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for all weapon groups) and so for efficiency the variable N0WPS(2) is 
used. While the expected value of (ALERREST(1))  is the same as £ 

2 G 

(ALERKEST(J)) , the variance oi the latter version is much less, and it 
is therefore preferable as an estimator of the expected integration 
period, EXPINTPD and is: 

EXPINTPD - N0WPS(1)(ALERBESTQ.) )*NTGTS) 

To allow the possibility of using integration periods either longer or 
shorter than the theoretical EXPINTPD, a desired longest integration 
period DESINTPD is defined: 

DESINTPD • EXPINTPD*RAT10INT 

where RATIOINT is an adjustable input parameter. A low value allows 
higher sensitivity without oscillations in the values of the Lagrange 
multipliers but too low a value makes convergence to the correct stock- 
pile sensitive to statistics of the target list.  If the target list 
contains targets with heavy ballistic missile defenses or if a large 
fraction of the weapons are assigned by the fixed assignment capability, 
this parameter value should be increased (to 4.0 or above if necessary). 
If this period were used exactly in setting the rate of change of the 
target weight (i.e., WRATE = 1.0/DESINTPD), the WRATE would never become 
exactly zero as is required for a constant target weight.  Obviously 
when the change in the target weight becomes small over a full pass, the 
WRATE should be allowed to go to zero.  Therefore in: 

WRATE - (1.0/DESINTPD) -(2.0/(NTGTS*RATIOINT)) 

the term (2./NTGTS*RATI0INT)) is subtracted, and if the resulting WRATE 
is negative It is set to zero. To avoid a situation where large errors 
cause the integration period to become ridiculously small, a limit that 
WRATE £ .07 is set. 

Moreover, after the allocation is well under way, PROGRESS i>  .5, the 
value of WRATE is not allowed to increase.  In the program WTRATE(INTPRD) 
is used as a multiplier of the target weight; therefore we add 1.0 to 
WTRATE to obtain a suitable multiplier for the longest period NINTPRD. 

The values for the three WTRATE variables are; 

WTRATE(3) • 1 + WRATE 

RTNTPRD-1 
WTRATE(2)   -  1 + WRATE +      ^GTS      + RINTPRD 

WTRATE(l)   -  1 + WRATE + ^Sjjg"^ + 2.*RINTPRD 

Input parameter RINTPRD is an approximate ratio between rate of change 
of target weights between different integration periods.    An increase in 
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thla parameter Increases the sensitivity ot the multiplier adjustment to 
recent target experience. 

To restate, Lagrange multipliers are recomputed based on variable PRO- 
GRESS «nd after a specific number of targets have been processed.  The 
adjustment is based on maintaining statistics of weapon allocation rates. 
The differences in true and observed rates, along with input sensitivity 
parameters, make up the formula for multiplier adjustment. 

A.6 Derivation of Formula for Correlations in Weapon Delivery Probability 

An exact calculation of the probability of target survival when It is 
subject to attack by correlated weapons is very lengthy.  Both the con- 
ventional statistical analysis and the Bayeslan incremental information 
approach have been examined.  Both approaches for each time and hardness 
require the calculation component of the interaction terms between each 
weapon to be added with ail possible combinations of the weapons already 
on the target.  Thus the completely rigorous calculation would be imprac- 
tical in a rapid response allocator.  The method used here is based on 
an approximation derived from the properties of the log-gamma distribu- 
tion. 

When a group of weapons share a common failure risk the probability oi 
success is likely to be either high or low for all weapons collectively. 
Thus the probability of success can itself be thought of »u  a random 
variable.  For any chance value of this overall random variable there 
will exist the usual Independent probabilities for individual weapons. 
However, on one trial the overall success probability for the group oi 
weapons may be 90%, while in another trial it may be 30% depending on 
the particular success probability drawn for the trial. 

The following mathematical model has been developed to deal with this 
type of problem. We aaaime  that the probability of survival of a tar- 
get with respect to the 1  weapon is Itself a random variable S oi   the 
form 

.    "Xi 
Si "e 

where the X^ are random variables drawn from a known distribution. 

If two weapons are Involved, then the probability ol survival with 
respect to both can be represented by the random variable S-)<: 

-<xt + X.) 
ST " SiSJ " ° 

However, the random variables Xt and X« may or may not be independent. 
If they are not independent then of course 
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11 the X: are independently drawn from a known two-parameter tamlly ot 
il 1st i it-n.it ion with a convolution property,  then the distribution of X, 
+ Xj will ot course be a member of the same distribution family. More- 
over, since any probability distribution for the X^ implies • distribu- 
tion lor the corresponding S±,   the distribution for S^Si can be calcu- 
lated and the value for <SjSj > can be computed. 

The gamma distribution given by: 

P(X)dx 
xVx/b 

ba + lr(a + 1) 
dx for X a 0 

P(X)   - 0 for X s 0 

is a well known two-parameter distribution with the required convolu- 
tion property. 

The gamma distribution is unique among convolving two-parameter distri- 
butions in that the expected value of e"x is easily computed.  This pro- 
perty is particularly important for QUICK since the damage function per- 
forms a computation of this value many times during the allocation.  The 
expected value of e"x is given by. 

-X 
<•  > 

•/ 
P(X)e AdX 

which can he written 

<S> - <.e"X> -Mr) 
a + 1 

Thii distribution is valid for b > 0 and a > - 1.  It has a mean 
u « b(a + 1) and a variance o • - b2(a • 1). 

Since this distribution is completely defined by the mean and variance, 
the actual probability distribution of S can be computed at any time so 
long as a record of the mean and variance of the distribution is main- 
tained.  We now observe that; 

a + 1 *v 

A probability distribution la said to "convolve" when the convolution 
of any two distributions in the family (i.e., the distribution of the 
sum of the two random variables) is itself a member of the same family. 
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so the expected value of S can be written 

,2 

"'•(zt-r 
or 

M2 to2        \ 
-4n <S>    - -y    in    ^-JJ- +  l| 

This distribution is sufficiently flexible to include almost any snap«* 
distribution of Interest.  For a  small the distribution in S approxi- 
mates a gaussian centering on some specific survival probability.  As 
the O  is Increased the distribution widens, so that it can approximate 
a uniform probability from zero to one, or a sloping probability with 
more weight on zero or one.  In the limit of very large a  the distribu- 
tion consists essentially of spikes of different weight at zero and one. 

If we were dealing with independent weapons we could calculate the para- 
meters for the multiple weapon distribution from those for the single 
weapon distributions simply by making use ot the addltlvlty of the mean 
and the variance.  Specifically the mean, uT, for the new distribution 
and the variance a-, would be given by: 

2  _   2 
oT - 1 a, 

1   i 

The expected value of target survlvabillty ST tor the new distribution 
would then be obtainable through the equation: 

in   <S   > - 
a i»[(i) H 

However,   the  variance  is directly additive  as above only  if  the weapons 
are  really  independent.    To  Introduce  the possibility  of correlations we 
will write  the variance as   follows: 

O"       •    F    N    a V    a 
T      i  j ai!irj 
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where tho quantLty Ttt   represents the correlation between the weapons. 
In the special c» 

y MI 
•a ol uncorrelated weapons, ] IJ 0 tor l 4  J and 1 tor 

I » |, which Is Identical with the previous form. 

This approuch oi arbitrarily introducing the cross terms in this tormu- 
I Ml Ion lo approximate the actual correlations is exact so long H:I the 
correlations are of such a form that the distribution of X remains a 
gamma distribution.  To the extent that the actual correlations cause 
departures from the rdistribution the approximation is in error.  The 
correlation model thus amounts to the assumption that correlations can 
be adequately modeled without going outside the log-gamma distribution. 

For Implementation it seems appropriate to introduce an additional sim- 
plification.  In the foregoing formuatlon the magnitude of the penalty 
for using correlated weapons will depend not only on the size of the 
correlation and the kill probability for the correlated weapons, but 
also on  the shape of the distribution for the success probability for 
each weapon.  This shape dependence introduces a complicating variable 
which undoubtedly exists, but for which it would not be easy to get data. 
It therefore seems desirable to eliminate this factor. 

