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RETARDED EQUATIONS WITh FINITE DELAY S

Jack K. Hale

1. Introduction. In retarded functional differential equations , the

space of initial data is usuall y dictated by the form of the

equation and the desired objectives. For finite delays , the most

frequently occurring spaces tire the continuous functio ns or

L~ x P”. In this case , the particular space for the initial data

is not too important from the point of view of the qualitative

theory since the function x~ representing the solution restricted

to the interval [t-r ,t], t > 0, r the delay , becomes smoother

as t increases.

If the delay is infinite , this is no longer the case since

x (0) for 0 < -t coincides with the values of the initial function .

This means that the qualitative behavior of the solution operator

will depend upon the space of initial data. It thus becomes

important to understand in an abstract manner those properties which

develop the fundamental theory of existence , uniqueness , Continuous

dependence , continuation , etc. In addition , one needs to know some

abstract properties which will imply something about global behavior

of orbits: for example , when are bounded orbits precompact , when is

stability in ~~TI equivalent to stability in the function space, etc.?

In addition to yielding a better understanding of functional.

differential equations , an axiomatic development should eliminate

dupl ication of effort. It should also be noted that the axiomatic

approach is also useful with finite delays.

78 06 27 066
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It is the purpose of these notes to describe the theory of

Hale and Kato [ 1 ] for functional differentia l equations based on

a space of initial data which satisfy some very reasonable axioms .

We also indicate some recent results of Naito [ 2 ] showing how

extensive the theory of linear systems can he developed in an

abstract setting - in particular , the characterization of the

spectrum of the infinitesimal generator together with the

decomposition theory and exponential estimates of solutions.

2. Axioms for the phase space. In this sec tion , we presen t the

axioms for the phase space which seem to he convenient for a

global qualitative theory of functional differential equations.

By doing this , our axioms aie easily phrased in terms of a trans-

lation semigroup . For the local theory, one can assume much less.

A more critical and logical development of the axioms can be found

in 1 1.

Let I be either a fixed finite interval [-r ,O] or the
—

interval (-~ ,0]. Let ~ be a linear space of functions

mapping I into ~~ with elements designated by ~~~~~~~~~~~~~~~~~ where

= means ~(t) = i~(t ) , t e I. Suppose there is a seminorm

on ~ and suppose ~~ ~~~~~ is a Banach space with

J . naturally induced by I . Elements of .~~~~ are denoted

by •,~ i,... and correspond to equivalence classes of .~~~~~. For

any • c .Q, corresponding elements in the equivalence classes

are denoted by $ and $ ~ in .Q means It ~-~ I~~ = 0 for

all ~ ~ •, Ij~ £ ;ji .

~

-- . . _ —  —,~~ --~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~ -.-~~~~ 
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To always distinguish between elements of the equivalence

class and the equivalence class itself requires cumbersome .

notation. Therefore , in the following , we do not use a different

symbol (except where confusion may arise) to distinguish these

objects. In general , the symbol ‘
~~~~
“ is omitted with the reader

being expected to make the distinction by context.

The first axiom is

Axiom (s): There is a constant K such that 
~ (°) I < KI~~I A

A

for every ~ c

Ihis axiom implies that ~(0) = ~(0) for every ~ t

~ 
$. Therefore , -for every equivalence class ~ there

is associated a unique ~(O) and Axiom (ct~) can be rewritten as

Axiom There is a constant K such that I~~(0)I < KIcP I~~

for all ~ t

For any A > 0, if x: ‘A +lR~ is a given function and

t ~ (0 ,A J, define x
~
: I ~~ jg1L by

x
~
(O) = x (-t+O), 0 t I.

For any c ~~~~, let FA ($) be the set of functions

~ : I U (0 ,A ] ÷I~ such that = 3, ~ is continuous on [0,A]

and define

= 
~~~ ~ ~A ~~~ ~

