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- ADAPTIVE KALMAN TYPE ESTIMATION APPLIED TO IMAGE PROCESSING*
by
A. Radpour, V. Ingle, H. Kaufman, and J. Woods

Electrical and Systems Engineering Department .
Rensselaer Polytechnic Institute

Troy, New York 12181

Abstract

Because of the stochastic and nonstationary nature of image processes, an adaptive
estimation algorithm is proposed and evaluated for on-line filtering of an image
This algorithm combines a least squares parameter
identification procedure with a two-dimensional reduced update Kalman f{ilter.
Results using an image with a 3 dB signal to noise ratio indicate that this adaptive
algorithm is very effective for image restoration.

scanned in a raster pattern.

1. INTROOUCTION

Digital processing of images has in recent years
become both economical and practical. Most sophis-
ticated image processing is performed off-line on
large machines because of the large memory and com-
putational requirements of the largely used non-
recursive methods. In particular for the image
estimation problem, classical nonrecursive techniques
involve operations with large matrices and their
inverses and are hence nct suitable for real-time
applications which might include:

1. Restoration of noisy images after reception
on a low power transmission 1ink.

2. Pictures arising from low 1ight level imaging
where background sensor noise significantly
contributes to the output signal.

3. Reception of a decoded DPCM image which re-
sults from a maximum-1ikel{ihood decoding
technique.

4. Processing of non-image two-dimensional (2-D)
data for noise reduction prior to display in
image format.

The use of digital computers for image estimation
or as it is more popularly called image restoration
started in the late 60's.” The classical method due
to Helstrom [1] was presented in 1967. Many varia-
tions on this original method were proposed {21,
(3], [4]. However they all shared the need for
manipulating large arrays with the attendant need
for large generai purpose computers.

*This research sponsored by the Air Force 0ffice of
Scientific Research, Air Force Systems Command,
USAF, under Grant No. 77-3361. The United States
Government is authorized to reproduce and distri-
bute reprints for Governmental pirposes not with-
standing any copyright notation hereon.
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More recently various recursive algorithms have ]
been derived which permit a more efficient realiza-
tion (5], [8].

The methods discussed in [5] and (6] are however
recursive in only one direction and therefore do
not fully attain the efficiency of true 2-0 recur-
sive processing, where the recursion is in both
dimensions. In (7] a method is presented for such
recursive processing for scalar observations from
a raster scan of a 2-0 data set. Recent results
however [9], point out errors in the derivation in
[7] c:sting doubt on the validity of the entire
method.

More recently Woods and Radewan [10] have proposed
the reduced update Kalman filter as a means for
alleviating the computational problems which had
precluded the implementation of 2-D estimation
algorithms. This filter was shown to be optimum
in the sense of minimizing the post update mean
square error subject to the constraint of updating
only the "nearby" previously processed picture
elements.

It should be noted however that the reduced update
Kalman filter and other proposed pixel estimation
procedures require an autoregressive type model
whose coefficients must be determined from some
available set of similar images [11]. Since such
sample images are not always available and since
images in general are nonstationary and not neces-
sarily true autoregressive processes, it is inter-
esting to consider the implementation of an
apaptive 2-D estimator. Such an adaptive estimator
(analogous to an adaptive controller) would consist
of an identification algorithm which calibrates the
picture model coefficients used by the Kalman
estimator. One such configuration recently pro-
posed by Keshavan and Srinath combines the identi-
fication of a 2-D interpolative model with a sub-
optimal estimation algorithm [12]. Although their
resulting image enhancement was rather impressive,
their proposed procedure does not appear suitable
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toxr on=line implementation with a raster type scan-
ning system. Furthermore, their proposed model has
a limited number of variable coefficients, and the
identification does not take into account any
nonstationarity in the image process.

Consequently towards the ?oal of developing an
adaptive estimation algorithm suitable for on-line
implementation on a raster scan of nonstationary -
images, this paper discusses the use of various
parameter identification algorithms for adapting

the mode! used by the reduced update filter devel-
oped in [10]. In general it can be concluded that
adaptation of the model results in a significant
reduction in the rms error between the true and
estimated pixel intensities.

In order that the reader obtaims a complete descrip-
tion of the algorithms, the reduced update filter
is susmarized in Section 2 followed by a descrip-
tion of the parameter identification procedures in
Section 3. Experimental procedures are then des-
cribed in Section 4, with results and conclusions
presented in Sections 5 and 6 respectively.

2. REDUCED UPDATE KALMAN FILTER

In one dimension, the Kaiman filter offers an
attractive solution to the linear filtering and pre-
diction problem. The extension of one-dimensional
Kalman filtering to two dimensions requires not only
a suitable 2-D recursive model but also an enormous
amount of data storage and transfer due to the high
dimension of the resulting state vector. Hence a
straightforward extension is of limited success,
and thus it becomes desirable to consider computa-
tionally effective approximations. Here one such
approximation, the 2-D reduced update Kalman filter
as presented in {10] is reviewed.

