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FOREWORD 
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Research Task Number RF 32-391-801. 

This report was reviewed and approved by Dr. J. Sun; Dr. L. Devan; 

Dr. F. G. Moore, Head, Aeromechanics Branch; and H. P. Caster, Head, Exterior 

Ballistics Division. 

Released by: 

Q^jyA, & yyju~*. 
R. A. NIEMANN, Head 

Strategic Systems Department 

111 

( 

W^—tm     • ••f* 

mciDZNO PA» EUMUWr rUMD 



CONTENTS 

Page 

INTRODUCTION   1 

ANALYSIS   5 
Method for Predicting Pressure Distribution at a = 0   5 

Modified Maslen Method   5 
Second-Order Shock-Expansion Method  5 
Jackson, et al4 Modifications to Second-Order 

Shock-Expansion Method   10 
New Modifications to the Second-Order 

Shock-Expansion Method   11 
Method for Predicting Pressure Distribution at a > 0  25 

RESULTS AND DISCUSSION   35 
Blunted Cones   35 
Blunted Cone-Flare  45 
Effect of Angle of Attack   45 

CONCLUSIONS AND RECOMMENDATIONS   55 

REFERENCES  56 

APPENDIX A—Evaluation of Distance Along a Streamline at a Corner . . 58 

GLOSSARY OF TERMS  60 

DISTRIBUTION 

IWCXDINO PA« BUMC-NDT FUND 



LIST OF ILLUSTRATIONS 

Figures 

1 Pressure Distribution on Body Shape 

r = [15+2x-x^]        -  M , Mw = 3 

2 Tangent Body Geometry and Pressure 

3 Flow About a Convex Corner on a Body of 
Revolution 

4 Pressure Gradient at Corner of Biconies, 
Initial Cone Angle =9.0° 

5 Pressure Gradient at Corner of Biconies, 
Initial Cone Angle = 40.0° 

6 Pressure Distribution on Body Shape 
2 1/2      — 

r = [15+2x-x^]       - M , M^ = 3 

7 Pressure Distribution on Sphere, M^ = 5.0 

8 Pressure Distribution on Sphere, M^ = 3.5 

9 Pressure Distribution on Sphere, M^ = 1.5 

10 Axis Systems 

11 Typical Equivalent Body Shapes from Ref. 4 

12 Circumferential Pressure Distribution Around 
Pointed 5° Cone, ^ = 3.5, o = 10°, 5°, 0° 

13 Circumferential Pressure Distribution Around 
Pointed 9° Cone, M   - 1.9, a - 12° 

00 

14 Pressure Distribution in Windward Plane of 9° 
Cone, M = 3.5 

*  oo 

15 Circumferential Pressure Distribution Around 
Pointed 20" Cone, M^ = 10, a = 10°, 5°, 0° 

16 Model Details (All Dimensions are Relative to 
Base Diameter) 

17 Pressure Distribution on Model 1, M - 1.5, o • 0° 
00 

18 Pressure Distribution on Model 1, M = 1.9, a = 0° 
00 

19 Pressure Distribution on Model  1, M   = 2.3, a = 0° 

Page 

6 

7 

12 

16 

18 

19 

22 

23 

24 

26 

28 

31 

32 

33 

34 

36 

37 

38 

39 

\r11 

mCKDXNQ PM» BLANC-MOT FID« 



" 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

Al 

Pressure Distribution on Model  1, M   = 4.63, a • 0C 
oo 

Pressure Distribution on Blunted Cone, 5   = 9°, 
M   = 1.5, a = 0°     - c 

Pressure Distribution on Blunted Cone, 6=9°, 
M   * 1.9, a = 0° c 

00 * 

Pressure Distribution on Blunted Cone, 6 = 9°, 
M = 4.63, o=0° c 
00 * 

Pressure Distribution on Model 2, M = 2.3, 
a = 0° 

Pressure Distribution on Model 2, M = 2.96, 
o = 0° 

Pressure Distribution on Model 2, M = 3.95, 
o = 0° 

Pressure Distribution on Model 2, M = 4.63, 
o = 0° 

Pressure Distribution in Windward Plane of a 
Blunted Cone, 6„ = 9°, M = 1.5, a = 12° 

Pressure Distribution on Side Meridian of a 
Blunted Cone, 6„ = 9°, M = 1.5, a = 12° 

C       *  00 

Pressure Distribution in Leeward Plane of a 
Blunted Cone, 6C = 9°, M^ = 1.5, a  = 12° 

Comparison of Theory and Experiment for 
Models 1 and 2 

Arc Length Around a Corner 

40 

41 

43 

44 

47 

48 

49 

50 

51 

52 

53 

54 

' i 

1x 

G v^h 
TOCEDINO PAO*  BUUtC-NOT fllMD 

-      •-  •     •- •       - • -  -•-•'-—  ----- ~^. JW^,,^^. .^i—-     



———— 

SUMMARY 

The optimal aerodynamic design of new configurations requires com- 

puter programs which will calculate surface pressure distributions effi- 

ciently and reasonably accurately. Numerical methods which calculate 

the entire inviscid flow field require computational times and storage 

too large to use in design optimization processes. Therefore, a new 

method has been developed for calculating an approximate surface pressure 

distribution over axisymmetric bodies, with pointed or blunted noses, 

at angle of attack in supersonic flow. This method is an extension and 

modification to the second-order shock-expansion method which was origi- 

nally developed for pointed bodies near zero angle of attack. The modi- 

fied Newtonian pressure distribution is used in the nose region back to 

a "matching" point where the local Mach number is slightly supersonic. 