This can be done by standardizing on a single shape factor for all cal- 
culations of the effects of correlations. It Is easiest to do this by 
considering only distributions with a very large a, which are essentially 
spikes on zero and one. This choice tends to exaggerate the importance 
of correlations (and this fact should be borne in mind in assigning the 
correlations for the war game1) but it significantly simplifies the data 
required, as well as the computation of the payoff. 

pproaches Infinity while 
the correct value of 

In the limit of large a the quantity 9t f"i  « 
the quantity ^ /Oy    compensates to maintain 
-in <Si> 

2 
To illustrate the transition to this limit we let bj^ • a^/M^ and define 

0{ - b1/*n(b1 + I) 

Then 

•in <V Vi 
so: 

and 

h  '   *l       [-£n    <Si>] 

ai2- "ibi - Vi [-* <si>] 
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Th« formula tor obtaining the expected value of |_ can now be written 

•> 

-in <s > - -*• 4n(h_ i l> 

T 

•ml  HiittRt i tut tug. 

MT - >*, •* «j   -   z9i rn„, 

w«'   obtain: 

•i»   <8_> 
v j 

1   I 

We now analen to «It weapon« the «um«» value ol bj, so that all t>( are 
equal ami all 0 t are aquat ami wo obtain: 

in(b t n 
•In <ST> - T75 

It  we  now   let   bj   approach   intlnlty   th«>   ratio ol   the   two   logarlthmic 
quant 11 li-.-i  will   approach   I.     Note  that 

bT- 

2 
•O  b_ j  •  tTt rij°j 

It   loilivs   that   b >  b     aiul   b>    ?)"   b   . where   t) I»   the  number   of  weapons. 

The   limiting COM h    -      ') '   h    occur» when all  l"      -   I   ami  all  n    arc 

equal.     Therefore so   long  «s  h(  »     1      the  ratio ol   the   logarithm« will 
df  essentially   I. ami   in  tin*   limit   an  1>(   approaches   Infinity w« obtalu 
* imply j 

-in <t_>« 
[>• -in<St>]  ' 

Kor  compactness  Ol   notation   let   u»   identify   the  quantities 

. Tym 
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Ht -  (-in<S, >) •nd      |*T -  (-in< ST> ) 

Then  since 
1.1 

1  If 1 -  1 we obtain 

F*Ü AW"2ruW"2 

or equivalently 

^Ä^r-w" 
This form has the basic properties desired. Notice there is only one 
interaction term between each pair of weapons. In addition, only two 
sums need to be maintained to compute u   These are: 

MU 

S1G 

r*H 

i äN1" 24i) 
1/2 

From these the value MT i» given simply: 

PT - (MU>2 / (MU + SIG) 

The addition of any new weapon adds one term t  tit • MU sum, and several 
terms to the SIG sum. 

The computation of the first sum is trivial; lowevjr, before the second 
one can be used it is necessary to provide a prr tical method of esti- 
mating IV»! 

We recall that the array RISK (A,G,J) was computed as an estimate of 
shared risk, and that: 

RISK(A.G.J) - Z       SM(L)*SMAT(A,L) 
L-l,5 

For a particular weapon G and hardness component J, this relation might 
look as follows:  (A is a weapon attribute index; L is a failure mode 
Index.) 
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SMAT .A.L) 
A  -     I 2         3 4           5           6    1 

L SM(L) All Group Reg Class Type Alert! Independent Risk 

I -LOGF(DBL)   - .20 .00 .10 .10 .10 .10 .401 .20 
2 -LOC.F(Cin     - .00 .00 .10 .30 .10 .10 .30l .10 
3 -l.OGF(REU  - .05 .00 .05 .00 .10 .20 .001 .65 
4 -LOGP(fBX)  - .20 .00 .00 .10 .20 .20 .001 .50 
5 -LOGF(STK)   • .02 1 .00 .00 .00 .00 .00 .oo| 1.00 

RISK(A,G,. [) .000 .0225 .040 .065 .07C )     .08 .1925 

Thus the SMAT array, a user input estimate of shared risk, is used sim- 
ply to divide the five types of risk SM(L) between the independent weap- 
on risk, and the six factors A that any two weapons might have in 
common.  Tin' total RISK over all A plus the independent risk is oi 
course equal to the .sum oi  SM(L>.  We are now interested in using the 
RISK array to derive reasonable values for the correlation coefficients 

The RISK array thus represents the amount of the risk for each weapon 
that is likely to be correlated with other weapons of the same class, 
type, etc. 

The correlation coefficients should reflect the shared risk.  It two 
weanons have only two attributes A in common then the shared risk should 
come only from these two common attributes.  Moreover, the amount of 
risk that can be shared on the basis of one attribute cannot exceed the 
minimum risk associated with that attribute for either weapon.  There- 
fore, to estimate the maximum risk, V  , that can be shared by two 
weapons, i and J, we define: 

V  or GAM(k.J) • !: j (A^A /)*Min RISK(A .G^-DRISKCA ..G..J) 

where 6  - 0 if A + A and Ö - I if A. - A . 

The coefficients \\t  however must never exceed 1.0.  Therefore it is 
appropriate to divide the shared risk GAM(1,.|) by E SM to obtain a nor- 

1. 
malized fraction guaranteed to be less than 1.0. 

Thus the form of the second summation 

SIG : - v y   2(M,)I/2 r (M u/2 
i Ki '  J 

would bocomc 
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However, this form Involves square roots which «re Inconvenient,  More- 
over, it represents an upper limit of correlation.  We can reduce the 
size oi the overestimate by using the largest (or maximum} >* SM; I.e., 

1. 
using the least reliable weapon for normalization.  In addition, we can 
simplify the form and provide for the removal of square roots It we also 
multiply bv (Mmln ^max)   •  (.This is a factor leas than 1.0 that has 
tho effect of reducing slightly the assumed correlation between weapons 
of verv different overall etfectlvaneas.) 

With these changes, the equation for SIC takes the form of 

,1/2 
SIC - £ r     2(a) 

I J<1 

1/2 
Max E SM  \Mmax/ 

L 
«V 

1/2 

The form In braces Is still guaranteed to fall between zero and 1.0. 
It represents the actual form for \\ i used In the present version of the 
Allocator.  This form has a computational advantage in that It simpli- 
fies the calculation of SIG. Assume that MJ<MJ«  Then 

Z  SM >>' SM 
l.    1,   ' 

SIC 
i J-i 

and so 

2(.ML> 
1/2 

VSMi  W    I 
(Mj) 

1/2 

This reduces to: 

SIC - J  *  2*CAM(k,,f)*MIN 
' i.J 

Pi 
T.  SM, 

This is the actual form used computationally.  (For each weapon group C 
the quantity M/ E SM Is identified in the FORTRAN as SSIG(G,J\.") 

L 

The speciftc formula used for the terms in SIC Is of heuristic origin 
and is obviously somewhat arbitrary.  It is justified, in the final 
analysis, by the fact It is fairly simple and that it works.  The 
resulting kill probabilities produce realistic cross targeting, and in 
cases where these probabilities can be compared with a rigorous statis- 
tical model of correlations, it produces a satisfactory approximation 
to the kill probability. 
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In summary, the mathematics La aa follows: 

For a single weapon let 

SSK - single shot kill probability, und let 

SSS » single shot target survival probability 

then SSK Is given by 

-LOGT(SSK) - ; SM(L) 

As usual, SSS - 1.0 - SSK, and we define Hi  or MUP for group Gj relative 
to hardness component J as: 

MUP(G.J) - -LOGF(SSS) 

Ue also define SSIG(G.J) as: 

SSIG(G,J) - LOGF(SSS)/LOGF(SSK) • MUP(c;,J)/ £ SM(L) 

Finally we  define  RISK(A,G,J)   as: 

RISK(A.G.J)   -       r       SM(L)*SMAT(A,L> 
 L-1,5  

The preceding three arrays (underlined for emphasis') are the main Input 
for the estimation of kill probabilities. 

