
• AO AOSS 823 CARNEGIE—MELLON L*IIV PITTSBURGH PA DEPT OF COMPUTER —ETC FIG 9/2
THE DESIGN ANO ANALYSIS Off ALGORITHMS FOR AS YNCHRONOUS MULTIPRO — ETC IU)
APR 78 G N BAUOEt N000Ika76 C O37O

UNCLASSIFIED CMU—CS 78 116 NL

a _ --

F ‘I


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—  ~~~~~~~~~~~~~~~~~~~~ _____

The Design and An&ys~
of Algorithms for

/ Asynchronous Multiprocessors

i ”
, U t 

~~~ I ~~~~~ I~~~~
.dM /B;udet

Department of Computer Science
Carnegie -Mellon University

Pittsburgh, PennsyLvania 15213

A priL 28, 1978

/ ~
/

D D C

~~
NJ Q~ / U / (~~‘ /~ / ~

IJ~ LS~~7~~U V u;1l~
)

/
Submitted to Carnegie-MeLlon University in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

[ThISTRIBUTION STATEMENT A
S Appr .ved for pui lic release;

-

• L Distnbufton Unlin~Ited

This research was partly supported by the National Science Foundation under Gra’~t MCS
75-222-55 and the Off ice of Naval Research under Contract N00014-76-C-0370, and
partly by a Research Grant from the Instttut de Recherche d’Informattque et d Automatlque
ORIA), Rocquencourt, France.

~~~~~~~~~~~~~~ ,

~~~~~ ~7 8 06 29 u ~ 0 . ~~
— S •~~~~~~~•~~~~

-~~~

Abstract

The character istic of an asynchronous mult iprocessor is that It Is composed of
severa l processors capable of carrying out the execution of their own programs in a
comple tely independent fashion. As a consequence , parallel algorithms for asynchronous
multiprocessors present some unique aspects in both their design and their analysis. This
thesis explores the issues raised by the design and the analysis of parallel algorithms for
asynchronous multiprocessors and illustrates the various notions and concepts involved
with these algorithms by considering problems in diverse areas. The thesis demonstrates
that asynchronous multiprocessors can be used efficiently in different problem domains,
prov ided that appropriate algorithms are used. It also ilLustrates various techniques
useful in the analysis of such aLgorithms.

As evidenced by a series of experimental results , the computation time required by
a process to execute severaL instances of the same task on an asynchronous multiprocessor
canno t be regarded as constant anci is actually subject to important fluctuations. These
f luctuations in computation times have a negative effect on the performance of parallel
algorithms when several processes cooperating in the solution of a problem communicate
ex tensively among themselves. In this case 1 w hen synchronization is used, it tends to
introduce a prohibitive overhead which decreases the parallelism. On the other hand, an
algorithm is presented to illustrate that the fluctuations are not always a negative factor
but can also be utilized advantageously. ~~~~ a lgorithm demonstrates the seemingly
counter—intuitive result that the execution ‘of a purely sequential program can stilt be
acce lerated on an asynchronous multiprocessor without introducing any paraLlelism within
the program itseti , but onty by taking advantage of the fluctuations in computation times.
Two different parallel implementat ions of this algorithm are proposed (with and without
cr iticaL section), and ana lyses are presente d to measure the speed-up achievabLe.

In the domain of numerical applications , the class of asynchronous iternt iue method s
is introduced to remove the need for synchronization in the implementation of iterations
for solving a system of equations on a multiprocessor. This class includes iterations
corresponding to parallel implementa tions in which the cooperating processes have a
minimum of inter-communication and do not make any use of synthonization. The P urely
c,sy,zchronoa s method is a typical example. A sufficient condition Is established which
guarantees the convergence of any asynchronous iterations. This condition is satisfied for
sys tems of equations found in numerous practical applications.

Several asynchronous iterations have actually been implemented on an asynchronous
multiprocessor . Experimental results are reported , and they show that the Purely
Async hronous method achieves an almost optimal speed-up. The experiments constitute an
illustration of the various notions and concepts specific to the design and analysis of
parallel algorithms for asynchronous multiprocessors. It Is also shown how simple
techniques drawn from order statistics and queueing theory can be used to predict the
exper tment~l rcsutts with a fair accuracy.

The ~ ‘-$ pruning algorithm serves as an example of a non-numerical application in
this thesis. The sequential algorithm is first analyzed, and it I s shown that the branching
fac tor of the ~~-j~? pruning algor ithm for a uniform game tree of degree n grows with n as
O(nJ % n n) . This confirms a claim by Knuth and Moore that deep cut-of Is only have a
second order effect on the behavior of the algorithm. The results obtained with the
sequential algorithm are then used to derive an efficient parallel impLementation of the
w-/~ pruning algorithm on an asynchronous multiprocessor. An analysis of the parallel
implementation with ~ processes shows , rather surpr isingly, an Improvement over the
original algorithm by a factor larger than k.

UI

r~ ~~I. . .

Acknowledgements

The advice and assistance of H. T. Kung have been instrumental in the development
of this thesis. He has been more than an advisor to me , and I would like to express very
spec ial thanks to him for reading numerous drafts , for mak ing many suggestions, and for
his continual encouragement.

I am also especially grateful to Joe Traub for his comments and support. As
Chairman of the Computer Science Department , he has contributed greatly to the
development of an atmosphere favorab le to carrying out my research.

I would also L ike to thank the two other members of my committee , Bitt W utf and
Sam Fiitler , for their help and cooperation.

Chapter II was Initially wr itten as a technical report In conjunction with
Richard Brent , from The Australian University at Canberra , and H. T. Kung. I am also
grateful to Peter Oleinick for helping me implement algorithms on C.mmp, and to
Levy Raskin for running the same experiments on Cm*. I wouLd also Like to thank
John Robinson and Bruce We ide, and Henryk Wo~niakowski , from the University of Warsaw ,
for useful comments and discussions.

Last hut not least , I would Like to thank my wife for her inspiration, understanding
and TLC throughout this ordeal.

I a*p. g~~I
I,

1 PI$?I
~HTfIU~~p~tti.i ti~~ coen I
;~

MAIL u~ st_!Ec1Ar

— .---

~~~CXDXNG P~~~ BLAJUC-NO? 71USD



Pr— —~~ -~~-- ---~~~~~~~~~ _ -~~~~~~~ -~~~~~~~~~~~~~~~~~ 
.
~~~ 

. - - . - - _____________

b K

to Cunégonde

and

to my wife

~~~~~ 

.