____________________ . — ——_—____________ -~~— — -  . — —
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Ax i om 
~~~~~~ 

x~. c ~ for all x e F~ , t C [0 ,A ] .

For the next axioms , we n eed two seminorm s in .9, one

corresponding to the restriction of ~ to I\ [-B ,o} and the

other to the restriction of ~ to [-6 ,0] for -6 € I. More

specifically, for any -8 C I , let

= infA {i nf { t ~ l~~: ~(0) = ~(0), 0 ~ ~\ [-6,0]}: ~ =

I4~ ~~ 
= inf (inf C I ~~~~~: ~(0) = rt (0), 0 C [-6 ,0]}: n =

From axiom 
~~~~ 

for any ~ C 9 , -6 c I , let

0 c t\[ -B ,O]
(T 64 ) ( a )  =~~~

4 (O) , 0 C [ - 8 , 0 ] .

Axiom (a2) :  If  ~ = ip in 9, then I T ~~~-t 6
~~! 6 = 0. 1 -

Axiom (c*3): J P ~~ C I~I~ ~ 14’I (8) for ai~y -8 ~ I and all

Axiom (a4): There is a constant K such that l~ I (B) <

K suP[ 8 0 ) I$ ( O ) I  for any -B e I and all $ £ .9.

Ax iom (a5): All constant functions belong to .9.

Introduce the following definitions 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _
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S(t): .9 + .9 , t >  0

1~ °) 0 £ [- t , 0j

[S(t)~~](0) = 1( 4 ( t + 0 )  0 c I\ [-t ,0]

= {4~ ~ 9: 4~(0) = 0)

S
0

( t ) :  .9~ + ~~~~~~~~~ S0 (-t ) = S( -t )~ .
~~~~~~~~

The linear operator S(t) satisfies the property that S(0) = I,

the identity operator , S(t+t) = S(t)S(t), t , t > 0; that is ,

{S(t), t > 0} is a. semigroup of linear operators on ~~~~~ • The final

axioms are

Ax iom (a6): S(t) is stron~]y continuous for t > 0.

Axiom (a7): There is a t0 > 0 such_th at 1S 0 (t 0 ) I  < 1.

For a more complete descri ption of the a-limits sets of orbits

of functional differential equations , the following axiom is

conven ient.

Ax iom (a8): ~f ($k} converges to p uniformly on compact

subsets of I and if {$k} is a Cauchy sequence in .9,

then • C .9 and -‘. ~ in 9. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Example 2.1. (Spaces L~ (u) 
X ]R~ ) .  Suppose ~: I +

G: I -
~~ [0,°’) are continuous

g(t+s) < G(t)g(s), t ,s ~ I .

If g is a nondecreasing function , one can satisfy this condition

with G(t) = 1 for all t C I. I-f g(t) = exp(At ), then we can

take G(t) = exp (Xt). Let

.9 = {$: I ÷ l R ’~, measurable , I~ 1 < °°}

I~ I.9 
= {1~~(0)I Jg (0)I~~(0)IP d0)~~~ .

Axioms (a 0) - ( a 8) are s a t i s f i e d  jf

J 

g(0)dO < o~

1 for  some 80 C I.

If these conditions are satisfied then .9 is isomorphic to

L~ (Ug) ~ IR ~ where 
~g 

is the measure induced by the function

g,

~1g (E) f g( e) do , F C I.

In this example , 

—_.——- - ---__ - ---- -_-~~ - . - —-——— —-—_ ~ - -——- -.--—-.--..- ,---—-—. — --._—_.---- -..——-_..-.- - ..—.- - - -— — —  —.--



- 
,, -. ~~~~~- - - ~~~~~~~-~~—~~~~~~~~~~~

________ - -.9..

-7 -

i/p
Is(t)I = ______  < [G(-t)l~~~ .

Exam_pie 2.2. (Spaces of continuous functions Cr). For any

C IR , let

.9 = 
d~f (~~: I ~~lR~’, continuous , e~

0
~ (0) -

~~ a limit as

0 +~~co}

I
~

I cY 
= supOCI e l ~~(8)l.

Axioms (cL 0)-(a8) are satisfied if r > 0. Also , IS(t ) I < ~~~~

‘ 3. Functional differential equations . Suppose .9 is a space

of functions satisf ying Axioms (a0)-(a7), ~2 is an open set in
x .9, f: ~ -~ iRri is continuous and consider the retarded func-

tional differential equation -

• (3.1) *(t)  = f (t , x~
) ,

£ 
where x

~
(e) x (t+O), 0 ~ I. For any (a,~ ) e ci , a solution

x x ( a ,~~, f) thr ough (o ,~~) is a function defined on an
interval I a U~~o , o ci ]- , I~, = {~ cIR , ~ = 0 + ci , 0 c I } , a > 0, such
that x 0 ~ , x sa t i s f i es  (3 . 1) on [e , o+ c i ] .

The following results have been proved by Hale and Kato [1 ].
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Theorem 3.1. (Existence) For any (o ,~~) C Q , there is a solut i on

of Equation (3.1) through (c ,~ ) . -

Theorem 3.2. (Uniqueness) If f(t ,4) is Lipschitzian in • on
ci , then the solution through (o ,~ ) C ~ is unique and there is

a continuous func tion  K( t) such that

- x
~
(c
~
,
~
tJ )I < K(t~ ofltj~~p I t 0.

Theorem 3.3. (Continuation) If x is a noncontinuab].e solution of

(3.1) on U [o ,6] and f takes closed bounded sets of ci into

bounded sets, then~ for any closed bounded set VI in ci , there is

a sequence tk 
-
~ 6 such t ha t  (tk,xt )  ~ 1~. I~~ in addition,

IC
there is an r 0 > 0, k > 0 .  such that

<

then there is a t~ such tha t  (t,x
~
) ,t W for  t~ < t < 6.

Theorem_3 4 .  (Continuous de~ endence) Suppose f f~ in (3.1)

