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RETARDED EQUATIONS WITH FINITE DELAYS

Jack K. Hale

1. Introduction. In retarded functional differential equations, the

space of initial data is usually dictated by the form of the
equation and the desired objectives. For finite delays, the most
frequently occurring spaces are the continuous functions or
LP x R". In this case, the particular space for the initial data
is not too important from the point of view of the qualitative
theory since the function X, representing the solution restricted
to the interval ([t-r,t], t > 0, r the delay, becomes smoother
as t increases,

If the delay is infinite, this is no longer the case since
xt(e) for 8 < -t coincides with the values of the initial function.
This means that the qualitative behavior of the solution operator
will depend upon the space of initial data. It thus becomes
important to understand in an abstract manner those properties which
develop the fundamental theory of existence, uniqueness, continuous
dependence, continuation, etc. In addition, one needs to know some
abstract properties which will imply something about global behavior
of orbits: for example, when are bounded orbits precompact, when is
stability in R" equivalent to stability in the function space, etc.?
In addition to yielding a better understanding of functional
differential equations, an axiomatic development should eliminate

duplication of effort. It should also be noted that the axiomatic

approach is also useful with finite delays.
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It is the purpose of these notes to describe the theory of

Hale and Kato [ 1] for functional differential equations based on

a space of initial data which satisfy some very reasonable axioms.

We also indicate some recent results of Naito [ 2 ] showing how
extensive the theory of linear systems can he developed in an
abstract setting - in particular, the characterization of the
spectrum of the infinitesimal generator together with the

decomposition theory and exponential estimates of solutions.

2. Axioms for the phase space. In this section, we present the

axioms for the phase space which seem to be convenient for a
global qualitative theory of functional differential equations.
By doing this, our axioms are easily phrased in terms of a trans-
lation semigroup. For the local theory, one can assume much less.
A more critical and logical development of the axioms can be found
in [ 1].

Let I be either a fixed finite interval [-r,0] or the
interval (-»,0]. Let 55 be a linear space of functions

~

mapping I into R" with elements designated by ¢,y,..., where
¢

[+]~ on 4 and suppose D =é/| . I_é is a Banach space with

¥ means $(t) = P(t), t € I. Suppose there is a seminorm

l-lg naturally induced by I-I‘é . Elements of 4@ are denoted
by ¢,¥,... and correspond to equivalence classes of 55. For
any ¢ € 4D, corresponding elements in the equivalence classes
are denoted by ¢ and ¢ = ¢ in @ means |$-@|é =0 for

all $ ¢, 0 €.
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To always distinguish between elements of the equivalence

class and the equivalence class itself requires cumbersome
notation. Therefore, in the following, we do not use a different
symbol (except where confusion may arise) to distinguish fhese
objects. In general, the symbol "+~'" is omitted with the reader
being expected to make the distinction by context.

The first axiom is

K|é|

Axiom (aé): There is a constant K such that |$(0)| 5
W e (7]

LA

A ~

for every ¢ ¢ 4.
This axiom implies that ¢(0) = §(0) for every $ €9,

) € ¢. Therefore, for every equivalence class ¢ there

is associated a unique ¢(0) and Axiom (ud) can be rewritten as

Axiom (@,): There is a constant K such that [$(0)] < Kl¢lﬁi

for all ¢ € 9.

For any A > 0, if x: In +R" is a given function and
t € [0,A], define x,: I +R" by

x,(0) = x(t+8), 0 € 1.

For any $ € 55, let FA[a) be the set of functions

”n

Xx: T U [0,A] +R™ such that io = ¢, X 1is continuous on [0,A]

and define

~

" U{FA(M. ¢ e @}.
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t ¢ [0,A);

t A’

Axiom (al): X, €@ for all x € F
For the next axioms, we need two seminorms in 4, one

corresponding to the restriction of ¢ to I\[-8,0] and the

other to the restriction of ¢ to [-R,0] for -B € I. More

specifically, for any -8 € I, let

M)'B : infﬂ{infﬁ{lq“;lg,:: V(8) = N(8), O € I\[-B,0]}: n = ¢}
ned (e

101 gy = inf Cinf {|F] ~: $(0) = n(0), @ € [-8,01}: n = ¢)
Ned e

From axiom (ul), for any ¢ € @, -B eI, let

p(e+pg), 8 € 1\[-8,0]

(%) (o) =
¢(0) ’ A ['B,O].