. . 

.

.

.

vU

-~~~~~~~~ ~~~~~~~ - ~~~-~~~~~~~~~~~ - - -.  —-- .-- _ _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
-

La quatri~nw ptanète ~tait celte du businessman. Cet
homme êtait si occupé qu LL ne teva même pas La tête
~ l’arriv~e du petit prtnce.

-.—Bonjour . lut tilt cetul—ci. Votre cigarette est
~teinte.

—Trois et deux font cinq. Ctnq et sept douze.
• . Douze et trois quinze. Bonjour. Quinze et sept

vingt-deux . Vingt-deux et six vingt-hutt. Pas te
• . • temps tie La ratlumer. Vingt-six et cinq trente-et-un.

Out! Ca fail donc ctnq cent un miLlions six cent
vingt-deux mUle sept cent trente-et-un.

—Cinq cent millions de quoi?

—Hem ? Tu es toujours t~? Cinq cent un milLions
tie . . . je ne sais plus . . . j ’aI teLlement tie travail!

• Je suis sérteux , mot , je ne m’amuse pas ~ ties
balivernes! Deux et ci.nq sept . .

Antoine tie Saint Exup~ry, La Petit Prince

ft

___I



~
• _ _-_-~ —-~ ---- ‘ —---- -—-—- ~~~~~~— —~~~ •- ,

~~ — - — • • • -~~~~~
•

--~~~~~ ---~ - -  • • - ~~~~-- -

Table of contents

I Introduction

• 1 - Introduction and motivation 1

2 - The design of algorithms for asynchronous multiprocessors 
• 

5
2.1 — Correctness 7

• 2.2 - Efficiency 8

3 - Thesis overview • 10

II Parallel execution of a sequence of tasks

1 - Introduction 13

2 - The algorithm 14

3 - A speed-up measure . 16

4 — Parallel programs for the algorithm and their correctness 17
4.1 — A program without criticaL section . 18
4.2 — A program with critical sections 21

5 - Speed-up ratios:~ Implementation without criticaL section 22

6 - Speed-up ratios: Implementation with critical sections 25

• 7 - Conclusions and open problems 31

III Asynchronous iterative methods for multiprocessors

1 - Introduction 33

2 - The class of asynchronous ilerative methods 35
2.1 — Definition of asynchronous iterative m ethods 35
2.2 - Examples and particular cases of asynchronous iterations 37

3 - Contracting operator .s 39
• 3.1 — Lipschitzian and contracting operators 39

3.2 - Examples of contracting operators 
• 

40

4 - Convergence theorem • 42

• 5 - The class of asynchronous iterative methods wtth memory 46
5.1 - Asynchronous iterations with memory 47
5.2 - Examples of asynchronous iterations with memory 49

xi



6 — On the complexity of asynchronous iterations • 51
6.1 - General bounds: asynchronous iterations 52
6.2 — Additional assumptions: chaotic iterations • 55

• 7 — Experimental results • 56
7.1 — Experiments with asynchronous iterations 57
7.2 - Results 58

8 — Asynchronous Iterations with super-linear convergence • 
• • 

61

• 9 - Extensions of the results • • • • 64

10 - Concluding remarks 65

IV On the Alpha-Beta pruning algorithm

Part 1: The sequential algorithm

1. - Introduction 
• 

69

2 - Presentation and initial properties of the cv- ,~ pruning aLgor ithm 71
2.1 - The c~-~ procedure • 71
2.2 — Some properties of the ~~~~~~~ pruning algor ithm 76

• 2.2.1 - Notations 76
• . 

• 2.2.2 - Condition for a node to be explored 78

• • 3 - Number of nodes explored by the w-~ procedure: discrete case 80
• 

• S 3.t - Random uniform game trees 80
3.2 - Number of nodes examined: discrete case 84

• 3.3 - Bi—valued rug trees 86

4 - Number of nodes explored by the ce-f? procedure: continuous c ase 88
4.1 - Notations and preliminary results • 89
4.2 - Nunther of bottom positions examined: continuous case 90
4.3 - Discrete case versus continuous case 93

5 - On the branching factor of the c~-~ pruning algorithm 95
5.1 - Previous results 

• 
96

5.2 - Bounds on the branching factor of the ~-f3 procedure • 97
5.3 - Improved upper bound 100
5.4 — Numerical results 102

Part 2: A parallel implementation of the algorithm

6 - A parallel Alpha-Rota pruning algorithm 105
6.1 - A paraLlel impLementation for the tv-/i pruning algorithm 106
6.2 - Some improvements on Program A 109

7 - Analysis of the paraLlel tv-/i pruning algorithm • 
113

7.1 - Condition for a node to be examined tinder a partial search 113
7.2 — Average number of nodes explored under a parLtal search 114
7.3 - The analysis of the parallel tv-/S pruning algorithm 117

7.3.1 - Optimal decomposition 119
7.3.2 - Implications of the results and validity of the assumptions 124

8 - ConcLusions and open problems ‘ 127

• xii

F



_ _  __ — ~~~~~~~~~~ —• • •  ~~~~~~~~~~~~~~~~~~~~~~ • • • • - - - -~~~~~~~~

V Experimental reaults with asynchronous multiprocessors .