To illustrate this approach, consider the scanning
of a discrete 2-0 field on an NxN regularly spaced
lattice. Since the scanning operation does not
qualitatively affect the results, a raster scan is
assumed.

To be considered is a signal which is Markovian and
givm‘: by a nonsymmetric half-plane (NSHP) recursive
model .

s(m,n) -J“cus(m-k,n-l) + w(m,n) 1)
where w(m,n) is a white Gaussian noise field and
Re. is an NSHP, i.e. [m0, n20] U [m<0, n>0]. It
is further assumed that this model is (MxM)th order.

The observation model 1s
r(m,n) = s(m,n) + v(m,n) (2)

where v(m,n) is a white Gaussian source. Using the
scanning operation the 2-0 problem is transformed
into an equivalent 1-0 problem by defining a state
vector of M(N+1) components:

s(m,n) = [s(m,n), s(m=1,n),...,5(1,n);
Non=1)...8(1,n=1);...38(N,n=M),...,
s(m=M,n-M]T

then (1) and (2) can be put into the form,
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$(m,n) = C s(m=1,n) + w(m,n), (3)
r(m,n) = {j s(m,n) + v(m,n) (4)

Thus, the Kalman equations with the above interpre-
tation of the s vector can be immediately written
down. The difficulty with these equations is the
amount of computation and memory requirements
associated with them. By 1imiting the update pro-
cess to only those elements “"near” the “present”
point, the computation can be greatly reduced. The
resulting reduced update Kalman filter equations
can be written in scalar form as given beiow. For
details see [10]. In these equations, the super-
script indicates the step in the filtering, while
the argument represent the position of the data on
the NxN grid. Subscript "a" and "b" indicate
"after" and "before" updating, respectively.

State Prediction and Update:
s mn) = T eysi™ ™ (mk,n-n) (5)

k.2
S0 (1,0) = 50 (1,9) + K0 (et 0eg)-
Cr(man) - $") (m,n) 101,30 eRG" (6)

Error Covariance and Gain:

(m-1,n)
Rém'")(m,n;k.l) = g’pcopka (m=0,n-p3k,L) o
(k,2) e‘g‘(':;n) (7
Rék’l)(m.n;m.n) = EtcuRgm'")(m.n;m-k.n-l)
+ay (8)

(m,n)
where 3“ is the support of the state vector s(m,n).

R (1, 55k,2) = RI™M (4,55k,8) = K™ (et neg).
R (mynik,2),

DR e S @

K™ (4,9) « R (m,n1,3)/CRE™ ™ (m,nim,m)
+ ol (hide Ry, (10)

Further reduction in computation can be obtained by
computing (7) am m) in a fixed size region,
smaller than %7, Such a region will be writ-

ten as j;'(“"" (see Figure 1).
3. IDENTIFICATION ALGORITHMS

The implementation of the reduced update Kalman |
filter algorithm (5-10) nguiru the knowledge of
the cu's in (5). In the following, various

algorithms are sugested for identification of these
unknown parameters. To this effect, i{f the cu's

are ordered into a column vector ¢, (1) can be re-
written as: \

FSoE | |
g :

R
o

 SPTCIAL
|

3]
%]

= o

JAVNLABLT COOES

D

- ;

S -

5 2 i | <

= : {.e

> = ac o
© & < ‘{l
g = i 1
z =
S| L2 = 5 -

|
L
Y




e —

Ay »% !

o s(mn) = c'5y (@) + w(m,n), an
where $; 1s the portion of the state vector s in

the model's active memory, i.e., the pseudo-state
vector [10].

Images are, in general, non-homogeneous and hence
the elements of c are spatially varfant. Ideally,
?mi a ¢ vector should be found for each pixel
m,n).

Thus at selected intervals an estimate c for the
coefficient vector at point (m,n) may be determined

S0 as to minimize the general weighted least squarss
index:

Yn.n .tgjq)w'f"“'i) - gy (1,402« W04, 33m,n)

(12)
1s the vector of measurements (from eq.
5 and Nl is the data history over
which the index i¥°%o be minimized at point (m,n),

andW(i,j;m,n) is a fading memory weighting factor.

where r
(2)) o

The variance of the plant noise (w(m,n) of (1))was
estimated using:

2 Y
» - 1! D
g, (m.n) m igj 'n(l'( J)

elry (1403 (13)
where "-.n is the number of points in the data

nistory and ; i .. idjusiment constant chosen
empirically to account for the error in using r and
Ly rather than s and s,. Although minimization of

(12) 1s known to yield biased estimates it was
felt that in view of earlier work (13], such an
approach might yield acceptable results. Present
efforts are however being devoted to the study of
techniques, such as that proposed by Kotob and
Kaufman (14], which take into account the bias
caused by the interaction of the noise in both r

and -

For purposes of comparison, the following identi-
fication algorithms were tested:

1. Infinite memory, general least squares, i.e.,
W(1.3mnpety LU e [,0]1i<m, 1ieN-1;
Jo, Tiame1], = N
RecursTve updates were used.