The target survlvablllty relative to multiple weapons ST Is given by 

- T 
ST  - e Hl 

where    pT  • (MU)  / (MU + SIG") 

and where MU  * Z H,   " E Ml'P(G, ,J) 
11 

and      •»-- ^ •'• ^l/2~    ^1/2 T E 2(M )  r A») 
I 1<l       J •' J<1 

The Individual terms In SIG for specific I and j can be thought of as: 

DSTGd.j)   -  2(Ml)
1/2   rlfJ(^>1/2 

a 
The  displayed mathematics for the calculation of MUP are  for the expo- 
nential  damage   law.     The  derivation of  the  quantity, MUP,   required   for 
use of  the  square  root damage  law  is discussed  in the Derivation of 
Square  Root  Damage  Function  9ectlon of  this  chapter and  are  not  of  any 
Importance   In  this  discussion of correlation effects. 
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which we   Identify computationally as 

DSlG(k»J)   -  2*CAM(i, P*Min     |SSU:(U ,J)| 
k-i,J 

where CAMvi,.)'», the maximum risk shared by i and J, Is estimated as 

GAM(l.J) • E 6(A1,A.)*Mln JRISK(A1,G1,J), RX8K(A|»G,(J)) 
A 

where 6, the Kroniker Ö, is 0 If A. + A , and I if A - A . 

The simple form vised tor DSIG above implies that r.  has the form; 

1, j  Max 
t.J 

il-AMlLuU. 
E SM(L') 
L 

*/(lMln\ 
I MMax J 

1/2 

however, this form never enters explicitly into the calculations. 

To combine this treatment for the analysis of weapon correlations with 
the preceding treatment of time dependent target values we simply use 
the ST evaluated above to supply the S(NI,J) required in the formula 

.T»M  Nl *NN 
WT • £  J:  IVCNI.J) - V(NI + i,j)i * S(NI,J) 

J-l  Nl-0 

The weapons to be included In the evaluation ST for any NI are of course 
those on the target up to and Including the time NI. 

This, of course, requires that separate sums for Mil and SIC be main- 
tained for each relevant time interval, NI, and each hardness component 
J,  Thus these variables are actually two dimensional arrays MU(NI,J) 
and S1G(N1,J), Moreover, every potential payoff estimate (both for 
each weapon that might be added, and for each that might be deleted) 
requires a separate complete set of sums. 

Derivation of Damage Functions 

A Universal Damage Function:  Consider the situation for which the lethal 
radius and CEP of a single weapon are small compared to the target 
dimensions.  This case becomes quite pertinent vinder any of the follow- 
ing circumstances: 

Verv large cities 

Targets whose uncertainty of location is larger than the area of 
influence of a weapon 
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Employment of large numbers of small weapons (e.g., cluster war- 
heads^ 

Hardening which reduces effective weapon radius below target size 
(e.g., blast shelters for urban population). 

In such a situation, where the value density of the target does not vary 
significantly over the area of effect of a single weapon, one can use- 
fully employ the concept of weapon density (weapons targeted per unit 
area) and seek the weapon density as a function of value density which 
optimizes the total target destruction for a given total number of 
weapons. 

Before such an optimization can be effected, however, it is necessary to 
obtain the relationship between the weapon density applied to a sub- 
region, expressed for convenience as the fraction of the original value 
surviving.  In the most general case, this function can vary with posi- 
tion in the target, reflecting the possibility oi varying degrees of 
vulnerability over the target. 

We introduce the following notation: 

X       Position within target (x, y coordinates) 

U)(X)    Density of weapons targeted in vicinity of X (number/unit 
area) 

V(X)    Target value density in vicinity of X (value/unit area) 

F(u>)    Fraction of destruction produced by weapon density u,   in 
the absence of hardening 

M(X)    Vulnerability (hardening) factor (Osfisl) expressed as 
effective degradation of weapon density 

W      Total number of weapons intended against target. 

The total payoff for a given weapon density distribution is then given 
by: 

H = / VF(MW)dA (i) 

where the integration is understood to be over the whole target area, 
and dA is the area element. 

Similarly, the total number of planned weapons is given by: 

W - f u>dA 
h 
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We seek now the weapon density distribution which maximizes the payoff 
for a given w. Introducing a Lagrange multiplier $0, and applying the 
generalized method described above,* we seek the weapon density function 
which maximizes the unconstrained Lagrangian. 

L - H - AW 

This is equivalent to maximizing: 

L -  /[VF(WM) - XwJdA 

(3) 

(4) 

The density function u\    which maximizes this Lagrangian for a given A 
ts obtained simply by maximizing the expression inside the integral at 
each point (see cell problem discussion in Everett's paper, appendix C), 
The optimum density at any point is therefore a solution of: 

MAX - {VFOiW) - Awl 
w   ' * 

(5) 

For the case where F is monotone increasing, concave (diminishing 
returns), and differentiable, an internal maximum of (5) can be sought 
by zeroing its derivative: 

&•  [VF(MW) - Aw]- VF'(pwx) M-w-0 (b) 

Letting G • (F')  stand for the inverse function of the derivative of 
F leads to: 

<*>X Ic A. (7) 

Equation  (7)  gives  the  internal maximization of  (5).     To complete the 
solution we must account for the constraint u>*>0  (negative densities 
arc not allowed).     Thus  the optimum is given by  (5)  only if wx*sO and  if 
VF(MW )  - Aw iO,  since otherwise  (5)   is maximized by w- 0.    The com- 
plete solution can therefore be stated: 

wA » 

J« ifwxaO and VF(^w )  -AuteO 

(8) 

\ 0 otherwise 

(This solution is also valid even if F is not concave -- a situation in 
which G may be multivalued -- provided that one uses that value of 
G(A/VM) for which VF(M^)  -Aw is a maximum.) 
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Obaarva that tha opt tmui» danaltv glvan t«v (H\ in M function only of V 
and M, HI\(I 1« wxpllvltlv Indapandant of poattton.  If wa can furthai 
aaaum« that the vulnerability *' In a function onlv of tha value danaltv 
V and U otherwtae independent of poalttou,* than we eM aimplltv ihr 
fonaulatlon and aolutIon aomewhat.  In thle caae, all pertinent I«IS.I 

charectet lat lea at« eutumarlaed hv two fiuu-t tone: 

A(V> - total araa of thoaa araaa whoaa valua danattv 
la mental than V 

M^V) - vuluerahl lit v tactor an a function of valua danaltv 

live optimum waapon danalty ny given hv (8> hacomaa than a function oulv 
of tha valua danalty V: 

[üTVT ü
(V^VT) 

lf wx  *• *»d v^ nw) \w :*o 

•k   (V) (^ 

otherwise 

and  tha total  pavotf and total waapona ara given  In tha al«ple  torm a| 
stielt iea   Integrate: 

lV))dA(V) 

tltn 

Thta  lompletea  tha general optlmlaatIon of waapon danaltv      Kor explicit 
aolutlona wa  require apaclftc   tunctlona  for  tha target   valua diefitbutlon 
function .\t,\"*.   tha daatructlou  function t'wl,  and  tha vuluarahl ll t v 
dtatrlhutlon ^(\M       Wa  ahall  now couatdar  aeveral   part Ineni   tMM< 

Which aaeata generally quit a plaualbla,  and   la   in any caaa certatnlv 
true   If   the  variation of M artaaa   from optimisation oi   ehelttii   deplov 
want,   for example. 
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Locally Random Impact Model:  Whan tha CEP la not slgnlfleantly amaller 
than the lethal radius, or when the. delivery probability of Individual 
weapons la low, the situation over any homogeneous part of the target 
can bo closely approximated bv regarding the weapons AS having been 
dropped uniformly at random ovar that part. 

Consider, therefore, a region of area A (large compared to the lethal 
ai«a of a single weapon) Into which N weapons each with lethal area 
TTKK and delivery probability P are delivered uniformly and Independently 
at random.  The probability that any given point In the region will sur- 
vive one weapon Is-. 