1 - Introduction 131

2 - Description of the experiments 132
2.1 - The environment 132
2.2 - The problem • 133

3 - Some imptemr?ntat ions of asynchronous iterations 134
3.1 - Jacobi~s method and Asynchronous Jacobi s method 135
3.2 - Gauss-Seidel ’s method and Asynchronous Gauss-Seidet ’s method 136
3.3 - Purely asynchronous method 137
3.4 - Other possible impLementat ions 138

3.4.1 — Asynchronous iterations with relaxation 139
3.4.2 - Adaptat ive asynchronous iterations 1~40

3.5 - Organization of the program 142

4 — The results of the experiments S 142
4.1 - Choice of the parameters • 143

• 4. 1.1 — Size of the system 143
4.1.2 - Error on the solution vector 143
4.1.3 - Other parameters S • • 146

4.2 - Local behavior of the program 146
4.2.1 — Results of the measurements 146
4.2.2 - An interpretation of the resuLts 151

• 4.3 - Global results 155

5 — On the analysis of algorithms for asynchronous multiprocessors 158
5.1 - Synchronized algorithms 160
5.2 - Asynchronous algorithms 163
5.3 - A comparison with the experimenta l results 5 166

6 - Concluding remarks 168

VI Conclusion

I — A summary of the results and their implications 171

2 - Some topics for future research 176

BIbliography 179



F —
~

Chapter I

• . Introduction

• . 

5 5 

1 — Introduction and motivation

Parallel computers and multiprocessors offer a natural solution to the

ever -increasing demand for computing power. At the same time, their evolution has

brought about the need for the development of efficient parallel algorithms. This need is

now becoming more and more acute since recent advances in computer technology have

drastkaity reduced the cost of components, and it is quite conceivable that parallel

computers composed of 1000 or more processors wilt be built In the near future.

Para llelism is achievable in a variety of ways , as exemp Lified by the various

• architec tures of parallel computers already existing. Following Flynn’s ctassif Lcation [211, 5

we mention below onLy a few among the more important ones. For a general overview , 
•

Stone [57] oIlers an introductory presentation of parallel computer architectu re; Kuck [363

evaluates some parallel machine organizations in relation to their programming; and

Enslow [19] surveys specifically multiprocessor organization, which is of central interest

to us in this thesis.

• The ILLIAC IV computer (5] is a typical example of an SIMO (Single Instruction

stream Multiple Data stream) machine (21]. Often referred to as an array processor, the

ILLIAC IV was designed explicitly for solving partial differentiaL equations by the method

of finite dif lerences (typically, for weather forecast ). It is composed of 64 identicaL

• processing elements, organized as an 8~8 array, which execute synchronously the same

