable set intermally by program ALOC to monitor the allocation
gstate, The values 0, .4, .5, .75, 1.0, and 2,0 are arbitrarily assigned
by the program according to procedures specified within ALOC. Qualita-

- tively, the PROGRESS states are as follows:

ot ot F v

1, PROGRESS = 0 This is the initial state. Its main purpose is
to prevent the allocator from terminating very quickly because
- the pseudo allocation seems satisfactory.

S

PROGRESS = .4 This state indicates that the estimated alloca-
tion rates reflect primarily the actual rather than the pseudo-

allocation,

N
.

3. PROGRESS = .5 From this point on, the rate of change of the

§ target welght is not permitted to increase -- i.e., the alloca-
. tion estimators are required to move monotonically toward the

state where all targets are weighted equally.

4. PROGRESS = .75 Target weights have stopped increasing -- mul-
tipliers are assumed to be nearly stable.

5. PROGRESS = 1.00 This occurs only after at least one full pass
of the target set with PROGRESS = .75, At this point the mul-
tipliers are frozen, and the premium (see below) for meeting
the exact allocation is gradually increased. During this phase,
multiple targets previously allocated as a unit may be split to
recelve independent allocations, if this will aid in meeting

stockplle constraints,

6. PROGRESS = 2.00 Allocation is complete. Three options for
further processing are provided depending on value of IVERIFY

supplied by user,

IVERIFY = 0 Current allocation simply transferred to
normal output file, and process halts.

IVERIFY = 1 Allocation transferred as above, but a verifi-
cation allocation (not recorded on file) is

" made to obtain a bound on the maximum theoreti-
cal payoff if convergence had been continued

indefinitely.

IVERIFY = 2 Allocation transferred as above but the current
allocation is reevaluated assuming a revised f
value of the correlation factor which is user- : }
input at the start of the run (CORR2). N

451

S

The details of multiplier adjustment are contained within ALOC.

Salvoed Group Multiplier Adjustment: QUICK forms weapon groups for the
mathemetical convenience of the allocation process. All weapons con-
tained in a single group are physically identical insofar as their abil-
ity to create target damage. This fact is a critical assumption for the
Lagrange multiplier process, because & single multiplier, or "price," is
associated with each weapon in a group. Thus, after ALOC has run to com-
pletion, the weapon/target assignment does not distinguish among the
weapons within a single group: this element of detail is added later,

in program POSTALOGC, (or FOOTPRNT for MIRV weapons).

The use of launch interval timing constraints, however, creates a funda-
mental change in this assumption, because it now is the case that differ-
ent weapons from the same group can create different levels of damage on
on a time-dependent target. This, in effect, requires that each salvo
in the group have a different Lagrange multiplier, because it has a
different effectiveness for the destruction of the target.

Consider, for example, the several missiles in a submarine, If these
missiles are used to attack bomber bases from which the bombers are
departing, then certainly the first salvo can create much greater dam-
age than a later salvo. In the language of the Lagrange multiplier
technique, the first weapon has a higher marginal utility and hence a
higher multiplier (L). The allocation process will work only if the
correct multiplier is assigned to each different weapon. However, for
the case of the SLBM, we know there are certain relationships among
these weapons and their multipliers. First, all the missiles are physi-
cally the same except for time of arrival on target., Second, the value
of the weapons decrease with time (assuming the target value decreases
in time, or that it is possible to delay a launch), Therefore, the
value of the multiplier should decrease with time.

The multiplier for the Nth salvo (Ly) is a fumction of the multiplier
for the first salvo (L;), the salvo number (n), and the weighted den-
sity of salvo allocations (P). That is

LN = LAMGET (Ll’ P, N)

LAMGET is & function whose form is
= - * (n=

LN L1 (P * (n 1))*L1
This is a straight-line function, The welighted density of salvo alloca~
tion P is also called a balance parameter. It is used to maintain the
balance between salvo allocations,
The value of P is set internally by program ALOC according to the num-

ber of salvoes in a given group. There is one balance parameter P for
each group with LCHINT greater than zero and has the form,

452

U e T el Amehen o —

[T Ao —

STk Al

A e e B i it e —

P

= ,1/(MAXSAL - 1)

where MAXSAL is the maximum salvo number in the group and .1l is a sensi-
tivity parameter to slow the rate of change of P.

Closing Factors -- Premiums:

The Lagrange multiplier for each weapon is

modified by a premium.
allocations to the available stockpile,

This factor is used to force closure of weapon
It acts as a bonus for using

under-allocated weapons and a penalty for using overallocated weapons.
The parameters which are used to calculate the premiums are:

An estimate of the number of surplus (or unallocated

SURFWP(G)
weapons) in the group. This number is based on esti-
mated allocation rates in the early phase and the
actual allocation later. .

NWPNS (G) The actual number of weapons in group G.

CTMULT The current multiplicity of the target being proc~
essed.

LAMEF (G) The Lagrange multiplier for the group.

The premium depends also on three control parameters:

PROGRESS, PRM,

and CLOSE.*

‘The effect of PROGRESS (described earlier) is as follows:

1.

If PROGRESS is greater than 1,0, this indicates that a verifi-
cation allocation is desired to obtain a theoretical upper
bound on the payoff without regard to meeting the actual stock-
pile constraints., For this purpose, the premiums are simply

set to zero.

If °ROGRESS is less than 1.0, a small premium is computed which
is intended only to avoid large deviations from the desired
allocation rate of small errors im the Lagrange multipliers.

(Otherwise, a trivial change in the multipliers for two com-
peting weapons could result in a complete change from always
allocating one to always allocating the other.)

I1f PROGRESS is equal to 1,0, this is a signal that the closing
phase has been reached and the object is to close in on an
exact allocation of the available wesapons. In this case, a
larger step function premium is computed, and the size of the
step function is gradually increased until final closure occurs.

*
PROGRESS is set internally by the module as described in Section 3.

453

e -

di

PR 'Y

N
,“:

During the early allocaition phase, superimposed on the actual payoff is
a small negative quantity (called a premium) that is proportional to the
value of each weapon group and quadratic in the size of the error in
allocation., In effect, the actual payoff, H(X), for any allocation, X

is adjusted to H(X)ADJ:

2
SURPWP (G)

H(X)-PRM* £ { NWPNS (G)*LAMEF (G)* |= %
G (prus(c))

This quadratic addition to the payoff function has the effect of intro-
ducing a preference for allocations where the absolute value of SURPWP

is small.

The addition or deletion of a weapon from group G will give rise to a
difference in SURPWP equal to the current target multiplicity. Thus,
the change in this quantity (per unit multiplicity) with the addition

of a weapon G is:

. SURPWP(G) - .5*CTMULT
= X %
PREMIUM (G) =PRM*LAMEF (G) NWENS (G)

and the change with deletion of a weapon is:

_ ~SURPWP(G) =.S*CTMUL?Y
= * *
DPREMIUM (G) =PRM*LAMEF (G) NWENS (G)

The value of PRM is a user-input parametexr. The value should be less
than 1.0. Otherwise, in cases when no weapons from some group have been
ugsed, the premium for allocation of a weapon could exceed the cost of
the weapon LAMEF(G) and weapons could be allocated even if the payoff
were zero or even negative, Experience has shown that values between

.5 and .9 work very well,

When PROGRESS reaches 1,0, PRM is set to .9 by the program to accelerate
convergence, In addition, a small step function is added.

The following sketch illustrates the value of these step function pre-
miums as & function of their SURPWP:

T

PREMIUM

1
} 4 SURPKP
1 2

|
|
!
{
|
L DPREMIUM

P e e e s — ——

454

R e —

R p—"

4 o fene R

Notice that when SURPWP is in the desired area, that is SURPWP <.5, the
premiums for either addition or deletion of a weapon are negative, mak-
ing the current allocation seem most desirable. If there is a surplus
of weapons (right side of figure), the premium for addition is positive,
and the premium for deletion is negative. In the limit, if closure is
long delayed, these premiums approach the value of the weapons. 1In this
limit unallocated weapons seem free, The formula for these premiums is
approximately:* LAMEF(G)*[1.0 - 1.0/CLOSE] where CLOSE starts at 1.0
and gets larger geometrically. The adjustment of CLOSE is contxrolled by
another user-input parameter., CLOSE is adjusted linearly at a rate such
that at the end of one pass it will have increased by the amount CLOSER

(which is also a user-input parameter),

On the left-hand side of the figure, where weapons are overallocated,
the premium for deletion is positive and the premium for addition is

These premiums can grow large without limit to provide incen-
The

negative.
tive if necessary to remove a weapon from a very attractive target.

formula for these premiums is: LAMEF(G)*(CLOSE - 1).

Whereas the first set of premiums is linear and can be thought of as
representing a negative quadratic addition to the payoff, these premiums
are a step function and can be thought of as an upside down '""V''-shaped
addition to the payoff, which will strongly favor allocations that

exactly match the stockpile.

Closing Factors -- Salvoed Missiles: An additional closing force is
applied to missile groups with launch interval times (attribute LCHINT)
greater than zero. 1In the final phase of weapon allocation when PROGRESS
= 1,0, a stringent "first come first served" salvo selection method is
used, When PROGRESS = 1.0, a salvo will not be allocated unless the
salvo is currently underallocated to the extent that the allocation will
not cause an overallocation., This closing force produces exact stock~
pile convergence within the salvoed groups within one pass through the

target set at PROGRESS = 1.0,

Single Target Allocation--Targets Without Terminal Ballistic Missile
Defenses: The problem is to select the best combination of weapons
against each target as the targets are processed. The problem there-
fore is really a combinatorial problem. However, to calculate the pay-
off for all possible combinations of weapons and then select the best

on each target would clearly be impossible, Consequently the method
approaches the problem by adding one weapon at a& time. After a weapon

is added, the program estimates the additional payoff to be obtained by
adding or, where relevant, deleting one weapon from any one of the avail-
able weapon groups, A decision must then be made whether to terminate

* Actually, it has been found desirable to add a very small quantity
equal to % the smallest value of LAMEF(G) for any G multiplied by
(CLOSE - 1.0). This provides an incentive for [SMALLAM*(CLOSE - 1.0)]
using weapons with very low marginal value even if the payoff is

essentially zero.
455

. m

Foctn

the allocation or whether to add or delete additional weapons. In its
effort to maximize profit, the program operates initially on a form of
steepest ascent basis. This is, it selects those weapons which provide
the highest payoff per unit cost, It also removes any weapon which

shows a negative profit after other weapons are added. There is a con-
straint, however, that every weapon on target destroy a minimum fraction
of the target's original value. This minimum fraction is read in with
the other control data. Ultimately it works solely on the basis of
marginal profit and seeks any change in the allocation that will increase

the profit.

Thus in effect the program needs to know the marginal profit for a poten-
tial weapon, the efficiency or payoff per unit cost, and the marginal
profit of each weapon already on the target so that weapons which become
unprofitable after others are added can be recognized.

The data required for these decisions are:

VT The current surviving target value
VTP (G) The potential surviving targe value if a weapon from
group G were added
VID(N) The potential surviving target value if the Nth weapon
now on the target were deleted.
The inputs required for their calculation include:
PREMIUM(G) The current premium for adding a weapon from group
G to the target
DPREMIUM(G) The current premium for deleting from the target
a weapon from group G together with the Lagrange
nultiplier
LAMEF(G) The current Lagrange multiplier or cost assoclated

with the utilization of & weapon from each group.¥

Using these input arrays, the program computes the potential "BENEFIT"
associated with the addition of a weapon from any of the weapon groups.
The BENEFIT is interpreted simply as the payoff plus the premium; i.e.,
for potential weapons, BENEFIT = VT-VTP+PREMIUM. Similarly, for each
weapon that might be deleted, there is computed the BENEFIT that would
be lost if the weapon were deleted, BENEFIT = VID-VT-DPREMIUM. Notice
that if the premiums are small (as they usually are) the benefit is
essentially the same as the payoff, It is, therefore, convenient to

*
For missile groups with a launch interval time (attribute LCHINTVL)
greater than zero, the basic multiplier is modified as described in
the Salvoed Group Multiplier Adjustment section of this chapter,

456

think of the BENEFIT as simply a modified payoff that is to be maximized.
The PREMIUM is added simply to speed the convergence to the desired

stockpile, 1

The program scans the potentiai BENEFIT associated with all weapon
groups that might be added and finds that group IPFMX for which the
"modified potential profit," PP, 18 greatest; i,e., PPMX, PP = BENEFIT

- IJAI'EFG

Similarly it reports the group IPVRMX for which the "efficiency," PVR

- is greatest, PVRMX. The "efficiency" is here interpreted as the rate '
of BENEFIT per unit cost; i.e.,, PVR = BENEFIT/LAMEF. (It is necessary
for the single target allocator to know the "efficiency" of alternative
weapons, If it were guided only by "profit" {(i.e., (BENEFIT - LAMEF), "
it would always select those individual weapons showing the largest pro-
fit, whereas it is often better (especially on very valuable targets) (
to select several less costly weapons so long as the benefit per unit

cogst is higher.)

Finally, the program scans all weapons, already on the target, to deter-
mine which weapon IDPMN shows the smallest DPMN marginal modified vrofit

DP where DP = BENEFIT - LAMEF.

These quantities:

VALUE INDEX DEFINITION
PPMX IPPMX Maximum potential profit)‘
PVRMX IPVRMX Maximum potential efficiency ;
DPMN IDPMN Minimum current msrginal profit |
4
|

s g ot

constitute the primary input for determination of weapon allocation on
single targets. There calculation is modified, however, by the minimum
and maximum damage constraints placed on each target. MINKILL is the :
minimum required damage level. MAXKILL is the Maximum desired damage ‘é
level, MAXCOST is the maximum factor by which value may be multiplied P
to obtain MINKILL (these three factors are established in the data base: =
[MAXKILL and MINKILL are defined as attributes; MAXCOST is set equal to ;
the attribute MAXFRACV). MINDAMAG, a program user-input parameter, is :
the minimum fraction of damage required from an individual weapon. 7

To implement the MINKILL and MAXKILL responsibility, the VT, VTP, and
VID are replaced by effective values VIEF, VIPEF, VTPEF, AND VIDEF, The

relationships are:

VIEF = ALPHAMAXIF(VT,VIMIN)
VIPEF = ALPHA*MAXLF(VIP, VIMIN)
VIDEF = ALPHAXMAXLF (VID,VIMIN) é

{

457 .