Then the new method is applied downstream of the matching point. 

In the late 60's Jackson, et al, of NASA Langley determined a differ- 

ent matching point, but it did not pick up the overexpansion near the 

juncture at sphere-cones at low supersonic Mach numbers. The use of the 

new matching pont predicts this overexpansion quite well. One modifica- 

tion made to thp basic second-order shock-expansion method was the develop- 

ment of an "exact" method for calculating the pressure gradient at corners 

to replace the approximate method normally used. Another modification 

made was the development of a new method to calculate the effective cone 

pressure to replace the tangent cone pressure typically used for bodies 

at an angle of attack. This effective cone pressure was found to be much 

more accurate than the tangent cone pressure. 

The new method has been applied to sphere-cones and sphere-tangent 

ogive-cone-flare bodies. Mach numbers ranged from 1.5 to 4.63 and angles 

xi 

( 
PRSCEDINO PAO* BUMC-NDT 



" .,•».•».. 

of attack up to 12°. Surface pressure distributions were found to com- 

pare well with experimental data. In addition, the resulting axial force, 

normal force, and pitching moment coefficients were also found to compare 

well with experimental data. The computer program is relatively fast, 

requiring about 15 seconds for a typical case on the IBM 370/165 computer. 

The accuracy and simplicity of this computer program makes it attractive 

for engineering applications. 

xii 
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INTRODUCTION 

Present and future mission requirements of the Navy dictate a need 

for methods to design optimum aerodynamic configurations. Of particular 

interest are methods which will predict the static and dynamic aero- 

dynamic characteristics of wings, bodies, and wing-body combinations 

throughout the speed regimes of subsonic, transonic, and supersonic 

flow and at angles of attack. Since a number of configurations must be 

analyzed in an optimization process, it is imperative that the techniques 

employed to calculate the aerodynamic coefficients be efficient as well 

as accurate. 

There are generally three approaches which could be used to estimate 

aerodynamic coefficients. First, wind tunnel and ballistic range tests 

could be employed, but they are expensive, time-consuming, and additional 

tests are required for new configurational innovations. Secondly, hand 

calculations can be performed using handbook techniques, but they also 

require a large number of man hours and their accuracy is questionable 

or unknown. The third method is to develop a computer program based on 

a combination of analytical techniques and semi-empirical methods. Al- 

though the third method is also costly and time-consuming initially, it 

allows the designer to calculate a large number of configurations and 

flight conditions accurately and expedltiously, and 1t is ideal for de- 

sign optimization techniques. Therefore, the third method is considered 

the best approach for long-term use and 1t is the method used In this 

report. 

A number of computer programs have been developed to calculate the 

aerodynamic characteristics of flight vehicles, but none of them covers 

^^ mumi 



the range of Mach numbers (0 < M^ < 6), angles of attack (0 ^ a _< 15°), 

and complete configurations which are of present concern. Quite general 

body and wing geometries are of current interest, and they include spin 

stabilized bodies and guided and unguided fin stabilized bodies. 

Woodward used a perturbation method to compute the pressure distribu- 

tion on wing-body combinations at subsonic and supersonic speeds. How- 

ever, his method does not include blunted bodies, transonic flow, skin 

friction drag, base drag, and nonlinear angle of attack effects. Jackson 

2 3 and Smith used the second-order shock-expansion theory to calculate the 

drag on pointed bodies of revolution at zero angle of attack in supersonic 

flow. They also calculated the pressure and skin-friction drag but did 
4 

not include the base drag. Jackson, et al modified the second-order 

shock expansion method for blunt-nosed bodies and angle of attack. This 

method was found to predict the pressure distribution and force and 

moment coefficients on blunted cones and blunted-cones with Hares at 

Mach numbers from about 1.5 to 5 and angles of attack to 12°. Of parti- 

cular importance was the fact that their adaptation of the second-order 

shock expansion method predicted some of the over expansion near the 

sphere-cone juncture at Mach numbers greater than about 2.0. However, 

below Mach 2 the pressure prediction near the shoulder was poor. 

Another method for calculating aerodynamics of wing-body combinations 
5 

is that due to Saffell et al . It is only applicable to low aspect- 

ratio configurations, and the drag calculations are inaccurate at small 

angles of attack. An empirical method called the "Spinner" program 

was developed by the General Electric Company for spin-stabilized bodies, 

however it will not handle guided vehicles. There are several computer 

programs, e.g., Solomon et al , which use finite-difference methods to 
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calculate the entire flow field around a body. However, these techniques 

are generally limited to invlscid supersonic flow over bodies without 

wings or fins, and they require computational times much too large to use 

in design optimization processes. 

