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for all weapon groups) and so for efficiency thezvariable NOWPS (2) 1is
used, While the expected value of (ALERREST(1))“ i{s the same as ¥

G
(ALERREST(J))Z, the variance of the latter version is much less, and it
is therefore preferable as an estimator of the expected integration

period, EXPINTPD and is:
EXPINTPD = NOWPS (1) (ALERREST(L )2)*NTGTS )

To allow the possibility of using integration periods either longer or
shorter than the theoretical EXPINTPD, a desired longest integration
period DESINTPD is defined:

DESINTPD = EXPINTPD*RATIOINT

where RATIOINT is an adjustable input parameter. A low value allows
higher sensitivity without oscillations in the values of the Lagrange
multipliers but too low a value makes convergence to the correct stock-
pile sensitive to statistics of the target list. If the target list
contains targets with heavy ballistic missile defenses or if a large
fraction of the weapons are assigned by the fixed assigmment capability,
this parameter value should be increased (to 4.0 or above if necessary).
If this period were used exactly in setting the rate of change of the
target weight (i.e., WRATE = 1.0/DESINTPD), the WRATE would never become
exactly zero as is required for a constant target weight. Obviously
when the change in the target weight becomes small over a full pass, the
WRATE should be allowed to go to zero. Therefore in:

WRATE = (1.0/DESINTPD) ~(2.0/(NTGTS*RATIOINT))

the term (2./NTGTS*RATIOINT)) is subtracted, and if the resulting WRATE
is negative it is set to zero, To avoid a situation where large errors
cause the integration period to become ridiculously small, a limit that
WRATE < .07 is set.

Moreover, after the allocation is well under way, PROGRESS = .5, the
value of WRATE is not allowed to increase. In the program WTRATE (INTPRD)
is used as a multiplier of the target weight; therefore we add 1.0 to
WTRATE to obtain a suitable multiplier for the longest period NINTPRD.

The values for the three WIRATE variables are:

WTRATE(3) = 1 + WRATE

RINTPRD-1
NTGTS

RINTPRD-1
NTGTS

WTRATE(2) = 1 + WRATE + + RINTPRD

WTRATE(1l) = 1 + WRATE + + 2.*RINTPRD

Input parameter RINTPRD is an approximate ratio between rate of change
of target weights between different integration periods. An increase in
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this parameter increases the sensitivity of the multiplier adjustment to
recent target experience,

To restate, lLagrange multipliers are recomputed based on variable PRO-
GRESS and after a specific number of targets have been processed. The
adjustment is based on maintaining statistics of weapon allocation rates.
The differences in true and observed rates, along with input sensitivity
parameters, make up the formula for multiplier adjustment.

A.6 Derivation of Formula for Correlations in Weapon Delivery Probability

An exact calculation of the probability of target survival when it is
subject to attack by correlated weapons is very lengthy. Both the con-
ventional statistical analysis and the Bayesian incremental information
approach have been examined. Both approaches for each time and hardness
require the calculation component of the interaction terms between each
weapon to be added with all possible combinations of the weapons alrcady
on the target. Thus the completely rigorous calculation would be imprac-
tical in a rapid response allocator. The method used here is based ou
an approximation derived from the properties of the log-gamma distribu-

tion.

When a group of weapons share a common failure risk the probability ot
success is likely to be either high or low for all weapons collectively.
Thus the probability of success can itself be thought of as a random
variable, For any chance value of this overall random variable there
will exist the usual independent probabilities for individual weapons.
However, on one trial the overall success probabitity for the group ot
weapons may be 907, while in another trial it may be 507 depending on
the particular success probability drawn for the trial,

The following mathematical model has been developed to deal with this
type of problem. We ass that the probability of survival of a tar-
get with respect to the it weapon is itself a random variable § of the

form

where the Xy are random variables drawn from a known distribution.

[f two weapons are involved, then the probability of survival with
respect to both can be represented by the random variable §q:
-(x1 + xj)

ST ] 3153 = e

However, the random variables X; and Xy may or may not be independent.,
1f they are not independent then of course
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QStbj> <St><SJ>
It the X, are independently drawn from a known two-parameter family of

distribution with a convolution property,* then the distribution of X

+ Xy will ot course be a member of the same distribution family. More-
over, since any probability distribution for the X; implies a distribu-
tion tor the corresponding Sy, the distribution for 5ySy can be calcu-

lated and the value for <SjSy> can be computed.

The gamma distribution given by:

x-e-xlb
b2 % e + 1y

P(X)dx = dx for X 2 0

P(X) = 0 for X< 0

is a well known two-parameter distribution with the required convolu-
tion property.

The gamma distribution is unique among convolving two-parameter disiri-
butions in that the expected value of e X s easlly computed. This pro-
perty is particularly important for QUICK since the damage function per-
forms a computation of this value many times during the allocation. The
expected value of e"X is given by:

o
<e-x>'0/ P(x)e-xdx

which caun be written

a+ 1
-X 1
<S>=<ce > (b+1)

‘This distribution is valid foE b>0and a> -1, It has a mean
p=b(a+ 1) and a variance 0% = b2(a + 1).

Since this distribution is completely defined by the mean and variance,
the actual probability distribution of S can be computed at any time so
long as a record of the mean and variance of the distribution is main-

tained., We now observe that:

a+ 1= #2/02

= A probability distribution is said to 'convolve' when the convolution
of any two distributions in the family (i.,e., the distribution of the

sum of the two random variables) is itself a member of the same family.
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s0 the expected value of S can be written

2
3 1 /°
<8O 2
g +1
M
or 2
2 2
# ]
-4n (SO -H 4n (-u-+l

his distribution is sufficiently flexible to include almost any shape
distribution of interest. For ¢ small the distribution in S approxi-
mates a gaussian centering on some apeclfic survival probability. As
the 0 is increased the distribution widens, so that it can approximate
a uniform probability from zero to one, or a sloping probability with
more weight on zero or one. In the limit of very large o the distribu-
tion consists essentially of spikes of different weight &t zero and one.