(Note: MAXIF implies 'Maximum of')

where: VIMIN = VID*(1l.0 - MAXKILL)

Local control variable defined below.

ALPHA

I1f neither MINKILL nor MAXKILL has been explicitly specified for the
target then the default values apply (ALPHA=1,0 and VIMIN~0.00) and

the effective values of VT, VIP, and VTD are identical with the actual
values. If MAXKILL has been specified as less than 1.0, it implies
there is no value in reducing the target value below VIMIN., This point
of view is built into the payoffs simply by not allowing the effective
value to reflect any surviving target value less than VIMIN.

The variable ALPHA is increased above 1,0 when necessary to motivate
the algorithm to achieve the specified MINKILL (minimum acceptable
fraction of expected value destroyed). A quantity VIMAX is defined

VIMAX = VIO*(1.0 - MINKILL)

which reflects the largest acceptable expected surviving target value,.
If the computed surviving target velue VT exceeds VIMAX, and at the same
time the output deces not show any additional potentially profitable
weapons, then the process will not terminate immediately., It will
instead increase the value of ALPHA above 1.0 by whatever factor nec-
essary to make at least one more weapon seem profitable, It then recy-
cles and reevaluates all the output parameters. Since ALPHA multiplies
all the target values, increasing ALPHA is equivalent to increasing

the value of the target until more weapons can be justified against it,
Once the value has been raised so that the required kill is achieved,
ALPHA remains fixed (for this pass) during the remainder of the alloca-
tion to the target, so that the program automatically proceeds to do a
complete optimum allocation for the revised target value,

There is a protection feature MAXCOST that is designed to prevent exces-
sive waste of warheads against a target where it is simply not practi-

cal to achieve the prescribed destructive level required by MINKILL.

If the current cost (of the allocation to the target) divided by the
total target value already exceeds the ratio prescribed by MAXCOST, the
value of ALPHA will not be increased any further. For the same reason,

if it 1s necessary to raise the target value by a factor of 100 or more
to justify the specified MINKILL, the ALPHA will not be further increased.

Experience with the allocator has shown that if the efficiency PVR is
used in its pure form, PVR = BENEFIT/LAMEF, the program will sometimes
arrive at its allocation in a very inefficient way. What happens 1is

that during the initial laydown of weapons on the target it will use
large numbers of very cheap but not very effective weapons., Then as

soon as a more efficient weapon is used, the target value is drastically
reduced and many of the weapons initially allocated cease to be worth-
while and have to be removed. Consequently, the program now incorporates

458

a revised version of the efficiancy PVR'. This is defined as follows:

f PVR Lf PP<O

PVR' = g TR . PRLPREM T
l[l' 0+ 2w 1+ y(\m.r{ (TPt Rmum))]ij -

1L 7Y is zevo this gives the pure value of PVR. lowever if 7Y is sot
above zere, as it usually is, then the value of PVR will reflect the
magnitude of the profit as well as the efficiency. (This coefficienct,
Y, L8 a user-input paramcter.) Notice that as the potential profit pp
becomes comparable to the remaining target values, the coefficient of
Y in the nuwmerator becomes large and PRV' is increased above PVR. In
thoe limit where the potential profit PP is negligible relative to the
ramaining target value VIEF, PVR' {s equal to PVR. The single target
weapon allocation procedure congists of three parts;

1. A sct-up and single weapoun ..llocation phase
2. A wmultiple weapon laydown loop
3. A multiple weapon reofinement loop.

The inftial laydown operations are handled using the "efficlency" as the
criterion for selecting weapons. This is necessary because Lf the “prof-
1t" were used at this stage, coffoctive individual weapons which could
produce a large single weapon profit would always be selected {n pre(-
erence Lo less offective bul Less expensive weapons where two or three
such veapons added {n succession might provide a better payoff at lower
cost. However, before exiting from the routine, provision is made to
test the allocation to dotermine whother a higher total profit is pog-
slble. So, the final rafinement of the allocation i{s always done using
total "profit" as the criterien.

An lmmediate exit is made if there are no potential weapons that show

a profit, Otharwise, the weapon which shows the highest "officlency" is
added, A tast is then wade to determine whether wmore weapons are nceded
on the target, If so, control passes to the multivle weapon laydown
Loop. If wot, 4L §s clear that a single weapon allocation is needed. 1In
this case, Lf the single "efficient" weapon just tosted 1w not also the
most profitable weapon, then it is romoved and replaced with the wmost
"proficable" single weapon before exiting from the routine.

On the other hand, if several weapons a ¢ indlierted, the multiple weapon
laydown Lloop takes over. ‘This loop siwmply keens adding the most effi-
clent next waapon until thero are no more notential weapons that show

a profit; L.e,, have an efficlency greoater than one. (For a profitable
weapor, (BENEFIT/C0ST) must exceed 1.0.) As new weapons are added,
however, it often occurs that some of the old weapons cease to be prof-
ftable: provision f{s therefore made to remove any wnprofitable weapons
after cach new weapon s added. When this part of the process is

459

R

P S

- e e ———e

STy

complete, all weapons on the target must be "profitable" and there must
be no potential weapons that would show a profit if added.

At this point, there is a remote possibility that there is again only
one weapon Iin the allocation, If so, it 1s replaced with the most prof-
itable single weapon. Otherwise, control passes to the allocation

re finement loop.

Basically, the allocation refinement loop is intended to start back

with the first weapon placed on the target and succesaively remove each
weapon to determine if there is any more profitable weapon that can be
substituted, If, in each case, the same weapon proves to be the most
profitable the allocation is ronsidered complete, If, in any case, a
substisution occurs, the testing of the other warheads starts over again
from that weapon until all weapons on the target have been tested,

It is possible during this process, as in the preceding loop, that as
more profitable weapons are substituted, some of the other weapons that
formerly were profitable will cease to be so. Therefore, after each
weapon Is added, a check is made and any unprofitable weapons are deleted.
I£ such deletion leaves a situation where some other weapon would be
profitable, it is inmediately added before reentering the testing loop.
Any such change that interrupts the testing process requires that the
testing start over again. To avoid unnecessary operations, the pointer
which selects successive weapons to be deleted for testing is set to

skip over weapons which are from a weapon group that has already been

tested.

Single Target Allocation -~ Targets With Terminal Ballistic Missgile
Defenses: The allocator (module ALOC) considers two possibilities for
targets with terminal BMD, It first attempts a leakage attack, A
force, posgibly mixed between bombers and missiles, is ailocated without
trying to exhaust the wmissile defense. Any bomber or missile weapons
that leak through their vespective terwminal defenses are considered in
evaluating damage, Second, the allocator attempts an exhaustion attack.
A force of wmissiles large enough to exhaust the terminal wmissile inter-
ceptors is allocated, After exhaustion of the defenses, missiles are
added untll the damage done by each incremental missile is less than the
value of the Lagrange multiplier for that missile.® The profit from
thase two attacks is compared and the wmore profitable allocation is

shosen,

The rate of veturn for a missile against a target with terminal BMD is
defined as follews:

RATE = (VT -~ VIDX)/ (LAMEF + PREMIUM)

*
For missile groups with a launch interval time (attribuate LCHINT)
greater than zevro, the basic multiplier is modified as described {n
the Salvoed Group Maltivlier Adjustwment section f this chapter,

460

q -
[/ E

Wes roy ety

T recaeteta g wg g

|| s
i
.
Af VT = Surviving target value prior to latest allocation
f; VIDX = Surviving target value including latest allocation
* LAMEF = Lagrange multiplier®
i
I
o - PREMIUM = Bonus for allocation (see Closing Factors, above)
P
} The surviving target value VIDX is computed as follows. Let PWK be
3 the probability of warhead kill by the terminal defense (PKTX in Bomber
; - and Missile Defenses, above).
3
i Define SSSP(G,J) = Single shot survival probability of the
R target from group G on haxdness component
' J
o
; NOWEP(G) = Number of weapons allocated from group G
o
e VTOA (N1,J) = Value of target hardness component J at
: time of arrival index N1 .
fii S(G,J) = Probability that target component J sur- é
1 vives attack of NOWEP(G) weapons from
;f group G i ﬁ
| |
.1 NWHD (G) = Number of warheads per weapon in group G]
! !
! NN = Number of weapon groups i
&
é M = Number of hardness components f
1"‘
‘g Set: VTO0A (L,J) = VO(J) = original value of component J i
8 VIOA(NN+1,J) =0 ‘
f} Then: $(G,J)=(SSSP(G,J)-+PWK-PWK*SSSP(G,J)) (NWHD (G) *NOWEP(G)) 1
3 1
t .
~‘f 1f the weapons are ordered by increasing time of arrival, then |
: M NN L i
. VIDK = £ E [VIOA(L,J) - VIOA(L+l,J)] * T S§(G,J) : !
J=1 1=0 G=1 : ;
!]
! The innermost sum over L, must be carried out in order of weapon time of {‘
arrival. ?
i
Since the payoff function for a defended trcgst is generally not con- S
:)é

*
For missile groups with a launch interval time (attribute (LCHINT)
greater than zero, the basic multiplier is modified as described in .
the Salvoed Group Multiplier Adjustment section of this chapter,

i 15 it o Mo

461

o

] .

-~

cave, one cannot look at only the rate of return of the next missile to
determine whether the target is to be attacked. Rather, it is necessary
to allocate weapons beyond the exhaustion point and then search for that
allocation which yields the highest average rate of return. If this
average rate is greater than one (i.e., a profit is realized by attack-
ing the defended target), then the allocation can actually proceed.

The missile allocation proceeds as follows. First, those missiles with
the cheapest terminal objects (warheads and terminal decoys) are allo-
cated until the terminal interceptors are exhausted, Then, each missile
type in turn is tried to determine which type has the greatest payoff
per unit cost when added to this exhaustion mix of weapons.

If it is determined that saturating the terminal defense does not yield
a profit, the leakage allocation is restored. In any event, the more
profitable allocation, leakage or saturation, is used.

Other Constraints: Several other constraints may be imposed on the
weapon allocation. These constraints will reduce the payoff but allow
more realistic modeling of special cases., Weapon groups may be re-
stricted in the set of targets they are allowed to strike in the follow-

Flag Restrictions: The user may restrict the allocation of weapons from
any group accordiang to the attribute FLAG. Weapon groups may be per-
mitted or forbidden to strike targets according to the FLAG value for

the targets.

Country Location: The user may specify at program execution time the
acceptable target country location codes (CNTRYLOC) for weapon alloca-

tion by weapon group.

MIRV Restriction: The user wmay specify at program execution time the
acceptable target classes (CLASS) for allocation of MIRV weapons, These

constraints are input by MIRV system type name.

Naval Restriction: While naval forces can appear as targets within
QUICK, there are specific limitations on the kind of weapons that can
attack the aircraft carriers, All the targets which are included under
class NAVAL should be moving ships. Certain weapon types can then be
designated to attack only NAVAL targets, Since the mechanism of inter-
action of these naval strategic weapons with the aircraft carriers is
essentially different from the normal kill mechanisms used in QUICK, an
attribute (PKNAV) is defined for this type of weapon which specifies

its single shot kill probability against an alrcraft carrier. Thus, in
the allocation process if a particular target is class NAVAL, the only
weapons which can be allocated against that target are those which have
the attribute PKNAV defined to be greater than zero. The kill probabil-
ity of such a weapon, if successfully delivered through the area defenses
against the carrier, is equal to PEKNAV. These naval attack alrcraft are
handled like the tacticel aircraft, since they do not pass through pene-

tration corridors,

462

R

—

o ra e < o, o

T

T

S et e d b e S s

i -

Usexr-Specified Damage Levels (MIﬁKILL/MAXKILL): The QUICK Plan Genera-

tor allows the user to specify the maximum (MAXKILL) and/or minimum
(MINKILL) desired level of damage for amy particular target. MINKILL
specifies the minimum level of damage the allocator is to attain (if
not attainable, the user is informed by the message MINKILL Too High).
MAXKILL precludes the assignment of additional weapons once the speci-
fied level of damage is attained. Because only an integral number of
weapons can be assigned to a target, the level of damage specified by
MAXKILL may be slightly exceeded, unless there exists a combination of

weapons which exactly meets the required damage level.

Thiz slightly greater level of damage is intensified when the damage is
evaiuated using procedures which ignore the interweapon correlations

and planning factor modifications used in QUICK. In order that the

user can specify whether or not the application of damage constraints
considers these factors, two options are available to the user for
implementing these constraints. As & default option, these constraints
are applied to damage calculations which include degradations for corre-
lations in weapon delivery probabilities and considerations of the time
dependence of target value. Since the evaluation programs to be used

in conjunction with QUICK did not take these factors into account and
since the output of these programs was to be compared to the QUICK-gen~
erated analysis, an optional computational procedure was desirable.
Thus, the user has the option of specifying that the variables MAXKILL
and MINKILL be applied to target damage which was calculated by ignoring
the correlations and weapon delivery probabilities and the time degrada-
tion of value of the target. (User-input parameter IMATCH is used for

this purpose.)

Combined Fixed, Optimum Assignment Capability: 1In order to provide for
more precise user control of weapon allocations, there is a capability
in the plan generation process to allow the user to specify certain
particular weapon-~to-target assignments and then allow the automated
plan generation process to allocate the residual of the weapon stock-
pile so as to maximize destruction of the remaining target value. The
user can specify at his option certain fixed weapon assignments at a
point prior to the actual weapon-to-target automatic (mathematical)
allocation process. This allows the user to examine the output of all
of the preceding modules before committing himself to a particular
fixed assignment. The user must specify the target identifier (target
designator) of each target for which weapons are going to be forced-
assigned. Also, the group of the weapon or weapons which is to be
assigned to each of those targets, as well as the number from those

groups, must be input.