The best computer program which is currently available to compute 

static aerodynamic characteristics of general wing-body geometries is 
Q 

the one by Moore . This program predicts the pressure distribution, 

lift, drag, and center of pressure for Mach numbers from zero to three 

and angles of attack to fifteen degrees. The results compare well with 

experimental data and other analytical results. Also, a typical compu- 

tation costs only about five dollars per Mach number to compute the 

static aerodynamic characteristics of wing-body configurations on the 

CDC 6700 computer. For the pressure distribution over the body alone, 
g 

Moore employed Van Dyke's second-order perturbation method . Since 

this method is designed for pointed bodies, Moore used the modified 

Newtonian pressure distribution near the nose of blunted bodies and 

then matched it with Van Dyke's second order perturbation method for 

the region downstream of the nose. This procedure was shown to yield 

surface pressures which compared well with experimental data on blunted 

cones at Mach numbers less than about 2.5 or 3.0. In particular, it 

picked up the over-expansion of the pressure near the shoulder, whereas 

the second-order shock-expansion method was found to be more accurate 

at Mach numbers greater than about 2.5 to 3.0. At these Mach numbers 

there is no over-expansion near the shoulder. 

A two-year contract was initiated in December 1976 at the North 

Carolina State University to extend Moore's method to Mach numbers from 

2.5 to 6 at angles of attack from zero to 15°. This report describes 
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the work completed during the first year of this contract which 1s re- 

stricted to body-aTohT^awedynamics.    Modifications are made to the 

second-order shock-expansion method to calculate the pressure distribu- 

tions over blunted or pointed nose bodies with flared or boattailed 

bodies.    The sk1n-fr1ct1on and base drag are computed from the same 

techniques used by Moore.    The resulting pressure distribution, skin 

friction, and base drag are Integrated to yield force and moment 

coefficients. 



ANALYSIS 

Method for Predicting Pressure Distribution at a • 0 

Modified MasTen Method - The first method considered for calculating the 

pressure distribution over axisymmetrlc bodies was Maslen's method 

This method was modified for a  = o and used by the first author  for 

blunt-nosed bodies in hypersonic flows. Figure 1 compares the pressure 

distribution computed by Maslen's method with that of Solomon's method 

for M^ = 3 and a = 0. This figure Illustrates the inability of Maslen's 

method to pick up the over-expansion near the shoulder at the lower 

supersonic Mach numbers. At hypersonic speeds the over-expansion does 

not occur and Maslen's method predicts the pressure distribution very 

well. It is apparent that the approximations used in Maslen's method 

are not accurate at the lower supersonic Mach numbers, and therefore 

this technique was discarded for the applications considered in this 

project. 

Second-Order Shock-Expansion Method - The basic second-order shock- 
3 

expansion method was developed by Syvertson and Dennis for pointed bodies 

near a = 0 at supersonic speeds. In order to apply this method, the ac- 

tual body 1s replaced by a tangent body which 1s a series of conical 

frustrums tangent to the actual body at a selected number of positions. 

Figure 2 Illustrates a typical pointed body and the corresponding tangent 

body. The pressure on the Initial cone 1s obtained from a cone solution, 

e.g., the method of S1ms . The pressure along that Initial cone 1s 

constant, but the pressure drops discontinuously across the juncture of 

the Initial cone and the following conical frustrum. This pressure drop 

can be calculated from the standard Prandtl-Meyer expansion. In the 
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Figure 2. Tangent Body Geometry and Pressure 



[ 
generalized shock-expansion method the pressure along each conical frus- 

trum is taken to be constant, but it follows an exponential variation in 

the second-order shock-expansion method. This exponential pressure varia- 

tion is made to satisfy three boundary conditions. First, the pressure 

P2 just after the corner of the initial cone and conical frustrum is 

that obtained from the Prandtl-Meyer expansion. The second boundary con- 

dition is that the pressure gradient -r|-  at this same position is set 

equal to that obtained from an approximate expression developed by 
3 

Syvertson and Dennis . For the third boundary condition, the pressure at 

infinity is set equal to the cone pressure (p ) that would exist on this 

conical frustrum if it were infinitely long. Thus, the pressure distribu- 

tion along a conical frustrum is given by 

P - Pc - (Pc - P2) e"
n (1) 

where 

(x-x~) 

"•m 2    (Pc-P2) cos 62 
(2) 

The pressure gradient just downstream of the corner is determined from 
3 

the approximate expression 

IE]    . _2 
2 "    r 

-sin 6} - sin 62 
c 

B2 a. 

B7°2 iri - x    |2£ 
L3SJ 1 

(3) 

where 

_IE£ 
2(r-i) 

(4) 
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sin 2 (5) 

° = M 
1 + Ü^M2 

W 

«#} 
(6) 

Note that     - Y~\    is the curvature of the surface which is zero on conical 

frustrums, and n is the one-dimensional area ratio.    For the first conical 

frustrum after the initial cone. 3£ 
3S 1 

0 since the pressure is constant 

on the initial cone. The pressure gradient ahead of subsequent conical 

frustrums is obtained from the derivative of Equation (1). 