If we were dealing with independent weapons we could calculate the para-
meters for the multiple weapon distribution from those for the single

weapon distributions aimply by making use of the additivity of the mean
and the variance. §pec1£tcally the mwean, pg, for the new distribution
and the variance or would be given by:

The expected value of target survivability S; tor the new distribution
would then be obtainable through the equation:

“ 2 ) 2
(4
- 4n (ST)- -T—z l.n[ ' + 1]
o My

However, the variance is directly additive as above only (f the weapons
arc really independent. To introduce the possibility of corrclations we
will write the variance as follows:

. = ¥ Yor.0o
T i 1Y)77
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where the quantity I'yy vepresents the correlation between the weapons,
In the special case o* uncorre lated weapons, rij = 0 for £t ¢ § and 1 for
i = j, which (s {dentical with the previous form,

'his approach of arbitrarily introducing the cross terms in this tormu-
tation to approximate the actual correlations is exact so long as the
correlations are of such a form that the distribution of X remains a
gamua distribution., To the extent that the actnal correlations cause
departures from the I'diastribution the approximation is in error. The
correlation model thus amounts to the assumption that correlations can
be adequately modeled without going outside the log-gamma distribution,

For implementation it seems appropriate to introduce an additional sim-
plification, In the foregoing formuation the magnitude of the penalty
for using correlated weapons will depend not only on the size of the
correlation and the kill probability for the correlated weapons, but
also on the shape of the distribution for the success probability for
cach weapon, This shape dependence introduces a complicating variable
which undoubtedly exists, but for which it would not be casy to get data.
It therefore seems desirable to eliminate this factor.

This can be done by standardizing on a single shape factor for all cal-
culations of the effects of correlations, It is easiest to do this by
considering only distributions with a very large ¢, which are essentially
splkes on zero and one. This chofce tends to exaggerate the importance
of correlations (and this fact should be borne in mind i{n assigning the
correlations for the war game) but it significantly simplifies the data
required, as well as the computation of the payoff,

In the limit olenrgc o the quantity 012/"1 approaches infinity while
the quantity H;“/0(“ compensates to maintain the correct value of
~An (31)

To {llustrate the transition to this limit we let by = 012/“1 and define

B ™ bi/‘n(bi + 1)

Then

-4n <Sis = Pllﬁ1
so:

=By [-ln <Si>] )
and

2
o = ud, = b8 [4n ¢sp]
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The tormula tor obtafuing the expected value of S'l‘ can now bhe written

9

-

; i B n
-fn (b,l.> -3 Lu( e ¢ U
.l\

and subatituting,

9
P = Yu, aud 0,." =~ Vg, IY,0
) { T () t ") -

we obtain;
(i{ﬁ «4n <8 ﬂ) lu(b + l))

“n (8> =
I v b ﬂ‘ [-b\ (sg] 1/2 U[ Ln (\1)]1/.
1O |

We now asaign to all weapous the zame value of by, so that all by are
equal and all 8 are equal and we obtain:

(b + 1) [v cancsp)]?
AR M TY| vp: '
{ RN CMnCS )T T, ((4n <GS0

1/2

I we now let by approach {ntinity the vat{o ot the two logavithmic

quantities will approach 1, Note that

S
o

o oo oy
b, = — mo b, =t 0y Ty40
X L | U .‘T“
i
B
1t tollowa that b’l‘ > hi and h,rs n= l\‘. whetre 1) {a the number of weapona,

"
The limiting case h’l‘ - N 1‘1 occurs when atl I‘H “ 1 and atl “i ave

)
equal, Therefore 2o loug ax by X N7 the vatio of the logarithus will
be exseutially t, and (n the limit as by approaches intinity we obtain

A[." =4n (SRJ ’

-An (80> — x 3
LY (-tn (s‘>7‘r‘ L (-lnwp)j

For compactuezys of notation let us {dentity the quantities

siwmply:
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B - (=4n (Si >) and By = (~L&n < ST) )
Then slnce 14 =1 if { = § we obtain
: 2
Zu ]
- M

TR AET )T

[14]
s 1/2 1/2
T 2
Tug * j£1<"1) ru("j)

or equivalently

This form has the basic properties desired. Notice there is only one
interaction term between each pair of weapons, In addition, only two
sums need to be maintained to compute “T' These are:

HU"E“
{ 1

1/2 1/2
SIG =% I (u 2T, ( )
1 J<1< 1) 13\

From these the value "T is given simply:

uT - (MU)2 / (MU + SIG)

The addition of any new weapon adds one term f~ th2 MU sum, and several
terms to the SIG sum.

The computation of the first sum is trivial; wowe:nr, before the second
one can be used it is necessary to provide a prz tical method of esti-
mating Ilj.

We recall that the array RISK (A,G,J) was computed as an estimate of
shared risk, and that:

RISK(A,G,J) = T  SM(L)*SMAT(A,L)
L=1,5

For a particular weapon G and hardness component J, this relation might
look as follows: (A is a weapon attribute index; L is a failure mode
index,)
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SMAT(A,L)
A= 1 2 K} b S 6
SM(L) All JGroup|Reg | Class|TypelAlert] Independent Risk

L

1 | -LOGF(DBL) = .20 }§.00 }.1C .10 .10 10 2 .20
2 {=LOGF(cC) = .00 .00 }.10 .30 .10 .10 .3 .10
3 | -LOGF(REL) = .05 § .00 {.05 .00 .10 .20 .0 .65
4 ) -LOGF(PEX) = 20§ .00 [.00 {.10 » 20 .20 .00 .50
5 | -LOGF(STK) ~ .02 4 .00 {.00 .00 .00 .00 .0 1.00

RISK(A,G,J) .000 .0225 .040 ,065 .070 .08 .1925

Thus the SMAT array, a user input estimate of shared risk, is used sim-
ply to divide the tive types of risk SM(L) between the independent weap-
on risk, and the six factors A that any two weapons might have in
common. The total RISK over all A plus the independent risk is of
course equal to the sum of SM(L). We are now interested in using the
RISK array to derive reasonable values for the correlation coefficients

I‘U-

The RISK array thus represents the amount of the risk for each weapon
that is likely to be correlated with other weapons of the same class,
type, etc.

The correlation coefficients should reflect the shared risk. It two
weapons have only two attributes A in common then the shared risk should
come only from these two common attributes. Moreover, the amount of
risk that can be shared on the basis of one attribute cannot exceed the
minimum risk associated with that attribute for either weapon. There-
fore, to estimate the maximum risk, YU, that can be shared by two
weapons, i and j, we define:

% s J)*‘Min RISK(Ai.Gi.J)RISK(A

j'GJ‘J)

where 6-01fA1+A and 6-11fA1"A

J ']

The coefficients I'jy however must never exceed 1.0. Therefore it is
appropriate to diviae the shared risk GAM(i,j) by T SM to obtain a nor-
ll

malized fraction guaranteed to be less than 1.0,
Thus the form of the second summation

SIG=Y ¥ 2u)1/2 T, (u)1/2
{gj<g 1 S

would become

SIG = % N 2(;‘1)1/2 w(p )1/2

s

toj<i
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However, this form involves square roots which are inconvenient, More-
over, it represents an upper timit of correlation, We can reduce the
size of the overestimate by using the largest (or maximum) ¥ SM; i.e.,

I
nsing the least reliable weapon for normalization. [n addition, we can
simplity the form and erysdc tor the removal of square roots if we atso
wultiply by (Mpin /Mmax) . (This is a factor less thaun 1.0 that has
the cftect of reducing slightly the assumed correlation between weapons
of very ditferent vverall etfectiveness.)