This particular capability is made possible by the flexibility of the
generalized Lagrange multiplier technique for performing optimum weapon
allocations. Since any constraints can be imposed on the allocation to
an individual target without seriously affecting the Lagrange multiplier
allocation procedure, it is necessary only to modify the damage calcula-
tions for each target to reflect the damage created by the user-specified

463

f weapons prior to calculating the return for new potential weapons
additions. Thus, when the allocator initiates the first pass, the only
target value that has to be considered is that which is unaffected by
the fixed assigned weapon. Also, the assigned weapons are subtracted
from the stockpile available for automatic assigmment, i

[3

! In addition to the fixed assignment capability, the user may also speci-

] fy the precise impact time of a fixed missile assignment. This allows .
§ the user to externally plan a time saturation attack against a BMD

'% installation and be assured that the final QUICK plan will execute the o
, The only use for this impact time specification is to calcu-

! 1f an impact time is fixed, this

! caleculation overrides the other factcrs which would normally determine

f weapon launch time. However, the use of attribute DELTA for a missile ’\
’ base will modify the launch time in the Simulation subsystem; and the ‘
user-input parameters DELMIS or DLMIS (in module PLANOUT) will modify Cx
the launch time used in other simulators and damage-assessment systems.

tactic.
late the correct missile launch time,

PR

f - 1f the target does not have terminal ballistic missile defenses, a
g maximum of 30 weapons can be assigned., On targets with terminal BMD, j
! weapons from a total of 30 weapon groups may be assigned with no limit
on the maximum number of weapons. In this latter case no bomber weapons ;
may be fixed assigned if moxe than 30 missiles have been fixed assigned.

For missiles with a MIRV capability the assignment and timing of a fixed
assignment may be changed by the application of the MIRV footprint param—

eter constraints.

. —
. el s ettt .

Selection of Bomber Weapon Allocation: Within the weapon allocation
process, the gravity bombs and ASMs of a bomber are treated somewhat | 7
{3

)

i

t

e

differently. The penetration probability of an ASM does not include

local attrition effects. The kill probability of the ASM uses the ASM
CEP factor (rather than the bomber's factor) and applies the ASM relia-
bility REL. The yield for a gravity bomb used in allocation is the :
group basic yield. The yield for an ASM is the yield of the ASM war- D

~{ head.

= e s sm————

N The allocation process selects the kind of weapon (ASM or gravity bomb)
’ for each target by considering the damage difference between the weapons,

the difference between the allocated and actual ratios of ASMs to bombs,

and the state of the allocation (i.e., PROGRESS. See the Adjustment of

N Multipliers section of this chapter.).

‘. The weapon selection method uses a bomber group balance variable which
is dynamically maintained for each bomber group. This variable reflects
the degree of over or underaliocation of ASMs (or bombs) that is cur-

rently experienced during the convergence process. The basic group !
multipliers are not affected in any manner, and determine whether any
weapon from that group is to be allocated. This balance variable is
updated after the allocation to each target. The calculation and use]
of this variable involves several variables which are defined as follows: :

464 o

«

B e e
T e e e e — !

FXPASM = fraction of weapons in a group which are ASMs

Yt
P EXPBMB = 1 -BXPASM = fraction of weapons which are bombs
DEA = expected destroyed value of target il ASM used (caleulated
in program ALOC) }
i
DEB = expected destroyed value of target if bomb used (calcu- !

lated in program ALOC)

- AVDE = average (by group) of quantity ABSF (DEA -DEB)

. FASM current fracticn of weapons allocated which are ASMs (cal-
‘ culated in program ALOC)

e aa N 7
e e ena me s we

1 -FASM = current fraction of weapons allocated which are
bombs

FBOMB =

T

CONPAY = internal program variable between 0. and 1.

Except for CONPAY, all of the above variables are defined for each group
composed of bombers., For each bomber group on each target the alloca-
tion process selects the type of warhead (ASM or bomb) which is to be
used on the target. When the value of PROGRESS is zero or two, the pre-
ferred weapon is the weapon with the higher DE (L.e., ASM will be selec-
ted if DEA is greater than DEB and vice versa). For values of PROGRESS
of .4, .5, .75, and 1,0, the selection process will consider the alloca-~
tion franctions of the ASMs and bombs, as described in the following

paragraphs,

T e b ettt v . 4

If ASMs are underallocated, ASMs are selected as the preferred weapon
unless DEB is greater than DEA and the quantity (EXPASM -FASM)/EXPASM
is less than or equal to the quantity CONPAY*(DEB-DEA)/AVDE. If both
of these two conditions are met, then the preferred weapon is the bomb,

~ Ei
T s e et g

Note that the quantity (EXPASM -FASM)/EXPASM provides a measure of the
size of the allocation imbalance. If ASMs are only slightly underallo-
cated, this quantity will be very small (near zero). 1£ there is a
great difference between the actual and allocated fractions, this quan-
titywill approach the value one. The quantity (DEB-DEA)/AVDE is a meas-
ure of the magnitude of the damage difference relative to the average

) damage difference. The quantity ranges from a low of zero to high posi-
tive values., A value of one for the quantity represents an average
damage difference, The variable CONPAY is used to reflect the impor-
tance of the allocation difference relative to the damage difference.
Thus, the conditions of the preceding paragraph select the bomb as the
preferred weapon if the allocation difference is less than the modified
damage difference. Thus, if the allocation is nearly correct, the more
damaging weapon is likely to be chosen as preferred. If the allocation
is far from correct, the underallocated weapon will be selected on all
targets except those where the damage difference is quite large, The

)

!
f

465

e

is less than or equal to the quantity CONPAY*(DEA -DEB)/AVIE.

same rationale holds for the case of underallocated bombs as described
in the next paragraph.

If bombs are underallocated, bombs are selected as the preferred weapon
unless DEA is greater than DEB and the quantity (EXPBMB -FBOMB)/EXPBMB
If both

these conditions are met, then the preferred weapon is the ASM.

The value of variable CONPAY lies between zero and one. Lower values of

CONPAY tend to increase the Importance of the allocation difference.

High values of CONPAY increase the importance of the damage difference.
In oxrdexr to provide adequate closing force, the value of CONPAY decreases
as the value of PROGRESS increases. Additionally, when PROGRESS equals

one, the value of CONPAY continues to decrease,

The selection of ASM or bomb on a particular target allows the alloca-
tion process to assess correctly the expected damage effects. Bombs

and ASMs usually differ greatly in yield, penetration probability, CEP,
and delivery probability, By differentiating between these weapon types
at allocation time, the allocation program selects the best weapon to
be used when the bomber sorties are generated. The balance between
allocation and damage differences provides for maximization of damage
while continuing consideration of actual weapon stockpiles,

A.5 Derivation of Lagrange Multiplier Adjustment

Define the fcllowing variables:

sum of the target weights from last Lagrange mul-

CURSUM(J) =
tiplier update

NOWPS (J) = number of weapons sharing attribute J

NTGTS = number of targets

SNSTVIY = user-input parameters which control rate of multi-

FSNSTVTY plier adjustment

LAMEF (G) = Lagrange multipliexr for group G

LA(J) = Lagrange multiplier for attribute J; J = ALL;
CLASS, TYPE, etc.

PRM = local internal control variable which governs
size of premiums (closing factors)

NWPNS (G) = number of weapons in group G

CITMULT = current target multiplicity

466

et

N T ey g

S

ekt en e e e

A

B S

(3

7

R R A

RUNSUM(J) = product of target weights time number of weapons
assigned

WTSUM(J) = gum of target weights measured from beginning of
target list

error estimate in the allocation rate for attri-

ALERREST(J) =

bute J
CORRATE = rate to correct the weapon allocation rate
MULSTEP = number of targets processed between corrections
WRATE = rate of change of the target weights

General Approach: Multipliers are not continuously updated, but rather

recomputed based on the internal variable PROGRESS (described later)
and various estimates of error allocation rates.

1f PROGRESS = 1,0 the change of the local multiplier is omitted so that
the same values of the multipliers are retained, If PROGRESS < .75
updates are performed for every two targets and every four targets for
PROGRESS = .75. 1In addition to PROGRESS restrictions each multiplier

1s changed only if all three estimates of error rate have the same sign.
In the early phases of the program (PROGRESS < .75) better stability is
achieved by requiring, in addition, that the average allocation rate to
the last two to four targets, as computed from CURSUM, show the same
sign., This limitation is iater removed, since it clearly would not work
well for weapon groups with very small numbers of weapons that might
only be allocated two to ten times during a pass over the target system.

Upon meeting the mentioned restriction, multipliers are updated. The
first step is to recompute all the allocation error estimates, ALERREST.
At the same time SURPWP is reevaluated, based on the new value of
ALERREST. Although SURPWP is continuously updated by the operating pro-
gram, it is useful -- especlally in the zarly phases of the program --
to base it on the projected allocation-rate estimates rather than the
actual weapons allocated, which at that time could be very misleading.
This provides & more rational basis for calculating the premiums at this
early stage of the program, An estimate is then made of CORRATE, the
rate at which it is desired to correct the allocation rate. Lambda mul-
tipliers are now recomputed based on ALERREST, SURPWP, CORRATE, and
inputs parameters SNSTVIY, FSNSTVTY. Also, at this time the value of
all weapon, VLWPNS, and the summation of the value of the error in weap-
ons allocated, VALERR, are reevaluated along with a recalculation of the
integration periods used to estimate allocation rates. After these

updates are made, allocation continues.

The following paragraphs show mathematical deviations of methods
employed.,

467

s

Adjustwent Phase: The adjustment phase processing is determined in part .
by an internal variable, PROGRESS. This variable is assigned the arbi- o
trary values 0., .4, .5, .75, 1., and 2, by the program as a flag for '
various stages of the allocation process. PROGRESS is initially set to '
0., at the start of processing by program ALOC. When the sum of target
weights, WISUM, exceeds half the number of targets PROGRESS is set to
0.4. When the weight change rate (WRATE, described later in this sec-
tion) first decreases, PROGRESS is set to 0.5. When the weight change
rate decreases to zero value, PROGRESS is set to 0.75, A user-input
parameter, SETTLE, determines the next change. SETTLE is the number of
passes the process continues with PROGRESS equal to .75, After this
time PROGRESS is set to 1.0, PROGRESS remains at this value until one

of three conditions is met:

e e wn 4 e T

e n e L

2

i b o 2y aips -

More than 1.5 passes over the target set are made while PROGRESS
= 1.0;

1.

x 2. The sum of the Lagrange multipliers for the under- or over-

‘ allocated weapons (VALERR) is less than a fraction (ERRCLOS, a .
user input parameter) of the sum of the Lagrange multipliers N
for all the weapons in the stockpile (VALWPNS);)

3. The sum of the squares of the allocation error estimates
(SUMSQUERR, the sum of the squares of ALERREST, dgscribed
later in this section) is less than 1/(10 * NTGTS), where

NTGTS is the number of targets.

When any of these three conditions is met, the allocation process is
complete and PROGRESS is set to 2.0,

N -
R L V. S i

Multipliers, when adjusted, are recomputed based on the monitoring of

e VU

the allocation rates; CORRATE being the allocation rate correction. .
If the allocation rate is corrected too rapidly there will be a ten- C
dency to overcorrect before the effects of the correction become : %

observable in the values of the allocation error estimates. This can Ly
produce oscillations. To estimate how rapidly to corruct the error, i
an estimate is made of the number of targets that would have to be

observed before an error of the observed size would be statistically ;
significant, Even if the multipliers were exact, and (he average allo- f
cation rate was correct, statistical fluctuations would be observed in :
the allocation of each weapon group when the allocation rate was sam-

pled for a small number of targets.

The concept for monitoring allocation rates and, hence, updating multi-
pliers follows, f 3

Let n equal the expected or average number ol weapouns from a collection
available per target; i.c,, n = NOWPS(J)/NTGIS. ‘hen in M targets (Lhe
} size of M 1s discussed later) the expected number of weapons allocated
i should be just n(M). Suppose the actual number observed, however, is

I

.
. 468 ‘

n'(M). Then our estimate of the error in the allocation rate ALERREST

would be
ALERREST = n'-n 3

Assuming & Poisson distribution for weapon allocation rates, the sta-
tistically expected error in a number of expected value n(M) is equal

to ¥n(M). That is,
EXPECTED ERROR = Vn(M) ‘
or, substituting for ALERREST,
(') -n()? = neo | J"
(' -n)2 = n/M ‘

Solving for the number of targets M, we have:

M=n/[(n' -n)2]

or
é

(NOWPS(J)/NTGTS)/[ALERREST(J)]2

M

as the number of targets we would expect to sample to get a statistical
error estimate of size, ALERREST. If we wish to reduce the indicated ‘i
error by 1 part in M per target, our fractional correction in the allo- 4

cation rate per target should be:
1/ = [ALERREST(J)]2/(N0WPS(J)/NTGTS)

This, multiplied by a sensitivity factor SNSTVTY, is the first term in

the value of CORRATE. Therefore, the user-controlled factor SNSTVTY can
make the correction more or less sensitive to 'recent' target experience,
If SNSTVTY is too high (much above .,1) oscillations are more likely to ;
occur., However, if the entire set of targets were observed, the esti- ‘
mate would not be a sample but wculd be exact. Therefore, even a very

small value of ALERREST becomes statistically significant if it is based
on a sample of size NTGTIS. Therefore, errors should always be corrected

at a rate at least equal to one part in NTGTS.

This explains the second term in CORRATE, which is just 1,0/NTGTS multi-
plied by a sensitivity factor FSNSTVIY (final sensitivity). This fac-

tor controls the sensitivity of corrections to the allocation rate in .
the final phase of the allocation where the errors are small, Thus the i

desired correction rate is just:
]

7 CORRATE = [(SNSTVIY)*(ALERREST(J))]/ (NOWPS (3) /NTGTS) + FSNSTVIY/NTGTS |

ko e it i,

' This is multiplied by the number of targets processed between corrections,

4
469

o T gt |

MULSTEP, to determine the fraction CORFAC of the error to correct. In
addition, a safety limit of % is used to avoid ever making a correction
larger than % the estimated e-ror rate.