As illustrated in Figure 2, the pressure obtained from Equation (1) 

is used only at the position where the conical frustrum is tangent to  the 

actual body. If the conical frustrum has a negative cone angle, Refer- 

ence 3 suggests using p = p^ on that segment. Reference 3 also gives 

an expression for the pressure gradient downstream of a sharp concave 

corner such as a flare. One restriction on the method described here is 

that the pressure gradient just downstream of a corner, must have 

the same sign as the pressure difference (pc-p2). Otherwise, Equation (1) 

will not yield the third boundary condition that p = pc as x •> °° . For 

more details of this technique, see Reference 3. In the generalized shock- 

expansion method, the pressure along each conical frustrum is taken to be 

constant and equal to the value obtained from the Prandtl-Meyer expansion 

at the corner, p2- 

- • 



Jackson, et al Modifications to Second-Order Shock-Expansion Method 

The original second-order shock-expansion method was developed for pointed 
4 

noses. Jackson, et al modified it for blunt nosed bodies by using the 

modified Newtonian pressure distribution up to a "matching-point" and 

then applying the second-order shock-expansion method downstream of that 

point. They found that the best matching point corresponded to the point 

on the blunted nose where the body slope is the same as the maximum wedge 

angle for an attached Shockwave. A tangent body is used to replace the 

actual body downstream of the matching point. The pressure on the first 

conical frustrum tangent to the matching point is taken to be constant 

and equal to the modified Newtonian pressure for that body angle. The 

pressure distribution downstream of the first conical frustrum is calcu- 
3 

lated by the original second-order shock-expansion method . For those 

conical frustrums which have the sign of the initial pressure gradient 

!!•  opposite from the sign of (p^Pg), the pressure is taken to be p2- 

This makes the technique on those conical frustrums identical to the 

generalized shock expansion method. Reference 4 found this condition 

to occur on the nose of spherically blunted cones at M^ > 3.0 and also 

on the flares of blunted cone-flare bodies. The modifications made for 

bodies at an angle of attack are discussed below. 

Results for blunted cones and blunted cones with flares were found 

to compare well with experimental data for M^ _> 3.0. For the range 1.5 < 

M < 3 the method predicted only part of the pressure over-expansion at 

the shoulder. However, this inaccuracy was found to have only a small 

effect on the force and moment coefficients. 

10 
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New Modifications to the Second-Order Shock-Expansion Method 

Two modifications are made here to the modified form of Jackson, 
4 

et al. . The approximate equation for the pressure gradient given by 

Equation (3) is compared to an "exact" pressure gradient downstream of a 

corner, and a new matching-point is determined for matching the second- 

order shock-expansion method with modified Newtonian theory on blunt- 

nosed bodies. 

A. Derivation of "Exact" Pressure Gradient Downstream of a Corner 

As mentioned above, the pressure gradient given by Equation (3) is 

only approximate. Therefore, an "exact" expression is derived here to 

compare with it. Although an "exact" expression is derived in Reference 

13, it is not in a form comparable to Equation (3). For the analysis 

below, refer to Figure 3 for  the nomenclature and geometry. Consider a 

surface streamtube as it passes around a corner. The stream surface (A) 

is close to the body surface, and the distance along a Mach line between 

the two stream surfaces is "a" (where a is very small). As the flow 

turns around the corner the distance "a" will increase because M increases 

and hence the distance between the stream surfaces  will increase. 

Define C, and C~ as characteristics coordinates and s and n as coor- 

dinates along and normal to a streamline. At a corner only the C, family 

of characteristics (left-running characteristics) is present. The analy- 

tical development here is based on two equations from the method of 

characteristics : 

3C, COS \i IE. 
3S 

(7) 

and 

I 11 
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Streamline A  

, Mach Lines 

--Surface Streamline ("0") 

Figure 3. Flow About a Convex Corner on a Body of Revolution 
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96    _ -sin y sin 6      cos y 
3C 

fl£ . x ill Las     A 9sJ (8) 

When Equation (7) is applied at the corner (on the surface), there results 

x as     asj 0     o "' [x cos u 5c7 ds. 

where the subscript "o" refers to the surface streamline. Since fß- 

is finite and the distance around the corner is zero, ds = 0 and the 

right side of the equation above is zero. The result is the Prandtl- 

Meyer expression 

and since  dv = , 
o \. 

dP, 

-dp, 

d5. (9) 

(10) 

Equation (9) integrates to 

O    O,    0, (11) 

where the subscript "o," refers to the beginning of the expansion on the 

surface. Now consider the streamline off the surface, A. The pressure 

and deflection angle along streamline (A) can be represented by a Taylor 

series expansion about the surface streamline: 

+ 'l?7 

«A " So + H 

a + 

a + 

(12) 

(13) 

The partial derivatives are evaluated on the surface from Equations (7) 

and (8). Since the distance "a" changes with 6 , it is convenient to 

13 
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ratio it to its value when M = 1, a*.    Then it can be related to Q, the 

ratio of the one-dimensional cross-sectional  area of the streamtube to 

that at M = 1, as follows: 

a_   _ 2irra   _     fl 
a* ~ 27rra* ~ sin n (14) 

Note that the thickness of the streamtube is a/sin u and thus the cross- 

sectional area of the streamtube is 2irra/sin v.    Now substitute Equations 

(7),  (8), and (14)  into (12) and (13) to obtain 

Q, 

and 

p. • p   + A    a* — + KA     Ko       o   o   2 

'n   sin 6„     Q ' 
6«  =   6, 

0  +   '0 
2J 

(15) 

(16) 

where 

3£ 36_ 
3S 3S 

(17) 

Also, use the Taylor series expansion to write 

3p_ 
3C1 

ifiJ 
3Cj 

9_P_ 
3C 1   i 

(18) 

XA = Ao + 3Pjp '1 

3X 
I3pt 

3pt 

so; (19) 

f3 COS  u)        . 
COS   PA  -   COS   yQ  •   [-^l     * 

0 

(20) 

14 
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Appendix A shows that the differential distance along streamline (A) is 

given by 

ds 

d*~ 
A . a 

a* 
Y±I1 
2 

M! 

