
AOMPUTER SYSTEM HANUAL

FI FR TR~ SM MM 9-7
-1, OLUME III

C15 APRIL 1978

'COMMAND
& CONTROL
TECHNICAL
CENTER

<), THE QUICK-REACTING GENERAL
-c* 9;WAR GAMING SYSTEM (QUICK),

VOLUME III

SORTIE 4ION SUBSYSTEM

DEFENSE
l F UENICAT0NS PROGRAM MAINTENANCE MANUAL

AGENCY
THIS DOCUMENT HAS BEEN
APPROVED FOR PUBLIC
RELEASE AND SALE; ITS

DISTRIBUTION IS UNLIMITED.

78 0 62? t

COMMAND AND CONT4LTECHNICAM7tNTR

Computer $ystem ,anual CSM-MM--9-77 7-.-
I{

THE 9=_.T QUICK-REACTING GENERAL WAR GAMING SYSTEM

(QUICK)

Volume III a Weapon Allocation Subsystem 6

Program Maintenance Manual

SUBMITTED BY: APPROVED BY:

C. G. THO1PS'D C A FJ
Project Ofcfi Captain, U. S. Navyf IDeputy Director, NMCS ADP

lI

Copies of this document may be obtained from the Defense Documentation

Center, Cameron Station, Alexandria, Virginia 22313

Approved for public release; distribution unlimited.

F.

ACKNOWLEDGMENT

This document was prepared under the direction of the Chief for Military

Studies and Analyses, CCTC, in response to a requirement of the Studies,

Analysis, and Gaming Agency, Organization of the Joint Chiefs of Staff.

Technical support was provided by System Sciences, Incorporated under
Contract Number DCAI00-75-C-0019.

7

il,

S............

CONTENTS

Page

Section

ACKNOWLEDGMENT ii

ABSTRACT ... x

1. GENERAL .. 1

1.1 Purpose ... 1
1.2 General Description 1
1.3 Organization of Maintenance Manual, Volume III.. 4

2. PREPALOC MODULE 5

2.1 Purpose ... 5
2.2 Input ... 6
2.3 Output .. 6
2.4 Concept of Operation 6
2.5 Identification of Subroutine Functions 6
2.5.1 Subroutine FACTORCG 6

4 2.5.2 Subroutine FIXWEP 6
2.5.3 Subroutine PENROUT 6
2.5.4 Subroutine DEPROUT 6
2.5.5 Subroutine WEPREP 7
2.5.6 Subroutine TGTPREP 7

2.6 PREPALOC Internal Common Blocks 7
2.,1 Subroutine ENTMOD 10
2.8 Subroutine DEPROUT 14
2.9 Subroutine FACTORCG 20
2.10 Subroutine FIXWEP 33
2.11 Subroutine MAKECHG 42
2.12 Subroutine PENROUT 49
2.13 Subroutine TGTPREP 52
2.14 Subroutine WEPPREP 58

3. ALOC MODULE .. 61

3.1 Purpose ... 61
3.2 Input ... 61
3.3 Output .. 61
3.4 Concept of Operation 61

3.4.1 Overlay ALCINT 63
3.4.2 Overlay ALCMUL 63

-, iii

jJ p

Section Page

3.4.2.1 Subroutine MULCON 68
3.4.2.2 Subroutine STALL 72
3.4.2.3 Subroutine WAD 79
3.4.2.4 Subroutine WADOUT 79
3.4.2.5 Subroutine PREMIUMS 83

3.5 Common Block Definitions 83
3.6 Subroutine ENTMOD 94
3.7 Subroutine INITAL 96

3.7.1 Subroutine CNCLST 101
3.7.2 Subroutine DATGRP.......................... 104
3.7.3 Subroutine FLOCRS 111
3.7.4 Subroutine MRVRST 116
3.7.5 Subroutine PRNPUT 119
3.7.6 Subroutine RDMUL 122
3.7.7 Subroutine RDPRNZ 127
3.7.8 Subroutine RDSET 135
3.7.9 Subroutine RDSMAT 139
3.7.10 Subroutine RNGALT 144
3.7.11 Subroutine SETABLE 148
3.7.12 Subroutine TIMEPRT 151

3.8 Subroutine MULCON 153
3.8.1 Subroutine ADDSAL 175
3.8.2 Subroutine ASGOUT 177
3.8.3 Subroutine BOMPRM 180
3.8.4 Subroutine MYAPOS 184

3.8.5 Subroutine PRNTALL 186
3.8.6 Subroutine PRNTCON 188
3.8.7 Subroutine PRNTNOW 190
3.8.8 Function TABLEMUP 196

3.9 Subroutine FRSTGD 198
3.9.1 Subroutine CRDCAL.......................... 210
3.9.2 Subroutine FLGCHK 217
3.9.3 Subroutine INICRD 221
3.9.4 Subroutine NXSPLT 227
3.9.5 Subroutine PKCALC 232
3.9.6 Subroutine PRNTOF 236
3.9.7 Subroutine RECON 238
3.9.8 Subroutine SETPAY 241

3.10 Subroutine SCNDGD 245
3.11 Subroutine STALL 250

3.11.1 Subroutine FORMATS 257
3.11.2 Function FMUP 260
3.11.3 Function LAMGET 262
3.11.4 Subroutine PREMIUMS 264
3.11.5 Subroutine PRNTOS 266
3.11.6 Subroutine SALVAL 268

iv

Section Page

3.11.7 Subroutine SPLIT 275
3.11.8 Subroutine WAD 278
3.11.9 Subroutine WADOUT 303

3.12 Subroutine DEFAIOC 311
3.12.1 Subroutine PRNTOD.......................... 322
3.12.2 Subroutine RESVAL 324

4. EVALALOC MODULE 329

4.1 Purpose ... 329
4.2 Input ... 329
4.3 Output ... 329
4.4 Concept of Operation 329
4.5 Identification of Subroutine Functions 329

4.5.1 Subroutine EVAL2 329
4.5.2 Subroutine TGTMODIF 330
4.5.3 Subroutine WPNMODIF 330

4.6 Common Block Definition......................... 330
4.7 Subroutine ENTMOD 335
4.8 Subroutine EVALPLAN 337
4.9 Subroutine EVAL2 342
4.10 Subroutine PREVAL 351
4.11 Subroutine SSSPCALC 353
4.12 Subroutine TGTMODIF 355
4.13 Subroutine WPNMODIF 360

5. MODULE ALOCOUT 365

5.1 Purpose 365
5.2 Input......................... , 365
5.3 Output .. 365
5.4 Concept of Operation 365
5.5 Identification of Subroutine Functions 366
5.5.1 Subroutine PROCCOMP 366
5.5.2 Subroutine SUMPRN 366

5.6 Common Block Definition 366

5.7 Subroutine ENTMOD 369
5.7.1 Subroutine COMPRESS 374
5.7.2 Function CUMINV 376
5.7.3 Subroutine DGZ 378
5.7.4 Function ERGOT1 383
5.7.5 Subroutine FINDMIN 385
5.7.6 Subroutine F2BMIN 391
5.7.7 Subroutine GRADF 3935.7.8 Subroutine MOVE 395
5.7.9 Subroutine PERTBLD 397

5tL .- 3

Page

Section
g

5.7.10 Subroutine PROCCOM
399

5.7.11 Subroutine SEECALC....
404

5.7.12 Subroutine VAL
406

57.13 Function VMARG
40

5.7.14 Subroutine WEPGET
410

5.8 Subroutine SUMPRN
2

APPENDIXES

A. ALOC Analytical Concepts and Techniques 423

B. Optimization of DGZs for Complex
Targets 497

C. Generalized Lagrange Multiplier Method

For Solving Problems of Optimum
Allocation

of Resources
501

DISTRIBUTION
....................................

513

DD FORM 1473
............ 515

vi

ILLUSTRATIONS

Figure Page

1 Major Subsystems of the QUICK System 2
2 Procedure and Information Flow in QUICK/HIS 6000 3
3 Module PREPALOC 11
4 Subroutine DEPROUT 15
5 Subroutine FACTORCG 23
6 Subroutine FIXWEP 35
7 Subroutine CMAECHG 44
8 Subroutine PENROUT 50
9 Subroutine TGTPREP 53

10 Subroutine WEPPREP 59
11 ALCML Calling Sequence Hierarchy 65
12 Subroutine MULCON 69
13 Subroutine STALL 74

14 Subroutine WADOUT 80
15 Subroutine ENTMOD 95
16 Subroutine INITAL 97
17 Subroutine CNCLST 102
18 Subroutine DATGRP 105
19 Subroutine FLOCRS 112
20 Subroutine MRVRST 117
21 Subroutine PRNPUT 120
22 Subroutine R L 123

23 Subroutine RDPRNZ, Entry RDPRNZ 128
24 Subroutine RDSET 136
25 Subroutine RDSMAT 140
26 Subroutine RNGALT 145
27 Subroutine SETABLE 150
28 Subroutine TIMEPRT 152
29 Subroutine MULCON Summary Flow 163
30 Subroutine ADDSAL 176
31 Subroutine ASGOUT 178
32 Subroutine BOM RM 182
33 Subroutine MYAPOS 185
34 Subroutine PRNTALL 187
35 Subroutine PRNTCON 189
36 Subroutine PRNTNOW 191
37 Function TABLE OP 197
38 Subroutine FRSTGD 199
39 Subroutine CRDCAL 211
40 Subroutine FLGCHK 218
41 Subroutine INICRD 222
42 Subroutine NXSPLT 228
43 Subroutine PKCALC 233

vii

Figure Page

44 Subroutine PRNTOF 237
45 Subroutine RECON 239
46 Subroutine SETPAY 243
47 Subroutine SCNDGD 246
48 Segment STALL 253
49 Subroutine FORMATS 259
50 Function Fup 261

51 Function LAEGET 263

52 Subroutine PREMIUMS 265

53 Subroutine PRNTOS 267
54 Subroutine SALVAL 270

55 Subroutine SPLIT 276
56 SubroutineFAD 289
57 Subroutine WADOUT 306
58 Segment DEFALOC 315
59 Subroutine PRNTOD 323

60 Subroutine RESVAL 327
61 EVALALOCModule 336
62 Subroutine EVALPLAN 338
63 Subroutine EVAL2 344
64 Subroutine PREVAL 352

1 65 Subroutine SSSPCALC 354
66 Subroutine TOTMODIF................... 356

67 Subroutine WPNMODIF 361
68 Subroutine ENTMOD 371

69 Subroutine COMPRESS 375
70 Function CUMINV 377

71 DGZ Calling Hierarchy 379
72 Subroutine DGZ 380
73 Function ERGOT1 384

74 Subroutine FINDMIN 387
75 Subroutine F2BMIN 392

76 Subroutine GRADF 394

77 Subroutine MOVE 396
78 Subroutine PERTBLD 398

79 Subroutine PROCCOMP 400

80 Subroutile SEECALC 405

81 Subroutine VAL 407

82 Function VARG 409

83 Subroutine WEPGET 411

84 Subroutine SIMPRN 413

85 Typical Bomber Flight Route......................... 424
86 Illustration of Attrition Attributes (Used in

Program POSTALOC) 427

viii

TABLES

Number Page

I Module PREPALOC Common Blocks 8
2 Format of Weapon/Target Data File -- File Code 15 62
3 Random Access File from DATGRP 64
4 INACTIVE Array File (File Code 21) 66
5 ALOC Module Common Blocks 84
6 Calculated Formats for Variables 258
7 Illustrating Calculation of Actual Payoff on Target.. 280
8 Illustrating Quantities Calculated for Potential

Weapon Added and Deleted Payoffs 282
9 Illustrating Quantities Pre-Calculated for Each

Potential Weapon Before WAD is Called 284
10 Module EVALALOC Common Blocks........................ 331
11 ALOCOUT Common Blocks 367
12 Failure Modes 440
13 Weapon Attributes 440

iI

'1

li ix

ABSTRACT

"he computerized Quick-Reacting General War Gaming System (QUICK) will
accept input data, automatically generate global strategic nuclear war
plans, provide statistical output summaries and produce input tapes to
simulator subsystems external to QUICK. QUICK has been programmed in

FORTRAN for use on the CCTC HIS 6000 computer system.

The QUICK Program Maintenance Manual consists of four volumes: Volume
I, Data Management Subsystem; Volume II, Weapon/Target Identification
Subsystem; Volume III, Weapon Allocation Subsystem; Volume IV, Sortie

Generation Subsystem. The Program Maintenance Manual complements the
other QUICK Computer System Manuals to facilitate maintenance of the
war gaming system. This volume, Volume III, provides the programmer/
analyst with a technical description of the purpose, functions, general

procedures, and programming techniques applicable to the programs and
subroutines of the Weapon Allocation subsystem.jompanion documents are:

a. USERS MANUAL
Computer System Manual UM 9-77, Volume I
Computer System Manual UM 9-77, Volume Ii
Computer System Manual UM 9-77, Volume III
Computer System Manual UM 9-77, Volume IV
Provides detailed instructions for applications of the system

b. TECHNICAL MEMORANDUM
Technical Memorandum TM 153-77
Provides a nontechnical description of the system for senior
management personnel

x

SECTION 1. GENERAL

1.1 Purpose

This volume of the QUICK Program Maintenance Manual describes the mod-
ules which are part of the QUICK Weapon/Allocation subsystem, detailing
the modules, subroutines, and functions which it comprises. The infor-
mation contained herein is presented on a module-by-module basis. The
module-by-module discussions are structured so that a maintenance pro-
grammer can understand the program functions and programming techniques.
The computer subjects are structured to inform the maintenance program-
mer of overall system programning techniques and conventions.

1.2 General Description

The Weapon Allocation subsystem operates using the integrated data base
as defined by all modules up to PLANSET of the Weapon/Target Identifica-
tion subsystem and produces a plan using the weapon resources specified
to maximize the expected target value destroyed. The subsystem consists
of modules PREPALOC, ALOC, EVALALOC, and ALOCOUT, as shown in figure 1.
Figure 2 shows the relationship of the Weapon Allocation subsystem to
other QUICK subsystems in terms of procedural and information flow.

The modules and supporting subroutines of this subsystem are used to
define information for use in later processes and allocate given weap-
ons to targets to optimize expected value destroyed. The integrated
data base is updated as each module is exercised in sequence. The final
output provides proper inputs necessary to execute the Sortie Generation
subsystem.

The first module, PREPALOC, precomputes much of the information required
by later processors. In addition, it provides capabilities for planning
factor modification and fixed weapon assignment specification.

The next module, ALOC, performs the allocation of weapons to targets.
Using a generalized Lagrange multiplier method, an optimal allocation
is generated subject to several ferms of user-input allocation con-
straints. These constraints inclu.e specification of minimum and maxi-
mum desired damage levels, restriction of weapons to specified subsets
of the target system, and specification of weapons allocated to speci-
fic targets by the user. Within these constraints, the program gener-
ates the allocation which maximizes the expected value destroyed in the
target system. Module ALOC is also referred to as the allocator.

The main function of module EVALALOC is to provide a summary of the
allocation produced in module ALOC and to calculate an expected-value
estimate of its results. In addition, the module has the capability
of evaluating the effect upon the results of variations in input values
for weapon and target parameters. Module EVALALOC may be run either
before module ALOCOUT or after module PlANOUT.

SUBSYSTEMS FUNCTIONAL PARTS

DATA MANAGEMENT SUBSYSTEM

CENTRAL OPERATIONS PROCESSOR EXECUTIVE SOFTWARE
DATA A
EDITDB
REPORT
SRM

EIM DATA BASE PREPARATION
GENERAL UTILITIES

WEAPON/TARGET
IDENTIFICATION SUBSYSTEM

JM
DBMOD
INDEXER
PLANSET

WEAPON ALLOCATION SUBSYSTEM

PREPALOC
ALOC PLAN GENERATION
EVALALOC
ALOCOUT

SORTIE GENERATION SUBSYSTEM

FOOTPRNT.
POSTALOC

PLANOUT
PLOTIT

Figure 1. Major Subsystems of the QJICK System

2

- COr Flow
--- 'rocedure Flow

_- -- - Infomat ion Flow

Ue

IIdentif Sction I -PCeta. 'letmu

l_ Srbte n Q .r.io., Vroc6,,or Il Snb"y"t ,J

iGenerated

I Attack 11

CK Inerateiod

CentraltSusyte

Idenif catigu o n. P i/on Proessrm t
oGenerated

Strategicn

FiS~lO 2, -ocouvo n Allnocamtio l - lo -t -, -I /I SW0

ALOCOUT optimizes the location of aim points for target complexes and
collects all the strikes assigned to each weapon group by the allocator
so that detailed plans for each group can be formulated by FOOTPRNT and
POSTALOC.

1.3 Organization of Maintenance Manual, Volume III

Each major section of this manual details a module along with the sub-
routines and functions which comprise the module. Major subsections
are:

a. Module input - details what chains must be created prior to
module execution

b. Module output - details what chains will be updated by each
module

c. Functional description - details the macro function of the
module and the associated major subroutines

d. Common blocks - detail the contents of all internal common
blocks. All common blocks used to communicate with the COP
are given in Program Maintenance Manual, Volume I, appendix
A. These are: C10, C15, C20, C30, C40, C50, ERRCOM, INS,
IPQT, OOPS, STRING

Within the QUICK system the COP is viewed as the operating program.

Based on user direction, the COP will ixecute overlay links or modules
which perform the objectives of the user requests. Each overlay link
is called through knowledge of the conmmand verb and within each link
the first subroutine is called ENTMOD (for entry module). That is,
there are as many subroutines called ENTMOD as there are modules. Con-

fusion is avoided by executing the correct overlay link. Subroutine
discussion, then, is initiated with ENTMOD whose meaning, or function,

varies according to the overlay link.

Comments on the QUICK integrated data base can be found in Program Main-
tenance Manual, Volume I, section 2. It will be assumed within this
manual that the reader has an understanding of QUICKs data base.

Each section discusses the computer programming aspect for the appro-
priate modules. Attached appendixes presents mathematical algorithms
employed within the Weapon Allocation Subsystem.

4

SECrION 2. PREPALOC MODULE

2.1 Purpose

The purpose of this module is to perform preliminary calculations on the
weapon and target data as stored within the integrated data base. The
output data from PREPALOC will be in a form convenient for use by the
remaining processors of the plan generator. In addition, the user may
select options to modify some of the data at this stage of processing.

Module PREPALOC has three major capabilities: updating of geographic
and weapon group data, modification of target values and damage con-
straints and preparation of data for the fixed weapon assignment capa-
bility of program ALOC.

The basic raw geographic data must be data base defined prior to any
execution of PREPALOC. Using this data, PREPALOC will calculate and
store distances and attrition between all doglegs for use within proces-
sors to follow. Based on user inputs, the number of weapons within
bomber or missile MIRV weapon groups may be adjusted.

The second major capability of this module is the modification of the
target characteristics, VTO, MINKILL, and MAXKILL. VTO is the value of
the target relative to all the others. MINKILL is the minimum fraction
of target value that must be destroyed, and MAXKILL is the maximum de-
sired fraction of target value destroyed. Any of these parameters may
be changed for any target. The change requests can change these parame-
ters for a single target or for a set of targets. The set of targets
for which a change is requested is identified by target class, type, an
individual identifier (target designator code (DESIG)) or any combina-
tion of these. For complex targets, the class, type, designator code,
and index of each component will be chocked to determine if a target
parameter for the complex is to be changed.

In addition, the user can specify the height of burst to be used in any
weapon/target combination. The user selects either a ground burst or an
air burst at the optimal air burst height. In the absence of any user
specification, the most damaging height of burst is used.

The third major capability is the request for allocation of specific
weapons to specific targets. This fixing of weapons to targets enables
the user to determine part of the weapon allocation while leaving the
allocation module free to determine the remaining allocation. In addi-
tion, the time of arrival at target or launch salvo number can be fixed
for missile weapons. This information will be passed to module PLANOUT
which will adjust launch time accordingly. The fixing of weapons remains
in effect for the remainder of the plan generation process. Later pro-
grams will retain the assignments as best possible. (For example, it is
possible to fix a set of weapons from a weapon group with multiple inde-
pendently targetable reentry vehicles (MIRV) in such a manner that there

5

I

are no feasible footprints that cover that target set adequately. In
that case, some of the fixed assignment requests must be ignored.)

2.2 Input

The entire integrated data base must be completely defined prior to
PREPALOC execution. This includes the storage of all targets, related
geographic data, weapon type and group characteristics and other sup-
porting data such as warhead and payload information.

2.3 Output

Creation of new records occurs if the user specified fixed assignments.
For these cases, records called 'ASSIGN' which stores the fixed assign-
ment under the proper target and weapon group linkage are created. Also,
new records (RDDIST, TPDIST and TDDIST) defining the distance between
each depenetration corridor recovery base intersection, each penetration
corridor target intersection, and each target and the optimal depenetra-
tion corridor, are created.

If any of the target modification options are employed, the necessary
target records will be modified accordingly. Also, weapon group attri-
butes may be altered if overallocation is specified.

For all executions, distances and attrition rates associated with each
penetration corridor will be calculated and stored. Similarly, depene-
tration distances between doglegs as well as the distance from depene-
tration corridor to recovery bases are stored.

2.4 Concept of Operation

The flow of execution within PREPALOC is strictly sequential. Subrou-
tine ENTMOD reads user's inputs, stores values, and executes each major
(see below) subroutine. Once a major subroutine has been executed and
a return to ENTMOD made, that subroutine will not be executed again.

2.5 Identification of Subroutine Functions

2.5.1 Subroutine FACTORCG. Called by ENTIUOD inmmediately after all text
English adverbs have been processed. FACTORCG will read any user target
modification request and modify the appropriate IDS records.

2.5.2 Subroutine FIXWEP. User fixed assignments are read by this sub-
routine and the IDS record called ASSIGN created.

2.5.3 Subroutine PENROUT. For each penetration corridor, distance and
attrition for each dogleg within a corridor is stored.

2.5.4 Subroutine DEPROUT. This subroutine calculates depenetration
corridor, recovery base distance. For each deper.stration recovery base
intersection, a new IDS record called RDDIST is created.

6

2.5.5 Subroutine WEPREP. Weapon group counts are updated, if the user
specified overallocation.

2.5.6 Subroutine TGTPREP. In addition to performing summary prints,
fixed assignment records modification continues by adding the salvo
number, if necessary.

2.6 PREPALOC Internal Common Blocks

All common blocks used internally by PREPALOC are given in table 1. For
definition of common blocks that communicate with the COP, see Program
Maintenance Manual, Volume I.

F7

I,

i1

L

I

L>-

Table 1. Module PREPALOC Common Blocks
(Part I of 2)

ASSOCIATED VARIABLE

COMON OR ARRAY DESCRIPTION

AS rTYPE ASMTYPE(20) ASM type names

CLASSCOM CLASSNAM(15) Target class names

CLASSREF(15) Header reference codes for target
classes

NTARCLS Number of target classes

CRLENGTH CRLENGTrI(30) Precorridor distance; indexed by
penetration corridor number

DISTEF DISTEF(50) Length of depenetration corridor

DISTEG(50) Distance from depenetration corridor
entry to recovery point

GAMFLAG GA'IFLAG(9) Flag indicating value for planning
parameter was input. Planning
parameters are: INITSTRK, CORMSL,
CORBOMB, PEXBOMB, EXNBO14B, PEXMIIRV,
EXNMIRV, PEXMISS, EXMISS

IGPREF IGPREF(250) Reference codes for weapon groups

IONPRT IGEOPRT,ICRPPRT If zero, suppress nonstandard geo-
graphy and weapon group print

ITARPRT(2,2) Lower and upper target number print
requests

ISIMYPE ISDfTYPE(100) Weapon system type name

IWEPREF IWEPREF(100) Reference codes for weapon type
records

NFIXREQ NFIXREQ Number of fix assignments implemented

NUMCOR NCORR Number of penet-ation corridors

NDPEN Number of depenetration corridors

PAYTYPE PAYTYPE(40) Payload type names

REPOINTS RFLAT(20) Refuel latitude and longitude points
RFLONG(20)

8

Table 1. (Part 2 of 2)

ASSOCIATED VARIABLE
COMON OR ARRAY DESCRIPTION

SUNNEW SUMNEW Sum of values after implementing
value change requests

WAROUT IWARFL Logical unit number for war gaming

output

WHTYPE WHTYPE (50) Warhead type names

I

,I

A

2,7 Subroutine ENTMOD

PURPOSE: To control overall flow of processing

ENTRY POINTS: ENTMOD (first subroutine called when overlay link
PREP is executed

FORMAL PARAMETERS: None

COMMON BLOCKS: C10, C15, C20, C25, C30, CLASSCOM, ERRCOM, GANFLA,
IGPREF, IONPRT, ISIMTY, IWEPRE

SUBROUTINES CALLED: CINSGET, DEPROUT, DIRECT, DLETE, FACTORCG, FIXWEAP,
HDFND, HEAD, INSGET, KMAKE, MODFY, NEXTTT, RETRV,

TGTPREP, WEPPREP

CALLED BY: COP

Method:

ENTHOD retrieves and stores target class names and associated reference
codes into arrays CLASSNAM and CLASSREF. Upon storage completion, each
major subroutine (see figure 3) is executed and then processing ends for
PREPALOC.

10

- -

f
§ P

CSTART

Retrieve
Attacking and

Defending
Sides

Delete Any
Previous

Formed Linkage

Retrieve
Names and

IIRef Codes of
Target Classes

600 :

Store Do fault II
Value for

Necessary Gaminf
Parameters

740

Save Reference
Code of Weapon

Group Records in
Array IGPREF

A

Figure 3. Module PREPALOC (Part I of 3)

11

A

840

Save Weapon
system Name in

Array
ISIbITYPE

1060
Read User

Inputs and
Starting

Adverb Indexes

Fi ur
3. (a

es f 3

20

B

Call PENROUT

for Penetration
Corridor

Calculat ions

call DEPROUT
for Depenetra-
tion Corridor

Calculations

Call WEPPREP
for Weapon

Calculations

Call TGTPREP
for Target

Calculations

r nt
Target
planning
a t

Accumulative
Target Value

by Class Into

CLASVAL

Print
Geography

Data

RETURN

Figure 3. (Part 3 of 3)

13

2.8 Subroutine DEPROUT

PURPOSE: To compute and print depenetration corridor data

ENTRY POINTS: DEPROUT

FORM1AL PARAmETERS: None

COMMON BLOCKS: C1O, C15, C30, DISTEF, ERRCOM, IONPRT, OOPS,
REPOINTS

SUBROUTINES CALLED: DISTF, HDFND, NEXTTT, RETRV, STORE, ORDER

CALLED BY: ENTMOD (of PREPALOC)

Method:

DEPROUT calculates and stores depenetration corridor information and
recovery base information associated with each depenetration corridor
as well as storage of refuel points.

Individual depenetration corridors are chained and corridor length deter--
mined and stored. Following which, each recovery base associated with
the corridor is queried and distance from depenetration exit point to
recovery bases stored.

Subroutine DFPROUT is illustrated within figure 4.

14

14<

START

Retrieve
IDepenetration

Corridor
Header

Chin

No,

Print
Depeneratio

Foigr 4. Suotia ER Pr f5

Call NEX15

A

Call ISFSavre LAT
tOYe Copue nd LONG

Distneced ON

Doglegof F220

Figue 4 (Pat 2ofl5)

No 216

350

tion Corridor

Figuy 4.r (Partriofv5

Yes Rcover

I!

Y57
0

Sort
Distances
to Recovery

Bases

Store
Distance

Within Record
RDDIST

Compute Distance
From Corridor

*ntry to Recover
aBase (DISTEG)I

200

Figure 4. (Part 4 of 5)

18

100

Print RETURN

Depenetrat ion

Corridor Dat

Yes....-.-- 1_200 -

Refuel Point for Next oi

Phaint

Header Refuel Point ._ °

Eror

SFtire AT rNumber of
and ON1Refuel PointsRefuelPointExceeded?

Refuel Pornnt

Error

Message

Figure 4. (Part 5 of 5)

19

2.9 Subroutine FACTORCG

PURPOSE: To read and process user input factor change
requests

ENTRY POINTS: FACTORCG

FORML PARAMETERS: LOCSET - Pointer to INSGET's arrays for location
of 'SETTING' adverb

COMMON BLOCKS: CIO, C15, C30, CLASSCOM, ERRCOM, GALAG, ISIMTYPE,
OOPS

SUBROUTINES CALLED: CINSGET, HDFND, ITLE, MAKECHG, MODFY, NEXTTT,
RETRV

CALLED BY: ENTMOD (of PREPALOC)

Method:

FACTORCG reads the user directed factor change requests and calls sub-
routine MAKECHG to implement each change. VALUE, MINKILL, and MAXKILL
may be changed. Also, if it is desired to override the calculated op-
timal height-of-burst (attribute IDHOB) this may also be accomplished.
These attributes may be reset through various combinations of target
data subsetting. Permissible requests include the setting of attributes.

o DESIG - A single target record is to be updated

o TYPE - All targets that equal the input TYPE are to be updated

CLASS - All targets that equal the input target class name are
to be updated

CNTRYL - The height-of-burst of all targets located within the
input country location are to be updated

0 IREG - The height-of-burst of all targets located within the
input region are to be updated

The last two requests recognize only height-of-burst requests. Other-
wise, any combination of target subsetting is permissible but there is
a ranking order in the final storage of input values. The order of pri-
ority is: DESIG, TYPE, CLASS, CNTRYL, IREG. That is, if a given target
is to have an attribute updated by more than one input target set, the
cited order applies. For instance, consider inputs that request updat-
ing attribute VALUE to 40 for TYPE-TITAN and to 50 for CLASSuMISSILE.

Since TITAN's are in fact missiles, the ranking order resolves any con-
flicts and, accordingly, all target records where CLASS-MISSILE will
have VALUE=50 except for those records where TYPE-TITAN in which case
VALUE is set to 40.

20

I
All code implemented within FACTORCG up to statement number 1500 reads
the input requests (by calling subroutine INSGET) and upon proper defi-
nition, the changes are made by calling subroutine MAKECHG.

Changes are not made as read. This is because of the rule that once a
complex target has been changed, its components may not be separately
changed for the same factor. (All of its components are, however
changed by a similar ratio as the complex target as part of the change
to the complex target.) Changes are made first for individual targets,

fthen for targets based on TYPE, then CLASS and so on. Local parameter
ICRIT equals 1, 2, 3, 4, or 5 defining if the latest input defines tar-
gets to be updated on a region, country, class, type, or DESIG, respec-
tively basis. A second parameter called NOWCRIT (and assuming the same
values as ICRIT) is initially set to 5 to show that only targets specl-
fied by DESIG are to be updated. If ICRIT does not equal NOWCRIT, proc-
essing is delayed and if this condition exists array ICRFIRST (ICRIT)
is set to the first location into INSCET's array that defines a change
request at ICRIT level.

Upon processing all inputs, N0WCRIT is decremented by one and processing
reinitiated for that level of priority.

The generalized nature of inputs does not demand any one order of input
definition. That is, for say a DESIG, VALUE intersection setting, the
user may within the command sentence define either DESIG or VALUE ini-
tially; neither order of input Is more powerful than the other. There-
fore, the design must recognize that changes may not be honored until
necessary data has been read. Accordingly, the following parameters are
used to control processing:

o IFACTOR- =1, updating attribute VALUE
=2, updating attribute MINKILL
=3, updating attribute MAXKILL
=4, updating attribute IDHIOB

o ICRFLAG - =0, a subset of targets pertaining to an input factor
has not been read

=1, a subset of targets has been read and was of the
correct processing priority

=2, a subset of targets has been read but it was not
the correct processing priority (or a typographi-
cal error was detected). Request change is de-
layed

o IFACFLAG- =0, an attribute to be changed has not been read

=1, an attribute to be changed has been read and may
be processed

=2, an attribute to be changed has been read but a
typographical error exists

21

I

Upon proper conditions, a change request is honored. If an individual
target record is to be updated (ICRIT=I), the record is retrieved and
bIAKECHG is called for target modifications. Otherwise the correct tar-
get record level must be retrieved, for subroutine MAKECHG will chain
the individual target record chain with the assumption the next highest
IDS record level has been retrieved.

Subroutine FACTORCG is illustrated in figure 5.

2

41

*1

,22

STAR.T

Set NOWORIT
for Factor

changes Based
on DESIG

Set ICRFLAG

j and IFACFLAG to

*18

Instiorito?

Fiue5Cubotode~OC PrtIo 0

2323

En afStNWRTLoetLvl
e

A

Call CINSGET
to Read

Attribute
Number

JAttribute
Yes Set ICRIT45

DESIGto 5

3 NYes Set 0RI

DE
I

Atbute Yes Set ICRIT _______

TYPEto 2

Erro 120

AtFigure 5.s (at 2 of10

Eqp24

CLSt

450

Change Re-

Call CINSOET Save INSGET

to Read Value Location of
of InputChange
AttrbuteRequest

Defining Factor No A LGInia

to be Changed ing Level o

7225

a I ______Factor__to

4' B

[Call CINSCET
to Read

Attribute
I Number

SAttribute
IDHOB?

Yes

i IFAMrOR =4

' ~call a!NSrET I

!! Value for

~IDHOB

Deii set No

AFigure 5. Part 4 of 10)

26

110

Attribute YsIFCTOl ofPorEiON?

Attribute Yes IFACTOR31t ea au

=MAXKILL?

Planning Valeo Plan-i

Figaerameatt5of10

27n

No-

760

1

Call CINSOET
to Read Change
Value Factor

Attribute

eining Subset\ No

ofTargets o N

Input Yete?

SYes

4a Attiust Ve

NonCorrectl

| Range

Figure 5. (Part 6 of 10)

28

1~1500 1600

1550 No

Att-ibute
Attribute

of Tagetsf Targets Equa18

Retrieve
Value !,.Put

Set Burst

Target on
A Weapon

Type

18esllsagee

MAMAKECHe

FiguSred . (argt 71o800

29pe

K ~ __Yes___

1600 1700 1620

No yes
1650

Attribute

ofrget Equlo TargetsEu D1B

CLASSe 5. pRt 8of10

1630

1670

~~Do For All 6

1one Target

Classes

Retrieve
Target Class

Ileader

. Call NEXTT
For Next

Fu85 Target Ty9pe

End of Ye

Chain?

31

S- C- RYL-

No Equal soe
Country

Location?

call

~Figure 5. (Part 9 Of 10)

31

1700

Fcor to No

I Region

1.8

1732

CalV.XT

2.10 Subroutine FIXWEP

PURPOSE: To read and process fix assignment requests

ENTRY POINTS: FIXWEP

FORMAL PARAMETERS: LOCFIX - Pointer to INSGET's arrays for location
of 'FIX' adverb

COMMON BLOCKS: 010, C30, ERROOM, IGPREF, OOPS

SUBROUTINES CALLED: CINSGET, DIRECT, HEAD, KEYMAKE, MODFY, NEXTTT,

RETRy, STORE

CALLED BY: ENTMOD (of PREPALOC)

Method:

Subroutine FIXWEP creates record type FIXASG records for all user re-
quested fix assignments as defined by a clause introduced by the adverb

FIX. Each created record stores the weapon group number and, if defined,
the downtime or salvo number.

The FIX clause recognizes attributes DESIG, GROUP, and the optional down-
time attributes ARRIVE or SALVO. Insertion of values for these two

attributes (and optionally four) is sufficient for record creation. How-

I ever, to provide ease of input values, the user may specify two DESIG's
for one GROUP input. This mode of operation implies that a range of
fixed assignments will be made and that range defined as all the targets
that fall within the interval of the two DESIGs. The subroutine first
reads INSGET's arrays and checks for values of necessary attributes and
then, if error free, a fixed assignment record is created.

Since attributes may be defined in any order (that is GROUP appears be-
fore DESIG or vice-versa) the implemented design must delay processing

until all attributes necessary are defined. The following local psram-
eter control input processing:

0 BEGDESIG - Zeroed at the start of the input search for each
phrase and reset to the value of the first input

DES IG

o TERDESIG - Set to the value of the second DESIG, if it exists

o KGROUPNO - Requested weapon group number

0 IOPTION - -1, at start of each phrase;
-2, if a range of DESIG's was input
-3, if ARRIVE defined
=4, if range of DESIG's and ARRIVE defined

33

-

Fixed assignments are now stored within the data unless:

a. If an attempt is made to fix a bomber weapon on a target with
more than 30 fix requests, the request will be ignored, since
only targets with terminal ballistic missile defenses undergo
a saturation missile attack. The allocation procedure will
not allow a bomber to participate in such an attack.

b. If an attempt is made to fix more weapons than are present in
a group, the excess requests are ignored.

c. If two DESIGs were input and the alpha portions did not match,
the requests are ignored.

d. If non-lead (either for complexes or multiplier) targets were

to be fixed and the representative target could not be found,
the request is ignored.

e. If the target record or if the group number is invalid, the re-
quest is ignored.

Subroutine FIXWEP is illustrated in figure 6.

34

..-)I

START

COIO
I0

Figure o 6. Surocetin g IWP(ar f7

35ISE

toRada

7i

A

Call CINSGET
to Read1300

Attribute Error
DSIMessage_

Yes
)

3201Y
StFaFirst DESIG Ye to Indicate

1 20k in Phrase?
/ Srn of

Set La-t DESIG
Found to TERDESIG

Set IOPTION

Figure 6. (Part 2 of 7)

36

440

Call CINSOET
to Read

220 Input

Yes Input

Store Weapon Attribute
Group Number =ARRIVE?

No
500

Mssget20

Fi0ur Se. (OarT3IfO7

1300 et Slvo o Inic3t

650

of DESIGs

700 Y

-Ye

I71

Figure 6. (Part 4 of 7)

38

714:

714

Retrieve
Target
on

CATJC Chai

Tareti No itpe of 5

Tar etERecrr

ElFigure of (No 5o oftri7)

Complx or845 arg9

1050

Store Print
Multiplicity Error

and Lead DESIG Message

of multiplej

825

Retrieve All Weapons No
Lead Target i ru

of Multiple Fxd

845

900

101000

Call MODFY to
Store Target's

Number of
1Fx Assignments

Call ST~ORE
to Create

Fix Assignment
* Record

1050

String of No

Calculat

Iu. (t? 7of7

Yes

2. 11 Subroutine MKECHG

I S: To make changes to the data base for valid factor
ehange requests

ENTRY POINTS: MAKECIG

FOR AT PARAMETERS: ICRIT -Indicates type of subset of agets to be
changed (1, 2, 3, 4, 5 for region, country
location, class, cype, single target,
respectively)

CRORD -Value of subset
IFACTOR-Indicates attribute to be changed (1, 2,

3, 4 for VALUE, MINKILL, 14AXMILL: height
of burst, respectively)

FACWORD-New value of attribute

CO~1oN BLOCKS: CO, C30, SWNEW

SUBROUWINES CALLED: DIRECT, READ, MODFY, NFXTTT

CALLED BY: FACTORCG

Method:

Subroutine HAKECHG modifies target record(s) as directed by subroutine
FACTORCG. Depending upon the level of processing' (parameter ICRIT)
either the TGTTGT or TGTREG chain is queried. When FACTORCG calls
MAKECHG the correct next highest IDS record has been defined, By
stepping through the targets, modification is accomplished.

If a factor is changed on the main target of a complex, the factors for
each component are changed appropriately. For example, if the value of
the compl-x is doubled, the value of each component is doubled. This
procedure is followed to allow the user to change one factor for the
entire complex and other faztors by component. If a factor is changed
for a complex component individually (not through the main target)
that factor is checked on all the remaining components. The method
used in determining VALUE, MNKILL, and KLILL for a complex target
is identical to that used in subroutine CALCOMP of module PLANSET. For
height-of-burst specifications, only the main target of a complex is
checkee.

If attribute VALUE is the factor to be updated, parameter SUIDW is re-
defined for further normalizing calculations.

Whenever a factor is changed for a target, the attribute IDHOB is
'marked' so that the same factor is not changed again by a change
request of lower priority. IDMOB is 'marked' by packing a I in an
octal digit as shown below:

42

IFACTOR Factor Changed Position of Octal Digit

1 VALUE 000 001 000 000
2 MINKInL 000 010 000 000
3 MAXKILL 000 100 000 000
4 IDHOB 001 000 000 000

The formula

IDHOB/14SHIFT (IFACTOR)-8*IDHOB/ISHIFT(IFACTOR+l)

merely yields the .alu,:e to the appropriate octal digit (of IDHOB) given
IFACTOR.

Subroutine IMKECHG is illustrated in figure 7.

43,

STEART

DEIG

Fi~~ur Eq7. Shotio ChaKi Pr 1 f5

to e Pocese

320

TxaCLSuse Of set Fla

_ (b retune ac o h n e No. (LWto 1 t o

Ye ares ob

to ReseVtrive a dctCmlx

Figure 7 (u i?5

Targt fo TYET Tr a

600
460

49 o470 '

Eleen of Complex e .Was This

Element of omlex eYe Factor Changed
\Target BeingCosdr

?

I 500
I Call DIRECT Set Flag in

0to Target Record

Targetfor This Factor

RFcto to

Set VALUE Accumulate Ye be Changed
Equal New New Sum of* ' - VALUE?

Factor Value Values

Figure 7. (Part 3 of 5)

46

Factor to Set MINKILL

be changed Yes New Factor 580

MINKILL? value

No

540

Factor to Set Y.MILL
be Changed
MMILL?

New
Factor Value

No

560

Set IDROB
Requested
Value

580

Complex Yes
Target Being 700 RETURN

Considered?

0 Yes

Subset of

Call MODFY to Targets to be No

Change Value 600 Changed Equal

qf Factor DESIG?

for Target 200

0 Yes

Element of No arg t Yes Factor to be

Multiple Element of Changed IDHOB?

Target Being Complex?

onside No
Yes

280 Figure 7. (Part 4 of 5) 900

47

700 900

all MODFYL to Nx
Change Value tompetxe Element of

Factor to be YsCan
Changed IDHOB?

Iof Complex xKLfo

NoFactors fortoRriv

jFigur Va.u (oaf 5al ofRE5)

Facto forto Rerie8

2.12 Subroutine PENROUT

PURPOSE: To compute penetration corridor data atr -print

results.

ENTRY POINTS: PENROUT

FORMAL PARAMETERS: None

I COMMON BLOCKS: CIO, C15, ORLENG, IONPRT

I SUBROUTINES CALLED: DISTF, HDFND, MODFY, NEXTTT, RETRV

CALLED BY: ENTMOD (of PREPALOC)

Method:

Subroutine PENROUT retrieves each penetration corridor record and cal-
culates the distance (DEFDIST) and attrition (ATTRPRE) in each precor-
ridor leg. Results are stored within record PENCRD. If user direct,
prints are produced.

fSubroutine PENROUT is illustrated in figure 8.

ii

49

-- !

START

Retrieve
Penetration

Corridor I
Header

500

Save LAT,

360 LONG And
Attrition For

This Dogleg

First Ye

Dogleg Las Dg
EITd)? S

I 400

i Call DISTF

To Copute
Distance

. 525

An Attrition oreLo

<
Store Low

uAltitude
For Last Indicator For

V Last Dogleg

Number of i e (2 o2)

SDefendedI \ Sections Defended
Exceedd Sections I

i ~Distance And I.

i ~Attrition For i '

' Defended Section

Store Low I
! Altitude -

"i ' Indicator For

:L Last Dogleg

Figure 8. (Part 2 of 2)

511

A

2.13 Subroutine TGTPREP

PURPOSE: To update target attributes and perform salvo

calculations.

ENTRY POINTS: TGTPREP

FORMAL PARAMETERS: None

COMON BLOCKS: C10, C15, C30, DISTEF, IONPRT, ISIMYPE, SUMNEW

SUBROUTINES CALLED: DIRECt, DISTF, DLETE, HDFND, HEAD, IGET, IPUT,
KEYMAKE, MODFY, NEXTTT, RETRV, STORE, TOFM

CALLED BY: ENTMOD (of PREP)

Method:

Reference Codes of target records to be processed are contained within
the LIXSTXX chain. Each target is retrieved and attributes modified.
If the user requested a height-of-burst for the target being processed,
it is stored accordingly. Also, each target value is renormalized in
order to guarantee the sum of all the target values equal 1000.

The distance from the target through the depenetration corridor and the
distance to recovery is computed and the minimum distance stored within
the TDDIST record. The penetration point associated with the target is
the point which minimizes the sum:

(2*DISTD) + DISTR

where DISTD is the distance from target to the depenetration point and
DISTR is the distance from depenetration point to recovery.

Also the distance from each penetration corridor to the target and the
corridor attrition are placed within the TPDIST record.

If there are fixed weapon requests for the target being processed, the
MYASGN chain is queried for definition of specified downtimes and, if
applicable, the salvo launch number is determined. Fixed assignment
modified is made to the ASSIGN record.

Subroutine TGTPREP is illustrated in figure 9.

52

START

Retrieve
Target Number
Chain Header

Todify NuabrtTrt

Valu Ao d yuespl RETURNpiii

Tarrett Rfecutipl

Firge re 9.SbotIen~P(Pr f5

530

multiple ~ ---

500

Normalize
Target
Value

-so

Fi r T.art 2 of 5

5254

840

Find
Nearest

Depenetration
Corridor

00

Store
Distances

Store Distance
To Penetration
Corridor And
Attrition

Print
Target
Data

100

Figure 9. (Part 3 of 5)

55

L

Y10
Retrieve Next

Fix
Assignment

1100 Can

Store letrieve Weapon
SalvoGru
Number Rcr

Save

SpcfeNumber(MS)

Figureoput 9.Saalvoo5

56nTm e Nme MSL

Intobe (HSAL)

144

Figure~~~ 9.(at f5

225

upat Sv

2.14 Subroutine WEPPREP

PURPOSE: To update weapon group data and print data.

ENTRY POINTS: WEPPREP

FORMAL PARAYETERS: None

FORMAL PARAMETERS: None

COM ON BLOCKS: ASMfTYP, C1O, C15, C30, CRLENGTH, IGPREF, IONPRT,
K ISIMTYPE, NUMICOR, REPOINTS

SUBROUTINES CALLED: DIRECT, DISTF, HDFND, HEAD, MODFY, NEXTTT, RETRV

CALLED B.: ENTMOD (of PREP)

Method:

The number of weapons in each group is increased according to the
position specified in common /GAMEVAR/. The destruction before launch
probability is then modified by a factor to maintain the same number of
expected launched weapons as before.

For bomber groups, the basic overallocation is reduced if there are
less than 15 bombers in the group. If so, the overallocation is multi-

plied by the ratio of the number of vehicles to 15. This has the effect
of reducing the overallocation for small bomber groups.

For bomber weapon groups that contain ASMs, array EXPASM defines the
fraction of weapons in each group that are ASMs rather than bombs.

Arrays MAXSLV and NSAL are calculated for salvoed missile groups.
MAXSLV contains the maximum salvo number for each salvoed group and
NSAL the number of weapons in each salvo. The NSAL array is packed
in'o three words, fou, bits per salvo.

Upon storing all data, weapon group information is written onto BASFIL
followed by parameters that described the percentage of weapon overallo-
cation and, finally, naval weapon group data is written.

Subroutine WEPPREP is illustrated in figure 10.

58

Liz -

START

Retr eve
penetration

Corridor Header

Figre 0. uboutn 1200 E (Prt1of2

1200 ll Wapon one ETUR

__ __

__Groups-

720

Modify Weapon
Groups
Record

Find Minimum
And Maximum
Salvo Number

Place Salvo
Count Into

NSAL

stance Toe

Figu re 0 Rt2ufe 2

160

SECTION 3. ALOC MODULE

3.1 Purpose

The major purpose of this module is to determine the optimal allocation
of weapons to targets, using a Lagrange multiplier technique. The wea-
pons are divided into weapon groups -- each group containing weapons of
the same characteristics which are geographically close. Thus, except
for time launch interval constraints for some "salvoed" missiles, wea-
pons are considered identical within groups. Each target is considered
individually for weapon assignment. The order of investigation is the
order of the TARCDE records on the LISTXX chain which was determined by
the PLANSET module. When all targets have been processed, another pass
over this chain begins. This process continues until the Lagrange method
has allocated all the weapons to targets. The assignments are stored as
ASSIGN records in the integrated data base during the process.

The user is able to specify weapon assignments through the FIX adverb to
the PREPALOC module. In this case the ALOC module will optimally assign
those weapons which have not been fixed. In addition, there are capabil-
ities which allow the user to modify weapon range values, to restrict the
use of MIRV weapons by target class, and to restrict the use of any weapon
group by the value of either of the target attributes FLAG or CNTRYL.

The precondition of the integrated data base required is that the PREPALOC

module has to have been executed. Furthermore, there is an optional input

file -- the Weapon/Target Data File. The Weapon/Target Data file contains
the information relating each weapon group to each target. The Weapon/
Target Data file, if not input, is created by the FRSTGD subroutine on

pass one and may be retained for later executions of ALOC. One record is
produced for each target whose length depends upon the number of weapon
groups and the targets number of hardness components (length = number of
groups x (3 + 2 x number of hardness components) + 1). This is the file
which is created in pass one and may also be used in subsequent runs (see
RECALC Mode: Users Manual, UM 9-77, Volume III). The format for the
Weapon/Target Data file -- file code 15 -- appears in table 2.

3.3 Output

As a result of its execution the ALOC module creates ASSIGN (record type
70) records in the integrated data base. Further, the attribute NUMALOC
is updated in every group to reflect the actual number of weapon allo-

cated from that group.

3.4 Concept of Operation

In order to conserve storage, ALOC is broken up into two main overlays.
The first overlay is called ALCINT. This overlay reads any user input,

61

br

Table 2. Format of Weapon/Target Data File -- File Code 15

WORD DESCRIPTION

1 Target Number

2 -(NWEPGRP + 1) Time of arrival of group or target

(NWEPGRP + 2) Corridor used by group or reason group is
(2 x NWEPGRP + 1) inactive

(2 X NWEPGRP + 2) Penetration probability of weapon to target
-(3 x NWEPGRP + 1)

(3 -c NWEPGRP + 2) Kill probability of weapon against first hard-
-(4 x NWEPGRP + 1) ness component

(4 x NWEPGRP + 2) Kill probability of weapon against second
-(5 x NWEPGRP + 1) hardness component**

(5 x NIEPGRP + 2) ***Alternate kill probability of weapon against
-(6 x NWEPGRP + 1) first hardness component

(6 x NWEPGRP + 2) Alternate kill probability of weapon against
-(7 x NWEPGRP + i) second hardness component

Number of weapon groups

Does not appear if target has only one hardness component
(4 x NWEPGRP + 2) -(5 x N1t PGRP + I) if target has only one hardness

component

62

J

including restrictions, modifications, print request and so on. Further-
more, the weapon data is extracted from the integrated data base. The
second overlay (ALCMUL) controls the determination of the allocation.
The driver routine of this overlay is MULCON. Within the second overlay
there are four segments. The first, FGD, obtains target data for pass
one. The second, SGD, obtains target data for passes two and beyond.
The third segment, STAL, principally routines STALL, WAD and WADOUT,
allocates to targets without terminal ballistic missile defenses. The
fourth segment, DEFAL, principally routines DEFALOC and RESVAL handles
ballistic missile defended targets.

3.4.1 Overlay ALCINT. The routines in this overlay are straightforward
and need little explanation beyond that below. However, the routine
DATGRP places information on a random access file (file code 25) which
is used by the FGD segment. Table 3 shows the format and content of
this file. This random access file is indexed on group number.

3.4.2 Overlay ALCMUL. The design of the weapon-to-target allocator
utilizes a hierarchy of subroutines operating at different levels of
detail. Figure 11 illustrates this hierarchy. The major functions
associated with these subroutines are summarized below and related to
the overall concept in subsequent paragraphs.

Subroutine MULCON is the first subroutine in the hierarchy and is re-
sponsible for the control and adjustment of the Lagrange multipliers.
MULCON monitors the rate at which various classes and types of weapons
are being allocated to the target system and makes appropriate adjust-
ments in the values of the Lagrange multipliers. In this role, MULCON
does not need any detailed information concerning actual allocation. It
is concerned only with the actual rate of allocation of the available
inventory as the targets are processed. To obtain the assignment of
weapons to each successive target, MULCON simply calls subroutine STALL
(Single Target Allocator) for targets without missile defenses, or sub-

routines STALL and DEFALOC if the target is defended. STALL and DEFALOC
utilize the current values of the multipliers to make an allocation to
the next target, then return control to MULCON.

The data acquisition for the allocation process is performed by the
FRSTGD routine on pass one and SCNDGD on all other passes. Each of
these routines brings in the proper IDS records for the next target
and prepares the weapon data for that particular target. The Weapon/
Target Data File is read (or on the first pass in the RECALC mode cal-
culated). On the first pass, FRSTGD then creates a record on file code
21.which, principally, contains the INACTIVE array (see table 4). If
the user has requested range modification, FRSTGD may also write a re-
cord onto file code 22 in the same format as file code 15 (table 2).'7 This new file serves as a source for replacement record for file code
15. SCNDGD reads each of these files in order to obtain the appropriate

information.

63

Table 3. Random Access File from DATGRP

WORD DESCRIPTION

I Group type index number

2-10 Logical flag restrictions

11-160 Country location restrictions (logical switches matching

countries in Block CNCLS)

161 Switch -- true if group is a restricted MIRV

162-185 Logical MIRV restriction switches

186 Range multiplier

187 Refueled range multiplier

18G Minimum range replacement value

189 NALTDLY for group

190 ALTDLY for group

191 GLAT for group

192 GLONG for group

193 GREFCODE for group

194 GYIELD for group

195 RANGE for group

196 CEP for group

197 SPEED for group

198 RANGED for group

199 RANGER for group

200 RNGMIN for group

201 GREFTIME for group

202 TOFMIN for group

203 CMISS for group

64

L~

START

First All1 other SNG
IFRSTGD Pass Passes

A Rouefinese

InFLO ASanySAL

PlaESV
A

Fig re 1. LCM L C lli g S que ce iearchy

65OU

Table 4. INACTIVE Array File (File Code 21)

WORD DESCRIPTION

I Target number

2 Length of file 15/22 record

3 Logical switch -- if true, file 22 contains alternate data

record

4-253 INACTIVE array

66

The ASCOUT subroutine is called by MULCON to insert the allocation to a
particular target in tile integrated data base. ASGOUT makes sure that
the allocation indicated for tile target is that which has just been com-
plet ed.

Subrowrine STALL is tile next subroutine in tile hierarchy when dealing
with targets without missile defenses. STALL utilizes the values of V

Stile multiplier supplied by ULCON and generates an appropriate alloca-
tion of the weapons to be specified as single target. It is not re-
sponsible for computing payoffs and is not responsible for actually add-
ing or deleting weapons. When STALL has determined that a single weapon
should be added, or deleted, it calls the Weapon Addition and Deletion
subroutine WAD. WAD then adds or deletes any weapon as specified and
corrects the residual target value. In addition, before returning to
STALL, WAD examines every other relevant weapon group and calculates tile
potential change in payoff, if a weapon from that group was added or
deleted. This information on potential payoffs is used by STALL in de-
termining whether other weapons are to be actually added or deleted. When
STALL has achieved an allocation of weapons to tile target appropriate for
the current values of tile multipliers as supplied by MULCON, it returns
control to MiLCON.

While the allocations generated by STALL are determined by the values of
the Lagrange multipliers and the target payoff functions, there is no
requirement for STALL to be involved in the calculation of these -win-
tities. Thus, the structure of STALL can be independent of the *etails
of the operation of either WAD or MULCON.

Subroutine WAD (weapon addition and deletion) is the next subroutine in
the hierarchy and is responsible for the mechanics of addition and dele-
tion of weapons and for the actual calculation of payoff for targets
without missile defenses.

Subroutine WADOUT is called by WAD to summarize the output of WAD for
STALL. WADOUT calculates an overall b-nefit for using each weapon by
adding the current premium for using weapons from that group to the po-
tential payoffs computed by WAD. These benefits are then compared with
the current prices (or Lagrange multipliers) to produce tile summary data
actually used by STALL. Thus STALL, in fact, is attempting to maximize
(PAYOFF + PREMIUM - COST) rather than just (PAYOFF - COST). Tile intro-
duction of the premium provides a flexibility which is used to acceler-
ate convergence to an allocation that exactly matches the stockpile.

Subroutine DEFALOC pei forms the same function as Stall for targets with
terminal ballistic missile defense. The complication that necessitates
a separate subroutine is the nonconcave payoff function for defended
targets. DEFALUC determines whether it is more profitable to attack
the target with missiles until the interceptors are exhausted than to
use thle STALL allocation. If it is not profitable to exhaust tile defense,
then the allocation job is turned over to STALL, after setting the missile
penetration parameters to reflect leakage through the defense. In the

67

event an ex:i."istion tactic is most profitable, DEFALOC calls subroutine
RESVAL t) calculate the payoff against the defended target with a spe-
cified mix of weapons.

q-1uLoutine RESVAL calculates the damage to a ballistic missile-defended
target when attacked with a specified mix of weapons. The attacking
missile payloads may contain decoys and electronic penetration aids
which degrade interceptor effectiveness. The target is defended with a
prespecified nominal number of terminal interceptor salvos with kill prob-
ability PKTX against unhardened warheads. Uncertainties may be intro-

*1 duced into the number of interceptors by specifying two probabilities
PK(1) and PK(2) that the actual number of interceptors will be RX(l)
lower or RX(2) higher than the nominal number.