-~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ -~~~~~~~


—
—---

~~~~ ~~~~~~~~~~~~~~~~ — - ~~~~~~--- —- -- -~~

2 CHAPTER I

• 
- instruction possibLy operating on different data. The CDC STAR-100 [29] and the Cr ay—i

computer [54] are also SIMO machines in Flynn ’s cLassification. They are often referred to

as voctor computers , and they gain their efficiency by providing for vector-type

instructions, capab le of executing in parallel the same operation on alt eLements of a

variable size vector rather than on a single sca tar. Pipeliried computers and associative

• processors also belong to the class of SIMO machines; a general presentation of their

archi tectures can be found in (123 and (653, respective ly.

This thesis is concerned with another type of paraLlel computer , classified by Flynn

as an k4 iMD (MultipLe Instruction stream Multiple Data stream) machine (21]. Throughout

• the thesis, this type of computer will be referred to as an asynchronous ,nult&proc essor ,

since we think this term better reflects the view we are taking here.

Examples of asynchronous multiprocessors include commercially available computers

Like the UNIVAC 1108 bi-processor ; special purpose computers like the 0825 [1], produced

• for command and control military applications; and research products like C.mmp [63] and

Cmt [59]. C.mmp and Cmt have been (and are being) built at Carnegie-Mellon University

using mini-processors , slightly modified versions of the DEC PDP-11 and the DEC LSI-1 1.

• While ç.mmp is truly a muitiprocessor , in that eac h processor has a direct access to each

memory bank through a cross-point switch , Cm* could also be considered as a local

network, in which intercommunication takes place between ckurers (each processor ,

• however , can actually access the entire common memory through a sop histicated address

mechanism (30], (59]).

• We do not intend to go into the details of the architecture of any asynchronous

multiprocessors. (See [19] for a general survey of the architectures of existing 
S

• multiprocessors.) For the purpose of the thesis, It is sufficient to consider an

asynchronous multiprocessor as composed of a set of tndependent processors sharing a

common memory, eac h processor being able to carry out the execution of its own program.

In this respect the execution of programs on an asynchronous muLtiprocessor , unlike on an



-rn . --

I NTROD UCTION 3

SIMO machine, is made In a comp lete ly asynchronous fashion and takes on a chaotic

appearance. This Is especially true since the processors are not necessarily of the same

type, as Is the case with C.mmp (composed of both PDP-11120 and PDP-11/40), and could

ac tually have drastica lly diffe rent charac teristics , parLicutar ly in speeds. Another reason

is that access to memory is not necessarily uniform, as is the case with Cm4. Notice that ,

• in this bro’ad sense , a network of computers could be viewed as an async hronous

• multiprocessor as welt since, in this case , the computers can still be considered to share a

common memory, although very indirectly. As a matter of fact , the algorithms that we

propose in this thesis for asynchronous multiprocessors are also welL suited for

implementation over a network , especia lly if the time required for the intercommunication

between the computers is not too high compared to the time required by the computa tion

on eac h computer.

After this very brief presentation of parallel computer arc hitecture , tat us now turn

our attention to the issue of parallei algorithms. From an algorithmic point of view , SDV4D

machines have been the most widely studied to date , and particularly the ILLIAC IV type of

computer. Due to its specific structure , the effic ient utilization of an array processor

requires that a problem be decomposed into identical suhtasks which communicate among

each other in some rcgul4r fashion, and the range of possible appLications is, therefore ,

• Limited (mainly to linear algebra oriented problems). Numerous examp les of para llel

algorithms for S1M O machines in the area of numerical Linear algebra can be found in a

recent survey by HolLer [27). Examptes of non-numerical algorithms can be found, for

S 

instance, in [9], [58], and (61]. 
5

• Being composed of a set of Independent processors , an asynchronous multiprocessor

allows for greater flexibility in its programming than does an SIMD machine. Although

asynchronous multiprocessors have now been in existence for several years (the 0825 [1),

In f a c t, dates back to the early 60’s), very Little has been published so far on how to

design paraLlel algorithms that run efficiently on an asynchronous multiprocessor. UntIl 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
j

• • . - - • . - -.. •- -~~~ . 5 .

4 5 5 • CHAPTER 1

S recently, emphasis in the design of parallel aLgorithms for multiprocessors has been

placed mainly on techniques for recognizing the intrinsic paralleLism of existing sequential

algorithms rather than on the direct construction of parallel algorithms. Some of these

• techniques have actualLy been implemented in a version of the Algol-68 compiler running

on Cmt (28). TypicaLly, the transformation of a sequential program Is accomplished by

identifying independent subtasks within the program and introducing precedence relations

between them; a parallel program then can execute the various subtasks according to the

grap h of the relations. However, a paralLel program resulting directly from this automatic

transformation requires considerable communication and extensive synchronization to

control the flow of execution of the various subtasks. This ultimately reduces its

eff iciency.

In the domain of numerical analysis, a different approach in designing algorithms for

asynchronous muLt iprocessors has proved to be more fruitful. Rather than adapting

exist ing sequentiaL algorithms, Chazan and Miranker [11) have presented a class of

iterative methods for the solution of a Linear system of equations which takes into account

the asynchronous nature of multiprocessors .

Essentially Initiated by a recent paper by Kung [37], a systematic study is now

under way t,o explore some of the unique issues raised spec lfica ly by the design and the

analysts of parallel algorithms f o r asynchronous multiprocessors. This study certainLy

benefits from an extensive research done on a different , but related, area concerning

• . time-shared processors rather than true multiprocessors. However , results in the tatter

area deal mostly with special problems typically encontered in time-sharing
•
or

multiprogramming operating systems, e. g., resource alLocation, co-ordination of
•

S independent devices (typicalLy, I/O devices), and they address directLy the issue of

co-operation of processes without addressing general issues, such as problem

decomposition, invoLved with the design of muLtiprocessor atgorithms. See, for

•
- example , (16] for an earLy presentation of this area , and (2] for some examples of typical

problems.)

--— - 5 .5— - ~~~~~~~~~~~~~~~~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

INIRODUCTION 5

In addition to [37], a few examp les of typical algorithms for muLtiprocessors have

already appeared, and they ilLustrate several important notions unique in their design (6),

(38], [39], [40) and in their analysis [3], 14], (8], (51].

This thesis Is concerned specifically with the design and the anaLysis of parallel

algorithms for asynchronous multipr ocessors. In Section 2 of this chapter , we brief Ly

discuss the main issues involved in their designs. The remaining chapters of the thesis

study these issues in depth in several problem domains. These results are summarized in
• Section 3 of this chapter.

2 — The design of algorithms for asynchronous multiprocessors

• Algorithms for SIMD m achines and algorithms for asynchronous multiprocessors are

similar in principle, in that they both rely on the decomposition of a probLem into subtasks

executed in paralLel. This Is, however, their onLy similarity, and these two types of

paraLlel algor ithms in general present drastic differences with respect to both their design

• . and their analysis. Let us examine , in this section, some of the unique Issues raised by

parallel algorithms for asynchronous multiprocessors .

Most of the problems associated with the design of parallel algorithms for

asynchronous multiprocessors have been clearly exposed by Kung [37). Throughout the

thesis, we use the notions and concepts introduced in his paper , and, below, we br iefly

review some of the more important ones. In particular , [37, p. 156):

“We define a paraL lel algorithm for multiprocessors as a collection of
• concurrent processes that may operate simultaneously for solving a

given problem.”

It is important to distinguish between the notion of process , which corresponds to the

• execution of a procedure or a piece of program, and the notion of processor , the physical

entity which carries out the execut ion of a process. WhiLe we have control over the

processes in the design of a parallel algorithm, we do not usually have control over the

processors, w hich are administered by the operating system. In particular , the same 

- - -  ~~~-.• • . --- •- •~~



6 CHAPTER I

process Is ndt necessarIly executed by only one processor during Its entire lifetime, and~
• upon decisions of the operating system, severaL processors might be assigned successively

to Its execution. As an immediate consequence, the time required for the execution of a

process on an asynchronous multiprocessor can fluctuate in an almost unpredictable way.

• There are, in fact , numerous reasons contributing to this unpredictable behavior; we

already mentioned the fact Lhat the different processors of an asynchronous

multiprocessor might have different speeds and that the access to memory •Is not

- necessar iLy uniform; several other features of an asynchronous muLtiprocessor or of its

environmcnt which also contribute to the flucti&ations in the execution time of a process

are Listed in [37].

Communication is very Likely to be required among the processes co-dperating in

the s&ution of a problem. . Kung [37) regards a process as a sequence of stages defined

between two consecutive interaction points at which the process communicates with other

• processes. ParaLlel algorithms for multiprocessors are then classified according to the

• way in which communication is accomplished. In a syrtchrosuz.d paralleL algorithm (or ,

simply, a synchronized algorithm) processes exp licitly use synchronization primitives , and,

upon completion of a stage , a process may have to wait for the results of other processes

bef ore resuming its execution; a producer-consumer type of program is a typical example

of a sync hronized algorithm. In an asynchronoiu parallel al gori thm (or , simply, an

o..synchronou.s algorit hm) the processes communicate among themselves only through the

use of global variables (possibly updated within a critical section), and, at the completion

of a stage, a process either terminates or proceeds further , without any delay, according

to the current contents of the global variables. Examples of asynchronous algorithms are

presented in the following chapters.

Let us now address briefly (and informally) the issues of correctness and of

efficiency,, both of which. we feel should aLways be dealt with in the design of any

• S 

~atg~nithm~ issues are not the only ones which should be taken into account, but, In

L 
_ _ _ _ _ _ _ _



INI RODUCT ION 7

the case of parallel algorithms for asynchronous multiprocessors , these two issues become

particularLy interesting and important because of the a priori unpredictable behavior in

the execution of these algorithms. For this very reason , however , we can anticipate that

proving the correc tness and analyzing the eff iciency of an algorithm for multiprocessor

are, in general, difficult tasks.

2.1 - Correctness

Correctness Is obviously a requirement for any algorithm. Considerable research

has been done on the proof of correctness of sequential programs, and a detailed

treatment of , some of the techniques available can be found, for examp le, in Dijk s tra ’s

recent text [17]. These techniques, however , are mostly applicable to sequential programs

w ith a simple structure (w ith no comp licated data structures , for instance), and their

genera lization to paralLel programs (especially asynchronous parallel programs) is stilL 
•

quite Limited S 

•

An early paper by Dijkstra [16) contains the first major statement on the proof of

correc tness of parallel programs. Research in this area has been restricted mostly to

proving the correctness of the solutions of small problems , which could be used for the

implementation of some mechanisms in Larger parallel programs (e. g., the readers and

wr iters problem [13], or the producer-consumer scheme (26)). Several attempts have

- 
been made only very recently to extend some of the techniques to the proof of

correctness of compLe te and more complex parallel programs (47], (20].

Despite the lack of a formal theory, we still feel that we have given with every

algorithm presented in this thesis a convincing argument that it performs correctly. This

• proof of correctness can take on very different aspects. In Chapter II, for example, we give

a proof of the correctness of a parallel program by verifying that global variables used in

the program satisf y some proper ty which holds during the entire execution of the program;

this is achieved by checking the possible transitions of the global variables before and



8 CHAPTER 1 •

af ter interaction points. In some respect , the proof resembles more, in this case , the

formal proof of a sequential program using assertions and inuariants; this is partly due to

the simple structure of the particular parallel program we are dealing with. In Chapter III ,

on the other hand, the proof of the correctness ~and of the termination) of the algorithm

foLLows directly from the theorem of convergence which is derived through techniques of

numerical analysis.

• 2.2 - Efficiency

In the design of any algorithm, eff iciency is aLways an important issue. Since one of

the primary goals in the design of a parallel algorithm is to achieve better efficiency than

with a sequential algorithm, this issue must be considered very seriousLy in the case of an

algorithm for asynchronous multiprocessor.

We would like to illustrate below that , because of the fluctuations in the execution

times on an asynchronous multiprocessor , synchronized algorithms wilt generally show a

very poor performance. This is true for several reasons. The execution time of the

• synchronization primitives themselves is often very time consuming (a typical execution

• time for these primitives is usually on the order of a couple of hundreds of additions).

Also; and most importantly, the use of synchronization implies the blocking of the

processes co-operating in a task , and, in turn , either causes some of the processors to be

• Idle or entaits the switching of contexts. In both cases , the use of synchronization may

reduce the parallelism and decrease the speed-up that we hope to achieve by using an

asynchronous multiprocessor.

To illustrate this point, let us consider Jacobi ’s method to solve the linear system of

equations given by:

x — A x . b ,

where A is an nvn-matrlx, and b and x are n-vectors. Let be an initiaL approximation to

• the solution of this system, Jacobi’s me thod consists of computing the sequence of iterates

• x ., for S — 1, 2, ... , through the recurrence:



-- 5— _ • 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

INTRODUCTION 9

x
~~~~