(M*-I) 
(21) 

Substitute Equations (9) and (15) through (21) into Equation (7) applied 

along streamline A. The following equation then results: 

d_ 
dö. Q + 

a sin 6 r+ll 
4 

"oA (22) 

This equation can be integrated numerically around the corner along with 

the Prandtl-Meyer equation to determine QQ, and using Equation (17) the 

pressure gradient fiRl 
3S 

is obtained from Q . 

It should be noted that Equation (22) neglects the total pressure 

3p. 
derivative ^ in Equation (19). As noted in Reference 3, this term 

is generally negligible. To be certain that it is, the accuracy of 

neglecting this term will be determined during the next year of this 

project. 

Figure 4 compares the pressure gradient parameter — |jr- , calcu- 
*»   l 

lated from the approximate method, Equation (3), and the "exact" method, 

Equation (22). The pressure gradient is presented for different deflection 

angles downstream of the corner of an initial cone with a 9° half angle 

for M =2.5 and 5. This figure shows that errors in the pressure 
CD 

gradient parameter as high as 35% occur for Hm  = 2.5, and this maximum 

error drops to about 27% at M^ • 5. In both cases the "exact" values 

15 
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Figure 4.    Pressure Gradient at Corner of Biconics,  Initial  Cone 
Angle = 9° 
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are larger than the approximate values. Figure 5 gives —- T£— as a 
Poo dLi 

function of deflection angle downstream of a 40° half-angle cone.    At 

M   • 2.5 the error is about 40% at 5 = 14°.    The curve for M   =5 has 
CO CO 

a different feature in that ~|B- < 0 for 11° < 6 < 40°, and errors 
Poo 3L1 

up to about 25% occur. Figures 4 and 5 illustrate that large errors 

can occur when using the approximate relation for the pressure gradient. 

Note that since the initial body surfaces are cones with attached shock 

waves, 3p./9C, = 0 and Equation (22) is the appropriate "exact" relation 

for these figures. 

For slender bodies, the effect of using the exact pressure gradient 

rather than the approximate relation is small. Figure 6 compares the re- 

sults from both techniques with the pressure distribution from Solomon, 

et al for a pointed ogive with a boattail. The "exact" pressure gradient 

method gave slightly better results for the boattail, but otherwise both 

methods were very close. This same statement cannot be made for thick 

bodies. 

B. New Matching Point for Blunted Bodies 

The location of the point used to match modified Newtonian theory to 

the second-order shock-expansion method has a large effect on the accuracy 

of predicting the over-expansion on blunted cones at the lower supersonic 
4 

Mach numbers. As mentioned above, Jackson, et al used the position 

where the body slope is the same as the maximum wedge angle for an attached 

shock wave. They found that this location predicted part of the over- 

expansion at the shoulder. The results compared well with experimental 

data at 2.30 <_ M^ <_ 4.63, where the over-expansion is small, but the 

comparison was poor at M^ = 1.5, where the over-expansion is large. 

Although the work statement in the present contract called for a method 
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Exact Method (Ref. 7) 

 Generalized Shock Exp. (Ref. 3) 

— Present Method 

  18 Pt. 2nd Order Shock Exp. (Ref. 3) 

Figure 6. Pressure Distribution on Body Shape 

r=(15+2x-x*)  - AS  , M =3 
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applicable to the 2.5 < M < 6.0 range, it was agreed to try to extend 

it down to M : 1.2. If this could be done, then the subroutine of 

Moore's computer program which used Van Dyke's second order theory 

could be replaced by the present method and it would be applicable for 

the full supersonic range 1.2 < M^ < 6.0. 

The first modification made here was to account for the pressure 

gradient on the first conical frustrum at the matching point on the nose. 
4 

Jackson, et al assumed the pressure gradient to be zero. However, both 

Equations (3) and (22) show that whenever the body curvature (-36/3s) is 

discontinuous, then the pressure gradient is discontinuous, even if the 

body slope is continuous. For a blunted nose the body radius of curva- 

ture just forward of the matching point is R,, whereas the radius of 

curvature on  the conical frustrum is infinite and hence (36/3s)2 = 0. 

Thus, at the matching point, the pressure gradient at the beginning of 

the first conical frustrum is given by both Equations (3) and (22) as 

(!E|  = (iß) 
N2    l9si (23) 

and since the slope is continuous, p2 = p-i.    The properties upstream of 

the matching point (subscript "1") come from the modified Newtonian 

pressure distribution 

. 2 2 p. = p. sin    6 + p   cos    6 (24) 

Hence 

IE 
3S •1     •£ 

h   Ri 
IE 
36 

-2 sin 61 cos 6j(Pt-p.) 
 BÜ vl 

(25) 

where R, is the radius of curvature at the matching point. 
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The pressure distribution downstream of the matching point can now be 

calculated by the second-order shock-expansion method. Equation (23) gives 

the pressure gradient on the first conical frustrum (which is tangent to 

the nose at the matching point). A tangent body is then transcribed about 

the remaining body and the technique described previously can be applied. 