S(l) . 1 JL_ 
A (11) 

and, since weapon arrivals are Independent events, the probability of 
surviving N Is: 

lm-T-) S(N) - 11 ^- (12) 

Introducing the parameters K and u> I 

K - PnR ' - expected lethal area of one weapon 

(13) 

w • N/A  a weapon density 

allows (12) to be written a«: 

S(u>) - (l - *£-) (U) 

This gives for the destruction function: 

(• - *)" FN(u>) - 1 - S(w) - 1 - (I - ~) (15) 
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Equation (15) still contains an extra parameter, N, which la the number 
of weapons In the area A used to derive (12)--presumed large compared 
to the effects of a single weapon and small compared to the total target 
size. We are currently Interested In the limit as this area A becomes 
Infinite compared to the effects of a single weapon, hence In the limit 
as N—*•»: 

F^ui) - lim FN(ü>) - 1 - e " w (lb) 

N—— 

which becomes our final destruction function for the locally random 
impact model. 

"Perfect" Weapon Model:  At the other extreme from the locally random 
impact model is the hypothetical situation where the weapons have zero 
CEP, delivery probability of unity, and completely destroy a hexagonal 
region of area K with no damage outside the region. 

This situation closely resembles the case of "cookie-cuttar" weapons 
of zero CEP and unit delivery probability, and deviates from the latter 
only when the area covered Is so densely packed that the "cookie-cutter" 
circles begin to overlap--whlch does not occur until the fractional 
coverage exceeds n/(2 "V3) or about .91. 

For such "perfect" weapons the destruction fraction is given by: 

(17) 

Intermediate Cases:  We have considered two extremes, locally random 
impact, and perfect weapons.  For actual situations, the targeting will 
not be random, but some optimum pattern of DUZs. 

As the CEP becomes larger than the lethal radius, or the delivery prob- 
ability becomes small, the situation--even though based on a pattern of 
DGZs--approaches a situation described by the random Impact moded. On 
the other hand, for high delivery probability and small CEP, the situa- 
tion begins to approach the "perfect" weapon case--partlcularlv as the 
weapon effect radius becomes sharp (close to "cookie-cutier"--e.a. , the 
conventional 020 model). 

Returning to the destruction function given by (15) containing the 
extra parameter N (from which the random model was obtained by letting 
N—••«•), we observe the remarkable fact that for N-l, this function is 
precisely the damage function (17). 
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Since this function contains, for the extreme value« of N, the two 
limits we have considered, it seems reasonable to suppose that any 
actual intermediate case could be adequately approximated by this 
function for some intermediate value of N. 

We shall accordingly adopt this general function as our destruction 
function, subject to subsequent empirical verification. 

The general law therefore becomes: 

r.(,.ijy u<ü 
K 

FM(u) - \ (18) N 

Pot purposes of determining the optimum distribution of weapon density 
over a target of varying value density we wish to employ Eq. (9), for 
which we require the function G - (?')"*. Accordingly, 

.  r(" *r -<! 

N             du    N           | 

\o •*T 

(19) 

for which the Inverse function is easily determined to be: 

v»-S[i-©•""»] (20) 

Thus from (9), the optimum weapon density is given by: 

u(V) K L   \KVu(V);N  lJ   KVp <1 
(21) 

ux (V) 

KVu 
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and for which the destruction fraction la ••ally calculated: 

I   \Wu(V)j 
X \N/N-1 

KVy 
<1 

F
NK 

V) 

KVu 
>1 

(22) 

This completes the general treatment for arbitrary target value distri- 
butions. 

Gauaaian Targets:  A particularly important special case is that of a 
Gaussian target, for which the value density distribution is given by: 

V(x,y) 
2ito 

1  -r2/2o2 
(23) 

(The total value is here normalized to unity.)  From (23) we determine 
the relationship between radius and value to be: 

r2(V) = -2o2 *n(2*o2V) 
(24) 

and hence  the cumulative area distribution function  to be: 

A(V)  - 7rr2(V)  «  -2no2 /n(2ito2V)    for V£—l-r 
2*0 

(25) 

and the differential element is: 

dA(V) 2ito dV (26) 

Solution For Constant Vulnerability:  Combining Eq. (10) with (26) and 
(22), and let I Inn jj« I: 
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H. 
l/(2io2) 

X/K 

N 
ITT urw- 

i - 2no2X (N -  1) 
( 

N 
2.\TTT 2uo  x\ 2no   X (27) 

Trans forming  ehe Lagrange multiplier \   to a new multiplier |3: 

[2TO2X 
1/CN-l) 

(28) 

we can rewrite  (27)  as: 

I*1 f1 Hß -  1  -  6"  ' | 1  •  (N-l)   *   (1 .,] 
(29) 

The total number of weapons aa given by (10), (21), and (26) 

1/(2 wo*) 
1 

X/K 

(30) 

leads. In terms of ß, to: 

WB • ^N-1)K2,O
2
 L. !.(!.„] (31) 

In order to permit explicit exhibition of payoff as a function of num- 
ber of weapons, it Is necessary to define a new function, \, which 
is the inverse of 

iny - 1 - x (32) 
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that la, y - > (x).  It la defined for all nonnetf/itlve Mgumnta, wtth 
values on the Interval aero-one. With this function, (29) and ('if) can 
be rewritten, in terma of surviving value: 

N-' fl . (N-l) (1 - B)] 

.T/_w \ 
\2iro'N(N - \)f 

S • ß 

B (33) 

Equations (33) summarise the relatlonahlp between surviving fraction, 
S, and number of weapons targeted, W, for Gaussian targets, and with a 
model parameter N, which can range from 1 to». 

The two limiting forma of (33), corresponding to N - 1 and N -**• °» are 
interesting and Important, and are easily shown to be: 

Sj - exp(-KW/27.c> ) 

These are often termed the power law (or exponential law) and the square 
root law, respectively. 

Derivation of Kill Probability Function 

A variety of kill probability functions are in general use.  The "normst 
model" employs a function of the form: 

PK(D - e-r2/2oK2 (3M 

The "cookie-cutter" model employs a discontinuous function: 

Pk(r) 

1    RK^r^0 

i0    r>RL 

(3S> 
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where K« IS the so-called "lethal radius."  The relation between R^ 
and <j£ is obtained by equating lethal areas 

l-n •> 

-.'• { K- 2,,_ 2 
K  rdrde (3b) 

leading to the relation 

(37) 

Other functions have often been used and, indeed, it has occasionally 
been found convenient to employ a generalised kill function of the 
form: 

GK(r) - e 
,, W-l K. 

j-0 *' (38) 

where 

Wr 

Again, we can equate lethal areas to relate a with R • 

TTR, 

2n  <*> 

If 
0    0 

GK(r) rdrde 
(39) 

so that 

RK
2 « a2 for all W (40) 

The parameter W serves to alter the shape of this kill probability 
curve.  Thus, Gj((r) reduces to the normal curve for W-l and the 
cookie-cutter for W—*•».  Standard kill curves, such as the D20 *n<1 

030 curves of AFM 200-8, representing, respectively, ground burst and 
optimal air burst blast damage probabilities as a function of distance, 
can readily be approximated. W - 6 approximates closely the C^Q curve, 
and W - 3 approximates the 030 curve. 
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Integration of a kill probability function over appropriate density 
functions allows the representation of such factors aa delivery error, 
geodetic error, extended targets, etc. 

Assume an extended target with the Gaussian normal value distribution 
as follows; 

2       2 
V(r)   - e'r  /2°Tgt 141) 

2TTCJ 
Tgt 

V(r> - value per unit area at distance r from center 

0.   - standard deviation of value distribution 
Igt 

Clearly: 

1   f-  -r! 2  2 
1.0 ~   I     %'*  /2°Tgt dr (41) 

Tgt • 

Define a radius, R95, such at 95% of the value of the target Is con- 
tained within this distance of the target center.  (This R95 is the 
target radius used in the QUICK system.) 