~~~ends continuously upon a parameter A in a Banach space. If

the solution x (o,4,X) of (3.1) through (a,1) is unique, then

x(c~,~~,A) is continuous in (a ,4, A). If, in addition , fA (t,~
) .1!

continuously differentiable in ($,A), then x(o,4~,A ) is con-

tinuously differentiable in (4’,A ).

For the above results , not all of the axioms are needed as may

_ _ _ _  - - _ -- 
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be seen from t 1 1. Also , t he re  has been i n t e r e s t  in s tudy ing

f u n c t i o n a l  d i f f e r e n t i a l  equations in spaces like L~ 
X ]R’~ wh en

the right-hand side of (3 .1 )  is not  a f u n c t i o n  on L~~; for examp le ,

it may be a d i f f e r e n t i a l  d i f f e r e n c e  equa t ion . I t  is only  a minor

technical  problem to adapt the  p roofs  in f I )  to t h i s  case by

cons ider ing  the corresponding i n t e g r a l  equa t ion . The m a j o r i t y  of

the cha nges are n o t a t i o n a l  ~nd theie fore wil l  not he discussed.

So m e addition al r e su lts fr om [ i. 3 which are more global

in nature will now be given .

Theorem 3.5. If f is independent of t and is completely con-

tinuous, then the ui-limit set of any solution x(t) of (3.1)

bounded f or t > 0, is nonem p~y, compact , connected. If, in

addi t ion ,  (a8) is satisfied, the w-limi t set is i n v a r i a n t .

Theo rem 3 .6 .  A solution u of (3.1) is (u n i f o r m ly ) ( a s y m p t ot i c a l l y )

stable in .9 if and only if it is (uniformly) ymptoticaily)

stable in ]R~ .

It is also proved in [1] that for autonomous and periodic

system5~ 
the solution x = o of (3.1) j c  u n i f o r m l y  stable and

asymptotically stable if and only if it is uniformly asymptotically

stable. 
-

From the point of view of this paper , a mor e impor tan t

property proved in [ 1) concerns the solution operator for (3.1).

Suppose f: IR x .9 ~~TI and for every ~~~~~~~ 
C X 9~ there

existc a unique solution x(o,~) of (3.1) through (a ,cP) defined

—
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on I
~ 
U (ci,~ ). The solution operator T(t,a) is defined by

T(t,a): .9 ÷ 9, t > a
(3.2)

T(t,a)1 = x
~
(o ,1).