However, even when it is known what fraction of the error in the alloca-
tion rate we wish to correct, an estimate must be made of the relation-
ship of the allocation rate to changes in the Lagrange multipliers
before the size change to make in the multiplier can be estimated., For
this purpose it is useful to have a model of the dependence of the allo-
cation rate on the value of the multipliers, We have assumed a depen-

dence as follows:

Rate = k }\—n

Consider now two rates, the current rate Rp associated with a multiplier

Ag and a predicted rate Ry associated with a new multiplier A1. Thus we
find
n no_
RiAdy =Rpag =K
! or
_ ~n
so

a(Ri/Ro)
3 Ay T

For small differences between AO and Al this implies:
' - “A
}{ - R 1* %o
Solving for the new value 1 of

(Rl - 0)/("“) ;
R

A =
L= A+ -

If we now identify a new variable R2 as the ultimately desired alloca- i
tion rate, Ry as the new rate we hope to obtain with Ay, and Ry as the

current allocation rate -~ then the above variables can be assoclated ‘
with information already available as follows: :

1 "Ry = CORFAC*(R, -R;) = CORFACT*ALERREST ;

RO = ALERREST + (NOWPS/NTGTS)

i 470
I

If we now associate the variable PARTIAL with n this gives rise to the
following procedure for updating LA: g

CORFAG*ALERREST(J, INTPRD)/ (-~ PARTIAL)
= * 2
LA} (1) = LAG()* [1.0 + (o e RRST(J, INTPRD) + (NOWPS(J) /NTGTS)

ALERREST(J) is computed as

_ RUNSUM(J) _ NOWPS (J)
ALERREST(J) = Ursin(3) ~ ~ NTGTS

The formula for LA;(J) is well-behaved if ALERREST is large and positive
but if it is negative and as large as the expected rate (NOWPS(J)/NTGIS)
(i.e., if the actual allocation rate is zero), then the denominator goes
to zero. In this case an infinite correction would be indicated. To
avoid this, the expected rate in the denominator i¢ multiplied by 2

giving:

} . CORFACALERREST(J, INTPRD)/(-PARTIAL)
LAy (3) = LAG ()% [1.0 + o RREST(J, INTPRD) + 2*(NOWDS (J) NTCTS))

This is the function used. The new Lambda's LAy(J), are recomputed for
attribute J (e.g., Jall, Jclass) and for every MULSTEP targets as pre-
viously outlined,

In the present version of the program the value of PARTIAL(J) has been
set equal to 1.0 for all the local multipliers LA(J). This choice is .
based on the effect of the return on the sensitivity of the allocation ;
rate to the value of LAMEF or A. When the multipliers are almost cor~ i
rect, it is usually the case that most weapon groups are in close com=
petition with many other groups with very similar properties. Then a
small change in the multiplier LAMEF will produce a very large change in
the allocation rates, as the weapon group in question almost totally
replaces, or is replaced by, its competitors,

However, such a large error in the allocation rate will not actually
occur because as the error builds up the estimated value of the payoff
will be automatically changed by the premium. Thus for constant values
of LAMEF, when an equilibrium allocation rate is reached, it must be
approximately true that the error in LAMEF is compensated by the pre-
wium, This is, if Xo is the correct value for LAMEF then:

LAMEF -PREMIUM ¥ Ag

Since: i

SURPWP =,5*CTMULT
= X X
PREMIUM = PRM*LAMEF" NWENS

we can define a relation between LAMEF and (SURPWP/NWPNS) §

471

R p—

SURPWP -.S*CTMULT) o~
NWPNS 0

LAMEF*(1 -PRM*

Since this relationship is the same for all groups it is reasonable sim-
ply to use the same value 1.0 of partial derivative for all local multi-
pliers.

The values of LAMEF(G), where G is the group index, are recomputed using
the new values of the local multipliers (LA(J) accordingly,

LAMEF (G) = LA(Jall)*LA(Jclass)*LA(Jreg)*LA(Jalert)*LA (Jgroup)

At the same time it is necessary to reevaluate the summation of the
value of all the weapons VALWPNS = ¥ LAMEF(G)*NWENS(G) and the summation
of the value of the error in weapons allocated

A.

VALERR = ¥ LAMEF(G)*ABSF (SURPWP(G))
using the updated values of LAMEF.

Target Weight Change Rate & Integration Period: The above explained
how multipliers are yvecomputed by monitoring allocation rates. The
remaining discussion addresses how the target weight change rate and
integration period is computed.

The average number of targets over which allocation rates are averaged
(the integration period) is determined by the rate at which the target
weights are increased.

In estimating the rate with which to correct multipliers, it was com-
puted on a statistical basis that even if the allocation rates were
correct an estimated error of size ALERREST would be expected if the
allocation rates were monitored only over a small sample of M targets
where:

M= (NOWPS(J)/NTGTS)/(ALERREST(J))2

Thus if separate integration periods could be used for each local multi-
plier, M as defined above might provide a reasonable basis for deter-
mining the period. However, in fact, the same periods must be used for
all local multipliers LA(J). Currently three periods are maintained
(INTPRD=1, 2, 3). Consequently the velue of the integration period used
must be based on an estimate of overall error rate. The corresponding
relation is:

M = (T NOWPS(J)/NIGTS)/% (ALERREST(J))2
G G

where the summations are taken over all weapon groups. The quantity
INOWPS (J), 1s identical with NOWPS(L) (Note: ILA(J) for J =1 is used
G

S

Ji
!
i
5
|
P
!
|
§

L P o

AU A AV M 1 1 v it ¥ pererenr s O

v

e el <

e

for all weapon groups) and so for eZficiency the_variable NOWPS(2) is

While the expected value of (ALERREST(1))“ is the same as I
G

(ALERREST(J))Z, the variance of the latter version is much less, and it
is therefore preferable as an estimator of the expected integration

period, EXPINTPD and is:
EXPINTPD = NOWPS(l)(ALERRESTCl)z)*NTGTS)

used.

To allow the possibility of using integration periods either longer or
shorter than the theoretical EXPINTPD, a desired longest integration

period DESINTPD is defined:
DESINTPD = EXPINTPD*RATIOINT

where RATIOINT is an adjustable input parameter, A low value allows
higher sensitivity without oscillations in the values of the Lagrange
multipliers but too low a value makes convergence to the correct stock-
pile sensitive to statistics of the target list. If the target list
contains targets with heavy ballistic missile defenses or if a large
fraction of the weapons are assigned by the fixed assigmment capability,
this parameter value should be increased (to 4.0 or above if necessary).
If this period were used exactly im setting the rate of change of the
target weight (i.e., WRATE = 1.0/DESINTPD), the WRATE would never become
exactly zero as is required for a constant target weight, Obviously
when the change in the target weight becomes small over a full pass, the

WRATE should be allowed to go to zero, Therefore in:
WRATE = (1.0/DESINTPD) =~(2.0/(NTGTIS*RATIOINT))

the term (2./NTGIS*RATIOINT)) is subtracted, and if the resulting WRATE
is negative it is set to zero, To avoid a situation where large errors
cause the integration period to become ridiculously small, a limit that

WRATE < .07 is set,
Moreover, after the allocation is well under way, PROGRESS = .5, the
value of WRATE is not allowed to increase., In the program WTRATE (INTPRD)

is used as a multiplier of the target weight; therefore we add 1.0 to
WIRATE to obtain a suitable multiplier for the longest period NINTPRD.

The values for the three WTRATE variables are:

WTRATE{3) = 1 + WRATE
_ RINTPRD-1
WIRATE(2) = 1 + WRATE + “S=2-c= + RINTPRD
RINTPRD-1
= vt et *
WIRATE(L) = 1 + WRATE + SSimeme—= + 2. *RINTPRD

Input parameter RINTPRD is an approximate ratio between rate of change
of target weights between different integration periods. An increase in

e e oo

.

this parameter increases the jsensitivity of the multipliexr adjustment to
recent target experience,

To restate, Lagrange multipliers are recomputed based on variable PRO-
GRESS and after a specific number of targets have been processed. The
adjustment is based on maintaining statistics of weapon allocation rates,
The differences in true and observed rates, along with input sensitivity
parameters, make up the formula for multiplier adjustment.

A.6 Derivation of Formula for Correlations in Weapon Delivery Probability

An exact calculation of the probability of target survival when it is
subject to attack by correlated weapons is very lengthy. Both the con-
ventional statistical analysis and the bhayesian incremental information
approach have been examined. Both approaches for each time and hardness
require the calculation component of the interaction terms between each
weapon to be added with all possible combinations of the weapons already
on the target. Thus the completely rigorous calculation would be imprac-
tical in a rapid response allocator. The method used here is based on
an approximation derived from the properties of the log-gamma distribu-

tion,

When a group of weapons share a common failure risk the probability ot
success is likely to be either high or low for all weapons collectively,
Thus the probability of success can itsaif be thought of as a random
variable., For any chance value of this overall random vaxiable there

will exist the usual independent probabilities for individual weapons. r
Hlowever, on one trial the overall success probability for the gruiap or
weapons may dbe 90%, while in another trial it may be 50% depending on (
the particular success probability drawn for the trial. ;

The following mathematical model has been developed to deal with this

type of problem. We assumf that the probability of survival of a tar-
get with respect to the th weapon 1is itself a random variable § of the

form

where the X; are random variables drawn from a known distribution.
{

If two weapons are involved, then the probability of survival with
respect to both can be represented by the random variable Sq:

~(X, + X)) B
= N . = i j '
S'l‘ slbj ¢ !

Py

However, the random variables X; and X may or way not be independent,

If they are not independent then of course

474 i

|

<Sisj> <Si><Sj>
} Il the X; are independently drawn from a known two-parameter family of

distribution with a convolution property,* then the distribution of X;j
+ Xj will of course be & member of the same distribution family, More-
over, since any probability distribution for the X; implies a distribu-
tion for the corresponding Sj, the distribution for Sisj can be calcu-

lated and the value for <§3jSj> can be computed.

The gamma distribution given by:

xae--x/b
P(X)dx = P dx for X 2 0

b I'(a + 1)

P(X) =0 forx=<2O0

A R A T T e

is a well known two-parameter distribution with the required convolu-
tion property.

The gamma distribution is unique among convolving two-parameter dist¢ri~

butions in that the expected value of e X is easily computed. This pro-
perty is particularly important for QUICK since the damage function per-
forms a computation of this value many times during the allocation. The

expected value of e"X ig glven by:

e e Sowprors 1

o
<e X5 n /P(X)e'xdx
0

which can be written

a+1
-X 1
<S§>=<e "> (b-rl)

This distribution is valid fog b>0and a> - 1, It has a mean
ft=">b(a + 1) and a variance o< = bz(a + 1),

Since this distribution is completely defined by the mean and variance,
the actual probability distribution of S can be computed at any time so
long as a record of the mean and variance of the distribution is main-

tained. We now observe that:

a+l= pzhlz

X A probability distribution is said to "convolve" when the convolution
of any two distributions in the family (L.e.,, the distribution of the !
sum of the two random variables) is itself a wember of the same family, :

i
475 f
s‘

A ——

s o s Z -
S e A st <

and
b nor?'/P

so the expected value of § can be written

2)02
1 "
<S> 5
o +1

or
2 2
2 o
-4n {S> =a_-i' £n (-u—'i- 1.)

This distribution is sufficiently flexible to include almost any shape
distribution of interest, For ¢ small the distribution in § approxi-
mates a gaussian centering on some spacific survival probability. As
the o is increased the distribution widens, so that it can approximate

a uniform probability from zero to one, or a sloping probability with
more welght on zero or one. In the limit of very large ¢ the distribu-
tion consists essentially of spilkes of different weight at zero and one.

1f we were dealing with independent weapons we could calculate the parva-
meters for the multiple weapon distribution from those for the single
weapon distributions simply by making use of the additivity of the mean
and the variance. §pecifically the mean, pq, for the new distribution
and the variance 0;" would be given by: .

B =3 p
(A

The expected value of target survivability Sq for the new distribution
would then be obtainable through the equation:

W2 2
L O

- 4n <8y = -12- zn[X +1]
o, Ko

However, the variance is divrectly additive as above only if the weapony
are really independent. To introduce the possibllity of correlations we

will write the variance as follows:

0.2== NN
J

e

| ol

i\ % T1;%

476

-

S

- T

[RS- S -~

I e s e an s on e,

where the quantity I} represents the correlation between the weapons. -
=0 for i ¥ j and 1 for :

In the special case of uncorrelated weapons, Ty
i = j, which {s identical with the previous form.

LI——

‘this approach of arbitrsrily introducing the cross terms in this formu-
latlon to approximate tho actual correlations i3 exact so long as the
correlations are of such a8 form that the distribution of X remains a
gamma distribution., To the extent that the actual correlations cause
departures from the I'distribution the approximation is in error. The
correlation model thus amounts to the assumption that correlations can

be adequately wmodeled without going outside the log-gamma distxibution.)

For iwmplementation it seems appropriate to introduce an additional sim-
plification. In the foregoing formuation the magnitude of the penalty
for using correlated weapons will depend not only on the size of the
correlation and the kill probability for the correlated weapons, but

also on the shape of the distribution for the success probability for
each weapon. This shape dependence introduces a complicating variable

which undoubtedly exists, but for which it would not be easy to get data,
It therefore seems desirable to eliminate this factor.

This can be done by standardizing on a single shape factor for all cal-
culations of the ciffects of correlations, It is easiest to do this by
considering only distributions with a very large ¢, which are essentially
spikes on zero and one, This choice tends to exaggerate the importance
of correlations (and this fact should be borne in mind in assigning the
correlations for the war game) but it significantly simplifies the data

required, as well as the computation of the payoff.
i

o the quantity 012/“1 approaches infinity while ;

1n the limit of lnrge
compengates to maintain the correct value of
1

the quantity PiZ/UL
-dn (5P

To fllustrate the transition to this limit we let by = 012/“1 and define)

B = b/an(b, + 1)

N

Then

S0O;

o= By [-zn <si>]) :

and . i
02=ub =b. B, |-4n (SH

1 A SR L i ;

!

t 3
477

1

The tommula for obtaindng the expected value of S'l‘ can now bo written

p
> —5 du(h,, o+ 1)

L) l\
!1\
and subatituting,

= \\ Al
by = Sy and gy - R

wo obtain:

/
= (8> » (}‘[3 L-"“ 1>) h (.ﬂ\\(b,l\ + n/

b v ¥R [-.e,n]‘]2 ¢s]m

We now asuign to all woupona the sama value of by, so that all by ave
oqual and all £ ara aqual nud we obtain:

\u\(b,l, + 1) [}I (=40 <St>)]2

=n 35,2« e
1 by ¢ %\\(Sﬁ)lm T, (-3\\<S‘)\

172

.