Then   -R95 2       2 /-or  2 ,„2 (43) •"»-r2/20i. __ „ r.-Sno^     dr /  e r 'Tgt dr - .95 /  e r 

Jo Jo 

Solving this equation for o   in terms of R95, we get: 

°Tgt * R95/2-448 

Assume a CEP, the radius of a circle with center at an aiming point 
which will contain 507. of the centers of Impact of weapons aimed at 
the aiming point.  Assuming a circular normal (Gaussian) distribution 
of the almina errors: 

2., 2 
/ v    r   -r /2o„„_ 

p(r) -  2 *     CEP 

aCEP 
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where 

p(r> - probability aiming error I« r 

0   - standard deviation of aiming errors 
I.e.« 

Bv definition of CEP 

/ 

CEP 
P(r> dr - 0.5 

Solving for 0 ,..., In terms CKP 

CEP 
8493 * CEP 

Assume a weapon Is aimed at the center of the target.  Krom the nature 
2 

of the Causslan distribution we can define a standard devtatlon 0* « 
2     2 

0 ,__ + 0_  such that the circular normal distribution characterised 
CEP   Tgt 2 

bv Jp Is the convolution of the distributions characterised by C?r 

and a 
Tit 

CEP 

Therefore, if 

then 

P_<M) - probability of target kill 

kill function parameter 

G (rt - kill function from Eq. (38) 

PKtN) I exp 
2woD      o        0 4 GK(r)  nie (44) 
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Evaluating  the   Integrals 

rKW - 1 (2WX2     \W 

1   •   2WX2/ 

(U7) 

where X - o   /R„ 

or 

PK(W)   -   1   - 4    v' 
3—r~2 

which  Is  the   function used   In QUICK. 
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APPENDIX B 

OPTIMIZATION OF DGZs FOR COMPLEX TARGETS 

Module ALOCOUT Js responsible lor selecting optimum desired ground zeros 
DC./.s) for weapons at located to complex targets.  The complex target may 
contain several component target elements, each with specific coordinates, 
hardness, and some given time dependence of value.  To place this diverse 
target element information on a commensurate basis for efficient DGZ 
selection, each target component of the complex is represented as a 
series of simple point value elements.  Complex elements with more than 
one hardness component generate more than one such target element, and 
area targets generate several elements, spread over the area of the tar- 
get, to represent a value spread over the area.  A (DGZ) Desired Ground 
Zero Selector then uses the data to select optimum aim points within the 
target complex. 

The selection of DGZs is a two-step process.  First, the prescribed war- 
heads are assigned initial coordinates through a "lay-down" process in 
which each successive warhead is targeted directly against the target 
element where the highest payoff is achieved, taking into account colla- 
teral damage to all other target elements.  Second, a general-purpose 
function optimizer, FINDMIN, calculates the derivatives of the payoff 
as a  function of x and y coordinates of each weapon and adjusts the 
coordinates to minimize the surviving target value.  FINDMIN terminates 
either after a maximum number of iterations (which can be specified by 
11)0 analyst) or after it finds that it can no longer make significant 
Improvements in the payoff. 

The mathematical representation used is as follows. 

The weapons allocated to a complex target are to be placed in a manner 
which attempts to minimize the total escaping target value.  To simplify 
discussion, the notation below is introduced.  A second subscript, j, 
referencing the 1tn target element, is used when needed. 

V.    = value of j   target element remaining immediately 
following arrival of the itn weapon 

S     • probability of survival of jfc  target element associ- 
ated with weapon i 

E     = amount of value of j   target element that "escapes" 
^      between arrival of weapons i - 1 and i 

T     = time of arrival of weapon i (To is an initial time when 
the full target value is applied) (Tj<£T$ + ^ all i) 

497 

—_ 



.Hl   II  II    »II ••  III.«!. 

V (T ) - value of j th target, at time T 

N     • number of weapons 

NT    = number of targets 

The following sketch illustrates the treatment of the time-dependent 

values of the )c^ target. 

Amount of target value 
picked up by weapon 1 

Amount of target value 
picked up by weapon 2 

i me 

From this sketch, the following relationships should be apparent.  Th« 
equations Immediately below refer to a single target (|), but for simplic- 

ity the j subscript is omitted. 

Vt   =   VnVS.V.   _   l/nii J (i.   1,2,   ....  N) 

-i - vi - i [! - ny/ircr, . j)] ( i -  1,2,   .... N • 1) 
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1'iiini  t In-  previous  equations, 

y* "Li SkjvCTi) •*Ei "[iiSk][v(Ti-i} *v(Ti)] 
/i-i \ 

(For i  =  1,  the product I   II S. 1 is understood •  1.    Also V(TN      ,) 
\k-l K/ N * • 

The total escaping value associated with target j is 

N*l     N*l /fi-1  "I  r -t 

o.) 

The value on target J which escapes after arrival of weapon 1 is gi«N 
by 

N+l 

The effective value of target J associated with weapon I defined by 

N+l 

This value Is introduced for computational efficiency and may be thought 
of as the total value available for weapon i, the effect of all other 
weapons having heen taken into account. 

The marginal value picked up on target j due to weapon i is given by 

v • V 
where SJI is a function of, among other things, the position of weapon i, 
For a fixed weapon configuration, weapon 1 can be moved from (x,y) to 
(x'.y1) and the marginal escaped value is given by: 

NT 

s ^ Fij(sij - »v 
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To establish an Initial weapon configuration, a lay-down is performed as 
follows.  Initially, set SJJ - 1 for all i, J.  Denote by SJ. the sur- 
vival probability of the k'n target, relative to the ith weapon, when 
this weapon is placed on the .1tn target.  Now the tth weapon Is placed 
on that target, j, which yields a maximum value for the expression 

NT 

& Fik(sik - s!k> 

lk are now set to equal to sJ  (k - 1,2,..., NT) the Fllc (all 1, k) 
edetermined, i is increased by one, and the process repeated until 

The S 
are redetermlned 
all weapons have been allocated 

This weapon configuration can now be Input as the initial position to a 
"hill climber" routine, based on a steepest descent algorithm, which 
attempts to optimize further by replacing the discrate set of possible 
weapon positions with the two-dimensional continuum.  The function to b« 
minimized is: 

NT  N+l 

£   £ 
j«l  i»l 

E. . 

Processing by the optimizer will be terminated either when the optimum 
has been achieved or when a specified number of iterations have been 
completed.  In either case, to insure that the local optimum obtained 
cannot be further improved, the value of removing, in sequence, each of 
the weapons from its final location and placing it on one of the target 
points is explored.  If the results obtained by this method are better 
than those achieved with the previous configuration, this new assignment 
will be used as an Initial one for a second utilization of subroutine 
F1NDMIN.  If not, the results of the first use of subroutine K1NÜMIN 
will be kept. 

500 



 -" 

APPENDIX C 

GENERALIZED LAGRANGF. MULTIPLIER METHOD 
TOR SOLVING PROBLEMS OF OPTIMUM 

ALLOCATION OF RESOURCES 

Hugh Everett III 

Weapon«Systems Evaluation Divition, InttttuU for De/eiu* Analytt, 
Watktnglon, D. C. 

(Received August 30, 1962) 

The usefulness of Lagrange multiplier« for optimisation in the pretence 
of constraint* it not limited to differentiable (unctions. They can be 
applied to problems of maximising an arbitrary real valued objective func- 
tion over any aet whatever, subject to bound« on the value« of any other 
6nite collection of real valued functions defined on the same «et. While 
the use of the Lagrange multiplier« doe« not guarantee that a solution will 
neceaiarily be found for all problem«, it i* 'fail-safe' in the sense that any 
•olution found by their use is a true solution. Since the method is so sim- 
ple compared to other available methods it it often worth trying Crst, 
and succeed« in a surprising fraction of cases. They are particularly 
well suited to the solution of problems of allocating limited resource« 
among a set of independent activities. 

IN MOST textbook treatments, Lagrange multipliers are introduced in a 
context of differentiable functions, and are used to produce constrained 

stationary points. Their validity or usefulness often appears to be con- 
nected with differentiation of the functions to be optimised. Many 
typical operations-research problems, however, involve discontinuous 
or nondifferentiabje functions (integral valued functions, for example), 
which must be optimized subject to constraints. 