All of those factors discussed under WAD are considered in RESVAL except
correlations in weapon failures.

Subroutine PREMIUMS is the final subroutine in the hierarchy. It is
called to calculate the current premiums for adding or deleting any weap-
on. The premium reflects whether the weapon is currently overallocated
or underaIlocated. The size of the premium and the way it is calculated
change as the allocation progresses.

The remainder of this section treats the subroutines one at a time.

3.4.2.1 Subroutine MULCON. The flow of operations in MULCON is illus-

trated in figure 12. The diagram is broken into two parts. Part I is
the main bookkeeping loop. Part II is the computational loop.

The loop shown at the beginning of part I of figure 12 has two branches.
The left branch is used only on the first pass over the target system.
All succeeding passes use the downward branch. On the first pass, the
raw data on target characteristics for each target are read in by sub-
routine FRSTGP. Then the basic information on capabilities of each weap-
on with respect to the target is computed. Since these data are inde-
pendent of the allocation to the target, they are stored on files to
avoid recomputation of the data on later passes. Just before weapons
are actually allocated to the target, the allocation previously recorded
for the target (in the initial pseudoallocation) is removed by deleting
it from the running sum used to estimate allocation rate. That is, the
contribution of the target i to.IN(i,J) * W(J), known as RUMSUM, * and

• 1

W(i), known as WTSUIN, is removed.

In block 25, after STALL and/or DEFALOC has been called for an allocation
to the target, the running sums are augmented by the new contribution of
the target i using the new (and usually much larger) target weight W(i).
Subroutine BOMPRM is called to update the ASM allocation fraction for the
bomber groups. Finally, subroutine ASGOUT updates the integrated data
file with the new allocation.

68

A

F' Call FRSTGD

Decreent unnigYes

Fotiuigue 2 NSuouineMlo

Pecrt Runookepignoo
(Part 1y ofi2)

Conrib~i69 O

LastTarget?)N

Yes

Rewind Files And
Interchange READ
And WRITE Units,
Set NPASS = NPASS+l

Update Total
Weight For
Next Target

S Time To No

Recalculate AN "
Multipliers For

Next Target?

Figure 12. (Part 2 of 2)

70

B1

Calculate Revised I!

Allocation Error [:

Estimates For Each

Attribute Category]

Skip Change of tltipliers

- No _

D-Do For All
A. ,Attribute D one

iategois All All

4t C tego iesClasses Categories

-

Done

0__ Estimates Have
4 cta

S SiM ?1ultiplierssine Sign ?
_

i
Update

Determine iIntegration

Desired Rate [,Peri-ods,

T Correcton IT RORS

Attribuate

I! F~~~~~Crrcionr In atI optainLo

Loal flipieI
Sq

Go To

ii 71

,i

Again, after the new allocation hins been made , it is added Into Itic runl-
liig sumIs, Of CourseO, IulttplQ targets (singlec target recordt; on the
file which represent several Identical targets at slIight ly dliftervlt

K Locations) aro subtracted from and added to tilt. sums as mttliple tarigetz..
During the c osing phase, these targets may be seoparated to allow

C ~ difforenit aL locntions to the separate targets . ProViSionl is Made at tihe
end of ASC.OUL to. recycle and process lateor otomolnts of the same mlultiple
target If s~uch a split occur,- during the aLtocationl to tho target. Be-
fore passing Onl to tilt next target , thlt current Value Of the target
weight is revised.

Altecr every two to four targets , the Laigrange multipliers art- updated
by transf[erring control to tho multiplier computation loop shown onl
figure 12. The error in the rate of alLocation11 for oach Coloct Ionl of
weapons J is est imated . Three saparate estimates are made correspond-

Ing to differing rates of Increase9 of the(tarPet Weights. If- Atl oet I-
mlates, have the same sign, then a smasl l adjustment of the mu Iti I 1ior in
the Indicated direction Is made.

'The I!Lvised local muliiitioirs are then used to recalcu Late the L~agrange
muttipLiers. During the closing phase (PROGRESS -1.), thlt Local m1uti -

pltiers aro not changed so 0h0 ac tua LmuItip Liers remain unchanged. The
rateof change Of the(, target weight Is ad justed depending Onl the apparenlt
siz~e of the current error tIn the altLocationi rates.

FinaIlly thlt progress of the aILtocation ts eva luated and f lags are set
if the mode of? operation ts to Change.

.. 4.2.2 Subroutine SLA STALL. i s tiasically -I very siwpLe rout inc.
It is not responsible for computilng payoffs. The tp U ff are computed
by WAD) and sunmiar hzed for ST'ALL. by' IADOIIL'. Thus , the tiput to ST'ALL con-
s is ts)n ly of the sumimary data provided by I4ADOUT. Those data cons st
oft only the following variabLos:

a%. PINX thet IIAximluii po(tent U-at profit. availablte if a weaplon I.
added , and IPPI'tX the', indox to that weaponl

b . LVRM the miaximium efficloncy [oi. anly potentialI weapon that
could be added, and 1PVMX the(index to that weaponl

MIlMN t he 11illiluil itit d f Ii'ent 1,at pro ilt produced by any weaplon
onl thet t arget , and 1 DPMN t.he Index t o t hat weapon.

ActualY, oit toul-o, the pro It s and of ficlenc los mothi tudl above atto
bsdonla modtted paol :4NY:WIT omputd) WIVi' which[n

tintitoperation ofSTALL reisains$ the IMC i mpI tries L U
imzetiqmoiied payoff,. Changes finit, eo the aloaion at

tuaccompl1ished Inl WADOUlT simlply by chaninlg Lte way L1h0 p)aYoU8 [5ai

moied, N~o no change in (tit, logic of STALL is v~~ivl

72

To obtain the initial values of these quantities, STALL makes an initial-
ization call on WAD. Then it adds the weapons which have been fixed to
the target by the user. STALL also calls subroutine TNITSAL. This rou-
Line initializes the Lagrange multipliers and preferred salvo indicator
for the salvoed missiles.

On the basis of the values delivered by WADOUT, STALL decides whether to

add a weapon. After each call on WAD to add or delete a weapon, a new
set of variables is delivered by WADOUT, and STALL uses this revised in-

formation to decide whether more weapons should be added or deleted and

finally when to terminate the allocation.

Figure 13 illustrates the operation of STALL. As part I of the flow
chart shows, a special option has been provided so that, in the case
where IVERIFY = 2 and PROGRESS = 2, the normal operation is short cir-
cuited and STALL simply duplicates the previous allocation to the target

so that with one additional pass the allocation can be evaluated with

different correlation coefficients.

in all other cases, the normal allocation procedure is used. This pro-

cedure consists of four parts:

t I. Set up and single weapon allocation phase

11. Fixed weapon processing
1

III. Multiple weapon laydown loop

IV. Multiple weapon refinement loop.

The most tlime-consuming part of subroutine STALL is the multiple weapon
refinement loop. This phase tests many permutations of weapon assign-
ments which could be made. The full testing of every single targetC al location can considerably slow downi the operation of the allocator.
Terefore, a way of terminating the testing has been provided, through
the user-Input parameter QUALITY. The maximum number of weapons which
will be removed in any testing process is not permitted to exceed NUN *

QUALITY where NUM is the number of weapons allocated to the target.
There QUALITY is a measuri of the fraction of the weapons which can be

removed. If QUALITY is set to 0, the refinement operation is skipped

e rely.

Since the program provides only finite arrays to list the number of weap-

ons assigned to a target and for WAD to compute surviving target value
for different times of arrival, there is always the possibility that the
arrays provided might be exceeded. Therefore, before any weapon is added,
a test is made to be sure it will not overflow these arrays.

If the maximum number of weapons would be exceeded, then the least prof-
itable individual weapons are removed to make way for the most profit-
able weapons. If the number of time-of-arrival columns would be exceeded,

73

Duplialate Sav Normal AeihLre

Is Allowance

To InitnatireTT

Zeroy-2
Reapone

T D upcfieN oml ro
od Weaponio Allocatio

Figun re 1her Suboutn TL

Y art Z: etup and ir u __a

G Pr f2

7 E4r Tee N

RESTORE E
Retre Values Bt
Of LaGrange
Multi liers Go To Multiple W4ea ons?

Routine a ao o

eset 0 narge als

Allowance"Poial?

alll WAD, WADOP=

orl opiAl Prin nd Then WAD, WADOP-

of Final State s"Poial

RrTURN

LLgure 13.* Part I
(Part 2 of 2)

75

12

j 1 ave Initial

Value Of TOA
Error Allowances

Figure 13. Paro II: Fixd Wapo

Asinen3rcesn

76FrAl oe -,

B Ene

Refinment oop cMaximum Number Of

eseet Singl I~WeaponsO asge?

AdWeaponiiet eao

GoPVMX ToeAlloationy

NGAsARefinement o

Figre 13. PaNOI Mlil

WePronial Waapon?

77eeAnte

46
Sot K~ixjrrnm Numaber Of
Weapons To Remove; Set

C Number Of Weapons Tested
(KOiLJNTO); And Set Veri-
fication Pointer MPINT 49

And SOore Toe Wefiapon WepnS7ha ut

52 Verified NowNo ote tial

Weapons1 Teste Stace As AO V'n erfen

Delete Weapon AdIrmn

Proftabl 13.oar I: dAllc o
I VerRffideAedtSLoop

sl 4~~~~ ~8 NRL n SO

the error criterion for treating slightly different times of arrival in
the same column is relaxed, but the allocation to this target must be
reinitialized and repeated.

3.4.2.3 Subroutine WAD: When the next target is to be processed, WAD is

called with the control variable WADOP set to L. This results in the
IniLializatLon of the allocation for that target, starting with zero
weapons assigned. STALL examines these data and determines what to do.
On all succeeding calls, the print options 9 and 22 are available to

print the decision made by STALL, together with the data (previously
given by WAD to WADOUT) on which the decision was based. If STALL

decides to add a weapon, WAD is called with WADOP = 3 and with the
variable G specifying the group from which the weapon is to be added. If
STALL later decides to delete a weapon, WADOP is set to 4, and the
variable NW is set to specify which weapon in the list of those assigned

(the NWth weapon in the list) is to be deleted. Finally, when STALL
decides the allocation is complete, a dummy call WADOP = 2 is made to
permit a print of the data which caused STALL to terminate the allocation.

The option WADOP = 5 should never be used. It is provided simply to
catch any erroneous calls (WADOP > 4) on WAD.

Each of the main options (WADOP = 1,3,4) causes control to pass to an
internal control routine, which in turn makes calls on appropriate
local subroutines in WAD. The structure of these routines is governed
strongly by the objective of speed and efficiency, and need not be dealt
with here.

3.4.2.4 Subroutine WADOUT: Much of the logic of the subroutine is

concerned with the decisions of which weapon groups to make INACTIVE to
save time in the computations in WAD. The variable INACTIVE outside of
WADOIUT is interpreted as true so long as it is not 0. That is, only
weapon groups for which INACTIVE = 0 are processed. If INACTIVE = 100,
it implies that the range is inadequate, and the weapon will be
inapplicable regardless of its Lagrange multiplier. This value of
INACTIVE is set permanently where the weapon-target interactions are
computed in subroutine GETDTA. Inactive = 2000 or 30000 is used
to note weapons that are inapplicable because their cost (LAMEF)
is too high for the target. These must be reconsidered each time a
target is processed. The flow of the program is illustrated in
figure 14.

Basically, the subroutine begins with a do-loop over all weapons cur-
rently assigned, to compute the marginal BENEFIT associated with these
weapons. At the same time, it tags all the weapons assigned by setting
INACTIVF to -100 to avoid any possibility that any weapons currently
assigned will be made inactive. It then enters a do-loop over all
potential weapons to evaluate the marginal potential BENEFIT associated
with these. It skips any weapons already set inactive (INACTIV: =-
100,2000,30000) and processes the remainder (INACTIVE = -100,0). It
also skips salvoed missiles if there is no available salvo because of

79

94I

eDelAyetedbl e

Valu Weapeanon

1: 3Clua E D BaIgoI11FrNo

Figre 4. ubrutie WDOU (art 1eq of ~ 2)
CalPN:LN3)Be c!'K

DislayWAD- 4veQ

From 4
A Sheet t

Do For D1011
jo All Weapon B

Groups

Do

Yes
40

s G oupSalvoed set 1111fectivevalue
4ith no Available of Weapon G If Added

salvo ?

0 43
Calculate Paten ial Benefit

40 of Adding Weapo (Difference
In Effective Value Plus

Inactive Test Active Premium For Adding It)

-100, NACTIVE -0,-100

2000 Conditionally S
3S Inactive-30000 37 Calculate Potential Pro-

First No e ctive fit (Pp) BENEFIT-CO

W1 Pass CTIVE-O Note Weapon IpptlX With

FLAG-I? - I NACT:l 40 Kuimum Value PPMX

Yes

3 6
Calculate Potential

t Inactive Efficiency (PVR)-BENEFIT/

I A IVE-200 C COST And Note Weapon
Ipv*IX With Maximum

value PVDI
69 68

Make x0lo"D 54!1 -100 Test

INACTIVE-O INACTIVE w
0

70
Is Does heapon

Yes Efficiency Destroy Fraction

Great r Of Value Greater

Than 0.0? Than HINDAIMAGP

No No

72

Are Any No C
weapons On
Target?

75 Yes

Make Conditionally 73

Inactive, Set Is
INACTIVE-30000 No Efficiency

This Group LeSs
Than .1?

Yes

74
Are All

No a ons Yes

01 argot
P ta le?

Lo

Figure 14. (Part 2 of 2)

81

salvo overallocations in all salvos. Those not currently assigned to
the target (INACTIVE - 100), and not showing potential profitability
are considered to determine whether they should be set inactive.

If a weapon is not potentially profitable when no weapons are assigned

to the target, it is presumed safe to set it inactive (INACTIVE =
30000). If there are other weapons on the target that are unprofitable,
the decision to make a weapon inactive is postponed until these are
removed. Othev3ise, any weapon whose cost is a factor of 10 higher
than its potential payoff is made INACTIVE -- it being presumed that
even with replacement (or substitution) of weapons by STALL such a
weapon is very unlikely to become attractive. The value of INACTIVE,

however, is set to 30000 (conditionally INACTIVE) rather than 2000.
Ordinarily this is treated exactly the same as INACTIVE = 2000. However,
if before exiting from WADOUT it is found necessary to recycle (using
a revised value of ALPHA in order to achieve a specified ,INKILL),
then a flag, REEVAL, is set and those weapons with INACTIVE = 30000 are
reconsidered. In some cases, they may turn out to still be applicable
because of the increase in effective target value. However, if an
exit from WADOUT occurs with INACTIVE / 0, it must never be set
back to 0 during the remainder of this allocation to the target.
Otherwise, incorrect computation would occur -- as a result of trying
to do various steps in the computation in WAD despite having omitted
earlier steps when the weapon was treated as inactive.

Therefore, any weapon group encountered by WADOUT with INACfIVE = 30000
• Iis immediately set to INACTIVE = 2000 unless it is a case of recycling

with a new value of ALPHA.

WADOUT, however, has two other subsidiary responsibilities. It is
responsible for modifying, when necessary, the six variables transmitted
to STALL, so that STALL will not try to exceed the MAXKILL specified for
a target, and so that it will continue to add weapons until any
specified MINKILL is achieved.

To make it possible for QUICK to match target kill requirements
specified for simpler models, where both correlations and time dependence
are ignored, a user-input parameter IMATCH is provided in which MINKILL
and MAXKILL are interpreted in terms of an oversimplified target kill
estimate VTZO.

If the parameter IMATCH is set nonzero by the user, the internal param-
eters VTMIN and VTMAX are modified. These parameters are defined as:

VTMJN Original target value * (I - AMAXKILI.)

VWMAX = Original target value * (I - MENKIL,)

Their default values are VTMIN 0, VTMAX original value.

82

L iLI

If the IMATCR parameter is used, VTMIN and VTMAX retain their default
values until the Oth order calculation VTZO indicates that MINKILL or
MAXKILL have been reached. Then VTMIN or VTMAX is set correspondingly
and thereafter operates as usual.

T In any case, WADOUT modifies its calculations so that every weapon placed
on target destroys at least that percentage of original target value spe-
cified by the user-input parameter MINDAMAG.

3.4.2.5 Subroutine PREMIUMS. The purpose of this subroutine is to com-
pute the payoff premium required by STALL to avoid unduly large devia-
tions from the desired allocation rate. During the closing phase, the
premium is also used to cause STALL to close in to an allocation that
exactly meets the stockpile constraints. PREMIUMS is called with one
parameter which specifies for which group a new evaluation of the pre-
miums (PREMIUM(G) and DPREMIUM(G)) is desired. The call results in the
replacement of the old value of these premiums by a new value.

3.5 Common Block Definitions

The common blocks internal to the ALOC module are shown in table 5.

83

wH

-

• ! 83

~1 ;

(Part 1 of 10)

BLOCK ARRAY OR VARIABLE DESCRIPTION I
ALERUN ALERREST(380,3) Estimate of allocation errors

RUNSUM(380,3) Running sum of target weight times
weapons allocated

C33 NBLN Number of ballistic interceptors

TMULT Target multiplicity (0 if multiple 1
target becomes split)

VT Target value remaining

TGTWT(3) Weighting values

PAYOFF Target value destroyed

COST Sum of weapon values allocated

PROFIT PAYOFF - COST

DPROFIT Change in PROFIT from last pass

WRTEST Test parameter

CNCLS CNTRY (150) List of country codes

CLSS(20) List of target classes

NCNT Number of country codes

CONTRO WADOP WAD option

PROGRESS Measure of allocation progress

NPASS Allocation pass

CORSTF COSCOR(30) Cosine of corridors orientation point

latitude

DPLAT(30) Difference between latitude of orienta-
tion and origin

DPLONG(30) Difference between longitude of orien-
tation and origin

CORLN(30) Distance from orientation to origin

TDEFDIST(30) Total precorridor attrition

ATTROCOZ(30) Corridor attrition rate

ATTRSUZ(30) Corridor suppression rate

HILOATZ(30) Ratio of high to low attrition

CRLENGTH(30) Corridor length

84

ii

I

Table 5. (Part 2 of 10)

bLOCK ARRAY OR VARIABLE DESCRIPTION

CORSTF ORGLAT(30) Origin latitude
(cont.) ORGLONG (30) Origin longitude

DISTCDZ(30) Distance from origin to target
ATTRAD(30) Sum of precorridor and corridor attri-

tion

CROSSDST(30) Perpendicular distance from axis to
target

ENTLAT (30) Entry latitude
ENTLONG(30) Entry longitude

DISTDG Distance from target to recovery base

MAXCOR Number of corridors

CURSUM CSALL Number of targets assigned to all weap-
ons

CSREG(5) Number of targets assigned to weapons

from a given region
CSCLAS(2) Number of targets assigned to weapons

from a given class

CSTYPE(120) Number of targets assigned to weapons

of a given type

CSGRP(250) Number of targets assigned to weapons
from a given type

CSOTH(2) Number of tirgets assigned to weapons
with a given alert status

DEFCOM RATM Highest return rate from DEFALOC

ISALFX(250) Storage for fixed salvo numbers

NSL(250) Number of salvoed weapons available

RATE(250) Rate of return for missile on defended
target

DEFRES NOWEP(250) Number of weapons assi;ned by DEFALOC

VTDX Surviving target value

NTX(3) Terminal defender estimates

PX(3) Probability of NTX

85

Table 5. (Part 3 of 10)

BLOCK ARRAY OR VARIABLE DESCRIPTION

DYNAMIC Contains allocation

IG(30) Group assigned

KORRX(30) Corridor assigned

RVALX(30) Relative value of assignment

PENX (30) Penetration probability

TOARR(30) Time of arrival

ISAL(30) Salvo number

NUMFIX Number of fixed assignments

NUM Number of assignments

FIL21 JTG Target number

ILENTH Length of record on file 15 (or 22)

122SW Indicates need to read file 22

ICTIVE(250) Storage for INACTIVE array

FIRST FIRST Indicates first target of pass

END Indicates end of target list '7

F22LSW Indicates file 22 in use

FLGSTF LFLAG(63) Packed logical flag restrictions

LCNTRY(1042) Packed logical location restrictions

NMMRV Number of restricted MIRV groups

MRNAM(100) Payload table name of restricted MIRV

LCLAS(67) Packed logical MIRV class restrictions

RNMUL(250) Range multiplier

RNRMUL(250) Refueled range multiplier

RNMIN (250) Range minimum replacement

FORMTT INWORD Value which needs a format

NFORMAT Format for INWORD

GRPHDR IWGHDR IDS Reference Code for weapon group
header

86

Table J. (Part 4 of 10)

BLOCK ARRAY OR VARIABLE DESCRIPTION

GRPSTF Contains record from file 25

ITYPE Group's type index
LFLAG(9) Flag restrictions

LCNTRY(150) Location restrictions

L1RSW Indicate if group is restricted MIRV

LCLASS (24) MIRV restrictions

RMUL range multiplier

RRMUL Refueled range multiplier

RMIN Minimum range replacement

GPARAM(15) Contains the following group param-
eters in order: NALTDLY, ALTDLY,
GLAT, GLONG, GREFCODE, GYIELD, RANGE,
CEP, SPEED, RANGED, RANGER, RNGMIN,
GREFTIME, TOFMIN, CMISS

INITSW RECALC Indicates RECALC mode

PUNSW Indicates output of final lambda's is
desired

FLAGSW Indicates flag restrictions

LOCRSW Indicates location restrictions

RMODSW Indicates range modifications

MRVRSW Indicates MIRV restrictions

PUNIT Logical unit on which final lambdas
are to be output

LACB LALL Lambda for all weapons

K LAREG(5) Lambda for a given region

LACLAS(2) Lambda for a given class

LATYPE(120) Lambda for a given weapon type

LAGRP(250) Lambda for a given group

LAOTH(2) Lambda for a given alert status

MULTIP CTMULT Current target multiplicity

NSPLITS Number of splits in current multiple
target

87

Table 5. (Part 5 of 10)

BLOCK ARRAY OR VARIABLE DESCRIPTION

WULTIP ISPLIT Index of current split

(cont.) NSPREC Index of file 25 record used for this

target

KI14ULT Split range indicator

NALLY NALL(250) Number from group allocated on this

pass

RNALL(250) Number from group currently allocated

NOWPS NOALL Number of weapons total

NOREG(5) Number of weapons in a given region

NOCIAS(2) Number of weapons in a given class

NOTYPE(120) Number of weapons of a given type

NOGRP(250) Number of weapons in a given group

NOOTH (2) Number of weapons with a given alert

status

PAYOFF OPROFIT Profit from old allocation

SPAYOFF Sum of all payoffs

SUICOST Sum of all costs

t SPROFIT Sum of all profits

PAYSAV GSCC(100) CCREL for payload

GSREL(100) REL for payload

GSEASM(100) EXPAS14 for payload

GSLINT(100) LCHINT for payload

NGSWHD(100) NWHDS for payload

NGSDEC(100) DECOYS for payload

GPAYALT (100) PAYALT for payload

GYLDASM(100) ASM yield for payload

IWIlOB(10) Pay load height o' hur8L
0 ror ground

I - for air
2 = iLf not preset

88L

A

lable 5. (Part 6 of 10)

BL.OCK ARRAY OR VARIABLE DESCRIPTION

PNAV GSPKNAV(lO0) PKNAV for payload

PREMS PREMIUM(250) Premium for using weapon

DPREMIU (2SO) Prtemium for d loting weapon

SUMPREM Sum of premiums

TBENEFIT Total beno fit

PRNTCN IDO(40) Print request activation switch

INDEXPR(40) Print request selection number

JPASS(40) Print request first pass
JVTP(40) Print request first target

LPAS S(40) Print request last pass

iLA(I (40) Print request last target

KTTFREQ (40) Target print froquency
ICOUNT (40) PrInt request frequency counter

MAXREQ Maximum number of roquests

MPRNT Number of array entrios

NREQ Numbor of requests

PRRTMI. PROCMULT Current fraction of, multiple target
class

DEI:VEPFF Increase in profit/VALWPNS

SDELTEFF Sum of DEMTEFF

VALWNPNS Sum of all weapon values (lambdas)

VALEERR Valuo of surplus plus deficit weapons

REIPNT RFIA'(IO) Refuel point latitude

RFLONG (10) Rofuol point longitude

SALVO NSALW Number of salvoed weapon groups

MSAL(75) Maximum salvo number per weapon group

NSALAL(450) Running SUms of salvo allocation (six
words per salvood group - packed four
stms per word)

IXII!AVE (50) Packed logical switch indieating salvo
with weapons

89

Table 5. (Part 7 of 10)

BLOCK ARRAY OR VARIABLE DESCRIPTION

SALVO SAVLAM(250) Storage for salvoed weapon lambdas
(cont.) (contains average payload difference

for bombers - AVDE)

iYSAL(250) Available salvo (contains bomb/ASM
selection for bombers - ISETPAY)

P(250) Balance parameter (contains current
utilization of ASMs for bomber - FASM)

SPLITS ZZ(203) Buffer for file 25

SPLTMD Switch to indicate data modified since
last read

NBLNX Number of splits

TMX Not used

INDEX File 25 index

STARG(3) Starting target numbers of split

IOFF Offset of data in ZZ

NTOTGT Number of targets - all splits

SPDAT Not used

SMATAD SMNOMIRV (3) SMAT parameters for non-MIRVs

S D SMATMIRV(3) SMAT parameters for MIRVs

SURPW SURPWP(250) Estimated weapon surplus

TABLE TABLE(IOI) Table of square root law K-factors

TGTSAV TGTLAT Target latitude

TGTLONG Target longitude

TGTCLS Target class name

VO(2) Target value per hardness component

WADFIN VTP(250) Value remaining at target after weapon

added

DELVT(30) Difference in surviving value

NUMO Numbers of old allocations

IGO(30) Group numbers of old allocation
For bomber groups these arrays are equivalenced to arrays AVDE, ISETPAY

and FASM.

90

Table 5. (Part 8 of 10)

[LOCK ARRAY OR VARIABLE DESCRIPTION

WADFIN lOP Number of adds and deletes on this tar-
(cont.) get

lOPS Sum of lOP

WADLOC NWP(10) Number of weapons in TOA set

VALQ(10) Unattritioned value at TOA

MU (10,2) Sum of means through TOA set

SlG(I0,2) Sum of variance through TOA set

V(11,2) Unattritioned component value

S(10,2) Component survival probability through
TOA set

VS(10,2) =(V(N,J1)-V(N+1,J1l) * S(N,JH)

VSN(1,2) - VSN(N-I,J1I) + VS(N-' Jil)
ITOA(250) TOA index for group

IADDTOA(250) 1 if new TOA set required

SIGP(250,I0,2) Increase in variance for TOA set if
weapon added

DSIG(250,2) Temporary contribution of weapon

SIGD(30,10,2) Change in variance if weapon deleted

WADOTX DVRMX Maximum efficiency

IPVRMX Index of weapon achieving PVRMX

IPP Maximum profit

IPPMX Index of weapon achieving PPKX

DPMN Minimum profit

IDPMN Index of weapon achieving DPMN

NMIMtAX Maximum number of weapon allowed per
target

NW Number on target

TPI Largest potential profit

NTOA Number of TOA sets

NOTAMAX Maximum TOA sets

VTMIN Lower target destruction minimum

91

Table 5. (Part 9 of 10)

BLOCK ARRAY OR VARIABLE DESCRIPTION

WADOTX VTMAX Maximum acceptable surviving target
(cont.) value

ALPHA Factor on value required to justify
VTMAX

VTEF Maximum of target value remaining and
VTMIN

VTZO Total surviving target value

VTO First target component value

STALPRIN Stall print code

G Group Number

N Allocation number

WADWPN INACTIVE(250) Active group switch (0 = Active)

TOA(250) Time of arrival on target

TVALTOA(250) Value of target at arrival time

VTOA(250,2) Value per component at TOA

MUP(250,2) Contribution of weapon to mean if added

RISK(6,250,2) Relative risk of weapon interaction

SSIG(250,2) Square root of In of SSKP

MORR(250) Optimal corridor

PEX (250) Penetration probability

MUP(250,2) MUP for alternate warhead - (ASM for
bomber group, single warhead for MRV)

ILAW Damage law in use

WEPSAV IP(250) Group payload index

CSSBI.(250) Group SBL

]ITYP(250) Group type index

IGLERI'(250) Group alert status index

l(:3%*.G(2 % Group rogion Indx

WPFIX NWPNS(250) Number of weapons in group

NFLXEZ(250) Number of fixed assignments

92

Table 5. (Part 10 of 10)

QIOCK ARRAY OR VARIABLE DESCRIPTION

WPFLX NTyYP (120) Type names

(cont.) LA(250) Group lambda

ITCL(120) Weapon type class index (lmmissile,

2=bomber)

NTS 4TFAC(3) Divide into old weight for commeasura-

bility

WTRATE(3) Rate of increase of weights

WJTSUM(3) Sum of weights

XFPX PENALT(30) Penetration probability for corridor

9

93

3.6 Subroutine ENTMOD

PURPOSE: Entry module for ALOC

ENTRY POINTS: ENTMOD (first subroutine called when overlay ALOC

is executed)

FORMAL PARAI.zTERS: None

COMMON BLOCKS: C30, CNCLS, GRPIIDR, INITSW, LACB, NOWPS, PAYSAV,
PRNTCN, SALVO, SMATAD, TABLE, WEPSAV, WPFIX,

OOPS

SUBROUTINES CALLED: INITIAL, MIJLCON, RANSIZ

CALLED BY: MODGET

Method:

First RANSIZ is called to set the record size of file 25. Next the

ALCINT overlay is read in and executed. If no input error has been

detected, the ALOMUL overlay is executed. Finally, the final multi-

pliers are written (or punched) if the user has so directed.

Subroutine i6NTMOD is illustrated in figure 15.

94

1~~igure~T e5. SurieE~MD(LC
C all N S1For iI

-e 2

3.7 Subroutine INITAL

PURPOSE: Driver for initialization overlay

ENTRY POINTS: INITAL (first subroutine called when overlay
ALCINT is executed)

FORIAL PARAMETERS: None

COMON BLOCKS: C15, C30, C45, INITSW, LACB, SMATAD

SUBROUTINES CALLED: DATGRP, FLOCRS, HDFND, INSGET, INTPRN, MRVRST,
PRNPUT, RDMUL, RDPRNZ, RDSET, RDSMAT, RETRV,
RNGALT, SETABL, TIMEME, TIEPP

CALLED BY: ENTMOD

Method:

First all switches are initialized to a "False" value. Next, various

headers and tables are retrieved. Thus each input clause in turn is
retrieved. Each clause is analyzed by an appropriate subroutine except
the RECALC and PUNCH clauses which are handled by INITAL. Once all
clauses have been examined, the input is displayed by PRNPUT. Then
DATGRP is called to retrieve the group data and set up the payload and
type tables. Finally, the SMATAD block is built, and SETABL called if
the square root law is being used.

Subroutine INITAL is illustrated in figure 16.

First subroutine of overlay ALCMUL.

96

STARTU

Set All startis

(Block LACBloc

Fiur 16.s" S tn, NIA

Targe(Pat 1ofd4)

97NU

All
Do

bs

Do

RECALL Yes Set RECALC
Mode Switch

Adverb? To "True"

No
2

Yes Call
SETTING
Adverb? RDSET

3 No 9

Yes
ONPRINTS Call

Adverb? RDPRNZ

No
4

FIAGREST Yes Call
Or LOCREST FLOCRS
Adverb?

No

5

RANGEMOD Yes Call
Or MINRANGE RNGALT

Adverb*)

No

A

Figure 16. (Part 2 of 4)

98

10

MIRVREST Yes Call
Ad verb? IVRSTr

READMUL Call

Averb? RDMUL

To "True". ubr -- °
Set To

SeLook For Unit

SYes

Value In

PUNIT

Figure 16. (Part 3 of 4)

99

12

Call PRNPUT D
To Display

m Input

ifCall DATGRP
To Assemble
Group Data

Set Values
In SMATAD

Block

RETURNL

. Law~~"SQUARE"?/ ETB

-No

~To Display
, Initialization

, Timer

Figure 16. (Part 4 of 4)

100

:1

3.7.1 Subroutine CNCLST

PURPOSE: Build tables of the classes and country locations
in the target list

ENTRY POINTS: CNCLST

FOR AL PARAMETERS: None

COMMON BLOCKS: C1O, C30, CNCLS

SUBROUTINES CALLED: DIRECT, HEAD, NEXITT

CALLED BY: FLOCRS, MRVRST

Method:

First the DONE switch is checked to see if call is necessary. Then the
target list is examined. Each member of the chain may represent either
a single target or a complex. If the entry is a single target its class
is recorded in the CLSS list. In either case, the country location is
added to the country location list (CNTRY) if it was not previously en-
tered.

Subroutine CNCLST is illustrated in figure 17.

101

ISTART

Figre .7. SuRoutine CCS Pr f2

Ca0le

Prviusy

A

Call HEAD

TARGET For TGTGT And]

Retritved? TGTTYP Chains
To Get Class

No

Make Sure Store CLASS

Location Code Indexed On

Is In List ICLASS

2

Figure 17. (Part 2 of 2)

103
V iQ

LL_ -
--

3.7.2 Subroutine DATGRP

PURPOSE: Assemble weapon data, build payload tables and

initialize salvo arrays

ENTRY POINTS: DATGRP

FORMAL PARAMETERS: None

COMON BLOCKS: C10, C15, C30, CNCLS, FLGSTF, GRPHDR, INITSW,

LACB, NOWPS, PAYSAV, SALVO, WEPSAV, WPFIX

SUBROUTINES CALLED: DIRECT, GLOG, IIDFND, HEAD, NEXTTT, RETRV, SLOG

CALLED BY: INITAL

Method:

After various counters are set to zero, the following process is fol-

lowed for all weapon groups. First, the TYPE and CLASS are determined

and some group attributes are saved. Next the payload for the group is

examined and compared with the payloads of previous groups. New pay-

loads are stored and old payloads are indicated via the index in array

IPAY. Next the values for file 25 are determined. This file contains

any flag, location or MIRV restrictions, range modifications and group

parameters that will be required on the first pass. Next, the weapon

totals in block NOWPS are updated and the group lambda calculated. Fin-

ally, if this is a salvoed group, the salvo arrays are initialized. This

final process includes the unpacking of NSAL (9 weapon salvos per word)

and repacking into NSALAL (4 weapon salvoes per word).

Subroutine DATGRP is illustrated in figure 18.

104

L

START

Set Counts To Zero

And All Salvo
Switches To "False"

Call HDFND And

RETRV For The

Weapon Group Header
And Save Its

Reference Code

Call NEXTTT

3 For Next
Weapon Gr

End Of Yes RETURN
Chain?

No

Yes Group
-0?

No

Type Yes
Name In

6

Type List?

No

A

Figure 18. Sitbroutitle DATGRP (Part I of
6)

105

A

Add Name
To Type List

Call DIRECT
And HEAD To

Obtain Weapon6

>1Save ClassGeCls

Final Region Code And

Save SBL, Type Index~,

Alert Status Code

Fgr18(Par 2ofa6

106

8

Call NEXTTTI For Next
Payload Item

Yes

Item Data I

And Class

Yes Save Decoys
FACTOR? And Payload

A.ltitude

No Save NumberASM? Load ed

Yes

CEP And8

Reliability

Figure 18. (Part 3 of 6)

107

Check All Saved
Items Against
All Previously
Saved Tables

15

Yes Stre 22

Ftg New 18.l (Sarttingb

Tale0ewIne

22

No MIR

Restritions

25strecod -LSU And Fle2

MFigur 18.(Prn 5n o4Rf 6)

109o

Set Number Of

Weapons and Fixes

Based On FIXOPT

Calculate Weapon

Totals And Starting

Group Lambda

Salvoed 0
Grotip?

SYes

Set MXSAL and Unpack

NSAL and Repack Values

Into NSALAL. Set

SAVLAM And MYSAL And
Calculate P

3

Figure 18. (Part 6 of 6)

110

3.7.3 Subroutine FLOCRS

PURPOSE: To set flag and location restriction switches
based on input clauses

rINTRY POINTS: FI.OCRS

FORMAL PAMETERS: NI)EX - Starting point of clause
IXBR - I = FLAGREST call

2 = LOCREST call

COMMON BLOCKS: CNCLS, FLGSTF, INITSW, OOPS, ZEES

SUBROUTINES CALLED: INCLST, INSGET, SLOG

CALLED BY: INITAL

Method:

The method is the same for both types of call. First, if this is the
first call of this type, all switches are set to indicate no restric-
tions. Next, the input is analyzed collecting group numbers, setting
the ITYP switch (used to distinguish INCLUDE and EXCLUDE functions)
and collecting either flag numbers or indexes of country codes. When
either the clause ends or a new set of restrictions begins, the last
set is used to supply values for the switches involved.

Subroutine FLOCRS is illustrated in figure 19.

),1

111 !

START

3

s No FirstRestritin
Call?all?

Yes es

i YesFirst Call

! Call ? CNCLST

No

I Set All Set All

Flags To Location
True Flags To True

4

Initialize Index,
Group Count,

Selection Count
And Set ISW=l

Call TNSGET

,,For Next

Input
i Instruction

Figure 19. Subroutine FLOCRS (Part i of 4)

112

No

YesA

Yie E9. xparted 28f4

Opera113

No _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ __No__ _ _ _ _ _ __ _ _ _ _ _

B

Country
Code Or
Flag?

Yes

CoYesRse

Flag Add To

call? List Of
J Flags

Code In To List Of
Table Code Indexes

ISW4 For ------

Report Inputi

iU

11Set IP
Based On

Special Word

- Number To
List

Figure 19. (Part 3of 4)

114

44

16

SITYP No Indicated

" • Indicate Switches

.,INCLUDE? To False

~Yes

, Set A ll
I switches Not

Indicated
i! To False

En OfNo Reset

En fCounters
Clause?

Yes

.10 RETURN-I

-

Figure 19. (Part 4 of 4)

115

LW

3.7.4 Subroutine MRVRST

PURPOSE: To read user input MIRV restrictions

ENTRY POINTS: MRVRST

FORMAL PARAMETERS: NDEX - Index of beginning of MIRVREST clause

COMMON BLOCKS: CNCLSZ, FLGSTF, INITSW, OOPS, ZEES

SUBROUTINES CALLED: CNCLST, INSGET, SLOG

CALLED BY: INITAL

Method:

After calling CNCLST to build the class and country code lists, the
MIRVREST clause is examined. Each MIRV payload table name is compared
to those previously entered. New names are added to the list of pay-
load table names and all switches pertaining to the new name are set
to indicate exclusion. The class names which follow the payload table

name in the input clause are used to reset the exclusion switches.

Subroutine MRVRST is illustrated in figure 20.

116

___________I

START

CNCLST

set switch

MRVESW To True)
I ISW To1

Cal4SE
Fo Nx

No 3

3

Yees

Fiur 20.t (Oaf 2IFl2)

- - . - -- - - - -- - - -

~j9

3.7.5 Subroutine PRNPUT

PURPOSE: To display input user options

ENTRY POINTS: PRNPUT

FORMAL PARAMETERS: None

COMMON BLOCKS: C30, C45, CNCLS, FLGSTF, INITSW, PRNTCON

SUBROUTINES CALLED: GLOG

CALLED BY: INITAL

Method:

This routine prints a formatted display of allocation parameters (includ-
ing the SMAT array) and selected print requests. Displays also appear of
any user input restrictions or range modification if there has been input

of this type.

Subroutine PRNPUT is illustrated in figure 21.

119

STAR~T

Recal YesPrin

RecaI

Fir 21Aboutn RPT(Pr f2

/Parameers120

LI. r-ra

122

Print

3.7.6 Subroutine RDMUL

PURPOSE: To read user inputs for starting weapon values
(lambdas)

ENTRY POINTS: RDMUL

FORMAL PARAMETERS: NDEX - index of beginning of READMUL clause

COMMON BLOCKS: LACB, OOPS, ZEES

SUBROUTINES CALLED: INSGET

CALLED BY: INITAL

Method:

The READMUL clause is scanned and its instructions carried out. Data
will appear in two forms. First a logical unit containing previously
saved lambdas may be read. The format of this input is compatible with
the output of the PUNCH adverb.

The second type of input consists of an identifying item (such as GROUP)
an index and a value. These values are entered in block LACB as per the
identifier and the index.

Subroutine RDMUL is illustrated in figure 22.

122

122

______________________________,_

START

Call INSGET
For Next
Input Ie

End Of Yes
Clause?

NoA

Special N
Word? 1

Figue 22 Subouti esML(ar f4

123 No

"OLD"?

3
4

Cal~l INSCET
For Unit Number

Of Old File

4

Iiur 22. (rst 2 o)1

InI

124

121

Yes set tBR1-l 20

Figui~ 22. (et of 4

22

17I

Com

itSeRBR

12

3.7.7 Subroutine RDPRNZ

PURPOSE: To set print options based on user input

ENTRY POINTS: RDPRNZ, INTPRN

FORMAL PARAMETERS: NDEX - Index of beginning of ONPRINTS clause

COMION BLOCKS: OOPS, PRNTCN, ZEES

SUBROUTINES CALLED: INSGET

CALLED BY: INITAL

Method:

The method is best explained by examination of figure 23. As each item
is read from the clause, it is interpreted according to the current set-
tings of ISW and IBR. ISW keeps track of what the next item is expected
to be. IBR signifies whether the numeric items refer to option numbers,
targets or passes.

The INTPRN entry initializes the print options.

Subroutine RDPRNZ is illustrated in figure 23.

127

START

Set IS%4-. To
Indicate An option
Is Expected. Set
IBRl1 For Option

Input Item

ClauseRETURN

Yes

22

Figure 23. subroutine RDPRNZ, Entry RDPRNZ
(Part I of 7)

128

6s 7o Noin

II

Operator ? Error

" NOT"'? Message

Set IBR=4 RETURNFor "Not"
: Option

(6 7 No

0 No
1Yes Yes Yes

Set ISW=3 To Set ISW=3 To Set ISW=An
iShow First Target Show First Target IBR=4 For New

Or Pass. Set Or Pass. Set Option And

IBR=2 For Pass IBR=3 For Target "INot"

129

A.

8

Yes Set ISW=5

Hy hen? For Last Pass
Or Target

No

Slash? Yes IBR7-3? Yes Set ISW=7
For Frequency

No No

Yes
3

10 Slash?

No

Asterisk
No Yes

Or
Comma?

Figure 23. (Part 3 of 7)

130

12

Branch
on ISW

233

26

Set Frequency
From Value
And IPDEX

Set SW=2 For
comma 0;:
Asterisk

-1, 2,4, or 6 13

Figure 23. (part 4 of 7)
i

131

13

Yes Set IBR-- Set Indicated

IBR--4? For optionOpin ff

No

Set IBR~l
For option

153

Set Value F o

BR2? Lassagt ls

IB ?Fig r 23. (rst 6 o) he

33

START

Set All Options Off.

Set Standard Limits

And Frequencies For
All Options

Turn On Options 1,2,

4 and 16. Set

Frequency For 4 At 50

RETUR:N

Figure 23. Entry INTPRN (Part 7 of 7)

134

3.7.8 Subroutine RDSET

PURPOSE: To read input SETTING clause

ENTRY POINTS: RDSET

FORMAL PARAMETERS: NDEX - Index of beginning of SETTING clause

COMMON BLOCKS: C30, OOPS, ZEES

SUBROUTINES CALLED: INSGET, UNCODE

CALLED BY: INITAL

Method:

The SETTING clause is read. Each "load command" is examined to see if it
pertains to ALOC parameters. If so the accompanying "equals command" is
used to supply a new value.

Subroutine RDSET is illustrated in figure 24.

135

C E1

Call NSGI

Fo et s ~
instruction

End1 OfN

Figure 2 causuieRST(at1 f3

1N6

5I

Fihue 24.(at 2 o 3)

137c

Yes
Attribute? 3

No No

Was Load Alphabetic
Type Value?

Alphabetic

No Yes

No Store In
Numeric 3 Block C30
Value?

Yes

St re in C30
Based On

Type

Figure 24. (Part 3 of 3)

138

3.7.9 Subroutine RDSMAT

PURPOSE: To read user input values for the SMAT array

ENTRY POTNTS: RDSMAT

F(ORMT PARAMETERS: NDEX - Index to beginning of SMAT clause

COMMON BLOCKS: C45, OOPS, ZEES j

SUBROUTINES CALLED: INSGET, MODFY

CALLED BY: 1NITAL

Method:

The S1AT clause is examined item by item. Ignoring commas, each alpha-
betic or attribute causes either the IDEX or JDEX index to be set. The
special word "ALL" also causes IDEX to be set. A numeric value, when
encountered, is inserted at the current settings of IDEX and JDEX, i.e.,
SMAT (IDEX, JDEX) = value. If the "UPDATE" special word is encountered
at any point, the SMAT IDS record is modified at the end of the clause.

Subroutine RDCSMAT is illustrated in figure 25.

1

139

S

Set UPDATE
Switch To

Call INSGET
For Next

S Input
Item

End Of- lYes U vD A TE Yes al OP
clause? 0 FrSA_/ Record

NoO

Special No
Word?.3

Yes

"ALL"t For "ALL"

Set UIPDATrE
To

Figure 25. Subroutine RDSIAT (Part L of 4)

140

coman?

- No
Yes

REGION"IDEX=2
"GROP"?For GRgonNo

Set
Yes IDEX=4

For Region

7 N ° Set
Yes IDEX=5

"CLASS"?For Class

YesSe

For TypeNo
Figure 25. (Part 2 of 4)

141

8

Errore

YessSge

"PETUN"?Jx

Figue 25 (Pat3of 4)n

No4

Yes Set JDEX2

"ALRT" For Aler

No

"5T"? Yes Set JDEX5

For CCK

No

1.0

Figure 25. (Part 4 of 4)

1.43

3.7.10 Subroutine RNGALT

PURPOSE: To read user input modification to range, refueled
range and minimum range

ENTRY POINTS: RNGALT

FORMAL PARAmETERS: NDEX - Index of beginning of clause
IXBR - 3 for MINRANGE call

6 for MODRANGE call

COMMON BLOCKS: FLGSTF, INITSW, OOPS, ZEES

SUBROUTINES CALLED: INSGET

CALLED BY: INITAL

Method:

On the first call the switch RIODSW is set and all values are initial-
ized. Then the input clause is scanned. ISW is set to indicate the
next expected item. When a group number is read, the previous quantities
are stored depending upon whether the call was from a MINRANGE or MODRANGE
call.

Subroutine RNGALT is illustrated in figure 26.

144

START

IR,

4145

A

B ranch

And YYY Depending On -

Set YYYI
From Value Tp fCl

Seet

isw=4

MODRANGE And Refueled

FSurt6.(Prr2of3

146

B

N o N o1 =

ISW= 5

Figure 26. (Pr2 f3

ISW=2? I147

VNo

3.7.11 Subroutine SETABLE

PURPOSE: This routine initializes the table which is used
to calculate the weapon kill factors used in the
square root damage law.

ENTRY POINTS: SETABLE

FORMAL PARAMETERS: None

COMMhON BLOCKS: TABLE

SUBROUTINES CALLED: None

CALLED BY: INITAL

Method:

This subroutine fills common /TABLE/ with the data needed for the square
root damage law. The array, TABLE, contains values for weapon kill fac-
tors which will produce single shot survival probabilities between 0.0
and 1.0. The table entries are defined as follows:

TABLE(i) is the square root kill factor for a single shot survival
probability of (i-l)* .01. There are 101 entries in the table.
Let:

SSSP = Single shot survival probability
TB = TABLE array entry

Then:

SSSP (I+TB)*exp(-TB).

During processing, function TABLEUP will use this table to compute weap-
on kill factors. A simple heuristic root finder is used by SETABLE to
construct the table. The procedure is as follows:

Define x = 1.00

SSSP = Input single shot survival probability

Si = (l+xI)*exp(-xi) (see statement 1).

The procedure iterates on x. such that

(l+xi)

x x + * ERR (see statement 2)

where ERR (S i-SSSP)/S.

148

The procedure ends when ERR .000001. The table value is the xiwhich
produced the S1i such that ERR met that condition (see statement 3).

Subroutine SETABLE is illustrated in figure 27.

149

S PRT

Init alize
Variables

Do 4 For
I

P Pro i li 223.- RETURN
Survival Do e

robabilitiesF mrom .001To 1 OtTo 1.000

to -

Set Test Value,
X, To 1.0

Compute
Survival

sing Test Value

Compute
Fractional
Error Using
Test Value

Reset Test
Is Error Less 0 Value According
Than .0000017 To Error

Yes

Save Test Value
In Table

Figure 27. Subroutine SETABLE

150

3.7.12 Subroutine TIMEPRT

PURPOSE: This routine prints the amount of t l1t. spent Iu
the options which precede the ALLOCATE function.

ENTRY POINTS: TIMEPRT

FORMAT PARAMETERS: None

* COMMON BLOCKS: None

SUBROUTINES CALLED: TIMEE

CALLED BY: INITAL

Method:

This routine first calls utility subroutine TIMEE with a -2 argument
to stop the clock while the heading is being printed. After the head-
ing is complete, two calls on TIMEME are made to restart the clock (argu-
ment of -3) and print the time spent in eacb option (argument of 0).

Subroutine TIMEPRT is illustrated in figure 28.

1i

I

151

S TART

Call TIMEME(-2
To

Stop Clock

Print Timing
Heading

Call TIMEME(-3
To

Start Clock

Call TIMEME(O)
To

Print Times

RETURN

P igui~' 8 .Subroutine tM E

152

3.8 Subroutine MULCON

PURPOSE: The primary purpose of MULCON is to adjust the
Lagrange multipliers during the allocation. It
also monitors the progress of the allocation, and

controls the flow of the module throughout the

allocation.

ENTRY POINTS: MULCON

FORMAL PARAMETERS: None

COMMON BLOCKS: ALERUN, C1O, C30, C33, CONTRO, CORSTF, CURSUM,

DYNAMI, FIRST, GRPHDR, LACB, MULTIP, NALLY, NOWPS,
PAYOFF, PAYSAV, PREMS, PRTMUL, REFPNT, SALVO,
SPLITS, SURPW, TARREF, TGTSAV, WADFIN, WADOTX,
WADWPN, WEPSAV, WPFIX, WTS

SUBROUTINES CALLED: ADDSAL, ASGOUT, BOMPRM, DEFALOC, DIRECT,

FRSTGD, LLINK, MODFY NEXTTT, PRNTALL, PRNTCON,
PRNTNOW, SCNDGD, STALL, TIMEME

CALLED BY: ENTMOD (ALOC)

Method:

MULCON proceeds by making multiple passes through the target list until
the correct number of weapons have been allocated. During this process,
the Lagrange multipliers are modified to force the allocation to converge
to the given stockpile.

The flow of operations in MULCON is illustrated in figure 29. The first
sheet represents the flow in five parts of the program; Part I, the in-
itialization phase; Part II, first pass processing; Part III, the main
flow; Part IV, processing after allocation; and Part V, multiplier ad-
justment. The flow diagrams are annotated with statement references to
the FORTRAN listing and are in sufficient detail to be largely self-
explanatory. In the following sections comments are made only where the

flow diagrams require some explanation.

Part I: Initialization

The routine begins by calling utility subroutine TIMEME to initialize
the clock. NPASS and ITGT are initialized so that the print control

routine PRNTCON will know what prints to activate, and then PRNTCON is
called to do so. A call for a summary print of starting multipliers
(PRNTALL(ll)) follows.

First routine of overlay ALCMUL.

153

L i_ __ i

Thie sensitivity of the allocation errors to the value of the local multi-
pliers is estimated. With a fairly large value for the linear premium
PRM all sensitivities are about the same independent of the size of the
group; thus, PA~rIIAI.(J) 'is simply set to -1.0.

RUNSUM and WSUM are initialized as if the starting Ipse udoa 1location
were exact, but the weight given to that allocation is reduced by the
square root of the niumber of targets so that It does not take too long
for data onl actual allocation rates to produce a significant effect onl
the estimated rates.

Part 11: First Pass Processing

This section deals with the target processing on the first pass. On this
pass FRSTGD Is called which processes the target, brings in the weapon
data and, if necessary, calculates the Weapon/Target Data File. FRSTGD
also reaids in any fixed allocation. Finally, the psoudoall~ocatlon is
removed from the running target weights.

Part III: MaIn Flow (After First Pass)

This section deals with the target processing on passes after Clho first.

First a series of calls to PENTALL performs intortarget prints. Next -

PRNTCON is cal led to reset print controls. Then, if this is not the
first pass processhing continues. SCNDGD is called to process target
data, bring in the weapon rela ted danta and read in the old allocation.
'If PROGRESS Is 2 'the variable IVERIFY Is checked. If this is a verifi-
cation pass the 1limits arc checked andl If not achieved the pass con-
tinues. If all processing Is complete PRNTNOW is called for final print.
Then the weapon pro-, chain Is cycled and the attribute NUMALOC set
equal to RNAI.I for eachl group.

lHowever, If processing is to continue, the termination section Is ignored
and the program gots ready to generate a new allocation to rep)lace the
one Just read. Onl tho first paiss the old allocation is a lpseudo-alloca-
tion and the replacement is, done elsewhere (see Pirt IT). The replace-
ment is accompl ished by removing the contribution of thle old ailocation*
to zill running sums before the new allocz.,iol 'is generated. This can be
done it, this simple way because the values of COST, PAYOFF, PROFIT,
Wrn and DPROFIT, then in memory, are those just read in from the
TARCH, record and so they correspond to the old allocation. Since thle
quantities RUNSUM and iWrSUM were divided by NTFAC at the end of thle
last pass, thle old rerrnT must also be d ivided by this same factor to
make IL commensurate be fore It is subtracted out

The reason that REVCOST must be computed is that the values of the mtu 1 r -
pdlers have probably chaznged (uniless PROG;RESS -1.0) since the prior

'Vhe fixe'd weaplons are ignored because they do not contribute to t he
running sms.

154

allocation; consequently a revised cost (REVCOST) of the allocation
based on the new multipliers is of interest, and is probably different
than the old cost COST. The reason for the test on PROGRESS before
correcting the cumulative differential profit will be discussed in con-
tection with Part IV of the program (part 5 of figure 27).

Subroutine ADDSAL is used to maintain the sums for the salvoed groups.

Part IV: Processing After Allocation

Before calling STALL, CTSPILL is set to 0. (if some elements are
spilled, WAD will so note by setting CTSPILL equal to the number of
elements spilled.) The calls on TIMEME (5, 6, 7) before and after the
allocation cause the time spent during the actual allocation to be re-
corded in columns 6 and 7 of the TIMEME output print (number 23).

Before calling either allocation routine, however, the program must
check the number of fixed weapon assignments. The limitation of weap-
ons allocated to one target is 30 weapons on an undefended target and
30 weapon groups on a defended (i.e., terminal ballistic missile de-
fenses) target. Usually, MULCON calls both STALL* and DEFALOC on de-
fended targets and chooses the best allocation. If there are more than
30 fixed weapon assignments, STALL* should not be called. If the number
of fixed assignments is greater than 30, MULCON checks to see if it is a
defended target. If iot, an error message is printed and the excess
assignments are ignored. Then STALL* is called. If it is a defended
target, MULCON sets a dummy low profit (except for verification) and
calls only DEFALOC.*

The additional details of the allocation required by later processors
are then recorded in /DYNAMI/. PENX and TOARR are required by EVALALOC,
while KORRX and RVALX are required by ALOCOUT, FOOTPRNT, and POSTALOC.
Subroutine BOMPRM is then called to update the ASM allocation fraction
array FASM.

The various running sums are then calculated. If DEFALOC has made the
allocation, the KORRX array gives the number of missiles from each group
allocated to the target. If KORRX is positive, it represents the corri-

dor. If it is negative, it represents the number allocated. Then the
profit and cost data are recorded.

The following quantities are of particular importance:

DPROFIT = PROFIT - OPROFIT

SDPROFIT = EDPROFIT

DELTEFF = DPROFIT/VALWPN6

SDDLTEFF = SDPROFIT/VALWPNS

STALL and DEFALOC are called via computer system subroutine LLINK.

155

These quantities are computed and the last two printed out in the stand-
ard ALOC print number 2 to help the user evaluate the progress of the
allocation. * The quantity OPROFIT represents the profit of the old allo-
cation to the target evaluated in terms of the present values of the
Lagrange multipliers. DPROFIT is thus a measure of the improvement in
profit using the new allocation. Until PROGRESS = 1.0 this quantity
is summed over all targets (one complete pass only) to give SDPROFIT.
Thus, when the multipliers have been near the correct values for one
full pass the value of SDPROFIT should be small. To provide a standard
relative value for interpreting these quantities, they are divided by
the value of all the weapons VALWPNS,

A VALWPNS = ENWPNS(G) * LAMEF(G)

to obtain DELTEFF and SDELTEFF which measure changes in profit as a
fraction of the total value of all weapons.