A x 1.. i + b .

This method is well suited for paralleL compuLation since, at each step of the iteration, the

computations of alt components can be carried out in parallel. For example , assuming that

n processors are available, a natural way to decompose the computation of a new iterate

is to assign to each of the n processors the computation of one of the it components of the

iterate. This implementation requires, however, that at the end of each step alt processes

be synchronized before they can start the computation of the next iterate. In c~ase aLL

processes take exactl y the same amount of time to compute a component, the overhead

• introduced by the synchronization is reduced to the execution time of the synchronization

primitives themselves. However , it follows from the discussion at the beginning of the

section that it is more reatistic to assume that the time taken by a process to compute a

• component is a random variable rather than a constant. In this case the time it takes to

compute the whole set of components of a new iterate Is given by the maximum of a

randoms variables. In particular , to give an idea, assume that the time for the computation

of any component is distributed according to the same exponential distribution with mean

~~, then, simple calculus shows that the mean computing time for obtaining a new iterate is

g iven by H~z, where H~ — 1 ... is the n-th harmonic number. The coefficient H~
• represents the penalty imposed by the synchronization.

This simp le example shows that the apparent parallelism in JacobVs method for

solving linear systems of equations is considerably reduced by the fact that this method

Implicitly requires synchronization at each step of the compulalion. In fact , It can be

shown that the proportion of time wasted by the processes (whil. they are idle, waiting

• • 
for the completion of the last computation) is given by:

• 1 H1. e H 2 .....H~~1 
i - _I.-

Inn
and tends to I as is tends to Infinily, which means that the proc,.i~~ ~tre almost .1wa~ s idl

waiting for each other!

This example also showi that when programming an asynchronous multiprocesso r,



-

• 10 CHAPTER 1 •

the problem • of the f luctuations in the execution times requires much attention, and that

synchronization should be used very carefully. in particular , the design of parallel

programs for asynchronous muLtiprocessors should take into account the fact that the

various processors execute their programs indepeadesuly and possibly at very different

spee ds, and that , therefore , communication among the processes co-operating in a task

should be reduced to a strict minimum.