2. Infinite » general least squares fit
over distinct square block segments of the
picture of dimension KxK, i.e., W({i,j;m,n)=1.
-n-u.n = [1,|1,3c selected block

In this case the estimate was computed after
receipt of the entire block by:

514 H.017

: ;_' £ (1.4) r(1,3)]1. (14)

As a varfant to help reduce the effects of bias,
the measurement noise variance times the unit
matrix was subtractad from the first summation
prior to inversion.

3. Fixed memory, general least squares.fit, i.e.,
W(i,3sm,n) = 1.

Ap.p® [1.3]1.0 € a region similar in fom to

ﬁ shown in Figure 1b]. The memory is said to
e order (LxL? {f the numbered pixels to the
left, right, and above pixel (m,n) is equal to
L. Because of problems inherent to the develop-
ment of a recursive implementation, a non-
recursive algorithm was used.

4. Fading memory least squares fit, i.a.,

W(1,J:m.n) = exp(-am-1]-a(n-j|) .
-‘Lm.n was the same as for case 3 in order to

Simplify computation.
4. EXPERIMENTAL PROCEDURES

The noise free image as shown in Figure 2, s a
128 x 128 image data field. Additive measurement
noise w(m,n) was simulated using a Gaussian white
noise generating subroutine. For simulation pur-
poses, a 3 db signal to noise ratio was used, with
noise variance equal to 1442 giving the picture
shown in Fig. 3. These parameter values and as-
sociated plant noise were passed on to the reduced
update Kalman filter. From previous experiments,
the requi * ‘"dT“ regions were chosen as

shown in Fig. 4. Boundary conditions for egns.
(7), (8), and (9) were assumed to be

diagonal while those for (5) and (6) were assumed
to be zero. Though the parameter and gain values
were changed across the boundary of each block in
the filter, no detectable edge effects were noted
in the estimated image.

The estimated image was then compared with the
noise-free data, and evaluation was based upon
the estimation index,

J ,}1” (s(1,4) - (1,42

where s(1,j) 1s the true pixel intensity and s(1,J)
is its reduced update estimate based upon the
identified model and 77, is the total number of
pixels. Also considered was the fdentification
residual index,

(18)

LIS P | 2
I ﬁ.“ (r(m,n) - ¢'(m,A)r, (m,n)) (16)

computed at point (1,j) for c.




S. RESULTS

Initidlly in order to evaluate the various identi-

* fication algorithms only two (32 x 32) blocks in
the mouth-chin area of Fig. 3 were processed. Re-
sults susmarized in Table 1 show that:

o A1l algorithms reduced the estimation
"variance” J well below the observation
noise variance of 1442,

o Infinite memory recursive least squares
is not satisfactory because of the non-
stationary nature of the image.

o A data history of order larger than (3 x 3)
is needed to reduce the effects of measure-
ment noise.

Other experiments (not summarized in Table 1)
showed that:

o A 10-20% improvement resulted from using a
(2 x 2)th order model with 12 coefficients
rather than the (1 x 1)tN order model.

o Estimation results (J) could be improved
significantly (30%) in many cases by using
a smaller value for o2 (Eq. 13). The adjust-
ment factor y was foulld empirically to be
0.3 for all cases.

Comparison of Fig. 5, which corresponds to an in-
finite memory identification, with Fig. 6, which
corresponds to block processing, shows the need
for a finite memory size if rapidly changing de-
tails (i.e., teeth) are to be processed.

~ Processing J 1
Alﬁrftm Characteristics !(Eq. 15) |(Eg. 16
nite Tdenti¥ication at 684 1953
memory-re-{ every point
cursive
least
squares
Y= .3 Identification at
every third point] 655 1987
BTock Pro-| No bias correc-
cessing tion 310 1927
Y= .3 0.8 x noise var-
iance - removal
from first sum-
mation in Eq. 14 | 298 2010
TTxed Wem-| (3x3) data his-
o;y ¥ = tory as] 537 238
: 5 x 5 data his-
tory a = 0.1 3 421

Table 1 Processing Results Using a (1 x1)th
Order Model Over 2 (32 x 32) Blocks

. o e » e

s . . &

6. CONCLUSION

Basedupon the preceding results, it can be con-
Ccluded that a fixed memory least squares parameter
tdentifier used for adaptation of the model in a
reduced update two-dimensional Kalman filter is
very effective for image recovery. Under study at
the present time are efforts directed towards:

. Removing the bias in the parameter estimates.

. The study of simultaneous parameter and pixel
estimation (e.g., via extended Kalman filter
and/or quasilinearization).

. Implementation of a fixed memory filter
through the use of a stochastic dynmamic
parameter model.
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Fig. 6 Results Using Block Processing
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