Axiom (¢,): If ¢ =¥ in @, then |tPo-Py|, = 0,

Axiom (a.): M'g §|¢lB+ IM(B) for any -B € I and all

¢ e 4.

Axiom (a,): There is a constant K such that MI(B) <

K S“P[_B’O]W(e)l for any -B eI and all ¢ ¢ 4,

Axiom (GS): All constant functions belong to 4.

Introduce the following definitions

gy
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S(t): @~ B, t>0

¢(0) 6 e [-t,0]

[S(t)d1(e) =
¢(t+0) 0 e I\[-t,0]
90 = {¢ ¢ @D ¢(0) = 0}

So(t.): 920 + _Qo, S5 (Er » S(t) | @, .

The linear operator S(t) satisfies the property that S(0) = I,

the identity operator, S(t+t) = S(t)S(1), t, T > 0; that is,
{S(t), t > 0} is a semigroup of linear operators on #. The final

axioms are

Axiom (a6): S(t) is strongly continuous for t > 0.

Axiom (a,): There is a t; > 0 such that [S (t))| < 1.

For a more complete description of the ®-1imits sets of orbits
of functional differential equations, the following axiom is

convenient.

Axiom (08): If {¢k} converges to ¢ uniformly on compact

subsets of I and if {¢k} is a Cauchy sequence in 4,

then $ € @ and ¢X-> ¢ in 4.
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Example 2.1. (Spaces Lp(u) X Rp). Suppose g: I »+ [0,»),

: G: I - [0,») are continuous

gltes) < G(t)g(s), t,s € I.

If g is a nondecreasing function, one can satisfy this condition

with G(t) =1 for all t € I. If g(t) = exp(At), then we can

take G(t) = exp(At). Let

2

{¢: I »R", measurable, |¢| < =}

L 91 = (e1P+ [ g(e)]00) [Pao) /P,
‘ L 1

Axioms (ao)-(as) are satisfied if

Jlg(e)de < ®

G(BO) < 1 for some B0 € I.

If these conditions are satisfied then 4 is isomorphic to

i PR

LP(ug) xR ™ where ug is the measure induced by the function

g

ug(E) - IEs(G)de, 2 o

O ——

In this example,

¥
}
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|s(t)| = Zg?[%é%gj%] < [6(-t) 1P,

Example 2.2. (Spaces of continuous functions CY)' For any

Y €ER, let

P = C, def {¢: 1 »R", continuous, eY%(O) + a limit as
0 > -»}

G}
lolc = supgere’ [9(8)].
Axioms (GO)-(as) are satisfied if vy > 0. Also, |5(t)] < e'Yt.

3. Functional differential equations. Suppose 4 is a space

of functions satisfying Axioms (GO)-(G7), Q2 1is an open set in

R* @ f: @ +R" is continuous and consider the retarded func-

tional differential equation

(3.1) - x(t) = f(t,xt),

where xt(e) = x(t+98), ® € I. For any (o0,$) € @, a solution

x = x(o,¢,f) through (o,$) 4is a function defined on an
interval T; Ufo,0 a], I0 = {CeER, £ =0 +90, 0 €¢I}, 5> 0, such
that Xy ® $, x satisfies (3.1) on [o0,0+a],

The following results have been proved by Hale and Kato [1 1s

e ma e o et ALl Dl
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Theorem 3.1. (Existence) For any (o,$) € 9, there is a solution

of Equation (3.1) through (o0,9).

Theorem 3.2. (Uniqueness) If f(t,$) is Lipschitzian in ¢ on

Q, then the solution through (0,$) € @ is unique and there is

a continuous function K(t) such that

|x,(0,8) - x (0,9)] < K(t-o)|d-¥| , t > o.

Theorem 3.3. (Continuation) If x 1is a noncontinuable solution of

(3.1) on Io U [0,8] and f takes closed bounded sets of Q into

bounded sets, then, for any closed bounded set W in Q, there is

a_sequence t, * 6 such that (t,»x, ) £ W. If, in addition,
k

there is an r, > 0, k > 0. such that

TG IR

then there is a t, such that (t,x,) £ W for t, <t <.

Theorem 3.4. (Continuous dependence) Suppose f = fx in (3.1}

depends continuously upon a parameter A in a Banach space. 1z

the solution x(o,$,A) of (3.1) through (o,$) is unique, then

x(c,9,12) is continuous in (o,4,A). If, in addition, fA(t,¢) is

continuously differentiable in (¢,2), then x(o,$,\) is con-

tinuously differentiable in (¢,)).