We shall show that with a different viewpoint the use of Lagrange mul- 
tipliers constitutes a technique whose goal is maximization (rather than 
location of stationary points) of a function with constraints, and that in 
this light there are no restrictions (such as continuity or differentiability) 
on the functions to be maximized. Indeed, the domain of the function to 
be maximized can be any set (of any cardinal number) whatever. 

The basic theorems upon which the techniques to be presented depend 
are quite simple and elementary, and it seems likely that some of them may 
have been employed previously. However, their generality and appli- 
cability do not seem to be well understood at present (to operations ana- 
lysts at least). The presentation will consequently place primary empha- 
sis on the implications and applications of the basic theorems, as well aa 
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discussion of a number of techniques for extending the usefulness of the 
methods. 

FOKMULATION 

FOR CUAHITY of presentation, we shall develop the subject in a language 
of problems concerning the optimal allocation of resources. Other appli- 
cations of the theorems will suggest themselves. 

Let us suppose that there is a set S (completely arbitrary) that is in- 
terpreted as the set of possible strategics ör actions. Denned on this 
strategy set is a real valued function H, called a payoff function. H(x) 
is interpreted as the payoff (or utility) which accrues from employing the 
strategy x<S. In addition, there are n real valued functions C*(*- 1 - - -n) 
defined on S, which are called Resource functions. Die interpretation of 
these functions is that employment of the strategy x«8 will require the 
expenditure of an amount C*(x) of the fcth resource. 

The problem to be solved is the maximisation ot the payoff subject to 
given constraints c*, fc — 1 - • - n, on each resource; i.e., to find 

max,.j H(z) 

subject to C*(x) £c\ all Jfc. 
A particular subclass of this general problem with wide application is 

what will be called a cell problem (or separable problem) in which there 
are a number, »n, of independent areas into which the resources may be 
committed, and for which the over-all payoff that accrues is simply the 
sum of the payoffs that accrue from each independent venture (cell). 
In this type of problem we have a« before, for each cell, a strategy 
£,, a payoff function H, defined on $„ and n resource functions C, defined 
on £,. H,(xi) is the payoff in the ith cell for employing strategy x,«8„ 
and for each it, C,'(x,) is the amount of the fcth resource expended in the 
tth cell by employing strategy x, in that cell. In this case the problem to 
be solved is to find a strategy set, one element for each cell, which maxi- 
mises the total payoff subject to constraints c on the total resources ex- 
pended; i.e., 

max    £;:: //,(*.) 
• H«kalm*f |«i| 

•»•Si 

subject to jy.Zt C,'(x,)5c*   for all A. 

This type of problem is simply a subclass of the previous general prob- 
lem since it ca*i be translated to the previous problem by the following 
identifications: 

S-1!'-" *• (direct product set), 
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(where a strategy itS consists of an ordered »i tuple (r,, • • •, T„) of strate- 
gies, one for each S.) 

W(x)-E'- //,(x.), 

C*(i)-E:^C.'(x.),   all* 

MAIN THEOREM AND SOME OF ITS IMPLICATIONS 

WE NOW present the main theorem concerning the use of Lagrange mul- 
tipliers, and discuss its meaning and implications.   The proof will be sup- 
plied in a later section. 

THEOREM 1 
1. X*, k«- 1, n are nonnegative real numbers, 
2. z*cS maximizes the Junction 

H(x) - £t:r X*C*(x) over all xtf, 

-•3. x* maximize» H(x) over all those xeS luch that C*SC*(x*) Jor all k. 

DitcuBMion 

This theorem says, for any choice of nonnegative X*, k—\, n, that if an 
unconstrained maximum of the new (Lagrangian) function 

//(x) - Et:r x4 c*(x) 
can be found (were x , say, is a strategy which produces the maximum), 
then this solution is a solution to that consli-ained maximization problem 
whose constraints are, in fact, the amount of each resource expended in 
achieving the unconstrained solution. Thus if x* produced the uncon- 
strained maximum, and required resources C*(x*), then x* itself produces 
the greatest payoff which can be achieved without using more of any re- 
source than x  does. 

According to Theorem 1, one can simply choose an arbitrary set of non- 
negative X's, find an unconstrained maximum of the modified function. 
H(x) — 2*11" X* C*(x), and one has as a result a solution to a constrained 
problem. Notice, however, that the particular constrained problem which 
is solved is not known in advance, but arises in the course of solution and 
is, in fact, the problem whose constraints equal the resources expended by 
the strategy that solved the unconstrained problem. 

In general, different choices of the X*'s lead to different resource levels, 
and it may be necessary to adjust them by trial and error to achieve any 
given set of constraints stated in advance. 

However, it is noteworthy that in most operations-research work one 
is not simply interested in achieving the optimum payoff for some givrn 
resource levels, but rather in exploring the entire range of what can be 
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obtained as a function of the resource commitments. In this case it mutters 
tittle whether this function is produced by solving a spectrum of problems 
with constraints stated in advance, or by simply sweeping through the 
X*'s to solve a spectrum of problems whose constraint levels are produced 
in the course of solution. The method when applicable is therefore quite 
efficient it the whole spectrum of constraints is to be investigated. Even 
in the case where only a single constraint set is of interest the use of this 
method, and adjustment of the X*'s until the constraint set is achieved, 
is often more efficient than alternative procedures. 

A limitation of the Lagrange multiplier method arises from the fact 
that it does not guarantee that an answer can lie found in every cuse 
It simply asserts that if an answer can be found it will indeed be optimum. 

In cases where multiple constraints arc involved that are not completely 
independent it may not be possible to simultaneously utilize all resources 
to the full allowance of the constraints. This can happen if the utiliza 
tion of one resource requires the utilization of others, or equivalently in 
cases where some constraints may involve various combinations of others. 
These cases are analogous to problems in linear programming where cer- 
tain constraints prove to be irrelevant in the optimum solution. 

In such cases one might actually find the optimum solution but be un- 
able to establish the optimality of the result because of incompletely util- 
ized resources. Nevertheless, there is a large class of allocation problems 
in which the constraints really are independent (i.e., the resources can l>e 
consumed independently in the region of interest). In such cases solu- 
tions can usually be obtained that give consumption values adequately 
close to the constraint values. The existence of optimum solutions that 
can be found by this method actually depends upon an approximate 
concavity requirement in the region of the solution that will be discussed 
more carefully later. 

At this point we wish to remind the reader of the generality of Theorem 
1. There are no restrictions whatever on the nature oj the strategy set S, 
nor on the functions H and C* other than real-valuedness. The strategy 
set may therefore be a discrete finite set, or an infinite set of any cardinal 
ity. Furthermore, the payoff function and the resource functions can 
take on negative as well as positive values. |C*(x) negative may be inter 
pre ted as production rather than expenditure of the Hh resource.] 

Application to Cell Problem 

One of the most important applications of Theorem 1 is in the solu- 
tion of cell problems. As shown in the Formulation Section, these problems 
are a subclass of the general problem to which Theorem 1 is applicable 
In this case, maximizing the unconstrained Lagrangian function 
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is equivalent to finding 

»**..«.:;: s.iL::r «.c)i - ££: x'i£::: f.V.n. 
which (interchanging summation order) is the aame as: 

n»*«o::r •• £;~ .*'<»<> - £tr ** C«*(«i)J. 
But, since the choices x, may be made independently in each cell as a 

consequence of S«Yl'~ 8» l'ie sum a obviously maximised by simply 
maximising 

«.(x.) - Et" \V.\x.) 
• Ft each cell mdepe'uietitly of strategy choices in other cell», and summing l'"' 
payoffs and resources expended for each cell (for the strategy that maxi 
mixed the l.agrangian for that cell) to net the total payoff and resource 
expenditures. Theorem I then assures us that the result of this process 
is a solution to the over all constrained problem with constraints equal to 
the total resources expended by the strategy produced by this procedure. 