Note, however, that the pressure gradient at each corner is calculated 

from the "exact" expression given by Equation (22). 

4 
It was found that the matching point used by Jackson, et al was not 

the best one when the pressure gradient is used on the first conical 

frustrum. Figures 7 and 8 show the pressure distribution over a sphere 

computed with three different matching points (M = 1.1, 1.2, and 1.4) 

for M^ = 5 and 3.5. The results are compared with "exact" inviscid 

14 calculations . The pressure distributions with matching points at 

M = 1.2 and 1.4 are very  close. Although the distribution for the 

matching point at M = 1.1 differs initially from the other two, it 

blends into the other two solutions downstream of the matching point. 

For the lower supersonic range, Figure 9 gives the distribution of the 

pressure coefficient over a sphere with matching points at M = 1.1, 1.15, 

15 
and 1.2 for M =1.5. The results are compared with experimental data . 

oo 

Here the location of the matching point is more critical than that in 

Figures 7 and 8. It is also evident that the modified Newtonian pressure 

coefficient is not very accurate near the matching points. Although an 

optimum matching point cannot be determined from Figures 7 through 9, 

it appears that it lies in the range 1.1 < M < 1.2. Further investigation 

is needed to define it more accurately as a function of MM. Presently 

the matching point is calculated as the position on the nose where the 

modified Newtonian pressure distribution gives a local Mach number of 1.15. 
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Figure 9. Pressure Distribution on Sphere, M =1.5 
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Method for Predicting Pressure Distribution at o > 0 

An accurate calculation of surface pressures on bodies of revolution 

at a > 0 is much more complicated than that for the body at a = 0. At 

a = 0 the meridian lines on the surface are also surface streamlines. 

However, at incidence the streamlines wrap around the body and no longer 

follow the meridian lines. If the shape of a streamline can be deter- 

mined approximately, then an equivalent body of revolution can be 

generated for that streamline and the method described for a = 0 can 

be used to calculate the pressure distribution along this equivalent 

body of revolution representing the streamline. Several streamlines 

must be used in order to get the circumferential pressure distribution 

along the actual body. 
4 

Jackson, et al assumed that the surface streamlines in the windward 

and leeward planes of symmetry could be approximated by the body shape 

obtained by transforming the body-axis coordinate into wind-axis coor- 

dinates. This transformation is obtained by rotating the body-axis 

coordinate system in the plane of symmetry clockwise through the angle a 

with the center of rotation at the center of the spherical cap, as shown 

in Figure 10. The windward (e = -90°) and leeward (e = 90°) streamlines 

are transformed into the equivalent bodies of revolution represented by 

the body coordinates in the wind-axis system. (See Figure 11). On the 

other hand, the streamline for e =0° is approximated by the body-axis 

coordinates of a meridian of the true body shape. The equivalent body 

of revolution for this streamline is, therefore, the same as the true 

body at a = 0. Between e = + 90° and e = 0°, the streamlines for each 

radial angle e of interest are assumed to follow the equivalent bodies 

of revolution represented by 

25 
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Xw = (Rn-x)(l-cosa) /f-cos2a + y sina sina + x (26) 

Vw • -y(l-cosa) /l-cosza + (Rn~x) sina sina + y 
(27) 

Figure 11 illustrates these equivalent bodies of revolution representing 

the streamlines. As noted in Reference 4, this approximation requires a 

to be small enough for the stagnation point to remain on the spherical 

cap, and also a must be small enough for the coordinates of the equiva- 

lent body in the leeward plane (e = 90°) to remain positive. 

For the analysis here, it was decided to modify the technique des- 

cribed above for -90° < e < 90°, but use the same technique for the wind- 

ward (e » -90°) and leeward (e = 90°) planes of symmetry. One reason for 

the modification is that for -90° < e < 90° the stagnation point on the 

equivalent bodies of revolution do not correspond to that on the true 

body. For example, at 9 = 0, Equations (26) and (27) place the stagna- 

tion point at the nose (x = 0, y = 0) of the actual body instead of its 

actual location for a > 0. Therefore, the method used herein is to 

assume that the streamlines on the spherical cap follow the meridian 

lines of the sphere in the wind-axis system up to the sphere-cone junc- 

ture. For the region downstream of this juncture, the streamlines are 

assumed to follow the meridian lines in the body-axis system. Although 

the approach used here downstream of the sphere-cone juncture is also 

an approximate method, the streamlines on the spherical cap are the 

correct ones up to the sonic point. 