For the above results, not all of the axioms are needed as may
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be seen from [1 ]. Also, there has been interest in studying
functional differential equations in spaces like LP x R™ when

the right-hand side of (3.1) is not a function on Lp; for example,

it may be a differential difference equation. It is only a minor
technical problem to adapt the proofs in [ 1 ] to this case by
considering the corresponding integral equation. The majority of
the changes are notational and thevefore will not be discussed.
Some additional results from [ 1 ] which are more global

in nature will now be given.

Theorem 3.5. I f is independent of t and is completely con-

tinuous, then the w-limit set of any solution x(t) of (3.1)

bounded for t > 0, is nonempty, compact, connected. If, in

addition, (08) is satisfied, the w-1imit set is invariant.

Theorem 3.6. A solution u of (3.1) is (uniformly) (asymptotically)

stable in 4 if and only if it is (uniformly) (asymptotically)

stable in R",

It is also proved in [1] that for autonomous and periodic
systems, the solution x = 0 of (3.1) is uniformly stable and
asymptotically stable if and only if it is uniformly asymptotically
stable.

From the point of view of this paper, a more impbrtant

property proved in [ 1] concerns the solution operator for (3.1).

Suppose f: R x % » R" and for every (0,6) €R X &, there

exists a unique solution x(o,¢) of (3.1) through (o0,?) defined
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on I(J W [ag,»). The solution operator T(t,o) is defined by

FlhLo):. @+ @) € >0

(3.2)
T(t,0)¢ = x(0,0).

Let o(A) be the Kuratowskii measure of noncompactness of a

bounded set A C 4,

a(A) = inf{d > 0: A has a finite cover of diameter less than d}.

Amap T: 4+ % 1is said to be a conditional a-contraction if T

is continuous, there is a constant k € [0,1) such that a(TA) <

ka(A) for every bounded set A C %4 for which TA 1is bounded.

If T is a conditional a-contraction and takes bounded sets into J
bounded sets, then T is called an a-contraction. A family of

mappings U(t,o0): 4+ 4, t > o, is called conditionally completely

continuous if U(t,0)¢ is continuous in (t,o,¢) and, for any
bounded set A C 4, there is a compact set AT c @ suéh that
U(t,0)¢ ¢ A for 1T € [o,t] implies U(t,o)¢ € A*. If U(t,0)
is conditionally completely continuous and for any bounded set
A C 4 and any compact set J C[o,»), there is a bounded set
Ay C @ such that U(t,0)A CA, for every 1T € J, then U(t,o0),
t > o, is completely continuous in the usual sense. If

T: @4 »@ is linear and continuous, a(T) = inf{k: a(TA) < ka(A)
for all bounded sets A C 4}.
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Theorem 3.7 (Representation of solution operator). If

f: R x B+ R" is completely continuous, then U(t,o0): @ -~ &

defined by

T(t,0)¢ = S(t-0)¢ + U(t,0)¢, t > o,

is conditionally completely continuous for t > o. Furthermorc,

for any bounded sct A C 4 for which T(s,0)A is bounded

uniformly for o < s < t, we have

(T(t,0)A) = a(S(t-0))a(A) = a(Sy(t-0))a(A) < [S;(t-0)[2(A).

In particular, for to defined in Axiom (a7); T(o+t0,o) is an

a-contraction.

4. Linear autonomous equations. For linear autonomous equations,

an extensive theory can be developed without imposing many hypotheses

on the space-especially Axiom (G7) about

So(to)| < 1. On the other
hand, Axiom (as) seems to play a mere important role than in the

previous section. Consequently, in this section we develop a theory
of linear systems using only the axioms that seem necessary and follow

closely the paper of Naito [ 2] but in less generality. We restate

the hypotheses explicitly in the form that is needed.

Axiom (B,): There is a constant K such that [¢(0)| < K|¢|
for all ¢ ¢ 4.
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Axiom (81): X, € P for all x ¢ FA, te [0, X, 1is continuous

in t.

Axiom (BZ): For any x e F_, t € [0,%),

lxtky K(t)suP0§s§tlx(5)| * M(t) x|

where K,M are continuous, M(t+s) < M(t)M(s).

Axiom (83): If {¢k} converges to ¢ wuniformly on compact sets

of 1 and if {¢k} is a Cauchy sequence in @, then ¢ € @ and

Axioms (ao-a6) and (as) imply Axioms (80-83).