3 - Thesis overview

This thesis explores the issues raised by the design and the analysis of parallel

• algorithms for asynchronous multiprocessors. The various notions and concepts involved

with these algorithms are illustrated by considering very diverse problem areas for

numerical as welL as non-numerical applications. The thesis demonstrates , in part icular ,

that asynchronous multiprocessors can be used very effec tiveLy in different problem

- domains, provided that appropriate algorithms are used. The thesis also Utustrates

various tec hniques useful in the analysis of such algorithms. The remaining chapters are

briefly summarized below.

We have just shown, in Section 2.2, that the fluctuations in the execution times of

programs that are run on an asynchronous multiprocessor could cause a very important

degradation in the performance of synchronized algorithms, even for a problem which Is , a

priori, welt suited for parallel implementation. In Chapter II, we show that we have the

reverse phenomenon with asynchronous algorithms, even f or a purely sequential problem.

• 
• Namely, given a sequence of tasks to be performed serially, we propose an async hronous

algorithm to accelerate the execution of the tasks on an asynchronous multiprocessor 
0

without introducing oarattelism within the tasks but only by taking aduantage of

flactu.atiort-s Lit the axccution times. We give a parallel program requiring no critIcal

sec tion to implement the algorithm, and we prove its correctness. We also give a

spacewise more efficient implementation, which requires the use of critical sections. We

H
0_ ~~~~ S - s_~~~~~~~~~~~ • • ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~



0~ 55 ~~~~~~~~ ~~55_ 5~55 •5 ~•0~5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 00 ~~

• 
0 INTRODUCTION 11

• 

S then present an analysis for both implementations to estimate the speed-up achievabLe

with the parallel algorithm, and we show that , w hen the execution times are exponentially
• . distributed and no critical section is used, the algorithm with Ic processes yields a

• speed-up of order ./~ .
•

In Chapter III, we Introduce the cLass of asynchronous iterative methods for solving a

(linear or non-linear) sys tem of equations. We identify existing iterative methods in terms

of asynchronous iterations , and we propose new schemes corresponding to a pureLy

asynchronous algorithm (with no synchronization between the co-operating processes).

We give a sufficient condition (satisfied in most practical applicat cns) to guaranjee the

convergence of any asynchronous iterations and extend the results: to iiltide

asynchronous iterative methods with memory. We then evaluate ’ asynchronous iterative

methods from a computational point of view; we derive bounds for the efficiency and

briefly compare the bounds with exper imental results (see Chapter V).

Chapter IV deals with the ~ -/ pruning agorithm. In the first part of Chapter IV, we

analyze the sequential c~-/? pruning algor ithm, using the number of terminal nodes

exam ined by the algorithm as the cost measure. The analysis takes into account both

shallow and deep cut-of Is, and we also consider the possibility of ties between terminal

positions: specifically, we assu m e tha t all bottom values are independent IdenticaLly

distributed random variables drawn from a discrete probability distribution. We show that

the worst case of the algorithm can be achieved even when only two distinct values are

• 
• • 

assigned to the terminal nodes, and we deduce that the branching factor of the

~~~~~~~~ pruning algorithm in a uniform game tree of degree it grows with a as O(n/’Ln a),

therefore confirming a claim by Knuth and Moore (35) that deep cut-of fs only have a

second order effect on the behavior of the algorithm.

In the second part of Chapter IV, we propose a para llel implementation of the

oe-g~ pruning algorithm requiring very little communication between the processes. In the
-

parallel scheme , the processes work independently by searching for the solution of the

—~~ -~~ -~~- ~~~-• - - • - —~~~ -~~ - • -- - •‘ - --

• 12 .
CHAPTER 1

game , tree over chsjoint subintervals. We deveLop an analysis of the parallel algorIthm,

from which It follows that the parallel implementation with Ic processes shows an

improvement over the sequential ~~~~~~~ pruning algorithm by a factor larger than Ic f or Ic — 2

or 3. ThIs leads to the rather surprising discovery that the sequential ~~~~~~~ pruning

algorithm is not optimal.

• In Chapter V, we present the results of measuroments performed by running several

asynchronous iterations (introduced in Chapter III) on C.mmp (63], an asynchronous

• multiprocessor at Carnegie -Mellon University. These experiments have proved to be an

invaluable tool f or providing us with some insight into the behavior of parallel aLgorithms,

and, in particular , they constitute a clear iilustration of the advantage of purely

asynchronous algorithms over synchronized algorithms.

In Chapter VI, we show how the classical toots of queueing theory can be applied to

the analysis of the performance of parallel algorithms for asynchronous multiprocessors ,

• and, in par ticular , we develop a simple .queueing model to account for the behavior of a

• • parntlet program which uses crit ical sections. We then compare the analytical results

derived trom the model with the experimental results presented In Chapter V, and the

compar ison shows an excellent agreement. 0

In the last chapter , we summarize the principal results of the thesis, ment ion some

possible extensions and give some concluding remarks. We also present some topics for

future research.
• • 0 ‘ •

0’S’ ‘ “T ~~~~._ ~~~~~~~~i~~~~~~
— -- ---‘— “

~~
‘- ------- -- .

~~~~~~~~~~~~~
• 

~~~~~~~~
• • •

~~~~~~~
. •  • • • • • • •

Chapter II ‘ 
‘

Parallel Execution of a Sequence of Tasks

‘on an Asynchronous Multiprocessor 5

1 — Introduction

We are interested in the design and analysis of parallel algorithms for asynchronous

multiprocessors such as C.mmp [63] or Cm5 (59]. For any given task , the task execution

time on such a system is dependent upon the properties of the operating system, e f fec ts

of other users , processor -memory intererence , and many other factors. As a resutt , It is

necessary to assume that task execution times are random variables rather than constants.