With these changes, the equation for SIG takes the form of

1/2

1/2 '
GAM(1 ) *(pmln) (“‘J)m

SIG =¥ ¥ 2(H)) Max © SM_  \Hmax
L

t J<t

The form in braces {s still guaranteed to fall between zero and 1.0.

It represents the actual form for I'j, used in the present version of the
Allocator., This form has a computational advantage in that it simpli-
fies the calculation of SIG. Assume that KiSHy. Then

$OSM O SM and so
Lot
1/2
% % 2(“)1/2 ’(‘.AMQ,;) « [BL ‘ O )1/2
SIG = {4y { T SM, M 3

L

This reduces to:

$16 = & ¥ 2wqAM(K, P)*MIN |
ETS e Sl B
' L

Ay

This {s the actual form used computationally. (For each weapon group G
the quantity #/ ¥ SM {s identified in the FORTRAN as SSIG(G,J).)
L

The specific formula used for the terms in SIG is of heuristic origin
and is obviously somewhat arbitrary. It is justified, in the final
analysis, by the fact it is fairly simple and that it works. The
resulting kill probabilities produce realistic cross targeting, and in
cases where these probabilities can be compared with a rigorous statis~
tical model of correlations, it produces a satisfactory approximation
to the kill probabitity.
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In summary, the mathematics is as follows: ™
For a single weapon let
SSK = single shot kill probability, and let
SSS = single shot target survival probability
then SSK is giveun by

-LOGF (SSK) = { SM(L)

As usual, SSS = 1.0 - SSK, and we define g; or MUP for group G; relative
to hardness component J as:

MUP(G,J) = -LOGF(SSS)

We also define SSIG(G,J) as:

SSIG(G,J) = LOGF(SSS)/LOGF(SSK) = MUP(G,J)/ E SM(L)

Finally we define RISK(A,G,J) as:

RISK(A,G,J) = L  SM(L)*SMAT(A,L)
L=1,5

The preceding three arrays (underlined for emphasis) are the main input
for the estimation of kill probabilities.
The target survivability relative to multiple weapons Sq is given by

B, = e ul

where uT = (MU)2 / (MU + SIG)

and where MU = ¢ Mg = ) MUP(GI,J)
i

i
1/2 1/2
and SIG =T T 2(p) ' ° T (u)
i j<d X 1375

The individual terms in SIG for specific i and j can be thought of as:

DSIG(1,§) = 2(,,1)1/2 rl’j(pj)lfz

* The displayed mathematics for the calculation of MUP are for the expo-
nential damage law. The derivation of the quantity, MUP, required for
use of the square root damage law is discussed in the Derivation of
Square Root Damage Function section of this chapter and are not of any
importance in this discussion of correlation effects.
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which we fdentify computationally as

DSTG(k,§) = 2%GAM(1,3)*Min {SSIG(G )]
ket,]

where GAM(1, ), the maximum risk shared by { and j, is eatimated as

yMMin {RISK(A G ,J), RISK(A,,Gy, D}

where 8§, the Kroniker §, is O (€ Al'+ A, and 1 {f A1 - A

J 3
The siwmple form used for DSIG above implies that rij has the form:
r . __GAM(1 « [ BMin L3
i, Max]¥ SM(L) HMax
i,j|L :

however, this form never enters explicitly into the calculations,

To combine this treatment for the analysis of weapon correlations with
the preceding treatment of time dependent target values we simply use
the Sy evaluated above to supply the S(NI,J) required in the formula

J=M  NI=NN
Vs g % [V(NI,J) = V(NI + 1,0)] * S(NI,J)
J=1 NI=0

The weapons to be included in the evaluation S; for any NI are of course
those on the target up to and including the time NI.

This, of course, requires that separate sums for MU and SIC be main-
tained for each relevant time interval, NI, and each hardness component
J. Thus these variables are actually two dimensional arrays MU(NI,J)
and SIG(NI,J). Moreover, every potential payoff estimate (both for
each weapon that might be added, and for each that might be deleted)
requires a separate completa set of sums,

Derivation of Damage Functions

A Universal Damage Function: Consider the situation for which the lethal
radius and CEP of a single weapon are small compared to the target
dimensions. This case becomes quite pertinent under any of the follow-
ing circumstances:

Very large cities

Targets whose uncertainty of location is larger than the area of
influence of a weapon

4R3
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Employment of large numbers of small weapons (e.g., cluster war-
heads)

Hardening which reduces effective weapon radius below target size
(e.g., blast shelters for urban population).

In such a situation, where the value density of the target does not vary
significantly over the area of effect of a single weapon, one can use-
fully employ the concept of weapon density (weapons targeted per umnit
area) and seek the weapon density as a function of value density which
optimizes the total target destruction for a given total number of
weapons,

Before such an optimization can be effected, however, it 1s necessary to
obtain the relationship between the weapon density applied to a sub-
reglon, expressed for convenience as the fraction of the original value
surviving. In the most general case, this function can vary with posi-
tion {in the target, reflecting the possibility of varying degrees of
vulnerability over the target.

We introduce the following notation:

X Position within target (x, y coordinates)

w(X) Density of weapons targeted in vicinity of X (number/unit
area)

v(X) Target value density in vicinity of X (value/unit area)

F(w) Fraction of destruction produced by weapon density w, in

the absence of hardening

B(X) Vulnerability (hardening) factor (Ospi<l) expressed as
effective degradation of weapon density

W Total number of weapons intended against target.

The total payoff for a given weapon density distribution is then given
by:

H = /VF(uw)dA (L
A
where the integration is understood to be over the whole target arca,
and dA is the area element.