Let a(A) be the Kuratowskii measure of noncompactness of a

bounded set A C .9,

ciCA) = inf{d > 0: A has a finite cover of diameter less than d).

A map T: .9 -~ .9 is said to be a conditional a-contraction if T

is continuous , there is a constant k C [0 ,1) such that a(TA) <

ka(A) for every bounded set A C .9 for which TA is bounded .

If T is a conditiona l a-contraction and takes bounded sets into

bounded sets , then T is called an a-contraction. A family of

mappings U(t,a): .9 + .9 , t > a, is called conditionally completely

continuous if U(t,a)4’ is continuous in (t,a,~P) and , for any

bound ed set A C 9, there is a compact set A* C .9 such that

U(i,a)4 C A for t ~ [o,t] implies U(t,a)4 C A*. If U(t,a)

is conditionally completely continuous and for any bounded set

A C .9 and any compact set J C [a ,o’), there is a bounded set

A0 C .9 such that U (t,a)A C A 0 for every t ~ J, then U(t,a),

t > a, is completely continuous in the usual sense. If

.9 ÷.9 is linear and continuous , ci (T) = inf{k: a(TA) < ka(A)

for all bounded sets A C . 9) .  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ___________
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Theorem 3.7 (Represen tation of solutio 2perator). If

f: IR X .9—.- IR’1 is_completely_Co uous, then (J(t ,o): .9 -
~ .9

def ine d_~y

= S ( t - a ) 4  4 U(t,a)4 , t > a,

is conditionally completely continuous for t > o. Fur thermore,

for any bounded set A C .9 for which T(s,a)A is bounded

uniformly for a < s < t , we_ have

(T(t,o)A) = ci(S(t-a))a (A) = a(50(t-o ))a(A) ~ IS 0(t-~) Ia (A) .

In particular , for t0 d~~~ 1 in Axiom (“7); T(a+t0,a) is an

a -contraction.

4. L inear  autonoinop . s equat ions.  For l i n e a r  autonomous equations ,

an extensive theory can be developed without imposing many hypotheses

on the space-especia]ly Axiom (a7) about ~S0(t0)I < 1. On the other

hand , Axiom (a8) seems to play a more important role than in the

previous section. Consequent]y, in this section we develop a theory

of linear systems using only the axioms that seem necessary and follow

closely the paper of Naito ( 2 1 but in less genera l i ty .  We restate

the hypotheses explicitly in the form that is needed .

Axiom (~~): There is a constant K such that I,(0)I ~
for all $ c  .9.

__________________________ 
_ _ _ _
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Axiom (B a): x~ C .9 for all x C FA , t C [0 ,A], x.~ is continuous
in t .

Axiom (6
~
): For -any x C ~~~ t ~ [0 ,~~) ,

I x t i K(t)supo<5< t Ix (s)I + M(t)1x01

where K ,M are continuous, M(t+s) < M(t)M(s).

Axiom (83): If {~~
‘} converges to • uniformly on compact sets

of I and if {$1(} is a Cauchy sequence in 9, then • C .9 and

~~ .9.

Axioms (c10-c16) and (a8) imply Axioms (80-83).

Suppose L: .9 -‘- iR’~ is a continuous linear operator and

consider the autonomous linear equation

k ( t)  = Lxt.

Since this equation is autonomous , we take the initial time to

be zero. The results in [ 1 ] or ( 2 ] imply that the solution

operator T(t), t > 0, defined by T(t)$ - x t (
~ ) for • C .9,

is a strong ly continuous semigroup of bounded linear operators on
.9 . Let A be the infinitesimal generator of T(t).

_ _ _ _ _ _ _ _
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The specific form of the infinitesimal generator is not known .

However , it is surprising how much of the general theory of linear

systems is independent of this fact. In this section , we state

some results on the spectrum a(A) of A , the point spectrum

P (A) of A and the resolvent set p (A) of A. The first
I

observation concerns the point spectrum (see [ 1 1 ) .

Theorem 4.1. If A is the infinitesimal generator of 1(t), then

Pa(A) is the set of A for which there exists a b ~ 0, b C

such that e~~b C .9 and

det ~(A) = 0,
(4.1)

A(X) = XI - L(e~
’ I).