(See Chapter V for experimental results supporting this assumption.) In this chapter we

S propose a novel way of using asynchronous multiprocessors , which takes advantage of

f luctuations In task execution times. We will present our result as a solution to the

problem of executing a sequence of a tasks w1, ..., w~ under the following conditions:

• Cl. For S — 2, ..., a, task cannot be started before the completion of task w~_ 1

(i. e., the tasks are linearly ordered).

C2. For i — 1, ..., a, no parallelism can be utilized in the execution of task w4 (I. e.,

we are not allowed to decompose a task).

C3. The execution time of a task Is a random variable rather than a constant.

(This condition corresponds to the asynchronous nature of the multiprocessor.)

• We will view a parallel algorithm for asynchronous multiprocessors as a collection

of asynchronous processes which communicate among each other through the use of global

O 

5

. . 

• . 13

~~~~~~~~ S S 0 ’ S—-- --- —~~—- •—~~~~~~~~~~


- - • -

14
•

•

•

CHAPTER II

variab les. Such an algorithm will be defined by giving the procedure each of its

processes executes when assigned to a processor. While analyz ing the algorithm, we will

always asscun.e that a processor Ls available for any of the runnoble processes of the

algorithm. (See Kung (37) for a general discussion of asynchronous parallel algorithms.)
S

In Section 2 we give an algorithm which uses it � I asynchronous processes to solve

the problem. The algorithm is interesting because a t most one process Is doing useful

work at any given time. NevertheLess , by taking advantage of condition C3, the mean

execution time is Less tor i t> I than for it — 1, I. e., a speed-up Is achieved.

As an example, consider the computation of x1, ..., x,~ defined by -

— p(x 5, ..., X 4.d)
~

where x0,
~~~ ~~~ 

are given and p is some iteration function. Let w4~, be the task of

comput ing p(xL,...,z4.d ) . Our aLgorithm could be used to execute tasks w1, ..., w~, which is

equivalent to evaluating x 1, ..., ~~

The speed-up ratio Sit(a) of a parallel algorithm using it processes is defined in
Section 3, and some pre liminary results are proved there. In Section 4 we give programs

to implement our algorithm both with and without critical sections and prove Informally

their correctness. In Section 5 we consider the implementation without critical sections,

and obtain an analytic expression for the speed-up under certain assumptions (Al and A2

of Section 5). For large a and it, our result Is Sit(n) v’~7~ In Section 6 we consider the

Implementation which uses critical sections, Here the analysis is more difficult, and we

can obtain analytic results only for It �2. Some conclusions and open problems are stated

- In Section 7.

2 — The algorflhm

For each positive integer It, we define an algorithm with It processes for executing

S 
tasks w j ,  .. ., w,,~ under conddlons Cl and C2 stated in the preceding section. The algorithm

Is specified as follows: ‘



- _ _ _ _ _

S PARAI.LEL EXECUTION OF A SEQUENCE OF TASKS 
, 

15

Whenever a process , P, is ready to execute a task ,

(i) U no task has yet been completed by any process , process P starts executing

task w1,

(U) otherwise , If the last task w11 
has not yet been completed by any process ,

• process P starts executing a task which is unfinished and ready for execution.

For simplicity, we wilt assume that no two tasks are comp leted at the same time. Then,

due to the linear ordering of the tasks , condit ion (ii) defines without ambiguity a unique

task to be executed by process P.

Let t j , t2, t3, ... with ‘t 5 < t~~~~ 1 
be the times of task completion by the processes. The

diagram of Figure 2.1 iLlustrates a possible scheduling of the tasks when they are

S ‘ • executed by the algorithm w ith three processes.

O W 1 W 2• U)3 W 4 U)6 w8
P 1 F  I I I I I

t j  t2 t6 t 10 . 
t 15

W I w3 U)4 W5 W6 U)8
1’2 1 I I I -

•

t4 t5 t7 til tI4

W i w3 w5 w6 U)7 W8
P3 1  I I

t8 t9 t 12 e J3

Figure 2.1 — A possible task scheduling with three processes

Note that, when process P3 finishes task u’3 at time t8, process P2 has already completed

task w4. Thus, after P3 completes w3, It starts executing w5 rather than w4.- Task w4 is 
•

skipped by P3. SimiLarly, t asks w3 and w7 are sk ipped by P1, and tasks w2 and w7 by p2.

After any one of the three processes has executed six tasks , tas ks w1 through w8 rather

than tasks w 1 through w6 are completed. A speed-up has been achieved!

Observe that at any given time at most one process Is doing work useful for later

computation. With respect to the scheduling given by Figure 2.1, the time intervals on

which procetses arc doing useful computations are indicated in Figure 2.2.



- __— S’S_S~_S~~ •~~~_0’— _ 
~~~~~~~~~~~~~~~ S•0”

16 • CHAPTER II

WI U)2
Pi I I I...

t i t2

w3 w4P2 ...I I I . . .
t4 t5 t7

P3 • .. I I I — F . . .
t8 • t

9 t12 t13
0

Figure 2.2 - Time intervals on which processes are doing useful work

Thus the speed-up is not achi cued by sharing work among the processes ,’ bat is

achieued by taking advantage of fLuctuations Sri the execution times.

• 3 - A speed-up measure

Consider the algorithm with It processes as spec ified in the preceding section. The

algorithm Is said to be the sequential algorithm U it — I and to be a parallel algorithm If

It > I. Let Tk(n) be the time to execute tasks wj, ... , ~~ by the algorithm with it processes.

Let i:k(n) be the mean of the random variable Tit(n). We define the speed-up ratio of the
O algorithm with k processes to be

• — T~(n) /
~~~~~

For each It and for each execution of the algorithm with k processes, we define

• to be the time of the first completion of task w1, and def ine ~~~ — 0. For example, with

respect to the scheduling of Figure -2.1 , with It — 3, we have:

53,j  — ~1 S 3,~ — t2~ $3,3 — t5~ 33,4 —

S 

. 