/ % 4 
The cone pressure used in Equation (1) by Jackson, et al on each 

conical frustrum was the tangent cone pressure. For an axisymmetric 

body at o > 0, the tangent cone is an equivalent cone whose slope is 
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Equivalent Bodies 

Figure 11. Typical Equivalent Body Shapes from Ref. 4 
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the same as the slope of the actual conical frustrum with respect to the 

wind axis system. The equivalent cone angle 6 corresponding to a cone 

angle 6 is given by 

sin 6«„ = cos a  sin 6 - sin a cos 6 sin e eq 
(28) 

It was found, however, that even for a pointed cone at a > 0, the tangent 

cone pressure differed from the actual pressure, particularly at the 

lower supersonic Mach numbers. In order to get a more accurate pressure 

on the tangent cone at a > 0, the tangent cone pressure was replaced by 

the following relation: 

[Pc1 

IPooJ 
fp 1 
ipj 

a=0 

- l£_ 
PJ 

MN,a=0 

The second term on the left is the cone pressure at 0 = 0 whereas the two 

terms on the right are the modified Newtonian pressures at a > 0 and o = 0, 

respectively. This equation gives the change in cone pressure with a as 

the change in modified Newtonian pressure with a.    Since the modified 

Newtonian pressure is given by 

r£i 

"oo- 
MN 

IP. 
- 1 eq 

and 6  = 5 at a = 0, then the pressure on the tangent cone at a  > 0 

becomes 

IP. 
o=0 

Pt 
— -1 
P. 

[sin2 • 2 1 
6„„ - sin 6 
eq 

(29) 
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To test the accuracy of Equation (29), comparisons were made with 

14 15 
"exact" numerical calculations  and experimental data . Figure 12 

shows the circumferential pressure variation on a pointed 5° cone at 

M = 3.5 for a = 0, 5°, and 10°. At a  = 10° the tangent cone method 

overpredicts the pressure about 15%, whereas Equation (29) is less than 

1% above the "exact" calculation. Figure 13 compares the circumferential 

pressure coefficient determined from Equation (29) to experimental data 

for a 9° cone at a = 12° with M * • 1.9. In the windward plane the 
CO 

tangent cone method overpredicts p/p by 20% while Equation (29) under- 
CO 

predicts it by 3%. Figure 14 compares the present theory and tangent 

cone method with "exact" numerical results in the windward plane for a 

9° cone at M =3.5 for 0 < a < 10°. Here, also, Equation (29) was found 
CO ~~     — 

to give better results than the tangent cone method. As the Mach number 

increases, the difference between the results from the two methods de- 

crease. This fact is illustrated in Figure 15 for a 20° cone at M =10 J CO 

for a = 1°, 5°, and 10°. 
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Figure 12, 
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Circumferential Pressure Distribution Around Pointed 
5° Cone, M =3.5, a=10°, 5°, 0° 
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Figure 13.    Circumferential Pressure Distribution Around Pointed 
9° Cone, M =1.9, a=12° 
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Figure 15.    Circumferential Pressure Distribution Around 
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! RESULTS AND DISCUSSION 

The pressure distribution and force and moment coefficients have 

been calculated and compared with experimental data for blunted cones 

and blunted cones with a flared afterbody. Two of these bodies, called 

Model 1 and Model 2, are illustrated in Figure 16. 

Blunted Cones 

Pressure distributions over Model 1, a spherically blunted 11.5° 

cone, at a = 0 are shown in Figures 17, 18, 19, and 20 for M = 1.5, 1.9, 
oo 

2.3, and 4.63, respectively. The results from the present method are 
A 4 

compared with that of Jackson, et al and experimental data . Figure 17 

and 18 indicate the capability of the present method to calculate the 

pressure over-expansion near the shoulder much better than Jackson's 

method. As M increases the over-expansion decreases, and at Mm = 4.63 

it vanishes. 

Figure 21 compares the calculated pressure distribution with experi- 

15 
mental data  on a spherically blunted 9° cone at a = 0 and M =1.5. 

00 

Two numerical  solutions are presented, one with a matching point at 

M = 1.10 and the other at M = 1.15.    The over-expansion here is signifi- 

cant, and the results for M = 1.10 are very close to the experimental 

data.    Figures 22 and 23 give results for the same body at M   =1.9 and 
oo 

4.63, respectively. The agreement with experiment is good here also, 

and the over-expansion is not present in Figure 23. The "hook" in the 

calculated pressure distribution at the matching point is the same as 

that observed in Figures 7,8, and 9. 
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1 

Model 1; d=0.572 ft (0.174m) 

1.00 

1.00 

Model 2; d=0.583 ft (0.178 m) 

Figure 16. Model Details (All Dimensions are Relative to Base Diameter) 
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Blunted Cone-Flare 

Pressure distributions over Model 2 are compared with Jackson's 

4 4 
theory and experimental data in Figures 24, 25, 26, and 27 for a • 0 

and M^ = 2.3, 2.96, 3.95, and 4.63, respectively. Since the over- 

expansion is small for these Mach numbers, the calculated results are 

close to Jackson's results. Both methods compare well with experimental 

data except near the beginning of the flare. It appears that boundary- 

layer separation occurs upstream of the flare and thus the theory does 

not calculate the correct pressure in this region. 

Effect of Angle of Attack 

Figures 28, 29, and 30 show the pressure distribution on the 

blunted 9° cone at a  • 12° and M = 1.5 for e = -90°, 0°, and 90°. This 

example is a severe test for the theory because it is a small cone angle 

at an  angle of attack greater than the cone angle and a low supersonic 

Mach number. The results given in Figure 28 are for the windward plane 

(e • -90°). Note the improvement in the calculated pressures when 

Equation (29) (labeled "new soln for p " in the figure) is used to calcu- 

late the equivalent cone pressure (p ) in comparison with the tangent 

cone method (labeled "old soln" in the figure). The results for e = 0° 

(Figure 29) and e = 90° (Figure 30) (leeward plane) do not compare well 

with experimental data although the present method is somewhat more 

accurate than Jackson's method. 