T wo now lat by approach {ngindty the vatfo ot the two logavithwie
quantities will approach 1, MNote that

2
[DX
\\”"—-L-’ ao b w0y 1“”0!
l “c\ l " .
I i
‘1
9
It tollowa that b‘l‘ > b | and b‘l‘\ n= hl’ whore 3 ta the number of waspons,
2
The UHwiting caase h‘l = N’ hl oceurs when atl 1‘” - L and all Ry oave
aqual, Thevetora so long as by X N7 tha vatio ot the logavithws will ")
be easantially 1, and {n the Wwmit aa by approaches inflntty wo obtatun
slmply: :
) ;
[}T “du ¢ Si>] .
~ba ¢y 0= - : ’
T . { ,)112) A
S - \ 1 -
SR L (hl> 0 (&\\\)) j

For compactness ol notation Lot ua {dentify the quantitioa

478

B o= (=4n (Si)) and Pp = (~£n ¢ S'l‘))

Then slnee 14 = 1 {f L = j we obtain
o . -2
5 2
W = Li“‘J
T A\ 1/2 1/2 :
Tp, +I T u) Y (p
e S 3-1(1 1 J) :

or equivalently

H

Hp = 172 . 172
Sy, +5 T /.u.) 27T,,(p
S *3(3)

This form has the basic properties desired, Notice there is only one
interaction term between each pair of weapons, In addition, only two
sums need to be maintained to compute PT. These are:
MU = Ty
i i
SIG =1 I pi)llz 21"11(“1)”2
1 j<t

From these the vaiue Pop is given simply:

My = (MU)2 !/ MU + S1G)

The addition of any new weapon adds one term to the MU sum, and several
terms to the SIG sum.

The computation of the first sum is trivial; however, before the second
one can be used it is necessary to provide a practical method of esti-

mating Ilj‘

We recall that the array RISK (A,G,J) was computed as an estimate of
shared risk, and that: ,

RISK(A,G,J) = T SM(L)*SMAT(A,L)
L=1,5 \

For a particular weapon G and hardness component J, this relation might
look as follows: (A is a weapon attribute index; I is a faillure mode ,
[

index.)

479

T v

SMAT(A,L) . ﬂ
A= 1 2 3 A 5 3

L SM(L) All |GroupiReg | Class|TypelAlert]Independent Risk

1 | -LOGF(DBL) = .20 .00 (.10 .10 | .10 | .10l .adl .20

2 |-rogr(cc) = .o0lj.00 .20 |.30 | .10] .10] .30] .10

3 { ~LOGF(REL) = .05 |{ .00 {.05 .00 J10 | .20 .00 .65 !
4 | -LOGF(PEX) = .20 {{ .00 {.00 .10 .20 .20 .00 S0 '
5 | -LOGF(STK) = .02 §§ .00 .00 .00 .00 .00 .00 1.00

RISK(A,G,J) .000 .0225 ,040 ,065 .070 .08 .1925

Thus the SMAT array, a user input estimate of shared risk, is used sim-
ply to divide the five types of risk SM(L) between the independent weap-
on risk, and the six factors A that any two weapons might have in x

The total RISK over all A plus the independent risk is of

common,
course equal to the sum of SH{L). Wc a2re now interested in using the

RISK array to derive reasonable values for the correlation coefficients

rlj°
The RISK array thus represents the amount of the vrisk for each weapon
that is likely to be correlated with other weapons «f the same class,

type, etc.

The correlation coefficients should reflect the shared risk. I1f two
weaopons have only two attributes A in common then the shared risk should
come only from these two common attributes. Moreover, the amount of
risk that can be shared on the basis of one attribute cannot exceed the
minimum risk associated with that attribute for either weapon. There-
fore, to estimate the waximum risk, yij’ that can be shared by two

weapons, i and }, we define;

)*Min RISK(Ai,Gi,J)RISK(AJ,Gj,J)

where § = 0 if Ai +-AJ and 6= 1 if A1 = Aj.
however must never exceed 1.0. Therefore it ig #

The coefficients I}a
e

appropriate to divide the shared risk GAM(i,}) by ¥ SM to obtain a nor-
L

malized fraction guaranteed to be less than 1.0.

Thus the form of the second gummation

SIG =% T 2(p)L/2 T, (u)1/2 |
L j(i i i‘ j < "

would bacome

ste =% % 2eupt/? SULD 12 .
1 <t ' J v
L

480

However, this form involves square roots which are inconvenient., More-
over, it represents an upper limit of correlation. We can reduce the
size of the overestimate by using the largest (or maximum) ¥ SM; i.e.,

IA
uaing the least veliable weapon for noxmalization, In addition, we can
sfuplily the form and prgyide for the removal of square roots if we also
waltiply by (Mpin Mpax) ' °« (This is a factor less than 1.0 that has
the offect of reducing slightly the assumed correlation between weapons
of very ditferent overall effectiveness,)

With these changes, the equation for SIG takes the form of

1/2

GAM(L,) *(llmin)llzt (“j) 1/2

SIG = ¥ I 2(p) Max % SN \fmax
L

1

The form {n bdraces i{s still guaranteed to fall between zero and 1.0.

It represents the actual form for I'j; used in the present version of the
Allocator, This form has a computat{onal advantage in that it simpli-
fies the calculation of SIG. Assume that By<Hy. Then

) SM1>? SM1 and so
L L -
s r 20)UZt_«_\wJ_u &11’7 M2
SI6 = {4y T SM B j
This reduces to:
Ll & % K1
SIG = 7 Jet 2%GAM (k, })¥MIN S
1,] L &

This {8 the actual form used computationally. (For each weapon group G
the quancity B/ 5 SM s identified in the FORTRAN as SSIG(G,J).)
L

The specifle formula used for the terms in SIG is of heuristic origin
and is obviously somewhat arbitrary. It is justified, in the final
analysis, by the fact it is failrly simple and that it works, The
resulting kill probabilities produce realistic cross targeting, and in
casoes where these probabilities can ba compsred with a rigorous statis-
tical wmodel of correlations, it produces a vatisfactory approximation
to the kill probability,

481

In summary, the mathematics is as follows:™

For a single weapon let
SSK = single shot kill probability, and let
88S = single shot target survival probability
then SSK is given by

-LOGF (SSK) = E SM(L)

As usual, SSS = 1.0 - SSK, and we define #4 or MUP for group G; relative
to hardness component J as:

MUP(G,J) = -LOGF(SSS)

We also define SSIG(G,J) as:

SSIG(G,J) = LOGF(SSS)/LOGF(SSK) = MUP(G,J)/ E SM(L)

Finally we define RISK(A,G,J) as:

RISK(A,G,J) = ¥ SM(L)*SMAT(A,L)
L=1,5

The preceding three arrays (underlined for emphasis) are the main input
for the estimation of kill probabilities.
The target survivability relative to multiple weapons St is given by
= = ’1‘
ST e M
where prT = (MU)2 / (MU + SIG)

and where MU = 7T By = IN MUP(GI,J)
i i

)1/2 /2

1
and SIG=% T 2(p r, . (y)
i<t ° L

The individual terms in SIG for specific i and j can be thought of as:

* The displayed mathematics for the calculation of MUP are for the expo~
nential damage law. The derivation of the quantity, MUP, required for
use of the square root damage law is discussed in the Derivation of
Square Root Damage Function section of this chapter and are not of any
impoxrtance in this discussion of correlation effects,

482

which we idontify computationally as

DSIG(K,) = 2%GAM(,3)*in {SSIG(G,)}
k=i,

where GAM(1,]1), the maximum risk shared by { and j, is estimated as

GAM(L,3) = B 6(A; A) {RISK(A;,6,,9), Rtsx(Ai,GJ,J)}
A

vhere §, the Kroniker 4, is O if A1-+ A,and 1 1if A, = A,.

3 i
The simple form used for DSIG above implies that Ilj has the form:
172 ’
PR (€ Y5, SR . .
1,3 Maxjy SM(L) HMax
i,31L

however, this form never enters explicitly into the caleculations,

To combine this treatment for the analysis of weapon correlations with
the preceding treatment of time dependent target values we simply use
the Sq evaluated above to supply the S(NI,J) required in the formula

J=M *7=aNN
VI = % bX [VINI,D) - V(NI + 1,J)] * S(NI,J)
J=1 NI=0

The weapons to be included in the evaluation S, for any NI are of course
those on the tarxget up to and including the time NI.

This, of course, requires that separate sums for MU and SIG be main-
tained for each relevant time interval, NI, and each hardness component
J. Thus these variables are actually two dimensional arrays MU(NI,J)
and STG(NI,J). Moreover, every potential payoff estimate (both for
each weapon that might be added, and for each that might be deleted)
vequires a separate complete set of sums,

Derivation of Damage Functions

A Universal Damage Function:; Consider the situation for which the lethal

radius and CEP of a single weapon are small compared to the target
Jdimensions. This case bacomes quite pertinent under any of the follow-
ing circumstances:

Very lavge cities

Targets whose uncertainty of location is larger than the area of
influence of a weapon

483

o —— eet—————— —
~ m—————

U

Employment of large numbers of small weapons (e.g., cluster war-
heads)

Hardening which reduces effective weapon radius below target size
(e.g., blast shelters for urban population).

In such a situation, where the value density of the target does not vary
significantly over the area of effect of a single weapon, one can use-
fully employ the concept of weapon density (Wweapons targeted per unit
area) and seek the weapon density as a function of value density which
optimizes the total target destruction for a given total number of

weapons.

Before such an optimization can be effected, however, it is neuessary to
obtain the relationship between the weapon density applied to a sub-
region, expressed for convenience as the fraction of the original value
surviving, In the most general case, this function can vary with posi-
tion in the target, reflecting the possibility of varying degrees of

vulnerability over the target.

We introduce the following notation:

X Position within target (x, y coordinates)

w(X) Density of weapons targeted in vicinity of X (number/unit
area)

v(X) Target value density in vicinity of X (value/unit area)

F(w) Fraction of destruction produced by weapon density ¢, in
the absence of hardening

B(X) Vulnerability (hardening) factor (Ospsl) expressed as
effective degradation of weapon density

W Total number of weapons intended against target.

The total payoff for a given weapon density distribution is then given

by:

B = /vp(uw)dA ()

A

where the integration is understood tc be over the whole target area,
and dA is the area element.

Similarly, the total number of planned weapons is given by:

W= /wdA
A

484

—— -

4

We seek now the weapon density distribution which maximizes the payoff
for a given W. Introducing & Lagrange multiplier <0, and applying the
generalized method described above,* we seek the weapon density function

which maximizes the unconstrained Lagrangian.

L=H-2AW €))

This is equivalent to maximizing:

L = f[VF(wp) - AwldA (4)
A

The density function w) which maximizes this Lagrangian for a given)
fs obtalned simply by maximizing the expression inside the integral at
each point (see cell problem discussion in Everett's paper, appendixC).
The optimum density at any point is therefeore a solution of:

MAX = {VF(w) - Aw} ()
w

For the case where F is monotone increasing, concave (diminishing
returng), and differentiable, an internal maximum of (5) can be sought

by zeroing its derivative:

-f;— [VF(uc;)) - Awl= VF'Quwy) H-w =0 (6)

Letting G = (F')"1 stand for the inverse function of the derivative of
F leads to:

1 A

Equation (7) gives the internsl maximization of (5), To complete the
solution we must account for the constraint w*>0 (negative densities

arc not allowed), Thus the optimum is given by (5) only if wy*20 and if
VF(w) - Aw 20, since otherwise (5) is maximized by w= 0. The com-

plete solution can therefore be stated:

A -
G W ifwy 20 and VF(uw) ~Aw20

Tl

WA = ®)

0 otherwise

(This solution is also valid even if F is not concave -~ a situation in
which G may be multivalued -~ provided that one uses that value of

G(A/vp) for which VF(Hw) -Awis a maximum,)

485

S e v e s
f

<xtmad

Obhaavve that the optimum denailty given by (&) ia a funotlon enly of V
and K, and ta expliecitly independent of poaitlon, If we can furthey
asaure that tha vulnevability H ia a funotion only of the value denaity
¥ and la otheryiae independent of position,® then we van simplify the
formulation and solution aomewhat. In thla cane, all pertinent tavget
ahavacteviatica arve summarigad by two functions:

AtV) = tortal avea of thoae aveaa whose value denaity
la greater than V

H{M = vulnerahllity faotor aa a function of value denalty

The optimum weapon denalty wy given by (&) hecomes then a function only

of the value denalty Wi

1)
O b(w%ﬁ) if W, 20 and VE(pu) - Aw 20
Wy vy =)

0 otherwise

and the total pavoff and total weapons are given in the aimple torm of
Stleltjea integralay

0

©
N)(;“(m\ #()AA(Y)
‘0 N

(10

1Y

W= =) dA(V)

Thia cowpletea the geneval optimization of weapon denaity. For explielt

aolutlons we vequive apavifivc funotiona for the tavget value diatyvibution

funotlon A(W), the deatruotlon funotion B(w), and the vulunevahlilty
AMacvibutlon p(V. Ve ahall now congldar aeveval pertinent ocanea.

X
“which seema genevally quite plaunaible, and la ln any case vevtalnly
true LE the vartation of B avlges from optimtaation ot ahaltev deplov-

ment, for exawple.

486

Ak .
s
L :=ﬂfc;ﬁ‘m\r‘mgeeh’%mmw;(ﬂ.‘W’L@&Qﬂj‘admwl\&ﬂh

Ty

e o et At N i e b i

T

Locally Random Impact Model: When the CEP i3 not significantly smaller

than the lethal radius, or when the delivery probability of individual
weapous Ls low, the sktuation ovar any homogeneous part of the target
can bo closely approximated bv regarding the weapons as haviug been
dropped uniformly at random over that part.

Conslder, theraefore, a reglon of area A (large comparad to the lethal
arug of a single weapon) into which N weapons each with lethal area

mRg“ and delivery probability P are delivered uniformly and independently
at random, The probability that any given point in the region will sur-

vive oue weapon 1s:

PnRK2

S(1) = 1 -
) A (11)

and, since weapon arrivals are independent events, the probability of
surviving N is:

. / }’nRKZ\N
S(N) (-) (12)

Introducing the parameters K and

K = PnRK2 = oxpected lethal area of one weapon
(13)

w = N/A = weapon density

allows (12) to Le written as:
, N
S(w) = (- 1\1-}3—) (14)

This gives for the destruction function:

Kw N)
FN(m) 2] - 8w =1- (1 - 'FT') (15
487

P

F S R et e o oo

1
4
it
'
!