The quantity of SDELTEFF, therefore, provides an estimate of how effi-
cient the allocation would have been if the allocation had been termin-
ated one pass earlier. Presumably, the current efficiency is substan-
tially higher, but SDELTEFF does not, at this point, give any indication
of how much. It is nevertheless of value in developing experience on
how soon the PROGRESS .75 phase can be terminated. When PROGRESS is
equal to 1.00 the multipliers are frozen and this role of SDELTEFF
ceases to be relevant. The quantity is then reset to 0. Thereafter it
provides a measure of the effect on the profit of closing to the exact
stockpile. Usually during the closing phase SDELTEFF goes slightly
negative. However, since during this phase we continue to replace allo-
cations originally produced with slightly different values of the multi-
pliers, the value may go positive for a while until the closing forces
get large enough to force closure even at some loss of profit. Thus the
value of SDELTEFF at the end of the closing phase (PROGRESS = 1) measures
the loss in profit associated with closing. In the event that closing
requires more than one full pass, a test has been inserted which causes
SDELTEFF to continue to accumulate over more than one pass when PROGRESS
= 1.0.

Finally when PROGRESS = 2.0 the quantity is again set equal to 0. If a
verification pass is carried out, SDELTEFF then measures any increase in
profit in the verification pass relative to the final allocation. In
this role it defines an upper limit on the inefficiency of the actual
allocation.

Ordinarily after all these calculations are performed ASGOUT is called
to store the results. However, if PROGRESS = 2 this step is skipped
since the integrated data File already contains the final allocation.

The column labelled (P-O)/VWPS in print number 2 contains these vari-
ables: DELTEFF on the first line, SDELTEFF on the second.

156

At the end of each complete target, the target weight is adjusted. If
it is also the end of a pass, the target weight is still adjusted by
theiii1 amount relative to other targets, ht" all target weights and
1 the value of RUNSUM and WTSUM are renormalLzed.

After the target weights are adjusted, a test is made to see if it is
time to recompute the multipliers. If so, control is transferred to
point D of Part V.

Two other operations, however, require special comment. At the bottom
of the diagram a test is made to see if sufficient progress has been
made. If after three passes PROGRESS has not reached .75, it is assumed
that a problem exists and the run is terminated. In the middle of the
diagram, at the end of the first pass, the value of NOWPS(J) is reevalu-
ated omitting any weapon groups that could not reach any targets. This
allows the allocator to ignore such weapon groups thereafter, and avoids
an endless and fruitless effort to allocate these weapons by reducing
their Lagrange multipliers. The array TVALTOA provides a convenient
test, since it is initialized to zero and will remain zero only for weap-
on groups that have never been within range of any target.

Part V: Multiplier Adjustment

Every fourth target or so, when it is decided to recompute the multi-
pliers, controls passes to this adjustment routine. The first step is
to recompute all the allocation error estimates, ALERREST. At the same
time SURPWP, the excess allocation estimate, is reevaluated based on the
new value of ALERREST. Although SURPWP is continuously updated by the
operating program it is useful, especially in the early phases of the
program, to base it on the projected allocation rate estimates rather
than the actual weapons allocated, which at that time could be very mis-
leading. This provides a more rational basis for calculating the premi-
ums at this early stage of the program.

If PROGRESS = 1.0, the change of local multipliers is omitted so that
the same values of the multipliers are retained. Otherwise control
passes over the local multipliers to the Do loop. Each multiplier is
changed only if all the estimates of error rate have the same sign.
In the early phases of the program (PROGRESS .LT. .75) better stability
is achieved by requiring, in addition, that the average allocation rate
to the last two to four targets (as computed from CURSUM) show the same
sign. This limitation is later removed, since it clearly would not work
well for weapon groups with very small numbers of weapons that might only
be allocated 20 to 10 times during a pass over the target system.

An estimate is made of CORRATE, the rate at which it is desired to cor-
rect the allocation rate. If the allocation rate is corrected too rap-
idly there will be a tendency to over correct before the effects of the

Every second target for PROGRESS equal to 0.0, 0.4, and 0.5; every
fourth target for PROGRESS equal to .75 and 1.00.

157

correction become observable in the values of the allocation error estim-
ates. This can produce oscillations. To estimate how rapidly to correct
the error, an estimate is made of the number of targets that would have
to be observed before an error of the observed size would be statistically
significant. Even if the multipliers were exact and the average alloca-
tion rate was correct, statistical fluctuations would be observed in the
allocation of each weapon group when the allocation rate was sampled for
a small number of targets.

Let n equal the expected or average number of weapons from a group avail-
able per target; i.e., n = NOWPS(J)/NTGTS. Then in M targets the ex-
pected number of weapons allocated should be just n(M). Suppose the
actual number observed however is n'(M). Then our estimate of the error
in the allocation rate ALERREST would be

ALLERREST = n' -n

Assuming a Poisson distribution, the statistically expected error in a
number of expected value n(M) is equal to V'W(iY. That is,

(n'(M) -n(M)) 2 = n(M)

2
(N' -n) = n/M

Solving for the number of targets M we have:

M n/(n' -n)

or

M (NOWS(J)/NTGTS)/(ALERREST(J)) 2

as the number of targets we should expect to sample to get a statistical
error estimate of size, ALERREST. If we wish to reduce the indicated
error by 1 part in M per target, our fractional correction in the allo-
cation rate per target should be:

2!

l/M = ALERREST 2 / (NOWPS(J)/NTGTS)

This, multiplied by a sensitivity factor SNSTVTY, is the first term in
the value of CORRATE. However, if the entire set of targets were ob-
served, the estimate would not be a sample but would be exact. There-
fore, even a very small value of ALERREST becomes statistically signifi-
cant if it is based on a sample of size NTGTS. Therefore, errors should
always be corrected at a rate at least equal to one part in NTGTS. This
explains the second term in CORRATE which is just 1.0/NTGTS multiplied by

a sensitivity factor FSNSTVTY (final sensitivity). This factor controls
the sensitivity of -orrectlois to the allocation rate in the final phase
of the allocation where the errors are small. Thus the desired correc-
tion rate is just:

158

CORRATE = SNSTVTY * ALERREST / (NOWPS(J)/NTGTS) + FSNSTVTY/NTGTS

This is multiplied by the number of targets processed between correc-
tions MULSTEP to determine the fraction CORFAC of the error to correct.
In addition, a safety limit of 1/2 is used to avoid ever making a cor-
rection larger than 1/2 the estimated error rate.

However, even when it is known what fraction of the error in the alloca-
tion rate we wish to correct, an estimate must be made of the relation-
ship of the allocation rate to changes in the Lagrange multipliers before
the size changes to make in the multiplier can be estimated. For this
purpose it is useful to have a model of the dependence of the allocation

rate on the value of the multipliers. We have assumed a dependence as~~follows :

Rate = K -n

Consider now two rates, the current rate RO associated with a multiplier
X(and a predicted rate R, associated with a new multiplier X1. Thus,

we find

n R nSR I A R0 X k
R1 1 0 k

or

RI/R 0 = (x! 0) - n

! so

(1/R0), ~(X1/ AO)---

For small differences between A and X this implies:
0 1

R -R X1 0 0__

R - A
00

Solving for the new value X of A

1

(RI -R0)/(-n)
1 0 (l +,0 R0

If we now identify a new variable R2 as the ultimately desired allocation
rate, R1 as the new rate we hope to obtain with Al, and R0 as the cur-
rent allocation rate -- then the above variables can be associated with
information already available as follows:

R1 -R0 CORFAC * (R2 -Ro) = CORFAC * ALERREST

159

R0 ALERREST + (NOWPS/NTGTS)

If we now associate the FORTRAN variable PARTIAL with n and the local
multiplier LA with) this gives rise to the following procedure for
updating LA:

LA= LA *1.0 + CORFAC * ALERREST(JINTPRD)/ (-PARTIAL)
1 0 [ALERREST(J,NTPRD) + (NOWPS(J)/NTGTS)

This formula is well behaved if ALERREST is large and positive, but if
it is negative and as large as the expected rate (NOWPS(J)/NTGTS) (i.e.,
if the actual allocation rate is zero), then the denominator goes to 0.
In this case an infinite correction would be indicated. To avoid this,
the expected rate in the denominator is multiplied by 2 giving:

L L [CORFAC * ALERREST(JINTPRD)/(-PARTIAL)

I * + ALERREST(J,INTPRD) + 2 * (NOWPS(J)/NTGTS)

In the present version of the program the value of PARTIAL(J) has been
set equal to 1.0 for all the local multipliers LA(J). This choice is
based on the effect of the premium on the sensitivity of the allocation
rate to the value of LAMEF or X. When the multipliers are almost cor-
rect, it is usually the case that most weapon groups are in close compe-
tition with many other groups with very similar properties. Then a small
change in the multiplier LAMEF will produce a very large change in the
allocation rates, as the weapon group in question almost totally replaces,
or is replaced by, its competitors.

However, such a large error in the allocation rate will not actually
occur because as the error builds up the estimated value of the payoff
will be automatically changed by the premium. Thus, for constant values
of LANEF, when an equilibrium allocation rate is reached, it must be
approximately true that the error in LAMEF is compensated by the premium.
That is, if X0 is the correct value for LAMEF then:

LAMEF -PREMIUM X

Since

SURPWP -. 5 *CTMULT
PREMIUM = PRM * LAMEF * NWPN S

we can define a relation between LAMEF and (SURPWP/NMPNS).

IAMEF * (1 -('IRt * SURPWP -. b * CTMILT'

NWPNS 2

Since this relationship is the same for all groups it is reasonably sim-
ple to use the same value 1.0 of partial derivative for all local multi-
pliers.

160

ti

The values of LAHEF(G) are recomputed using the new values of the local
multipliers LA(J). At the same time it is necessary to reevaluate the
summation of the value of all the weapons VALWPNS =XLAMEF(G) * NWPNS(G)
and the summation of the value of the error in weapons allocated.

VALERR =XLANEF(G) * ABSF(SURPWP(G)) using the updated values of
LAMEF.

The average number of targets over which allocation rates are averaged
(the integration period) is determined by the rate at which the target
weights are increased.

In estimating the rate with which to correct multipliers, it was computed
on a statistical basis that even if the allocation rates were correct an
estimated error of size ALERREST would be expected if the allocation
rates were monitored only over a small sample of M targets where:

2
M = (NOWPS (J)/NTGTS) / (ALERREST(J))

Thus, if separate integration periods could be used for each local multi-
plier, M, as defined above, might provide a reasonable basis for deter-
mining the period. However, in fact, the same three periods (INTPRD = i,
2, 3) must be used for all local multipliers LA(J). Consequently, theI i value of the integration period used might be based on an estimate of
overall error rate. The corresponding relation is:

M = (ENOWPS(J)/NTGTS)/ (ALERREST(J))2

G G

where the summations are taken over all weapon groups. The quantity,
-NOWPS(J), is identical with NOWPS(2) and so for efficiency the vari-G
able NOWPS(2± is used. While the expected value of (ALERREST(J))2 is

the same as 2 (ALERREST(J))2 the variance of the later version is much
G

less and it is therefore preferable as an estimator of the expected in-
tegration period, EXPINTPD.

To allow the possibility of using integration periods either longer or
shorter than the theoretical EXPINTPD, a desired longest integration
period DESINTPD is defined:

DESINTPD = EXPINTPD * RATIONT

where RATCOINT is an adjustable input parameter.

If this period were used exactly in setting the rate of change of the
target weight; i.e., W4RATE = 1.O/DESINTPD, and WRATE would never become
exactly 0 as is required for a constant target weight. Obviously when

* LA(2) is used for all weapon groups.

161

l1

the change in the target weight becomes small over a full pass, the

WRATE should be allowed to go to 0. Therefore,

WRATE - (I.0/DESINTPD) -(2.0/(NTGTS * RATIOINT))

the term 2.0/(NTGTS * RATIOINT) is subtracted and if the resulting WRATE
is negative it is set to zero. To avoid a situation where large errors
cause the integration period to become ridiculously small, a limit that
WRATE < .07 is set.

Moreover, after the allocation is well underway, PROGRESS > .5 the value

of WRATE is not allowed to increase. In the program WTRATE(INTPRD) is
used as a multiplier of the target weight; therefore, we all 1.0 to

WRATE to obtain a suitable multiplier for the longest period NINTPRD.

The values of the WRATE for the shorter periods are then derived from
this value to give a ratio of integration periods (roughly equal to
RINTPRD) another input parameter.

The evaluation of progress is shown in the final sheet for the subrou-
tine MULCON. The procedure is very straightforward, and should be
obvious from the flowchart. It may be worth noting, however, that when
the allocation is finally complete, the index IFINTGT of the last tar-
get and the final pass IFINPASS, are recorded.

1

162

START

Part I
Initialization

Par IIPat;I
Figure 29Subo tin MUpCO aSm are ri

163h rry

T terPass

CSTART

Call TIMEME
To Setup
Timing

SCall PRNTCON
To Begin

Print Control

I Call PRNTALL
(11) For
Starting

Multipliers

Set Initial
Values and Zero

Running Sums

Initialize
Weights and

Running Sums To
Pseudo-

tin

Initialize
Allocation

Counts

6

Figure 29. Part I: Initialization

164

ICall FRSTGD
Data

Reset Weights
From Pseudo-
Allocation

Return Pseudo-
Allocated
Weapons to
surplus

21

Figure 29. Part II: First Pass Processing

165

5

Call PR.NTALL
For Options

4, 5, 21
and 23j

Call
PRNTCON

(Pairst
1Yoe3

166

*~~~ Veiy e
N o

I Attribute

CRETURN
i

Figure 29. Part III: (Part 2 of 3)

167

1

Remove Earlier

Contribution
to Weights

For Each Non-
fixed Weapon in
Old Allocation
Remove Contri-

bution to
RUNSUM, SUR94P

and RNALL

Revise Costs
and Profits

Yes cal! A~DDSAL
Salvoed to Reset
Groups? Stockpile

stckilI No

Update _
Payoffs

Figure 29. Part III: (Part 3 of 3)

168

140

Sets

(P1put Datat.

* ~ ~ o W~~dV A DR1A ot~i LII 6

25

For Weapons

Assigned, Record
Data In

DYNAMI Arrays

call BOMPRM To
Update ASM

Fraction Array

Record Target
Weight In

DYNAMIC Array,
Augment WTSUM

For Each Nonfixed
Weapon Assigned, Aug-

ment NALL and RNALL And

Associated Entries In

RUNSUM and CURSUM
Arrays

Record And
Accumulate

Payoff, Cost.
And Profit Data

Figure 29. Part IV: (Part 2 of 4)

170

B

*Call MODFY
PROGRESS to Update

=2 TARCDE

IUpdate Call
PROCMULT ASGOUT

Al pis N

N No

Rese to
Sai fa7 ryT rmnt

1711

34

igue 2. First Y (Pr 4 nactiv)

Pass2

* For All Integration Periods
And All Local Multipliers,
Evaluate Allocation Error

Estimates:
ALERREST(J ,INTPRD)

For Each Weapon Group
Use Long Time Period
Estimate (NINTRPD) To
Estimate SURWP(G)

Yes
PROGRESS=d?' \ N ! II 47

No Recalculate Actual Multi-'

Do 46 For pliers LAMEF(G) And
A oca oReevaluate Total Value Of

Multipliers. (J) Done Weapons VALWPNS And Total
-I Value Of' AlLocation ErrorE

D " VALERR
/ Did First Pass

N Find No Targets Calculate SuWacl t rRATE,
N For This Group Calculate Sum For Other Integration

(NOPS<.G)? Square Of Error Periods About RINTPRD

In Allocation For Shorter Than Long Period
Yes All Groups Or NTGTSi All , rro Estimates\

No For J Show Same Sign-- C" And On First Pass, Is This CluaeTeIeg- Use WVRATE To Calculate

And On frst P ssIsTi tion Period (DESINTPD) Wih aeFco
Same As Error Since Last Weight Rate Factor

Reevaluation? Needed To Make Observed WTRATE For Long Inte-
Yes Error Significant gration Period[Estimate Fractional +

I ICorrelation Of Store Old Weight Rate OWRATE
ErrOr Desired And Calculate New Rate Z0 If PROGRESS >.S,

rTarget ,Based On DESINTPD But Reduced Do Not Allow

To Go To Zero Ilen Integra- WRATE To Exceed
tion Period Would Exceed OWRATEI M k e 1 2 Pa ss

Correlation In
~Each Local

Multiplier(LA(J))

Figure 29. Part V: Multiplier Adjustment and

Progress Evaluation (Part I of 2)

173

E

jNo " yes Set Is WTSUM> 0
PROGRE S=O? MULSTEP=2 NTGTS/2? 0.06'

Yes

et
52 RESS=.4

Is WRATr-.< No 0.40OWRATE7

51 fes 53 Yes
set

No Is PROGRESS=.5
PROGRESS< .5? KATE= ? TWATT-n 0.Sj'

Yes
55 Yes

-T Iu '71, STEP=4PROGRESS<l PR GRESS=.7S

No NWAIT=NTG7S
I *SETT LE

Increase rce] 54
Closing Fo Is No Set

IWAIT-GT-NIAIT? IWAIT-IWAIT+ 0.7?
MULSTEP

Yes More Than 1.5 Y s
o ha
res tPasses At PROGRESSe
s

c

"

Equal To 1?
Pas

s 0n of

Equal T

a lu, or

NoNP0
1

5

-LT .ER C LOS?

PROGRESS-1.0
IWAIT-0

Yes/ V:IuFra on Of SDPROFIT-0.0
s t In Error PRM*.9
LT-E-RRCLOS?

No0 PESS
Gt

"Is Allocation No
Within One No Y's

Warhead?

Yes

56
Record As Final

Set No
IVERIFY-2? Tape, Final

PROGRESS=2 Target.Final Pass
Yes

Change

Correlation For Verification
FactQ Or Comparison, Set 2.00

SDPROFIT=O

Note: Starred numbers are values of parameter PROGRESS

Figure 29. Part V: (Part 2 of 2)

174

3.8.1 Subroutine ADDSAL

PURPOSE: This routine updates the
stockpile for salvoed

weapons

ENTRY POINTS: ADDSAL

FORMAL PARAMETERS: IGP - group number

IOPT - option code

NUR - index to ISAL array

ISALIN - salvo number

COMMON 3LOCKS: DYNAM4I, MULTIP, SALVO

SUBROUTINES CALLED: None

CALLED BY: 14ULCON, STALL, WAD, DEFALOC

4e thod:

If the weapon is a nonsalvoed weapon but a bomber ISAL is set to indi-

cate whether weapon is a gravity bomb or ASM. Otherwise the variable IDIFF

is set depending upon the
option. From- this the number in NSALAL (packed

4 per word) is either incremented or
decremented.

Subroutine ADDSAL is illustrated
in figure 30.

175

START

Se IDFFT
NEUR Bombr?_ithrAdo

Fuet L S Ubrout e DSALL

176

K'

3.8.2 Subroutine n3GOUT

PURPOSE: To update allocation assignment records in the

integrated data base

ENTRY POINTS: ASGOUT

FORMAL PARAMETERS: None

COMMON BLOCKS: C10, C30, DYNAMI, MULTIP, SPLITS, PAYSAV, TARREF,

WEPSAV

SUBROUTINES CALLED: DIRECT, DLETE, MODFY, MYAPOS, NEXTTT, STORE

CALLED BY: MULCON

Method:

First a logical switch is set for each new weapon assignment to indicate

it is unassigned. Next each old assignment is compared to the new
assignments to see if all values, save RVAL, of the old assignment are

equal to a new assignment. If it does, the RVAL attribute is deleted.
Finally, an ASSIGN record is created for all the new assignments for
which there is no match.

Subroutine ASGOUT is illustrated in figure 31.

177

--22

~Set Array For

Asimert N Done Allocation
= 0 ? A s s i g n m e n t s-t " F a l s e "

Yes

Call DIRECT

To Retrieve
TARCDE

to Retrieve old 2---- J

Assignment

[~No,

Assignments?/ Assignment

Do for All Done

[New Assignments'

/ Same As Ye Call MODFY To

NoOld eset RVAL and2

Assignment? Set DONE

Figure 31. Subroutine ASGOUT (Part I of 2)

178

Niuer o. (Prteofs

79

3.8.3 Subroutine BOMPRM

PURPOSE: The purpose of this routine is to maintain the
array containing the fraction of weapons all allo-
cated from each group which are ASMs.

ENTRY POINT: BOMPRI4

FORMAL PARAMETERS: IDIFF = -1 if weapons are being deleted
+1 if weapons are being added

COMNON BLOCKS: C33, DYNAMI, MULTIP, NALLY, PAYSAV, SALVO, WEPSAV

SUBROUTINES CALLED: None

CALLED BY: MLCON, SCNDGD

Method:

This routine merely updates the ASM fraction array FASM in common block
/SALVO/. The important local variables are:

LXDONE(l) = a logical array set true if a weapon has already been
processed to update FASM

TOTW = total number of weapons allocated from a group on the
target

TASM = number of ASMs from a group allocated on the target

FASM(G) is the fraction of currently allocated weapons from group G
which are ASMs.

The factor FASM is updated whenever the state of the allocation changes.
These changes occur when allocations from a previous pass are removed
and when the allocation from the present pass is output. Thus, BOMPRM
is called from subroutine MULCON on each target, and by subroutine SCNDGD
for each target after the first pass.

Subroutine BOMPRI has one formal parameter IDIFF. If weapons are being
removed (previous pass's allocation), then the value of IDIFF is -1. If
weapons are being added, then IDIFF is equal to +1. In subroutine
SCNDGD, the call to BOMPRM with IDIFF equal to -1 is made after reading
the last pass allocation, just prior to the update of the running allo-
cation sums. The call from IULCON with IDIFF equal to +1 is made just
prior to the running sum update.

Upon entry to subroutine BOMPRM, the routine checks variable NBLN in
/C33/. If this variable is negative, the allocation in /DYNAMI/ was
made by subroutine DEFALOC and contains no bomber weapons. In this
case, the subroutine returns with no further processing. If the

180

allocation was made by subroutine STALL, the IG array of /DYNAMI/ is
checked. For each allocation in this array, the variable KORRX of
/DYNAMI/ is checked to determine if the weapon is a bomber. If not,
the next entry in the IG array is checked. If the weapon is a bomber,
then the value of GSEASM for the group is checked (in /WEPSAV/). If
CSEASM is equal to zero or one, then FASM is set to GSEASM and process-
ing continues with the next entry in the IG array. Otherwise, FASM is
updated for the group.

The ISAL array of /DYNAMI/ contains the indicator of bomb or ASM alloca- I
tion (for-bomber groups only. This array is defined differently for mis-

sile groups). If the value is zero, a gravity bomb was allocated. A
value of one signifies the use of an ASM.

The total number of weapons from the group which are currently allocated
is kept in array RNALL of common /NALLY/. This array is updated twice
for each target, just following the call on BOMPRM.

Using these variables, the value of FASM is updated as follows:

Define: TASM = number of ASMs allocated from group G (as determined
from the ISAL array) on current target

TOTW = number of weapons allocated from group G on current
target

Then,

(FASMol d * RNALL) + (TASM* IDIFF* CTMULT)
FASM

new RNALL + (TOTW * IDIFF * CTMULT)

Note that the variables FASM and RNALL in the above equation are arrays
indexed by the group number G. CTMULT, from common block /MIULTIP/ is
the current target multiplicity.

Figure 32 displays the logic of subroutine BOMPRM.

181

Set prFAocsis
Makedilcato

Were YeAsnhi WeaponRTN

118

I

D ictor RUene oe9

b

Do

No Is This Another
Weapon From Same

Group?
Yes

Set ProcessingI ~ Indicator TRUE

Accumulate

Total Weapons Used

Payload Used?

ASM

Increment No. Of

ASMs Used

Figure 32. (Part 2 of 2)

183

1,

3.8.4 Subroutine MYAPOS

PURPOSE: To position records properly before storage of a

new ASSIGN record.

ENTRY POINTS: MYAPOS

FORMAL PARAMETERS: None

COMON BLOCKS: CIO, C30, GRPIIDR, TARREF

SUBROUTINES CALLED: DIRECT, NEXTTT

CALLED BY: ASGOUT

Method:

On first call the array of group IDS reference codes is set to zero.
From then on, with each call the saved reference code of the desired
group is checked. If it is nonzero it is retrieved. If it is zero,
the group chain is cycled up to the desired group, the intervening
groups also have their reference codes saved. Finally, when the proper
group record has been retrieved, the target record is retrieved.

Subroutine MYAPOS is illustrated by figure 33.

184

START

Figure ~ ~wic 33Groupin YAO

185io sl Re e e c o e

3.8.5 Subroutine PRNTALL

PURPOSE: This routine provides a way of calling the print

subroutine PRNTNOW that is conditional on the

print control flags set by PRNTCON.

ENTRY POINTS: PRNTALL

FORAL PARAMETERS: IOPT - Print option number

COMMON BLOCKS: C30, CONTRO, PRNTCN

SUBROUTINES CALLED: PRNTNOW, TIMEME

CALLED BY: MULCON, WAD, WADOUT, FRSTGD, RESVAL, DEFALOC,
SETPAY

Methcd:

To provide convenient control over prints in program ALOC almost all
print statements are contained in subroutine PRNTNOW. They are acti-
vated by calling PRNTNOW(IOPT) for the appropriate print option IOPT.
If it is desired to place the print under data-input control so that
the print will not appear unless a specific print request is included
in the data deck, this can be accomplished by calling PRNTNOW via a
call on PRNTALL. PRNTALL executes the request on PRNTNOW only if the
print control subroutine PRNTCON has set the corresponding print con-
trol flag IDO(IOPT) active (i.e., - 3).

For each call PRNTALL first checks to see if the print has been set ac-
tive by PRNTCON. If not, it immediately RETURNs (statement 2) to mini-
mize time wasted on inoperative print calls.

If the particular print is active, PRNTALL immediately calls TIMEME
(statement 1) to stop the clock which records active time in the pro-
gram. This makes it possible to do a test run with an unusual number
of prints and still obtain a valid estimate of what the running time
would be without such prints. After the call on PRNTNOW, PRNTALL re-
activates the clock before returning to the main program.

Before each print option (except 26), PRNTALL prints a heading identify-
ing the optional print.

Subroutine PRNTALL is illustrated in figure 34.

186

START

I s Print No
Flag IDO (lop) RETURNF a g

Se
IDt n)

Set For Print?

Yes

C C;all
prt-2

TIMEMME (-2)
't. 0 Clock

Stop Clock

For Active Time

Y is IOPT-267
S -ip Ileador

No

-ii
Print

Identifying
ueader For

Print

3
Call PRNTNOW

(IOPT) For
Actual Print
Re

Call
TIMEME (-3) To

Rostart Clock
A(.tjv . Time

Figure 34. k1brotitine PRNTALL

187

3.8.6 Subroutine PRNTCON

PURPOSE: This routine sets the print control flags which
determine whether a given print request made

through PRNTALL will be executed.

ENTRY POINTS: PRNTCON

FORML PARAMETERS: None

COMON BLOCKS: C30, CONTRO, PRNTCN

SUBROUTINES CALLED: None

CALLED BY: MLCON

Method:

The input arrays for the print requests were read in subroutine RDALCRD.
These arrays are:

INDEXPR "The ifidex to the print requested

JPASS The first pass (value of NPASS in /CONTRO/) on which
the request is to operate

LPASS The last pass on which the request is to operate

JTGT The first target (value of TGTNUM in /C30/) on which
the request is to operate on each pass

LTGT The last target on which the request is to operate

KTGTFREQ The frequency with which the print is to operate (e.g.,
KTGTFREQ = 5 implies every fifth target).

PRNTCON is called by MULCON before proceeding to process each new tar-
get. PRNTCON first reinitializes all print control flags to a nonprint
state (IDO = 1). It then examines the list of print requests to see if
any are operative for this target on this pass. For each operative
print the flags are set to print (IDO = 3, IFTPRNT = K"IGTFREQ).

This arrangement makes it possible to request the same print at differ-
ent targets or passes with separate independent print requests. If
regular prints are requested with KTGTFREQ greater than 1, the first
print will not occur at JTGT but at KTGTFREQ -1 targets later, and
thereafter the print will occur every (k"TGTFREQ)th target.

Figure 35 illustrates subroutine PRNTCON.

188

STARTA

Clear File DUMP
indicators

12

Clear A11 Print
Indicators For

No Print

Do 22 Done Target
IREQ PassNREQ

Reset
RETURN

ICOUNT(IREQ-2

14 16

N etwen First
•.- -and Lst Target

And Pass?

Reguiar rhns
32 ! -

Figurm e 3.Sbotit RTO

ICOUNT (IRF.Q)

GT-Fr equenc,"

Yes9

20 ____ss et pr int Flag '
IDO For 11iis
Print Index To it

~Print |
set I0N-

Figure 35. Subroutino PRNTCON

181

3.8.7 Subroutine PRNTNOW

PURPOSE: To produce optional printed output.

ENTRY POINTS: PRNTNOW

FORNAL PARAbME.vRS: IOPT - Print option number

COMMON BLOCKS: ALERUN, C30, 033, DYNAMI, MULTIP, NALLY, DAYSAV,
PREMS, PRTUL, SALVO, SURP4 TGTSAV, IACB, PAYOFF,
WADFIN, WADOTX, WADWPN, WEPSAV, WPFIX, 4TS

SUBROUTINES CALLED: ABORT, PRNTOD, PRNTOF, PRNTOS, TIMME

CALLED BY: PRNTALL, MULCON

Metho4

The formal parameter IQPT dektermines which print is produced. The re-
sult of the alternatives appear in the Users Manual, UM 9-77, Volume Ill.
Options 1, 12, 13, 26, 27, and 28 require a subroutine be called which
contains the print function.

Subroutine PMNTNOW is illustrated in figure 36.

190

START

I E~~~~OPT-l? es Rqstubr

IOPT-5? Ys Request Number

Figre36.Surotin PNTNW Pat 1 o 5

No9

A
I

IOPT=8? Request Number ~

I0PT=9? Request Ilumber

19

B

Execute PrintL

'16

Fiues 36.(cte 3Pofn5

199

C

194

.1 -- .~-- -

Y(,_8

Execute lpint

Fiuo36. (P~ut 5Iof

195

3.8.8 Function TABLEMUP

PURPOSE: This function calculates weapon-target kill fac-
tors for either the exponential or square root
damage laws as a function of an input single shot
survival probability.

ENTRY POINTS: TABLEMUP

FORMAL PARAHETERS: S -- a single shot survival probability

COMMON BLOCKS: TABLE, WADWPN

SUBROUTINES CALLED: None

CALLED BY: RESVAL, RECON

Method:

This function computes weapon kill factors by computation for the expo-

nential damage law and by a table lookup for the square root law. The
function uses the square root law only if the option is selected by the
user and the target has a radius greater than 0.

If the square root law is used on a target, the variable ILAW in common
/WADWPN/ is set to 100 by subroutine RECON. This variable is checked by
TABLE1NUP to determine which damage law is used. The exponential law use
causes ILAW to be set to 0.

The input formal parameter is a single shot survival probability, S. If
the exponential damage law is selected, the function returns the value
-LOG(S). If the square root law is selected, the function performs a
table lookup technique on the array TABLE in common /TABLE/. This array
was preset by subroutine SETABLE. The function performs linear interpo-
lation between the entries of the table. It returns the square of the
interpolated value. (The method of determining the kill factors used in
subroutine SETABLE is too slow for use in TABLEMUP.)

Function TABLEMUP is illustrated in figure 37.

196

S TART

Figu ch 37. ag FunciLETABEM

197aw

t*

3.9 Subroutine FRSTGD

PURPOSE: Assemble allocation data on the first pass.

ENTRY POINTS: FRSTGD

FORMAL PARAMETERS: None

COMON BLOCKS: CIO, C15, C30, C33, DYNAMI, FIL21, FILL, FIRST,
GRP11DR, GRPSTF, INITSW, MULTIP, PAYSAV, TARREF,
TGTSAV, WADWPN, WEPSAV, WPFIX, XFPX

SUBROUTINES CALLED: CRDCAL, DIRECT, FLGC11K, IIDFND, HEA), INICRD, MODFY,
NEXITT, NXSPLT, PKCALC, PRNTAL, RECON, RETRV,
TGTCRD, TIMEME

CALLED BY: MULCON

Me thod :

This routine processes each target in target number order. Each call
causes the next target to be retrieved. Since each record on the tar-
get list points to either a target or a complex record, the next step
in the process is to retrieve the remainder of the target data. Next
the weapon data is acquired. This process depends to a great extent
upon whether the user has saved file 15 from a previous run of ALOC.
If so, this file is read in and unpacked. If not, the file is created
by cycling through the weapon groups and calculating the various needed
quantities. Much of the group data needed for this process is contained
on file 25 where it was stored by DATRP. If the user has specified
range modifications, any information which differs from that on file
15 is written on file 22 in the same format.

During this process, the INACTIVE array is set. This array has an entry
for each group and is either set to 0 or 100. 0 implies that the group
is available for allocation to the target. 100 indicates that the group
is unavailable for one of several reasons: target out of range, time
decay requirements, and flag location and MIRV restriction. This array
is written onto unit 21.

The final step is to read in any fixed assignments to the target and up-
date the assignment records.

Subroutine FRSTGD is illustrated in figure 38.

First subroutine of segment FGD.

198

START

Fn igie 101uruin RTD(ar .o 1

Switche9

L iAL -id Ye -Cal-IR

101

Call NEXITT
For Next
Target

S d o£ Ye~s

No

And HEAD To
etrieve Target

Data!I

Set Data In
TGTSAV
Block

3
Set MISDEF
And TVULT

Call MODIY To II

Save TMNLT
value

Figure 38. (Part 2 of 11)

200

Set Split

Indicators

Fire 38Rae 3e of ge Relte

7

Increment
Group
Count

Read i le File 25

Figure l 38 2P5 4o 1

2020

B

Penetati~nSet Damage

Probability Quantities To
Zero

Nonzero

Yes

Call PKCALC
To Calculate

amage Quantitie

Save Damage
Quantities In

I QTK and QTK2

[2103

C

Reset
Range

Call CRDCAL
For New
Range I

Reset
Active
Switches

Fi re u 38. (P1t67f5i

20ctve

D

Set Switches

And Save

Normal Values

1 12

Store New
Values

13

Group 17

Inactive?

IF

Call FLGC11K To

Check For
Restrictions

a
__ Group?

Figure 38. (Part 7 of ii)

205

Store Damage
Quantities In 14
STK And STK2

call Set Active

RECON Flag Of f

Figure 38. (Part 8 Of 11)

206

015

Recalc No 21
Mode?

Yes

Pack File File

16 22
15 Record

3

Packing For N rite File 22

Record
File 15?

Yes

4rite File 15 File
15ord

21

File 22 24
Necessary?

Yes

Reset To

L-4*- Modified

Range Data

Figure 38. (Part 9 of 11)

207

24

store
Inactive

Array

Write 2il
File 21

2a

Fiue38irt 10 of l 11)AL

2508

F

Calld NoPL

For Assime

Figr 38.ig(Part1o1)
209

3,9AL Subroutine CRICAL

PURPOSE: Calculate penetration probability and pick bomber

corridor

ENrRY POINTS: CRDCAL

FORMAL PARAMETERS: JORR - Corridor picked
XEN - Penetration probability
ZOA - Time of arrival
ICLSS - Class index of group

COMION BLOCKS: C30, CORSTF, PAYSAV, REVPNT, TIVTSAV, WADWPN,
WEPSAV, XFPX

SUBROUrINES CALLED: DISTF, EXP, TOFM

CALLED BY: FRSTGD

Method:

First a check is made for match-ups of naval weapons to navl targets.
Next, if the group is a missile, its corridor is set to zero and its
penetration probability and time of arrival are calculatod.

For bomber groups, first the PKNAV and IPENMO are checked to see if
group is restricted to corridors 2 and I respectively. Otherwise, each
corridor in turn is examined to see if it would provide the best route
to the target. Corridors which would make the distance too great are
rejected. For the remainder, the penetration probability is calculated
with the bomber using low altitude flight as much as possible. The
highest penetration corridor is chosen.

Subroutine CRDCAL is illustrated in figure 39.

210

!i

START

Zero Penetratior
Array
PENALT

Naval Naval

Target? Weapon?

' Weapon?

~No

Set Penetration

To Zero

2

Return Corridor
Penprob And

Time of Arrival RETURN

Figure 39. Subroutine CRDCAL (Part 1 of 6)

211

3

Call DISTF
To Calculate

Minimum Distanc

Missile Greater Tha

Group? M in-Range?

'es

Calculate5
Delay Time

No

Calculste Target

Missile yq Panprob, Time In Range?

Time of Flight
And Distance X

Yes

And Range Limits

NavalFix Corridor

No
Figure 39. (Part 2 of 6)

(51 Ja

9

is Penetration Y Fix Corridor
Mode=0?at I

SNo

Set Corridor
Set Crio

Analysis For

Analysis Range Fixed Corridor
For All But i1_---

and 2

Refueling N Set Start Point

Bomber? At Base

IY e s
i

Fet Start
Point At2

Refuel Point

Calculate Dis-l

tance To |
Corridor And|

Set Test Limits

Figure 39. (Part 3 of 6)

; 213

IA

A1I

DoFo AlPenprob Ye

I2 Corridors ON lye A0 d

Negative LowCalculated2

Figuee3d Prt Legs 6)

2144

Is Ditac

15

CalculaOte
Pre-Corridor
Loeg Attrition

Rates

16

Calculate
Remaining

RatesJ

Figutue 39. (Prt5of6

Set a LowO215

B

PigureN 39. (Pre6of6

2168

3.9.2 Subroutine FLGC11K

PURPOSE: To check flag, location and MIRV restrictions.

ENTRY POINTS: FLWCIIK

FORMAL PARAMETERS: FIND - True if group not resLricted
False if group restricted

COMON BLOCKS: C30, CNCLS, GRPSTF, INITSW, ULTIP, TGTSAV

SUBROUTINES CALLED: None

CALLED BY: FRSTGD

Method:

This routine uses the logical arrays stored on file 25 by DATGRP. Each
type of restriction is checked for correlation between the group and the
current target.

Subroutine FLGCUK is illustrated by figure 40.

*21

I

, 217

START

True

Fla

Reticin

Fies 4. Sbotn L~lK(at1 f3

Y21

Is Tage

4

RsrconCORstitd

YesS

Firgrt 40 (Nar 6 f3

Complex1o

6

Index

---- --R -

Noue4. (Pr f3

Group220

R e s t r i c t e d ?l

3.9.3 Subroutine INICRD

PURPOSE: To make preliminary geography calculations, first
for all corridors then for each target.

IN1thY POINTS: INICRD, TGTCRD

FORMAL PARAMETERS: None

COMMON BLOCKS: CI0, C15, C30, CORSTF, REFPNT

SUBROUTINES CALLED: DELLON, DISTF, HDFND, HEAD, NEXTTT, RETRV, SORT,
TIMEME

CALLED BY: FRSTGD

Method:

Entry INICRD

First each penetration corridor has its data stored in commcn block

CORSTF. As the legs of the corridor are queried, the length is calcu-

lated. Also, for each corridor various quantities required for computa-

tion of crossdistance are computed.

After all penetration corridors are processed, the refuel points are

saved in block REFPNT.

Entry TGTCRD

First the chains connecting target to depenetration corridor are accessed

to find the shortest recovery distance. Next all penetration corridors

are accessed and attrition factors stored and cross distances calculated.

Subroutine INICRD is illustrated in figure 41.

} -221

STAWI'

Call 1IDFND Or

RETRY For

Pentration

ICorridor Ileader

Figure 41. Subrout n NOd: EtyIIf(rt of)

222in

A

s tore
Valuos For

Corridor Orisin

ca 11 NEXT'FT '
For Next Log

Longd of u Mid Di n t n

Mid Resot (1Ko Crridor mo Yn

collipitatilD t1

~~o I

5

Call HDFND &
RETRV For

Refuel Point
Header

Figur 41. (Prt f5

Fo 24xt

1 4

START

Call NEXTTT And
|JEAD For

Depenetration
Distances

633
Call NEXTTT And

Find Shortest
Recovery
Distance

666

Calculate

Recovery
I Distance

Call NEX'I-rT For

7 Next Link To
Penetration

*11

End of RETURN
Ch ain ?

Figure 41. Entry TGTCRD (Part 4 of 5)

225

B

Figure 41.s(arceos 5

226

.1

3.9.4 Subroutine NXSPL'

PURPOSE: To process input for split multiple targets.

ENTRY POINTS: FRSPLT, NXSPLT

FORMAL PARAMETERS: IBR - Returned from NXSPLT
I = splits active
2 = splits ended

COMON BLOCKS: CIO, C30, C33, DYNAMI, MULTIP, SPLITS, TARREF

SUBROUTINES CALLED: DIRECT, MODFY, NEXTTT

CALLED BY: FRSTGD, SCNDGD

Method:

When a multiple target is split during the allocation process (see sub-
routine SPLIT). The normal contents of block C33 (TARCDE record) are
replaced by split information and the old contents saved on file 25.
This routine is designed to process input for multiple targets which
have already been split.

Entry NXSPLT

This entry processes tzie next split (i.e., second or greater) of a multi-
ple target. The first step is to see if all splits have been processed.
If they have, the split information for block C33 is updated if necessary
and IBR set to 2 to indicate the end of the splits to the calling pro-
gram.

Otherwise, the next set of C33 data is obtained from the buffer and
KLULT is set. Finally, the current assignments (fixed assignments on
pass one) are read in, checking the FLMULT attribute to assure that the
assignment applies to the current split.

Entry FRSPLT

This entry processes the first split of a multiple target split on a pre-
vious pass. The split data is saved from block C33 into block SPLITS.
Then the process passes into the entry NXSFLT code to set KLMULT and
read the current assignments.

Subroutine NXSPLT is illustrated in figure 42.

227

START

Move Split
Data Back
Into Buffer

Last
split? ./

Yes

Splits?

Yes

Reset Block
C33 Data

For TARCDE
Record

lout split . ile 25

Figure 42. Subroutine NXSPLT: ENTRY NXSPLT

(Part 1 of 4)

228

I
-- __.. .. .

4

Increment Split
No. Determine
First and Last

Number In Split

FCalculate CTMUI:2o4
6| Buffer Point

S And KLULT_

Retrieve Block

C33 Data

From Buffer

Cal DIRECT

S To Begin

I Retrieval Of

SAllocation

Call NEXTTT

For Next

Assignment

Figure 42. (Part 2 of 4)

229

A

Figueg42m(Pt of4

230lit

START

Save Split
Data From
Block C33

Read 033
Buffer - - File 25
From

File 25

Set First And
Last Target

Number

6

I I,

Figure 42. ENTRY FRSPLT (Part 4 of 4)

231

_ _ _ _

A

3.9.5 Subroutine PKCALC

PURPOSE: To calculate kill probabilities

ENTRY POINTS: PKCALC

FOR AL PARAWETERS: STA - Array for normal PK
STB - Array for second PK

ICLSS - Class index of weapon group

COMON BLOCKS: C30, PAYSAV, SALVO, TGTSAV, WEPSAV

SUBROUTINES CALLED: None
J

CALLED BY: FRSTGD

Method:

This routine calculates the kill probabilities (PK) of the weapon group
against the target using a standard approximation to the circular cover-
age function. Two PK's are calculated for each hardness component of
the target. The first PK is based upon the yield of the group as input
and the group's CEP. The second PK varies according to the class of
the weapon. For missiles it is the first PK adjusted by the number of

warheads which make up the group yield (for any types but MRV. the first
and second PK's are equal). For bombers the second PK reflect the PK
of any ASMs onboard. Naval weapon's have their PK's input in he attri-
bute GPKNAV. Average Destruction (AVDE) is calculated for bombers.

Subroutine PKCALC is illustrated in figure 43.

232

S TART

Set
Payload

Height Of
Burst

Components With Mixed Load.

4 ".

=N(Part of

Frigu 43.SorotnPKLC1 3

M233

A

Calculate

Normal PKBased
On SD And
Normal SK

[Calculate

Missile Yes |Second PKBasedWeapon? " 'i On SD And

Second SK

.No

lfigure . (at f3

Set Second
PK To

0

An" Yes I calculate
Ay Y es .. [Second PK Based

____J Factors i

No

[Ca cul e This
|| Component.

!Contribute To
Avg. Des truction

3J

Figure 43. (Part 2 of 3)

234

Resuet 43. s (T 3of3

235NA

3.9.6 Subroutine PRNTOF

PURPOSE: To produce optional prints for overlay FGD (optionsi lI and 26),

ENTRY OINTS: PRNTOF

FOIURAl PARAMETERS: IOPT - print option number

COMMON BLOCKS: C30, PAYSAV, SALVO, WADWPN, WEPSAV, WPFIX, XFPX

SUBROUTINES CALLED: NoneI
CALLED BY: PRNTNOW

Method:

The formal parameter IOPT determines whether option I or 26 appears.
The result o these options appears in the Users Manual, U 9-77, Voliufc

•I III.

Subroutine PRNTOF is illustrated in rigure 44.

1

!,3

STAR

l~igiro44.SubroutineO PRNTOF

237

3.9.7 Subroutine RECON

PURPOSE: To reconstruct data for the WADWPN block.

ENTRY POINTS: RECON

FOR AL PARAMETERS: ICLSS - class index of group

I COMON BLOCKS: C30, C45, FIL21, PAYSAV, SALVO, SMATAD, TGTSAV,

WADWPN, WEPSAV

SUBROUTINES CALLED: ALOG, SETPAY, TABLEMUP, VALTAR

CALLED BY: FRSTGD, SCNDGD

Method:

Subroutine SETPAY is called to select use of gravity bombs or ASMs from
the bomber groups. If ASMs are selected probability ST 2 i us..d il Lhe
calculation of the survival probabilLty STK and the MUP array. The MUP
XMUP. SSIG, and RISK arrays are constructed according to the rutysrt!

ii formulae.

S'Th e SMAT array is loaded depending upon whether the group is a MIRV.

Subroutine RECON is illustrated in figure 45.

j 238

START

Bobr e Call VLA

MWhen Wees Arr iveso

WeapoWeapon

ArraArrives

Figue 4.SurouinerECart of 2)u

239 WepnArie

I
7

Calculate Logs For
RISK Array, Total
Reliability (RELT)

And I ts Log RELTL

AIts Log ConErtMl

Tomponentias

IClculate
leA

r~rrvalArray K n

Isge4. (Pavrt 2 of 2

240 i

3.9.8 Subroutine SETPAY

PURPOSE: This routine sets the bomber payload indicators to
specify use of gravity bombs or ASMs.

ENTRY POINT: SETPAY

FORMAL PARAMETERS: None

COMON BLOCKS: C30, CONTRO, DYNAMI, PAYSAV, SALVO, TGTSAV, WADWPN,
!4EPSAV

SUBROUTINES CALLED: None

CALLED BY: RECON

Method:

This subroutine sets the bomber payload indicators (array ISETPAY in com-
mon block /SALVO/). The setting calculation considers the allocation
rate of ASMs (array FASM in /SALVO/), the actual fraction of ASMs in each
group array GSEASM in /PAYSAV/, the damage difference between the weapons,
the average damage difference (array AVDE or /SALVO/), and the state of
allocation progress (variable PROGRESS in /CONTRO/).

Five local variables are of some significance to the calculation. The
variable IPREF is used for temporary storage of the payload indicators.
A zero value specifies use of a bomb; a value of one specifies use of an

ASM. The variable DEA contains the expected damage (ignoring the same
vehicle planning factors) if a bomb were used. Local variable CONPAY is
used to weigh the difference in allocation rates relative to the differ-
ence in allocation rates relative to the difference in damage expectan-
cies. Local variable PAYSENS is used to calculate CONPAY.

The variable CONPAY is used to reflect the importance of the allocation
rate difference relative to the damage difference. As CONPAY decreases,
the allocation rate difference increases in importance relative to the
damage difference and vice versa. CONPAY is defined as follows:

PAYSENS
CONPAY PA= E(CLOSE + 1.5) * PROGRESS

Thus, PAYSENS is merely a multiplicative factor, set internally by SETPAY
j to a value of 0.1 which provides a base value for CONPAY. The denomina-

tor of the right-hand term of the equation represents the effects of allo-
cation progress. As the allocation proceeds, CONPAY decreases to put more
weight on the allocation rate differences. Variable CLOSE is a user input
parameter which determines the size of the closing forces. When PROGRESS
equals one, CLOSE increases to increase the closing forces. The table
below displays the values of the denominator for different values of
PROGRESS. CLOSE is set to its default value, 1.05, and CLOSER (another

241

input parameter) is set to its default value, 4.

Table CONPAY Denominator vs. PROGRESS

Denominator PROGRESS

1.02 .4
1.275 .5
1. 913 .75
2.55 1.00 (initial)
6.55 1.00 (after one pass)
8.55 1.00 (highest value of

denominator)

After PROGRESS equals on, the value of CLOSE increases by an amount CLOSER
for each pass at PROGRESS equal one. The maximum number of passes with
this value of PROGRESS is 1.5.

When PROGRESS is zero or in a verification pass, the weapon with the
greater damage is selected for allocation. Also, the selection equa-
tions are bypassed if a group has only bombs or ASMs.

Figure 46 displays the logic or subroutine SETPAY.

,24

1 242

=SAR

Calculate
Control
Variable

CONPAY

Fo ll10 RETURN4

Is Group All YeNeo cBm
GAtvt Bombs?

HadesBmAnAS

243

IsGopAl Ye-eetBm

100'i elctASM BOMB

Seec AMSelect Bomb

as Preferred Weapon As Preferred Weapon

Da~gig? - \ Damaging?

al t l a

CcoCalculate Allocation

,Difference and Damage Difference and Damage

S Allocation Difference Yes Yes Is Allocation Difference

i Greater Than Modified/ =Greater Than Modified)

Damage Difference? DamageDifference?

As Preferred Weapon As Preferred Weapon

"I

Figurel46e Parto2aoio2

244

Difrec an Daag Caclt Allcaio

Diffeenceand amag

3.10 Subroutine SCNDGD

PURPOSE: To read in data on second and later ALOC passes
over the target list.

ENTRY POINTS: SCNDGD

FORMAL PARAMETERS: None

COMON BLOCKS: CIO, C30, C33, DYNAMI, FIL21, FILL, FIRST, GRPHDR,
MULTIP, TARREF, TGTSAV, WADWPN, WEPSAV, WPFIX

SUBROUTINES CALLED: BOMPRM, DIRECT, FRSPLT, HEAD, NEXTTT, NXSPLT,
RECON

CALLED BY: MULCON

Method:

First, if this is the first target of the pass, units 15 and 21 and per-
haps 22 are rewound. Then the next target is read and all its data
accessed. Next files 21 and 15 are read in. If file 22 is in use for
this target it is read with its contents replacing those of file 15. The
INACTIVE array is now loaded and the contents of file 15 (22) unpacked
into the WADWPN block. The previous assignments are now read and stored
in the DYNMII block. Finally, BOMPRM is called to remove the assignments
effects from ASM totals and RECON is called for all groups.

The processing for split multiple targets is somewhat different.

Is Subroutine SCNDGD is illustrated in figure 47.

First subroutine in segment SGD -- all other routines appear in section
3.9.

245

START

No Processing No First
split Target

101 Jultiple

Tar et?
Yes

Yes

Rewind
Call units 15
NXSPLT And 21

Rewind
Unit 22 Yes

No End Of Unit

750 Splits? In Use? 22

Yes No

Ca 11 '1EAD
01r Target

List

101

Call
NEXTT
For Next
Target

End Of No

Chain?

Yes

RETURN

Figure 47. Subroutine SCNDGD (Part I of 4)

246

2

Call
DIRECT And
For Target]

Data

13

Fiur 47aPat2 lf4

24

_______ ___________

-

A

File 22 Read
Yes

Needed? File File 22

22

0

Nd

No
31

9

Loa
INACTIVE

Array

Unpack File
15 (or 22)
Into WADWPN

Block

split No
Multiple 9

Target? j

Yes

750

Figure 47. (Part 3 of 4)

248

9

Set To
Read In

Assignments

es

Figre47g(Prtenot4

End Of o St 49

ii *
3.11 Subroutine STALL

PURPOSE: This routine determines the sequence of weapon
additions and deletions required to achieve a
near optimum allocation of weapons to a target.

ENTRY POINTS: STALL

FORkAL PARAMETERS: None

COMMON BLOCKS: C30, C33, CONTRO, DYNAMI, MULTIP, SALVO, SURPW,
WADFIN, WADOTX, WAD1WPN

SUBROUTINES CALLED: ADDSAL, INITSAL, RESTORE, WAD

CALL ED BY: MULCON

Method:

STAL controls WAD's addition and deletion of weapons by setting the
values of the following three variables:

WADOP in /CONTRO/

G in /WADOTX/

NW in /WADOTX/

WADOP has the following options:

WADOP = 1 Initialize allocation

WADOP = 2 Finalize allocation (optional print of results)

WADOP - 3 Add weapon from group (G)

WADOP = 4 Delete (N)th weapon now on target

To "acilitate monitoring the operation of STALL, the variable STALPRIN
is Iso set to provide a unique indicator of the position in STALL
whe'e WAD is called. This variable is printed under the print option 22.

The input data for STALL consists of the following six variables supplied
by 1,,VADOUT in /WADOTX/:

PPMX and IPPMX - the maximum potential increase in effective
profit for any weapon, and the index C to that weapon group,
respectively.

Fiirst subroutine of segment STAL.

250

PVRMX a 'd IPVRI - the maximum effective efficiency for any weap-

oil, aid the index to that weapon group, respectively.

I)PMN and IDPMN - the minimum marginal effective profit for any
weapon now assigned, and the index to that weapon in the list of

weapons assigned, respectively.

T'hie flowchart for STALL is in four parts. The first part contains the

setup and single weapon allocation phase. This phase provides a prompt
exit from STALL if the indicated allocation consists of one weapon or
less. This part also includes a dummy version of STALL which is used to
reproduce the prior allocation independent of current payoff data. This
option is used in place of the usual verification phase (when PROGRESS =
2) if IVERFY = 2. This mode of operation checks the effects of an alter-
nate level of interweapon correlation, CORR2.

Before going into the normal allocation phase, the initial value of the
time-of-arrival error allowance DELTVAL is saved, so that it can be re-
stored if it is necessary to change it. This quantity determines the
maximum fractional difference in target value at the time-of-arrival of
weapons that are allowed to use the same time-of-arrival bin in the cal-

culations by WAD. If the indicated allocation would result in an over-
flow of the available time-of-arrival bins, this quantity is increased

by STALL, and the allocation is reinitialized for another attempt.

"4 Before performing any operations, STALL first calls subroutine INITSAL.
'his routine initializes the arrays in common block /SALVO/. At the end
of the routine, subroutine RESTORE restores the multipliers for the sal-
voed groups.

The second part of STALL processes the fixed assignment data. It puts

the weapons down on target. After initializing WAD, the routine checks
the pass number. On the first pass, the fixed assignments were placed
in array IG by FRSTGD. In later passes, they are in the IO array. The

statements after 126 determine the number of weapons the assignment re-

presents. If DEFALOC has made an allocation on the previous pass, the
number of missi[les allocated from each group is shown as a negative num-
ber in theKORRX array. If theKORRX entry is positive, there is only one
weapon assigned from the group. STALL then checks the INACTIVE flag to

see if the weapon can reach the target. If not, an error message is
printed and the assignment request is ignored. If statement 443, WA) is

called to actually put the weapon on target. If the weapon is a salvoed
missile, subroutine ADDSAL is called to modify the salvoed weapon stock-

pile.

For the fixed weapons, no change to the variable SURPWP is made as the
weapon is allocated, since th variable controls the allocation of only

those weapons used by the methematical allocator.

If the fixed weapon cannot be allocated because of its active flag
(INACTIVE (C;)) prevents allocation, the error message notifying the user

251

of this fact lists the reason for the inactivity. The reason is contained

in array MORRX for all inactive groups,

The third part of the subroutine provides an initial laydown of weapons
if multiple weapons are indicated against the target. As this laydown
progresses two types of array overflows could occur. The overflow of
available time-of-arrival bins has just been discussed. It results in
simply restarting the allocation. The other possibility is that the total
number of weapons assigned could exceed the maximum number (30) permitted.
In this event, control is passed to the refinement loop just as it would
be in the normal exit at the bottom of Part III.

Part IV independently checks for such a potential overflow (near state-
ment 59) and if it is threatened, a cycle of operation is generated
through the connector D that results in removal of the least profit-
able weapons (statement 52) and replacement by the most profitable avail-
able weapons (statement 56). This sequence is terminated either by en-
tering the normal refinement process when the residual target value is
reduced so that no potential weapons remain profitable (statement 54), or
by using exit F after statement 59 if no combination of 30 weapons can
be found which will reduce the target value sufficiently.

The operation of the normal refinement loop, which cycles through the
branch at statement 71 until the tests at statement 66 are satisfied, is
discussed in detail in appendix A and will not be repeated here.

Figure 48 illustrates segment STALL.

252

[

call Itil'ISAL
IniLialize

Salvo Are '111VIT Yc,*. G
Arrays Fixed Weapons?