Similarly, the total number of planned weapons is given by:

W= [wdA
A
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We seek now the weapon density distribution which maximizes the payoff
for a given W. Introducing a Lagrange multiplier <O, and applying the
generalized method described above,* we seek the weapon density function

which maximizes the unconstrained Lagrangian,
L=H-=-AW (3)
This is equivalent to maximizing:

L= /[VF(wu) - AwjdA ' (%)
A

The density function w) which maximizes this Lagrangian for a givenA
{s obtained simply by maximizing the expression inside the integral at
each point (see cell problem discussion in Everett's paper, appendixC).
The optimum density at any point is therefore a solution of:

MAX = {VF QW) - Aw} (5)

For the case where F is monotone increasing, concave (diminishing
returns), and differentiable, an internal maximum of (5) can be sought
by zeroing its derivative:

;,—S)— [VF () - Awl= VF'(w)) H-w =0 (6)

Letting G = (F')'1 stand for the inverse function of the derivative of
F leads to:

A
G V; ¢))

wl—

Wy =

Equation (7) gives the internal maximization of (5). To complete the
solution we must account for the constraint w*>0 (negative densities

arc not allowed). Thus the optimum is given by (5) only 1f wj*>0 and 1if
VF(Hpw ) - Aw 20, since otherwise (5) is maximized by w= 0. The com-
plete solution can therefore be stated:

6 VAF 1fwy 20 and VF(o ) -Aw20
WA =

(8)
( 0 otherwise
(This solution is also valid even 1if F is not concave -- a situation in

which G may be multivalued -- provided that one uses that value of
G(A/Vp) for which VF(Uw) =-Awis a maximum,)
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Obgevve that the oprimun denatty given by (8) ta a tfunction ouly of V
and M, and {a explicitly independent of poaiction, If we can furtherv
assume that the vulnevability H {a a functton only of the value denslty
V and i othevwlae ifndependent of poattton,* then we can aimplify the
formulation and aolution aomewhat. [uw this case, all pertinent tavpget
characteviatice ave summarvised by two fuuctions:

A(V) = total avea of thowe areas whose value denaity
18 greater thaun V

(V) = vulunevability factor as a twnction of value denaity

The optimum weapon denaity wy glven by (8) hecomea then a function ouly
of the value denaity V:

wy (V) = 9

1 A
m G(mv)-) if wy 20 and VE(uw) - w 20
0

otherwise

and the total pavoft and total weapons ave given in the aimple torm of
Stieltjes integrala:

LR j‘\'l’(wx u(V))dA(V)
0
(am

N, = - wy da(y)

Thia completes the general optimtaation of weapon density. Fov explictt
solutions we vequtve apectific tunctions for the target value diatvibution
function A(V), the deatvuction function F(w), and the vulnerabllity
diatribution y(V). We ahall now consldar several pervtinent cases.

L.
Which aeema penervally quite plavaible, and is {n any case cervtatunly
tyuwe (€ the vaviation of U artaes from optimfeatlon of ahelter deptov-
went, fov example.
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Locally Random Impact Model: When the CEP is not significantly smaller
than the lethal radius, or when the delivery probability of individual
weapons is low, the situation over any homogeneous part of the target
can be closely approximated bv regarding the weapons as having been
dropped uniformly at random ovar that part.

Consider, therefore, a region of area A (large compared to the lethal

areg of a single weapon) into which N weapons each with lethal area

Ry ® and delivery probability P are delivered uniformly and independently
at random. The probability that any given point in the region will sur-
vive one weapon is:

PnRK2

S(1) =1 -
A (11)

and, since weapon arrivals are independent events, the probability of
surviving N {s:

. PnRK2 N
S(N) = {1 - Iy (12)

Introducing the parameters K and y:

X = PsR Za expected lethal area of one weapon

K
(13)

w = N/A = weapon density
allows (12) to be written as:
N
S) = ( - 5-:——) (14)

This gives for the destruction function:

, N
Fyw) =1 - S(u) =1 - (1 . 1‘-‘5—) (15)
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Equation (15) still contains an extra parameter, N, which is the number
of weapons in the area A used to derive (12)--presumed large compared
to the effects of a single weapon and small compared to the total target
size. We are currently interested in the limit as this area A becomes
infinite compared to the effects of a single weapon, hence in the 1limit
as N—»o»;

Fo(w) = lim Fy(w) =1 - e =4 (16)

N——e

which becomes our final destruction function for the locally random
impact model.

"Perfaect'' Weapon Model: At the other extreme from the locally random
impact model is the hypothetical situation where the weapons have zero
CEP, delivery probability of unity, and completely destroy a hexagonal
region of area K with no damage outside the region.

This situation closely resembles the case of '"cookie-cutter' weapons

of zero CEP and unit delivery probability, and deviates from the latter
only when the area covered is so densely packed that the '"cookie-cutter"
circles begin to overlap--which does not occur until the fractional
coverage exceeds T/(2 N 3) or about .91,

For such "perfect" weapons the destruction fraction is given by:

Kw w< 1/K
F =
1 w 2 1/K (17
Intermediate Cases: We have considered two extremes, locally random

impact, and perfect weapons. For actual situations, the targeting will
not be random, but some optimum pattern of DGZs.

As the CEP becomes larger than the lethal radius, or the delivery prob-
ability becomes small, the situation--even though based on a pattecrn ot
DGZs--approaches a situation described by the random impact moded. Oum

the other hand, for high delivery probability and small CEP, the situa-
tion begins to approach the '"perfect' weapon case--particularly as the

weapon effect radius becomes sharp (close to '"cookie-cutter"--e.g., the
conventional 0920 model).

Returning to the destruction function given by (15) containinyg the
extra parameter N (from which the random model was obtained by letting
N—>®), we observe the remarkable fact that for N=1, this function {s
precisely the damage function (17).
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Since this function contains, for the extreme values of N, the two
limits we have considered, it seems reasonable to suppose that any
actual intermediate case could be adequately approximated by this

function for some intermediate value of N.

We shall accordingly adopt this general function as our destruction

function, subject to subsequent empirical verification.

The general law therefore becomes:

. Ko \N
Ersalil =2t
]

1 we

FN(N).'

=|Z ==z

(18)

For purposes of determining the optimum distribution of weapon density
over a target of varying value density we wish to employ Eq. (9), for

which we require the function G = (F')-1, Accordingly,

N-1
Xw
Koy =22

x|z

4 --—d-. =
B N(m) dw FN(w)

>N
0 m__K

for which the inverse function is easily determined to be:

N x\ 1/ (N-1)
o0 - 41 ()]

Thus from (9), the optimum weapon density is given by:

1
1 Nl e YR "
W) K [ (mm) i ‘] kv <!

mk (V) = {

A
\0 Va =
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and for which the destruction fraction is easily calculated:

. ( A )N/N-l ! B
KVu (V) KVu

(22)

|

Fyley, u) =

A >
KVu

This completes the general treatment for arbitrary target value distri-
butions.