Equation (15) still contains an extra parameter, N, which is the number
of weapons in the area A used to derive (12)--prasumed large compared

to the effects of a single weapon and small compared to the total target
size. We are currently interested in the limit as this area A becomes
infinite compared to the effects of & single weapon, hence in the limit

ag N-—»o0o;

Fo(w) = lim Fy(w) = 1 - e Ko (16)

N—+x

which becomes our final destruction function for the locally random
impact model.

"Perfecc'' Weapon Model: At the other extreme from the locally random
impact model is the hypothetical situation where the weapons have zero
CEP, delivery probability of unity, and completely destroy a hexagonal
region of area K with no damage outside the region.

This situation closely resembles the case of "cookie-cutter" weapons
of zero CEP and unit delivery probability, and deviates from the latter

only when the area covered 1s so densely packed that the "cookie-cutter"

circles begin to overlap--which does not occur until the fractional

coverage exceeds T/(2N 3) or about .91.

For such "perfect" weapons the destruction fraction is given by:

Kw w< 1/K
F =

1 w2 1/K Q)]

Intermediate Cases: We have considered two extremes, locally random
impact, and perfect weapons, TFor actual situations, the targeting will

not be random, but some optimum pattern of DGZs.

As the CEP becomes larger than the lethal radius, or the delivery prob-
abllity becomes small, the situation--even though based on a pattern of
DGZs~-approaches a situatlon described by the random impact moded. On
the other hand, for high delivery probability and swall CEP, the situa-
tion begins to approach the '"perfect'" weapon case--particularly as thea
weapon effect radius becomes sharp (close to "cookie~-cutter--e.g., the

conventional 090 model).

Returning to the destruction function given by (15) containing the
extra parameter N (from which the random model wag cobtalned by lattlng
N-—»), we observa the remarkable fact that for N=1, this function 1is
precisely the damage function (17).

488

Since this function conteins, for the extreme values of N, the two
limits we have considered, it seems reasonable to suppose that any
actual intermediate case could be adequately approximated by this

function for some intermediate value of N.

We shall accordingly adopt this general function as our destruction
function, subject to subsequent empirical verification,

The general law therefore becomes:

r- (1 - §§%>N W<

1 w2

Fy(w) = (18)

=z =iz

For purposes of determining the optimum distribution of weapon density
over a target of varying value density we wish to employ Eq. (9), for
which we require the function G = (F)~-1, Accordingly,

N-1
. N
; K (1 N) m<K
F' (w) = —F (u) =
OB NLNMC) (19)
<N
0 w__K

for which the inverse function is easily letermined to be:

onl. fxyvoeen
Gy(X) = [1 - (I)] (20)

Thus from (9), the optimum weapon dansity is given by:

1
1 N - A —— A
NORS [1 (mm) N - 1] vy <t
21)
w (V) =

A
—21
0 Xvu

489

and for which the destruction fraction is easily calculated:

e M
Kvu (V) M (22)

FN(NX w) =

21

A
1 A
KVu

This completes the general treatment for arbitrary target value distri-
butions.

Gaussian Targets: A particularly important special case 1s that of a
Gausgian target, for which the value density distribution is given by:

2,, 2
V(x,y) = —Ls e /%0 (23)
270

(The total value is here normalized to unity.) From (23) we determine
the relationship between radius and value to be:

2

rz(V) = -202 kn(ZnOZV) (24)

and hence the cumulative area distribution function to be:
A(V) = nrz(V) = —chz‘ln(ZnOZV) for V& 12 (25)

2n0
and the differential element is:
2

270 (26)

dA(V) = - v dav

Solution For Constant Vulnerablility: Combining Eq. (10) with (26) and
(22), and letting p = 1:

490

S e e i g

lf‘“‘fg

1/(2n0?)
K\ N-1 2u02
H, = f Vil - <W} (v)d\’
A/K N
2 >NZ'1' 2

)
2n0°\ 270 2r0" A
) T - (N-1) <——TF—_ - = 27)

Transforming the Lagrange multiplier \ to a new multiplier B:

1/ (N-1)
[Znoz] (28)
B = X

we can rewrite (27) as:

HB =1 - sN'l [1 + (N-1) * Q1 - 8)]

(29)
The total number of weapons as given by (10), (21), and (26):
1/ (215%) A
o N2 (2 gy 30
A K | \% V (0
A/K
leads, in terms of B, to:
N(N—l)zno2 :
Ny = ——=—— |8 - fnes - 1) (31) :

In order to permit explicit exhibition of payoff as a function of num-
ber of weapons, it is necessary to define a new function, Yy, which

is the inverse of |
(32)

y - bny - 1= x
491

that is, y = y(x). It is defined for all nonnegative arguments, with
values on the interval zero-one. With this function, (29) and (31) can
be rewritten, in terms of surviving value:

s« [1s o a8

KN
g =1 —————
(ZuozN(N - 1;> (33)

Equations (33) summarize the relationship batween surviving fraction,
S, and number of weapons targeted, W, for Gaussian targets, and with a
model parameter N, which can range from 1 to w,

The two limiting forms of (33), corresponding to N = 1 and N=> % are
interesting and important, and are easily shown to be:

S1 = exp(-leznoz)
N avre
V Y KW
sm=(1+ M;)e.\'p{- }2>
rg \ v

These are often termed the power law (or exponential law) and the square
root law, respectively,

Derivation of Kill Probability Function

A variety of kill probability functions are in general use. The “normal
model" employs a function of the form:

2 2
Pe(r) = o /2% (34
The "“cookie-cutter" model employs a discontinuwous function:
1 R.2x>0
PK(r) = (33
0 r>R

K
492

,.—

where Rg is the so-called "lethal radius." The relation between Ry
and og is obtained by equating lethal areas

2n o
J‘ f"' 129" s (36)
0 0
leading to the relation
2 2
o = 'SRK 37

Other functions have often been used and, indeed, it has occasionally
been found convenient to employ a generalized kill function of the
form:

x W1k
Gy(r) = e Z)
j=0 9! (38)

where

-

Agaln, we can equate lethal areas to relate a with RK' :

2n ;
2. f f G, (x) rdrdo 39
0 0 ‘

so that 1

sz = &% for all W (40) g

The parameter W serves to alter the shape of this kill probability
curve. Thus, Gg(r) reduces to the normal curve for W = 1 and the
cookie-cutter for W——»=, Standard kill curves, such as the 03¢ and
030 curves of AFM 200-8, representing, respectively, ground burst and
optimal air burst blast damage probabilities as a function of distance,
can readily be approximated. W = 6 approximates closely the 0pp curve,
and W = 3 approximates the O30 curve,

493

Integration of a kill probability function over appropriate density
functions allows the representation of such factors as delivery error,
geodetic error, extended targets, etc.

Assume an extended target with the Gaugssian normal value distribution
as follows:
2,,2
V(r) 12 et 'ZGTgt (41

2
..TTOTg t

V{r) = value per unit area at distance r from center
ngt = standard deviation of value distribution
Clearly:
o 2, 2
1.0 = —3 e /2%t 4r (41)
ZHOTgt o

Define a radius, R95, such at 95% of the value of the target is con-
tained within this distance of the target center. (This R95 is the
target radius ugsed in the QUICK system.)

Then (43)
R9S_..2,,,2 o 2, 2
/ erlzo'l‘gt dr-.95f erlzo'l‘gt dr
o

[+]

Solving this equation for ¢ . in terms of R95, we get:

Tg

ngt = R95/2.448

Assume a CEP, the radius of a circle with center at an aiming polnt
which will contain 50% of the centers of impact of weapons aimed at
the aiming point. Assuming a circular normal (Gaussian) distribution
of the aiming errors:

2, 2
p(x) = r2 et /ZOCEP
Scep

494

where
p(x) = probability ailming error is r

GCEP = gtandard deviation of aiming ervors

By definition of CEP

CEP
“/F p(r) dr = 0.5
(o]

Solving for © in terms CEP

CEP

™ ®
o] cap ™ 8493 % CEP

Assume a weapon is aimed at the ceanter of the target. From the nature

of the Gaussian distribution we can define a standsrd deviation 02 -

D
Oggp + Oigt such that the circular normal distribution charactarized

by 0% is the convolution of the distributions characterized by oéEP
2

and O .
ne Tgt

Thevefore, 1f
PK(w) = probability of target xill

W = kill function parameter

GK(r) = kill function from Rq. (38)

then

2
,[OXP - GK(-r) rd6 (46)
0

495 a

Evaluating the integrals

2 \W
P.(N) = 1 - .__.72“'*
X (1 + 2NX

where X = UD/RK

oxr
W
pK(W) =] -

which is the function used in QUICK.

R ———

496

(47

|

APPENDIX B

OPTIM1ZATION OF DGZs FOR COMPLEX TARGETS

Module ALOCOUT is responsible for selecting optimum desired ground zeros
DCZs) for weapons allocated to complex targets. The complex target may
contain several component target elements, each with specific coordinates,
hardness, and some given time dependence of value. To place this diverse
target element information on a commensurate basis for efficient DGZ
selection, each target component of the complex is represented as a
series of simple point value elements. Complex elements with more than
one hardness component generate more than one such target element, and
area targets generate several elements, spread over the area of the tar-
get, to represent a value spread over the area. A (DGZj Desired Ground
Zero Selector then uses the data to select optimum aim points within the

target complex.

The selection of DGZs is a two-step process. First, the prescribed war-
heads are assigned initial coordinates through a '"lay-down" process in
which each successive warhead is targeted directly against the target
element where the highest payoff is achieved, taking into account colla-
teral damage to all other target elements. Second, a general-purpose
function optimizer, FINDMIN, calculates the derivatives of the payoff
as a function of x and y coordinates of each weapon and adjusts the
coordinates to minimize the surviving target value. FINDMIN terminates
cither after a maximum number of iterations (which can be specified by
the analyst) or after it finds that it can no longer make significant

improvements in the payoff.
The mathematical representation used is as follows.

The weapons allocated to a complex target are to be placed in a manner
which attempts to minimize the total escaping target value. To simplify
discussion, the notation below is introduced. A second subscript, j,
referencing the jth target element, is used when needed.

V. = value of jth target element remaining immediately

J following arrival of the ith weapon

Sj = probability of survival of jth target element associ-

ated with weapon 1

E, = amount of value of jth target element that "escapes"
J between arrival of weapons 1 - 1 and i

T, = time of arrival of weapon I (Tp is an initial time when
* the full target value is applied) (T<Ty 4 7 atl i)

497

.

.

o

Lo b

- g e e e e e

h

vj(Ti) = value of jt targec, at time '1‘i
N = number of weapons
NT = number of targets

The following sketch illustrates the treatment of the time~dependent
values of the jth target.

Amount of target value
picked up by weapon 1

......... Amount of target value
picked up by waapon 2

Vo 9 (5235 :} \0\

<l

Target Value

From this sketch, the following relationships should be apparent. The
equations immediately below refer to a single target (j), but for simplic-

ity the j subscript is omitted.
Yi = V('I‘i)SiVi - 1/V(Ti - 1) i=12, ..., N)
E, = Vi -1 [1 - V(Ti)/v(Ti _ 15} 1=1,2, ..., N+1)

1
-

498

T

From the previous equations,
o Ti i
Vi = kgl Sk V(Ti) and Ei = kglsk [V(Ti_l) - V(Tii]

i-1
(For i = 1, the product(11 Sk) is understood = 1. Also '\l('l‘N N 1) = 0,)
k=

1

The total escaping value associated with target j is

N+1 N+l [[i-1
Z_)n = 2; kl;llskj [Vj('l‘i_l) - Vj(Ti)]

The value on target j which escapes after arrival of weapon 1 is given

by
N+1
E .
p=i+l pJ
5 X
] L)*f;
The effective value of target j} assoclated with weapon i :defined by 17
B
N+1 by
F., = E . S.. =
1] p=i+1 P 1 g ‘,
‘ I
f This value is introduced for computational efficiency and may be thought ;’
of as the tor»l value available for weapon 1, the effect of all other |
| weapons hav. ng been taken into account, b
i
] The marginal value picked up on target] due to weapon i is given by {
J
|
Fgy(t = 8yy) B
5
where Sij ls a functlon of, among other things, the positlion of weapon i. i;
, For a fiXed weapon configuration, weapon i can be moved from (x,y) to i
(x',y') and the marginal escaped value s given by: L
!
f NT f
F,.(8:;: =~ S";.) !
21 ij Y4 ij
499
!
1
| i
L— - - e — - o : '§
i

|

[

Y o S

P e pepeng

R PO Ui | Yo aiy=s

To establish an initial weapon configuration, a lay-down is performed as
follows, Initially, set S%A = 1 for all i, j. Denote by sl the sur-
vival probability of the kth target, relative to the ith wedpon, when
this weapon is placed on the jth target. Now the ith weapon is placed
on that target, j, which yields a maximum value for the expression

NT

ol
}?;1 Fin ik - Sixd

The Sy) are now set to equal to S%k (k = 1,2...., NT) the Fy (all i, k)

are redetermined, i is increased by one, and the process repeated until
all weapons have beea allocated.

This weapon configuration can now be input as the initial position to a
"hill climber" routine, based on a steepest descent algorithm, which
attempts to optimize further by replacing the discrete set of possible
weapon positions with the two-dimensional continuum. The function to be

minimized is:

NT N+l
2 2B
j=1 =1

Procussing by the optimizer w 11 be terminated either when the optimum
has been achleved or when a specified number of iterations have been
completed. In either case, to insure that the local optimum cbtained
cannot be further improved, the value of removing, in sequence, each of
the weapons from its final location and placing it on one of the target
points is explored. If the results obtained by thls methcd are better
than those achiceved with the previous configuration, this new assignment
will be used as an initial one for a second utilization of subroutine
FINDMIN. If not, the results of the first use of subroutine FINDMIN

wili be kept.

500

st

WY IWess en ee I e Ante

DN e o

R\

PR

I —

et e Lt

XY

- m e DO

APPENDIX C

GENERALIZED LAGRANGE MULTIPLIER METHOD
FFOR SOLVING PROBLEMS OF OPTIMUM
ALLOCATION OF RESOURCES

Hugh Everett I

Weagons Systems Evaluation Division, Inslitute for Defense Analyses,
Washington, D. C

(Received August 20, 1962)

The usefulness of Lagrange multipliers for optimization in the presence
of constraints is not limited to differentiable functions. They can be
applied to problems of maximizing an arbitrary resl valued objective func-
tion over any set whatever, subject to bounds on the values of any other
finite collection of real valued functions defined on the same set. While
the use of the Lagrange multipliers does not guarantee that a solution will
necessarily be found for all problems, it is ‘fail-safe’ in the sense that any
solution found by their usc is a true solution. Since the method is so0 sim-
ple compared to other available methods it is often worth trying first,
and succeeds in a surprising fraction of cases. They are particularly
well suited to the solution of problems of allocating limited resources

among a set of independent activities.