No
129

Is Save Initial
Value Of

Yes pRoGRESS-CQ*2 0 T0\ Urror
And Do Normal

JVI:RIFY-EQ-29 Allocation A I I ow-Mcc

I:nter To

Recycle
A 11ith Larger

TOA Error

3

90
11 WAD, WADOPI

WAI WAD0P I To Init3alize

Ini inlizo To Zero Weapon Yescro Weapons
Are There

4 Fixed Weapons')

91 Are Iliere

Do 92 ror All Any Potentially

weapons Done profitable"

Previously weapons?

Assigned Yes
Do

call WAD, WADON3,

ADOPNI To Add MOS'
To Add "Efficient"

Specified weapon G-1PVUIX

Weapon

Are 1here

Yes Any Additional
B "Profit,1110"

Go To
Weapons?

tiultiple
No

gs) Exit Routine weapon

Alloc;ation was Weapon NOW

Reset '10 Yes On Target Also
Loop

Initial F r-stim-Ited As Most

TOA Lrror "Profitable"?

Allowance

0- No

10

Call WAD, WAI 11,4.

TIlen wAi)or,3 To

Sul)stitute 'Ile st

Cnil RESTORE 11pofitnble" Single

Restore
salvo

Arrays

,a I I WAD, WADOPn
For

optional Print
Of 1:11101 State

RVITUIVI

Figure 48. Segment STALL
Part I: Setup and First jqeapon

253

128

Save Initial Value~
Of TOA Errox Allowance

Fior 48. o eaptons Fxd ea

s 1signmentl poessin

y- -

Loo 30

Relx Er Catll Wace InO~
Ad ios Efiin
Weapo OnIPVIO1X

Tetaivy Noe9

BtSgeGo To Refinement Ye
Leapo Loo

Figue 4. PrtAdd1 MstEfipen
Weapon aydownX

255

Select ~ ~ ~ ~ umero Weapons
Teiieeoso Alc ted

DltdI ei

A n t o e T oL N -) Sr o t a b e
c aif c t o ne A f f o r t ?

Totalio PeanonS p In T A Arraysens
ponTagt

Beti Remve Agon

HaS A Weapony
One WDp AoPn

4

BeenrVerified?

Ofre
StreeaAporfid eao

C erld NTReaonIVriie

48.itbl Waeaponl~~tp
eao

Nigre=eIiefiet
oo

2Yes

I.

isT i h a e N

5 1I
4 8 le p n

e a o s T h t J s

3.11.1 Subroutine FORMATS

PURPOSE: This subroutine determines the best 10-column BCD
format for a variable.

ENTRY POINTS: FORMATS

FORMAL PARAMETERS: None

COMMON BLOCKS: FORMTT

SUBROUTINES CALLED: None

CALLED BY: PRNTOS

Method:

The variable to be formatted is INWORD, the first word in common /FORMTT/.
(This word is equivalenced to WORDIN.) The best 10-column format is re-
turned in NFORMAT, the second word of common /FORMAT/. The resulting -

value of NFORMAT can be used in a FORTRAN output statement such as:
PRINT NFORMAT, INWORD.

The names WORDIN and INWORD are equivalenced to allow correct specifica-
tion (real or integer) for any possible input. The name NFORMT is in-
ternally equivalenced to the variable name NFORMAT for convenience. In-
ternal to FORMATS, the absolute value of the input variable is kept in
INABS, equivalenced to ABSIN for type specification purposes.

To determine if a number is fixed or floating point, Lhe first 12 bits1of the absolute value are tested. If a bit is set, the number is assumed
to be floating point, since all normalized floating point numbers have at
least one bit set in this range. Thus, if an integer quantity greater
than 16,777,216 is input, it will be treated as if it were a floating
point variable. However, no variable input from PRNTNOW can have a value
of that magnitud!, so this restriction is never a handicap. Table 6
presents the returned formats for each range of input values.

Subroutine FORMATS is illustrated in figure 49.

2

257

Table 6. Calculated Formats for Variables

RANE OF ABSOLUTE
VALUE OF VARIABLE, X FORMAT OF NEGATIVE FORMAT OF POSITIVE

0 or Integer Variable 110 110

0 < X<O.0001 ElO.l E10.2

0.0001.- X 0.999999 F10.5 F10.5

0.999999 < X 1- 99.9999 F10.4 F10.4

99.9999 < X 29 9999.99 F10.3 F10.3

9999.99 < X:5 999999.9 F10.2 F10.2

999999.9 < X F10.1 F10.2

258

* >1
lNNBS- < 0INOR - IJ0IMAD R

MaerAB To 999999.ne

141
Yes PoiWte Ye OP-r= H1.

Less Than .0001,7ii~iRTR

No

Figate e 4hn99". SuCEtneFRM

9 259

3.11.2 Function F11UP

PURPOSE: This function computes a survival probability
given a sum of kill factors for all weapons

allocated to the target.

ENTRY POINTS: FMUP

FORMAL PARAMETERS: S - A sum of kill factors

COMMON BLOCKS: WADWPN

SUBROUTINES CALLED: None

CALLED BY: WAD, RESVAL

Method:

This function is a straightforward application of the two damage laws
used in the system. The law used on the current target is determined

by the variable ILAW in common /WADWPN/. If this variable was set
positive in subroutine RECON, then the square root damage law is used.

Otherwise, the exponential law is used.

The input formal parameter S is a sum of the kill factors (each prepared
by function TABLEMUP) for all weapons assigned to the target.

The value returned by the function is defined as follows:

Exponantial Law

FMUP = exp (-S) (statement 1)

Square Root Law

FMUP = (1+) * exp (- /) statement 2)

Figure 50 illustrates function FMUP.

260

Law? Exponential Law

FMUP E RETURNR

Figure 50. Function FMUP

261

__ __ __ _I

3.11.3 Function LAMGET

PURPOSE: This real valued function calculates the Lagrange
multiplier for salvoed missile groups.

ENTRY POINTS: LAMGET

FORMAT PARAMETERS: LAM - Initial multiplier
P - Salvo balance variable
ISAL - Salvo number

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY: DEFALOC, SALVAL (entry INITSAL)

Methodl

Note that this function is a real valued function. Its correct usage
requires that a REAL LAMGET specification be present in the calling pro-
gram.

The formal parameters specify the original or first salvo multiplier
(LAM), the salvo balance variable maintained by PUPDT(P), and the salvo
number (ISAL).

The returned value LAMGET is computed as follows:

LAMGET = LAM -P * (ISAL -1) * LAM

Function LAMGET is illustrated in figure 51.

262

START

Figure ~= 51. FuntiG LAG

226

LAMG =I L AM-17

3.11.4 Subroutine PREMIUMS

PURPOSE: This routine calculates the premium used by WADOUT
in evaluating the benefit of using or not using
weapons from specific groups.

ENTRY POINTS: PREMIUMS

FORMAL PARAMETERS: G - An integer group number

COMMON BLOCKS: C30, CONTRO, MULTIP, PREMS, SURPW, WPFIX

SUBROUTINES CALLED: None

CALLED BY: WAD, DEFALOC, MULCON, SPLIT

Method:

The formal parameter G specifies for which weapon group the premium is
to be recomputed. Three modes are provided for the computation of the
premiums, depending on the value of PROGRESS.

PROGRESS < 1.0 A normal linear premium is computed which
keeps the allocator from producing alloca-
tions with unnecessarily large deviations
from the deaired alloLation rate (statement
L2).

PROGRESS 1.0 The normal premium is augmented by a step
function which strongly motivates the allo-
cator to exactly match the stockpile state-
mcnt 1).

PROGRESS > 1.0 The subroutine exists with a zero premium for
use in verification allocations (statentent 10).

Since the calculatlon, of the step function premium requires the quant ity
SM1ALLAM .5 * LAMEF(G) for the lowest value of LAMEF, this quantity Is
evaluated only on the firs: call of PREMIUMS after PROGRESS is 1.0 (state-
ment 18). Thereafter (stice the values of LAMEF are frozen while
PROGRFSS 1.0) there is no need to recompute this quantity.

PREMIUM is subtracted from the cost of adding a weapon. DPREMIUM I,,
subtracted from the cost of deletlng a weapon.

Mere a weapon surplus exists (i.e., SURPWP(G) >0), PRFMIUM(G) >0.0 and
DPREMIUM(G) 0.0. Where a weapon deficiency exists (i.e., SURPWP(G)<O),
the reverse is true.

Figure 52 illustrates subroutine PREMIUMS.

264

F'xitWithZeroY., auae Normal PMIh
Promiums____________ Forunto--oiiv o

ToArlAlocation

NooIs

116

Calcu265

3.11.5 Subroutine PRNTOS

PURPOSE: To produce optional prints for overlay STAL (op-
tions 12 and 13)

ENTRY POINTS: PRNTOS

FORMAL PARAMETERS: IOPT - Print option number

COM1ON BLOCKS: C30, C33, CONTRO, DYNANI, FORMTT, PREMS, WADFW,
WADLOC, WADOTX

SUBROUTINES CALLED: None

CALLED BY: PRNTNOW

Method:

The formal parameter IOPT determines whether option 12 of 13 appears.
The result of these options appears in the Users Manual, UM 9-77, Vol-
ume III.

I

"26

j =START

igure 53.xubr ut e PrinT

267L1 3 -e q u e s t

3.11.6 Subroutine SALVAL

PURPOSE: This routine selects the preferred salvo for each
salvoed missile group, saves, and restores the

* appropriate Lagrange multipliers.

ENTRY POINTS: SALVAL, INITSAL, NEWSAL, RESTORE

FORMAL PARAMETERS: None

4 COMON BLOCKS: C30, CONTRO, MULTIP, PAYSAV, SALVO, TGTSAV, WADOTX,
WADWPN, WEPSAV, WPFIX

SUBROUTINES CALLED: GLOG, LAMGET, VALTAR

CALLED BY: STALL, DEFALOC, WAD

Method:

There are three entry points, INITSAL, RESTORE, and NEWSAL. Entry
INITSAL is called at the beginning of automatic weapon allocation In
STALL or DEFALOC. First, it saves the multipliers LAM for each sal-
voed group in array SAVLAM. Then, for each group and each salvo,
INITSAL determines the salvo number and cost of the best salvo. *Vhe
profit of each salvo is defined as

PR i = VTAR -TLAM i

where VTARi is the value of the target at arrival time of salvo i and
TLAMi is the value of the multiplier for salvo i as determined by func-
tion LAMET. The salvo with the highest PRi is selected as the best
salvo. The salvo number is entered in array MYSAL in common block
/SALVO/ and the cost Li replaces the multiplier for the group LAM.
Entry RESTORE merely restores the original values of the multipliers
(SAVLAM) back to the multiplier array LAM. Entry NEWSAL checks the
current allocation and running sum for the weapon just added or deleted.
If the salvo has been completely allocated, NEWSAL flags the salvo as
unavailable. Entry SALVAL is never used.

Entry INITSAL

This entry is the most complex of SALVAL. The local variable IAM Is set
to "INITSL" to flag the exit points after statement 420 and at statement
500. The first processing (DO loop to statement 10) saves the Lagrange
multipliers (LAM) In the SAVIAM array In /SALVO/. The major processing
In IN]TSAL occurs iI the DO loop to st atement 100 over aill the talvoed
gi o tl.. . Withlin L is loop, tlio DO loop to statettut itO invest IgiI (,..
each salvo to determine its worth. Array IIAVE in /SALVO/ Is used to
exclude salvos from consideration. If IIIAVE (I, .) is false, then
salvo I in group J does not have any available weapons and is ignored.
If weapons were available, a jump is made to statement 420 in entry

268

A 'I
NEWSAL. That section of code, described later, determines if the salvo
to be considered is overallocated beyond its limit. If so, the salvo
is not further considered. If the salvo is available, function VALTAP
is used to obtain VTAR the target value for the salvo. Function LAMGET
is used to calculate TLAM, the multiplier for the salvo. The best salvo
is the one with the highest positive difference between VTAR and TLAM.
When this maximum is selected, MYSAL in /SALVO/ is set to the best salvo
number. LAM in /WPFIX/ is set to the appropriate multiplier. The arrays
TOA, 'I'NALTOA, and VTOA (in /WADWPN/) are set to correspond to the arrival
time of the best salvo.

Entry INITSAL is illustrated in part I of figure 54.

Entry RESTORE

1'This siple entry point uses a DO loop to statement 1000 to restore the
original values of the Lagrange multipliers (SAVLAM) to the multiplier
array (LAM).

This entry is illustrated in part 3 of figure 54.

Entry NEWSAL

This entry is used after each allocation of salvoed weapons to determine
If the salvo is still available. Each salvo has a maximum limit of
overallocation. Before PROGRESS equals one, this limit is +225 whicn
is the largest number which can be stored in the NSALAL array. (A de-
scription of the structure of the NSALAL as:ray is contained in the Method
section of subroutine ADDSAL, in this chapter.) When PROGRESS equals
one, a more severe limit is imposed in order to accelerate closure to
the stockpile. In this case the limit is zero. That is, a salvo is
available only if it is underallocated.

To exit from this entry, local variable IAM is checked. If it is
"lNrrSL," then the original call was to INITSAL and control passes to
statement 220 in entry INITSAL. If it is "NEWSAL" the routine exits.

Note that if a salvo is unavailable because of limit on a call to NEWSAL,
the routine attempts to find the closest lower available salvo. If none
can be found, then MYSAL is set negative to flag that no salvo is avail-
c&ble for this group.

Entry NEWSAL is illustrated in part 4 of figure 54.

In line function IHAVE extracts information from logical array LXIIHAVE.

269

START Entry INITSAL

10

Fave Values Of
Multipliers

Do 100 For Done RTR'

DnEach SaouAeepn
2

-No r I 4. Srup ruieSLA

(Prt1 f :EnryENdSL

Y270

220

220
VALTAR

Calculate TVar-
get Value At
Arrival Time

IR

Figur 54. Partoe5

300 Z 271

CNo

START

Do 1000 For Done
All Salvoed RETURN

aes tore
Saved

Mulilier

Figure 54. (Part 3 of 5: Entry RESTORE)

272

START

Save Entry
U Name And

Select

A Salvo

4273

A 420

Yes et Lmit o Dereas

Is Prgres

1.0?? Alow o Savo Nmbe

2valale INITSAL?FisSav

Fig3r0 S4. (Part 5of 5Is 274r atveT So

3.11.7 Subroutine SPLIT

PURPOSE: To split multiple targets for allocation purposes.

.1ENTRY POINTS: SPLIT

FORMAL PARAMETERS: NEWSP - Number of targets to be split off

COMMON BLOCKS: C30, C33, DYNAMI, MULTIP, SPLITS, SURMW, WADFIN,
, IADWPN

SUBROUTINES CALLED: PREMIUMS

CALLED BY: DEFALOC, WAD

Method:

If target has not been split before, the index* and offset* for its file
25 record are calculated and the record read in. The C33 data is stored
in the file 25 buffer and the split data set into block C33. If target
has been split before the new split is set up using the data from the
old split and rearranging the file 25 buffer. In either case, the weap-
on surpluses are adjusted and the premiums recomputed.

Subroutine SPLIT is illustrated in figure 55.

* 'I
C33 data is stored on file 25 after any weapon group records. There
are five C33 sets possible per multiple target and three target data
sets per file 25 record.

275L

START

Turn On New
Split Indicator
And Calculate

SzOfRemainder

Size Of

Fige 5. SbotnsPIT(at f2

inde And2 6

21

Calculate
New

Split Data

Move Contents

Of Old Buffe

To New Buffe

8

Reset
Weapon

Surpluses

Call

PREMIUMS
To Reset
Premiums

RETURN

Figure 55. (Part 2 of 2)

277

3.11.8 Subroutine WAD

PURPOSE: This routine carries out the addition and deletion
of weapons as specified by STALL. After each
change in the allocation to a target WAD computes
the surviving target value VT; for each potential
weapon G, the potential surviving value VTP(G) if
a weapon for that group were added; and for each
weapon currently on the target, the potential sur-
viving value VTD(NW) if a weapon from that group

were deleted.

ENTRY POINTS: WAD

:1 FORMAL PARAMETERS: None

COMMON BLOCKS: C30, C33, CONTRO, DYNAMI, MULTIP, PREMS, SALVO,
SURPW, TGTSAV, WADFIN, WADLOC, WADOTX, WADWPN,

WEPSAV, WPFIX

SUBROUIHNES CALLED: ADDSAL, FMUP, NEWSAL, PREMIUMS, PRNTALL, SPLIT,
WADOUT

CALLED BY: STALL

'4 Method:

The surviving target value VT is given by:

J=M N=NN
VT = Z , [V(N,J) -V(N + l,J)] * S(N,J)

J=l N=O

where

S(N,J) = FMUP [(MU(N,J) ** 2)/(MU(N,J) + SIG(N,J))]

The function FMUP(R) is defined as follows:

Exponential damage law:

S(N,J) FMUP(X) = exp (-X).

Square root damage law:S (N , J) F M U P (X) - (1 + V Y --) (e x p (f- V) .

The index J is over the hardness components, and the index N is over the
time of arrival bins. V(N,J) is the unattrited value of the Jth hard-
ness component at the time corresponding to the Nth time-uf-arrival bin.

278ILK

| ,,

F
IMU(N,.J) is the sumation of UP(G,J) for all weapons arriving at the
target through the Nth time-of-arrival bin.

SIG(N,J) is the summation of all the cross terms (relative to the Jth
hardness component) between all the weapons on the target by the Nth
Lime-ol-arrival bin.

'Ihe calculations indicated above are carried out by WAD in sets of
scratch arrays and computation arrays that make it possible to retain
all Intermediate values in the calculations. The resulting scratch pad
is then referred to and used wherever possible in computing the modified
value of VT,VTP(G) if a weapon G is added, and the modified value of
VT,Vr(NW) in the (NW)th weapon is deleted.

Table 7 will help to visualize the scratch pad results that are stored.
This illustrates the calculation at a time when there are three weapons
on the target (NU = 3), which use two time-of-arrival bins (NTOA = 2),
and there are two hardness components (M = 2).

The first time-of-arrival bin always corresponds to 0 time and reflects
the maximum target value, VAL(l) = 100, in the example, Bin number 2
corresponds to the first actual time of arrival and it contains two wea-
pons NWP(2) = 2, but the unattrited target value at that time is lower,
VAL(2) = 60. Thus, 40 units of value are assumed to escape before the
first two weapons arrive. Similarly, an additional 20 units are assumed
to escape before the last weapon arrives. The total value, 100 units is
assumed to be distributed 80-20 between the two hardness components
(VO(l) = 80, VO(2) = 20). The calculation Is carried out in parallel
for the two hardness components JHl = 1, JH = 2. The total surviving and
escaping value for each component, VSN(4,J), is added to obtain the total
surviving value:

VT = 57.6 - 48.0 + 9.6

The Intermediate computation values not previously defined, VS and VSN,
are defined as follows:

VS(N,J) - [V(N,J) -V(N + l,J)] * S(N,J).

NI=N
VSN(N + l,J) = £ VS(NI,J)

NI=1

These calculations which constitute the core of the calculations of WAD
are carried out in statements 400 through 406 of WAD.

It is useful to visualize how this computation (as illustrated in table
7 would be revised if a new weapon were added. The new weapon might
have a time of arrival between bins 2 and 3. In this case a new column
3 would have to be created for the weapon and the contents of columns 3
and 4 would have to be moved over. MU, SIG, and S for column 2 would be
unaffected by a weapon arriving at a later time and would remain unchanged.

279

Table 7. illustrating Calculation of Actual
Payoff on Target

TIME OF ARRIVAL CELL l_ 3_ - 4 _5

NWP(TOA) 0.0 2.0 1.0 0.0 0.0

VAL(TOA) 100.0 60.0 40.0 0.0 0.0

Hardness Element

J11=1 V(TOA,J) 80.0 48.0 32.0 0.0

VO()=80 M(TrOA,J) 0.0 .90 1.70

SIG(TOA,J) 0.0 .274 .385

S(TOA,J) 1.0 .50 .25

VS(TOA,J) 32.0 8.00 8.00

VSN(TOA,J) 0.0 32.00 40.00 48.0

Hardness Element

J11-2 V(TOA,J) 20.0 12.0 8.0 0.0

V0(2)=20 MU(rOA,J) 0.0 2.0 3.0

SIG(TOAJ) 0.0 .48 .915

S(rOA,J) 1.0 .20 .10

VS(TOA,J) 8.0 0.80 .80

VSN(TOA,J) 0.0 8.00 8.80 9.60

VT = 5?.6
NUM 3
NTOA - 2

M = 2

280

ilowt'ver , tile value of VS would be changed since the value of V (N + IAJ
tihould now ref ict the target value for the now column 3 and wouldl be
tii 1 i' 111 t an11w h ' .0 llow showwu for con luvl 3"1 ,sII . 1,11k vaile ofI M11

Mi 8U it 111o I 1 w Co I inl I wo ild be thet sallit as hIat f it vo I sill . ox -

Icit HdIM MIstN wollId 11v alsiivil ed by MIIP(CA fj)or 11v llew weap.11on mild Slt
Wli i 4 aiiIgivite1 by Uihe c ront term be Lweeii the now weapon01 and l o 1 0 hr
weaIPons. oil (he large I atI that time. The same ru Ico ti couirse app1 Ie (fo r

alsucceeding t line-of -arrival bins. In each following column (includ-
I lg old column 3, now 4~) thle previous value of MU is increased by MUP
I r the weapon added, and the value of SIC is Increased by the cross
terms b~etween all weapons previously on thle target and the weapon added.

Of course, the new weapon might fit into one of the existing time-of-
arrival lbins. In this case it would be unnecessary to make a new column,
and it would be unnecessary to recompute VS for tile previous column. Thle
value of MU and SIG would simply be augmented in the corresponding col-
until and in all succeeding columns as before. Naturally, after thle values
of MU and SIC are revised, the value of S must be recomputed and the VS
and VSN must be revised in the columns affected.

We now recall that W4AD is iequired to provide potential weapon added N

target valueo VTP(G) for every weapon group each time a weapon is added
or deleted. Obviously the calculation every timne of all thle above cross

eorms could tic very time consuming. Moreover, precalculat ion of all inl-
dividual cross terms for 250 weapon groups would bec equally Impractical.
The technique adopted, therefore, was to calculate cross terms for each
weapon group, but only with thlt weapons already on the target. Since
the process of augmenting the values of SIC must be carried out mndi-
viduially for each time-of-arrival bin, the resulting data are stored
by time-of-arrival bins. That is, for each weapon group G and each
timne-of -arrival coluinn, N, data are stored which indicates thle amount.
by which SIG would bi. increased in that column if thle weapon C were
addcol. These dlata are stored in thle array SICP(G,J,N). Using these
dlata, the effective &ugmentation of SIC to calculate VTP(G) for each
weapon group G can be accomplished simply by adding SIGP for the appro-
priate column, and thle augmentation of M is accomplished simply be add-
Ing M111 for each weapon G.

Table 8-A may help to visualize how these data are used. Each potential
group G is tagged with the idxITOA(G) of the time of arrival column
it would occupy if it were added. In addition, it is also noted whether
the weapon would generate a new crilumn (IADDTOAal) or share the colun
with thle weapons already there (IADDTOA=O). The situation illustrated
here in table 8 co:rresponds to the same one illustrated in table 7, No-
theo that for each weapon group C thle array SIGP(G,J,NI) c~ontains a sig-
uif leant (uisually nonzero) dlata for NI ITOA(C) -IADDTOA. Thle extra term
In thle column NI =ITOA (G) -1 for rows I and 5, where thle weapon graup
would require a new column (IADDTQA -I), is to provide a term requirld
for the new columns if this weapon were added. Since addition of this
weapon would move all columins (including its own) one position to the
right, thle resulting term would be in the proper position after moving,
even though it is In an incorrect column at present.

281

Table 8. Illustrating Quantities Calculated for

Potential Weapon Added and Deleted

Payoffs

j A. Data on All Potential Weapons

G VTP ITOA IADDTOA J DSIG, 3 NI=1 NI=2 NI=3 NI=4

(G) (G) (G)

1 2 0 1 .021 0.0 .042 .063

2 .103 0.0 .206 .659

2 3 0 1 .052 0.0 0.0 .45

2 .660 0.0 0.0 4.23

3 2 0 1 .274 0.0 .548 1.653

2 .780 0.0 1.560 1.880

4 3 0 1 .005 0.0 0.0 .010

2 .020 0.0 0.0 .040

5 4 1 1 .003 0.0 0.0 .007

2 .009 0,0 0.0 .018

B. Data on Weapons Now on TargetI (As Candidates for Possible Deletion)

SIGD(NWJ,NI)

NW IG(NW) VTD(NW) J NI=l NI=2 NI=3 NI 4

1 2 1 0.0 0.0 - .105

2 0.0 0.0 -1.32

2 3 1 0.0 - .274 - .052

2 0.0 -1.560 - .660

3 1 0.0 - .274 - .052

2 0.0 -1.560 - .660

282

Just as the information in table 8-A is used to piovide values of SIC
for computing VrP(G, the array SIGD in table 8-B is used to provide
values of SIG for the computation of VTD(NW). 'Tis table contains an
entry for each weapon currently on the target. The array IG(NW) in this
,ase Indltcaes that three weapons have been assigned, first from group
2, then group 3, finally another from group 3. The role of SIOD exactly

parallels SIGP; that is, to obtain the potential value of SIC, if aweap-
on were deleted SIGD is added to SIG in each column. Since SIGD is
negative, this has the effect of cancelling out the cross terms for the
weapon that would be removed. Ot couise, if removal of the weapon would
reduce the number of weapons in a time-of-arrival column to 0, the fol-
lowing columns would be spaced back to avoid unnecessary columns.

In summary, Lable 7 contains the scratch pad data used to calculate the
actual payoff. Table 8-A contains the corrections SIGP for SIG needed
to calculate the corresponding weapon-added estimate VTP(G) for each
weapon group G. Table 8-B contains the corrections SIGD for SIG needed
to calculate the weapon-deleted estimate VTD(NW) for each weapon NW now
on the target.

These arrays SIGP and SIGD are kept continuously up-to-date as weapons
fare added and deleted. For eximple, as illustrated in table 8, the
last weapon added was from group 3. Thus the last set of cross terms
computed would have been the cross terms between group 3 and every other
group. Those cross terms are shown in table 8-A in the array DSIG(G,J).
When the last weapon from group 3 was added, these terms were computed,
and for each weapon G they were added into the array SIGP in all time of
arrival columns where both the weapon G and the weapon 3 would be pro-
sent. In the array SIGID the same quantity:

DSIG (IG(NW),J3

I,; subtracted out for each column where both weapons are present, thus
removing the contribution of the weapon, IGC(NW), to SIG in the calcula-
tion of VTD(NW).

Whenever it is decided to add or delete a weapon from a group, KG, the
local subroutine CALSG is called to calculate the array DSIG(G,J) to ob-
tain the cross terms between KG and all potential weapon groups G. CALSG

is contained in statements 100 through 108 of WAD.

Table () (only partly filled out) illustrates some of the input data re-
quired by WAD. The array RISK(IAT,G,J) is used in calculating the cross
terms WSIW. However, those elements contribute where the particular
attribute (class, type, etc.) is shared.

The shared attributes between weapon groups GI and G2 are determined by
checking whether JATTRIB(IAT,GI) JATTRIB(IAT,G2).

vhe flowchart for WAD consists of 14 parts. Part I shows the overall
flow of the subroutine. The main processing by the subroutine is

283

'DE-

'-4

* 4

(n

o 1 1

H

o41-

4

o 0-00 00 coON' 0 0
E4 0 N 0 00Cq - CON

41)

41)

0 1

00

4. ~0 0 0 0*

0- (.q .n -4

C28

f

controlled by one of the control programs depending on the WADOP option
chosen (initialize, add, or delete). The following three parts each
illustrate the operation of one of these control programs. Each control
routine utilizes a number of other local subroutines, as well as exter-
nal routines (see figure 56).

The Add Weapon Control routine (Part III) will be used as a vehicle to
illustrate the operation of the program. Once the operations of this
routine are understood, the corresponding operations in the other rou-
t ios should be obvious.

The routine first checks to be sure that the number of weapon additions
and weapon deletion operations, lOP, on this target does not exceed 100.
If it does, it is issumed that STALL and WAD are caught in an endless
loop probably repeatedly adding and deleting the same weapon, so tile
processing of the target is terminated. In principle, such looping
should not occur. However, it has been found that errors in reading
file data for one target, or a random machine malfunction, or inconsis-
tencies in the data supplied to the program can sometimes result in such
a situation. This makes it possible for the program to proceed to the
next target rather than aborting the entire run. However, when thi,:
happens, the LOOP flag is set nonzero. This causes the print in state-
mnet 41 to appear during the initialization of every succeeding target,
so that the user is sure to notieo that the difficulty occurred.

However, assuming that no such loop has occurred, the routine adds the
Lagrange multiplier for the weapon added to the COST of the allocation
and also updates SUMPREM, the sum of the premiums for the target. (This
last variable SUMPREM, as well as the variables TBENEFIT and 'rPKLX near
statement 14, are computed only to provide a consistency check on the
treatment of premiums. These variables are not essential to the opera-
lion of the program.) Notice that these variables and almost all other
variables used by WAD such as VT, VTP, VTD, PAYOFF, PROFIT, etc. are
'omputed (even for multiple targets) as if the program were dealing

only with a single simple target. It is necessary to take target multi-
plicity into account only when dealing with variables which accumulate
the total cost, total payoff, or total consumption of specific weapon
groups over the whole target system.

The PREMIUMs used by the allocator, however, depend on lust such a vari-
able -- namely SIRPIMf(G), the available surplus (positive or negative)
of unused weapons in each group G. Consequently, when a weapon G is
added, the PREMIUM for that weapon group must be recalculated. Before
it is recalculated, SlRMP(G) must be revised as it is in statement 7
to reflect the multiplicity of the target; i.e.:

SURPP(G) - SIRIAP(G) -OTNULT

The variable CTMTULT, current target multiplicity, is used rather than
the initial multiplicity T(TMULT, because when PRCKGRESS is equal to 1.0
a multiple target can be split into oeveral parts of reduced multiplicitv.

285

The local subroutine SPLIT (Part VI) which begins with statement 9 is
responsible for determining if such a split is needed, and for carry-
Ing out the adjustment of bookkeeping on the arrays SURP1P and PREMIUM
if it is. To avoid unnecessary computation by WAD, SPLIT is designed
to minimize the number of times multiple targets are split up. The
intent is to avoid separating multiple targets, unless retaining the
full multiplicity of the target during the allocation of the weapon In-
dicated would cause a weapon surplus > .5 weapons. Such a change in
SURPWP should cause the step premium for the groups to change from posi-
tive to negative. Obviously it would be a mistake to keep allocating as
if the same premium would apply. Therefore, when this happens the tar-
get is split into two parts. One part, C'TULT, containing the largesit
multiplicity that could be allocated a weapon from one group without
causing the premium to go negative, the other part, CTSPILL, containing
the remainder.

After this is done, it ia necessary to correct the value of SURIAP and
recompute the premiums. To understand what is required to do this, we
must recall that when 11L(ROlN began the allocation to the target on this
pass, it removed the weap gxs previously assigned to all the elements ot
the multiple target and tnius increased SURPWP by the multiplicity for
each weapon previously assigned. If a decision is now to be made that
only part of the target is to be dealt with, the old allocation should
in effect be restored for the remainder of the target elements. Thus,
in statement 9l, SURP1P is decreased by the change in multiplicity tor
each weap,)n previously assigned. Conversely, while the present alloca-
tion was proceeding, SURPWP was being decremented by the multiplicity
for each weapon assigned. If we now intend to interpret the allocation
as applying only to a part of the total multiplicity, then the value of
SURP1P must be increased as as in statement 908 by the change in multi-
plicity for each weapon already assigned. Finally, since the value ol
PREMIUM(G) depends not only on SURPWP(G) but also on CTMULT for the tar-
get all premiums are recomputed (statement 930). This completes the
bookkeeping corrections made by SPLIT. A slightly different version of
SPLIT beginning at statement 21 is used by the deletion control routine.
In this case the question is whether deletion of the weapon group [or
the full multiplicity would cause a deficit > .5. Aside from this ob-
vious change in si ;n, however, the operation is essentially identical.

In both versions of SPLIT, subroutine ADDSAL is used to modify tht' stock-
pile for salvoed missile weapons.

When SPLIT has completed its work, the program proceeds as usual to up-
date SIRAP for the weapon now being added and PREMIUMS(G) is cal ld a,,
usual.

Both the add and delete weapon processes exit WAD through statemelt I.'.
At this statement, WAD cea'is: 1) ADDSAL to update he salvoed W,1apon
stockpile; 2) NEWSAL to determine if the preferred salvo is still avail-
able, and 3) WADOUT to calculate the decision variables for STALL. Attel
these calls, WAD updates the payoff, cost, profit and benefit variables.

286

The main functioning of WAD, however, proceeds after the stockpiles have
been set and premiums calculated for each weapon group. This function
Consists of updating all the arrays in tables 7 and 8 to reflect addition

cal subroutines.

First CALSG (Part VII) is called to compute the cross term array, DSIG,
in table 8-A. Then ADDSIG (Part VIII) is called to update the arrays

SICP and SIGD. For maximum efficiency, the revision of the arrays, SIGP
and SIGD is done one column at a time, working from right to left and
dealing only with those columns affected by the weapon C. If the weapon
C adds a new column, the column NI - NWRT where the augmented results
are written will be displaced one column to the right of NI - NRD wfhere
the original data were read. However, before actually updating these
two arrays in each column, the data currently in SIGP in that column are
used to update SIC in table 7. Since this value of SIGP was required to
add the weapon G, the negative of it would be required to delete it.
Consequently, at the same time SIGP is simply negated and stored in SIGD
to produce a new row (1NM 4) for the weapon G in table 8-B. Nli of
these operations required to update SIG, SIGP, and SIGD are done in

series for the same read and write columns, one column at a time until
the updating is complete.

INext, ADDIND (Part IX) is called to update all the indices to reflect

the addition of the new weapon. The indices which must be updated are

in table 7 NUM, NTOA, NUWP, VAL, in table 8 ITOA, IADDTOA.

When this has been done the payoff computations begin. CALPAY (Part
X1I) is called first to calculate the actual payoff (table 7). Since
this involves on € one calculation it is done in a very straightforward
way and is completely recalculated for all columns. Thus, the subrou-
tine CALPAY is very straightforward and easy to understand.

The updated Information in table 7 is then used as a basis for calculat-
Ing the weapon added payoffs (CALPOT, Part XIII) and the weapon deleted
payoffs (CALDEL, Part XIV). To avoid any need for additional arrays to
store intermediate results these calculation,, are done (both by \IALPOT

and CUALDEL) one weapon group ond one hardnes. component at a time work-
ing straight down the lists in table 8. For each group and each hard-
ness component the calculations then work from left to right dealing

only with columns affected by the new weapon. For the columns in table
7 that would be affected, revised values Sl of S and VSNl and VSN are
computed working toward the right to obtain the final values which can
be added to obtain the revised value VTD for the weapon deleted calcula- ,
tions.

When all payoffs.have been calculated, WADOU1T is called suizmnarizing the
results for STALL, and finally the actual PROFIT, and PAYOFF, BENEFIT,
etc., are computed and stored so that they are available to be printod
if such information is requested. WAD then returns control to STALL.

287

The control routine for weapon deletion exactly parallels the above pro-
cedures except that SUBSIG and SUBIND replace ADDSIG and ADDIND. SUBSIG
parallels ADDSIG almost exactly except that the order of processing col-
umns is reversed to avoid writing over essential data as columns are
spaced back. SUBIND differs from ADDIND mainly in that indices are de-

:4 cremented instead of incremented.

The initialize control routine (part II), and the local subroutine
INITIALIZE (part V), are concerned with establishing the starting state
for the allocation to a target. After the discussion of the and and
delete routine, the flow diagrams should be self-explanatory. However,
a couple of comments may be appropriate. For computing efficiency the
initialization is limited to the minimum required to provide the start-
ing state. Many cells in SIGP and SIGD are not initialized and irrele-
vant data will remain in many cells. Thus on targets after the first
target during the allocation, many cells shown in table 8 with irrele-
vant zeros, may in fact contain irrelevant data that will not be refer-
enced. Particular attention is called to rows containing inactive weap-

, ons. These rows will not be reinitialized at all and thus will contain
much irrelevant data for prior targets.

On the initialization call, the only nontrivial payoffs that need to be
computed are the potential weapon payoffs VTP(G). Since at this stage
these all involve only one weapon, the correlation cross terms are irrele-
vant. Consequently the simple formula,

S = FMUP (+ MUP(G))

can be used.

288

fI

Suary Flow
Call PR.%7ALL(9)

Optional Print Shows
No Decision By STALL And

Prior Payoff And
Potential Payoff

In tiaiato Yes Supplied To STALL

Initialization STLSkip Print

a S 40
t.... Error (h'ADOP>4),

Go T=o - (S Set Loop

ntl AleWAp ro D Negative As
Error Flag

O T eGDummy Call
To Print |
Final STALL |
Decision
PRNTALL(9)

S ii 18 t

Initialize Control Add Control Delete Control
Initialize All WAD Add One W'eapon From D l t N~ h W a o

On New Target; Set Group (G); Calculate late Spevified; Target
Surviving Target Value Surviving Target ValuelaeRvsdTre
(VT-VTO); Calculate (VT) And PotentialVae(r)ndPe-

Potential Target Value Value If Any Single Single ep Ade
If Any Single Weapon Weapon Added (VTP(G)) Single Weapon Added

Added (VTP(G)) Or Deleted (VTD(NW)) (VTP(G)) Or Deleted
(Vro(NW))

43

(RETURN

Figure 56. Subroutine WAD

Part I: Sunmary Flow

289

II'

Initialize
Cost=0.0

SUMPREM40. 0

Set Kill Level
Specifications For

Target- Implementing
MINKILL, lNAXKILL;

Initialize Target Value
Factor (ALPIIAM1 .0)

Iniialize itenal

OWeapon rAytos And luae

VTP(G) For All Groups

Uso Has(C, Loop YaceIpy ro

Fiur 5. ar I:Initialize PaynffrAl

*LocAX Beubroutine

WAOU (P X=)J290 ETR

AdLAIMor Wa o Croup rAsuePrga

Targe WAuO Ad Pre ic um NoYs opng-
ChaIng in S~TO ums10PIloIleglG)1

VOr Pochm WFaon Target

Yesclao Addiiis Mutil Trgt It
Is Cor0rlionIql U. LwrMutpiiychnmsr11.R

l'Wapo Stockpile~

Into -4 Po t Paotf

To pd t I'M

Call AUD1NO*(2

Cpate ll CInd.S T _______

Rflcunte Addition PSf

ForWepon G) Jp i

STAL

*all SubruINOsCll

Reflct ddi ion r 56OftII: AdWao Con,10t o d [aof

291.

'I.S.

jor Target, And Add Premnium

preiuns Por Target

call SPIU

Is YeMulIts0Wtiple Targets

PRGRSS YosI to lnto Lower Multiplicity
pROGR~SS.IQ.1?en Decsirable I'or Closing

No ToExact Wcapoll Stockpl~e

19
For Weapon Group Deleted

IncereaSe SURPWPII(G) By
Current Target
Wltiplicity

920
Call P1INlIAIMS

For Hiach Weapon1 Group
Calculates Reduction DI

Updates MI1) And SIC InI
payoff listilate, Suibtract

D)SIG As Required InI

Updajtes Indi1coS To CAL.,A%' Actua 1 Payoff

Reflect Do lotion CA1I'O1' Woapon Added Paytififs

110111a01n (G) CAIDI. Weakpon Do lotod Payoff.,

*Local subroutinle

Figure 56. Part IV-. Delete We0aponl Control

292

To zero, Alli Set Target
Value III Zoeot Cohltu

11, Table 1
I itiali'd MU,

SIG, V. S: VsN

Initialize Total
Sur\ving Valueo

VT Andi NVZO

Call SI ForU All
Not Poal late Dn ~ TR

13ciUN For Tisu L

Target ValueI l

~Ir5S opntSI'

(INATIE-0)

111tiniz Po~l293TW

- rrv

[Called in Closing Phase of Allocation, Before Adding (or Deleting*)
a Weapon--Splits Multiple Targets into Lower Multiplicity When It
Will Help to Meet Exact Stockpile]

START

Determine hether The Stockpile
Target: - . S)-SURPWP (G)S-(.S)

Could Be Achieved If Weapon G Were
Added (Or Deleted) Only For A Sub-

set Of This Multiple Target

Could Stockpile No

Be Met?

Yes

907

Reduce Current Target Multi-

plicity (CTNrJLT) As Required
And Increment lements

Spilled For Later Processing
(CTSPILL)

44
"I

Call

SPLIT

911
Correct SURP1P(G) For

Multiplicity Now--

And On The Previous Pass

*i SRETURN) !

Separate Copy in Program with Change of Signs for Weapon
Deletion.

Figure 56. Part VI: Local Subroutine SPLIT

294

I

STAr

100

P- Active W~eapon Groups

I01 Do

Aeceuulate Total Shared Between
This Group And Group G Added
(Or Deleted) Sumiung Over All
Common Risk Attributes IAI'=I,

NAT To Cover Idontities By Class,
Type, Region, Alrt Status, And

Group--Tako Minimum Value Of The
Two Since Shared Risk Cannot Exceed
Total RisK For least Risk Weapon

Figure 56. Part VII: Local Subroutine CALSG

295

CSTART

Initialize Read
Columnn (NRD) To

Lo aHrs Comnent

Durment U end oluin beI
a Estimate) By OnU, And SetPFo

Andt VColNmn Column

I o PnrTcbl e m e Yes AndUR
DoesT Nrew Colum AndAdd ArrNewlRolum For ao

Wapond Bing ale11-

For Hall Hdes Coaponent
TbelBAugment n SIG abe1
E-tmtBy Negtiv AtdSG o

Weaton ernv MUSIG

orAleposIn Table IMv A n

columns ~Ad afece byw neRwao w Ifo Weapon adsanwclmt

lso mves th datao colm Othe rih byaon Itng aclm

FTgbre 56.B PArgt IM oa
Subrouatie ADD

2296

Fo - l -epn I al

Anrmn Numbe Of N

25 l cieGop fArrival Columns

AdVInrTmblt IuFr Nef
CoUpndat INitbeOflieV

260 Allcti e ToZroup Ifrast Columnl

SAptret Cs I olu n Incrmin 272Fo

Grou BeoreOr fte IfNeColumn n ddeid
Colum Adde? Iniialieao VAdded1

Figure 6.um Part LX:i- Loca

TaSbrotet ValueINDt

297y N

Column (ITOA) Of
Weapon Group Deleted

Only One In Its Column

IThs GWru Hacdo o ,DermemeUAd I In Table 14
I TOA s Group FrWao Deleted) Ten.VL ndNW Back

Update S1GP In TabeO5A Column f Necessary

And 15-B And Store In Prior
Column To Preserve Data On 31

Lost ITOA Column31
___________ In Table 15-A, Decrement SIG'

By DSIG For All Columns After
And Including Affected Column-
Space Back If Column Removed

314

In Table 15-B, Decrement SIcM1
By DSIG For All Columns After

And Including Affected Column-
Space Back If Column RemovedJ

322

304 I Tabe 1511, eep Table Com-
IncrmentReadpact By Spacing IG And SIGD
IncrmentReadData Below Row For Deleted

Weapon Up One Row

Figure 56. RPart X: Local
Subroutine SUBSIG

298

N O n)ea LACs Nou re~ItTm

Sb l A o T eium e Of Arrival~1
Colum CSOlun. S (TA().TAL)

Figu2 56.cen tarte Of Lca

Groups oiluni SU(ND)

299

:ART

START

S ur vv ng -0 Hach Hlar dnss -'

Value (VT) Component (J))

l 1D° 06
,D o 4 0 5 A c m l t

R~~llJRN ~To Last TOA - Ttlvr
Column (N) CompoI)DIts (J)

Calculate Survival Probability
Through This Time Of

Arrival (S(N,J)); Apply This
Survival Probability 011 To
That Value Available NoWBut
Not At Next TOA IntervT And
Ac cumulate Surviving Values

Calculate Zeroth
Order Survival

Value NTZO

Calculates Actual Surviving Targot Value, VT:

w= Z] S(N,J) * [V(N,J) - V(N+I,J)

Jos Nu
(l,M) (l,NTOA)

and Zeroth Order Surviving Value, VTZO;

V'ZO. S(NTOA,J) * VO(J)
J

Figure 56. Part XII: facal
Subroutine CALPAY

300

A

V START

: Do 512 For
~All Active RTR

Weapon Groups 2 RTN

• Do502

Initialize Potential
Target Value

VTP=O

Accumulate Potential Do 510 For
Value Surviving Each Hardness

: VTP= VSIComponent

If This Weapon Would Add New
TOA Column, Calculate

Revised Value VS And VSN
For Preceding Column

S 04

For Each TOA Column After And
Including That For This Group G,
Calculate Revised Probability

(Sl); If This Weapon Added
(Increment MU And SIG Of CALPAY
By MUP And SIGP For This Weapon)
-- Accumulate Revised SurvivalIValue VSNI For This Component

Figure 56. Part XIII: Local
Subroutine CALPOT

301

602

Do 612 For All
Weapons Now RETURN
On Target

~Do
, 610

Accumulate Potential Done Do 610 For
Value Surviving, J All Hardness
VTD = VSN 1Components

Do
604

If This Weapon Would Deleted
A TA Column, Calculate B U

Revised Values For VS And VSN
In Previous Column!

606

For Each TeA Column After And
'I Including That For This Weapon, Cal-
l culate A Revised Survival Probability
' S1 If This W~eapon Were Deleted
! (Reduce MU And SIG Of CALPAY By MUP

And SIGP For This Weapon)--Accumu-
late Revised Survival Value VSN1

For This Component

Figure 56. Part XIV: Local

Subroutine CALDEL

302

J

Fl

SI

3.1L.9 Subroutine WADOUT

PURPOSE: This routine sunmarizes decision alternatives for
STALL by combining payoff data produced by WAD
with the weapon cost data (Lagrange multipliers
minus premiums). It also contributes to the effi-
ciency of WAD by making inappropriate weapons in-
active.

ENTRY POINTS: WADOUT

FORMAL PARAMETERS: None

COMMON BLOCKS: C30, C33, CONTRO, DYNAMI, PREMS, SALVO, WADFIN,
WADOTX, WADWPN, WPFIX

SUBROUTINES CALLED: PRNTALL

CALLED BY: WAD

Method:

The output data produced by WAD consist of the following parameters for
STALL that are recorded in /WADOTX/:

PPIX and IPPMX - the maximum potential increase in effective
profit for any single weapon; and the index G to that weapon
group, respectively.

PVRM and IPVRMX - the maximum effective efficiency of any
potential weapon; and the index G to that weapon group, re-
spectively.

DI N and IDPMN - the minimum marginal effective profit for any
weapon now assigned; and the index NW to that weapon in the
list of weapons assigned, respectively.

It also produces the array INACTIVE(G) in /WADWPN/ which is used by WAD
to determine which weapons groups need not be processed.

The input data from WAD consist of:

VT - the surviving target value in /C33/

VTD(N) - the potential weapon deleted surviving target value
(also in /DYNAMI/ (equivalenced to RVAL)

VTP(G) - the potential weapon-added surviving target value in
/WADFIN/

303

1

The input data on weapon costs consist of LAMF(G), PREMIUM(G), and
DPREMIUM(G).

WADOUT also initializes VTMAX and VTMIN of /WAD(YX/, and MAXCOST which
reflect the MINKILL, MAXKILL specifications for each target.

The quantities ALPHA and VTEF of /WADOTX/, are essentially local vari-
ables for WADOUT. They are included in this common block for use by
PRNTNOW, and in the case of ALPHA, to allow WAD to reinitialize it to
1.0 for each new target.

The flow diagram, figure 57, is in three parts. In part I, the user-
input parameter IMATCHI is used to determine the method of computing
MINKILL and MAXKILL. If IMATCIH is 0, then the damage calculations used
to determine residual target value for purposes of MINKILL and MAXKILL.
use time dependence of target value. If IMATCH is nonzero, then MINKILL
and MAXKILL are computed relative to the original target value. In addi-
tion, if IMATCH is 100, then the routine prints the WADOUT variables, VTO,
VT, VTZO (original target value), FLGMN, FLGMX, SVTMIN, SVTMAX, VTMIN,
VTMAX, and ALPHA.

The Do loop ending at statement 18 is used to flag all groups with fixed
weapons on this target as active. This prevents their being removed dur-
ing processing and maintains the validity of the damage calculations.

In Part II, the processing begins by evaluating the actual effective sur-
viving target value VTEF. It then scans all weapons currently assigned
to calculate the output quantities DPMN and IDPMN. If any weapon now on
target fails to destroy a fraction of the original value greater than

/1' MINDAMAG, the weapon is flagged for inmiediate removal (statement 15).
At the same time, the groups already assigned are flagged with INACTIVE

S= -100 to eliminate any possibility that they would be erroneously set
inactive. (WADOUT never exits with INACTIVE set negative. A weapon
group flagged with a -100 is always reset to INACTIVE = 0 before the rou-
tine exits.) (Do 14 loop)

Basically, the processing in part III is concerned with scanning all po-
* i tential weapons to calculate the output quantities PPMIX, IPPM, PVRM,

and IPVRKX. Any weapon whieh would fail to destroy a fraction of the
original value greater than MINDAMAG will be ignored in these calcula-
tions. Thus, it could never be allocated to the target.

In addition, if a weapon is a salvoed missile but no salvo is avaiLable
(i.e., MYSAL(G) less than or equal to zero), or if the group has no weap-

ons, then it is not considered as a potential weapon.

At the same time, however, the values for the array IN*CTIVE(C) are es-
tablished. The INACTIVE array for each target is permanently stored on
the WPNTGT files, as it was originally computed by GETDTA, with only
two values -- zero for weapons in range of the target, and 100 for

304

weapons out of range. Consequently, when these data are read on suc-
cessive passes for each target, these initial values are automatically

K s restored.

External to WADOUT the INACTIVE array is treated as if it has only two
values - zero for active weapon groups, and nonzero for inactive groups.
WADOUT makes weapons temporarily inactive relative to a specific target
by setting INACTIVE equal to either 2,000 or 30,000.

If WADOUT exits with either value, 2,000 or 30,000, the weapon is treated
as temporarily inactive in exactly the same way. The difference between
2,000 and 30,000 is relevant only if WADOUT recycles without exiting.

WADOUT will recycle if, after all potential weapons are examined, it is
found (upon return to Part 2) that there are no potential weapons that
appear profitable and, moreover, that the required kill probability,
MINKILL, has not been achieved. In this case the value of ALPHA is in-
creased to make the target seem more valuable and the evaluation is re-
peated. When this occurs, weapons tentatively set to INACTIVE = 30,000
are reset to 0 and the decision to inactivate them is reexamined.

If WADOUT exits with INACTIVE - 30,000, it is always set to 2,000 it
WADOUT is called again.

The operation of Part III of WADOUT can now be summarized as follows.
In the execution of this Do loop inactive weapons, INACTIVE 100, 2,000
and 30,000 (30,000 except on a recycling pass), are skipped. All active
weapons, INACTIVE - 0, -100 (or 30,000 on a recycling pass), are evalu-
ated. Those for which INACTIVE is no. negative are then considered to
determine whether they should be made inactive.

This consideration (lower half of the flowchart) is as follows:

I a. Any weapon that still shows a positive potential profit remains
i active.

i b. Any weapon which does not show a positive profit against the
full target value (in the absence of other weapons) is made
inactive.

c. If there are other weapons on the target the weapon remains
active unless its efficiency is less than .1. This reduces
the chance that an inactive weapon could become profitable if
some other weapon currently on the target were removed.

d. It the efficiency is less than .1, it is made inactive unless
there are already unprofitable weapons assigned. In this case
the decision to make it inactive is postponed until these un-
profitable weapons are removed.

1305

- - - -

Call 111INTALL41.)
WO) Arrays

N1 is Il'\TCtI Pi1rameter

1~ yom~' 1
700

111itl~llStiol 5?. 1 Surtill Beet% Met

10306

A

Do 14 For All Remaining Done
Weapon Groups Assigned A

To Scan Potentialz Iz Weapons For BENEFIT
And Set Some Inactive.

Tag Groups Assigned To If Appropriate
Remain Active,

Set INACTIVE = -100

! 31

F Set "Effective"
Value If Weapon Deleted,
[VTDEF - VTMIN

33

Calculate BENEFIT From
Weapon (Difference In
Effective Value Minus

Premium For Deleting It)

S/ Does Weapon Set Large

Destroy Fraction Of NegativeI Value Greater Than "Profit"

, MINDAMAG ? For Weapon

Yes
16

Calculate "Profit"
BENEFIT-COST For
Weapon And Note

Weapon IDPMN With
Minimum Profit DPMN

Figure 57. (Part 2 of 5)

307

A

Do 10 For Done

S Groups

s WeaponN
Yes Salvoed And -0

" ' Available

Salvo?

SNo

kNo Weapons

In Group?

SYes

InactiveT P As i

"-C INACTIVE

SConditionally

Inactive=30000
35 37

WADOUT Pass? > No - Active

REVAL=" FALSE. INACTIVE=0

36

Set
-- Inactive

INACTIVE 2000

Figure 57. (Part 3 of 5)

I '308

B

Any Yes
pratitable
Weapons?

No

110
Has

Required Yes

11INKILL Been
Achieved?

No

120
Has

Maximum Yes

Allowable Cust:
Been Used?

No

Increuse ALPHA BY

A Factor To

Increase Effective
Value

YesIs ALPHA RE-TURN

Too Large?

No

130
Note This As

e ondary WADOUT
TRUE.

Pass e

Recycle

D

Figure 57. (Part 4 of 5)

309

G

40
Sot: "Effective"

value of Weapo>n G
if Added

VTI'EF-~Tl

calculito O.tial

tlr SFIT Of Adding Wepn
(3lfforenwo In~ Effl'ctivO

Addin. It.

Desltroyetn

No racioOfValue M

M~c Actireator Clio

'odtoally
T"1%j

Figure ~ lu 57 (ar 5of5

310alVlu P

-- lhIa.I#1IM

3.12 Subroutine DEFALOC

PURPOSE: The purpose of this subroutine is to allocate
missiles to an individual target which is defended
with terminal ballistic missile interceptors (i.e.,
MISDEF > 0).

ENTRY POINTS: DEFALOC

FORMAL PARAMETERS: None

COWION BLOCKS: CIO, C30, C33, CONTRO, DEFCOM, DEFRES, DYNAMII,
PAYSAV, PRE11S, SALVO, SURPW, WADFIN, WADOTX,
WADIPN, WEPSAV, WPFIX

SUBROUTINES CALLED: ADDSAL, HEAD, INITSAL, LANGET, NEXTTT, PREMIUMS,

PRNTALL, RESTORE, RESVAL

CALLED BY: MULCON

Method:

When MULCON has read in data associated with a new target, it examines
MISDEF to determine if the target is defended with terminal ballistic
missile interceptors. If MISDEF = 0, indicating no defenses, it pro-

- ceeds to call STALL for the allocation of weapons. If MISDEF > 0, then
there are terminal interceptors present; DEFALOC is called after call-
ing STALL to allocate the missiles to the target, and the most profit-
able allocation (STALL or DEFALOC) is chosen.

The input variables describing the target's local ABM capability allow
uncertainties to be introduced in the number of interceptors present.
MISDEF is the nominal number of interceptors on the target, each with
kill probability PKTX against unhardened warheads, and RADPK is the ran-
dom area defense kill probability. In addition, four other parameters
are defined (the same for all targets) which introduce uncertainties in
MISDEF. RX(l) (input as LOWFAC) is a factor which, when multiplied by
MISDEF, gives a lower estimate of interceptors which has probability
PX(I) (input as PROBLOW) of occurring. Likewise, RX(2) (input as
HIGHFAC) and PX(2) (input as PROBHIGH) define the overestimate of in-
terceptor availability. Thus, if there is imperfect knowledge of the
terminal ABM capability, the allocator can hedge against these uncer-
tainties when assigning weapons.

In addition to the target-associated ABM data, it is possible to de-
scribe penetration aids suitable for the various missiles by means of
the payload table. For a particular payload index IPAY, the following
variables are defined which describe the terminal missile defense pene-
tration aids:

This subroutine is the first of segment DEFAL.

311

I'k

N NHWD = Number of warheads per independent reentry vehicle.

NTDECOYS = The number of aim points the terminal defense sees
fo, each independent reentry vehicle (in addition
to the warheads). These are terminal decoys.

XDEG A factor by which the PKTX is multiplied to obtain
terminal interceptor kill probability against this
weapon type. It reflects additional hardening of
the warhead or electronic penetration aids which
can degrade interceptor effectiveness.

The first decision in DEFALOC concerns the verification pass. If PROGRESS
= 2 and IVERIFY = 2, the current call on DEFALOC is a part of verifica-
tion pass to determine the effect of a new correlation factor. Since
DEFALOC does not consider interweapon correlations, no processing is done
in this case.

Before allocating any missiles, DEFALOC determines if STALL has been
called. STALL will not be called if the number of fixed assignments
exceeds 30. If STALL was called, the surplus weapon indicators SURPWP
are reset (statement 76) as if STALL were not called. This procedure
provides for the correct premium computations in RESVAL.