Observe that there is no possibility that just a local maximum to the 
over all problem has been obtained. If the Lagrangian in each cell hus 
been correctly maximized (i.e., is not itself merely locally maximized), 
then theorem 1 guarantees that the result is a global maximum to the over- 
all problem. 

Theorem 1 says nothing about the manner in which one obtains the 
maxima of the unconstrained Lagrangian functions, but simply asserts 
that if one can find them, then one can also have maxima of a problem 
with constraints. The 1-agrange multipliers therefore are not a way in 
themselves of finding maxima, but a technique for converting optimization 
problems with constrained resources into unconstrained maximization 
problems. 

This conversion is especially crucial for cell problems with constraints 
on total resource expenditures, where the conversion to unconstrained 
maximization of the lagrangian function uncouples what was an essen 
tiully combinatorial problem (because of the interaction of choices in euch 
cell through total resource constraints) into a vastly simpler problem 
involving independent strategy selections in each cell. 

The present treatment of Lagrangc multipliers was motivated, in fact, 
by a cell problem involving continuous, differentiable payoff functions, the 
solution of which was attempted by a classical Lagrange multiplier ap 
pruned In this case, the resulting (transcendental) equations had in 
many circumstances a multiplicity of solutions, and the embarrassing 
problem arose as to which of several solutions to select for each cell. It 
appeared as though it might be necessary to try all combinations of choices 
of solutions—an impossible task in this case which involved several hun- 
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dred cells. As a result of this difficulty, a closer look was taken at the 
role of Lagrange multipliers, and the present treatment is the result. 
The original problem of multiple solutions is, of course, easily solved by 
simply selecting that solution in each cell which gives the largest value 
for the Lagrangian. 

It is the recognition that the objective is to maximise the lagrangian, 
by whatever means, not to sero its derivative, which is decisive. In 
many cases it is expeditious to maximise the I^agrangian by finding seroes 
of its derivative. One can then easily select a final value by testing each 
solution (if there is more than one) to find which gives the largest (global) 
maximum. This procedure automatically excludes any solutions that 
correspond to minium or saddle values, and also facilitates taking into 
account any boundary conditions (such as nonnegative resource con- 
straints) by testing the boundary cases as well, t. 

In other cases (particularly cases of nonnumerical strategies, or dis 
crete strategy sets such as integers), the Lagrangian may l>est be maxi 
mised by trial and error procedures, or even direct computer scanning of 
all possibilities. 

Another possibility is illustrated by cases wherein resources may U- 
applied only in integral numbers Often in such cases one can define a 
continuous differentiable payoff function that attains its correct value on 
the integers. A useful trick applicable to many such eases is to maximize 
analytically the Lagrangian based upon the continuous function, and then 
test the integer on each side of the solution, selecting the one that maxi 
miaea the Lagrangian. 

PROOF OF MAIN THEOREM 

THE moor of the main theorem presented and discussed in the previous 
section is quite elementary and direct: 

Pro»/ of Main Theorem.    By assumptions (1) and (2) of Theorem 1, 
x\ *- 1 • • -n, are nonnegative real numbers, and i*»S maximizes 

H(Z) -LJ:r x* c*(«) 
over all z<S (the s  producing the maximum may very well not be unique 
all that we require is that x* be tome element that maximizes the La- 
grangian).   This means that, for all x«S, 

w(x*) -rtzr x' cV) a H(X) -£{:; \' <*<«), 
t This type of constraint (et; . nonnegstivity of retourcet), which hold» inde- 

pendently for each cell rather than over-all at with total retotircea, i» handled hy 
»imply reatrietint th« atrategy net for the cell appropriately    The Lairange mul 
tipliera art reserved fur over-all constraint» 
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and hence, that 

w(x*)^//(T)+Li:rx'ic*(i*)-c4(i)] 
for all JtS. But if the latter inequality is true for all x«S, it is necessarily 
true for any subset of S, and hence true on that subset $* of «s for 
which the resources never exceed the resources C*(x*). Notationally: 
j«cS*<^ for all ifc, C*(x) gC*(x*).    However, on the subset S* the term 

D:rx4[C(x*)-C(x)i 
is nonnegative by definition of the subset and the nonnegntivity of the 
X*'s, hence our inequality reduces to //(x*) 2;rY(x) for all x«S*, and the 
theorem is proved. 

LAMBDA THEOREM 

THEOREM 2 
f. Let |A, |,{At |k•»!•••* be two set» of X 's that produce solutions 

x,* and jt*, respectively. Furthermore, assume that the resource eipendilures 
of these two solutions difler in only the jth resource. 

C*(x,*)-r*(x,*)fori^ 
and that C'(x*)>C\x1*). 

2.    Then: X,'fc|ff(x,*) -//(x,*) ]/[<"( x.*) -CW)lfcV. 
This theorem states that, given two optimum solutions produced by 

Lagrange multipliers for which only one resource expenditure differs, the 
ratio of the change in optimum payoff to the change in that resource ex- 
penditure is bounded between the two multipliers that correspond to the 
changed resource. 

Thus the Lagrange multipliers, which were introduced in order to 
constrain the resource expenditures, in fact give some information con- 
cerning the effect of relaxing the constraints. 

In particular, if the set of solutions produced by Lagrange multipliers 
results in an optimum payoff that is a differentiate function of the re- 
sources expended at some point, then it follows from Theorem 2 that the 
;/'s at this point are in fact the partial derivatives (or total derivative in 
vase of one resource) of the optimum payoff with respect to each resource 
(all other resources kept constant): 

\dH   /8C )ct»on«Ull» — X'. 

Proof. The proof of Theorem 2 is also quite elementary. By hy- 
pothesis xi* is the solution produced by (x/|, hence *t* maximizes the 
Lagrangian for (X,*|, which implies: 

tf(x,*) £tf(x) +X1'|C'(x/) -C'(x))+E»„>X/|C*(x,*) -C*(x)| 
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holds (or all nS, *nd hence in particular holds for x*.    But since by hy- 
pothesis €*(!*) "C*(x*) for k*j, we can deduce that 

//<V) *«(«,*) + A.^C W) - ("(x,*)), 
which, since by hypothesis ("(i,*) >C'(x,*), implies that: 

[«(O-wtOi/iaO-c'W)]^,', 
which proves one side of the conclusion of Theorem 2.    Interchanging the 
roles of x,* and x,' land observing the reversal of the sign of 

produces the other side of the inequality to complete the proof of Theorem 

An obvious consequence of Theorem 2 is the fact that, if all but one 
resource level is held constant, the resource that changes is a monotone 
decreasing function of its associated multiplier. This fact indicates the 
direction to nuke changes when employing a trial and error method of 
adjusting the multipliers in order to achieve some given constraints on 
the resources. 

The lambda Theorem also suggests a potentially useful technique for 
choosing a starting set of multipliers for such a trial and-error method of 
achieving given constraint levels in a cell problem. Beginning with any 
reasonably good allocation of the given resources, one can often calculate 
easily what the effect on the payoff is for a small additional increment of 
each resource, optimally placed within the cells. The differential payoff 
divided by the increment of resource is then taken as the starting X for 
that resource. The X's are then adjusted by trial and error until the 
Lagrange solution corresponds to the given constraints, producing the 
optimum allocation. 

THE EPSILON THEOREM 

A NATURAL question with respect to the pu.ctical application of the 
Lagrange method concerns its stability—supposing that as a result of 
methods of calculation or approximation one cannot precisely maximise 
the Lagrangian, but can only guarantee to achieve a value close to the 
maximum. Such a solution can very well he at a drastically different 
resource level and payoff than that which actually achieves the maximum, 
and yet produce a value of the lagrangian very near to the maximum 
For the method to I* practical, it is required that in this situation a solu- 
tion thut nearly maximises the lagrangian must he a solution that also 
nearly maximises the payoff for the resource levels that it itself produces 
(which may he quite different than those of the solution that actually 
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maximizes the Lagrangian)- Only in such a circumstance would it be 
safe to assert that the solutions produced by any nonexact procedures 
(such as numerical computation with finite accuracy, or methods based 
upon approximations) were in fact approximately optimal solutions to the 
<on*trained problem. Such required assurance of insensitivity is supplied 
by the following ('epsilon') theorem. 