IN MOST textbook treatments, Lagrange multiplicrs are introduced in a

context of differentiable functions, and are used to produce constrained
stationary points. Their validity or usefulness often appears to be con-
nected with differentiation of the functions to be optimized. Many
typical operations-research problems, however, involve discontinuous
or nondifferentiable functions (integral valued functions, for example),
which must be optimized subject to constraints.

We shall show that with a different viewpoint the use of Lagrange mul-
tipliers constitutes a technique whose goal is mazximization (rather than
location of stationary points) of a function with constraints, and that in
this light there are no restrictions (such as continuity or differentiability)
on the functions to be maximized. Indeed, the domain of the function to
be maximized can be any set (of any cardinal number) whatever.

The basic theorems upon which the techniques to be presented depend
are quite simple and elementery, and it seems likely that some of them may
have been employed previously. However, their generality and appli-
cability do not seem to be well understood at present (to operations ana-
lysts at least). The presentation will consequently place primary empha-

sis on the implications and applications of the basic theorems, as well as

501

. o
o Mhe s ssera e, [

W e e e o L

e e e e .
. <

=

L At 4 e

o i, n e u L

discussion of a number of techniques for extending the usefulness of the
methods.

FORMULATION

Fonr cuamity of presentation, we shall develop the subject in a language
of problems concerning the optimal allocation of resources. Other appli-
cations of the theorems will suggest themselves.

Let us suppose that there is a set S (completely arbitrary) that is in-
terpreted as the set of possible strategies or actions. Defined on this
strategy set is a real valued function H, called & payoff function. H(x)
is interpreted as the payoff (or utility) which accrues from employing the
strategy z¢S. In addition, there are n real valued functions Ct(k=1--+n)
defined on §, which are called Resource functions. The interpretation of
these functions is that employment of the strategy zeS will require the
expenditure of an amount C'(z) of the kth resource.

The problem to be solved is the maximization of the payofi subject to
given constraints ¢’,k=1.-n, on each resource; ie., tc find

max..g H(z)

subject to C*(z) S¢c', all k.
A particular subclass of this general problem with wide application is

what will be called & cell problem (or separable problem) in which there
are o number, m, of independent areas into which the resources may be
committed, and for which the over-all payoff that accrues is simply the
sum of the payoffs that accrue from each independent venture (cell).
In this type of problem we have as before, for each cell, a strategy
$;, & payoff function H; defined on §;, and n resource functions Ci* defined
on 8. Hi(x:) is the payoff in the 1th cell for employing strategy xS,
and for each k, Ci*(z;) is the amount of the kth resource expended in the
ith cell by employing strategy x: in that cell. In this case the problem to
be solved is to find a strategy set, one element for each celt, which maxi-
mizes the total payoff subject to constraints ¢' on the total resources ex-

pended; i.e.,
max 2oior Hi(z,)
afl cl\oIe‘r ?((EH]

subject to E:::'{‘ CXz) ¢ forall k.

This type of problem is simply a subclass of the previous general prob-
lem since it can be translated to the previous problem by the following

identifications:
s=[Tizt s: (direct product set),

502

2t ok) s

PP

T

- bebis

i -

{where a strategy x¢$ consists of an ordered m-tuple (xy, - -, x.) of strate-
gies, one for each §)
H(z) =217 Hi(zd),
Clz)= i cXz), allk
MAIN THEOREM AND SOME OF ITS IMPLICATIONS

WE Now present the main theorem concerning the use of Lagrange mul-
tipliers, and discuss its meaning and implications. The proof will be sup-
plied in a later section.
THEOREM 1
1. M, k=1, n are nonnegalive real numbers,
2. z*¢s maximizes the funclion

H(z)~ X127 M'C'(x) over all zeS,
—+3. z* maxiauzes H(x) over all those x¢8 such that C*SC*(x*) for all k.

Discussion

This theorem says, for any choice of nonnegative ', k=1, n, that if an

unconstrained maximum of the new (Lagrangian) function

H(z) = 200 M Cla)

can be found (were z°, say, is a strategy which produces the maximum),
then this solution is a solution to that constrained maximization problem
whose constraints are, in fact, the amount of each resource expended in
achieving the unconstrained solution. Thus if z* produced the uncon-
strained maximum, and required resources C*(x*), then x* itself produces
the greatest payoff which can be achieved without using more of any re-
source than z* does.

According to Theorem 1, one can simply choose an arbitrary set of non-
negetive N's, find an unconstrained maximum of the modified function,
H(z)= 212t ' C*(x), and one has as a result a solution to a constrained
problem. Notice, however, that the particular constrained problem which
is solved is not known in advance, but arises in the course of solution and
is, in fact, the problem whose constraints equal the resources expended by
the strategy that solved the unconstrained problem.

In general, different choices of the A''s lead to different resource levels,
and it may be necessary to adjust them by trial and error to achieve any
given set of constraints stated in advance.

However, it is noteworthy that in most operations-research work one
is not simply interested in achieving the optimum payofl for some given
resource levels, but rather in exploring the entire range of what can be

503

P

«ga‘:‘)

b e .

niesed Raa . 2,

N

I

obtained as a function of the resource commitments. In this case it matters
little whether this function is produced by solving a spectrum of problems
with constraints stated in advance, or by simply sweeping through the
AYs to solve a spectrum of problems whose constraint levels are produced
in the course of solution. The method when applicable is therefore quite
efficient if the whole spectrum of constraints is to be investigated. Even
in the case where only a single constraint set is of interest the use of this
method, and adjustment of the X'’s until the constraint set is achieved,
is often more efficient than alternative procedures.

A limitation of the Lagrange multiplier method arises from the fact
that it does not guarantee that an answer can be found in every case.
It simply asserts that if an answer can be found it will indeed be optimum.

In cases where multiple constraints are involved that are not completely
independent it may not be possible to simultaneously utilize all resources
to the full allowance of the constraints. This can happen if the utiliza-
tion of one resource requires the utilization of others, or equivalently in
cases where some constraints may involve various combinations of others.
These cases are analogous to problems in linear programming where cer-
tain constraints prove to be irrelevant in the optimum solution.

In such cases one might actually find the optimum solution but be un-
able to establish the optimality of the result because of incompletely util-
ized resources. Nevertheless, there is a large class of allocation problems
in which the constraints really are independent (i.e., the resources can be
consumed independently in the region of interest). In such cases solu-
tions can usuaily be obtained that give consumption values adequately
close to the constraint values. The existence of optimum solutions that
can be found by this method actually depends upon an approximate
concavity requirement in the region of the solution that will be discussed

more carvefully later.

At this point we wish to remind the reader of the generality of Theorem
1. There are no restriclions whatever on the nalure of the sitralegy sel S,
nor on the functions H and C* other than real-valuedness. The strategy
set may therefore be a discrete finite set, or an infinite set of any cardinal-
ity. Furthermore, the payofi function and the resource functions can
take on negative as well as positive values. {C*(x) negative may be inter-
preted as production rather than expenditure of the kth resource.]

Application to Cell Problem

One of the most important, applications of Theorem 1 is in the solu-
tion of cell problems. Asshown in the Formulation Section, these problems
are a subclass of the general problem to which Theorem 1 is applieable.
In this case, maximizing the unconstrained Lagrangian function

H(z) = 24 N O)

504

P

e e = e e o _

’

is equivalent to finding
maxsnize sd 0ot Hi(x)) = 200 M ¢,
which (interchanging summation order) is the same as:
mAXeaiop 55 2oimt [HA(@) = 22T A ().

But, since the choices z, may be made independently in each cell as a
consequence of S=]JizT s, the sum is obviously maximized by simply
maximizing

Hi(z) = a0 M=)

in each cell independently of stralegy chaices in other cells, and summing the
payoffs and resources expended for each cell (for the strategy that maxi-
mized the Lagrangian for that cell) to get the total payoff and resource
expenditures. Theorem 1 then assures us that the result of this process
is a solution to the over-all constrained problem with constraints equal to
the total resources expended by the strategy produced by this procedure.

Observe that there is no possibility that just a local maximum to the
over-all problem has been obtained. If the Lagrangian in each cell has
been correctly maximized (i.e., is not itself merely locally maximized),
then theorem 1 guarantees that the result is a global maximum to the over-
all problem,

Theorem 1 says nothing about the manner in which one obtains the
maxima of the unconstrained Lagrangian functions, but simply asserts
that if one can find them, then one can also have maxima of & problem
with constraints, The Lagrange multipliers therefore are not a way in
themselves of finding maxima, but. a technique for converting optimization
problems with constrained resources into unconstrained maximization
problems.

This conversion is especially crucial for cell problems with constraints
on total resource expenditures, where the conversion to unconstrained
maximization of the Lagrangian function uncouples what was an essen-
tially combinatorial problem (because of the interaction of choices in ench
cell through total resource constraints) into a vastly simpler problem
involving independent strategy selections in each cell.

The present treatment of Lagrange nwltipliers was motivated, in fact,
by a cell problem involving continuous, differentiable payoff functions, the
solution of which was attempted by a classical Lagrange muitiplier ap-
proach. In this case, the resulting (transcendental) cquations had in
many circumstances a multiplicity of solutions, and the embarrassing
problem arose as to which of several solutions to select for each cell. 1t
appeared as though it might be necessary to try all combinations of choices
of solutions—an impossible task in this case which involved several hun-

505

- e er

ek

Fhmadl

PP ~JL\;_0_,.,

SR

B (Al s ks g bR a3 yER,

dred cells. As a result of this difficulty, a closer look was taken at the
role of Lagrange multipliers, and the present treatment is the result,
The original problem of multiple solutions is, of course, easily solved by
simply selecting that solution in each cell which gives the largest value
for the Lagmangian,

It is the recognition that the objective is to maximize the Lagrangian,
by whatever means, not to zero its derivative, which is decisive. In
many cases it £s expeditious to maximize the Lagrangian by finding zeroes
of its derivative. One can then easily select a final value by testing each
solution (if there is more than one) to find which gives the largest (global)
maximum, This procedure automatically excludes any solutions that
correspond to minima or saddle values, and also facilitates taking into
account any boundary conditions (such as nonnegative resource con-
straints) by testing the boundary cases as well.}

In.other cases (particularly cases of nonnumerical strategies, or dis-
crete strategy sets such as integers), the Lagrangian may best be maxi-
mized by trial and error procedures, or even dircct computer scanning of
all possibilities.

Another possibility is illustrated by cases whetein resources may be
applied only in integral numbers. Often in such cases one can define a
continuous differentiable payoff function that attains its correct value on
the integers. A useful trick applicable to many such cases is to maximize
analytically the Lagrangian based upon the continuous function, and then
test the integer on each side of the solution, selecting the one that maxi-
mizes the Lagrangian,

PROOF OF MAIN THEOREM

Tue rroor of the main theorem presented and discussed in the previous
section is quite elementary and direct:

Proof of Main Theorem. By assumptions (1) and (2) of Theorem 1,
M, k=1++ 75, are nonnegative rerl numbers, and z*¢8 maximizes

H(z) —Aor AN CY(x)

over all zes (the z* producing the maximum may very well not be unique--
all that we require is that x* be some element that maximizes the La-
grangian), This means that, for all xS,

H(z*) =20 M C'(=*) 2 H(x) — 4ot A CY(a),
{ This type of conatraint (o.g., nonnegativity of resources), which holdas inde.
pendently for each cell rather than over-all as with total resources, is handled by

simply resttioting the strategy set for the cell appropriately. The Lagrange mul-
tipliers are resorved for over-all constraints,

506

aad heace, that

H(z") 2 H(z)+Li27 N(C'(z") ~ C'(2)
for all z¢S. But if the latter inequality is true for all z¢§, it is necessarily
true for any subset of S, and hence true on that subset S* of § for
which the resources never exceed the resources C'(z*). Notationally:
zeS*es for all k, C'(z) SC*(z*). However, on the subset §* the term

127NN = C ()]
is nonnegative by definition of the subset and the nonnegativity of the

A5, henee our inequality reduces to H(x*) 2 H(x) for all zes*, and the
theorem is proved.

LAMBDA THEOREM

THEOREM 2

1. Let {N)AYk=1--n be two sets of \Ys that produce solulions
n,* and x,*, respectively. Furthermore, assume thal the rcsource expendilures
of these two solulions differ in only the jth resource.

CH{n*) = x,") for k%)

and that C’(2,*) > C’(x1").

2. Then: M2 H(::") = H(x")|/IC(2*) = Ci(s") |2 W

This theorem states that, given two optimum solutions produced by
Lagrange multipliers for which only one resource expenditure differs, the
ratio of the change in optimum payoff to the change in that resource ex-
penditure is bounded between the two multipliers that correspond to the
changed resource.

Thus the Lagrange multipliers, which were introduced in order to
constrain the resource expenditures, in fact give some information con-
cerning the effect of relaxing the constraints.

In particular, if the set of solutions produced by Lagrange multipliers
results in an optimum payoff that is a differentiable function of the re-
sources expended at some point, then it follows from Theorem 2 that the
»’s at this point are in fact the partial derivatives (or total derivative in
case of one resource) of the optimum payoff with respect to each resource
(all other resources kept constant) :

laH‘/aCi]Cg constant =xi-
kpej

Proof. The proof of Theorem 2 is also quite elementary. By hy-
pothesis x,* is the solution produced by (A'], hence z,° maximizes the
Lagrangian for {A,"}, which implies:

H(z:") 2 H(x) +M(C(0") = CH(@) 140 M (CH (21*) = €' (2))

507

/

holds for all xes, and hence in particular holds for r;*. But since by hy-
pothesis C'(x,*) = C*{x,") for k7, we ean deduce that

H(x*) 2 H(xs") +0C(n*) - Oy,
which, since by hypothesis C(2,*) > C(x,*), implies that:
(H(x*) =~ H(@:") //1C%(2,") = Cxs)]2 N,

which proves one side of the conclusion of Theorem 2. Interchanging the
roles of x,* and z,* [and observing the reversal of the sign of

Ciln*) = C(2*))

produces the other side of the inequality to complete the proof of Theorem
9

An obvious consequence of Theorem 2 is the fact that, if all but one
resource level is held constant, the resource that changes is a monotone
decreasing function of its associated multiplier. This fact indicates the
direction to make changes when employing a trial and error method of
adjusting the multipliers in order to achieve some given constraints on
the resources.