If S(t) is the semigroup defined in Section 2 by the differ-

ential equation ic Ct) = 0 in .9 and

(4.2) T(t)~ = S(t)~ + U(t)~~, ~ C 9,

then the Representation Theorem 3.7 says that tJ(t) is completely

continuous and

(4.3) a(T(t)) a(S(t)) IS(t)~

where U is the Kuratowskii measure of noncompactness and , for a

bounded linear operator T,
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(4.4) a(T) = inf{k : a(TB) < ka(B) for all bounded

sets BC .9}

For any bounded linear operator T, let re(T) be the smallest

closed disk in the comp lex plane with center zero which contains the

essential spectrum of 1. It is shown in [ 3] that re(T) =

Since a(T(t)) = a(S(t)) it also follows from

( 3 1 that re(T(t)) = re(S(t)). To estimate a(S(t)), observe that

= a(S(t)S(t)) <

for all t, t > 0 and so there is a 8 C ~~~~~ +oo ) such that

(4 
~~~~ = ~~~~

. log cz(S(t)) 
= 

. log ci (S(t))
• 1m

~÷~ 
in t> o

Thus,

(4.6) re (T( t))  = r e(S(t)) = eBt , t > 0.

If i~ is in a(T(t)) and ~~ > exp(8t), then ~ is a

normal eigenvalue of T(t) and i~ = exp(Xt) for some A c

Thus, one obtains (see ( 2)).

Theorem 4.2. The spectral radius r0(T(t)) of T(t) is given by

r0(T(t)) — etCt, t > 0

.

~

- -—---—.-.
~~~~~~~~~~~~~~~~

- — -.
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where

= “L = max{8,sup{Re A : A C

Also , for any C > 0, there is a c(c) > 0 such that

IT(t) I < c (C) e
(
~

l
~~

t, ~ > 0.

A more difficult result from C 2 1 is the following one.

Theorem 4.3. Any point A such that Re A > 8 is a normal point

of A ; that is, A does not lie in the essential spectrum of A .
I

With this result , for any A C a(A), Re A > 8, the space

may be decompos ed as

9 = ~fl(A~xI)
k 
~

for some integer k, where 9~(A~AI)
k is of finite dimension, in-

variant under A and .9(A~AI)
k is a closed subspace of .9.

The subspace 9~(A~AI )
k can be explicitly computed

(see (1]).

A more explicit representation of this decomposition is needed ,

but is unavailable at the present time . More specific information

is needed about A and its adjoint A*. A step in the right

direction is the following theorem of Naito (2 ] generalizing a

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- - - - -~~~~~- - -~~~~~~~~ - - -- -- -~~~~-.-~~~~~~~~~~~ - - --~~~~~- -~~~~~~~~ ~~-—~~~~~~~-- -- - -~~~~ - . -
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corresponding theorem of Stech 1 4 ] .  
-

Theorem 4.4. The domain ~~(A*) of A* is independent of L,

9(A*) =

where B is the infinitesimal generator of S(t).

It remains to give the variation of constants formula. Let

- l m  log M ( t )  
= ~ 

log M(t)
1 

~~~~~ 
n

c > max (aL,1i), where 
~L ~ S defined in Theorem 4.2, and define

1 c+iT At -ll im1÷~
, 

~~~ 
e ~(A) dA , ~ > o

X(t) —

I 
, t — 0 .

The matrix X(t) is continuous and is called the fundamental matrix

for Equation (4.1).

Theorem 4.4. ( 2 1 .  If f is a continuous function from (0,~) to

then the solution x(t,4,f), x (•,$,f) - $,  of the equation

*(t) — Lxt + f(t)

I 
_______________________ _____________

_ _ _  - --
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.

is given by

rt
x(t,~~,f) = x(t,4~,0) + J - X ( t - r ) f ( t ) d t  

, t > 0
0

~tx(t,$,0) = 4(0) + J X(t-t)L(S(t)4)dt , t > 0Jo -

where S(t) is the semigroup generated by the equation ~(t) = 0

in .9.
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