Gaussisn Targets: A particularly important special case is that of a
Gaussian target, for which the value density distribution is given by:

1 e-r2/202
2x%0

V(x,y) = (23)

(The total value is here normalized to unity.) From (23) we determine
the relationship between radius and value to be:

2
2(v) = -20% tn(2m0V) =
and hence the cumulative area distribution function to be:
A(V) = nrz(V) - ~200% ln(2ﬂ02V) for Vs——%- (25)
2%0
and the differential element is:
2n02
dA(V) = - dv (26)

\

Solution For Constant Vulnerability: Combining Eq. (10) with (26) amd
(22), and letting |y = 1:
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B -

1/(2%0?) Ny-T ]
A 2no
HX. \Y l-(xv) (-T)dv
A/ K N
2 2 - 2
2n0° A 210 A 210
N [ D -

Transforming the Lagrange multiplier A to a new multiplier B:

;. Y/ (0N-1)
8 = [Ezg_*] (28)

we can rewrite (27) as:

Mo o, e [1 + (N-1) Q- s)]
8 (29)

The total numbar of weapons as given by (10), (21), and (26):

l/(2w02) T 2
W, = / % ol (E%/‘) (36°—-)dv (30)

A/K

leads, in terms of B, to:

2
N(N-1)2no
Wg = ——(—k-——— [a -Ins - 1)] (31)

In order to permit explicit exhibition of payoff as a function of num-
ber of weapons, it is necessary to define a new function, Y, which

is the inverse of

Yy - ﬂny -1=x (32)
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that 18, y = y(x). It is defined for all nonnegative arguments, with
valuea on the interval szero-one. With this function, (29) and (31) can
be rewritten, in terms of surviving value:

N i [1 « (-1 Q- s)]

KW
8 -T(—T———'—)) 33)

2n0°N(N - 1

Equations (33) summarize the relationship between surviving fraction,
S, and number of weapons targeted, W, for Gaussian targets, aud with a
model! parameter N, which can range from 1 to o,

The two limiting forms of (33), corresponding to N = 1 and N-—» o are
intereating and {mportant, and are easily shown to be:

5, = exp(-KW/Zﬂoz)

s..(l.\rfvj) ,XP(-:@T)

no no

Theae are often termed the power law (or exponential law) and the square
root law, respectively.

Derivation of Kill Probability Function

A varlety of kill probability functions are in general use. The "normal
model' employs a function of the form:

2, 2
P(r) = 7T /2% (34)

The ''cookle-cutter"” mode! employs a discontinuous function:

3 szrzo

Pk(r) = (35)

0 r>R
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The relation between Ry

where Rg 1s the so-called "lethal radius."
and Uk is obtained by equating lethal areas

2n oo 2 2
rRKZ : j.e" /20y"  1drde (36)

0 0

leading to the relation
2 2 37

O = .SRK

Other functions have often been used and, indeed, it has occasionally
been found convenient to employ a generalized kill function of the

form:
W-1 K
-K
GK(r) = e 2: T%
j=0 I (38)
where
K = Wr2
“al

Again, we can equate lethal areas to relate a with RK:

2n o
2, (39)
"Ry ' f f GK (r) rdrde

0 0

so that

sz = a2 for all W (40)

The parameter W serves to alter the shape of this kill probability
curve. Thus, Gg(r) reduces to the normal curve for W = 1 and the
cookie-cutter for W—»», Standard kill curves, such as the Oy and
030 curves of AFM 200-8, representing, respectively, ground burst and
optimal air burst blast damage probabilities as a function of distance,
can readily be approximated. W = 6 approximates closely the 039 curve,

and W = 3 approximates the 030 curve.

493

e

et st e




™

Integration of a kill probability function over appropriate density
functions allows the representation of such factors as delivery error,
geodetic error, extended targets, etc.

Assume an extended target with the Gaussian normal value distribution
as follows:

2 2
12 el /20Tst (41)
nngt

V(r) =
2

V(r) = value per unit area at distance r from center

ngt = gtandard deviation of value distribution
Clearly:
L) 2 2
1.0 = —3 f T /2%, g (41)
znngt 0

Define a radius, R95, such at 95% of the value of the target is con-
tained within this distance of the target center. (This R95 is the
target radius used in the QUICK system.)

Then (43)
R9S5_.2 02 o 2,2
/ et #2 Tgt dr = .95f e’ /ongt dr
o (]
Solving this equation for ngt in terms of R95, we get:

ngt = R95/2.aa8

Assume a CEP, the radius of a circle with center at an aiming point
which will contain 50% of the centers of impact of weapons aimed at
the aiming point. Assuming a circular normal (Gaussian) distvibution

of the aiming errors:

2 .. B
p(r) = == " /2%xp

Icep
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where

p(r) = probability aiming error is r

OCEP = gtandard deviation of aiming errors

By definition of CEP

CEP
f p(r) dr = 0.5
o

Solving for ¢ in terms CEP

J
CEP

OCEP = 8493 » CEP

Assume a weapon is aimed at the center of the target. From the nature

9
of the Gaussian distribution we can define a atandard deviation 06

02 + 02 such that the circular normal distribution characterized

CEP Tgt 2

by op is the convolution of the distributions characterized by Sckp
2

and OTgt'

Therefore, {f
PK(W) = probability of target kill

W = kill function parameter

GK(r) = kill function from Eq. (33)

then
- an
e ol
Pe(W) = s el e | Gy (r) rdo (46)
ﬂUD 0 0 °D
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Evaluating the integrals

2 N
2NX

1 + 2WX
where X = OD/RK
or
o2 \M
P.(W) 1 -
S W g
D 2W X

which is the function used in QUICK.
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APPENDIX B

OPTIMLIZATION OF DGZs FOR COMPLEX TARGETS

Module ALOCOUT Is responsible for selecting optimum desired ground zeros
DGZs) for weapons allocated to complex targets. The complex target may
contain several component target elements, each with specific coordinates,
hardness, and some given time dependence of value. To place this diverse
target element information on a commensurate basis for efficient DGZ
selection, each target component of the complex is represented as a
series of simple point value elements. Complex elements with more than
one hardness component generate more than one such target element, and
area targets generate several elements, spread over the area of the tar-
get, to represent a value spread over the area. A (DGZ) Desired Ground
Zero Selector then uses the data to select optimum aim points within the
target complex.

The selection of DGZs is a two-step process. First, the prescribed war-
heads are assigned initial coordinates through a "lay-down' process in
which each successive warhead is targeted directly against the target
element where the highest payoff is achieved, taking into account colla-
teral damage to all other target elements. Second, a general-purpose
functtion optimizer, FINDMIN, calculates the derivatives of the payoff

as a function of x and y coordinates of each weapon and adjusts the
coordinates to minimize the surviving target value. FINDMIN terminates
cither after a maximum number of iterations (which can be specified by
the analyst) or after it finds that it can no longer make significant
jmprovements in the payoff.

The mathematical representation used is as follows.