As part of the initialization, DEFALOC calls INITSAL to set the arrays

in block /SALVO/ for this target. In removing the weapons allocated by
STALL, routine ADDSAL was called to restore the salvoed weapons to the
stockpile. After calling INITSAL, DEFALOC computes the maximum number

of weapons that can be allocated from each group because of salvo re-
strictions (NSL(G)). For nonsalvoed groups, NSL(G) is set to the num-
ber of weapons in the group, NWPNS(G). For salvoed groups, NSL(G) is
set to the difference between the current stockpile and the maximum
stockpile. Before PROGRESS = 1.0, the maximum stockpile is 225 more
than the available number. During the verification pass (i.e., PROGRESS
greater than 1.0) NSL(G) is set to 1000 for all groups.

If there are fixed assignments on this target (statement 79), DEFALOC
assigns these weapons first. On the second and later passes (statement
78) the operation is relatively simple. The old allocation contained
in the IG and KORRX arrays of /DYNAMI/ is loaded into the IFW array and
the NOWEP array. The NOWEP array defines the potential DEFALOC alloca-
tion. If the number of fixed assignments exceeds 30, the value of the
KORRX array is equal to the negative of the number of weapons assigned
(see statements 72 to 96). This procedure allows specification of more
than 30 weapons within the 30 elements of the IG array. If the fixed
assignments are less than 30 in number, each entry in the IG array
represents one weapon.

Processing differs if there are fixed assignments on the first pass.
The Do loop starting at statement 97 and continuing to statement 85
allocates each fixed weapon. There are several tests made on proposed

312

fixes in this loop. First, if the fixed weapon is a bomber, DEFALOC can-
not be used since it allocates missiles only. Statement 40 tests if
STALL were called. If so, the STALL allocation to this target is used
without further DEFALOC processing. If STALL was not called by reason
of an excess of 30 fixes, statement 41 prints an error message and the
fix request is ignored. If the fixed weapon is a missile, its active

flag is tested in statement 50. If the weapon cannot be allocated, an
error message is printed* and the request ignored. Otherwise the weapon
is asoigned. A group counter is kept (statement 86) to determine the
number of unique groups represented on target. Statement 91 assigns the
weapon. The following statemexits increase the total cost and number is
computed in array ISALFX(G) for all fixed salvoed weapons. For salvoed
fixed weapons function LAMGET is used to calculate the weapon cost.

After assigning all fixed weapon requests currently input, DEFALOC deter-
mines if there are more requests to be read in the first pass. This is
done by continuing to cycle the ASGWPN chain. IFIXEND is used to indi-
cate when this process is complete.

Statement 75 is the exit from the fixed assignment processing. The DO
loop from statement 75 to statement 74 places each fixed weapon into
the IFW and KORR arrays to be saved for later use. In addition, the
expected number of objects (warheads and terminal decoys) perceived by
the terminal defense is computed and stored in variable NOBJ. The avail-
able number of weapons, NSL, is also documented.

Before allocating any weapons to the target, DEFALOC calculates an approx-
imate maximum rate nf return for attacking the target with the best mis-
siles available, using exhaustion tactics (statement 84).

The missile allocation proceeds as follows: first, those missiles with
the cheapest terminal objects (warheads and terminal decoys) are allo-

cnted until the terminal interceptors are exhausted. Then each missile
type in turn is tried to determine which type has the greatest payoff
per unit cost when added to this exhausted mix of weapons.

Since the payoff function for a defended target is generally not convex,
one cannot look at only the rate of return of the next missile to deter-
mine whether the target is profitable to be attacked. Rather, it is
necessary to allocate weapons beyond the exhaustion point and then search
for that allocation which yields the highest average rate of return. If
this average rate is greater than one; i.e., a profit is realized by
attacking the defended target, then the allocation can actually proceed.

The exhaustion phase of the allocation is carried out in the statements
between statements 400 and 600. The postexhaustion phase starts at
statement 600 and continues to statement 2000.

This print includes an indication of the reason for the weapon inac-
tivity. The reason is placed in array MORRX for all inactive weapons.

313

I

In all calculations of target damage, subroutine RESVAL is called to
determine the residual target value (VTDX) for the specific mix of weap-
ons allocated at the time RESVAL is called. Appearance of VTDX in the
flowchart implies a call on RESVAL. The program, however, can only allo-
cate missiles from a maximum of 30 groups in total, which must be kept in
mind when specifying target defenses. That is, it 30 groups cannot pro-
vide sufficient objects to exhaust the defense, this tactic is excluded
by the allocator. In addition, only 40 percent of the weapons in any one
group can be allocated to a single defended target.

At each stage of allocation, DEFALOC determinys that the number of weap-
ons allocated from any salvoed group does not exceed the number avail-
able for allocation. Array NSL is decremented for each allocation. When
it reaches zero, all the available weapons are allocated.

When DEFALOC has completed its laydown, it compares the resulting profit
to the STALL profit. If the STALL profit is greater, DEFALOC sets NBLN

M HISDEF, and restores the STALL allocation. If DEFALOC has a greater
profit, it sets NBLN - -MISDEF. If only one of the subroutines has pro-
duced an allocation which met the required MINKILL, that allocation is
chosen regardless of profit. Then DEFALOC loads the IG and KORRX arrays.
First, the fixed weapons are placed in the arrays and then the nonfLxed
ones. In all cases, the KORPX array contains a negative number corre-
sponding to the number of missiles allocated from the group specified
in the corresponding position of the IG array. Subroutine ADDSAL is
used to modify the salvoed weapon stockpile.

This subroutine also calculates a modified value for deleting a weapon
from the target. This value, DELVT in /WADFINAL/, is used by MULCON to
compute the relative damage caused by each allocation, RVAL. For fixed
weapons, the value of DELVT is set to the original target value, VTO.
For all other weapons, DELVT is equal to the difference between the
final residual value, VTDX, of the entire allocation and the residual
value if all nonfixed weapons of the same group were removed.

Figure 58 illustrates segment DEFALOC.

314

START

5025

PROGRESSV2 yes RTRIVERIFY-2? _ RTR

No
1047

Initialize
Variables

No Was STALL
AA Called?

Yes

76

Remove STALL
Contr bution

, SUWP

84

Determine
Highest Rate,LJ of Return

~For MissilesJ

Figure 58. Segment DEFALOC
Part I: Normal processing

(Part I of 5)

315

Al

Is Defense Yes

Exhausted?

No
400

Add Best
Missile

Recalculate
Rate For

Best Missile

50

etermiae
Highest Rate
Of Return

For Missiles

Yes 30 Groups
Allocated?

No
501

s Defense
Exhausted
Or Best Rat
<-9000?

Yes

Call RESVAL To
Calculate Pay-

0 r
Value-VULM

Figure 58. (Part 2 of 5)

316

900

900

Calculate Best
Rate For Missiles

IsI

Figurtee 5est (at of5

1050

317INIL

77

It Ltialize
Cost And

Index
Variab eas

K Initialize

AC _______Do
779 For De Are There Yes'A

No

set Number Of WeaponisB

Ailureb5 e (Part 4 of5

Nube18iGru

(M-1 NS

Set NSL
To Zero

Available?

1'
Retrieve [

Number [

iet (imit
As 255

19

SSot Limit

To Zero

set NSL As
Difference

AC Between Limit
And No.

Figure 58. (part 5 of 5)

319

'__

D First Pixs?

Weapons

Do
41

Print
Error~

Weigon? C8 a t I : F x d W a lled?~gn o

532

D

7 8Y 72

More Than Yes Put All
30 Fixed Down
Weapons? KORR < 0

No

71 75

Put All Load AAnd No- re There
Weapons DonlFixed I Assignments/

Down KORR Arrays Wit
KORR-O i xe AssignmentsI Assignment \ ? /

Calculate Number Call NEXTTT
Of Obhects On ASGWPN
Seen By Chain For

Seen ByRemaining
Defense Assignments

It
Bl E

Figure 58. Part II: (Part 2 of 2)

321

I!'

3.12.1 Subroutine PRNTOD

PURPOSE: To produce optional prints for overlay DEFAL.
(Options 27 and 28)

ENTRY POINTS: PRNTOD

FORMAL PARAMTERS: IOPT - Print option number

COMMON BLOCKS: C30, DEFCOM, DEFRES

SUBROUTINES CALLED: None
a

CALLED BY: PRNTNOW

Method:

The formal parameter IOPT determines whether option 27 or 28 appears.
The result of the option appears in the Users Manual, UM 9-77, Volume
III.

Subroutine PRNTOD is illustrated in figure 59.

322

START

Yes Request
IOPT = 28 7 Number 28

No

Execute Print

Request
Number 27

Figure 59. Subroutine PRNTOD

323

3.12.2 Subroutine RESVAL

PURPOSE: This routine calculates the surviving value of a
target defended with terminal ballistic missile
interceptors when attacked with missiles with or
without penetration aids.

ENTRY POINTS: RESVAL

FOR AL PARAMETERS: None

COMON BLOCKS: C30, DEFRES, PAYSAV, TGTSAV, WADWPN, WEPSAV

SUBROUTINES CALLED: FMUP, PRNTALL, TABLEMUP

CALLED BY: DEFALOC

Method:

RESVAL first orders the weapons by time of arrival on the target and
then computes the total number of expected terminal objects contained
in the weapons specified by NOWEP(G). (NOWEP(G) = number of weapons
of group G allocated.) The single shot survival probability of the tar-
get from a weapon from group G on hardness component J is equal to the
previousli calculated XMJP(G,J) (common /WADWPN/). This survival pro-
bability must be modified for multiple weapon attacks. As the number
of attackers exceeds the number of defenders, the single shot survival
probability will decrease.

Three different levels of terminal interceptors (NTX(I)) are calculated
for each defended target, and a probability of the occurrence of each Is
given by PX(I),* such that

K 3
I PX(i) =1.

These values are calculated from MISDEF, the nominal number of termhaL
interceptors at the target, as follows:

NTX(l) = MISDEF * RX(1)

NTX(2) = MISDEF

NTX(3) - MISDEF * RX(2)

PX(1) is the user-input parameter PROBLOW. PX(3) is the user-input
parameter PROBHIGH. PX(2) = 1 -PX(l) -PX(3).

RIX(1) is the user-input parameter LOWFAC. RX(2) is the user-Input
parameter HIIGRFAC.

324

The probability that a warhead from the weapon G is killed by the ter-
minal defense is then given by:

PK4(I) = PKTX * XDEG(G) if NOBJ NTX(I)
for I=l,2,3

= NTX(I) * PKTX * XDEG(G) if NOBJ NTX(I),

NOBJ

where NOBJ is the number of warheads plus decoys in the attack and the
XDEG factor degrades PKTX for weapon group G. Hence, the probability
that target component J survives NOWEP(G) weapons from group G is given
by a calculation involving the use of the functions TABLEMUP and FMUP,
which are described in other sections of this chapter.

The former function takes as input the modified single shot survival
probability,

tMSSSP(G,J,I) = PWK(I) + ((l -PWK(I)) * XUP(G,J))

and computes the kill factor,

KF(G,J,I) = TABLEMfUP(MSSSP(G,J,I)).

The kill factcrs for all the weapons allocated to the target from each
group are summed to generate the group total kill factor,

ii GTKF(G,J,I) = KF(G,J,I) * NOWEP(G) * MM D(G).

(N4HD(C) is number of warheads per weapon from group G.) This factor is
input to the function FMUP to generate the probability that target com-
ponent J survives NOWEP(G) weapons from group G; i.e.,

SJ,G,I) = FmP(GTKF(G,J,I)).

Hence, the total surviving target value is calculated from:

3 M NN
Surviving Target Value = PX(I) j Z VTOA(NI,J)

I=i J=l Nl=O
NI

-VTOA(NI + l,J) * H S(G,J,I)
G=l

where

VTOA(N1,JO = value of component J when weapon NI arrives

NN = total number of weapon groups

VTOA(0,J) = qO(J) value of hardness component J

325

and

VTOA(NN + 1,J) 0.

The innermost sum over Nl, the weapon groups, must be carried out in
order of the weapons' time of arrival; i.e., the first term corresponds
to the NI with shortest time of arrival, etc.

Hence the residual target calculation in RESVAL takes into account (1)
uncertainties in the terminal interceptor stockpile, (2) target value
dependence on time, (3) multiple hardness components of the target, (4)
various penetration aids and decoy capabilities of attacking weapons,
and (5) a detailed target-warhead interaction calculation.

This apparently complicated manner of calculating the target survival
probability is required by the optional use of two damage laws. The
functions TABLFJP and FMUP determine which damage law is being used on
the current target and modify their calculations accordingly. Since
subroutine RESVAL is called a very large number of times for each mis-

* sile-defended target, certain intermediate results are not saved in
order to decrease execution time. In particular, the variables for the
modified single shot survival probability, MSSSP(G,J,I), the kill fac-
tor, KF(G,J,I), and the total survival probability, S(G,J,I), are never
explicitly saved. The group total kill factor, GTKF(G,J,I), is saved
in a temporary storage variable, S. Thus, these four intermediate vari-
ables do not appear explicitly in the program.

*Subroutine RESVAL is illustrated in figure 60.

326

CSTART

Order Weapons
By

Time Of Arrival

Calculate:

M NN N
YR F, (VTOA(Nl,J) - VTOA(Nl+l,J) n f S(G,J,l)

J-1 NI-O

Figure 60. Subroutine RESVAL

327

SECTION 4. EVALALOC MODULE

4.1 Purpose

The purpose of module EVALALOC is to summarize the planned allocation of
weapons to targets and provide an expected value estimate of the results.
Provision is also included to evaluate the allocation for variations in
the values assigned selected parameters (planning factors) associated with
the weapons and targets. The evaluation can be made for either the whole
plan or for only targets in selected countries. EVALALOC may be run at
two stages of plan development, before module ALOCOUT or after module
PLANOUT. If run prior to the selection of desired ground zeros (DGZ)
for complex targets (accomplished in ALOCOUT), the analysis of aim point
offsets is not included. In this case, the results produced by EVALALOC
represent an upper limit estimate which assumes that each target element
in a complex is directly targeted. When EVALALOC is run after module
PLANOUT, the weapon aim points offsets are available and are included in
the expected value computations.

4.2 Input

EVALALOC may operate-at any stage after weapons have been assigned to
targets. EVALALOC interrogates the target list, the weapon gr'up chain
and stores attributes necessary for the evaluation, and obtaint strikes
from the assignment chain.

4.3 Output

EVALAILOC does not update the data base for use by later processors; its
sole output is a set of printed summaries which present the expected
value results of the planned weapon allocation.

4.4 Concept of Operation

Subroutine ENTMOD reads user inputs and executes subroutine EVAL2 for
each requested plan evaluation. Once executed, EVAL2 controls all flow
for the given evaluation.

4.5 Identification of Subroutine Functions

4.5.1 Subroutine EVAL2. Subroutine EVAL2 processes the targets one at
a time. For each target (or target element of a complex target), the
assigned weapons are read from the data base and ordered by time of

arrival. Surviving target values are calculated (within subroutine
EVALPLAN), utilizing the same damage functions used in module ALOC
(subroutine WAD), except that correlations are ignored. After the
survival probability of each target is computed, the target weapons
are classified for summarization purposes.

329 7t

PRECEDING PAG~E BLANK

I --

4 _

4.5.2 Subroutine TGTMODIF. For each individual target, subroutine
TGMODIF is called by EVAL2 for determination of altering selected tar-
get parameters as user directed.

4.5.3 Subroutine 4PNMODIF. Similar to subroutine TGTMODIF but modifies
weapon attributes.

4.6 Common Block Definition

Common blocks used by EVALALOC are outlined in table 10. Common blocks
that communicate with the COP are given in appendix A of Program Mainten-
ance Manual, Volume I.

330

II

Table 10. Module EVALALOC Common Blocks
(Part I of 4)

BLOCK VARIABLE OR ARRAY DESCRIPTION

CLAUSES ONPRINTS
SETTING Set to -1 for each evaluation;
SORT reset to starting location into
COUNTRIES INSGET's arrays if the corre-
TGTMOD sponding adverb exists.
WPNMOD

DAMAGE NALLTYPE(7) Number of weapons of category based
on FUNCTION scheduled against tar-
gets

ATTYPE(7) Number of weapons of category based
on FUNCTION delivered to targets

SKDWPTYYI(7) Yield from weapons of category
based on FUNCTION scheduled
against targets

DELWPYYP(7) Yield from weapons of category
based on FUNCTION delivered against
targets

DELYLD Megatonnage actually arriving at
the target

PLANYLD Megatonnage allocated to the tar-

get

VALDES Value of target destroyed

VALESC Value of target escaping

SURV Fraction of the target surviving

VALFAC Fraction of total complex value
represented by the target

NPASS Pass number of current evaluation

/GROUPS/ NAMECLAS(250) Class name of the group

NAMETYPE(250) Weapon type name of the group

IWEAP(250) Index based on attribute FUNCTI

331
i 'I

Table 10. (Part 2 of 4)

BLOCK VARIABLE OR ARRAY DESCRIPTION

GRPCEP(250) CEP of weapons in group

GRPSBL(250) SBL of weapons in group

WEPREL(250) REL of weapons in group

GRPKNV(250) PKNAV of weapons in group

GRPYLD(250) YIELD of non-ASM weapons in group

GRPREL(250) REL cf weapons in group

ASMCEP(250) CEP of ASMs in group

ASMREL(250) REL of ASMs in group

ASMYLD(250) YIELD of ASMs in group

NGROUP Number of groups

/01 SRATOR/ COMMA Index number for operator Comma

LPAREN Index number for operator left
parenthesis

RPAREN Iidex number for operator right
parenthesis

EQUALS Index number for onerator equals

DASH Index number for operator dash

SLASH Index number for operator slash

ALFOS Index number for alphabetic follows

and alphabetic input values

FLOFO The same as ALFOS but for floaLtrig
point values

NUMATRIB The same as ALFOS but [or -i num;ariL
attribute

VALGRP The same as ALFOS but for the attri-
bute GROUP

332

iA

Table 10. (Part 3 of 4)

BLOCK VARIABLE OR ARRAY DESCRIPTION

/STRIK ES/ X(30) Group number of assigned weapons

KORDOR(30) Weapon penetration corridor

RELVAL(30) Relative value of weapon allocation

PENPROB (30) Weapon penetration probability

TOA(30) Weapon time of arrival on target

ISAL(30) Salvo number of weapon. If bombers
equal 1 if ASM allocation

1110B (30) Desired height of burst

j BLAT(30) Offset latitude

BLON(30) Offset longitude

tSror N(30) Sortie sequence number

DE(30) Survival probability oF target after
arrival of weapon I

'rIMEVAL(30) Survival probabilitv of time depen-
dent target value after arrival ofi weaponl I

NSTRIKH Number of weapon assignments

/TYPCI.S/ VOTYPE Total target value for the type

VRI,~rYPlI. Total remaIning value for the type

VDI.STYP, Total value destroyed for the type

VF.StTYPE Total value escaped for this type

SKRFDTYPE egatonnago allocated to the type

DELYP Mogatonnagt' delivered to the type

VOCLAS Value for the class

VREMCLAS Value remaining for the class

333

Table 10. (Part 4 of 4)

BLOCK VARIABLE OR ARRAY DESCRIPTION

VDESCLAS Value destroyed for this class

VESCOLAS Value escaped for the class

SKEDCLAS Megatonnage allocated to the class

DELCLAS Megatonnage delivered to the class

334

4.7 Subroutine ENTMOD

PURPOSE: To conduct the flow of execution as user directed.

ENTRY POINTS: ENTMOD (First subroutine called when overlay linkN IEVAI. Is oxecuted)

FORMAL PARAMETERS: None

COMMON BLOCKS: CLAUSE, OOPS, OPERATE

SUBROUTINES CALLED: EVAL2, INSGET

CALLED BY: COP

Method:

Subroutine ENTMOD controls the flow of each plan evaluation as user
directed. ENTMOD reads user requests and executes subroutine EVAL2
which in turn queries and evaluates all target weapon assignments. Any
number of target passes are possible within one EVALALOC execution. If
any adverb repeats itself, it is assumed the repeating adverb is for a
new allocation evaluation and, therefore, implies EVAL2 may be executed
for any previously read adverbs. Also, EVAL2 is called upon processing
all adverbs.

Subroutine INTMOD is illustrated in figure 61.

335

START

obtain Verb
Number

40 Plant Corrct~

Figueo61 VbOMoul

Mess336

4.8 Subroutine EVALPLAN

PURPOSE: To classify the weapons allocated to each target
and compute the corresponding change in target
value after the attack.

ENTRY POINTS: EVALPLAN

FORMAL PARAMETERS: None

COMMON BLOCKS: CLAUSE, C30, DAMAGE, GROUPS, STRIKE

SUBROUTINES CALLED: ABORT, DIST, INITPR, INSGET, SSKPC, SSSPCA, VALTAR

CALLED BY: EVAL2

Method:

EVALPLAN is called once for each target to consider the damage done by
all weapons allocated to the target. When called, internal arrays are
initialized and the number of target value components is checked. If
the target has more than five value components, an error message is
printed and RETURN executed.

EVALPLAN determines if the target is defended by effective terminal bal-
listic missile interceptions. If so, EVALPLAN recomputes the penetration
probability for each missile allocated to the target before performing
target survival calculations.

For each assignment height of burst, CEP, YIELD, and REL are retrieved
from block /GROUP/ and stored locally.

* If this is a first pass, EVALPLAN classifies each weapon into one of
seven categories: alert LRA, nonalert LRA, TAC, SLBM (combined with

*SLCM), MRBM, IRBM or ICBM. The correct index for these categories has
been placed within array IWEAP by subroutine EVAL2. It then updates
arrays for summarizing prints.

For each weapon, EVALPLAN updates DELYLD and PLANYLD for all passes of
EVALALOC and calculates the value FVALTOA of the target at the weapon
time of arrival. Then it uses functions DIST and SSKPC and subroutine
SSSPCALC to calculate kill and survival probabilities SSK and SSS, except
for naval weapons where it uses PKNAV to calculate SSK and SSS. These
probabilities are subsequently used to compute values for PRODSS, a

hardness component probability factor; CUMDES, the value of each hard-
ness component destroyed and CUMESC, the value of each hardness compon-
ent escaping during the attack. The values of DE and TIMEVAL are then
calculated using these variables. Finally EVALPLAN calculates the target
survival probability (SURV), the total target value destroyed (VALDES),
and the total target value escaping during the attack (VALESC).

Subroutine EVALPLAN is illustrated in figure 62.

! 337

I

START

Initialize
Internal
EVALPLAN
Arrays

Save Ground
Burst RETURN
Lethal
Radius

E0TGreater
RecompeThan 5 Me Message2 Value roo MANY VALUI

rComponents?
, Less Than 6

Proarobability O
E Equal to 0 ill Of Termlna

allistic Missil
T TInterceptor?

Recompute The ore Than 0;,! 'Penetration

Probability Of RlNumber Ofti Each Missile Zero Terminal Bal-
Allocated \listic Missil

Tearet ntereptor i

_ToTheora The 0e

Calculate Total
,Compute Actual Number Of
i Probability No --- Reliable Inter-
iiOf Kill Of captors Against
SInterceptors The Weapons

Allocated To The
Target

Figure 62. Subroutine EVALPLAN
(Part I of 4)

338

2

all INITPROB To
Initialize
Arrays In
SSSPCALC

-7.

Restore Ground Done

Calculate Target Set Lethal

Probability According To

Destroyed, And

Escaping During Set NW? _Equal

fg e 2 e(artofn 4

RETURN

Ca-clat - . --

A

Save yield and Delivery

ClassfyWepo

iy FWeaton Yerbblt

AlrNoA onlr

20300

Calculate Value Of
Target At Time

Of Arrival of Weapon
Over All Time
Components

Hardness Donw,. And Delivery

Component Of Error Data

The Target For Weapon

DIST, SSKPC, SSSPCALC Calculate Survivali Probabili ty Of Target,

Calculate Survival Probability PrbAbi Sur OfvargetDE, And Survival Probability
Factor, PRODSS, Value of Hard- Of Time Dependent Target

ness Component Destroyed
CUMIDES, Value Of Hardness Of The Weapon
Component Escaping During

The Attack, CUMESC

90

Figure 62. (Part 4 of 4)

341

4.9 Subroutine EVAL2

PURPOSE: To read target weapon allocation data, evaluate and
classify it, summarize it and store calculations
for summary prints.

ENTRY POINTS: EVAL2

FORMAL PARAMETERS: None

COMON BLOCKS: CLAUSE, CIO, C15, C30, DAMAGE, GROUPS, OOPS,
OPERATE, STRIKE

SUBROUTINES CALLED: DIRECT, EVALPLAN, HEAD, HDFND, INSGET, ITLE,
NEXTTT, ORDER, PREVAL, PTIME, REORDER, RETRV,
SORTIT, TGTMODIF, WPNMODIF

CALLED BY: ENTMOD (of EVALALOC)

Method:

EVAL2 begins by processing input clauses as introduced by adverbs
ONPRINTS, SETTING, COUNTRIES, or TGTMOD. For the print clause, the upper-
bound target number (ITGTMAX) to be printed is stored. Parameters PKTX

and LAW are set according to the SETTING clause. If COUNTRIES exists,
the method of comparison for target evaluation consideration resides
within parameter DESIRE. The beginning (ICL) and end (LCL) pointers
into INSGETs for the COUNTRIES clause are defined for further inter-

rogation. Finally, the TGTMOD clause is queried for syntax errors.

By chaining the weapon groups, attributes necessary for target-weapon

assignment evaluation are stored for use within subroutine EVALPLAN.
Weapon categories are indexed (array IWEAP) based on attribute FUNCTI
which serves for collecting items necessary for summary prints. Also
ASM data is stored, if applicable.

Now the individual target list (TARNUM) will be queried and tested

against the COUNTRIES clause for tests of inclusion within the current
evaluation. If tests prove satisfactory, target data is placed on file
unit 21. Only those items necessary for print or allocation evaluation

are written.

After chaining the target list, subroutine SORTIT, orders the targets
based on region, country location and DESIG consideration if adverb
SORT exists. By collecting target elements in this fashion, EVAL2 is
easily amendable to any new future sort requests. In addition, core
utilization remains minimal even with the restriction of open-ended

targets.

Individual targets record are now read from data unit SORTED and the wea-
pon assignment chain (ASGWPN) queried for each target record. Assignment

342

parameters are collected and eventually reordered by time of arrival which
is necessary for evaluation. If directed,subcoutine TGTMODIF makes mod-
ifications to the targets as user directed. Finally EVALPLAN evaluates
the target's allocation. Individual target data items are printed, if
requested.

At this stage all evaluation and prints concerning the current target
have been completed. All that remains consists of storage of calculated
items necessary for summary prints. Rather than temporarily storing items,
results are written onto data file unit 22. Five separate records are
written per target. The first word of each record defines the summary
report number. The second and third words always equal attributes CLASS
and TYPE. Elements beyond the third words depend upon the summary re-
port criterion.

After all targets are processed, data unit 22 is sorted based on the
first three words which is a sort perfect for print purposes. Now sub-
routine PREVAL reads the sorted unit (LUNTAB) and generates reports.

* Upon returning, control is passed to ENTMOD for consideration of remain-
ing passes.

Subroutine EVAL2 is illustrated in figure 63.

$ t343

__ _ _ _ _

HS TRT

Initialize

Retrieve
NUBTL

Record

'OPIT'Str rn

Figue 63dSu rouib Eist? (Parm1ift7

344

120J

200

980

Print Error No Weapon

Message Group Header
Exist?

Yes

210

RETURN

Retrieve Next
Weapon Group

Weapon Yes 290
End of
Group?

No

Store Function
Code in Array

I14EAP

Store ASM
Parameters

Store Group
Attributes

210

Figure 63. (Part 2. of 7)

345

290

Call WPNMIOD IF
If Requested

985 300

SRETURN "

Retrieve Next
Target Number

RetreveNextEdRetroeve faNgo

YesYes

Figure 63. (Part 3 of 7)

346

-~
330

Retrieve Target
pttributes

Fig ret iPat4 7L 347

LUse Selected-

400

if User
Reques ted,
Sort Target

Record

500

Read Target
SORTED -Rcr

F Egur 63oPf t5f7
348

520

Sort
Assignments

Based on Time
of Arrival

If User

Directed,
Execute

TGTOD IF

Evaluate
Target

(EVALPLAN)

Detailed
Print Ys Target Print

Necessary Unit
Parameters For - 22
sumryPon

Figure 63. (Part 6 of 7)

349

600

Copy File 22 Unit
22it onto File 21 21

Fr 63.mart o 7

Sort 3Unit 21

fPrint Target

feao Assign-

merit Count

SPrint Tables

(PREVAL)

RETURN

Figure 63. (Part 7 of 7)

350

I

4.10 Subroutine PREVAL

PURPOSE: Print summary tables concerning the allocation.

ENTRY POINTS: PREVAL

FO1ML PARAMETERS: LUNTAB - File unit number where print relatoA data
resides

COMMON BLOCKS: DAMAGE, TYPCLS

* SUBROUTINES CALLED: None

Method:

Subroutine PREVAL's sole function consists of reading data unit (LUNTAB)
as prepared by EVAL2 and generating reports as outlined within figure 64.
Records on unit LUNTAB are sorted based on report code and within that
sort arranged according to class and type. The second and third level
sort orders ease the burden in producing counts for similar type and
class intersections. PREVAL, then, simply reads and prints.

Subroutine PREVAL is illustrated in figure 64.

I
I

:i

I!' 351

START

Calculate and Print Entries
In TARGET DESTRUCTION

SUMMARY For Each Target
Class and Target Type In

The Target Class

i Calculate and Print Entries

In SCHEDULE OF WEAPONS

ALLOCATED For Each Target Class
And Target Type In The Class

Calculate and Print Entries
In SCHEDULE OF WEAPONS

DELIVERED For Each Target
Class And Target Type In The Class

Calculate and Print Entries
In SCHEDULED MEGATONNAGE

Summary For Each Target Class
And Target Type In The Class

Calculate and Print Entries In
DELIVERED MEGATONNAGE Summary

For Each Target Class And
Target Type In The Class

RETURN

Figure 6b. Subroutine PREVAL

352

4.11 Subroutine SSSPCALC

PURPOSE: To calculate target survival probabilities for
multiple-weapon attacks. This routine will con-
sider either the exponential or square-root
damage law.

ENTRY POINTS: INITPROB, SSSPCALC

FORMAL PARAMETERS: SSS - A single-shot survival probability
NWP - A number of weapons
J - Index to hardness component

COMMON BLOCKS: LAW, LITTLE

SUBROUTINES CALLED: None

CALLED BY: EVALPLAN

Method:

The INITPROB entry point is used to initialize two local arrays which are
used in the calculations. This entry is called once for each target
before processing the weapon damage calculations in EVALPIAN. The formal

parameters have no effect on this entry point. The two local arrays are
indexed by hardness component. They are defined as follows:

CUMKILL(K) Current fraction of Kth hardness component
surviving. Initialized to 1.0.

SUMSK(K) Current sum of kill factors for Kth hardness
component. Initialized to 0.0.

Entry SSSPCALC computes the multiple-weapon survival probability from the
single-shot survival probability. If the exponential damage option hasIbeen selected, then the multiple-weapon survival probability is equal to
the product of all the single-shot survival probabilities for each weapon.

If the square-root damage law option has been selected, the routine checks
to see if the target radius is greater than zero. If not, the exponential
damage function is used. If so, the routine must calculate the square-
root kill factor corresponding to the input single-shot survival probabil-
ity. The algorithm used for this is the same one that is used in subrou-
tine SETABLE in program ALOC. The algorithm is a recursive, one-dimensional

search procedure to find the appropriate kill factor. The new kill factors
determine a new sum. This new sum defines the new fraction of the target
that survives. The multiple-weapon survival probability is then the ratio
of the new fraction surviving to the old fraction surviving.

Subroutine SSSPCALC is illustrated in figure 65.

353

Probability SSS NoGreater Than Zero
And LAW=SQUAREROOT?

2 -- Yes

Initialize X To 1

21 10
Set SS Equal
To ex. (1. +X)

Set Error-ERR-
Equal 'ro SS-SSS

20

Set X Equal Yes

Set e5 t

START Entry And TCUMKILL To
INITPROB (l+SS)-e-SS

Set Target Survival
Initialize CUMKILL Probability SSS To
Array To I And TGUMKILL/CUMKILL(J)
SUMSK Array To 0 And Save Value

Of TCUMKILL In
CUMI LL (J)

/ RETURN

Figuye 65. Subroutine SSSP2.ALC

354

i
4.12 Subroutine TGTMODIF

PURPOSE: To enable the user to modify five target param-

eters:

FVULNI -- The hardness of the target compon-
: ent

VOZ -- The value of the target at hardness
FVULNI

T(1-5) Time components when value changes
FVALT -- Fraction of value in first time

component

PEN -- Penetration probability of a weaponI allocated

ENTRY POINTS: TGTMODIF

o COMMON BLOCKS: CLAUSE, C30, GROUPS, OPERATE, STRIKE

SUBROUTINES CALLED: INSGET, ITLE

CALLED BY: EVAL2

Method:I Modifications of target parameters are made in accordance with the
TOTMOD clause as user directed. The target type may be ALLTGTS or

a specific class or type name such as MILITARY, BEAR, etc.

The penetration probability PEN is weapon-target dependent. If it is
to be modified, weapon type names to which the modification applies
follow the operator right parenthesis within the TGTMOD clause.

in all cases TGTMODIF modifies the specified target parameter for the
specified target type by multiplying it by factor XTGTATT which is
also user defined.

Subroutine TGTMODIF is illustrated in figure 66.

355

START

Store user's

710 Target Type
to be modified

Store
Attributes to

720 e Changed

Store User
value of
Attribute

750

No

Ves New Target
modification Determine

Data? Attr ute index
Nu er Which

i to be
m dified

yes
Target Type

more No latch for This
modification modification?

Data?

0 yes

850
Attribute

Index
RETU N Number?

1 3 4

792 793 794) 795 796

Figure 66. Subroutine TGTMODIF (Part of 4)

356

792

M~ultiply V02

Factor XFGctor

Figre 6 Pr f4

7357

-7I -

(795

multiply
Attribute
FVAL(l) by

Factor XTGTATT

E se F A ~Fies Gre a66.
(a rt 3 of 4

358

14TAT 1

796

IsPnetra- 81
-ion Pr o bais bilta Modify PEN Array

/ 3ty PEN To Y es For All Weaoons

BeCagdFor Allocated to

ALLWPNS? The Target

0

Fo8Wapn

Modiy PN ModyIfy PEN Arra
F~~nFo Each WeaponYe

ombersoType onThe

jIficaNto CardENAra

Fire 66.ile (Part 4aor4

Ony59isie

4 No

Modify EN Arra

4.13 Subroutine WPNMODIF

PURPOSE: To allow the user to modify reliability REL, cir-
cular error probability CEP, weapon YIELD, or DBL
probability.

ENTRY POINTS: WPNMODIF

COMMON BLOCKS: CLAUSE, GROUPS, OOPS, OPERATE

SUBROUTINES CALLED: INSGET, ITLE

CALLED BY: EVAL2

Method:

WPNMODIF allows the user to modify specified weapon parameters for chosen
weapon types or for a selected weapon group. The weapon type name may be
ALLWPNS, BOMBERS, MISSILES, a specific type name such as B-52 or a group
number. Local parameter XWPNATT contains the multiplier which multiplies
the weapon parameter.

Subroutine WPNMODIF is illustrated in figure 67.

I

360

I J

sTrART

*~~ -o jCationl

store Group' Yes For A Given 100

-Numnber
(NG)Gru

Numer
IN

moiicto

20 es Fr l

1~i~we 67. Subro 1cap yp esI (atI f3

361t-id l

200

Update
INSET's

Array

210

Store
Attribute to
be Modified

Store Value of
~~ At tribute

(XWPMATT) to
be modified

V. setGroup
Limits

(7N Do 510 For
1 1 ~Define~d50

Grou s

Figur 67f Dat 22o13

362

A

mlodi fication

Fo l e 3

Wepnso
Grup

Fiue6.(Pr f3

3 10y3

SECTION 5. MODULE ALOCOUT

5.1 PpU°_se

Module ALOCOUT is responsible for selecting optimum DGZs (desired ground
zcros), also callea weapon aim points for weapon allocated to target com-
plexes. ALOCOUT, also resorts weapon assignments at the group level for
usIe within the Sortie Generation subsystem.

Module ALOC specifies weapon groups assigned to targets together with
. associated targeting data. ALOCOUT extracts data from these records

and computes any aiming offsets required by the plan. For simple or
multiple targets, no calculations are performed. In the case of com-
plex targets which can have several elements at slightly different co-
ordinates, ALOCOUT employs subroutine DGZ (desired ground zero selector)
to select optimum aim points within the target complex.

5.2 Input

ALOCOUT operates after module ALOC assigned weapons to targets. These
records (ASSIGN) in addition to the supporting data base structure must
be defined for proper execution.

5.3 Output

No new data base records are created during the execution of ALOCOUT.
However, the weapon assignment records (called ASSIGN) are modified in
two ways. First, for assignments to complex targets or for assignments
to cities with nonzero radius, offsets as determined within the module
are included within the ASSIGN record. Second, the assignment records
at the weapon group level are resorted for use within the Sortie Genera-
tion subsystem. For missile groups, the sort is based on decreasing
values of attribute RVAL. For bomber groups, the order is based on
penetration corridor index and within the corridor sorted based on
attribute RVAL. The penetration corridor that contains the largest
number of strikes appears first within the sort, followed by the pene-
tration corridor of the next largest number of strikes and so on.

5.4 Concept of Operation

ALOCOUT (that is, subroutine ENTMOD) operates with two overlay links.
The first overlay reads the target list (TARNUM) passes controls to sub-
routine PROCCOMP for offset calculations when applicable and finally
supplies optional prints. After all targets have been processed con-
trols passes to the second overlay which consists entirely of subroutine
SUMPRN which reorders strikes at the weapon group level and, if requested,
produces prints concerning the individual assignments.

365 PRECEDING PAGE BLa

L....

5.5 Identification of Subroutine Functions

5.5.1 Subroutine PROCCOMP. This subroutine controls the bulk of pro-

cessing for offset determination. It is executed by subroutine ENTMOD
only for those individual targets that require offset calculations.
After offsets have been determined the assignment record (ASSIGN) is
updated to include the values. Then, PROCCOMP returns to subroutine
ENTMOD for acquisition of the next target and the associated strikes.

5.5.2 Subroutine SJ4PRN. This subroutine constitutes the entire second
overlay of ALOCOUT. Its purpose consists of resorting the weapon strikes
at the group level and providing optional prints.

5.6 Common Block Definition

Common blocks used by EVALALOC are outlined in table 11. Common blocks
that communicate with the COP are given in appendix A of Program Main-
tenance Manual, Volume I.

I

IV

366

if

Table 11. ALOCOUT Common Blocks
(Part I of 2)

BLOCK VARIABLE OR ARRAY DESCRIPTION

CITY ICITY Set to nonzero for targets with attri-
bute RADIUS not equal to zero

Ci XO(J), YO(J) Coordinates of target element J

VI(J) Initial target element values

RADL(J) Lethal radius of target element J

VTOA(J,I) Value of target element J immediately
following arrival of weapon I

S(J,I) Survival probability of target element
J relative to weapon I

VEFF(J,I) Effective value of target element J
relative to weapon I

X(I),Y(I) Offset coordinates of weapon I

PDEL(1) Probability of delivery of weapon I

ERDEL(I) Error in delivery of weapon I

YDSCL(1) Scaled yield for weapon I

VESC(1) Intermediate computational value used
in subroutine VAL for determination
of total escaping target value

NI Number of weapons for complex

NJ Number of target elements for complex

IONPRT IPINDAT User supplied print frequency for
print option 1

PRINCE(9) Set TRUE if user requested option

ISKIPDGZ ISKIPDGZ Use indicator for DGZ. Normally it
is 0. Compress resets it to I if
more than 20 calls to it are made to
reduce the number of target elements
for a complex target; DGZ is not used
again for the target in this case

367

:!L

f
II

Table 11. (Part 2 of 2)

ki

BLOCK VARIABLE OR ARRAY DESCRIPTION

JAZ F(400,26) Holding arrays for sort purposes

LOCFIN LOCFIN Starting location into IRSET's arrays
for adverb FINDMIN instructions

STRIKE TOA(I) Weapon time of arrival to target

I IREFSTRK(I) Reference code of weapon strike

N Number of strikes

WPGT YDMIN Minimum allowable weapon group yield

IGRP Group number

368I '

i

! 368

5.7 Subroutine ENTMOD

PURP'OSE: Read user inputs, collect target weapon assignments,
and execute subroutine PROCCOMP for DGZ determina-

~tion.

ENTRY POINTS: ENTMOD (first subroutine executed when overlay
~ALOCOUT is called)

FORMAL PARAMETERS: None

COMMON BLOCKS: CITY, C10, C15, C30, IONPRT, LOCFIN, STRIKE, WPGT

SUBROUTINES CALLED: DGZ, DIRECT, HDFND, HEAD, INSGET, NEXTTT, PROCCOMP,
RETRV, SUMPRN, TIMEME, WEPGET

CALLED BY: COP

Method:

Subroutine ENTMOD reads and stores users input, walks the individual
target chain (TARNUM), collects weapon assignments for the current tar-
get, and calls subroutine PROCCOMP for DGZ determination if the target

represents a complex or is a city (attribute RADIUS greater than zero).
After processing all targets, subroutine SUMPRNT (second overlay) reorders
weapon assignments on a weapon group basis for use within the Sortie

Generation subsystem.

Module ALOCOUT recognizes user supplied adverbs FINDMIN and ONPRINTS.
FT")MIN sets the number of iterations subroutine FINDMIN uses for off-
set determination. ONPRINTS sets user options; results maintained in
array PRINCE.

ALOCOUT now walks the identical target chain (TARNUM) which module ALOC
made weapon assignments to. For each target, weapon assignments are
stored on chain ASGWPN. If no strike exists processing continues by
retrieving the next target on the list. Otherwise, for each weapon
assignment, subroutine WEPGET retrieves weapon related attributes and
updates necessary counts. Checks determine the nature of the target.
Offsets are calculated only if the target represents a complex or is a
city and has a nonzero RADIUS.

A complex target (or target complex) is a combination of target elements

sufficiently close in geographic location that a weapon on any one of
them will have some probability of killing other elements in the complex.
Such target complexes are targeted as a unit by the allocator which allo-
cates weapons against their total value, using one set of coordinates.
In order to maximize targeting efficiency against such a complex, opti-
mum aim points among the target elements must be selected. These aiming
offsets are specified relative to the first target element only and are
passed on in that form to subsequent modules.

369

When ENTMOD encounters a complex target, subroutine PROCCOMP is called.
PROCCOMP is responsible for assembling the data on a complex target in I

I a form that can be used efficiently for DGZ selection. Each target coin-
ponent of the complex generates a standardized target element in the
arrays used by DGZSEL. (Targets with more than one hardness component

A generate more than one such target element, and targets with a specified

target radius will generate several elements spread over the area of the
target to represent a value spread over the area.)

Subroutine ENTMOD is illustrated in figure 68.

37 i

, I

i

I

37

if_ _ _ __ _ _ _

START

Read and
store User

Inputs

150
InitialLze$ DGZ

Retrieve IDS
ileaders

600 RETURN

Print Timing

3710

A

Retri.eve Target
Attributes

Calculate

CillTe Waon

Attributes
(W4EPGET)

SRetrieve Next

Strike

Figure 68. (Part 2 of 3)

372

B

800

Print Data,

if
Reques ted

600

-~ Figure 68. (part 3 of 3)

373

5.7.1 Subroutine COMPRESS

PURPOSE: For computational efficiency and/or to avoid
exceeding maximum program dimensions, COMPRESS
recombines those target elements which are

near one another and have approximately the
same lethal radius.

ENTRY POINTS: COMPRESS

FORMAL PARAMETERS: OPENTOL (type INTEGER). If OPENTOL is 0,
distance and lethal radius tolerances will not

be eased to decrease the number of targetI elements. If OPENTOL is 1, the tolerannes
will be eased.

COMMON BLOCKS: Cl, C30, ISKIPD

SUBROUTINES CALLED: IMIN

CALLED BY: PROCCOMP

Method:

When OPENTOL is zero, COMPRESS merely recombines target elements which
are close enough together that their lethal radii nearly coincide.
COMPRESS in this mode is called by PROCCOMP just prior to calling
DGZSEL in order to improve the efficiency of DGZSEL.

In the event that maximum program dimensions are reached, OPENTOL is
set to 1 by PROCCOMP; COMPRESS will then loosen its tolerances, if
necessary, to assure enough recombination of target elements to
eliminate the problem, at least temporarily. A print is also issued
in this cate which gives the number of times the tolerances were
doubled.

The flowchart for COMPRESS is shown in figure 69.

374 4

I
i (START)

~Initialize Tolerance
~Distance D2TOL And

Lethal Radius
' Tolerance RADLTOL

Less Than Two Ys RTRI, ' ~Target ElementsREUN"

r Do 1 For Each Dn
Pair Of Target Dn

Elements
, DoNo Open Tolerance '

Option?

Yes Is Distance Between\
Elements Greater 20 Ye

,. , Than D2TOL?.,
Th N D2o ? Yes Less Than 40

ARe idexh Rea ii n
Of Elee s ?

T ar gTarget Elements?
INo /A e Of N
TaeOf Elements No

SInuicesj

Sufficiently Close. "
rYe Open The

, , Tolerance Further

Feom i ue 69TurotnheMRS

! : Pair Of Target -i

i ! Parameters 7_,

i .,o/Tolerances opened\'
' To Reduce Number>

, Reindex Remaining Of Elements. J
~Target Element LYes'

- 'Parameters I0

; TOLERANCES
i / Is Index Of New\ OPENED

YeqTarget Eglement >NoIGreater Thlan Other
)', Target Element

it , Indices?.._

SFigure 69. Subroutine COMPRESS

t 375

5.7.2 Function CUMINV

PURPOSE: To determine the value X such that Z is the
probability that x 5 X.

2 ENTRY POINTS: CUMINV

FORMAL PARAMETERS: Z -The probability that x : X

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY. PROCCOMP !

Method:

Function CUMINV is illustrated in figure 70. By definition,

P[x X] - .dt for 0 < Z < I

CUMINV uses the following approximation X for X:

V (A+A 2 V+ A3 V2

1 + B1 V + B2 . V2 + B3 . V3

Where

V n (I/Q2) , Q =Z or 1 - Z such tht 0 < .5

and

A 1 2.515517 B1 1.432788

A2 .802853 B2 .189269

A3 = .010328 B3 = .001308

376

2

Set~Se X Eqqualan.5

ToZ Ta

V.=

SU IN2.51517+80285*V+.103I

Figure 70. Functionl CIhINV

.377 i

5.7.3 Subroutine DGZ

PURPOSE: DGZ is the controlling subroutine for the optional
selection of DGZs for weapons allocated to complex
targets.

ENTRY POINTS: DGZ

FORMA PARAMETERS: None

COM ON BLOCKS: Cl, IONPRT, LOCFIN

SUBROUTINES CALLED: FINDMIN, INSGET, PERTBLD, SEECALC, SEEINPUT,~TIMEME, VAL, VWIARG

CALLED BY: ENTMOD, PROCCOMP

Method:

The optimization of DGZs explicitly considers the tLme dependence of
target value and the time of arrival of warheads. It does not rean-
alyze the correlation of delivery probabilities, which is assumed to
have been treated in the cross targeting provided by the allocator.
The selection of DGZs is a two-step process. First, the prescribed
warheads are assigned initial coordinates through a "laydown" process
in which each successive warhead is targeted directly against that
target element where the hgh- payoff is achieved, taking into
account collateral damage to all other target elements. Second, a gen-
eral-purpose function optimizer FINDMIN is called which calculates the
derivatives of the payoff as a function of X and Y coordinates of each
weapon and adjusts the coordinates to minimize the surviving target
value. FINDMIN will exit either after a maximum number of iterations
(which are specified on an input card), or after it finds that it can
no longer make significant improvements in the payoffs.

On the first call to DGZ, the specification of the maximum number of
iterations for use in FINDMIN is set. Figure 71 illustrates the DGZ
calling hierarch; the subroutines are grouped according to how they are
used in the selection process. Figure 72 is the DCZ flowchart.

378

"!I

VAL

------ ----- , TCCalled

%i VAW ~ SS~pc For InitialI
-. Laydown

MOVE SSKPC

SEEIPL~rCalled

DGZSEL For Initial Laydown

Prints
SEECALC

Called

PERTLILD To Perturb Initial

p r-R B ULaydown

Called For
SH-CAi-ill Climbing

LB I _O L c

40

First call To

Set All Ai Yes Assigned Ain
Point Offsets RETURNTo 0 oint Ofst>

Initialize Survival) | Probability Array

S To 1

[VAL Determine Initial
4 Value Escaped And
Initial Effective Value

Of Each Weapon

For Eachl Weapon
And Target Element,

Use VIARG To
Determine Marginal

Value Of Moving
Weapon To A New

Posit ion

20
For Each Increase
In Marginal Value,

Reassign Aim Point
Offsets To New

Position And Call

MOVE To Determine

New Survival Probability

A

Figure 72. Subroutine DGZ
(Part I of 3)

380

I \l~4 ~ I At ray(so

ilit Comillw~tts

titoaoInsCI

A PNinO

To~Pin Dp ta9 to W~pit
L. tyWpo I.Ikyl; Fro Paacc

Y ot/ n Targt.v rt

005 ~ l n ome t Or Lss?;V

No its FI '. V-

Cmal l P TuaL 'C C

TOopigre 72(arp2of3'

lt.LykownIn %Ie38AWa

thittSmvtinj args

Call TIMUME For
'riming information

10 70 130
Is This I'he First No

007 Time FINDMIN Is RETURN
Used For This Target?

Yes

For Each Weapon
And Target Element

Use WIARG To
Determine Marginal

Value Of Moving
Weapon To A
New Position -1

Would 1,iovement Of
Any Of The Aim No

Point Offsets Increase
Destruction To
The Target?

120 Yes
j t Noim PointReassign

Offsets To New
Position Then Call

MOVE To Determine
Now Survival
Probabilities

rray With
Offsets
FINDMIN

123

Are Prints Of Initial yes Print Statement:

And Final Laydowns 123 BETTER RESULTS
Print St

BrTTE

Specified? Yes

qNo

ARE ACHIEVED
IF...

1012

Figure 72. (Part 3 of 3)

382

5,7.1o Function ERGOTI

PURPOSE: To return next number in most uniforu ergodic
series. (Numbers for up to 10 distinct
series can be called for concurrently.)

ENTRY POINTS: ERGOTI, ERGOT2, ERGOT3

FORAMAL PARAIETERS: I - Index of the series for which the next
number is desired

COMON BLOCKS; None

SUBROUTINES C ALLED: None

CALLEMD BY: PROCCOmP, PERTBI

Maethod:

Depending on whether the entry ERGOTI, ERGOT2, or ERGOT3 is used, the
index L is set to 1, 2, or 3, respectively. Then the next number in
the Ith ergodic series is calculated. This function is illustrated in
figure 73,

383

ERGOT2 I'MCT3

I 'I'le I dex O

IJThelro Series

FiurR3.FGciOTRGr

12384

5.7.5 Subroutine FINDMIN

PURPOSE: This subroutine uses a steepest descent method
to determine a local minimum of a function of ,1
several variables. An initial estimate of the
minimum position is input, together with various

tolerances. FINDMIN uses two auxiliary routines, 1
F2BMIN and GRADF, which define the function to be
minimized and its gradient, respectively. DGZ
uses FINDMIN to find the DGZs for complex targets.

ENTRY POINTS: FINDMIN

FORMAL PARAMETERS: XO - Initial guess at aim point offsets
N - Length of XO vector
IMAX - Maximum number of iterations for FINDMIN
El,E2 - Tolerances for the minimization
X - Best aim point offsets as determined by

FINDMIN
Fl - Minimum value found for escaped target

value
IFIAG - Print control flag

-2 : DGZSEL computation value print is
produced

> 0 : FINDMIN debug prints will be pro-
duced

SUBROUTINES CALLED: F2BMIN, GRADF, SEECALC

CALLED BY: DGZ

Method:

Given a function F(X the gradients G1 = , and G2 C)X and

an initial guess (XOI, XO,) at the aim point offsets, FINDMIN finds the

local escaped target value F and its associated aim point offset coor-

dinates (Xl, X2). Each iteration consists of a function, F, and gradient,

(G1, G2), evaluation followed by determination of the minimum function

value along the line associated with the modified steepest descent direc-

tion. F is redetermined at each iteration and is defined in such a way

that it converges after two iterations. FINDMIN uses two subroutines

during its processing. The first, F2BMIN, defines the escaped target

value function F in terms of aim point offsets X and X2. The second,

GRADF, defines the gradient components G and G In addition, at the

1

385

user's option, subroutine SEECALC is called after each iteration to print

the results of the optimization.

Subroutine FINDMIN is illustrated in figure 74.

386

STARTI

Iitialize Variance/
jforince Matrix (11)

pluice Current Aim

point offsets In X Array

C3ll FZBMIN To

Determine initial Value
Of Escaped Target

Value - Fl: Store In FO

Call GRADF TO
Determine Gradient

Components For Initial
Weapon Air~ offsets

200

place Gradient Components
In GO Vector And Initialize
Modified Gradient Direction

Vector -S- To Zero

Calculate Values Of

Figure 74. Surutine INDNI

(Prut 1of 4)Ad
387 rs(DOS

A

41 Store Current Aim
offsets In X1 Vector

Divide Offset Changes FINDMIN Ded e Probuge PrintN

DX By 10 Prints RoquestedDeuPrn2

Has This Division No Am-Point Offsots

-Rest FFigutrem74. (Pcaed 2o 4

Prn-nictrT
I

Y7

Is Escaped Target Yes Set R1 To F2, F2 To F3,
Value-F3-Less Than And Transfer X2 Offsets
Provious Vazlue-F2 To XI And X3 Offsets To

Find Sums St12,S %3, SMiAG: 2
SU12-SQRT[E(X

2 (j)-X1 (J)) I
SI.R3'SQRT1EI(X 2U)_X1 ())I

SMAG-SqRT[I (X20) 2
SU12 Is 5istanco From x To

X2; SUM3 Is Distance From
X To X3 ; %AG Is

Magnitude of S
Calculate Factor-C-To oB

Used In Doetrmlntion
New Trial Aim Offsets

[Calculate Now Aim Offset
Chhnges-DX-And New Trial
Aim Offsets &4 Fr Xl4 I And D ,X

SDetermine dscaped Tnrget

Value For Now Offsets
FINDMIN Debug \Ys Produce FINDMIN

Prints Requested Debug Print S
,

Sot FI To FR And
109

Calculate Aim Offset 0Is F 4>F1 Or
Increments -SIG- F4>F2?

Is~~~(
I X4>

2
(Sx.X~ -j

'

'Yes36 Calculate Offset
W n-I n c r m e n t s -S I G

(Is-(SIGJM X11j-Xj)

Incroents-SIG S
i

Set 'I To F2

Figure 74. (Part 3 of 4)

389
.1L

Range Of Allowed Of Iterations For - oDZE

Within Tolerance? Compute Gradient For 1
New Offsets (G) JRIVJR
Store Gradient

Changes in Y
Voctor

'Calculate Scalar
Product Of SIG And Y
(SDATY) And Reoset Trial

Offset Vectors
-Xl,X2,X3,X4 - To Zero

I7

Figurea 741 (Matr4ifx4

390s

5.7.6 Subroutine F2BMIN

PURPOSE: F2BMIN defines the function which is to be mini-
mized by FINDMIN. (FINDMIN minimizes survival
probabilities of the target element and total
escaping target value.) I

H.NTRY POINTS: F2BMIN

FORMAL PARAMETERS: XX - Vector containing offset coordinate for
weapons
F - Total escaping target value for this weapon

configuration

COMON BLOCKS: Cl

ISUBROUTINES CALLED: MOVE, VAL

CALLED BY: F INDMIN

Method:

The offset coordinates for all weapons are input and a call on MOVE is
made for each weapon to determine new survival probabilities. Then a
call on VAL gives the new function value (total escaping target value)
as well as the new effective values. The x, y coordinates of weapon I

are given, respectively, by XX(2*I-I) and XX(2*I).

Subroutines F2BMIN is shown in figure 75.

I3

391

s rART

Call J (Determines Survival Probabi-4MOVE" (i, xi, yi) lity for all Target Elements

Relative to Each Weapon.)

(For each i)

(Determines Effective Values
Call VAL (F) of Target Elements for This

Weapon Configuration and GivesLTotal Escaping Target Value.)
R.URN D (xi)l-y Coordinates Assigned

to Weapon i.

Figure 75. Subroutine F2BMTN

392

5.7.7 Subroutine GRADF

PURPOSE: GRADF determines the components of the gradient
associated with the function which is to be
minimized by FINDMIN.

ENTRY POINTS: GRADF

FORMAL PARAMETERS: XX - Vector giving weapon offset coordinates
G - Vector computed by GRADF giving gradient

components for each weapon

COMMON BLOCKS: Cl

SUBROUTINES CALLED: VMARG

CALLED BY: FINDMIN

Method:

Two calls on VMARG for each weapon (one for each coordinate) are made
to generate the gradient components.