1SS . i
Suppose L: 4 + R~ is a continuous linear operator and

consider the autonomous linear equation

x(t) = th-
Since this equation is autonomous, we take the initial time to
be zero. The results in [1] or [ 2] imply that the solution

operator T(t), t > 0, defined by T(t)¢ = x,(¢) for ¢ ¢ 2,

is a strongly continuous semigroup of bounded linear operators on

@ . Let A be the infinitesimal generator of T(t).
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The specific form of the infinitesimal generator is not known.

However, it is surprising how much of the general theory of linear

systems is independent of this fact. 1In this section, we state

some results on the spectrum o(A) of A, the point spectrum

PO(A) of A and the resolvent set p(A) of A. The first

observation concerns the point spectrum (see [ 1]).

Theorem 4.1, If A is the infinitesimal generator of T(t), then

PO(A) is the set of A for which there existsa b # 0, b € ¢",

such that e 'b € @ and

det A(A) = 0,

(4.1)

B = X1 - Le" Ty

If S(t) is the semigroup defined in Section 2 by the differ-

ential equation x(t) = 0 in 4 and

(4.2) T(t)e = S(t)¢ + U(t)d, ¢ € B,

then the Representation Theorem 3.7 says that U(t) is completely

continuous and

(4.3) a(T(t)) = a(S(t)) < |S(t)]

where o is the Kuratowskii measure of noncompactness and, for a

bounded linear operator T,
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(4.4) a(T) = inf{k : «(TB) < ka(B) for all bounded
sets B C 4}

For any bounded linear operator T, let re(T) be the smallest
closed disk in the complex plane with center zero which contains the
essential spectrum of T. It is shown in [ 3] that re(T) =
limn*mu(Tn)lln. Since &(T(t)) = a(S(t)) it also follows from

[ 3] that re(T(t)) = re(S(t)). To estimate &(S(t)), observe that

a(S(t+1)) = a(S(t)S(7)) < a(S(t))a(S(T))

for all t, T > 0 and sothere is a B € [-», +») such that

(4.5) Bi= LIk lﬂﬂ.ﬁ%§££ll - inf,, log “ESStll
Thus,
(4.6) PATIR) = B istt)) a8 e

If w is in o(T(t)) and |A| > exp(Bt), then u is a
normal eigenvalue of T(t) and u = exp(At) for some A € PO(A).

Thus, one obtains (see [ 21]).

Theorem 4.2. The spectral radius ra(T(t)) of T(t) is given by

r (T(t)) = %, ¢

v
o
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] B=
where
@ = o = max{B,sup{Re A: X € P (A)}}.

L

Also, for any € > 0, there is a c(€) > 0 such that

ITCt)| < c(e)el®*OIt o

v
o

A more difficult result from [ 2] is the following one.

Theorem 4.3. Any point A such that Re A > B is a normal point

of KA; that is, X does not lie in the essential spectrum of A.

With this result, for any A € o(A), Re A > B, the space

may be decomposed as

2 = RA-ADX¥ 8 @a-ADnk

for some integer k, where W(A-Al)k is of finite dimension, in-

variant under A and 5?(A-A1)k is a closed subspace of 4.
The subspace W(A-AI)k can be explicitly computed
(see [1]).

N~ T s

A more explicit representation of this decomposition is needed

but is unavailable at the present time. More specific information
is needed about A and its adjoint A". A step in the right

direction is the following theorem of Naito [2 ) generalizing a
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corresponding theorem of Stech [4].

Theorem 4.4. The domain 2(A%) of A* is independent of L,

2(A%) = 9%

where B is the infinitesimal generator of S(t).

It remains to give the variation of constants formula. Let

log M(t) ¥

H = llmt*w T £>0

c > max(aL,u), where aL is defined in Theorem 4.2, and define

(‘

: §opEtEL . gy - iy
11mT+°° VT fc-iT e AR) TdAh t>0
X(t) = J
I ; t= .

.

The matrix X(t) 1is continuous and is called the fundamental matrix

for Equation (4.1).

Theorem 4.4. [(2]. If f is a continuous function from (0,») to

Rp. then the solution x(t,¢,f), xo(-,¢,f) = ¢, of the equation

x(t) = Lx, + f(t)

4




1 q

is given by

-
ct
v

o

t
x(t,9,f) = x(t,¢,0) + I~X(t-1)f(1)dt
0

t
x(t,9,0) = $(0) + joxct-r)L(scr)¢)dr ;o

where S(t) is the semigroup generated by the equation x(t) = 0

in 4.

v e
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