The weapons allocated to a complex target are to be placed in a manner
which attempts to minimize the total escaping target value. To simplify
discussion, the notation below is introduced. A second subscript, j,
referencing the jth target element, is used when needed.

v, = value of jth target element remaining immediately
J following arrival of the ith weapon
S = probability of survival of jth target element associ~-
1 ated with weapon i
E = amount of value of jth target element that "escapes'
i between arrival of weapons i - 1 and i
Ti = time of arrival of weapon 1 (Tg is an initial time when

the full target value is applied) (Ty<Ty 4 1 all i)
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v (Ti) = value of jth target, at time T

3

N = pnumber of weapons

NT = pumber of targets

The following sketch illustrates the treatment of the time-dependent
values of the jth target.

Amount of target value
] picked up by weapon 1
Amount of target value
< picked up by weapon 2
=
- V’ ) 2)
& 0 1 | v
B v
= 1 j
( | _
T0 T1 T2 T3

From this sketch, the following relationships should be apparent. The
equations immediately below refer to a single target (}), but for simplic-
1ty the j subscript is omitted.

V.i = V(Ti)SiVi NEVACPY! i=1,2, ..., N

=V, _, [1 - V(T /(T 1)] (i=1,2, ..., N+ 1)
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From the previous equations,
X i i
Vi =1 I Sk V(Ti) and Ei =| 11 Sk [V(Ti-l) - V(Ti)]
k=1 k=]
i-1
(For i = 1, the product| Il S, ] is understood = 1. Also V(T ) = 0.)
ka1 k N+1

The total escaping value associated with target j is

N+1 N+l i-1
i‘?fij - 1};1 k1315kj [vj('ri_l) - Vj(Ti)]

The value on target j which escapes after arrival of weapon { is given
by
N+1

% Ep

p=i+l

The effective value of target j associated with weapon 1 :defined by

N+1

Fiq E S,
ij peiel pJj ij

This value is introduced for computational efficiency and may be thought
of as the total value available for weapon 1, the effect of all other
weapons having been taken into account.

The marginal value picked up on target § due to weapon 1 is given by

Fagll = Byq)

where S5y is a function of, among other things, the position of weapon {.
For a fixed weapon configuration, weapon 1 can be moved from (x,y) to
(x',y') and the marginal escaped value is given by:

NT

& Py - S'y)
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To establish an initial weapon configuration, a lay-down is performed as
follows. Initially, set S%A = 1 for all 1, j. Denote by S the sur-
vival probability of the k target, relative to the ith weapon, when
this weapon is placed on the jth target. Now the ith weapon is placed
on that target, }, which ylelds a maximum value for the expression

o 3
égi Fik ik = Sixd

The S| are now set to equal to Sik (k = 1,2,..., NT) the Fy, (all i, k)
are redetermined, 1 is increased by one, and the process repeated until
all weapons have been allocated.

This weapon configuration can now be input as the initial posfition to a
"hill climber'" routine, based on a steepest descent algorithm, which
attempts to optimize further by replacing the discrete set of possible
weapon positions with the two-dimensional continuum, The function to be
minimized is:

NT N+l
Z 2B
j=1 isl

Processing by the optimizer will be terminated either when the optimum
has been achieved or when a specified number of iterations have been
completed. In either case, to insure that the local optimum obtained
cannot be further improved, the value of removing, in sequence, each of
the weapons from its final location and placing it on one of the target
points is explored. If the results obtained by this method are better
than those achieved with the previous configuration, this new assignment
will be used as an initial one for a second utilization of subroutine
FINDMIN. If not, the results of the first use of subroutine FINDMIN
will be kept.
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APPENDIX C

GENERALIZED LAGRANGE MULTIPLIER METHOD
IOR SOLVING PROBLEMS OF OPTIMUM
ALLOCATION OF RESOURCES

Hugh Everett 111

Weapons Systems Evaluation Dinsion, Institute for Defense Analyses,
Washington, D. C

(Received August 20, 1962)

The usefulness of Lagrange multipliers for optimization in the presence
of constraints is not limited to differentiable functions. They can be
applied to problems of maximizing an arbitrary real valued objective func-
tion over any set whatever, subject to bounds on the values of any other
finite collection of real valued functions defined on the same set. While
the use of the Lagrange multipliers does not guarantee that a solution will
necessatily be found for al} problems, it is ‘fail-safe’ in the sense that any
solution found by their use is a true solution. Since the method is 80 sim-
ple compared to other available methods it is often worth trying first,
and succeeds in & surprising fraction of cases. They are particularly
well suited to the solution of problems of allocating limited resources
among a set of independent activities.

N MOST textbook treatments, Lagrange multipliers are introduced in a
context of differentiable functions, and are used to produce constrained
stationary points. Their validity or usefulness often appears to be con-
nected with differentiation of the functions to be optimized. Many
typical operations-research problems, however, involve discontinuous
or nondifferentiable functions (integral valued functions, for example),
which must be optimized subject to constraints.

We shall show that with a different viewpoint the use of Lagrange mul-
tipliers constitutes a technique whose goal is marimization (rather than
location of stationary points) of a function with constraints, and that in
this light there are no restrictions (such as continuity or differentiability)
on the functions to be maximized. Indeed, the domain of the function to
be maximized can be any set (of any cardinal number) whatever.

The basic theorems upon which the techniques to be presented depend
are quite simple and elementery, and it seems likely that some of them may
have been employed previously. However, their generality and appli-
cability do not seem to be well understood at present (to operations ana-
lysts at least). The presentation will consequently place primary empha-
sis on the implications and applications of the basic theorems, as well as
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discussion of a number of techniques for extending the usefulness of the
methods.

FORMULATION

TFor cLARITY of presentation, we shall develop the subject in a language
of problems concerning the optimal allocation of resources. Other appli-
cations of the theorems will suggest themselves.

Let us suppose that there is a set § (completely arbitrary) that is in-
terpreted as the set of possible strategies or actions. Defined on this
strategy set is a real valued function M, called a payoff function. H(z)
is interpreted as the payoff (or utility) which accrues from employing the
strategy z¢5. In addition, there are n real valued functions C*(k=1---n)
defined on 8§, which are called Resource functions. The interpretation of
these functions is that emplayment of the strategy re$ will require the
expenditure of an amount C'(z) of the kth resource.

The problem to be solved is the maximization of the payoff subject to
given constraints ¢, k=1---n, on each resource; ie., to find

MAX..5 H(I)

subject to C'(z) Sc', all &.

A particular subclass of this general problem with wide application is
what will be called & cell problem (or separable problem) in which there
are 8 number, m, of independent areas into which the resources may be
committed, and for which the over-all payoff that accrues is simply the
sum of the payoffs that accrue from each independent venture (cell).
In this type of problem we have as before, for each cell, a strategy
$;, a payoff function H, defined on §;, and n resource functions C,' defined
on 8. Hiz,) is the payoff in the sth cell for employing strategy z.e$,,
and for each k, C,'(z,) is the amount of the kth resource expended in the
ith cell by employing strategy r. in that cell. In this case the problem to
be solved is to find a strategy set, one elemcnt for each cell, which maxi-
mises the total payoff subject to constraints ¢ on the total resources cx-
pended; i.e.,

max 3 ITT Hul(z)

sl eholoos of {3;)
8,48

subject to it oMz s forallk.