Subroutine GRADF is illustrated in figure 76.

i

39

r-

CSTART

-VNIARG (i,x i + .001,),j)

.oo1 a

-VIARG (i,xi,Yi + .001)
RETURN

.001

(for cach i.)

Figure 76. Subroutine GRADF

394

5.7.8 Subroutine MOVE

PURPOSE: Subroutine MOVE determines the survival proba-
bility, for all target elements, for a specific

weapon moved to a given position.

ENTRY POINTS: MOVE

FORMAL PARAMETERS: I - Index for weapon
XM - X coordinate of weapon aim point offset
YM - Y coordinate of weapon aim point offset

COMON BLOCKS: Cl

SUBROUTINES CALLED: SSKPC

CALLED BY: DGZ, F2BMIN

Method:

For weapon Il with aim offset (XM, YM) the survival probabilities,
S(J,IM), for each target element J, are redetermined using SSKPC.

Subroutine MOVE is illustrated in figure 77.

395

L Ii
___ __ ___ _

r Y P. A(For Each J)

Pi SIc 1aled yil of - eapn i

4iD4

339

5.7.9 Subroutine PERTBLD

PURPOSE: PERTBLD perturbs the weapon coordinates assigned
by the laydown algorithm in such a manner as to
assure a unique treatment by FINDMIN for each
weapon.

ENTRY POINTS: PERTBLD

FORMAL PARAMETERS: XG

COMAON BLOCKS: Cl

SUBROUTINES CALLED: ERGOTI

CALLED BY: DGZ

Method:

There is the possibility that, from some point on in time, all target
element values become constant. In this case, all weapons input to
FINDMIN with identical characteristics and later delivery times, which
have been assigned to the same target element by the laydown procedure,
would remain together. To eliminate this problem, subroutine PERTBLD
is called just prior to calling FINDMIN.

Subroutine PERTBLD is shown in figure 78.

397

T AS , T_

in Leha TaretRadut

R, ~ ~ ~ ~ t AsocaedwihWepon

Unique aRno u~e.

I'gr 78 SubrEfueitive Value of

398ge

-weap-n t

5.7.10 Subroutine PROCCOUP

PURPOSE: To set up arrays in common block /Cl/ for the com-
plex target so that the subroutine DkXZ can use the
arrays during the selection of optimal aim point
offsets for the weapons allocated to the target%
and to modify target weapon assignments records
for inclusion of the computed offsets.

ENTRY POINTS: PROCCOMP

FORMAl. PARAMIE'rERS: None

LC)OMION BLOCKS: CITY, Cl, CIO, C30, TSKIPD, STRIKE, WPGT

SUBROUTINES CALLED: COMPRESS, CUINV, DGZ, DIRECT, ERGOTI, ERGOT2,
HEAD, MODFY, NMXITT, ORDER, REORDER, TIMIE,
VALTAR

CALLED BY: ENTMOD

Method:

When ENTMOD encounters a complex target, PROCCOMP is called in order to
assemble data in a form that can be efficiently used for DGZ selection.
Each target component of the complex generates a standardized "target
element" in the working arrays used by subroutine DGZ (common /C.1I).
Targets with more than one hardness component generate more than one
such target element, and targets with a specified target radius will
generate several elements spread over the area of the target to repre-
sent a value over the area. For complexes, individual target elements
are obtained by walking the data base chain called 'CMPTOT'.

If the number of target elements so generated exceeds the maximum pro-
gram dimensions (50), subroutine COMPRESS is called to recombine target
elements near each other having nearly the same lethal radius. In any
case, for efficiency in DGZ, a call to COMPRESS Is made just before
calling DGZ. On return from DGZ, PROCCOMP modifies weapon assignment
records (ASSIGN) for definition of the computed offsets.

Subroutine PROCCOMP is illustrated in figure 79.