The Lambda Theorem also suggests a potentially useful technique for
choosing a starting set of multipliers for such a trial-and-error method of
achieving given constraint levels in a cell problem. Beginning with any
reasonably good allocation of the given resources, one can often calculate
easily what tho effect on the payofl is for a small additional increment of
each resource, optimally placed within the cells. The differential payoff
divided by the increment of resource i3 then taken as the starting A for
that resourca. The \'s are then adjusted by trial and error until the
Lagrange solution corresponds to the given constraints, producing the
optimum allocation,

THE EPSILON THEOREM

A NATURAL question with respect to the practical application of the
Lagrange method concerns its stability—supposing that as a result of
metheds of calculation or approximation one cannot precisely maximize
the Lagrangian, but can only guarantes to achieve a value close to the
maximum. Such a solution can very well be at a deastically different
resource level and payoff than that which actually achiaves the maximum,
and yet produce a value of the Lagrangian very near to the maximum,
For the method to be practical, iv is required that in this situation a solu.
tion that nearly maximizes the Lagrangian must be a solution that alsc
nearly maximizes the payofl for the resource lovels that st itself produces
(which may be quite different than those of the solution that actually

508

maximizes the Lagrangian). Only in such a circumstance would it be
safe to assert that the solutions produced by any nonexact procedures
(such as numerical computation with finite accuracy, or methods based
upon approximations) were in fact approximately optimal solutions to the
constrained problem. Such required assurance of insensitivity is supplied
by the following (‘epsilon’) theorem.

THEOREM 3

1. & comes within ¢ of maximizing the Lagrangian, i.e., for all z¢S:

H(2) -2 NCH(E) > H(z) =2, M'CY (z) —e.

=2, 15 a solulion of the constrained problem with constraints ¢*=C*(Z)
thal 1s ttself within ¢ of the maximum for those consiraints.
The proof of this theorem, which is a simple extension of Theorem 1.
exactly parallels the proof of Theorem 1 (with an added ¢) and will not
be repeated.

ADDITIONAL REMARKS, CONCLUSIONS, AND COMPUTATIONAL
PLOYS

Gaps or Inaccessible Regions

Theorem 1 assures us that any maximum of the Lagrangian necessarily
is o solution of the constrained maximum problem for constraints equal to
the 1esource levels expended in maximizing the Lagrangian,

The Lagrange multiplier method therefore generates a mapping of the
space of lambda vectors (components A, k=1, -++,n) into the space of
constraint vectors (components ¢!, k=1---n). There is no a priori
guarantee, however, that this mapping is onto—for a given problem there
may be inaccessible regions (called gaps) consisting of constraint vectors
that are not generated by any A vectors. Optimum payoffs for constraints
inside such inaccessible regions can therefore not be discovered by straight-
forward application of the Lagrange multiplier method, and must hence
be sought by other means.

The basic cause of an inaccessible region is nonconcavity in the function
of optimum payoff vs. resource constraints (convexities in the envelope
of the set of achievable payoff points in the space of payoff vs. constraint
levels). This possibility, and several methods for dealing with it, will now
be investigated.

Before beginning this investigation, however, we wish to point out that
even though the Lagrange multiplier method is not certain to obtain the
desired solutions in all cases, any solutions that it does yield are guar-
anteed by Theorem 1 to be true solutions. The procedure is therefore
‘fail-safe,’ a very reassuring property. It has been our experience over
the last several years, which includes application of this methed to a variety

509

e e~ e - ~ - -
3

i

of production and military allocation problems, that the method has been
extremely successful, and nearly always has directly yielded all solutiony
of interest. The few situations in which the direct method failed were
readily solved by simple modifications to the procedure, some of which
will now be mentioned.

Source of Gaps

Consider the (n4-1) dimensional space of payoff vs. resource expendi-
tures. This space will be called PR space for brevity., Ewvery strategy
z¢S maps into & point in this spnce corresponding to H(x),C (x) (k=1 n).
The entire problem is therefore represented by this set of accessible peints
in PR space. The problem of finding the maximum of H subject to con-
straints ¢!, k=1-+-n, is simply the problem of selecting that point of our
set in PR space of maximum A that is contained in the subspace of PR
space where the resources are bounded by the ¢''s. The set of all such
points {corresponding to all sets of values in the ¢’s) will be called the
envelope, and constitutes the entire sct of solutions for all possible con-
straint levels.

Consider now any solution x* produced by a set of Lagrange multi-
pliers (\'). By definition x* maximizes the Lagrangian; consequently
we have that

HzY) =\ C@a) 2H (@) = A)
for all z¢S. Rearranging terms slightly, we have:

H@) SHEY) -1 AN CHz)+L N Cl)
for all x¢5. 1f we consider now the hyperplane in PR space defined by
H= A C'4« where a=H(z*)—3, A C'(z"), we sce that, because of
the previous inequality, none of the accessible points in PR space lies
above this hyperplane, and at least one point, H(z*),C*(x*)k=1.-n,
lies on it.

Each solution produced by Lagrange muiltipliers therefore defines a
bounding hyperplane that is tangent to the set of accessible points in PR
space a¢ the point corresponding to the solutivn (hence tangent to the
envelope), and which constitutes an upper bound to the entire set of ac-
cessible points. It is clear that, since no such tangent bounding hyper-
planes exist in regions where the envelope of accessible points in PR space
is not concave, the Lagrange muitipiier method cannot produce solutions
in such a vegion. Conversely, for any point on the envelope (solution)
where a tangent bounding hyperplane does exist (envelope concave at
the point), it is obvious that there exists a set of multipliers (namely the
slopes of the hyperplane) for which the strategy corresponding to the point
in question maximizes the Lagrangian,

510

Thus the Lagrange method will succeed in producing all solutions that
correspond to concave regions of the envelope (optimized payoff vs. con-
straint level), and fail in all nonconcave regions.

A fortunate feature of cell problems with many cells is the fact that,
even though there may be large convexities in the envelope in the PR
space for each cell, the result of over-all optimization is an envelope in the
PR space for the total problem in which the convexities are vastly reduced
in significance.t This property is the major reason for the general success
of the Lagrange method in solving cell problems.

Some Methods for Handling Gaps

Despite the general success of Lagrange multipliers (at least for the
prablems we have encountered), occasions may arise where gaps occur in
regions of critical interest. Under such circumstances there are several
useful techniques that can be attempted before abandoning the procedure
altogether.

First, all solutions that can be obtained outside the gaps contribute a
good deal of information and can be used to bound the solution in the gap
region. As was previously shown, each solution that can be obtained by
Lagrange multipliers defines a bounding hyperplane that gives an upper
bound to the maximum payoff at all points, and hence inside the gap as
well. For any point inside a gap, therefore, an upper bound can be ob.
tained by finding the minimum payoff for that point over the set of bound-
ing hyperplanes corresponding to the solutions that one could caleulate.

On the other hand, every solution that can be obtained that has the
property that none of its resource expenditures exceeds the resources of a
point in 2 gap for which one is seeking bounds, obviously constitutes a
lower bound to the optimum payoff at the point in question, and the maxi-
mum of these lower bounds can be selected as a lower bound to the payoff
in question. Thus the set of solutions that can be obtained by Lagrange
multipliers can be used to obtain bounds on the optimum payoff for inac-
cessible regions.

There is another technique that is often successful in reducing gaps in
instances where the bounds one can compute leave too large a region of
uncertainty, and where the gap is caused by degeneracy in which a number
of cells have gaps corresponding to the same multiplier. A gap is char-

{ In fact, the gap structure for the over-all problem obviously simply refliects
faithfully the gap structure in the individual cells, with each gap in a cell correspond-
ing to a given multiplier value occurring with the same magnitude (same jump in
payefl and resources) in the over-all optimization at precwsely the same multiplier
value. QOnly degeneracies in which several cells have gaps corresponding to the
same multiplier can cause a larger gap in the over-all problem, and such degeneracy
is easily removed by techniques to be discussed in the following section,

511

acterized by the behavior that, as the A’s are continuously varied, there
are abrupt discontinuities in the resource levels generated. These dis-
continuities can oftea be filled in cell problems by the following technique.
Given two sets of N's,{(\'),(A:"), which are very close, but for which
the generated resource levels markedly differ, one can make s mired cal-
culation in ¢ cell problem using the set (A') in some cells and the set
(M) in the others. If the two sets of N's are close together, maximizing
the Lagrangian in any cell for one set will necessarily result in a solution
that nearly maximizes the Lagrangian for the other set, hence by the
Epsilon Theorem will yield a result that is guaranteed to be nearly optimum,
Somewhat more generally, one can simply exploit the Epsilon Theorem
directly in a cell problem, working with a given set of \'s but deliberately
medifying the choices in some or sll cells in & way which moves in the
direction of the desired expenditure of resources. By summing the devia-
tions from maximum of the Lagrangian in each cell (epsilons) in which
the strategies are so modified, a bound on the error of the result is obtained
(which can be kept quite small in most cases by judicious choice of devia-
tions). This appears to be a quite powerful strategem.

512

R T e

Jo

DISTRIBUTION

Addressece Copies

CCTC Codes

Technical Library (0124) e ¢ o e e s e e o o+ e e 0 s e 3
c124 (Stock) e e e e e e e e e 6
C126 e e e e e e e o
C313 e e s e s e e e s e e e e s e e e s e e e e s e 1
0 1 15
C600 © 4 e s e s a e e s e m s e e e e s e s e e e s 1

DCA Code

205 ¢ & v 4 e e 2 e s s s e + s s & 0 * v s+ v v o 2 v 1

EXTERNAL
Chief, Studies, Analysis and Gaming Agency, 0JCS
ATIN: SFD, Room 1D957, Pentagen, Washington, DC

20301 ¢ ¢ e & & o s s e D T e e L I L S TS 2

Chief of Naval Operations, ATTN: OQP-96C4, Room 4A478,
Pentagon, Washington, DC 20350 . « « « v o v ¢ ¢ & « o+ & 2

Commander-in-Chief, North American Air Defense Command
ATTN: NPXYA, Ent Alr Force Base, CO 80912 2

Commander, U. S. Alr Force Weapons Laboratory (AFSC)

ATIN: AFWL/SUL (Technical Library),
Kirtland Air Force Base, NM 87117 =« « « ¢« o o ¢« + o « &

Director, Strategic Target Planning, ATTN: (JPS), Offutt
l\il‘ FOI‘CG BRSD, NE 68113 A4 [L] . L] . . . * L] . L]

18]

Defense Docamentation Center, Cameron Station,
Alexnndriﬂ, VA 22314 ¢ o 6 v v 6 ¢ o 0 s s e e 0 e e e }—2_
0

513

Y

[

S e e A g L

)

O

-
L

Toa e
e An vt e -

~ UNCLASS1KI®D _ = - .
SECURITY CLASSIFICATION OF THIS PAGE (Wnen Dets Enterod)
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

1. REPORT NUMBER
CsM MM 9-77, Volume III -~

5. TYPE OF REPORT & PERIOD COVERED

A. TITLE (and Subtitie)
THE CCTC QUICK-REACTING GENERAL WAR GAMING SYSTEM L

(QUICK), Users Manual, Weapon Al%pcation Subsys-
tem

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(»s)

. 7. AUTHOR(®)
bale J. Sanders &//’
DCA 100-75-C-0019

Paul F. M. Maykrantz P
Jim M. Herron . i

1 4
9. PERFORMING ORGANIZATICN NAME AND ADDRESS 10. iggg“&Aw ERLEMENTT. PROJECT, TASK

System Sciences, Incorporated ORK UNIT NUMBERS v
4720 Montgomery Lane y i
Bethesda, Maryland 20014 bl
1. CONTROLLING QFFICE NAME AND ADDRESS 12. REPORT DATE i x‘
Command and Control Technical Center 15 April 1978 / .
Room BE-685, The Pentagon, 3. NUMBER OF PAGES b
Washington, DC 20301 526 l’
by
14. MONITORING AGENCY NAME & ADDRESS(i! diffetent {rom Controlling Office) 15. SECURITY CLASS. (of this report) ; ‘
[
UNCLASSIFIED s
%
s
15a, DECL ASSIFICATION/ DOWNGRADING 3 ¥
SCHEDULE i

t

i

1

. T T STATE {
Poroved hIie Feleh%e? distribution unlimited.

3

1
6Approved or pub

T T

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

T S

18. SUPPLEMENTARY NOTES . o el
PN T SRR -MF e e e SR U

PRECEDING PAGE BLANK *

LA
e e

A -

19. KEY WORDS (Continue on reverse aide Il necesaary and identily by block numbar)

1

¥

v War Gaming, Resource Allocation 3
g |
Tk

ABSTRACT (Continue on reverse side If necessary and identlfy by block number)
The computerized Quick-Reacting General War Gaming System (QUICK) will accept

input data, automatically generate global strategic nuclear war plans, provide
statistical output summaries, and produce input tapes to simulator subsystems
external to QUICK.

The Program Maintenance Manual consists of four volumes which facilitate main-
tenance of the war gaming system. This volume, Volume III, provides the program- |

g h a technical description of the purpose, functions, general pro- ,
' er/analyggdwﬁgoggamggng techniquespapplicable tg tge mbdules and éugroutineS\\\ [

<edures,
? e Fomn 1473 ECITION OF 1 NOV ¢S5 15 OBSOL ~
28 SOLETE
| L aAN 73 g UNCIASSIFIED .
S - - — -. - SECURLTLY. CLASSIEACATION OF THIS.PAGE (When Data Entered) i

——]

e UNCIASSIFIED .

SLCUBITY CLASSIFICA (S Of TS T "1 fien Uale iintaiad)

i 20, ABSTRACT (Continued)

{of the Weapon Allocation Subsystem.
The Program Maintenance Manual complements the other QUICK Manuals to
facilitate application of the war gaming system. These manuals Series 9-77 are
published by the Command and Control Technical Center (CCTC), Defense Communica-

tions Agency (DCA), The Pentagon, Washington, DC 20301. j

TINOTAQRTRTRN

- w

IS . ,

- e e o

Al e ———