This type of problem is simply a subclass of the previous general prob-
lem since it can be translated to the previous problem by the following
identifications:

s=JI:=7 5. (direct product set),
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{where a strategy re§ consists of an ordered m-tuple (., -+, z,) of strate.
gies, one for each §)

H(z)= Y\ H(zy),
C'(zx)=XiT CMz), allk

MAIN THEOREM AND SOME OF ITS IMPLICATIONS

WE Now present the main theorem concerning the use of Lagrange mnl-
tipliers, and discuss its meaning and implications. The proof will be sup-
plied in a later section.
TheoREM |
1. A%, k=1, n are nonnegative real numbers,
2. z°¢§ mazximizes the funclion

H(z)— Y020 M'C'(2) over all 265,
—3. z2° maxsmszes H(x) over all those x <8 such that C* §C*(2*) for all k.

Discussion

This theorem says, for any choice of nonnegative A', k=1, n, that if an
unconstrained maximum of the new (Lagrangian) function

H(z) = Y=\ CH(x)

can be found (were z°, say, is a strategy which produces the maximum),
then this solution is a solution to that constrained maximization problem
whose constraints are, in fact, the amount of each resource expended in
achieving the unconstrained solution. Thus if z° produced the uncon-
strained maximum, and required resources C*'(r*), then =* itself produces
the greatest payoff which can be achieved without using more of any re-
source than z° does.

According to Theorem 1, one can simply choose an arbitrary set of non-
negative \'s, find an unconstrained maximum of thc modified function,
H(z) -~ Zf:? A C'(z), and one has as a result a solution to a constrained
problem. Notice, however, that the particular constrained problem which
is solved is not known in advance, but arises in the course of solution and
is, in fact, the problem whose constraints cqual the resonrces expended by
the strategy that solved the unconstrained problem.

In general, different choices of the A\'s lead to different resource levels,
and it may be necessary to ndjust them by trial and error to achicve any
given set of constraints stated in advance.

However, it is noteworthy that in most operations-research work one
is not simply interested in achieving the optimnm payoff for some given
resource levels, but rather in exploring the entire range of what can be
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obtained as & function of the resource commitments. In this case it matters
little whether this function is produced by solving a spectrum of problems
with constraints stated in advance, or by simply sweeping through the
A''s to solve a spectrum of problems whose constraint levels are produced
in the course of solution. The method when applicable is therefore quite
efficient if the whole spectrum of constraints is to be investigated. Even
in the case where only a single constraint set is of interest the use of this
method, and adjustment of the X'’s until the constraint set is achieved,
is often more efficient than alternative procedures.

A limitation of the Lagrange multiplier method arises from the fact
that it does not guarantee that an answer can be found in every case.
It simply asserts that if an answer can be found it will indeed be optimum.

In cases where multiple constraints are involved that are not completely
independent it may not be possible to simultancously utilize all resources
to the full allowance of the constraiuts. This can happen if the utiliza-
tion of one resource requires the utilization of others, or equivalently in
cases where some constraints may involve various combinations of others.
These cases are analogous to problems in linear programming where cer-
tain constraints prove to be irrelevant in the optimum solution.

In auch cases one might actually find the optimum solution but be un-
able to establish the optimality of the result because of incomplctely util-
ized resources. Nevertheless, there is a large class of allocation problems
in which the constraints really are independent (i.e., the resources can be
consumed independently in the region of interest). In such cases solu-
tions can usually be obtained that give consumption values adequately
close to the constraint values. The existence of optimum solutions that
can be found by this method actually dcpends upon an approximate
concavity requirement in the region of the solution that will be discussed
motre carefully later.

At this point we wish to remind the reader of the generality of Theorem
1. There are no restrictions whatever on the nalure of the strategy set S,
nor on the functions H and C* other than veal-valuedness. The strategy
set may therefore be a discrete finite set, or an infinite set of any cardinal-
ity. Furthermore, the payofl function and the resource functions can
take on negative as well as positive values. [C'(z) negative may be inter-
preted as production rather than expenditure of the kth resource.]

Application to Cell Problem

One of the most important applications of Theorem 1 is in the solu-
tion of cell problems. As shown in the Formulation Section, these problema
are a subclass of the gencral problem to which Theorem 1 is applicable.
In this case, maximizing the unconstraincd Lagrangian function

H(z) = 0T\ €' (x)
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is equivalent to finding
““‘ull::.‘ 3.12::? ”l(zl)l - ::l. x.lZ::T ("l.(rl) l.
which (interchanging summation order) is the same as:
n\lx"n::.‘ $ Z::? l”l(rl) = Ztl. X‘ C‘.(!i)l.

But, since the choices r, may be made independently in each cell as a
consequence of Sm]].2T 8., the sum is obviously maximized by simply
maximizing

Hys) = LAzt N'cd(z)

in each cell independently of strategy choices sn other cells, and snmniug the
payoffs and rvsources expended for each cell (for the strategy that maxi-
mized the Lagrangian for that cell) to get the total payoff and resouree
expenditures. Theorem | then assures us that the result of this process
is & solntion to the over-all constrained problem with constraints equal to
the total resources expended by the strategy produced by this procedure.

Observe that there is no possibility that just a local maxinmm to the
over-all problem has been obtained. If the Lagrangian in each eell has
been corrcetly maximized (i.e., is not itsell merely locally maximized),
theu theorem 1 guarantecs that the result is a global maximum to the over-
all problem.

Theorem 1 says nothing about the manner in which one obtains the
niaxima of the unconstrained Lagrangian functions, but simply asserts
that if one can find them, then one can also have maxima of a problem
with constraints. The Lagrange multipliers therefore are not a way in
themselves of finding maxima, but a technique for converting optimization
problems with constrained resources into unconstrained maximization
problems.

This conversion is eapecially crucial for cell problema with constraints
on total resource expenditures, where the conversion to unconstrained
maximization of the Lagrangian function uncouples what was an essen-
tially combinatorial problem (because of the interaction of choices in each
cell through total nesource constraints) into a vastly simpler problem
involving independent strategy selections in each cell.