The inaccuracies in the surface pressure distribution appear to have 

only a small effect on the force and moment coefficients. Figure 31 

gives the coefficients of pitching moment (O, normal (CM), and axial 

force (C«) as a function of angle of attack for Models 1 and 2. This 
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figure, the same results as Jackson's method, and the modified Newtonian 

theory predicts accurate results. However, this fact cannot, in general, 

be stated for other bodies over the Mach number range of interest. 
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Figure 28. Pressure Distribution in Windward Plane of a Blunted Cone, 

V9°' M»=1-5' a=12° 
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•      Experiment, 8=0 (Ref.  15) 

  Present Method, e=0° 

Figure 29.    Pressure Distribution on Side Meridian of a Blunted 
Cone,  6 =9°, M =1.5, c=12° 
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A      Experiment, e=90c 

Present Method, e=90° 

Jackson's Value 
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Figure 30. Pressure Distribution in Leeward Plane of a Blunted 
Cone, 6 =9°, M =1.5, o-12° c    °° 
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Figure 31. Comparison of Theory and Experiment for Models 1 and 2 
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CONCLUSIONS AND RECOMMENDATIONS 

1. Three new modifications have been made to the second-order shock- 

expansion method which makes it more accurate in predicting the surface 

pressure distribution over pointed and blunted bodies of revolution. 

These modifications are: 

A. An "exact" method for calculating the pressure gradient 

around a corner. 

B. A new procedure for matching second-order shock-expansion 

theory with modified Newtonian theory for blunt nosed bodies. 

C. A new method for calculating the effective cone pressure 

which replaces the tangent-cone method for bodies at angle 

of attack. 

2. This new method gives results which compare well with experimental 

data and predicts the over-expansion near the shoulder of blunted cones 

at Mach numbers less than 2.0. 

3. The new method has been found to yield accurate forces and moments 

for pointed and blunted bodies at 1.5 _< M^ <_ 4.63 and 0 <_ a <_ 12°. 

Pressure distributions are also accurate near the windward plane, but 

tend to be inaccurate near the leeward plane of cones with cone angles 

less than the angle of attack. 

4. It is recommended that additional results be calculated and compared 

with experimental data to determine the accuracy of the method at Mach 

numbers as low as 1.2. Also, modifications to the angle of attack solu- 

tion are needed if accurate pressure near the leeward plane are desired. 
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APPENDIX A 

Evaluation of Distance Along a Streamline at a Corner 

In order to determine the "exact" pressure gradient downstream of 

a corner, the differential of length along a streamline is needed. 

Referring to Fi gure Al, 

,.    _ a de ds. - —r. A  sin u 
(Al) 

dß = -d6 - dp • dv - du 

Thus, Equation (Al) becomes 

^!A = _L_ fdu.  , 
d6   sin u (dv 

(A2) 

But from the definition of u and v it follows that 

dv /M^_n (Mr-1) 
(A3) 

Use this result in Equation (A2) to get 

ds 

dT 
A _ - a ffl 

(M2-l) 
(A4) 
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Figure Al. Arc Length Around a Corner 
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GLOSSARY OF TERMS 

a 

B 

C1,C2 

n 

M 

n 

P 

Q 

r 

R 

s 

X 

y 

Y 

6 

n 

e 

x 

v 

V 

distance from body to streamline A 

function defined by Equation (4) 

axial-force coefficient 

pitching-moment coefficient 

normal-force coefficient 

pressure coefficient, C   = 2(p-poo)/(pooVoo) 

characteristic coordinate 

body length (calibers) 

Mach number 

coordinate normal to a streamline (calibers) 
2 

static pressure (dyne/cm ) 
2 

total pressure at stagnation point(dyne/cm ) 

function defined by Equation (17) 

radius of body of revolution (calibers) 

body radius of curvature (calibers) 

coordinate along a streamline (calibers) 

coordinate along body axis (calibers) 

coordinate normal to x in plane of symmetry, 
see Figure 10 (calibers) 

angle of attack (degrees) 

ratio of specific heats (1.4 for air) 

flow inclination angle and cone angle (degrees) 

function defined by Equation (2) 

meridian angle, see Figure 10 (degrees) 

function defined by Equation (5) 

Mach angle, w = sin" (1/M) 

Prandtl-Meyer expansion angle (degrees) 
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4> angle on sphere measured from nose (degrees), see Figure 7 

a ratio of cross-sectional area of streamtube to that at 
M=l, see Equation (6) 

Subscripts 

1 condition at start of Prandtl-Meyer Expansion 

2 condition at end of Prandtl-Meyer Expansion 

o surface streamline 

o-, beginning of the expansion on the surface 

A streamline off the surface 

c quantities evaluated for cone tangent to the body 

eq refers to equivalent cone quantities 

MN modified Newtonian value 

N nose 

w refers to wind axes 

» free stream conditions 

Superscripts 

*        evaluated where M=l 
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