THEOREM 3 
/.    t comes within < of maximizing the Lagrangian, i.e., for all itS: 

H(V -£ X'fd) > W(i) -Z **C*<«) - «• 
-»S.    I is a solution of the constrained problem with constraints e* •*(?(!) 

that is Uself within t o( the maximum for those constraint*. 
The proof of this theorem, which is a simple extension of Theorem 1. 

exactly parallels the proof of Theorem 1 (with an added t) and will not 
be repeated. 

ADDITIONAL REMARKS, CONCLUSIONS. AND COMPUTATIONAL 
PLOYS 

Gaps or Inaccessible Regions 

Theorem 1 assures us that any maximum of the Lagrangian necessarily 
is a solution of the constrained maximum problem for constraints equal to 
the resource levels expended in maximizing the Lagrangian. 

The Lagrange multiplier method therefore generates a mapping of the 
space of lambda vectors (components X*, fc- 1, • -,n) into the space of 
constraint vectors (components c\ Jt= 1 • -n). There is no a priori 
guarantee, however, that this mapping is onto—for a given problem there 
may be inaccessible regions (called gaps) consisting of constraint vectors 
that are not generated by any X vectors. Optimum payoffs for constraints 
inside such inaccessible regions can therefore not be discovered by straight- 
forward application of the Lagrange multiplier method, and must hence 
be sought by other means. 

The basic cavise of an inaccessible region is nonconcavity in the (unction 
of optimum payoff vs. resource constraints (convexities in the envelope 
of the set of achievable payoff points in the space of payoff vs. constraint 
levels). This possibility, and several methods for dealing with it, will now 
be investigated. 

Before beginning this investigation, however, we wish to point out that 
even though the Lagrange multiplier method is not certain to obtain the 
desired solutions in all cases, any solutions that it does yield are guar- 
anteed by Theorem 1 to be true solutions. The procedure is therefore 
'fail safe,' a very reassuring property. It has been our experience over 
the last several years, which includes application of this method to a variety 
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of production and military allocation problems, that the method has been 
extremely successful, and nearly always has directly yielded all solution* 
of interest. The few situations in which the direct method fuiled were 
readily solved by simple modifications to the procedure, note of which 
will now be mentioned. 

Source of Gaps 

Consider the (n+1) dimensional space of payoff vs. resource expend) 
tures.    This space will be called PR space for brevity.    Every strategy 
x«S maps into a point in this spare corresponding to H(x),C*(x)(k= In). 
The entire problem is therefore represented by this set of accessible points 
in PR space.    The problem of finding the maximum of H subject to eon 
straints c , Jc— 1      n, is simply the problem of selecting that point of our 
set in PR space of maximum // that is contained in the subspace of PR 
space where the resources are Innrnded by the r 's.    The set of all such 
points (corresponding to all sets of values in the c''s) will be called the 
eniWope, and constitutes the entire set of solutions for all possible con 
straint levels. 

Consider now any solution *' produced by a set of Lagrangc multi 
pliers (XI. By definition J* maximizes the I^igranginn; consequently 
we have that 

//(i*) -£ xi cV)fcff(j) -r *4 <?(*) 
for all x<S.    Rearranging terms slightly, we have: 

ff(/)S//(/) -£ X' CV) +Z K' <V) 
for all xtS. If we consider now the hyperplane ii\ PR space defined by 
//-£x'C*+n wnere «•-#(**)-*£* &(**), we see that, because of 
the previous inequality, none of the accessible points in PR space lies 
above this hyperplane, and at least one point, H(x*),C*(x H»l n, 
lies on it. 

Each solution produced by (.«grange multipliers therefore defines a 
bounding hyperplane that is tangent to the set of accessible points in PR 
space at the point corresponding to the solution (hence tangent to the 
envelope), and which constitutes an upper bound to the entire set of ac 
cessible points. It is clear that, since no such tangent bounding hyper 
planes exist in regions where the envelope of accessible points in PR space 
is not concave, the 1-agr.inge multiplier method cannot produce solutions 

\ in such a region.    Conversely, for any point on the envelope (solution) 
where a tangent hounding hyperplane di*s exist (envelop«' concave at 
the point), it is obvious that there exists a set of multipliers (namely the 
slopes of the hyperplane) for which the strategy corresponding to the point 
in question nvaximi7.es the lAgrangian. 
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Thus tin- Lagrange method will succeed in producing all solution! that 
Correspond to concave regions of the envelope (optimized payoff vs. con- 
straint level), and fail in all nonconcave regions 

A fortunate feature of cell problems with many cells is the fuel that, 
even though there may be large convexities in the envelope in the PR 
space for each cell, the result of over all optimization is an envelope in the 
PR space for the total problem in which the convexities are vastly reduced 
in significance.t This property is the major reason for the general success 
of the I-agrangc method in solving cell problems. 

Some Method» for Handling Caps 

Despite the general success of I-agrange multipliers (at least for the 
problems we have encountered), occasions may arise where gaps occur in 
regions of critical interest. I'nder such circumstances there are several 
useful techniques that can be attempted before abandoning the procedure 
altogether. 

First, all solutions that can lie obtained outside the gaps contribute a 
good deal of information and can be used to bound the solution in the gap 
region. As was previously shown, each solution that can IK- obtained by 
Lagrange multipliers defines a bounding hyperplane that gives an upper 
bound to the maximum payoff at all points, and hence inside the gap as 
well. 1 or any point inside a gap, therefore, an upper bound can l>e ob 
tained by finding the minimum payoff for that point over the set of bound- 
ing hyperplanes corresponding to the solutions that one could calculate. 

On the other hand, every solution that can be obtained that has the 
property that none of its resource expenditures exceeds the resources of a 
point in a gap for which one is seeking bounds, obviously constitutes a 
fewer bound to the optimum payoff at the point in question, and the maxi- 
mum of these lower bounds can be selected as a lower bound to the payoff 
in question. Thus the set of solutions that can be obtained by Legr&nge 
multipliers can lie used to obtain bounds on the optimum payoff for inac 
cessible regions. 

There is another technique that is often successful in reducing gaps in 
instances where the bounds one can compute leave too large a region of 
uncertainty, and where the gap is caused by degeneracy in which a number 
of cells have gaps corresponding to the same multiplier.    A gap is char- 

1 lu f»ct, the g:»p structure for the over all problem obviously simply reflect» 
fmtlifulh the g:ip structure in the individual cells, «ith each nap in a cell correspond- 
ing to a given multiplier value occurring with the same magnitude vsame jump in 
pawn" and lesouifis) in the over all optimization at precisely the same multiplier 
value. Only degeneracies in which Several cells have gap» corresponding to the 
same multiplier can cause a larger gap in the over all problem, »nd such degeneracy 
is easily removed by techniques to be discussed in the following section. 
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acterued by the behavior that, as the X's are continuously varied, there 
are abrupt discontinuities in the resource levels generated. These dis- 
continuities can often be filled in cell problems by the following technique. 

Given two sets of Vs,(Ai*),(A,*), which are very close, but for which 
the generated resource levels markedly differ, one can make a mixed cal- 
culation in a cell problem using the set (X| ) in some cells and the set 
(,X,) in the others. If the two sets of X's are close together, maximizing 
the Lagrangian in any cell for one set wilt necessarily result in a solution 
that nearly maximizes the Lagrangian for the other set, hence by the 
Epsilon Theorem will yield a result that is guaranteed to be nearly optimum. 

Somewhat more generally, one can simply exploit the Epsilon Theorem 
directly in a cell problem, working with a given set of X's but deliberately 
modifying the choices in some or all cells in a way which moves in the 
direction of the desired expenditure of resources. By summing the devia- 
tions from maximum of the Lagrangian in each cell (epsilons) in which 
the strategies are so modified, a bound on the error of the result is obtained 
(which can be kept quite small in most cases by judicious choice of devia- 
tions) .    This appears to be a quite powerful strategem. 
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