399

-3

START

Save Orertrie

TaNeet Compvle

AAAtrribtte

Record~~sco ahta o IhTm

1omponentleorFlatA Valy

EachYe Hadesoemii

4400

TarSet RandomS /rgdI

Nube os Targtget

60 St n m Element

ca lm et Frthca o unstser, nd To 0c

ArTarget

~~~~~Number Of TargetInrmtElet

Elements If Necessary*
And TO Calculate

DO~i~ Air EahDneIiiaii 
Pittfst

Offsets OfseSet Cotnu)

4010



400

call
TIMEME (-2)

Aig re 9.Ar of4

es Eemets 40Th

-4 __________________________Complex__



1101

Increment Element
Counter

*No Too Many
Target Elements?

Call COMIRESS

To Reduce Number Of

Target Elements

4010

He 'M s en YeilC:I r.itA



I:

5.,7.11 Subroutine SEECALO

PURPOSE. To print the computation values relevant to the

selection of aim point offsets at various points

within the DGZSEL subarea of program ALOCOUT.

ENTRY POINTS: SEECALC

FOR 1AL PARAMETERS: VESCTOT : Total escaping target value
XX : Vector containing the aim point offset

positions for the weapons

COMMON BLOCKS: Cl, WAROUT

CALLED BY: DGZ, FINDMIN

Method:

When called by DGZ or FINDMIN subroutine SEECALC prints the title
DGZSEL COMPUTATION VALUES and column headings. Then for each weapon
allocated to the target, SEECALC prints the internal weapon number, the
aim point offsets, and the survival of each target element relative to
the weapon. At the end of the print for each target, the total escaped
target value is printed.

Subroutine SEECALC is illustrated in figure 80.

404

I'

LI



ol

Print DGZSEL !

COMPtrrATION VALUES

Print Column
Headings

Do 2003 For Each Print T
NoaonAllcaedDone Prn OTAL
Wepo Alloate ESCAPED TARGET 1~~To Target -[VALUE=_:

20 D

Print Weapon Number,
Weapon Aim Point i

Offsets, And Survival
Probability Of Each
Target Element

Relative To This
Weapon

Figure 80. Subroutine SEECALC

405

I . ______ra • • a= - • . • • •



5.7.12 Subroutine VAL

PURPOSE: VAL determines the target value which has
escaped for a given weapon configuration and
also determines the effective value, F41 , for
each target element as seen by each we pon.

ENTRY POINTS: VAL

FORMAL PARAMETERS: VESCTOT

COMON BLOCKS: Cl

SUBROUTINES CALLED: None

CALLED BY: DGZ, F2BMIN

Method:

This computation uses the effective values, VEFF(J,I), the survival
probabilities, S(J,I), and the time dependent target vglues.

Subroutine VAL is illustrated in figure 81.

I

i 406

I 1 4



i-I

E~-k=1 (Sdk [VIiI)d-Vj(T) i

(j = 1, 2, 3, ... NT)
(i 1, 2, 3, . ,N+1)

N+1

F.. p=i~l 3P i 1, 2, ... , N= i 3 j 1,I 2, .. ,NT

NT N+1

jj=1 i=1

RETURIIN

E. - Value of target element j
after arrival of all weapons

V (Ti) - Value of target element jJ 1 immediately after arrival

of weapons 1 through i

SSk " Survival probability of targetjk element j relative to weapon k

F.. - The effective value of target31 element j as seen by weapon i

F Total escaping target value=VESCTOT

Figure 81. Subroutine VAL

407

_ _ -



5.7.13 Function VMARG

PURPOSE. Given a particular weapon configuration, function

....OE: V IRG determines the marginal value 
of moving a

specific weapon to a new position.

ENTRY POINTS: VIRG

FORMAL PARAMETERS: IT - Index weapon
XT - X coordinate of weapon aim point offset

Y1 - Y coordinate of weapon aim point offset

COMON BLOCKS: C1

SUBROUTINES CALLED: SSKPC

CALED BY: DGZ, GRADF

Method:
A modified set of survival probabilities 

for all target elements for

this weapon is used to determine the marginal 
value.

Function VHARG is shown in figure 82.

r

408

Ii 4



ISTAirT

(For All1 3)

i  (y y) 2  _R:
-A 0

I-pi SSKPC (l,A,ei,R)- S.

E j(Sj, 
Sji

(x,y) = Position of Weapon I

(xi,Yo) = Coordinates of Target Element J

r. Lethal Radius, Target J

' Yi = Scaled Yield, Wl'epon I

Pi -- Probability of leliver)', Wcapon I

ei -Error il lkelivery , Weapon IiJ

= Survival Probability of Target J-I
Relative to Ileapon I

S!. = Survival Probability of Target J
31 Relativc to Weapon I wheln it is

Assigned to Position (x,)')

Figure 82. Function VWARG "

409

__ __ _



5.7.14 Subroutine WEPGET

PURPOSE: Retrieve weapon attributes per assignment, and up-
date assignment counts based on corridor.

ENTRY POINTS: WEPGET

FORMAL PARAMETERS: None

COMMON BLOCKS: Cl, CI0, C30, WPGT

SUBROUTINES CALLED: DIRECT, HEAD, NEXTTT, RANSIZE, TIMEME

CALLED BY: ENTMOD

Method:

Subroutine ENTMOD executes WEPGET for each target weapon assignment.
WEPGEm retrieves weapon related attributes (YIELD, CEP, etc.) and de-
fines arrays in common block /CI/ for use by subroutine DGZ. Also, a
count of each weapon assignment categorized by group and penetration
corridor is updated.

The weapon attributes necessary for calculating offsets for each strike
are indexed at the weapon group level. That is, individual strikes
launched from the same weapon group have the same attribute values.
Therefore it is necessary to interface with the data base only once per

weapon group request. Upon initial extraction, these attributes are
written on an indexed random file for future reference.

Subroutine WEPGET is illustrated in figure 83.

I

410

L 4 __ ___________



START

Weapon een Processed?

Calculate Delivery
Probability, Minimum

Yield, Delivery Error,
And Scale-d Yield

Update Weapon I
Assignment Count

25 lq~rite Weapon RTR
At tributes

Figure 83. Subroutine WEPOET

411

KJ



5.8 Subroutine SUMPRN

PURPOSE: To sort weapon group assignment chains and print
out assignment summaries

ENTRY POINTS: SUMPRN

FORMAL PARAMETERS: None

COMMON BLOCKS: Cl0, C30, IONPRT, JAZ

SUBROUTINES CALLED: DIRECT, DLETE, HEAD, NEXTTT, ORDER, REORDER,

SORTIT, TIMEME

CALLED BY: ENTMOD

Method:

This subroutine replaces existing ASSIGN records which are in no parti-
cular order on the MYASGN chain with the same set of ASSIGN records in
the following sorts: For missile groups, assignments are sorted on
salvo number ascending, and, within salvo, on the value of the RVAL
attribute descending. For bomber groups, assignments are sorted on cor-
ridor with the corridor most often assigned occurring first, and, within
corridor, on the value of the RVAL attribute descending. •

The method used is to cycle the weapon group chain and perform essen-
tially the same process for each group. First a record is read from
random access file 25. This record contains counts of the weapon groups
assignments. For missile groups the total number is in CORCNT(l) and
-1 in CORCNT(2). For bombers the contents of CORCNT(1) corresponds to

the number of assignments to corridor I. At this point, if the group is
a missile group, the print header is produced. If the group is a bomber
group, the assignments are totaled and the proper corridor order is
stored in CORORD.

Now the assignments are read from the MYASGN chain and stored. The
method of storage depends upon the total number of assignments. If
the number is such that the data may be sorted internally, the data is
stored in array F. Otherwise, it is written onto a file. The sort keys
are created at this time. When the assignments have all been processed,
the old assignments are deleted from the MYASGN chain. Then the assign-
ments are sorted either internally by routines ORDER and REORDER, or
externally by SORTIT. Now each assignment, in sort is oither rend Vrom
the SORTIT output or retrieved from array F. A new ASSIGN rec'ord ih
stored in the MYASGN chain and the assignment is printed. The bomber
header is produced each time a new corridor is encountered.

Subroutine SUMPRN is illustrated in figure 84.

412



START

Call READ
For Weapon
Group Chain

Call NEXTTT

For NeI
Weapo Grou

Call TIM

Fiue84 Guroupn SUR (PaETUoR9N-Noi
4edCrrdrFie2DataFil



2

Set~al ICONTTo er
SeGrZ oup 1niao If= Numbers

MfssilePnt ant Besil

Sorted Internally.
Otherwise ISIZEi-2

end

Figure 4. (Pat 21o 9

41



rr

23

Call HEAD
For TARCDE

Record

Save TARCDE
Reference Code

Call DIRECT
And HEAD For
Target Data

424

e Save SalvoMissileNumber As
Process? First Sort Key

20 No,

SCalculate

Recovery
Distance

Save Corridor I -

Order As First 26

Sort Key ]

Figure 84. (Part 3 of 9)

415



260

Save inverse Of
RVAL As Second

Sort Key

Save Remaining File 21
Data In SR

Array

ISIZE-17 N Write SR Onto

Figure~Fil 842Pat4 f9

Ye6

Store ombine



7

Write Page
Eject

Calculate NSTRK

Total Of
Assignments

Set ISIZE-1 If

Internal Sort.
ISIZE-2

Otherwise

isizE 2 7  File 21

Create Array CORORD
Which Is Corridor Order

Based on Number of

Assignmbnts To
Corridor

Figure 84. (Part 5 of 9)

417



2Y27 5

Call NEXTTT
For Next

Assignment

Figure ~ Se 84.R (Ast6of

End o CoridorO418



32

Read Nexct Sort
ISZ~?Record From Output

441



5

Set I.FTX F~rom FIXED
Se~t LOOP=I or
-KORR, I f KORR

Is Negative

Asi W uet

Figure 84. (Part 8 of 9)

420



D esired?.
Yes

New Ye~s Write Out

Corridor? / Bomber Header

No

Set TPREM, .

ATLOC And

FIX

Write Out

Bomber

Assignment

32

Figure 84. (Part 9 of 9)

421



APPENDIX A

ALOC ANALYTICAL CONCEPTS AND TECHNIQUES

This appendix describes the major analytical concepts, techniques, and
algorithms employed within the allocator (module ALOC). Topics of dis-
cussion consist of explanation of corridor routing, weapon/target inter-
action, weapon correlation, weapon allocation, derivation of Lagrange mul-
tiplier adjustment, and derivation of formulae for correlation in weapon
delivery probability.

A.1 Corridor Routing

Penetration/Depenetration Corridors: In QUICK, bomber routing for pene-
tration and depenetration of enemy territory is controlled by the use of
flight corridors as reflected in figure 85. These corridors are estab-
lished by the user and are defined in the data base. The user is permitted
to specify a number (up to 30 per side) of alternative penetration corri-
dors that can be used by the bomber force. A penetration corridor is de-
fined by an entrance point and a corridor origin. From the corridor ori-
gin, the aircraft is permitted to fly in a direct route to the target.
The corridor also has a specified orientation or axis, which is used to
indicate the general direction of the defense suppression effort. There
will be a tendency for bombers to penetrate more deeply parallel to the
direction of the penetration axis than at right angles to it, since the
attrition rate will be less (see Bomber and Missile Defenses, this appen-
dix). The corridor axis is specified in the data base by a coordinate
for the origin and a coordinate for the axis orientation point (denoted
by the arrowhead in figure 85). In addition, the user may establish pre-
corridor legs. This may be useful in order to avoid areas in which the
expected attrition is high.

The user must also establish depenetration corridors which define the
routing from enemy territory to a recovery base. A maximum of 50 depene-
tration corridors, each with up to four recovery bases, may be defined
for each side. The system seeks, for each target, the most convenient
depenetration corridor and associates it with the target. The depenetra-
tion corridor is specified in the data base by a depenetration point and
one or more depenetration legs. The system will search from the last leg
of the depenetration route and select an appropriate recovery base (see
Detailed Sortie Specifications, this appendix).

Under the corridor concept, the routing of long-range strategic bombers
is as follows. The aircraft is programmed to launch from its launch
base; fly to a refueling area, if there is one; fly to the entrance of
the penetration corridor; and fly down the corridor until it reaches the
corridor origin. From this point, the bomber is permitted to fly in a
direct route to the target. After the last target, the bomber is pro-
grammed to fly to the depenetration corridor entry point and fly down
the depenetration corridor to a recovery base.

42S - ' "  - " -- - - i

423 PRECEDING PAGE BLANK

I ;- IIti



II

BOMBER BASE Direction of Flight

N "0 REFUEL POINT
o

o'I,

CORRIDOR ENTRY (First user-directed route point)

0 PENETRATION ROUTE LEGS (Called precorridor legs,0 i.e., optional route

Tlegs which control
bomber routing prior\ ~, to the corridor origin)

CORRIDOR ORIGIN (From this point, bombers may
/1\~ fly direct to targets)

TAXIS ORIENTATION POINT

FIRST TARGET

a LAST TARGET

" EPENETATION CORRIDOR POINT

DEPENETRATION ROUTE LEGS

-- Route if refueling is specified
and precorridor legs are defined
in data base.

-00- If refueling is not specified and RECOVERY BASE

precorridor legs aie not defined,
the bomber is routed in a straight
line from its base to the corridor
origin. In this case the corridor
origin is also the corridor entry
point.

o

Figure 85. Typical Bomber Flight Route

424

- - - 7.... . .. . .. . ... . . . .....-- -



In actuality, not all bombers travel through geographic corridors to
reach their targets. Two types, tactical bombers (those carrying nu-

clear weapons) and naval bombers (those restricted to attackin- targets

in class NAVAL), fly directly from their launch point (or refuel point)

to their targets.. lowever, to facilitate the creation of flight plans

lor these two types of aircraft, two dunmy corridors (one for each type)

are defined in the data base. While these corridors have no geographic

significance, their assigned parameters do reflect the attrition to which

aircraft will be subjected as they fly to their targets.

Corridor Attributes: The QUICK System allows up to 30 corridors per

side to be used in a war game. Each corridor is associated with a set

of type characteristics (attributes). These type characteristics, with

exception of attrition on precorridor legs (attribute KORSTY), are used

within the Plan Generator to establish the area attrition rates for

bombers (see Bomber and Missile Defense, this appendix). Following is
a description of the corridor attributes.

ATTRCO Normal attrition rate for high-altitude aircraft using

the corridor

ATTRSU A reduced attrition rate for high-altitude aircraft
applicable near the main axis of the corridor

DEFRAN Typical range of interceptor aircraft on bases near a
corridor (nautical miles)

1IILOAT The ration of low altitude attrition to high-altitude
attrition (decimal fraction)

KORSTY Attribute used to control the mode of corridor pene-
tration (referred to as parameter k when used in the
calculation of curvilinear coordinates--see Basic
Sortie Generation, this appendix).

Bomber Defenses and Corridor Selection: In the case of bomber/area
defenses, the penetration probability is estimated on the basis of the
nominal attrition rates ascribed to the penetration corridors. Each
corridor is ascribed at least two attrition rates:

ATTRCO Normal attrition rate for high-altitude aircraft using
the corridor

ATTRSU A reduced attrition rate for high-altitude aircraft
applicable near the main axis of the corridor.

In addition, attrition rates can be specified if desired for any pre-
scribed legs between the entrance and origin of the corridor, and

425



(

attrition can be specified in the connection with penetration to defended
targets (TARDEFs). These attrition rates are used to estimate the pene-

tration probability. However, it is also assumed that the attrition

rates can be reduced by the factor HILOAT for portions of the route where
the aircraft can fly low. Any excess range available to the aircraft at

high altitude is used to provide a low-altitude flight -- assuming a
conversion factor RANGEDEC between low-altitude and high-altitude fuel
consumption. The estimated low-altitude range is then allocated among
the legs of the mission to minimize attrition.

To represent the effect which area and terminal defense will have upon
the successful execution of any bomber attack plan, a probabilistic
approach is used. The level of defense in a given area will directly
affect the probability that a bomber which travels through this area
will successfully reach its subsequent flight points. Therefore, each j
section of geography over which bombers fly is characterized by attrition
parameters which reflect the level of area and local defenses for that
section. These parameters will, in turn, determine SURV(I), the proba-
bility that the bomber will survive to reach flight point I. Finally,
VALSORTY, the total value of a sortie, is defined as follows:

VALSORTY - Z SURV(I)*V(I)
all flight
points

where V(I) = estimated value of reaching flight point I. This value
V(I) is the relative value RVAL generated during weapon allocation by
program ALOC (see Basic Sortie Generation).

The computation of SURV(I) for the formula is based on a simple expo-
nential attrition law. If the integrated attrition probability on each
individual leg to a point J is given by ATLEG(J), then the survival prob-
ability for the bomber to the point I will be given by:

SURV(I) = EXPF [ I ATLEG(J)
J=l

The attrition ATLEG(J) includes both area and terminal attrition for the
leg. Figure 86 illustrates the attrition attributes and variables used
in the POSTALOC module.

The area attrition for each leg is computed by integrating the assumed
area attrition rate over the length of each leg. After the first tar-
get, this assumed area attrition rate per nautical mile is a constant,
equal to the data base variable ATTRCO supplied for the corridor.
Prior to the first target, the assumed attrition rate decreases expo-
nentially toward the limiting value ATTRSU which is also a data base
variable for the corridor. Thus the variable representing the assumed
area attrition rate between the origin and the first target is given by:

426



00

00

co 00

*l 0

-. 4 C4

~0
LL.J

- o C

C)C))

0.& S.-

144 0
W.U

04 4J

0 U x A

____ t" 0

084  k* 4.)

IW 04

tu C4

$4 0 *(I* 4.)

0 u
C~$4
0 (444

427
4



Rate = ATTRSU + (ATTRCO - ATTRSU) * EXP (- X/DEFRAN)

where X = the distance in nautical miles between the corridor origin and
the first target and DEFRAN is the typical range in nautical miles of
interceptors on bases near the corridor. Attrition rates (ATTRLE) may
also be specified for the precorridor legs leading into the corridor.

The terminal attrition ATTRLOC (see TGT2 in figure 86) is estimated
directly from the data base variable TARDEF. Each potential target
with a local (terminal) surface-to-air missile (SAM) defense is assigned
the attributes TARDFH and TARDFL. The value assigned these attributes
reflects the level of bomber defense, at high and low altitudes, pro-
vided by local SAM units. Considering the bomber's altitude (e.g., high)
the local attrition ATTRLOC is estimated as follows:

ATTRLOC = .l*TARDFH

Naturally, this local attrition is of concern only when the route point
characterized by this local attrition is itself a target for a bomb. It
produces no effect if the target with which it is associated is attacked
by an ASM (air-to-surface missile) that is launched from another route
point. Moreover, even if the sortie definition indicates that the ASM
is launched at the target from the vicinity of the target itself, it is
assumed that the actual launch point will be such that the aircraft will
not be required to penetrate the local defenses. Thus, any local attri-
tion associated with the ASM target is again ignored. Finally, it is
assumed that all local attrition is applied only to the incoming leg to
the target and that on any leg or fraction of a leg flown at low alti-
tude the attrition rates will be reduced by the factor HILOAT. In
order to estimate the expected value of the sortie, therefore, an esti-
mate must be made of how the available low-altitude range should be
applied (discussed under Basic Sortie Generation, this appendix). Notice
that a change in the assumed attrition rate for any leg or part of a leg
will change the probability of survival to any point I (SURV(I)) which
is required to evaluate VALSORTY.

During the weapon allocation phase (module ALOC), detailed sortie infor-
mation (i.e., routing and sequential targeting) has not yet been gener-
ated. Therefore, bomber penetration of area defenses is treated as
follows.

In weapon allocation, only one target is under consideration per vehicle.
Therefore, in allocating low-altitude range among the legs of a mission
to minimize attrition, much less weight on attrition is placed after the
target has been reached. The algorithm assumes that the normal corridor
attrition ATTRCO applies to the entire route from the target to depen-
etration, and to a portion of the route prior to the target equal to
the perpendicular distance of the target from the main axis of the pene-
tration corridor. The suppressed attrition ATTRSU is assumed to apply
for the remainder of the route from the corridor origin to the target.

428

-/ . . . . . . . . . .



In computing the range of the aircraft, the normal range RANGE is used
starting from the centroid of the weapon group for nonrefueled aircraft
(IREFUEL=O) and from the specified refueling area for area type refuel-
ing (IREFUEI 0). In the case of buddy refueling, the refueled range
RANGEREF is used, but distances are again measured from the weapon group
centroid.

The penetration calculation is implemented by dividing the aircraft
attrition elements into four "LEGS."

LEG = 1 Corridor entrance to origin (distance equal to sum of
all such legs with attrition specified -- attrition
equal to sum of attrition on all such legs)

LEG = 2 Corridor origin toward target as far as suppressed
attrition (ATTRSU) is applicable

LEG = 3 End of LEG 2 to target -- ATTRCO applies but is aug-
mented by any local attrition at a defended target
TARDEF

LEG = 4 Target to depenetration -- ATTRCO still applies but
value of mission and seriousness of attrition (RATE) is
assumed to be less by a factor of approximately .25.

The available low altitude is then distributed among these legs, and the
penetration probability is estimated. To select the preferred penetra-
tion corridor, a weight, .75, is given to reaching the target; the
remaining weight, .25, is assigned to reaching the depenetration corri-
dor. The corridor showing the highest value (Z weight*penetration pro-
bability) is chosen, and the penetration probability to the target via

that corridor is recorded for the group. If the group has been speci-
fied for nonrecovery (IRECMODE = -1, the recovery distance is simply
set to zero.

On leg 3, the terminal attrition parameter TARDEF is modified by the
parameter TARFAC. TARFAC is a user-input parameter which allows adjust-
ment of the perceived terminal bomber defenses during program ALOC. The
modified terminal bomber defense attrition is therefore defined as:

TARDEF x TARFAC

This attrition is ignored when calculating the delivery probability of
an air-to-surface missile (ASM).

Missile Defenses: Ballistic missile defenses involve a simpler model.
Only a random defense is considered for area attrition of missiles.
Each warhead, regardless of its assigned target, has the same probabil-
ity of being destroyed by the random area defenses. One random area

kill probability is input for each side.

429



Terminal defenses are modeled by a subtractive model. Each target with
terminal defenses is assigned a number of terminal ballistic missile

interceptors. This number of interceptors (variable MISDEF) is input in
the data base via the attribute NTINT which must be defined for each
defended target.

The input variables describing the target's terminal defense capability

allow uncertainties to be introduced in the number of interceptors pres-
ent. MISDEF is the "nominal" number of interceptors on the target,
each with kill probability PKTX against an unbardened warhead. In addi-
tion, four other parameters are defined (the same for all targets) which
introduce uncertainties in MISDEF. RXLOW is a faccor which, when mul-
tiplied by MISDEF, gives a lower estimate cf interceptors which has pro-

bability PXL0W of occurring. Likewise, RXHIGH and PXHIGH define the
overestimate of interceptor availability. Thus, if there is imperfect
knowledge of the defense capability, the allocator can hedge against
these uncertainties when assigning weapons.

In addition to the target-associated defense data, it is possible to
describe penetration aids suitable for the various missiles by means of
the Payload Table. For a particular payload index, the following var-
iables* describe the penetration aids:

NWHD = Number of warheads per independent reentry
vehicle package.

NTDECOYS The number of "aim points" the terminal defense
sees for each independent reentry vehicle (in
addition to the warheads). 4

An independent reentry vehicle package is a set of warheads and ter-
minal decoys that can be guided to a target point (or points) indepen-
dently. For missile boosters with a multiple independently targetable
reentry vehicle capability (MIRV), there may be several independent

RVs per booster. Otherwise, each booster delivets one set of warheads
and decoys.

The penetration probability of any warhead is a function of all the mis-
siles allocated to the target. The model computes the total number of
objects allocated to the target, NOBJ, as the sum of all warheads and
decoys** allocated to the target. The number of perfect interceptors,
variable PINT, is defined as:

NWHD is data base attribute NWHDS; NTDE(;OYS is attribute NDECOYS

For each weapon, this is the sum of NWHD and NTDECOYS multiplied by
the product of the survival before launch probability, weapon syzurcm
reliability, and command and control .reliability.

430

____ ____j___

________________J



PINT-PKTX*[ (PXLOW*RXLOW)+(PXlIIGH*RXIIIGH)+(l-PXLOW-PXIIGH) ] *ISDEF

This variable is the expected number of objects to be removed by the
terminal defense interceptors.

The penetration probability for any warhead is defined as

[PINT]1.0 - LNOBJj

if this probability is less than (1.0 - PKTX) it is reset to that value.

A.2 Weapon/Target Interaction

The quality of the plans, in terms of realism and sophistication, will
be a direct reflection of the realism incorporated in the payoff func-
tion. In order to produce plans of maximum realism, the payoff function
should reflect all the major factors that would be considered by an
experienced military planner. The design incorporates:

1. Time of arrival of weapons

2. Time dependence of target values, which can reflect a planner's
uncertainty in the time of arrival of weapons relative to
change in target value

3. Weapon range limitations

4. Uncertainty in target vulnerability

5. Correlations in the effectiveness of weapons of similar nature
reflecting such factors as reliability, DBL probability, and
defense effectiveness.

To evaluate the capability of any weapon group against any target, pro-
gram ALOC requires six basic numbers. These are:

SBL(G) The probability assumed that weapons in group G are
not destroyed before launch

CC(KR) The assumed command and control reliability associ-
ated with the region for group G

RXL(K) The assumed reliability for weapon type K used by
group G

PEN(G) The estimated penetration probability for weapons
from group G to the target

SRK(GJII The estimated kill probability of warheads in group G
if delivered against the ill hardness component of the
target

431

Li_



TVALTOA(G) The estimated target value at the time of weapon
arrival for weapon from group G (this factor is corn-
puted from the time of arrival for a weapon from
group G, TOA[G]).

These numbers reflect the planning factors the user has specified for
the plan generation and do not necessarily reflect the values that the
user specifies for external simulation. The number is noted as "assumed"
where it is a direct user input supplied in the data base. It is de-
scribed as "estimated" where it is a derived quantity, based on other
input data.

Actually, the numbers reflect only two types of information -- the time
of arrival information, and the kill probability data. The single shot
kill probability is simply a product of the first five items. The break-
down of the single shot kill probability into these five separate fact-
ors, however, is required in order to estimate correlations in delivery
probability between several warheads delivered to the same target.

Most of the processing of weapon/target interactions deals with the six
quantities given above. These quantities are then used in the calcula-
tion of weapon payoff.

The basic payoff calculation is modified by the inclusion of weapon cor-
relation considerations. For each single weapon, four factors are cal-

Aculated: the single shot kill probability and three auxiliary quanti-
ties required by the correlation model (see Weapon Correlations, this
appendix).

If we define the overall single shot kill probability on one hardness
component J as: SSK - REL * CC * SBL * PEN * STK
then MUP(G,J) - LOGF(I.0 - SSK)
and SSIG(G,J) - MUP(G,J)/-LOGF(SSK)

If the option to use the square root damage law is selected, MUP is

defined in a different manner. It is defined so that:

(1.0 - SSK) (1 +v~u(m *Oxp(-/UG,)

The use of the square root damage function is further explained in a
Inter section (see Multiple Weapon Attacks -- Square Root Law, this
appendix).

MUP is in effect a measure of the effectiveness of the weapon against
the specified hardness component. If all weapons were independent, the
survival probabilLty for the component with respect to multiple weapons
IG would be simply:

EXPF -(Z MUP(IG,J))

(This is called the exponential damage i11w.)

432



If the square root law option is selected, then the survival probability
would be:

The actual formula, using correlations, reduces to this form in the lim-
it or no correlations but requires the array (SSIG(G,J) as an auxiliary
quantity.

Estimation of Correlation Factors, RISK(AG,J): The mathematics of the
correlation calculation will be treated in detail below. Qualitatively,
however, the technique requires an estimate of the extent to which the
probability of failure for each weapon system is correlated with other
weapons of the same class, type, alert status, etc.

The RISK array provides an estimate of this information. For any weap-
on system, the importance (or risk involved) in each failure mode (e.
g., SBL, REL) can be represented in an additive form by taking the log-
arithm of the associated reliability. Thus, the total risk of failure

5
for the weapon system -- LOGF(SSK) -- is given by: SM(L) where:

L=I

SM(l) = - LOGF(SBL)

VSM(2) = - LOGF(CC)

! SM (3) - - LOGF (REL)

SM(4) = - LOGF(PEX)

ISM(5) = - LOGF(STK)

An array SMAT(A,L) is input by the user at the beginning of the alloca-
tion to provide a nominal estimate of the fraction of each risk SM(L)
that is correlated with other weapons sharing each attribute A, where
the attributes A represent:

A = I All weapons

A = 2 Weapons in the same group

A = 3 Weapons in the same region

A = 4 Weapons in the same class

A - 5 Weapons in the same type

A = 6 Weapons in the same alert status

For each weapon group G the RISK array by class, type, etc., is

433



estimated (for each hardness component J) simply as:

RISK(A,G,J) = Z SM(L)*SMAT(A,L)
L

This simple technique for considering weapon correlation is used because
it is a reasonable repiisentation of correlation and the allocations do
not seem very sensitivt to the details of the correlations. Addition-
ally, input data for a more detailed representation would be difficult
to develop.

Adaptability_ of Input Data: The foregoing three arrays are derived from
the basic six variables listed earlier: SBL(G), CC(KR), REL(K), PEN(G),
STK(G,JH), and TVALTOA(G).

The techniques used to calculate these six basic quantities allow a
great deal of flexibility to adapt to new concepts in timing and pene-
tration strategy. Thus it can be expected that the specific form of
their computations will change as experience is gained in actual appli-
cations of the program.

The computations now in use illustrate both the factors involved and
the flexibility that is available. We will now consider the present
techniques for computing these six variables.

Planning Factors -- (SBL, CC, REL): Two of the six (CC and REL) are
contained directly in the data base. SBL is also in the data base --

except that the meaning there is probability of destruction before
launch. To retain mathematical parallelism with other reliabilities,
the SBL used here is defined as a probability of surviving and is
obtained simply as (SBL = 1.0 - DBL). Obviously the specific value of
DBL supplied in the data base should depend on both the alert status
and the probability distribution of warning times for which the planner
wishes to design the plan.

Evaluation of Value at Time of Arrival (TVALTOA(G)): The estimated tar-
get value at the time of weapon arrival for a weapon from group G,
TVALTOA(G) is computed using the formula shown in the Time Dependent
Target Value Subsection of the Planning Factor Processing Section of
this chapter. TVALTOA(G) is equal to F(t) as calculated in the equa-
tion of that section, where t is the time of arrival of a weapon from
group G, called TOA(G).

The time of arrival is computed differently depending on whether an ini-
tiative or a reactive plan is desired, and whether a missile or bomber
is being considered.

In the case of a reactive plan it is assumed that all weapon systems
launch as soon as possible (subject to their specified delays) after a
decision to launch is made. The time of arrival in this case is corn-
puted as PLAN DELAY + LAUNCH DELAY + FLIGHT TIME. PLAN DELAY is either

434



the alert delay or nonalert delay (ALRTDL or NLRTDL) specified for the
weapon in the data base. LAUNCH DELAY is computed as the product of
LCHINT and (SALVO -1), where LCHINT is the time between successive
launches as specified in the data base and SALVO is the salvo number of
the launch (I for first salvo, 2 for second salvo, etc.). (In the weap-
on allocation phase, all bombers are considered to be first salvo
(LAUNCH DELAY = 0) to conserve storage because LAUNCH DELAY would be
such a small fraction of total time of arrival.)

FLIGHT TIME is computed differently for bombers and missiles. For bomb-
ers this time is computed as FLIGHT DISTANCE/SPEED. For missiles, the
FLIGHT TIME is calculated as described in the Missile Flight Time Cal-
culation section of Appendix A,Program Maintenance Manual, Volume II.
For missiles, the flight distance is computed as the great circle dis-
tance over a rotating earth from the weapon group centroid to the target.

For aircraft, the distance is the sum of the great circle distances for
each leg on the following path:

1. Weapon group

2. Specified refueling area (if appropriate)

3. Entrance to chosen penetration corridor

4. All specified intermediate route points for the penetration
corridor (if any)

5. Origin of penetration corridor*

6. Target.

In the case of buddy refueling or nonrefueling, the second point on the
path is omitted. (Note that the times of arrival used at this point
are approximate, in the case of bombers, in that they use a constant
nominal speed and do not allow for excursions to other targets on the
way.)

In the case of an initiative strike, the times of launch are coordi-
nated to reduce warning time. This is accomplished by coordinating
the plan relative to an assumed warning time. In the case of alert
missiles, the user specifies (in the parameter COPMSL) what fraction of
the flight time should have elapsed at the coordination time. With
CORMSL = 1.0 all missiles impact at the coordination time plus the
LAUNCH DELAY described earlier. With CORMSL = 0.0 all missiles launch
at the coordination time plus the LAUNCH DELAY described earlier. This

Aircraft must fly to the origin of the corridor, but are not required
to fly along the corridor axis to the corridor axis orientation point
itself.

435



parameter is used in the weapon allocation phase. The sortie genera-
tion phase, which constructs the detailed plans, may use ze.e snphin-
ticated CORMSL data to achieve more highly coordinated missile stLacks.

In the case of bombers, the user specifies (in the parameter CORBORB)
the remaining flight distance to the entrance of the penetration corri-
dors at the coordination time. For alert vehicles, launch times are
coordinated to make good this position at the coordination tire --

except that no alert aircraft are held on the ground after the coordi-
nation time. The launch time and time of arrival for nonalert vehicles
differ from that for the alert vehicles by just the difference in the
alert and nonalert delays. In the sortie generation phase, the bomber
launch times are staggered according to the LAUNCH DELAY time described
earlier in this section.

Penetration Probability (PEN): The computation of this factor is dis-
cussed in the section entitled Missile/Bomber Defenses, this appendix.

Evaluation of Warhead Kill Probability (SM): The warhead kill proba-
bility is estimated as follows.

The lethal radius for a one-megaton weapon against the jth target hard-
ness component is computed using the VN function in program PLANSET and
is scaled to the weapon yield* using the 2/3 power yield area scaling
law. The kill probability is computed using the formula

W

P DPR 2 i- 2D

where

=K lethal radius

2 2 2
D CEP Tgt

a CEP= 0.8493*CEP

0Tgt= R95/2.448

R = radius containing 0.95 of total target value.
95

* For gravity bombs and missiles this is the yield calculated for the

group. (See Basic Yield (Bombers) and MRV/MIRV Payloads sections in
this chapter.) For ASMs, this is the actual warhead yield.

436 j
4



For gravity bombs and missiles, the CEP is the CEP of the vehicles. For
ASMs, the CEP is the CEP of the ASM as input in class ASM in the data
base. The lethal radius is calculated in module program PLANSET for
both ground burst and optimal air burst. The kill probability calcula-
tion uses the larger of these radii unless the user specifies (in module
PREPALOC) the burst height (air or ground) for the target.

This kill function is computed from a very general actual-range/kill-
probability Iaw described in the Damage Function section of this appen-
dix. When the parameter W equals 3, sigma-30 damage curves are closely
approximated, appropriate to soft targets (below 15 psi); for W equal to
6, sigma-20 curves are approximated, appropriate for hard targets. The
use of these sigmas is inherent to the VN system as outlined in Physical
Vulnerability Handbook -- Nuclear Weapons (U), Defense Intelligence
Agency (CONFIDENTIAL).

For weapons restricted to targets in class NAVAL, this calculation is
not performed. The value of the attribute PKNAV is used as the single
shot kill probability. (Note that these weapons are identified by a
value of PKNAV greater than zero.)

Multiple Weapon Attacks -- Square Root Law: When a number of weapons
attack a single target, there are two ways to consider the total expected
kill probability: the exponential (or power) law and the square root
damage function.

The exponential, or power, law considers the total survival probability

to be the product of the individual survival probabilities. This law
is not as appropriate for area targets as for point targets. The user
therefore has the option to use a square root damage function on area
targets; i.e., targets with a radius greater than zero. The square
root law operates as follows: For each weapon i, define a factor K. as
follows:

P = exp+

where P = probability that target survives one weapon of type i.
(This KS factor is called P in this program.) If we have Ni weapons

of type i, then the survival probability of the target, assuming inde-
pendent weapons, is

P =exp IM * I + NiK i

* if we have Nj weapons of type j also allocated to the target, the sur-
vival probability, again assuming complete independence, is

SN1 exp(- V'N K +N K~ I( + JN K +N K J)

437



The weapons are not usually considered to be completely independent.
Thus, the sums, NiKi + ... , must be modified to consider interweapon
correlations. The method of modifying this sum is discussed in the
Weapon Correlations section of this chapter (also see Derivation of For-
mula for Correlations in Weapon Delivery Probability).

A.3 Weapon Correlations

A basic consideration underlying the need for cross targeting is the
existence of "shared risks" between weapons--not only of the same type,
but also between weapons of similar or related types. For example, if
the enemy air defense is better than expected, the actual penetration
probability of all bombers will be lower than that planned. If ballis-
tic missile guidance systems prove to be operationally less accurate
than expected, the target kill probability will be lower for all such
missiles. These possibilities are illustrative of risks that are
"shared" by large numbers of weapon systems. Cross targeting is intend-
ed to avoid "putting all eggs in one basket." It is designed to increase
the probability that important targets will be destroyed even if most or
all of the weapons with certain identical characteristics fail to per-
form as planned. Cross targeting recognizes the fact that operational
percentages of success or failure for weapon systems cannot be pre-
dicted in advance.

The basic model used for cross-targeting analysis therefore recognizes
that operational performance reliabilities are uncertain, and treats j
them as random variables. War plans are then developed on the assump-
tion that the actual reliabilities that may be encountered in practice
are unknown, and that they will in effect be selected at random for
each weapon type from appropriate probability distributions. Moreover,
it must be recognized that the reliabilities are not independently ran-
dom for each weapon type, because certain risks are shared by many weap-

on types. Thus, on a specific Monte Carlo selection, when one success
percentage is low, certain other percentages should tend to be low also.
A satisfactory plan generation model also should be capable of con3ider-
ing these relationships between the success percentages for various
weapon types.

To provide input data for the generation and evaluation of a cross-tar-
geting plan, it is convenient to express these relationships in terms

of risks that are shared in various degrees by similar weapon systems.
The QUICK Plan Generator deals with five possible failure modes (table
12): survival before launch, launch or in-flight failure, command and

control failure, penetration failure, and failure to kill the target

even if delivered successfully. Each such failure mode can involve eor-
Lain risks that are shared with similar weapons. For each such mode of
failure, the user can specify the extent to which he feels risks will
be of a type that are shared by all weapons of the same group, type,
class, region, and alert status. Residual risks that are not specified
to be shared in this way are treated as independent from weapon to weap-

on. Two weapons that share any attribute, such as type or alert status,

438



can have a certain amount of shared risk. The failure correlation model
used in the QUICK system considers each weapon to have seven attributes
over which to distribute the effects of the five failure modes. Table
13 shows the seven weapon attributes.

Associated with the attributes and modes is r matrix which specifies
the fraction of the risk in each mode that is shared by weapons with
the same attribute. This failure mode/attribute matrix, the SMAT array,
defines the amount of risk shared by similar weapons and was referred
to previously as the correlation array.

The entries in the matrix are the fraction of the risk of failure in
the failure mode that is assumed to be shared by weapons with like
attributes; e.g., class, type, region, and alert status. The sum of
each row of the matrix must be 1.0. Two weapons in the same group that
are identical with respect to all of these attributes will share iden-
tical risks except for the independent component. This array is used in
the QUICK Plan Generator to compute weapon delivery probabilities and
expected target damage when multiple weapons are assigned.

Nature of Uncertainties: The basic objective of cross targeting (ksing
more than one weapon type against a target) is to increase the probabil-
ity that the target will be destroyed even if most or all of the weapons
of any given type fail to operate as planned. In other words, the cross
targeting is intended to hedge against the fact that the operational tar-
get kill probability for any weapon type is uncertain. In the conven-
tional oversimplified calculation of expected target destruction, uncer-
tainty in the percentage of targets destroyed is assumed to arise only
as a consequence of the random selection of statistically independent
individual weapon successes and failures (which are assumed to be drawn
from an ensemble of known overall reliability). However, in realistic
planning situations, these individual weapon-to-weapon statistical
variations account for only a very small portion of the total uncer-
tainty in the percentage of successes that will actually occur.

There are numerous other factors over and above this simple statistical
variation that introduce uncertainty in the actual percentage of weapon
successes. In the present model, all of these factors, regardless of
their actual cause, are lumped as contributors to a single uncertainty
which represents total uncertainty in each of the various planning fact-
ors. Thus, within the model, the overall uncertainty is divided into
two separate parts. First, for each planning factor (such as in-flight
reliability, launch reliability, penetration probability, or probability
of surviving destruction before launch), the uncertainty is modeled by
defining a probability distribution for the reliability factor. For any
specific war game, the actual reliabilities are considered to be drawn
at random from these distributions. After the random selection of these
reliabilitit, there still remains uncertainty in the actual success
percentage. This second uncertainty derives from simple statistical
fluctuations in the success percentages that occur when independent
successes and failures are drawn from an ensemble of specified overall

439



Table 12. Failure Modes

MNEMONIC DESCRIPTION

SBL Probability of survival before
launch

CC Reliability of command and control
system

REL Weapon system hardware reliability

PEN Penetration probability

STK Probability of target kill by war-
head

Table 13. Weapon Attributes

NAME DESCRIPTION

ALL Shared by all weapons in the stock-
pile

ALERT The alert status of the weapon,
either alert or nonalert

CLASS Weapon class, either bomber or
missile

TYPE Weapon type (e.g., B-52G, Poseidon)

REGION Region of launch base

GROUP Weapons of same class, type, region,
and alert status whose launch bases

are close to one another

INDEPENDENT Shared by no two weapons in the
stockpile

440



reliability. However, in realistic planning situations, this latter
cause of uncertainty is usually relatively minor. The really serious
uncertainties and, in particular, the uncertainties that give rise to
the need for cross targeting, are above and beyond this simple statis-
tical variability. The following are examples of some of these impor-
tant Factors that contribute to the uncertainty represented in the model
by the probability distribution for each of the planning factors.

1. The enemy strategy and tactics are unknown and these can have
major effects on the probability of penetration and the prob-
ability of destruction before launch both for individual weap-
on types and the force at large.

2. The basic system reliabilities in an operational environment
may differ from those estimated in a test environment, and even
the test environment reliabilities are not known exactly.

3. The actual success or failure percentages for one weapon may
pysically influence the success or failure probabilities of
others--for example, in defense suppression attacks and in
saturation tactics.

Weapon Failure Modes and Target Survivability: A programmed weapon can
fail to destroy a target for a variety of reasons (failure modes) such
as destruction before launch, launch failure, in-flight failure, pene-
tration failure, or delivery inaccuracy. Assuming that these various
failure modes are statistically independent, the overall reliability of
the weapon h (from group i(h)) will be simply the product of the reli-
abilities over all the possible failure modes J;

HR IiR

where

n = reliability for weapon h

Ri(h)j  reliability for weapon h with respect to failure mode j

The target will survive the weapon h with probability

sh = 1 - R - - H Ri(h)j
j

Assuming for the moment that all weapons programmed against the target
are statistically independent, the total probability of target survival
is given by

S = h = 1 (1 -h
i (h

441



In simplified analysis models where the reliability with regard to var-
ious modes of failure is assumed to be independent from weapon to weapon
(i.e., where the operational reliabilities are assumed to be exactly pre-
dictable), this relation gives rise to a very simple law for target sur-
vivability with regard to multiple weapons. Specifically, relative to
any target, one can define a single parameter Xh for each weapon h,
where

=h n sh

The Xh in this equation can be thought of as a measure of the strength

of the weapon against the target. The probability of target survival
is then given by

S= exp (-X1)

This relationship is widely used in military analysis work. It has the
advantage that the effectiveness of weapons against a target can be
measured in terms of a single additive quantity, and the efficiency of
a weapon relative to its value can be measured simply by comparing this
quantity, ,h, with the weapon cost or shadow value.

However, as soon as one admits the possibility of uncertainty in the
reliability factors or of dependence of the reliabilities between weapon
types, the simplicity of this relationship is lost. Since the Xh are
related, a simple sum will no longer suffice to determine target sur-
vival. The incremental effectiveness of each weapon depends in part
upon the other weapons which have been progranumed against the target.
It is no longer correct to increase the sum in the exponent as each
weapon is added. The entire expression for target survival must be
completely reevaluated with each weapon addition. Thus, the previous
equation must be expanded to the form

S = exp [ [I RiQ()J) ] h I "  R  i(h) j )

The computational complexity of this expression for S in terms of the
Ri(l j, although undesirable, seems to be unavoidable in a practical
cross-targeting model.

One obvIous and superficially attractive way of avoiding the complexity,
however, may require some commient. It has been suggested that the com-
plexity can be avoided simply by considering the X, as the random var-
iables, and allowing the user to specify the statistical dependence
between the Xh rather than the Ri(h) * Unfortunately, because oC the
complex and unintuitive relationship between the Xh that result from
mutually shared risks, this approach appears to place an impossible bur-
den on the user.

442



A simple example will serve to illustrate this point. Consider two

weapons, A and B, that share an identical risk of destruction before

launch. Weapon A is otherwise completely reliable, and weapon B has

numerous other more important failure modes. The small risk of pre-

launch destruction is the only risk that prevents the Xh for the reli-

able weapon from being infinite. Thus, the destruction before launch

risk completely determines the value of the Xh for the reliable weapon,
but this same risk will have very little effect (even on a percentage
basis) on the Xh for the less reliable weapon. Thus an identical shared

risk produces grossly different effects on the Xh for the two weapons.

It seems clear that if a model is to successfully deal with the statis-
tical dependence between weapons, the user must be permitted to express
the relationships in terms of the sharing of risks, and the consequences

in terms of the Xh must be derived by the model. It is unrealistic to

expect the user to supply information directly in terms of the Xh, even

though this might simplify the mathematics.

Correlation Input Information: The preparation of correlation informa-
tion for the QUICK Plan Generator is simplified for the user through the

use of a hidden variable approach. The specific hidden variables em-

ployed are generalized so that they can represent broad aggregations of
risk elements. This has the advantage that a standardized set of risk

elements can be used, and it is not necessary to redefine a new set of

hidden variables for each application of the system.

For the purpose of dealing with these risks, the QUICK system classifies
all possible ways a weapon can fail (to destroy its target) into the

five generalized failure modes described previously.

Each weapon in the QUICK system is considered to be a member of a homo-
geneous group of weapons which are considered to be identical with
regard to all parameters used in the development of a war plan. The
"weapon group" in turn is categorized as being of a particular: Class
(bomber or missile); Type (minuteman, B-52, Polaris, etc.); Alert Status
(alert or nonalert); and Conmmand and Control Region. The various specif-
io risk factors that can contribute to each of the five failure modes
are also further classified as to whether they represent risks that
might be shared in some degree: by all weapons of the same class; by
all weapons of the same type; by weapons of the same alert status; or by
weapons which share any other weapon attribute. Thus for each general-
ized failure mode, the QUICK system operates as if there is a hidden
risk variable for each weapon attribute (see table 13, Weapon Attributes).
By the conventions used in QUICK, the risks represented, for example, by
the hidden random variable "Penetration Risk - Class Bomber" are avail-
able to be used only in the calculation of penetration risk for weapons
that are members of the class "Bomber." Another risk variable is avail-
able to be used for penetration uncertainties by all weapons that are of
class "Missile." If there are penetration risks that are relevant only
for a subset of weapons within a class, there is another hidden variable
for each type and even for each group that can be used.

443

'A



The risk correlation information supplied for the QUICK system thus
takes the following form. For each failure mode j and each weapon group
i, an expected reliability ij is specified. The total risk, or var-
iance, associated with this reliability factor is thought of as being
divided into two parts, an independent risk and a shared risk. The
shared risk is shared by all weapons in the group and is a result of the
variance of the actual reliability R.j relative to the expected relia-
bility Ri The remaining variance is identified as an "independent"
risk whicA is completely independent from weapon to weapon in the group.
The division of variance between "shared" and "independent" thus deter-
mines the width or uncertainty assumed by the Plan Generator for the
probability distribution of RiA relative to Rip" The larger the per-
centage of independent risk, t e lower the uncertainty in Rij.

The portion of the variance that is assumed to be shared within the
group is then further subdivided into portions that are attributed to
the hidden variables for weapons of that particular class, group, type,
etc. Thus for each failure mode, the risk attribution required by the
QUICK system consists simply of a specification of the portion of the
total risk that is to be associated with each of a number of weapon
attributes. Specifically, the user must specify the portion of the risk
associated with each of the seven weapon characteristics previously de-
scribed.

The summation of risk percentages attributed to each of the above fac-
tors must of course equal 100%. The following table illustrates a typi-
cal risk attribution array (SMAT) used as input to the QUICK system.

ALL GROUP REGION CLASS TYPE ALERT INDEPENDENT

SBL 0 .10 .10 .40 .10 0 .30
cc 0 .20 .30 .10 .10 9 .30
REL 0 .05 0 .10 .20 0 .65
PEN 0 0 .10 .20 .20 0 .50
STK 0 0 0 0 0 0 1.00

The fact that 100% of the STK risk variable is treated as independent
in this example implies zero uncertainty in STK; thus in this example
we are ignoring any uncertainty in weapon yield or CEP. The choice of
.30 for the independent component of the SBL as opposed to .65 for REL
implies the assumption of greater relative uncertainty in any SBL relia-
bility than is assumed in corresponding launch or in-flight reliabili-
ties, REL.

Since, by definition, each row of this array must add to 1.0, the final
column is obviously implied by the numbers in the other six columns.
The actual input format for QUICK therefore omits the final column, so
the correlation or risk attribution data are actually supplied in the
form of a 5 X 6 array, known as SMAT. By convention, in supplying these
data for QUICK, the array is normally filled with numbers intended to

444

- -- -I



represent the maximum amount of uncertainty or shared variance thaL it
seems reasonable to consider.

One other important simplifying assumption is made concerning the risk
attrbtutlI oo data sUpplLed. In principle, one might think that the user
would like to specify different risk attributions by class, type, alert
status, etc., for every individual weapon group. This approach would
provide maximum flexibility to control the factor weightings for each
group, but it would require a separate SMAT array for each of the groups
used (up to 250) in the QUICK system. To avoid this data burden, the
QUICK system actually uses only one SMAT array and the values used in
the array are chosen to be a reasonably good compromise for all weapon
groups.

For missiles with a MIRV capability, a different weapon correlation
array is created. The user specifies what fraction of the variance
attributed to the INDEPENDENT attribute is to be added to the variance
attributed to the GROUP attribute for all MIRV groups. This specifica-
tion has the effect of increasing intragroup correlations for these
groups. Since this increased correlation is applicable only to those
events which precede booster burnout, only the failure modes which
affect the booster are modified. These modes are survival before launch
(SBL), command and control reliability(CC), and weapon system reliabil-

I1 ity (REL). '17wo SMAT arrays are stored, one for MIRV groups and one for
non-MIRV groups. As each group is processed, the appropriate array is
used In computing weapon/target interaction parameters.

A.4 Weapon Allocation

Weapon to target allocation is accomplished by one of two methods. The
user may specifically assign some or all of the weapons identified for
the war game; those weapons not specifically assigned by the user are
automatically (mathematically) allocated by module ALOC. This program
allocates :apons over the specified target system, using input data
concerning the structure of the target system, the inventory and capa-
bilitles of available forces, and the war objectives and strategy. It
produces as output a detailed specification of the weapons assigned to
each target.

The structure of the target system Is represented by the location, value,
and estimated vulnerability and defense capability of each target cle-
ment. 11he available forces are represented by such factors as range,
yield, accurtivy, reliability, penetration parameters, response time,
speed, survivability, location of deployment, and inventory.

The allocator (ALOC) uses generalized Lagrange multiplier optimization
techniques. With this approach, it is practi.cal to use comparatively
detailed payoff functions reflecting realistic uncertainties and planning
contingencies that are usually ignored in autooatically generated plans.
The approach provides sufficient flexibility to include targeting objec-
tives and cotstraints which may not have been foreseen in the original

445

IA



formulation of the payoff function.

The objectives and strategy reflected by the plan will be determined by:

o The relative values assigned to various elements of the target
system, and the time dependence (if any) of these values

o Any minimum required kill probabilities which may be specified
for particular targets or groups of targets

o The portion of the available force specified (such specifica-
tion is optional) for allocation.

The realism and sophistication of the plans produced by such an optimiz-
ation depend in large measure on how completely the intended objectives
(with realistic contingency or uncertainty considerations) are reflected
in the payoff function. The design objective has been to provide the
flexibility needed for any reasonable payoff function. Some of the
factors included in the payoff function by the QUICK Allocator are:

1. The time dependence of target values

2. The uncertainties in target vulnerability

3. Correlations in delivery probability between weapons which
share the same uncertainties of accuracy, reliability, pane-
tration probability, and weapon survivability (for the second-
strike applications)

4. The uncertainty in target value and time dependence -- as a4 consequence of the unpredictability of enemy actions

5. Uncertainty in the level of ABM interceptors defending the
target.

In addition, program ALOC computes the marginal value of each weapon
allocation. This value (RVAL), whose calculation is described in the
Basic Sortie Generation section of this chapter, is used in the sortie
generation process to determine the worth of including a target in a
sortie.

The same types of information are used to control the resources allo-
cated for defense suppression. In principle, the allocation of effort
to defense suppression targets should be chosen to maximize the de-
struction of other elements of the target system -- and should follow
as an automatic consequence of the values assigned to these other tar-
gets. However, such a ful automatic treatment of defense suppres-
sion is beyond the preseut state-of-the-art. Consequently, the user
must specify equivalent values or required kill probabilities for
defense suppression as well as primary targets.

446



I!
Concept of Operation: The efficient targeting of a limited inventory of
weapons is a combinatorial problem primarily because of inventory con-
straints. The fact that weapons used against one target are not avail-
able for others introduces a resource interaction between targets that
are otherwise independent. The Lagrange optimization technique pro-
vtdes tin exact representation of this interaction, which permits the I
allocation of weapons to be accomplished one target at a time. In the

Lagrange technique, the detailed resource interaction is represented by
a single "price" or value established for each type or group of weapons.
This "price" represents the value of the weapons in each group in rela-
tion to the specific requirements and objectives of each war plan. This
1"price" (or Lagrange multiplier) corresponds to the minimum payoff (in
target value destroyed) that will Justify the use of the weapon.

The QUICK Allocator utilizes a resource allocation technique published
In Operations Research* which permits the application of Lagrange multi-
pliers to discontinuous or nondifferentiable functions (such as the pay-
off targeting problems).

As applied to the targeting problem, the technique consists of assigning
a trial "weapon price" for each "group" of weapons in the inventory to
be allocated. (A "group" is defined here as a set of weapons which are
so nearly identical both in characteristics and location that no dis-
tinction between them is necessary during the allocation.) The attacker's
"profit" on each target is then defined as the target value destroyed
minu' the total "price" of the weapon or weapons expended. Weapons are

I allocated against any target in such a way that this "profit" is maxi-
mized. ('When the allocation against any target is complete, there are
no weapons in the total inventory which could achieve an added payoff
on the target in excess of their assigned "weapon price." Also, there
are no weapons actually assigned to the target which do not achieve a
payoff in excess of their assigned "weapon price.")

For missile groups which have a launch timing interval (attribute
LCHINT) greater than zero, the price for each salvo within the group
is modified as described in the Salvoed Group Multiplier Adjustment
section of this chapter.

If the allocation were carried out this way for all targets, a certain
total number of weapons from each group would be assigned. This number
could be more or less than the actual inventory available. l1owever, the
resulting allocation would be a true optimum allocation for a hypotheti-
cal stockpile consisting of the weapons actually used in this allocation.
if the number of weapons allocated from any group were larger than the

It. Everett III, "Generalized Lagrange Multiplier Method for Solving
Problems of Optimum Allocation of Resources," Operations Researeb,
Vol. II, No. 3, May-June 1963. p. 399-417. For ease of refevence, an
excerpt from this publication is contained in appendi' is.

447 j



'I

actual group inventory, then the trial "weapon price" is too low, and
the use of these weapons should be limited to those places where a high-
er return is achieved. If too few were allocated, the trial "price" is
too high, and the weapons could be fruitfully employed where the payoff
is somewhat less. The trial "weapon prices" could then be adjusted
accordingly and a new allocation could be carried out until a satisfac-
tory approximation to the actual inventory is achieved. Many iterations
throughout the target list would thus be required to establish the cor-

2 rect prices which would cause the desired stockpile to be consumed.

In the mathematical allocator, the basic process described above is
speeded up in several ways:

1. The targets are processed in a random order, so that serious
errors in the initial trial "weapon prices" are detected prompt-
ly and are corrected by observing the rate of allocation for
each group of weapons. Thus, it is not necessary to carry an
allocation to completion before correcting the trial "weapon
prices."

2. Initial allocation rates are monitored for aggregated categories
of weapons (i.e., weapons which share identical attributes),
rather than individual groups. Itus, statistically useful
information on the allocation rates is obtained from small sam-
ples of targets, and corrections are applied to the "weapon
prices" for all the weapon groups within the aggregated cato-
gories.

3. Ordinarily, in such a process, it would be difficult to esti-
mate the size of the error in the "weapon prices" from the
size of the error in the allocation rates. For example, a
trivial difference in "weapon prices" between essentially iden-
tical weapons could cause the one with the lower "weapon price"
to be used to the complete exclusion of the other. The QUICK
Allocator therefore incorporates a small "premium" which pre-
vents such large and unnecessary deviations from the desired
allocation rates, where the difference in profit is small.
With the premium, a large error in the allocation rates can
occur only if the error in prices is substantial. In this way,
the magnitude of the error in the "weapon prices" can be esti-
mated from the allocation rates, and corrections of the proper
size in the "weapon prices" can be efficiently made.

4. The iteration process in trial "weapon pricee" Is terminated
when "weapon prices" are approximately correct (typically Wth-
in a few percent) even though the resulting allocation does not
accurately fit the available stockplte. The allocation is then
adjusted to fit the stockpile by removing weapons excessively
allocated and substituting weapons underallocated. This adjust-
ment of the allocation ii (lone by adjusting the "premiums" ti
the closing phase in such a way that the loss in "profit" is

448

i<-



I

kept as small as practical. It has been mathematically proven
in the preceding reference that the payoff for the resulting
allocation will not be degraded by this closing phase by more
than the observed loss of "profit."

This final approximation technique provides a powerful method for con-
verging rapidly on war plans which are near optimum. The extent of the
observed loss of "profit" provides a valuable gauge of the efficiency~of any such approximation. (if a rigorous bound on deviations from

optimality is desired, it can be obtained by a final pass over the tar-
get list in which all premiums are removed.)

Adjustment of Multipliers: To understand the operations of the allo-
cator (module ALOC), it is helpful to think of the set of all targets
arranged in random order around a circle. Processing will continue for
several "pases" around the circle until the multipliers have converged
to acteptable values, and the weapon stockpile constraints are met. To
start the process, initial values for the multipliers (i.e., "Weapon
prices") are selected, and an initial pseudoallocation is made in which
the weapons are distributed uniformly (without regard for integer weap-
on constraints) over the target set. Thus, in the beginning it aFoears
that weapons have been allocated at exactly the right rate. As each new
target is encountered, the pseudo allocation is removed, and actual
trial allocation is made using the current values of the multipliers.
Since the initial multipliers are not correct, this gradually produces
an error in the estimated rate of allocation. This error is then used
to determine how to adjust the Lagrange multipliers. Of course, sta-
tistically significant information on errors in the allocation rates
becomes available most quickly for those groups where the number of
weapons is large. To accelerate the adjustment of the multipliers,
ALOC monitors the allocation rates for large collections of weapons
(i.e., weapons which share weapon attributes, see table 13) which include
many groups. When it is observed that the overall allocation rate for
such a collection is in error, the Lagrange multipliers for all the
groups involved are adjusted simultaneously. To simplify this, the
Lagrange multiplier, LAM(G), for each individual group of weapons is
expressed as a product of collective "local multipliers," LA(J). Speci-
fically, the Lagrange multiplier for a group of weapons is represented
as the product of the local multipliers for all weapons; all weapons of
the same class; the same type; the same region; the same alert status;
and a final local multiplier unique to the specific group; i.e.,

LAMG) L ("all) *LA ("class) *LA (Jreg ) *LA ( Jalert) *LA (Jgroup)

The concept for monitoring the allocation rates is as follows. 'if
there are a total of NTGTS targets, and the total number of weapons in
a particulax collection of weapons indexed by J (e.g., all' J class) is

449

Fl



NOWPS(J), then the expected number of these weapons to allocate per tar-
get is just

Expected Rate = N0WPS(J)/NTGTS

If the observed rate is less, the associated multiplier LA(J) should be
lowered; if it is greater, it should be raised.

J
Particularly during the early phase of the allocation, when the Lagrange
multipliers ("weapon prices") are changing rapidly, the allocation rate
will also change rapidly. Thus, in evaluating the allocation rate, it
is appropriate to place more weight on the allocation rate for more
recently processed targets. The estimators of allocation rate used by
the allocator, therefore, allow a variable weight to be assigned to the
targets. The estimated allocation rate R for any collection of weapons
J is computed as follows:

E N(i,J)*W(i)

R(J) RUNSUM
W(i) WTSUM~i

where W(i) is the weight assigned to the i thtarget* and N(i,j) is the
number of weapons from the collection J assigned to the ith target. The

sumation is always taken over all targets. However, in the early stages
of the allocation, the weight attached to each successive target is
increased quite rapidly, so that the estimated allocation rate is deter-
mined almost entirely by the most recently processed 10 to 20 targets.
As the Lagrange multipliers come closer to correct values, the target
weights are increased more slowly and the allocation rate, in effect,
is averaged over a larger number of targets. Ultimately, the weight
attached to succeeding targets is held fixed. Obviously, after all
targets have been processed with identical weights, the above estimator
of the allocation rate becomes an exact measure of the average alloca-
tion rate and if multiplied by the number of targets would give the
exact number of weapons on all targets. Thus, the same estimating
machinery can be used in the final stage of the allocation as a guide
in converging to the exact stockpile.

Actually, for each collection of weapons J, three separate estimators of
the allocation rate are maintained. These estimators differ in the rate
of change of the target weights that are used in computing the estimates.
In effect, they correspond to averaging the allocation rate over differ-
ent numbers of targets. The algorithm requires that all three estimates
provide the same sign of the estimated error rate before it will change
the value of the Lagrange multipliers. This feature provides a conser-
vative approach to changes in the multipliers and reduces the chance of
overcorrecting.

Target weight is initialized at 1.0 and modified during processing, as
described Calculations, Lagrange Multiplier Adjustment.

450



The allocation process evaluates its own progress in converging the mul-
tipliers and determines when to terminate the process. 'the variable
which reflects this evaluation is called PROGRESS. PROGRESS is an arbi-
trary variable set internally by program ALOC to monitor the allocation
state. The values 0, .4, .5, .75, 1.0, and 2.0 are arbitrarily assigned

by the program according to procedures specified within ALOC. Qualita-
tively, the PROGRESS states are as follows:

1. PROGRESS = 0 This is the initial state. Its main purpose is
to prevent the allocator from terminating very quickly because
the pseudo allocation seems satisfactory.

2. PROGRESS = .4 This state indicates that the estimated alloca-
tion rates reflect primarily the actual rather than the pseudo-
allocation.

3. PROGRESS = .5 From this point on, the rate of change of the
target weight is not permitted to increase -- i.e., the alloca-
tion estimators are required to move monotonically toward the
state where all targets are weighted equally.

4. PROGRESS = .75 Target weights have stopped increasing -- mul-
tipliers are assumed to be nearly stable.

j 5. PROGRESS = 1.00 This occurs only after at least one full pass
of the target set with PROGRESS = .75. At this point the mul-

tipliers are frozen, and the premium (see below) for meeting
the exact allocation is gradually increased. During this phase,
multiple targets previously allocated as a unit may be split to
receive independent allocations, if this will aid in meeting
stockpile constraints.

6. PROGRESS = 2.00 Allocation is complete. Three options for
further processing are provided depending on value of IVERIFY
supplied by user.

IVERIFY = 0 Current allocation simply transferred to
normal output file, and process halts.

IVERIFY = 1 Allocation transferred as above, but a verifi-
cation allocation (not recorded on file) is
made to obtain a bound on the maximum theoreti-
cal payoff if convergence had been continued
indefinitely.

IVERIFY 2 Allocation transferred as above but the current
allocation is reevaluated assuming a revised
value of the correlation factoT which is user-
input at the start of the run (CORR2).

451

0i
I'---- -_



The details of multiplier adjustment are contained within ALOC.

Salvoed Group Multiplier Adjustment: QUICK forms weapon groups for the
mathematical convenience of the allocation process. All weapons con-
tained in a single group are physically identical insofar as their abil-
ity to create target damage. This fact is a critical assumption for the
Lagrange multiplier process, because a single multiplier, or "price," is
associated with each weapon in a group. Thus, after ALOC has run to com-
pletion, the weapon/target assignment does not distinguish among the
weapons within a single group: this element of detail is added later,
in program POSTALOC, (or FOOTPRNT for MIRV weapons).

The use of launch interval timing constraints, however, creates a funda-
mental change in this assumption, because it now is the case that differ-
ent weapons from the same group can create different levels of damage on
on a time-dependent target. This, in effect, requires that each salvo
in the group have a different Lagrange multiplier, because it has a
different effectiveness for the destruction of the target.

Consider, for example, the several missiles in a submarine. If these
missiles are used to attack bomber bases from which the bombers are
departing, then certainly the first salvo can create much greater dam-
age than a later salvo. in the language of the Lagrange multiplier
technique, the first weapon has a higher marginal utility and hence a
higher multiplier (L). The allocation process will work only if the
correct multiplier is assigned to each different weapon. However, for
the case of the SLBM, we know there are certain relationships among
these weapons and their multipliers. First, all the missiles are physi-
cally the same except for time of arrival on target. Second, the value
of the weapons decrease with time (assuming the target value decreases
in time, or that it is possible to delay a launch). Therefore, the
value of the multiplier should decrease with time.

The multiplier for the Nth salvo (LN) is a function of the multiplier
for the first salvo (L1), the salvo number (n), and the weighted den-
sity of salvo allocations (P). That is

LMIGET (LI, P, N)

LAMGET is a function whose form is

LN = L1 - (P * (n-1))*L1

This is a straight-line fanction. The weighted density of salvo alloca-
tion P is also called a balance parameter. It is used to maintain the
balance between salvo allocations.

The value of P is set internally by program ALOC according to the num-
ber of salvoes in a given group. There is one balance parameter P for
each group with LCHINT greater than zero and has the form,

452



P = .I/(MAXSAL - 1)

where MAXSAL is the maximum salvo number in the group and .1 is a sensi-
tivity parameter to slow the rate of change of P.

Closing Factors -- Premiums: The Lagrange multiplier for each weapon is
modified by a premium. This factor is used to force closure of weapon
allocations to the available stockpile. It acts as a bonus for using
under-allocated weapons and a penalty for using overallocated weapons.
The parameters which are used to calculate the premiums are:

SURPWP(G) An estimate of the number of surplus (or unallocated
weapons) in the group. This number is based on esti-
mated allocation rates in the early phace and the
actual allocation later.

NWPNS(G) The actual number of weapons in group G.

CTMULT The current multiplicity of the target being proc-
essed.

LAMEF(G) The Lagrange multiplier for the group.

The premium depends also on three control parameters: PROGRESS, Pat,
and CLOSE.*

The effect of PROGRESS (described earlier) is as follows:

I. If PROGRESS is greater than 1.0, this indicates that a verifi-
cation allocation is desired to obtain a theoretical upper
bound on the payoff without regard to meeting the actual stock-

~pile constraints. For this purpose, the premiums are simply

set to zero.

2. If ?ROGRESS is less than 1.0, a small premium is computed which

is intended only to avoid large deviations from the desired
allocation rate of small errors in the Lagrange multipliers.

(Otherwise, a trivial change in the multipliers for two com-
peting weapons could result in a complete change from always
allocating one to always allocating the other.)

3. If PROGRESS is equal to 1.0, this is a signal that the closing
phase has been reached and the object is to close in on an
exact allocation of the available weapons. In this case, a
larger step function premium is computed, and the size of the
step function is gradually increased until final closure occurs.

PROGRESS is set internally by the module as described in Section 3.

453

' 4



During the early allocution phase, superimposed on the actual payoff is
a small negative quantity (called a premium) that is proportional to the
value of each weapon group and quadratic in the size of the error in
allocation. In effect, the actual payoff, H(X), for any allocation, X
is adjusted to H(X)ADJ:

H(X)-PRM* Z NWPNS(G)*LAMEF(G)* S (G

G k NWPNS(G)

This quadratic addition to the payoff function has the effect of intro-
ducing a preference for allocations where the absolute value of SURPWP
is small.

The addition or deletion of a weapon from group G will give rise to a
difference in SURPWP equal to the current target multiplicity. Thus,
the change in this quantity (per unit multiplicity) with the addition
of a weapon G is:

PREMIUM (0)=PRM*LAMEF (G) * SURPWP(G) - . 5*CTygjJT
NWPNS (G)

and the change with deletion of a weapon is:

DPREMIUM(G)=PRM*LAMEF (G)* -SURPWP (G) - 5*fTUL

The value of PM4 is a user-input parameter. The value should be less
than 1.0. Otherwise, in cases when no weapons from some group have been
used, the premium for allocation of a weapon could exceed the cost of
the weapon LAMEF(G) and weapons could be allocated even if the payoff
were zero or even negative. Experience has shown that values between
.5 and .9 work very well.

When PROGRESS reaches 1.0, PRM is set to .9 by the program to accelerate
convergence. In addition, a small step function is added.

The following sketch illustrates the value of these step function pre-
miums as a function of their SURPWP:

I PRENIUM!

-2 -1 J 1 2S

L _ DU,

454



Notice that when SURPWP is in the desired area, that is SURPWP <.5, the
premiums for either addition or deletion of a weapon are negative, mak-
ing the current allocation seem most desirable. If there is a surplus
of weapons (right side of figure), the premium for addition is positive,
and the premium for deletion is negative. In the limit, if closure is
long delayed, these premiums approach the value of the weapons. In this
limit unallocated weapons seem free. The formula for these premiums is
approximately:* LAMEF(G)*[I.0 - 1.0/CLOSE] where CLOSE starts at 1.0
and gets larger geometrically. The adjustment of CLOSE is controlled by
another user-input parameter. CLOSE is adjusted linearly at a rate such
that at the end of one pass it will have increased by the amount CLOSER
(which is also a user-input parameter).

On the left-hand side of the figure, where weapons are overallocated,
the premium for deletion is positive and the premium for addition is
negative. These premiums can grow large without limit to provide incen-
tive if necessary to remove a weapon from a very attractive target. The
formula for these premiums is: LAMEF(G)*(CLOSE - 1).

Whereas the first set of premiums is linear and can be thought of as
representing a negative quadratic addition to the payoff, these premiums
are a step function and can be thought of as an upside down "V"-shaped
addition to the payoff, which will strongly favor allocations that
exactly match the stockpile.

Closing Factors -- Salvoed Missiles: An additional closing force is
applied to missile groups with launch interval times (attribute LCHINT)
greater than zero. In the final phase of weapon allocation when PROGRESS
= 1.0, a stringent "first come first served" salvo selection method is
used. When PROGRESS = 1.0, a salvo will not be allocated unless the
salvo is currently underallocated to the extent that the allocation will
not cause an overallocation. This closing force produces exact stock-
pile convergence within the salvoed groups within one pass through the
target set at PROGRESS = 1.0.

Single Target Allocation--Targets Without Terminal Ballistic Missile
Defenses: The problem is to select the best combination of weapons
against each target as the targets are processed. The problem there-
fore is really a combinatorial problem. However, to calculate the pay-
off for all possible combinations of weapons and then select the best
on each target would clearly be impossible. Consequently the methodapproaches the problem by adding one weapon at a time. After a weapon

is added, the program estimates the additional payoff to be obtained by
*i adding or, where relevant, deleting one weapon from any one of the avail-

able weapon groups. A decision must then be made whether to terminate

Actually, it has been found desirable to add a very small quantity
equal to the smallest value of LAMEF(G) for any G multiplied by
(CLOSE - 1.0). This provides an incentive for [SMALLAM*(CLOSE - 1.0)]
using weapons with very low marginal value even if the payoff is
essentially zero.

455

!I

i.



the allocation or whether to add or delete additional weapons. In its
effort to maximize profit, the program operates initially on a form of
steepest ascent basis. This is, it selects those weapons which provide
the highest payoff per unit cost. It also removes any weapon which
shows a negative profit after other weapons are added. There is a con-
straint, however, that every weapon on target destroy a minimum fraction
of the target's original value. This minimum fraction is read in with
the other control data. Ultimately it works solely on the basis of
marginal profit and seeks any change in the allocation that will increase
the profit.

Thus in effect the program needs to know the marginal profit for a poten-
tial weapon, the efficiency or payoff per unit cost, and the marginal
profit of each weapon already on the target so that weapons which become
unprofitable after others are added can be recognized.

The data required for these decisions are:

VT The current surviving target value

VTP(G) The potential surviving targe value if a weapon from
group G were added

VTD(N) The potential surviving target value if the Nth weapon
now on the target were deleted.

The inputs required for their calculation include:

PREbMUM(G) The current premium for adding a weapon from group
G to the target

DPREMIUM(G) The current premium for deleting from the target
a weapon from group G together with the Lagrange
multiplier

LAMEF(G) The current Lagrange multiplier or cost associated
with the utilization of a weapon from each group.*

Using these input arrays, the program computes the potential "BENEFIT"
associated with the addition of a weapon from any of the weapon groups.
The BENEFIT is interpreted simply as the payoff plus the premium; i.e.,
for potential weapons, BENEFIT = VT-VTP+PREMI4UM. Similarly, for each
weapon that might be deleted, there is computed the BENEFIT that would
be lost if the weapon were deleted, BENEFIT = VTD-VT-DPREMIUM. Notice
that if the premiums are small (as they usually are) the benefit Is
essentially the same as the payoff. It is, therefore, convenient to

For missile groups with a launch interval time (attribute LCUINTVL)
greater than zero, the basic multiplier is modified as described in
the Salvoed Group Multiplier Adjustment section of this chapter.

456

(4,>



think of the BENEFIT as simply a modified payoff that is to be maximized.
The PREMIUM is added simply to speed the convergence to the desired
stockpile.

The program scans the potential BENEFIT associated with all weapon
groups that might be added and finds that group IPPMX for which the
"modified potential profit," PP, is greatest; i.e., PFMX, PP = BENEFIT
- LAMEF.

Similarly it reports the group IPVRMX for which the "efficiency," PVR
is greatest, PVRMX. The "efficiency" is here interpreted as the rate
of BENEFIT per unit cost; i.e., PVR = BENEFIT/LAMEF. (It is necessary
for the single target allocator to know the "efficiency" of alternative
weapons. If it were guided only by "profit" (i.e., (BENEFIT - LA1EF),
it would always select those individual weapons showing the largest pro-
fit, whereas it is often better (especially on very valuable targets)
to select several less costly weapons so long as the benefit per unit
cost is higher.)

Finally, the program scans all weapons, already on the target, to deter-
mine which weapon IDPMN shows the smallest DPMN marginal modified urofit
DP where DP = BENEFIT - LAMEF.

These quantities:

VALUE INDEX DEFINITION

PPMX IPPMX Maximum potential profit
PVRMX IPVRMX Maximum potential efficiency
DPMN IDPMN Minimum current marginal profit

constitute the primary input for determination of weapon allocation on
single targets, There calculation is modified, however, by the minimum
and maximum damage constraints placed on each target. MINKILL is the
minimum required damage level. MAXKILL is the Maximum desired damage
level. MAXCOST is the maximum factor by which value may be multiplied
to obtain MINKILL (these three factors are established in the data base:
MAXKILL and MINKILL are defined as attributes; MAXCOST is set equal to
the attribute MAXFRACV). MINDAMAG, a program user-input parameter, is
the minimum fraction of damage required from an individual weapon.

To implement the MINKILL and MAXKILL responsibility, the VT, VTP, and
VTD are replaced by effective values VTEF, VTPEF, VTPEF, AND VTDEF. The
relationships are:

VTEF = ALPHA*MAXlF(VT,VD[IN)

VTPEF = ALPHA*MAXIF(VTP,VTMIN)

VTDEF = ALPHA*MAXIF(VTD,VTMIN)

457

_______



(Note: MAXIF implies "Maximum of")

where: VTMIN = VTD*(I.O - RAXKILL)

ALPHA = Local control variable defined below.

If neither MINKILL nor MAXKILL has been explicitiy specified for the

target then the default values apply (ALPHA=I.0 and VTMIN-O.00) and

the effective values of VT, VTP, and VTD are identical with the actual

values. If MAXKILL has been specified as less than 1.0, it implies

there is no value in reducing the target value below VTMIN. This point

of view is built into the payoffs simply by not allowing the effective

value to reflect any surviving target value less than VTMIN.

The variable ALPHA is increased above 1.0 when necessary to motivate

the algorithm to achieve the specified MINKILL (minimum acceptable
fraction of expected value destroyed). A quantity VIMAX is defined

VTMAX = VTO*(I.0 - MINKILL)

which reflects the largest acceptable expected surviving target value.

If the computed surviving target v lue VT exceeds VTMAX, and at the same

time the output does not show any additional potentially profitable
weapons, then the process will not terminate immediately. It will

instead increase the value of ALPHA above 1.0 by whatever factor nec-

essary to make at least one more weapon seem profitable. It then recy-
cles and reevaluates all the output parameters. Since ALPHA multiplies

all the target values, increasing ALPHA is equivalent to increasing

the value of the target until more weapons can be justified against it.

Once the value has been raised so that the required kill is achieved,

ALPHA remains fixed (for this pass) during the remainder of the alloca-
tion to the target, so that the program automatically proceeds to do a

complete optimum allocation for the revised target value.

There is a protection feature MAXCOST that is designed to prevent exces-

sive waste of warheads against a target where it is simply not practi-

cal to achieve the prescribed destructive level required by MINKILL.

If the current cost (of the allocation to the target) divided by the
total target value already exceeds the ratio prescribed by MAXCOST, the
value of ALPHA will not be increased any further. For the same reason,
if it is necessary to raise the target value by a factor of 100 or more
to justify the specified MINKILL, the ALPHA will not be further increased.

Experience with the allocator has shown that if the efficiency PVR is
used in its pure form, PVR = BENEFIT/LAMEF, the program will sometimes

arrive at its allocation in a very inefficient way. What happens is
that during the initial laydown of weapons on the target it will use

large numbers of very cheap but not very effective weapons. Then as
soon as a more efficient weapon is used, the target value is drastically

reduced and many of the weapons initially allocated cease to be worth-

while and have to be removed. Consequently, the program now incorporates

458



t a revised version of the efficiency PVR'. This is defined as follows:

VVR I.f PP<0
rPVR'P+ F/(VTEF-Pl4PREMtuM))]if PP0

If .0 + f* +LAM ' ,
if Y is zero this gives the pure value of PVR. flowever if 1/ is set
above zero, as it usually is, then the value of PVR will reflect the
magnitude of the profit as well as the efficiency. (This cofficienet,
Y, is a user-input parameter.) Notice that as the potential profit PP
becomes comparable to the remaining target values, the coefficient of
Y in the numerator becomes large and PRV' is increased above PVit. In
the limit whore the potential profit PP is negligible relative to the
remaining target value VIlF, PVR' is equal to PVR. The single target
weapon allocation procedure consists of three parts;

I. A set-up and single weapon .!location phase

2. A multiple weapon laydown loop

3. A multiple weapon refinement loop.

Tho initial laydown operations are handled using the "efficiency" as the
criterion for selecting weapons. This is necessary because if the "proC-
It" were used at this stage, effective individual weapons which could
produce a large single weapon profit would always be selected in pref-
erenee to less effeetive bui less expensive weapons where two or three
such weapons added in succession might ptovide a better payoff at lower
cost. However, before exiting from the routine, provision is made to
test the allocation to determine whether a higher total profit is pos-
sible. So, the final refinement of the allocation is always done using
total "profit" as the criterion.

An immediate exit is made if there are no potential weapons that show
a profit. Otherwise, the weapon which shows the highest "efficiency" is
added. A test is then mado to determine whether more weapons are needed
on the target, If so, control passes to the ultiple weapon laydown
loop. If not, it. is clear that a single weapon allocation is needed. In
this case, if the single "efficient" weapon just tested is not also the
most profitable weapon, then it is removed and replaced with the most
"profitable" single weapon before exiting from the routine.

On the other hand, if several weapons a e indic'ted, the multiple weapon
laydown toop takes over. Tilis loop simply keepos adding the most effi-
cient next weapon util there are no more ,otentlal weapons that showq
a profit; i.o., have an efficency greater than one. (For a profitable
weaport, (BENEFIT/NOST) must exceed t.0.) As new weapons are added,
however, it often occurs that some of the old weapons cease to be prof-
itable; provision is therefore made to remove any unprofitable weapons
after each new weapon is added. When this part of the process is

459



complete, all weapons on the target must be "profitable" and there must
be no potential weapons that would show a profit if added.

At this point, there is a remote possibility that there is again only
one weapon in the allocation. If so, it is replaced with the most prof-
itable single weapon. Otherwise, control passes to the allocation
refinement loop.

Basically, the allocation refinement loop is intended to start back
with the first weapon placed on the target and successively remove each
weapon to determine if there is any more profitable weapon that can be
substituted. If, in each case, the same weapon proves to be the most
profitable the allocation is '.onsidered complete. If, in any case, a
substiution occurs, the testing of the other warheads starts over again
from that weapon until all weapons on the target have been tested.

It is possible during this process, as in the preceding loop, that as
more profitable weapons are substituted, some of the other weapons that
formerly were profitable will cease to be so. Therefore, after each

weapon is added, a check is made and any unprofitable weapons are deleted.
If such deletion leaves a situation where some other weapon would be
profitable, it is immediately added before reentering the testing loop.