The present treatment of Lagrange multipliers was motivated, in fact,
by a cell problem involving continuous, differentiable payoff functions, the
solution of which was attempted by a classical Lagrange multiplier ap-
proach. In this case, the resulting (transcendental) equations had in
many circumstances a multiplicity of solutions, and the embarrassing
problem arose as to which of several solutions to select for each cell. It
appeared as though it might be necessary to try all combinations of choices
of solutions—an impoesible task in this case which involved several hun-
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dred cells. As a result of this difficulty, a closer look was taken at the
role of Lagrange multipliers, and the present trcatment is the result.
The original problem of multiple solutions is, of course, easily svlved by
simply selecting that solution in cach cell which gives the largest value
for the Lagrangian.

It is the recognition that the objective is to maxiinize the Lagrangian,
by whatever means, not to zero its derivative, which is decisive. In
many cases it is expeditious to maximize the Lagrangian by finding seroes
of its derivative. One can then easily select a final value by testing each
solution (if there is more than one) to find which gives the largest (global)
maximum. This procedure automatically excludes any solutions that
correspond to minima or saddle vnlues, and also facilitates taking into
account any boundary conditions (such as ionnegative resource con-
straints) by testing the boundary cases as well.{

In. other cases (particularly cases of nonnumerical strategies, or dis-
crete strategy sets such as integers), the Lagrangian may best be maxi
miszed by trial and error procedures, or even direct computer scanning of
all possibilities.

Another possibility is illustrated by cases wherein resources may be
applied only in integral numbers. Often in such cases one can define a
continuocus differentiable payofl function that attains its correct value on
the integers. A useful trick applicable to many such cases is to maximize
analytically the Lagrangian based upon the continuous function, and then
test the integer on each side of the solution, sclecting the one that naxi-

misea the Lagrangian.

PROOF OF MAIN THEOREM

THE prooF of the main theorem presented and discussed in the previous
section is quite elementary and direct :

Proof of Main Theorem. By assumptions (1) and (2) of Theorem 1,
A%, k=1...m, are nonnegative real numbers, and r*«8 maximizes

H(z) =202 A" C(a)

over all z¢8 (the r* producing the maximum may very well not be unique -

all that we require is that 1° be some element that maximizes the La-

grangian). This means that, for all z¢S,
H(z*) =TAs M C' (s 2 H(2) ~ a2 M CM (),

{ This type of constraint (e.g., nonnegativity of resources), which holds inde-

pendently for each cell rather than over-all as with toial resources, is handled hy
simply restricting the strategy set for the cell appropriately. The Lagrange mul-
tipliers are reserved for over-all conatrainta.

506




e e —

and hence, that
H(z*)2H(x) + iz N(CH(=") - C' ()

for all x¢8. But if the latter inequality is true for all x¢, it is necessarily
true for any subset of 8, and hence true on that subset $* of § for
which the resonrces never exceed the resources C'(x°). Notationally :
1e8%e= for all k, C*(z) SC'(z*). However, on the subset 8°* the term

Yoo AN (=) —-CH ()

is nonnegative by definition of the subset and the nonnegativity of the
A"'s, hence our incquality reduces to H(x*) 2 H(x) for all zes®, and the
theorcm is proved.

LAMBDA THEOREM

TuroREM 2

1. Let (MM 1k=1---n be two sets of \''s that produce solulions
1,* and rs*, respectively. Furthermore, assume that the resource expenditures
of these two solubions differ in only the jth resource.

C'(x,*) =" (") for k=j

and that C’(1,*) > C'(1,").

2. Then: M Z[H (") =H(x" ) VIC(n*) = C(2:°) )20

This theorem states that, given two optimum solutions produeed by
Lagrange nmultipliers for which only one resource expenditure differs, the
ratio of the change in optimuin payoff to the change in that resource ex-
penditure is bounded between the two multipliers that eorrespond to the
changed resource.

Thus the Lagrange multipliers, which were introduced in order to
constrain the resource expenditures, in fact give some information eon-
cerning the cffect of relaxing the eonstraints.

In partieular, if the set of soltions produced by Lagrange multipliers
results in an optimum payoff that is a differentiable function of the re-
sources expended at some point, then it follows from Theorem 2 that the
:.!'s at this point are in fact the partial derivatives (or total derivative in
case of one resource) of the optimum payoff with respect to each resource
(all other resources kept constant) :

laH./aC")t‘. ronnnt=x,-

kpts

Proof. The proof of Theorem 2 is also quite elementary. By hy-
pothesis 1,° is the solution produced by [A'], hence r,* maximizes the
Lagrangian for {A,*], which implies:

H(x,*) 2H(x) +N[C/(2,") = CU(2) 14 Ly M [CH(2,%) - CH(2))
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holds for all ¢8, and hence in particular holds for r,*. But since by hy-
pothesis C*(x,*) = C*(x:°) for k»j, we can deduce that

H(x*) 2 H(n") + M0 (0") - Ci(n°)),
which, since by hypothesis C’(1,°) > C¥(1,"), implies that:
H(2:%) = H(x)VIC(0*) = C (2" )2 M,

which proves one side of the conclusion of Theorem 2. Interchanging the
roles of 7,* and 1,* [and obeerving the reversal of the sign of

(‘i(h‘) "C"(h.)]

produces the other side of the inequality to complete the proof of Theorem
9

An obvious consequence of Theorem 2 is the fact that, if all but one
resource level is held caonstant, the resource that changes is & monotone
decreastng function of its associated multiplier. This fact indicates the
direction to make changes when employing a trial and error method of
adjusting the multipliers in order to achieve some given construints on
the resources.

The Lambda Theorem also suggests a potentially useful techniqte for
choosing a starting set of multipliers for such a trial-and-error method of
achieving given construint levels in a cell problem. Beginning with any
reasonably good allocation of the given resources, one can often calculate
easily what the effect on the payoff is for a small additional increment of
each resource, optimally placed within the cells. The differential payoff
divided by the increment of resource is then taken as the starting A for
that resource. The A's are then adjusted by trial and error until the
Lagrange solution corresponds to the given constraints, producing the
optimum allocation.

THE EPSILON THEOREM

A NATURAL question with respect to the pi.ctical application of the
Lagrange method concerns its stability—supposing that as a result of
methods of calculation or approximation one cannot precisely maximise
the Lagrangian, but can only guarantee to achieve a value close to the
maximum. Such a solution can very well be at a drastically different
resource level and payoff than that which actually achieves the maximum,
and yet produce a value of the Lagrangian very near to the maximum.
For the method to be practical, it is required that in thia situation & solu-
tion that nearly maximizes the Lagrangian must be a solution that alo
nearly maximises the payoff for the resource levels that it itself produces
(which may be quite different than those of the solution that actually
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maximizes the Lagrangian). Only in such a circumstance would it be
safe to assert that the solutions produced by any nonexact procedures
(such as nuinerical computation with finite accuracy, or methods based
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