Any such change that interrupts the testing process requires that the
testing start over again. To avoid unnecessary operations, the pointer
which -elects successive weapons to be deleted for testing is set to
skip over weapons which are from a weapon group that has already been
tested.

Single Target Allocation -- Targets With Terminal Ballistic Missile
Defenses: The allocator (module ALOC) considers two possibilities for
targcts with terminal BMD. It first attempts a leakage attack. A
force, poseibly mixed between bombers and missiles, is allocated without
trying to exhaust the missile defense. Any bomber or missile weapons
that leak through their respective terminal defenses are considered in
evaluating damage. Second, the allocator attempts an exhaustion attack.
A force of missiles large enough to exhaust the terminal missile inter-
ceptors is allocated. After exhaustion of the defenses, missiles are
added until the damage done by each incremental missile is less than the
value of the Lagrange multiplier for that missile.* The profit from
these two attacks is compared and the more profitable allocation is
-hosen.

The rate of return for a missile against a target with terminal BMD is
defined as follows:

RATE - (VT - VTDX) / (LANEF + PRENMIU)"

*j
For missile groups with a launch interval time (attribute LCHINT)
greater than zero, the basic multiplier is modified as described in
the Salvoed Group Ktatiplier Adjustment section if this chapter.

460



f

VT - Surviving target value prior to latest allocation

VTDX = Surviving target value including latest allocation

* LANEF - Lagrange multiplier*

PREMIUM = Bonus for allocation (see Closing Factors, above)

The surviving target value VTDX is computed as follows. Let PWK be
the probability of warhead kill by the terminal defense (PKTX in Bomber
and Missile Defenses, above).

Define SSSP(G,J) = Single shot survival probability of the
target from group G on hardness component
J

NOWEP(G) = Number of weapons allocated from group G

VTOA(NI,J) = Value of target hardness component J at
time of arrival index N1

S(GJ) = Probability that target component J sur-
vives attack of NOWEP(G) weapons from

group G

NWIID(G) = Number of warheads per weapon in group G

NN = Number of weapon groups

M - Number of hardness components

Set: VTOA(L,J) = VO(J) = original value of component J

VTOA(NN+I,J) - 0

Then: S(G,J)=(SSSP(G,J)+K-PWK*SSSP(G,J)) (NlID(G)*NOW4EP(G))

If the weapons are ordered by increasing time of arrival, then

M NN L
VTDX Z E [VTOA(L,J) - VTOA(L+I,J)] * T S(G,J)

J=l L=0 G=I

The innermost sum over L, must be carried out in order of weapon time of

arrival.

Since the payoff function for a defended trgnt is generally not con-

For missile groups with a launch interval. time (attribute (LClIINT)

greater than zero, the basic multiplier is modified as described in

the Salvoed Group Multiplier Adjustment section of this chapter.

461

- 1



cave, one cannot look at only the rate of return of the next missile to
determine whether the target is to be attacked. Rather, it is necessary
to allocate weapons beyond the exhaustion point and then search for that
allocation which yields the highest average rate of return. If this
average rate is greater than one (i.e., a profit is realized by attack-
ing the defended target), then the allocation can actually proceed.

The missile allocation proceeds as follows. First, those missiles with
the cheapest terminal objects (warheads and terminal decoys) are allo-
cated until the terminal interceptors are exhausted. Then, each missile
type in turn is tried to determine which type has the greatest payoff
per unit cost when added to this exhaustion mix of weapons.

If it is determined that saturating the terminal defense does not yield
a profit, the leakage allocation is restored. In any event, the more
profitable allocation, leakage or saturation, is used.

Other Constraints: Several other constraints may be imposed on the
weapon allocation. These constraints will reduce the payoff but allow
more realistic modeling of special cases. Weapon groups may be re-
strictedin the set of targets they are allowed to strike in the follow-

Flag Restrictions: The user may restrict the allocation of weapons from
any group according to the attribute FLAG. Weapon groups may be per-
mitted or forbidden to strike targets according to the FLAG value for
the targets.

Country Location: he user may specify at program execution time the
acceptable target country location codes (CNTRYLOC) for weapon alloca-
tion by weapon group.

MIRV Restriction: The user may specify at program execution time the
acceptable target classes (CLASS) for allocation of MIRV weapons. These
constraints are input by MIRV system type name.

Naval Restriction: While naval fortes can appear as targets within
QUICK, there are specific limitations on the kind of weapons that can
attack the aircraft carriers. All the targets which are included under
class NAVAL should be moving ships. Certain weapon types can then be
designated to attack only NAVAL targets. Since the mechanism of inter-
action of these naval strategic weapons with the aircraft carriers is
essentially different from the normal kill mechanisms used in QUICK, an
attribute (PKNAV) is defined for this type of weapon which specifies
its single shot kill probability against an aircraft carrier. Thus, in
the allocation process if a particular target is class NAVAL, the only
weapons which can be allocated against that target are those which have
the attribute PKNAV defined to be greater than zero. The kill probabil-
ity of such a weapon, if successfully delivered through the area defenses
against the carrier, is equal to PKNAV. These naval attack aircraft are
handled like the tactical aircraft, since they do not pass through pene-
tration corridors.

462



i !~

User-Specified Damage Levels (MINKILL/MAXKILL): The QUICK Plan Genera-
tor allows the user to specify the maximum (MAXKILL) and/or minimum
(MINKILL) desired level of damage for any particular target. MINRILL
specifies the minimum level of damage the allocator is to attain (if
not attainable, the user is informed by the message MINKILL Too High).
4 AXKILL precludes the assignment of additional weapons once the speci-
fLed level of damage is attained. Because only an integral number of
weapons can be assigned to a target, the level of damage specified by
MAXKILL may be slightly exceeded, unless there exists a combination of
weapons which exactly meets the required damage level.

Thig slightly greater level of damage is intensified when the damage is
evaluated using procedures which ignore the interweapon correlations
and planning factor modifications used in QUICK. In order that the
user can specify whether or not the application of damage constraints
considers these factors, two options are available to the user for
implementing these constraints. As a default option, these constraints
are applied to damage calculations which include degradations for corre-
lations in weapon delivery probabilities and considerations of the time
dependence of target value. Since the evaluation programs to be used
in conjunction with QUICK did not take these factors into account and
since the output of these programs was to be compared to the QUICK-gen-
erated analysis, an optional computational procedure was desirable.
Thus, the user has the option of specifying that the variables MAXKILL4, and MINKILL be applieA to target damage which was calculated by ignoring.4 the correlations and weapon delivery probabilities and the time degrada-
tion of value of the target. (User-input parameter IMATCH is used for
this purpose.)

Combined Fixed, Optimum Assignment Capability: In order to provide for

more precise user control of weapon allocations, there is a capability
in the plan generation process to allow the user to specify certain
particular weapon-to-target assignments and then allow the automated
plan generation process to allocate the residual of the weapon stock-
pile so as to maximize destruction of the remaining target value. The
user can specify at his option certain fixed weapon assignments at a
point prior to the actual weapon-to-target automatic (mathematical)
allocation process. This allows the user to examine the output of all
of the preceding modules before committing himself to a particular
fixed assignment. The user must specify the target identifier (target I
designator) of each target for which weapons are going to be forced-

assigned. Also, the group of the weapon or weapons which is to be
assigned to each of those targets, as well as the number from those
groups, must be input.

This particular capability is made possible by the flexibility of the
generalized Lagrange multiplier technique for performing optimum weapon
allocations. Since any constraints can be imposed on the allocation to
an individual target without seriously affecting the Lagrange multiplier

allocation procedure, it is necessary only to modify the damage calcula-
tions for each target to reflect the damage created by the user-specified

463
i'4



iI

weapons prior to calculating the return for new potential weapons
additions. Thus, when the allocator initiates the first pass, the only
target value that has to be considered is that which is unaffected by
the fixed assigned weapon. Also, the assigned weapons are subtracted
from the stockpile available for automatic assignment.

In addition to the fixed assignment capability, the user may also speci-
fy the precise impact time of a fixed missile assignment. This allows
the user to externally plan a time saturation attack against a BND
installation and be assured that the final QUICK plan will execute the
tactic. The only use for this impact time specification is to calcu-
late the correct missile launch time. If an impact time is fixed, this
calculation overrides the other factors which would normally determine

weapon launch time. However, the use of attribute DELTA for a missile
base will modify the launch time in the Simulation subsystem; and the
user-input parameters DELMIS or DLMIS (in module PLANOUT) will modify
the launch time used in other simulators and damage-assessment systems.

If the target does not have terminal ballistic missile defenses, a
maximum of 30 weapons can be assigned. On targets with terminal BMD,
weapons from a total of 30 weapon groups may be assigned with no limit
on the maximum number of weapons. In this latter case no bomber weapons
may be fixed assigned if more than 30 missiles have been fixed assigned.

For missiles with a MIRV capability the assignment and timing of a fixed
assignment may be changed by the application of the MIRV footprint param-
eter constraints.

Selection of Bomber Weapon Allocation: Within the weapon allocation
process, the gravity bombs and ASMs of a bomber are treated somewhat
differently. The penetration probability of an ASM does not include
local attrition effects. The kill probability of the ASM uses the ASM
CEP factor (rather than the bomber's factor) and applies the ASM relia-
bility REL. The yield for a gravity bomb used in allocation is the
group basic yield. The yield for an ASM is the yield of the ASM war-
head.

The allocation process selects the kind of weapon (ASM or gravity bomb)
for each target by considering the damage difference between the weapons,

the difference between the allocated and actual ratios of ASMs to bombs,
and the state of the allocation (i.e., PROGRESS. See the Adjustment of
Multipliers section of this chapter.).

'J The weapon selection method uses a bomber group balance variable which
is dynamically maintained for each bomber group. This variable reflects
the degree of over or underallocation of ASMs (or bombs) that is cur-
rently experienced during the convergence process. The basic group
multipliers are not affected in any manner, and determine whether any
weapon from that group is to be allocated. This balance variable is

updated after the allocation to each target. The calculation and use
of this variable involves several variables which are defined as follows:

~464

__ I



EXPASM = fraction of weapons in a group which are ASMs

EXPBM1B = I -EXPASM = fraction of weapons which are bombs

tIEA expected destroyed value of target if ASM used (calculated
in program ALOC)

DEB expected destroyed value of target if bomb used (calcu-

lated in program ALOC)

AVDE - average (by group) of quantity ABSF (DEA -DEB)

FASM = current fraction of weapons allocated which are ASMs (cal-
culated in program ALOC)

FBOMB = I -FASM = current fraction of weapons allocated which are
bombs

CONPAY internal program variable between 0. and 1.

Except for CONPAY, all of the above variables are defined for each group
composed of bombers. For each bomber group on each target the alloca-

tion process selects the type of warhead (ASM or bomb) which is to be
used on tle target. When the value of PROGRESS is zero or two, the pre-
ferred weapon is the weapon with the higher DE (i.e., ASM will be selec-

A ted If DHA is greater than DEB and vice versa). For values of PROGRESS
of .4, .5, .75, and 1.0, the selection process will consider the alloca-

tion franctions of the ASMs and bombs, as described in the following

paragraphs.

If ASMs are underallocated, ASMs are selected as the preferred weapon
unless DEB is greater than DEA and the quantity (EXPASM -FASM)/EXPASM

is less than or equal to the quantity CONPAY*(DEB-DEA)/AVDE. If both
of these two conditions are met, then the preferred weapon is the bomb.

Note that the quantity (EXPASM -FASM)/EXPASM provides a measure of the
size of the allocation imbalance. If ASMs are only slightly underallo-
cated, this quantity will be very small (near zero). If there is a
great difference between the actual and allocated fractions, this quan-
titywill approach the value one. The quantity (DEB-DEA)/AVDE is a meas-
ure of the magnitude of the damage difference relative to the average
damage difference. The quantity ranges from a low of zero to high posi-

tive values. A value of one for the quantity represents an average

damage difference. The variable CONPAY is used to reflect the impor-

tance of the allocation difference relative to the damage difference.

Thus, the conditions of the preceding paragraph select the bomb as the
preferred weapon if the allocation difference is less than the modified
damage difference. Thus, if the allocation is nearly correct, the more

damaging weapon is likely to be chosen as preferred. If the allocation
is far from correct, the underallocated weapon will be selected on all
targets except those where the damage difference is quite large. The

465

-- - -- - --- - - -- --



same rationale holds for the case of underallocated bombs as described
in the next paragraph.

If bombs are underallocated, bombs are selected as the preferred weapon
unless DEA is greater than DEB and the quantity (EXPBMB -FBOMB)/EXPBMB
is less than or equal to the quantity CONPAY*(DEA -DEB)/AVDE. If both
these conditions are met, then the preferred weapon is the ASM.

The value of variable CONPAY lies between zero and one. Lower values of
CONPAY tend to increase the importance of the allocation difference.
High values of CONPAY increase the importance of the damage difference.
In order to provide adequate closing force, the value of CONPAY decreases

A as the value of PROGRESS increases. Additionally, when PROGRESS equals
one, the value of CONPAY continues to decrease.

The selection of ASM or bomb on a particular target allows the alloca-
tion process to assess correctly the expected damage effects. Bombs
and ASMs usually differ greatly in yield, penetration probability, CEP,
and delivery probability. By differentiating between these weapon types
at allocation time, the allocation program selects the best weapon to
be used when the bomber sorties are generated. The balance between
allocation and damage differences provides for maximization of damage
while continuing consideration of actual weapon stockpiles.

A.5 Derivation of Lagrange Multiplier Adjustment

Define the following variables:

CURSUM(J) sum of the target weights from last Lagrange mul-
tiplier update

NOWPS(J) number of weapons sharing attribute J

NTGTS number of targets

SNSTVTY = user-input parameters which control rate of multi-

FSNSTVTY plier adjustment

LAMEF(G) = Lagrange multiplier for group G

LA(J) Lagrange multiplier for attribute J; J ALL:
CLASS, TYPE, etc.

PRM - local internal control variable which governs
size of premiums (closing factors)

NWPNS(C) - number of weapons in group G

CTLT = current target multiplicity

466



~I]

RUNSUM(J) product of target weights time number of weapons
assigned

WTSUM(J) = sum of target weights measured from beginning of
target list

ALERREST(J) = error estimate in the allocation rate for attri-

bute J

CORRATE= rate to correct the weapon allocation rate

MULSTEP = number of targets processed between corrections

WRATE = rate of change of the target weights

General Approach: Multipliers are not continuously updated, but rather

recomputed based on the internal variable PROGRESS (described later)

and various estimates of error allocation rates.

If PROGRESS = 1.0 the change of the local multiplier is omitted so that

the same values of the multipliers are retained. If PROGRESS < .75
updates are performed for every two targets and every four targets for

PROGRESS = .75. In addition to PROGRESS restrictions each multiplier

is changed only if all three estimates of error rate have the same sign.

In the early phases of the program (PROGRESS < .75) better stability is
achieved by requiring, in addition, that the average allocation rate to

the last two to four targets, as computed from CURSUM, show the same

sign. This limitation is later removed, since it clearly would not work

well for weapon groups with very small numbers of weapons that might

only be allocated two to ten times during a pass over the target system.

Upon meeting the mentioned restriction, multipliers are updated. The
first step is to recompute all the allocation error estimates, ALERREST.

At the same time SURPWP is reevaluated, based on the new value of

ALERREST. Although SURPWP is continuously updated by the operating pro-

gram, it is useful -- especially in the early phases of the program --

to base it on the projected allocation-rate estimates rather than the

actual weapons allocated, which at that time could be very misleading.

This provides a more rational basis for calculating the premiums at this
early stage of the program. An estimate is then made of CORRATE, the

rate at which it is desired to correct the allocation rate. Lambda mul-
* tipliers are now recomputed based on ALERREST, SURPWP, CORRATE, and

inputs parameters SNSTVTY, FSNSTVTY. Also, at this time the value of

all weapon, VLWPNS, and the summation of the value of the error in weap-

ons allocated, VALERR, are reevaluated along with a recalculation of the
integration periods used to estimate allocation rates. After these
updates are made, allocation continues.

The following paragraphs show mathematical deviations of methods
employed.

467

tI



Adjustment Phase: The adjustment phase processing is determined in part
by an internal variable, PROGRESS. This variable is assigned the arbi-
trary values 0., .4, .5, .75, 1., and 2. by the program as a flag for
various stages of the allocation process. PROGRESS is initially set to
0. at the start of processing by program ALOC. When the sum of target
weights, WTSUM, exceeds half the number of targets PROGRESS is set to
0.4. When the weight change rate (WRATE, described later in this sec-
tion) first decreases, PROGRESS is set to 0.5. When the weight change
rate decreases to zero value, PROGRESS is set to 0.75. A user-input

* parameter, SET'1LE, determines the next change. SETTLE is the number of
passes the process continues with PROGRESS equal to .75. After this

4 time PROGRESS is set to 1.0. PROGRESS remains at this value until one
4 of three conditions is met:
I

1. More than 1.5 passes over the target set are made while PROGRESS
1.0;

2. The sum of the Lagrange multipliers for the under- or over-
allocated weapons (VALERR) is less than a fraction (ERRCLOS, a
user input parameter) of the sum of the Lagrange multipliers
for all the weapons in the stockpile (VALWPNS);

3. The sum of the squares of the allocation error estimates
(SUMSQUERR, the sum of the squares of ALERREST, d scribed
later in this section) is less than 1/(10 * NTGTS ), where
NTGTS is the number of targets.

When any of these three conditions is met, the allocation process is
complete and PROGRESS is set to 2.0.

Multipliers, when adjusted, are recomputed based on the monitoring of
the allocation rates; CORRATE being the allocation rate correction.
If the allocation rate is corrected too rapidly there will be a ten-
dency to overcorrect before the effects of the correction become
observable in the values of the allocation error estimates. This can
produce oscillations. To estimate how rapidly to correct the error,
an estimate is made of the number of targets that would have to be
observed before an error of the observed size would be 9tatistically
significant. Even if the multipliers were exact, and tUe average allo-
cation rate was correct, statistical fluctuations would be observed in
the allocation of each weapon group when the allocation rate was sam-
pled for a small number of targets.

Tlie concept for monitoring allocation rates and, hence, updating multi-
pliers follows.

Let n equal the expected or average number uL weapons from a col l ectlo(,
available per target; i.e., n = NOWPS(J)/NTGTS. 'Then in M targets (the,
size of M is discussed later) the expected number of weapons allocated
should be just n(M). Suppose the actual number observed, however, is

468



n'(M). Then our estimate of the error in the allocation rate ALERREST
would be

ALERREST = n'-n

Assuming a Poisson distribution for weapon allocation rates, the sta-
tistically expected error in a number of expected value n(M) is equal
to That is,

EXPECTED EIRROR = %Ini3

or, substituting for ALERREST,

(n'(14) -n(M)) 2 =n(M)

2

(n' -n) 2= n/H

Solving for the number of targets M, we have:

M n/ [(n'

or

M (NOWPS(J)/NTGTS)/[ALERREST(J)] 2

as the number of targets we would expect to sample to get a statistical

error estimate of size, ALERREST. If we wish to reduce the indicated
error by 1 part in M per target, our fractional correction in the allo-
cation rate per target should be:

I/M = [ALERREST(J)I 2/(NOWPS(J)/NTGTS)

This, multiplied by a sensitivity factor SNSTVTY, is the first term in
the value of CORRATE. Therefore, the user-controlled factor SNSTVTY can
make the correction more or less sensitive to 'recent' target experience.

i If SNSTVTY is too high (much above .1) oscillations are more likely tooccur. However, if the entire set of targets were observed, the esti-

mate would not be a sample but would be exact. Therefore, even a very
small value of ALERREST becomes statistically significant if it is based
on a sample of size NTGTS. Therefore, errors should always be corrected
at a rate at least equal to one part in NTGTS.

This explains the second term in CORRATE, which is just L.O/NTGTS multi-
plied by a sensitivity factor FSNSTVTY (final sensitivity). This fac-
tor controls the sensitivity of corrections to the allocation rate in

'the final phase of the allocation where the errors are small. Thus the
desired correction rate is just:

2
CORRATE = [(SNSTVTY)*(ALERREST(J)) ]/(NOWPS(J)/NTGTS) + FSNSTVTY/NTGTS

This is multiplied by the number of targets processed between corrections,

469

- - I



MULSTEP, to determine the fraction CORFAC of the error to correct. In
addition, a safety limit of is used to avoid ever making a correction
larger than the estimated e-ror rate.

However, even when it is known what fraction of the error in the alloca-
tion rate we wish to correct, an estimate must be made of the relation-
ship of the allocation rate to changes in the Lagrange multipliers
before the size change to make in the multiplier can be estimated. For
this purpose it is useful to have a model of the dependence of the al]o-
cation rate on the value of the multipliers. We have assumed a depen-
dence as follows:

Rate = k -n

Consider now two rates, the current rate RO associated with a multiplier
A0 and a predicted rate RI associated with a new multiplier X1 . Thus we
find

n n
RIA n

1 R= A0
n = k

or

RI/R0  (A1/A0 )-n

so

a(R1/R0)
-n

For small differences between X0 and XI this implies:

R ,I RO - 0

-O -n X0--

Solving for the new value I of

(R1 -R0)/(-n)
R0

If we now identify a new variable R2 as the ultimately desired alloca-
tion rate, R1 as the new rate we hope to obtain with X1 , and R() as the
current allocation rate -- then the above variables can be asslociated
with information already available as follows:

R -% = CORFAC*(R2 -Ro) = CORFACT*ALERREST

R = ALERREST + (NOWPS/NTGTS)

470



I! !'

If we now associate the variable PARTIAL with n this gives rise to the
following procedure for updating LA:

LA(J) LA(J* [1.0 + CORFAC*ALERREST(J, INTPRD)/(- PARTIAL)i
1 J ALERREST(J, INTPRD) + (NOWPS(J)/NTGTS)'

ALERREST(J) is computed as

ALERREST(J) RUNSUM J)- NOWPS(J)
WTSUM(J) NTGTS

The formula for LAI(J) is well-behaved if ALERREST is large and positive
but if it is negative and as large as the expected rate (NOWPS(J)/NTGTS)
(i.e., if the actual allocation rate is zero), then the denominator goes
to zero. In this case an infinite correction would be indicated. To
avoid this, the expected rate in the denominator iv multiplied by 2
giving:

L M= 11.0 + CORFAC*ALERREST(J, INTPRD) / (-PARTIAL)
LAI(J) =A 0 (J)* ALERREST(J, INTPRD) + 2*(NOWPS(J)/NTCTS) ]

This is the function used. The new Lambda's LA1 (J), are recomputed for
attribute J (e.g., Jall, Jclass) and for every MULSTEP targets as pre-
viously outlined.

In the present version of the program the value of PARTIAL(J) has been
set equal to 1.0 for all the local multipliers LA(J). This choice is
based on the effect of the return on the sensitivity of the allocation
rate to the value of LAMEF or %. When the multipliers are almost cor-
rect, it is usually the case that most weapon groups are in close com-
petition with many other groups with very similar properties. Then a
small change in the multiplier LAMEF will produce a very large change in
the allocation rates, as the weapon group in question almost totally
ceplaces, or is replaced by, its competitors.

However, such a large error in the allocation rate will not actually
occur because as the error builds up the estimated value of the payoff
will be automatically changed by the premium. Thus for constant values
of LAMEF, when an equilibrium allocation rate is reached, it must be
approximately true that the error in LAMEF is compensated by the pre-
mium. This is, if k is the correct value for LAMEF then:

LAMEF -PREMIUM '' A0

Since:

SURPWP -.5*CTMULTPREMIUM = PPRM*LAMEF* NPS~NWPNS

we can define a relation between LAMEF and (SURPWP/NWPNS)

471



!Il
LAMEF*(l -PRM* SURPWP -. 5*CTMUJLT) A

NWPNS 0

Since this relationship is the same for all groups it is reasonable sim-
ply to use the same value 1.0 of partial derivative for all local multi-
pliers.
The values of LAMEF(G), where G is the group inidex, are recomputed using.

the new values of the local multipliers (LA(J) accordingly,

LAHEF(G) = LA(Jall)*LA(Jclass)*LA(Jreg)*LA(Jalert)*LA(Jgroup)

At the same time it is necessary to reevaluate the summation of the
value of all the weapons VALWPNS = E IAMEF(G)*NM4PNS(G) and the summation
of the value of the error in weapons allocated

VALERR = Z LAEF(G)*ABSF(SURPWP(G))

using the updated values of LAMEF.

Target Weight Change Rate & Integration Period: The above explained
how multipliers are recomputed by monitoring allocation rates. The
remaining discussion addresses how the target weight change rate and
integration period is computed.

The average number of targets over which allocation rates are averaged
(the integration period) is determined by the rate at which the target
weights are increased.

In estimating the rate with which to correct multipliers, it was com-
puted on a statistical basis that even if the allocation rates were
correct an estimated error of size ALERREST would be expected if the
allocation rates were monitored only over a small sample of M targets
where:

M = (NOWPS(J)/NTGTS)/ (ALERREST(J)) 2

Thus if separate integration periods could be used for each local multi-
plier, M as defined above might provide a reasonable basis for deter-
mining the period. However, in fact, the same periods must be used for
all local multipliers LA(J). Currently three periods are maintained
(INTPRD=I, 2, 3). Consequently the vclue of the integration period used
must be based on an estimate of overall error rate. The corresponding
relation is:

M = (E NOWPS(J)/NTGTS)/l2 (ALERREST(J))2

G G

where the summations are taken over all weapon groups. The quantity
ENOWPS(J), is identical with NOWPS(1) (Note: LA(J) for J = I is used
G

472

- - - - -



for all weapon groups) and so for efficiency the variable NOWPS(2) is
used. While the expected value of (ALERREST(1)) is the same as

G

2
(ALERRST(J)) , the variance of the latter version is much less, and it
is therefore preferable as an estimator of the expected integration
period, EXPINTPD and is:

2
EXPINTPD = NOWPS (1) (ALERRESTc() )*NTGTS)

To allow the possibility of using integration periods either longer or
shorter than the theoretical EXPINTPD, a desired longest integration
period DESINTPD is defined:

DESINTPD = EXPINTPD*RATIOINT

where RATIOINT is an adjustable input parameter. A low value allows
higher sensitivity without oscillations in the values of the Lagrange
multipliers but too low a value makes convergence to the correct stock-
pile sensitive to statistics of the target list. If the target list
contains targets with heavy ballistic missile defenses or if a large
fraction of the weapons are assigned by the fixed assignment capability,
this parameter value should be increased (to 4.0 or above if necessary).
If this period were used exactly in setting the rate of change of the
target weight (i.e., WRATE = I.O/DESINTPD), the WRATE would never become
exactly zero as is required for a constant target weight. Obviously
when the change in the target weight becomes small over a full pass, the
WRATE should be allowed to go to zero. Therefore in:

WRATE = (I.0/DESINTPD) -(2.0/(NTGTS*RATIOINT))

the term (2./NTGTS*RATIOINT)) is subtracted, and if the resulting WRATE
is negative it is set to zero. To avoid a situation where large errors
cause the integration period to become ridiculously small, a limit that
WRATE < .07 is set.

Moreover, after the allocation is well under way, PROGRESS > .5, the
value of WRATE is not allowed to increase. In the program WTRATE(INTPRD)
is used as a multiplier of the target weight; therefore we add 1.0 to

WTRATE to obtain a suitable multiplier for the longest period NINTPRD.

The values for the three WTRATE variables are:

WTRATE(3) = I + WRATE

RINTPRD-l
14TRATE (2) = 1 + WRATE + NGS + RINTPRD

RINTPRD- 1
WTRATE(1) = I + WRATE + NTGTS + 2.*RINTPRD

Input parameter RINTPRD is an approximate ratio between rate of change
of target weights between different integration periods. An increase in

I 473



this parameter increases the *;ensitivity of the multiplier adjustment to
recent target experience.

To restate, Lagrange multipliers are recomputed based on variable PRO-
GRESS and after a specific number of targets have been processed. The
adjustment is based on maintaining statistics of weapon allocation rates.
The differences in true and observed rates, along with input sensitivity
parameters, make up the formula for multiplier adjustment.

A.6 Derivation of Formula for Correlations in Weapon Delivery Probability

An exact calculation of the probability of target survival when it is
subject to attack by correlated weapons is very lengthy. Both the con-
ventional statistical analysis and the bayesian incremental information
approach have been examined. Both approaches for each time and hardness
require the calculation component of the interaction terms between each
weapon to be added with all possible combinations of the weapons already
on the target. Thus the completely rigorous calculation would be imprac-
tical in a rapid response allocator. The method used here is based on
an approximation derived from the properties of the log-ganmia distribu-
tion.

When a group of weapons share a conmmon failure risk the probability ot
success is likely to be either high or low for all weapons collectively.
Thus the probability of success can its,.li be thought of as a random
variable. For any chance value of this overall random variable there
will exist the usual independent probabilities for individual weapons.~However, on one trial tlhe overall success probability for the grwrip oi-

weapons may be 90%, while in another trial it may be 50% depending onthe particular success probability drawn for the trial.

The following mathematical model has been developed to deal with this
type of problem. We assumie that the probability of survival of a tar-
get with respect to the ith weapon is itself a random variable S of the
form

Si :ae'Xi

where the X, are random variables drawn from a known distribution.

If two weapons are involved, then the probability of survival with
respect to both can be represented by the random variable ST .':

Sr-(x~: i + X,1)
SS'r a S I Sj

However, the random variables X, and X, may or may not be independent.
If they are not independent then of course

I474



<S S > <Si> -S >

If th, Xi are independently drawn from a known two-parameter family of
distribution with a convolution property, * then the distribution of Xi
+ Xj will of course be a member of the same distribution family. More-
over, since any probability distribution for the Xi implies a distribu-
tion [or the corresponding Si, the distribution for SiSj can be calcu-
lated and the value for <SiSj>can be computed.

The ganma distribution given by:

Xa -X/b
P(X)dx a dx for X t 0

b r(a + 1)

P(X) 0 for X 0

is a well known two-parameter distribution with the required convolu-
tion property.

The gammna distribution is unique among convolving two-parameter distri-
butions in that the expected value of e-X is easily computed. This pro-
perty is particularly important for QUICK since the damage function per-
forms a computation of this value many times during the allocation. The
expected value of e-X is given by:

of P(X)e

which cal, be written

i a+l
<S> = <e- >

This distribution is valid fo5 b > 0 and a > - 1. It has a mean
= b(a + 1) and a variance a b2 (a + 1).

Since this distribution is completely defined by the mean and variance,
the actual probability distribution of S can be computed at any time so
long as a record of the mean and variance of the distribution is main-
tained. We now observe that:

a + 2 /or 2

A probability distribution is said to "convolve" when the convolution
of any two distributions in the family (i.e., the distribution of the
sum of the two random variables) is itself a member of the same family.

475



and
, o2/

b n P

so the expected value of S can be written

<S> S >
0'£ + I

or

S-1n < S tn + I

This distribution is sufficiently flexible to include almost any shape
distribution of interest. For o small the distribution in S approxi-
mates a gaussian centering on some specific survival probability. As
the a is increased the distribution widens, so that it can approximate
a uniform probability from zero to one, or a sloping probability with
more weight on zero or one. In the limit of very large v the distribu-
tion consists essentially of spikes of different weight at zero and one.

If we were dealing with independent weapdns we could calculate the para-
meters for the multiple weapon distribution from those for the single
weapon distributions simply by making use of the additivity of the mean
and the variance. §pecifically the mean, IAT, for the new distribution
and the variance qT would be given by:

2 2
T i

The expected value of target survivability ST for the new distribution
would then be obtainable through the equation:

2 (T

Itn <ST> P n( )
T

However, the variance is directly additive as above only if the weapons
are really independent. To introduce the possibility of correlations we
will write the variance as follows:

2

iT

476



where the quantity Fi represents the correlation between the weapons.
il the special case o uncorrelated weapons, nji- 0 for i j j and I tor
i J, which is identical with the previous form.

ThiLs approach of arbitrarily introducing the cross terms in this formu-
latLon Lo approximate the actual correlations is exact so long as the
correlations are of such a form that the distribution of X remains a
gamma distribution. To the extent that the actual correlations cause
departures from the rdistribution the approximation is in error. The
correlation model thus amounts to the assumption that correlations can
be adequately modeled without going outside the log-gamma distribution.

For implementation it seems appropriate to introduce an additional sim-

plification. In the foregoing formuation the magnitude of the penalty
for using correlated weapons will depend not only on the size of the
correlation and the kill probability for the correlated weapons, but
also on the sha of the distribution for the success probability for
each weapon. This shape dependence introduces a complicating variable
which undoubtedly exists, but for which it would not be easy to get data.
It therefore seems desirable to eliminate this factor.

This can be done by standardizing on a single shape factor for all cal-
culations of the effects of correlations. It is easiest to do this by
considering only distributions with a very large o, which are essentially
spikes on zero and one. This choice tends to exaggerate the importance
of correlations (and this fact should be borne in mind in assigning the
correlations for the war game) but it significantly simplifies the data
required, as well as the computation of the payoff.

in the limit of 2lar~e the quantity Oji2/pi approaches infinity while
the quantity Pi/ a compensates to maintain the correct value of
-In <Si>

To illustrate the transition to this limit we let bi a i 2 /1i and define

4 i bi/Ln (bi + 1)

Then

-In <S

SO:

and

ai 2 
-P bipi P n i

477



,ril comii tor oIbtfniling tho& epected \'alklo of S can now be~ written,

-In < T> -9

anti mhlistWtIUnR,

T and qT I.

wo obtain:

(All 1A - ------ -7

V V~ .. n sj'~J=n<i /

jj

1Ilk)\,: imiig Lto il vepont ithett mihc vatio of hth to ta til i aro

quaAlit >ea ;4 ll apioa h 1) T ot 1) hua<

Ti AA < >)11

C oi ov' ltna It apt tc itinty na lk rtio t tho twon tt tari'l

tim~4780. Wilapol:1I.Nt hl



n(-tn<Si) and MT T(-An(sT > )

Then since 1 i if i - J we obtain

Li
T + 1:/ /2r ! \ /2

Si ja.i ] i

or equivalently

+ 1/2 2 . )2 1

i i J- ." J/

This form has the basic properties desired. Notice there is only one
interaction term between each pair of weapons. In addition, only two
sums need to be maintained to compute PT. These are:

SiG.= 1/2 2rlj AJ1/

i J <Li

From these the value MT is given simply:

2T (M) / (0 + SIG)

The addition of any new weapon adds one term to the MU sum, and several
terms to the SIG suu.

The computation of the first sum is trivial; however, before the second
one can be used it is necessary to provide a practical method of esti-
mating rij.

We recall that the array RISK (A,G,J) was computed as an estimate of
shared risk, and that:

RISK(A,G,J) =  SM(L)*SMAT(A,L)
L-1,5

For a particular weapon G and hardness component J, this relation might
look as follows: (A is a weapon attribute index; L is a failure mode
index.)

479



LA (A. LA 1 2 3 4 5 6
S]L SM(L)I .. .All Group]Reg ClassiType Alert 'Independent Risk

. -LOGF(DBL) - .20 .00 .10 .10 .10 .o0 1
2 -LOGF(CC) = .00 .00 .10 .30 .10 .10 .30 .10
3 -LOGF(REL) = .05 .00 .05 .00 .10 .20 .00 .65
4 -LOGF(PEX) - .20 .00 .00 .10 .20 .20 .00 .50
5 -LOGF(STK) = .02 .00 .00 1.00 ,00 .00 .00 1.00

RISK(A,G,J) .000 .0225 .040 .065 .070 .08 .1925

ply to divide the five types of risk SM(L) between the independent weap-

on risk, and the six factors A that any two weapons might have in
conmion. The total RISK over all A plus the independent risk is of
course equal to the sum of SH(L). 'Wa are now interested in using the
RISK array to derive reasonable values for the correlation coefficients

rij.

The RISK array thus represents the amount of the risk for each weapon
that is likely to be correlated with other weapons of the same class,
type, etc.

The correlation coefficients should reflect the shared risk. if two
weaoons have only two attributes A in common then the shared risk should
come only from these two conmion attributes. Moreover, the amount of
risk that can be shared on the basis of one attribute cannot exceed the
minimum risk associated with that attribute for either weapon. There-
fore, to estimate the maximum risk, YiJ, that can be shared by two
weapons, i and J, we definez

7£J or GAM(k,j) = E 6 (Ai,Aj) Min RISK(Ai,Gi,J)RISK(AjGj,J)
A

where 6 - 0 if Ai + A and 6= I if A, - AJ.

The coefficients ri however must never exceed 1.0. Therefore it is
appropriate to divide the shared risk GAM(i,j) by Z SM to obtain a nor-

L
malized fraction guaranteed to be less than 1.0.

Thus the form of the second summation

SSte, - " F 2(Ai)1/2 r i (p )1/2

i J<i j

would become

SIG " 2 (A,) 11/2 GA(i,J)(PJ)l/2
iJ<i Y SM

L

480

- P i



However, this form 'involves square roots which are inconvenient. More-
over, it represents an upper limit of correlation. We can reduce the
st.e of the overestimate by using the largest (or maximum) F SM; i.e.,

L
usiog the least reliable weapon for normalization. In addition, we can
sl ,IptLMy the fonm and prgy~de for the removal of square roots if we also
multiply by (Pmin /Pmax) . (This is a factor less than 1.0 that has
the effect of reducing s.ightly the assumed correlation between weapons
of very different overall effectiveness.)

With these changes, the equation for SIG takes the form of

SIC - r 2 (p ,) 1 1 2  G M (ij * (1i n 1/21 1/2 I

4 J<i Max Z SM Pmax
L

The form in braces is still guaranteed to fall between zero and 1.0.
It represents the actual form for rij used in the present version of the
Allocator. This form has a computational advantage in that it simpli-
fies the calculation of SIG. Assume that li<,jj. Then

F SM,>F Sm and so
L L

r F 2(pj)i/ 2 jGAM(iJ) * /Iii/2 ( /2
SIG r, ~ Stl (F

This reduces to,

S 1G - Z 2*GAM(k,j)*HIN iII

This is the actual form used computationally. (For each weapon group G
the quanity IL/ F SM is identified in the FORTRAN as SSIC(G,J).)

L

The specific formula used for the trms in SIC is of heuristic origin-o

and is obviously somewhat arbitrary. It is justified, in the final
analysis, by the fact it is fairly simple and that it works. The
resulting kill probabilities produce realistic cross targeting, and in
cases where these probabilities can be compared with a rigorous statis-
tical model of correlations, it produces a satisfactory approximation

to the kill probability.

481



In sumary, the mathematics is as follows:*

For a single weapon let

SSK - single shot kill probability, and let

SSS = single shot target survival probability

then SSK is given by

-LOGF(SSK) SH (L)

As usual, SSS = 1.0 - SSK, and we define Pi or MUP for group Gi relative
to hardness component J as:

MUP(GJ) - -LOGF(SSS)

We also define SSIG(G,J) as:

SSIG(G,J) - LOGF(SSS)/LOGF(SSK) = WMP(G, J)/ E SM(l0)
L

Finally we define RISK(A,G,J) as:

RISK(A,G,J) - Z SM(L)*SMAT(A,L)

L-1,5

The preceding three arrays (underlined for emphasis) are the main input
for the estimation of kill probabilities.

The target survivability relative to multiple weapons ST is given by
-TT

ST  = e

2
where MT = (M) / (MU + SIG)

and where MU = i i = Y P(GI,J)
i i

and SIC = iji 2(pIi)I/ 2 r'i | (Mj)i/2

The individual terms in SIG for specific i and j can be thought of as:

DSIG(i,j) - 2(=i) 1/2 r ('UP 1/2

The displayed mathematics for the calculation of MUP are for the expo-

nential damage law. Ite derivation of the quantity, MUP, required for
use of the square root damage law is discussed in the Derivation of
Square Root Damage Function section of this chapter and are not of any
importance in this discussion of correlation effects.

482



which we identify computationally as

DSIG(k,j) - 2*CAH(i,j)*Min {SSIG(GJ)l
k=ij I

where Q1(ij), the maximum risk shared by i and j, is estimated as

GAM(ij) = A. 6(Ai,Aj)*Min IRISK(Ai,Gi,J), RISK(Ai,G j J ) 1
A

where 6, the Kroniker , is 0 if A1 + Aj, and I if A i  A J,

The simple form used for DSIG above implies that rij has the form:

ri'j lMaic ,si(L)]

however, this form never enters explicitly into the calculations.

To combine this treatment for the analysis of weapon correlations with
the preceding treatment of time dependent target values we simply use
the ST evaluated above to supply the S(NI,J) required in the formula

J=TM '=NN
VT - E Z [V(NI,J) - V(NI + 1,J)] * S(NI,J)

Jal NIWO

The weapons to be included in the evaluation ST for any NI are of course
those on the target up to and including the time NI.

This, of course, requires that separate sums for MU and SIC be main-
tained for each relevant time interval, NI, and each hardness component
J. Thus these variables are actually two dimensional arrays MIJ(NI,J)
and SIG(NI,J). Moreover, every potential payoff estimate (both for
each weapon that might be added, and for each that might be deleted)
requires a separate complete set of sums.

Derivation of Damage Functions

A Universal Damage Function: Consider the situation for which the lethal
radius and CEP of a single weapon are small compared to the target
dimensions. This case becomes quite pertinent under any of the follow-
ing circumstances:

Very large cities

Targets whose uncertainty of location is larger than the area of
influence of a weapon

483



Employment of large numbers of small weapons (e.g., cluster war-
heads)

Hardening which reduces effective weapon radius below target size
(e.g., blast shelters for urban population).

In such a situation, where the value density of the target does not vary
significantly over the area of effect of a single weapon, one can use-
fully employ the concept of weapon density (weapons targeted per unit
area) and seek the weapon density as a function of value density which
optimizes the total target destruction for a given total number of
weapons.

Before such an optimization can be effected, however, it is neuessary to
obtain the relationship between the weapon density applied to a sub-
region, expressed for convenience as the fraction of the original value
surviving. In the most general case, this function can vary with posi-
tion in the target, reflecting the possibility of varying degrees of
vulnerability over the target.

We introduce the following notation:

X Position within target (x, y coordinates)

w(X) Density of weapons targeted in vicinity of X (number/unit
area)

V(X) Target value density in vicinity of X (value/unit area)

F(W) Fraction of destruction produced by weapon density w, in
the absence of hardening

(X) Vulnerability (hardening) factor (O gJLI) expressed as
effective degradation of weapon density

W Total number of weapons intended against target.

The total payoff for a given weapon density distribution is then given
by:

H VF(pw)dA (I)

where the integration is understood to be over the whole target area,

and dA is the area element.

Similarly, the total number of planned weapons is given by:

W jodA

484



We seek now the weapon density distribution which maximizes the payoff
for a given W. Introducing a Lagrange multiplier :0, and applying the
generalized method described above,* we seek the weapon density function
which maximizes the unconstrained Lagrangian.

L = 11 - AW (3)

This is equivalent to maximizing:

L = j[VF(IA) - Xcu]dA (4)fA

The density function wx which maximizes this Lagrangian for a givenA
is obtained simply by maximizing the expression inside the integral at
each point (see cell problem discussion in Everett's paper, appendix C).
The optimum density at any point is therefore a solution of:

MAX =fVF(pw) - Al(5)CL)

For the case where F is monotone increasing, concave (diminishing
returns), and differentiable, an internal maximum of (5) can be sought
by zeroing its derivative:

d . (VF(IAW) -Xwl= VF'=(pw) P-W 0 (6)dw I

Letting G = (F) I stand for the inverse function of the derivative of
F leads to:

I
WA C, A-(7)

Equation (7) gives the internal maximization of (5). To complete the
solution we must account for the constraint w*0 (negative densities
are not allowed), Thus the optimum is given by (5) only if wA*O and if
VF(ptj) - X >0, since otherwise (5) is maximized by w- 0. The com-
plete solution can therefore be stated:

ii G and VF( pW) -WO

(OA (8)ifc0

0 otherwise

(This solution is also valid even if F is not concave -- a situation in
which G may be multivalued -- provided that one uses that value of

G(X/V) for which VF(Lw) -,Xwis a maximum.)

485



Ohoqevvo tha~t the opttm deknaity givrni by (M' to A, Nitr im1. onyf V
ild k AuiA 10 @pikJOY WdOPOMW Of PQAti' Tf Wtj Call ftrthie

awm~ve rht.l~ Ohe v iverahiity P4 itk e, NioQtiol 0111Y of tht valie delotv
Avx tac~ Io th~evwita i dpo"Oert of pait~im,* thoix we % Ax simwpltfy to

forxto% Awld slk~~xmr oom~ailh. In thia Qae, all prtitioat u'$tst' -

~l~~riat(~Are amarivkd by two NUw~ciq~i~st

A(V) total Area of thtotm ea wh~ ose val~o eise'wty .

Is greacer thian \1

OM YtilnraliLlty favtor AA A ftm ocm of valtie dosuttv

VTh op~Itwmi woapovk ioisity w,\ RiVOeA hb (a)~ heomies thti~ a fllwQt.Qr ni "N
of 014 YAWO lfltyV

01tl~4 (9)

AMn~ the total pvofC atid totAl weapQoS Are givai Wr thte simplo kwirm of

W44

Thi iQtmPlote. the POV\Oval optILAim ot vO~pQX detialty, Foi' Oxpl oit
I1o1\tt okla \10 veq~~livo OPOOOq totdlnu .eoi the target \aIAXO dsi atIh~t i
fmuotion AMV thai (tea~'11otimi euixotioi 4(kv), A',d tho vulnerathlll tv
distrilmtltm g(V) - le ahld 11ow Oolluldor aevovcl portlnenw caotea.

1411O11 000111 gellacly qiilto 1ti 0110 4114he ato 41 Any Oase Ooevlnnlv
tmvio LC the vartatto" of k adtl evoam optIt~at.k toi t Raltaov koplo-

mea, for eampleh.

48I6



Locally Random Impact Model: When the CEP is not significantly smaller
than the lethal radius, or when the delivery probability of individual
weapons Is low, the situation over any homogeneous part of the target
can be closely approximated by regarding the weapons as having been
dropped uniformly at random over that part,

Consider, therefore, a region of area A (large compared to the lethal
aren of a single weapon) into which N weapons each with lethal area
flRK and delivery probability P are delivered uniformly and independently
at random. The probability that any given point in the region will sur-
vive one weapon is:

2
is() =l- A (11)

and, since weapon arrivals are independent events, the probability of
surviving N is:

S2 N
AS(N) = ( ) (12)

Introducing the parameters K and W

2
K m PuRK expected lethal area of one weapon

(13)

w N/A weapon density

allows (12) to be written as:

S (N) m 
(14)

Thiis gives for the destruction function:

FN( I S(W) 1 (1 N (15)

487



Equation (15) still contains an extra parameter, N, which is the number
of weapons in the area A used to derive (12)--presumed large compared
to the effects of a single weapon and small compared to the total target
size. We are currently interested in the limit as this area A becomes
infinite compared to the effects of a single weapon, hence in the limit

as N-*oa:

F (w) = lir FNCW) = 1 - e (16)
N-

which becomes our final destruction function for the locally random
impact model.

"Perfece" Weapon Model: At the other extreme from the locally random
impact model is the hypothetical situation where the weapons have zero
CEP, delivery probability of unity, and completely destroy a hexagonal

region of area K with no damage outside the region.

This situation closely resembles the case of "cookie-cutter" weapons
of zero CEP and unit delivery probability, and deviates from the latter
only when the area covered is so densely packed that the "cookie-cutter"
circles begin to overlap--which does not occur until the fractional
coverage exceeds /(2 q7 ) or about .91.

For such "perfect" weapons the destruction fraction is given by:

1 w 2 1/K

Intermediate Cases: We have considered two extremes, locally random
impact, and perfect weapons. For actual situations, the targeting will
not be random, but some optimum pattern of DGZs.

As the CEP becomes larger than the lethal radius, or the delivery prob-

ability becomes small, the situation--even though based on a pattern of

DGZs--approaches a situation described by the random impact moded. On
the other hand, for high delivery probability and small CEP, the sLtua-
tion begins to approach the "perfect" weapon case--particularly as the
weapon effect radius becomes sharp (close to "cookie-cutter"--e.g., the
convenLional 020 model).

Returning to the destruction function given by (15) containing the
extra parameter N (from which the random model was obtained by Letting
N-loo), we observe the remarkable fact that for N-I, this function is
precisely the damage function (17).

488



Since this function contains, for the extreme values of N, the two
limits we have considered, it seems reasonable to suppose that any
actual intermediate case could be adequately approximated by this
function for some intermediate value of N.

We shail accordingly adopt this general function as our destruction
function, subject to subsequent empirical verification.

The general law therefore becomes:

N N

FN (W) N (18)

For purposes of determining the optimum distribution of weapon density
over a target of varying value density we wish to employ Eq. (9), for
which we require the function C - (F')-I. Accordingly,

F' N(w) =-'FN) : (19)

N dw N (9

0 N

for which the inverse function is easily Jetermined to be:

GN(X) = 1 - (20)

Thus from (9), the optimum weapon density is given by:

I N '~ ~

Pi(V) K (V) N V-<l(
(21)

Li) (V) =

0 A>

489



and for which the destruction fraction is easily calculated:

1 -(V))N/N (22)

FN(wx 1)

1>
KVp

This completes the general treatment for arbitrary target value distri-
butions.

Gaussian Targets: A particularly important special case is that of a
Gaussian target, for which the value density distribution is given by:

22
V(xY) 1 e-r /2 o 23

(The total value is here normalized to unity.) From (23) we determine
the relationship between radius and value to be:

2 2 2 (24)
r (V) = -2a kn(21to V)

and hence the cumulative area distribution function to be:

A(V) = r2 (V) -21a2 ln(2ta2V) for V - 1  (25)
272

and the differential element is:

2-na2d (26)
dA(V) =- 2-ia 2-- b

dAM V

Solution For Constant Vulnerability: Combining Eq. (10) with (26) and
(22), and letting i. 1:

490



1/ (2-ff2) [
H),= __ V dV

X/K N

I ~- 220 (N - - ---- (27)K -

Transforming the Lagrange multiplier X to a new multiplier p:

2n 2, X (28)
K

we can rewrite (27) as:

1 - 0 N-I + (N-)' (1- ) (29)

The total number of weapons as given by (10), (21), and (26):

1/ (2 ii2) F1f L .  2 c2 dV (30)
t X/K

leads, in terms of {, to:

N (N- 2no n( - 1) (3)

In order to permit explicit exhibition of payoff as a function of num-
ber of weapons, it is necessary to define a now function, y, which
is the inverse of

y -2ny - 1 x (32)
491



rV

that is, y y(x). It is defined for all nonne~ative arguments, with
values on the interval zero-one. With this function, (29) and (31) can
be rewritten, in terms of surviving value:

S -1[ + (N-i) (1-

0 =T() (33)\2vo2 N(N-

Equations (33) summarize the relationship between surviving fraction,
S, and number of weapons targeted, W, for Gaussian targets, and with a
model parameter N, which can range from 1 to .

The two limiting forms of (33), corresponding to N - 1 and N- oo are
interesting and important, and are easily shown to be:

2r
Si = exp(-K0/2no 

2)

" , o2 -n ,, 2 )

These are often termed the power law (or exponential law) and the square

root law, respectively.

Derivation of Kill Probability Function

A variety of kill probability functions are in general use. The "normal
model" employs a function of the form:

~' 2
PKr) _ -r /2o°K 2(34)

The "cookie- cut ter" model employs a discontinuous function:

1 RKr O

p (r) = (35)

C) r>RK

492

. . ......



where RK is the so-called "lethal radius." 'rhe relation between RK
and UK is obtained by equating lethal areas

1rRK 2  f er / 2 aK rdrde (36)

leading to the relation

OK2 .5RK2 (37)

Other functions have often been used and, indeed, it has occasionally
been found convenient to employ a generalized kill function of the
form:

K W-1 K.

j=0 j  (38)

where

a2

Again, we can equate lethal areas to relate a with RK:

2Tr

YR K2 f. GK ( r ) rdrdO (39)

0 0

so that

2 2
RK =a foraliW (40)

The parameter W serves to alter the shape of this kill probability
curve. Thus, GK(r) reduces to the normal curve for W = 1 and the
cookie-cutter for W*oo. Standard kill curves, such as the 020 and
030 curves of AFM 200-8, representing, respectively, ground burst and
optimal air burst blast damage probabilities as a function of distance,
can readily be approximated. W - 6 approximates closely the C2 0 curve,
and W = 3 approximates the 030 curve.

493



Integration of a kill probability function over appropriate density
functions allows the representation of such factors as delivery error,
geodetic error, extended targets, etc.

Assume an extended target with the Gaussian normal value distribution
as follows:

-r _ 2 1, 22
V(r) = -- -e /aTgt (41)

2g0 Tg t

V(r) = value per unit area at distance r front center

0Tgt = standard deviation of value distribution

Clearly:

Jo 2 22
1.0 2 er / 2 ;T g t dr (41)

Tgt 0

Define a radius, R95, such at 95% of the value of the target is con-
tained within this distance of the target center. (This R95 is the
target radius used in the QUICK system.)

Then (-R95_ 2"/2 2 0 2 2 (43)

e Tgt dr - .95 2Tgt dr

0

Solving this equation for oTg t in terms of R95, we get:

CTgt = R 95/2.448

Assume a CEP, the radius of a circle with center at an aiming point
which will contain 507. of the centers of impact of weapons aimed at
the aiming point. Assuming a circular normal (Gaussian) distrLbutlon
of the aiming errors:

r -r 2 20 2
p(r) --- e CEP

'CEP

494



where

p(r) - probability aiming error is r

aCEP - standard deviation of aiming errors

By definition of CEP

f CEp(r) dr - 0.5

0

Solving for GCEP in terms CEP

SCEP - .8493 * CEP

Assume a weapon is aimed at the cenater of the target. Vrom the nature

of the Gaussian distribution we can define a standard deviation 
CY2

2 2 D
GCEP + O_ . such that the circular normal distribution characterized
by2 is the cotvolution of the distributions characterized by 2

h 2t CEP

and 0Tt

Therefore, if

PK0) - probability of target Kill

W - kill function parameter

GK(r) - kill function from Eq. (38)

then

PW) ( r) rd2 (46)

12 2 2

495



Evaluating the integrals

PK(W) = 1 w (47)

where X = OD/RK

or

2 \ I

S 1 -( 1 2
D+ yj"I- R K

which is the function used in QUICK.

496



APPENDIX B

OPTIMIZATION OF DGZs FOR COMPLEX TARGETS

Module ALOCOUT is responsible for selecting optimum desired ground zeros
DGZs) for weapons atlocated to complex targets. The complex target may
contain several component target elements, each with specific coordinates,
hardness, and some given time dependence of value. To place this diverse
target element information on a commensurate basis for efficient DGZ

selection, each target component of the complex is represented as a
series of simple point value elements. Complex elements with more than
one hardness component generate more than one such target element, and
area targets generate several elements, spread over the area of the tar-
get, to represent a value spread over the area. A (DGZ) Desired Ground
Zero Selector then uses the data to select optimum aim points within the
target complex.

The selection of DGZs is a two-step process. First, the prescribed war-
heads are assigned initial coordinates through a "lay-down" process in
which each successive warhead is targeted directly against the target
element where the highest payoff is achieved, taking into account colla-

teral damage to all other target elements. Second, a general-purpose
function optimizer, FINDMIN, calculates the derivatives of the payoff
as a function of x and y coordinates of each weapon and adjusts the
coordinates to minimize the surviving target value. FINDMIN terminates
either after a maximum number of iterations (which can be specified by
tLhe analyst) or after it finds that it can no longer make significant
improvements in the payoff.

The mathematical representation used is as follows. I
The weapons allocated to a complex target are to be placed in a manner

which attempts to minimize the total escaping target value. To simplify
discussion, the notation below is introduced. A second subscript, j,
referencing the jth target element, is used when needed. I

V. value of jth target element remaining immediately
following arrival of the ith weapon

S = probability of survival of jth target element associ-
ated with weapon i

E. = amount of value of j th target element that "escapes"
J between arrival of weapons i - I and i

T. = time of arrival of weapon I (To is an initial time when
1 the full target value is applied) (Ti Ti + 1 all i) K

497



Vj(Ti) value of th target, at time T

N number of weapons

NT number of targets

The following sketch illustrates the treatment of the timne-dependent
values of the jth target.

Amount of target value

VA(T) picked up by weapon 1

Amount of target value
picked up by weapon 2

> E 2
' O

V2 "

T T1  T2

mime

From this sketch, the following relationships should be apparent. The
equations immediately below refer to a single target (I), but for simplic-
ity the j subscript is omitted.

V (TO)SiVi  1/V(Ti - 1i = 1,2, ... , N)

V. -[ -V(Ti)/V(T i _ i (i= 1,2, ... ,N+I)

498



From the previous equations,

i - Sk V(Ti) and E] [v(Ti 1) -V(i)]=i I~ k]'l - Vk ( Tik

/i-i
(For i 1, the product ( fSk is understood = 1. Also V(TN + 1) = 0.)

(k= 1

Ilie total escaping value associated with target j is

N+I N+I _i-i '
, Ei([ifi Skj j(Ti-) - V(T )
i i=l =

The value on target j which escapes after arrival of weapon i is given
by

N+I
F, E.

p=i+l Pi

The effective value of target J associated with weapon I defined by

(N+I
ij Ep

p=i+l / J

This value is introduced for computational efficiency and may be thought
of as the top-I value available for weapon i, the effect of all other
weapons hay. ng been taken into account.

The marginal value picked up on target J due to weapon i is given by

F(I - S)
ij ii

where Sij is a function of, among other things, the position of weapon i.
For a fixed weapon configuration, weapon I can be moved from (x,y) to
(x',y') and the marginal escaped value is given by-

NT
;Ei Fij(Sij -S'j )

499



To establish an initial weapon configuration, a lay-down is performed as
follows. Initially, set SlI = 1 for all i, J. Denote by SJk the sur-
vival probability of the ktn target, relative to the ith weapon, when
this weapon is placed on the jth target. Now the ith weapon is placed
on that target, J, which yields a maximum value for the expression

NT
EX F - Sk

k=l 3ik(Sik -0

The Sik are now set to equal to Sk (k = 1,2...., NT) the Fik (all i, k)
are redetermined, i is increased 5y one, and the process repeated until
all weapons have been allocated.

This weapon configuration can now be input as the initial position to a
"hill climber" routine, based on a steepest descent algorithm, which
attempts to optimize further by replacing the discrete set of possibLe
weapon positions with the two-dimensional continuum. The function to be
minimized is:

NT N+1E E

j=1 i-l

Processing by the optimizer w 11 be terminated either when the optimum

has been achieved or when a specified number of iterations have been
completed. In either case, to insure that the local optimum obtained
cannot be further improved, the value of removing, in sequence, each of
the weapons from its final location and placing it on one of the target
points is explored. If the results obtained by this method are better
than those achieved with the previous configuration, this new assignment
will be used as an initial one for a second utilization of subroutine
FINDMIN. If not, the results of the first use of subroutine FINDMIN

will be kept.

50

500



a1

APPENDIX C I
GENERALIZED LAGRANGE MULTIPLIER METHOD

FOR SOLVING PROBLEMS OF OPTIMUM
ALLOCATION OF RESOURCES

PI

P

Hugh Everett III

lWeapons Systems Evaluation Division, Institute for Defense Analyses,
Washington, D. C.

(Received August 20, 1962)

The usefulness of Lagrange multipliers for optimization in the presence
of constraints is not limited to differentiable functions. They can be
applied to problems of maximizing an arbitrary real valued objective fune-
tion over any set whatever, subject to bounds on the values of any other
finite collection of real valued functions defined on the same set. While
the use of the Lagrange multipliers does not guarantee that a solution will
necessarily be found for all problems, it is 'fail-safe' in the sense that any
solution found by their use is a true solution. Since the method is so aim-
pie compared to other available methods it is often worth trying first,
and succeeds in a surprising fraction of cases. They are particularly
well suited to the solution of problems of allocating limited resources
among a set of independent activities.

N MOST textbook treatments, Lagrange multipliers are introduced in a
context of differentiable functions, and are used to produce constrained

stationary points. Their validity or usefulness often appears to be con-
nected with differentiation of the functions to be optimized. Many
typical operations-research problems, however, involve discontinuous
or nondifferentiable functions (integral valued functions, for example),
which must be optimized subject to constraints.

We shall show that with a different viewpoint the use of Lagrange mul.
tipliers constitutes a technique whose goal is maxiimization (rather than
location of stationary points) of a function with constraints, and that in

this light there are no restrictions (such as continuity or differentiability)on the functions to be maximized. Indeed, the domain of the function to

be maximized can be any set (of any cardinal number) whatever.
The basic theorems upon which the techniques to be presented depend

are quite simple and elementary, and it seems likely that some of them may
have been employed previously. However, their generality and appli-
cability do not seem to be well understood at present (to operations ana-
lysts at least). The presentation will consequently place primary empha.
sis on the implications and applications of the basic theorems, as well as

501



discussion of a number of techniques for extending the usefulness of the

methods.

FORMULATION

FoR cLARITY of presentation, we shall develop the subject in a language
of problems concerning the optimal allocation of resources. Other appli-
cations of the theorems will suggest themselves.

Let us suppose that there is a set S (completely arbitrary) that is in-
terpreted as the set of possible strategies 6r actions. Defined on this
strategy set is a real valued function H, called a payoff function. H(z)
is interpreted as the payoff (or utility) which accrues from employing the
strategy z. In addition, there are n real valued functions C(k =  -.. a)

defined on 8, which are called Resource functions. The interpretation of
these functions is that employment of the strategy xzt will require the

expenditure of an amount Ck(x) of the kth resource.
The problem to be solved is the maximization of the payoff subject to

given constraints C, k=I...n, on each resource; i.e., to find

max., H(z)

subject to C(x) 9 c', all k.
A particular subclass of this general problem with wide application is

what will be called a cell problem (or separable problem) in which there

are a number, in, of independent areas into which the resources may be

committed, and for which the over-all payoff that accrues is simply the

sum of the payoffs that accrue from each independent venture (cell).

In this type of problem we have as before, for each cell, a strategy

S., a payoff function Hi defined on 8,, and A resource functions C defined

on 8. Hi(xi) is the payoff in the ith cell for employing strategy xi(S,

and for each k, Ct(z;) is the amount of the kth resource expended in the

ith cell by employing strategy xi in that cell. In this ease the problem to

be solved is to find a strategy set, one element for each cell, which maxi-

mizes the total payoff subject to constraints e on the total resources ex-

pended; i.e.,

max I 2 i(x,)
all Cho|C., of (zSi

subject to E -' ' C, (xe) :gc" for all k.

This type of problem is simply a subclass of the previous general prob- 3

lem since it can be translated to the previous problem by the following

identifications:

S= I1Z' Si (direct product set),

502

,



[where a strategy xeg consists of an ordered in-tuple (xi, ... , x.) of strate-
gies, one for each 8] j 1C(x) = C,(x), all k

MAIN THEOREM AND SOME OF ITS IMPLICATIONS
WE NOW present the main theorem concerning the use of Lagrange mul.

tipliers, and discuss its meaning and implications. The proof will be sup-
plied in a later section.

TIEOREM 1
1. X , k= 1, n are nonnegative real numbers,
2. xAS maximizes the function

H(x) - _ XkCi(x) over all xt$,

-p3. x* maxtinzes H(x) over all ihosexeg such that C* C(x*) for allk.

Discussion

This theorem says, for any choice of nonnegative Xk, k= 1, n, that if an
unconstrained maximum of the new (Lagrangian) function

11(x) - Eti X' ck(x)I
can be found (were x', say, is a strategy which produces the maximum),
then this solution is a solution to that constrained maximization problem
whose constraints are, in fact, the amount of each resource expended in
achieving the unconstrained solution. Thus if x* produced the uncon-
strained maximum, and required resources Ck(x*), then x* itself produces
the greatest payoff which can be achieved without using more of any re-

source than x* does.
According to Theorem I, one can simply choose an arbitrary set of non-

negative X's, find an unconstrained maximum of the modified function,
11(x) - _j X Ck(x), and one has as a result a solution to a censtrained
problem. Notice, however, that the particular constrained problem which
is solved is not known in advance, but arises in the course of solution and
is, in fact, the problem whose constraints equal the resources expended by
the strategy that solved the unconstrained problem.

In general, different choices of the Xkls lead to different resource levels,
and it may be necessary to adjust them by trial and error to achieve any
given set of constraints stated in advance.

However, it is noteworthy that in most operations-research work one
is not simply interested in achieving the optimum payoff for some given
resource levels, but rather in exploring the entire range of what can be

503



obtained as a function of the resource commitments. In this case it matters
little whether this function is produced by solving a spectrum of problems
with constraints stated in advance, or by simply sweeping through the
X's to solve a spectrum of problems whose constraint levels are produced
in the course of solution. The method when applicable is therefore quite
efficient if the whole spectrum of constraints is to be investigated. Even
in the case where only a single constraint set is of interest the use of this
method, and adjustment of the X,'s until the constraint set is achieved,
is often more efficient than alternative procedures.

A limitation of the Lagrange multiplier method arises from the fact
that it does not guarantee that an answer can be found in every case.
It simply asserts that if an answer can be found it will indeed be optimum.

In cases where multiple constraints are involved that are not completely
independent it may not be possible to simultaneously utilize all resources
to the full allowance of the constraints. This can happen i the utiliza-
tion of one resource requires the utilization of others, or equivalently in
cases where some constraints may involve various combinations of others.
These cases are analogous to problems in linear programming where cer-
tain constraints prove to be irrelevant in the optimum solution.

In such cases one might actually find the optimum solution but be un-
able to establish the optimality of the result because of incompletely util.
ized resources. Nevertheless, there is a large class of allocation problems
in which the constraints really are independent (i.e., the resources can be
consumed independently in the region of interest). In such cases solu-
tions can usually be obtained that give consumption values adequately
close to the constraint values. The existence of optimum solutions that
can be found by this method actually depends upon an approximate
concavity requirement in the region of the solution that will be discussed
more carefully later.

At this point we wish to remind the reader of the generality of Theorem
1. There are no restrictions whatever on the nature of the strategy set 8,
nor on the funtions H and C' other than real-valuedness. The strategy
set may therefore be a discrete finite set, or an infinite set of any cardinal-
ity. Furthermore, the payoff function and the resource functions can
take on negative as well as positive values. [C(x) negative may be inter-
preted as production rather than expenditure of the kth resource.]

Application to Cell Problem

One of the most important applications of Theorem 1 is in the solu-
tion of cell problems. As shown in the Formulation Section, these problems
are a subclass of the general problem to which Theorem 1 is applicable.
In this case, maximizing the unconstrained Lagrangian function

11(X) - X, CI(x)

504



is equivalent to finding

MXUr. " H,(x,) - C,(x)

which (interchanging summation order) is the same as:

nax,.,n,:r sD' l,(x,) - cil x' C(xj).

But, since the choices x, may be made independently in each cell as a
consequence of 8=0=1 8,, the sum is obviously maximized by simply
maximizing

11,(x,) - E- C/,

in each cell independently of strategy choices in other cells, and sumning the
payoffs and resources expended for each cell (for the strategy that maxi-
mized the Lagrangian for that cell) to get the total payoff and resource
expenditures. Theorem I then assures us that the result of this process
is a solution to the over-all constrained problem with constraints equal to
the total resources expended by the strategy produced by this procedure.

Observe that there is no possibility that just a local maximum to the
over-all problem has been obtained. If the Lagrangian in each cell has
been correctly maximized (i.e., is not itself merely locally maximized),
then theorem I guarantees that the result is a global maximum to the over.
all problem.

Theorem 1 says nothing about the manner in which one obtains the
maxima of the unconstrained Lagrangian functions, but simply asserts
that if one can find them, then one can also have maxima of a problem
with constraints. The Lagrange multipliers therefore are not a way in
themselves of finding maxima, but a technique for converting optimization
problems with constrained resources into unconstrained maximization
problems.

This conversion is especially crucial for cell problems with constraints
on total resource expenditures, where the conversion to unconstrained
maximization of the Lagrangian function uncouples what was an essen.
tially combinatorial problem (because of the interaction of choices in each
cell through total resource constraints) into a vastly simpler problem
involving independent strategy selections in each cell.

The present treatment of Lagrange multipliers was motivated, in fact,
by a cell prohlem involving continuous, differentiable payoff functions, the
solution of which was attempted by a classical Lagrange multiplier ap.
proach. In this case, the resulting (transcendental) equations had in
many circumstances a multiplicity of solutions, and the embarrassing
problem arose as to which of several solutions to slect for each cell. It
appeared as though it might be necessary to try all combinations of choices
of solutions-an impossible task in this case which involved several hun.

505



dred cells. As a result of this difficulty, a closer look was taken at the
role of Lagrange multipliers, and the present treatment is the result.
The original problem of multiple solutions is, of course, easily solved by
simply selecting that solution in each cell which gives the largest value
for the Lagrangian.

It is the recognition that the objective is to maximize the Lagrangian,
by whatever means, not to zero its derivative, which is decisive. In
imany ca.es it is expeditious to maximize the Lagrangian by finding zeroes
of its derivative. One can then easily select a final value by testing each
solution (if there is more than one) to find which gives the largest (global)
maximum. This procedure automatically excludes any solutions that
correspond to niinima or saddle values, and also facilitates taking into
account any boundary conditions (such as nonnegative resource con-
straints) by testing the boundary cases as well.t

In other cases (particularly cases of nonnumerical strategies, or dis-
crete strategy sets such as integers), the Lagrangian may best be maxi-
mized by trial and error procedures, or even direct computer scanning of
all possibilities.

Another possibility is illustrated by cases wheicin resources may be
applied only in integral numbers. Often in such cases one can define a
continuous differentiable payoff function that attains its correct. value on
the integers. A useful trick applicable to many such cases is to maximize
analytically the Lagrangian based upon the continuous function, and then
test the integer on each side of the solution, selecting the one that maxi-
mizes the Lagrangian.

PROOF OF MAIN TIEOREM

nTi raoor of the main theorem presented and discussed in the previous
section is quite elementary and direct:

Proof of Main Theorem. By assumptions (1) and (2) of Theorem 1,
t , k- 1.. .n, are nonnegative real numbers, and x*t$ maximizes

11(x) -E:M X, Ca(X)

over all xtS (the x* producing the maximum nmy very well not be unique--
all that we require is that x* be some element that maximizes the La.
grangian). This means that, for all xeS,

t This type of constraint (eg,, nonnegativity of resources), which holds inde.
pendently for each cell rather than over.all as with total resources, is handled by
simply restricting the strategy set for the cell appropriately. The Lagrange maul-
tipliers are reserved for over.all constraints.

506



and he'ice, that
H(x*) j_ H(x) - " kI)lC(x*) -C(x))

for all xeS. But if the latter inequality is true for all xtS, it is necessarily
true for any subset of 8, and hence true on that subset S" of S for
which the resources never exceed the resources C*(x*). Notationally:
x,8"€ for all k, C(x) <5Ca(x*). However, on the subset S* the term

Z xIC(X*)-C(x)l

is nonnegative by definition of the subset and the nonnegativity of the
X s, hence our inequality reduces to H(x*) H(x) for all xts*, and the
theorem is proved.

LANIBDA THEOREM

'rI oRi 2
1. Let I,,'I, 2*k=l ... n be two sets of XA's thht produce solutions

x1* and x2*, respcctively. Furthermtore, assume that the resource expenditures
of these two solutions differ in only the jlh resource.

C(xl*) = C'(x*) for k;j

and that C'(xl*) > ("(x2*).
2. Then: X2'_ (H (r,) -H (x,') /((x,*) - Ci(x,)l >_ X,'.
This theorem states that, given two optimum solutions produced by

Lagrange multipliers for which only one resource expenditure differs, the
ratio of the change in optimum payoff to the change in that resource ex-
penditure is bounded between the two multipliers that correspond to the
changed resource.

Thus the Lagrange multipliers, which were introduced in order to
constrain the resource expenditures, in fact give some information con-
cerning the effect. of relaxing the constraints.

In particular, if the set of solutions produced by Lagrange multipliers
results in an optimum payoff that is a differentiable function of the re-
sources expended at some point, then it follows from Theorem 2 that the
;,'s at this point are in fact the partial derivatives (or total derivative in
ease of one resource) of the optimum payoff with respect to each resource
(all other resources kept constant):

IOH*/ OCJIck (Ontl.t = X. I
Proof. The proof of Theorem 2 is also quite elementary. By hy-

pothesis x* is the solution produced by (Xi', hence x1* maximizes the
Lagrangian for (XIl, which implies:

H(xl*) k H(x) +X1'[C'(xl*) - C'(z) 1-"a,,s XmICa(xm) - Ck(x)]

507



I'

holds for all xts, and hence in particular holds for xs*, But since by hy-
pothesis Ca(l) ~ 2- kx) for k pdj, we can deduce that

II(xl*) x Ii() +x'JCi(x *)-
which, since by hypothesis C(xt* ) > C(x,*), implies that

which proves one side of the conclusion of Theorem 2. Interchanging the
roles of zx* and x,* [and observing the reversal of the sign of

ei%,*) 20I

produces the other side of the inequality to complete the proof of Theorem
2.

An obvious consequence of Theorem 2 is the fact that, if all but one
resource level is held constant, the resource that changes is a monotone
decreasing function of its associated multiplier. This fact indicates the
direction to make changes when employing a trial and error method of
adjusting the multipliers in order to achieve some given constraints on
the resources.

The Lambda Theorem also suggests a potentially useful technique for
choosing a starting set of multipliers for such a trial-and-error method of
achieving given constraint levels in a cell problem. Beginning with any
reasonably good allocation of the given resources, one can often calculate
easily what the effect on the payoff is for a small additional increment of
each resource, optimally placed within the cells. The differential payoff
divided by the increment of resource is then taken as the starting X for
that resource. The 's are then adjusted by trial and error until the
Lagrange solution corresponds to the given constraints, producing the
optimum allocation.

THE EPSILON THEOREM

A NATUI L question with respect to the pr.ctical application of the
Lagrange method concerns its stability-supposing that as a result of
methods of calculation or approximation one cannot precisely maximiize
the Lagrangian, but can only guarantee to achieve a value close to the
maximum. Such a solution can very well he at a drastically different
resource level and payoff than that which actually achieves the maximum,
and yet produce a value of the Lagrangian very near to the nmximum,
For the method to bo practictl, -R is required that in this situation a sou. Z
tion that nearly 'maximizes the Lagrangian must be a solution that also
nearly maximizes the payoff for the resource levels that it it3ef produces
(which nmy be quite different than those of the solution that actually

508



iruximizes the Lagrangian). Only in such a circumstance would it be
safe to assert that the solutions produced by any nonexact procedures
(such as numerical computation with finite accuracy, or methods based
upon approximations) were in fact approximately optimal solutions to the
constrained problem. Such required assurance of insensitivity is supplied
by the following ('epsilon') theorem.

THEOREM 3

1. t comes within e of maximizing the Lagrangian, i.e., for all xts:

H(2) -F XkC(.i) >H(x) -F, Xk C(x) - f.

-2. 1 is a solution of the constrained problem with constraints ck= C*(t)
that is itself within i of the mnaxiinum for those constraints.

The proof of this theorem, which is a simple extension of Theorem 1.
exactly parallels the proof of Theorem 1 (with an added t) and will not
be repeated.

ADDITIONAL REMARKS, CONCLUSIONS, AND COMPUTATIONAL

PLOYS

Caps or Inaccessible Regions
Theorem 1 assures us that any maximum of the Lagrangian necessarily

is a solution of the constrained maximum problem for constraints equal to
the iesource levels expended in maximizing the Lagrangian.

The Lagrange multiplier method therefore generates a mapping of the
space of lambda vectors (components X', k= 1, ... , n) into the space of
constraint vectors (components c', k= 1... n). There is no a priori
guarantee, however, that this mapping is onto-for a given problem there
may be inaccessible regions (called gaps) consisting of constraint vectors
that are not generated by any X vectors. Optimum payoffs for constraints
inside such inaccessible regions can therefore not be discovered by straight.
forward application of the Lagrange multiplier method, and must hence
be sought by other means.

The basic cause of an inaccessible region is nonconcavity in the function
of optimum payoff vs. resource constraints (convexities in the envelope
of the set of achievable payoff points in the space of payoff vs. constraint
levels). This possibility, and several methods for dealing with it, will now
be investigated.

Before beginning this investigation, however, we wish to point out that
even though the Lagrange multiplier method is not certain to obtain the
desired solutions in all cases, any solutions that it does yield are guar-
anteed by Theorem 1 to be true solutions. The procedure is therefore
'fail.safe,' a very reassuring property. It has been our experience over
the last several years, which includes application of this method to a variety

509



-J

of production and military allocation problems, that the method has been
extremely successful, and nearly always has directly yielded all solutions
of interest. The few situations in which the direct method failed were
readily solved by simple modifications to the procedure, some of which
will now be mentioned.

Source of Caps

Consider the (n+ 1) dimensional space of payoff vs. resource expendi-
tures. This space will be called PR space for brevity. Every strategy
xtS maps into a point in this space corresponding to 11(x),C (x) (k- 1... n).
The entire problem is therefore represented by this set of accessible points

in PR space. The problem of finding the maximum of H subject to con-
straints c, k=I 1... n, is simply the problem of selecting that point of our
set in PR space of maximum It that is contained in the subspace of PR
space where the resources are bounded by the c's. The set of all such
points (corresponding to all sets of values in the ck's) will he called the
erimlope, and constitutes the entire set of solutions for all possible con-
straint levels.

Consider now any solution x* produced by a set. of Lagrange multi-
pliers (X). By definition x* maximizes the lUagingian; consequently
we have that H~* EX' C(() * ) -,X' &(x)

for all xt8. Rearranging terms slightly, we have:

]I(w) H(./) - XA C(x 4)+E 0 (X)

for all xtS. If we consider now the hyperplane in PR space defined by
1=F ). C+a where a=1iI(x*)-fX' C(x*), we see that, because of

the previous inequality, none of the accessible points in PR space lies
above this hyperplane, and at least one point, H(x*),CA(x* ) k 1...n ,

lies on it.
Each solution produced by Lagrange multipliers therefore defines a

bounding hyperplane that is tangent to the set of accessible points in PR
space at the point corresponding to the solution (hence tangent to the
envelope), and which constitutes an upper bound to the entire set of ac-
cessible points. It is clear that, since no such tangent bounding hyper-
planes exist in regions where the envelope of accesible points in PR space
is not concave, the Lagrange multiplier method cannot produce solutions

in such a region. Conversely, for any point on the envelope (solution)
where a tangent bounding hyperplane does exist (envelope concave at
the point), it is obvious that there exists a set of multipliers (namely the
slopes of the hyperplane) for which the strategy corresponding to the point
in question maximizes the Lagrangian.

510



Thus the Lagrange method will succeed in producing all solutions that
correspond to concave regions of the envelope (optimized payoff vs. con-
straint level), and fail in all nonconcave regions.

A fortunate feature of cell problems with many cells is the fact that,
even though there may be large convexities in the envelope in the PR
space for each cell, the result of over-all optimization is an envelope in the
I'l space for the total problem in which tihe convexities w ar'atly reduicedin significance.t This property is the major reason for the general success

of the Iagrange method in solving cell problems.

Some Methods for Handling Caps

Despite the general success of Lagrange multipliers (at least for the
problems we have encountered), occasions may arise where gaps occur in
regions of critical interest. Under such circumstances there are several
useful techniques that can he attempted before abandoning the procedure
altogether.

First, all solutions that can be obtained outside the gaps contribute a
good deal of information and can be used to bound the solution in the gap
region. As was previously shown, each solution that can be obtained by
Lagrange multipliers defines a bounding hyperplane that gives an tipper
bound to the naxinum payoff at all points, and hence inside the gap as
well. For any point inside a gap, therefore, an upper bound can be ob-
tained by finding the mininmum payoff for that point over the set of bound.
ing hyperplanes corresponding to the solutions that one could calculate.

On the other hand, every solution that can be obtained that has the
property that none of its resource expenditures exceeds the resources of a
point in a gap for which one is seeking bounds, obviously constitutes a
lower bound to the optimum payoff at the point in question, and the maxi-
mum of these lower bounds can be selected as a lower bound to the payoff
in question. Thus the set of solutions that can be obtained by Lagrange
multipliers can be used to obtain bounds on the optimum payoff for inac-
cessible regions.

There is another technique that is often successful in reducing gaps in
instances where the bounds one can compute leave too large a region of
uncertainty, and where the gap is caused hy degeneracy in which a number
of cells have gaps corresponding to the same multiplier. A gap is char-

I In fact, the gap structure for the o.ver~all problem obviously simply reflects
faithfully the gap structure in the individual cells, with each gap in a cell correspond-
ing to a given multiplier value occurring with the same magnitude (same jump in
payoff and reourcesq in the over-all optimization at precisely the same multiplier
value, Only degeneracies in which several cells have gaps corresponding to the
same multiplier can cause a larger gap in the over-aill prohlem. and such degeneracy
is easily removed by techniques to be discussed in the following section.

511

I



acterized by the behavior that, as the X's are continuously varied, there
are abrupt discontinuities in the resource levels generated. These dis-
continuities can often be filled in cell problems by the following technique.

Given two sets of Xts,(k),( , ), which are very close, but for which
the generated resource levels markedly differ, one can make a mixed cal-
culation in r cell problem using the set (X,') in some cells and the set
(X21) in the others. If the two sets of X's are close together, maximizing
the Lagrangian in any cell for one set will necessarily result in a solution
that nearly maximizes the Lagrangian for the other set, hence by the
Epsilon Theorem will yield a result that is guaranteed to be nearly optimum.

Somewhat more generally, one can simply exploit the Epsilon Theorem
directly in a cell problem, working with a given set of X's but deliberately I
modifying the choices in some or all cells in a way which moves in the
direction of the desired expenditure of resources. By summing the devia-

tions from maximum of the Lagrangian in each cell (epsilons) in which
the strategies are so modified, a bound on the error of the result is obtained
(which can be kept quite small in most cases by judicious choice of devia-
tions). This appears to be a quite powerful strategem.

512



DISTRIBUTION

Addressee Copies

CCTC Codes
Technical Library (C124) ......... ............... 3
C124 (Stock) ............ ...................... 6
C126 ............... ..................... 2
C313 ............. ......................... 1
C311 .......... ........................ .. 15
C600 ............. ......................... 1

DCA Code
205. . . . . . . . . . . . . . . . . . . . . . . .

EXTERNAL
Chief, Studies, Analysis and Gaming Agency, OJCS

AT'Ir': SFD, Room 1D957, PentagGn, Washington, DC
20301 .......... ...................... 2

Chief of Naval Operations, ATTN: OP-96C4, Room 4A478,
Pentagron, Washington, DC 20350 ... ................ 2

Commander-in-Chief. North American Air Defense Command
ATTN: NPXYA, Eat Air Force Base, CO 80912 ........ 2

Commander, U. S. Air Force Weapons Laboratory (AFSC)

ATIIN: AVL/SUL (Technical Library),
Kirtland Air Force Base, NM 87117 .. ............

Director, Strategic Target Planning, ATTN: (JPS), Offutt
Air Force Base, NE 68113 ........ ................ 2

Defense Docdimentation Center, Cameron Station,
Alexandria, VA 22314. ..... .................. . 123--0

513



SECURITY CLASSIFICATION OF THIS PAGE (Wen Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETNCFORM
a. REPORT NU7BER V2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
THE CCTC QUICK-REACTING GENERAL WAR GAMING SYSTEM
(QUICK), Users Manual, Weapon Allcation Subsys-
tem 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACTOR GRANT NUMBER(s)
Dale J. Sanders
Paul F. M. Maykrantz DCA 100-75-C-0019
Jim M. Herron

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
System Sciences, Incorporated AREA & WORK UNIT NUMBERS

4720 Montgomery Lane
Bethesda, Maryland 20014

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Command and Control Technical Center 15 April 1978 7
Room BE-685, The Pentagon, 13. NUMBER OF PAGES
Washington, DC 20301 526

14. MONITORING AGENCY NAME & ADDRESS(If different from Controling Office) I5. SECURITY CLASS. (of this report)

UNCIASS IFIED

S15a. DECL ASSI FI CATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of ti. Report)
Approved for pUbic release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ablrect entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

PBECEDNG PA E &jig

19. KEY WORDS (Continue on reverse aide If necessary and Identify by block number) j
War Gaming, Resource Allocation

2 ABSTRACT (Continue on revere. aide If necessary and Identify by block number)

The computerized Quick-Reacting General War Gaming System (QUICK) will accept
input data, automatically generate global strategic nuclear war plans, provide
statistical output summaries, and produce input tapes to simulator subsystems
external to QUICK.

The Program Maintenance Manual consists of four volumes which facilitate main-

tenance of the war gaming system. This volume, Volume III, provides the program-

-6r/analyst with a technical description of the purpose. functions general pro-
-edures, and programming techniques applicable to te mdules and u routines\

SFORM

-- IA NJ 73 1473 EDITION OF t NOV 6S IS OBSOLETE5R AUNCIASS IFIED
m--.=. ........... . -- ErU LX _Q ISW ICATlIOK OFTmL-.P --- _L'n oe ner



20. ABSTRACT (Continued)
of the Weapon Allocation Subsystem.

The Program Maintenance Manual complements the other QUICK Manuals to
facilitate application of the war gaming system. These manuals Series 9-77 are
published by the Command and Control Technical Center (CCTC), Defense Communica-
tions Agency (DCA), The Pentagon, Washington, DC 20301.

'1T

tt

! NflT,Aq T1'T~T