‘3,5 — ~9 ‘.3,6 — t 12, 33,7 — t J .3 

‘

0 The following theorem describes the relation between {‘k,i) and ft~} In terms of the

scheduling of the tasks. This (heorem is important in Sections 5 and 6 for computing

speed-up ra tios.

- • ‘00 0 -~~~~~~~~~~ 0~~ O
• • 0 • O~~~~~~~~~ _ S • 0’ 0 ’ S~~~O • , ’ S 0 0’ _ _ _



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • 5 0 0  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PARALLEL EXECUTION OF A SEQUENCE OF TASKS 17

Theorem 3.1:

Suppose  tha t — t~ with I ~ £ � n-I. Then ~~~~ — tr+J for SOme 1 � I It if

and only if -

• (a) the j  processes comp leting tasks at t imes t r, tr +i~ 
... , tr# f_ I are all distinct, and

(b) the process completing task w~~ at time tr,) is one of the j  processes

mentioned in (a).

Proot~ -

We wilt only prove the necessary condition since the proof for the sufficient

condition is similar. S

Suppose that some process P comp letes two tasks at times t r4h and • tr+rn for

0 � h ~ in � f- I .  Then , s ince at time tr+h task w~ has already been completed, the task

completed at time t,.~~ by process P must be w 5~,. This contradic ts the fact that w5,~1 is

completed for the first time at time since tr4fl~ < ~~~~ This proves (a).

Let P he the process completing task w5~1 , for the first time, at time tr4j. Su p p ose

that P does not complete any task in the interval tt r, tr#j_ i ). Then the task comp leted by

- P at time tr+j must be started before time t r . But at any lime before tr, task w5 is not

completed yet. Hence any task started before time tr cannot be w541. In particular , the

t ask completed by P a t time tr #j  cann ot be w~~1. This contradiction proves (b).

For i — I , ..., a, let vk6) be the random variable representing the quantity

— 5k,i-I’ Then, since Tit (n)  ‘ 5k,n’ we have

— e
~k
(I) • s~ (2) ‘ ... ~ ~~‘n). ‘ (3.1)

Equation (3.1) wiLl be used later to compute T~(n), which is needed for evaluating the

speed-up ra tio Sk(rO.

4 — Parallel programs for the algorithm and their correctness 0

We give two programs to Implement the algorithm with It processes: one wIthout

critical sections and one with critical sections.



18 CHAPTER 11

4.1 — A program without critical sections

Program A:

global intet~er (or reaL) array (J[1:n] ; S

S global bootean array M(I:n +I];

S Initialization: 0 5

begin

for at :— I to n+I do MEat ] :—

start processes P1, 
~ 
P,~

end

Process

begin integer at1;

nt1:~~1;

whiLe M(m1] ~~ rn :— rn1 
4 1; (4.1)

while in
1 

� a do (4.2)

begin S

perform task (4.3)

write the output of task on U(m1] ; (4.4)

M ( r n1] :— (4.5)

white M(rn1] do rn a m• • 1 (4.6)

end

end

• Assume that the tasks are not allowed to alter the array M and integers ni1. We wilt

prove that Program A is correct in the following sense: 0 5

P1. For at a 2, ... , a, task w
~ 

is executed only if task W
in_I 

has been finIshed and

its output has been written on U(m-I] .

P2. For J — 1, ... , it, process Pj can execu te the loops at (4.1), (4.2) and (4.6) at

most a times.

— S - O- -

~

--

~ 

— -  -
~~
-- -

~~~


PARALLEL EXECUTION OF A SEQUENCE OF TASKS 19

P3. AL L the tasks w 1, ..., w
~

wilt have been completed at the time when any one of

the processes P1, ... , P~ term inates its execution.

• Property P2 guarantees that the program will terminate. (Note that there is no

S possibility of deadlocks In the program.) Property P1 ensures that the linear ordering

requirement of the executions of the tasks is maintained) and propert y P3 implies tha t

when the program terminates all the tasks are completed.

• Lemma 4.1:

(1) For at — 1, ... , a, U M[at J is set to true , it remains true afterwards.

(ii) After being initialized to
~~~~ 

M[n . I ]  is never modified.

Proof:

After initialization, M can only be modified through statement (4.5) executed by

some process  P~. But, when entering the main while-loop (starting with stateme nt (4.2)),

in1 satisfies the condition m1 
� it and is not modified before execution of (4.5). Therefore

M(n +I]  can never be modified. N

S 

Lemma 4.2: 
•

For j  I , ..., k , if at
1 

has the value at ~ 2, then Mint-I] is ~~~
• . Proof: S

• S Suppose that in1 — at with m � 2 at time t . If in
1 

was incremente d by I to the value

in inside the white statement (4.1) or (4.6), then the test of M[nt 1] being 
~~~ 

with

in
1

— in-i must have been sat isfied. Hence M[m - I] was ~~~ at some time before t. Thus,

by Lemma 4.1, M(nt—13 is ~~~ at time t. N

Lemma 4.3:
5

For in — 2, .. ., a, if M(inj is
~~~ 

then M(m-I]  is ~~~
Proolt

Suppose that M(nij Is h.~~. Then MI,ri ] must have been assigned to ~~ through
S instruction (4.5) by some process P1 with ,n• having the value at. Therefore , by

Lemma 4.2, M[rn- I ]  is ~~j. I

i*i~

-~~~~ . - - O - - - - -~~~~~~~~~~ 
--



20 CHAPTER II

L.mpn. 4.4:

For m a 1, ..., it, if Mf at] is ~~~ then task w,,~ is completed and its output is on

U[m] . 0 5

Proof: S

Suppose that M[nt] is ~~~ Then Mint) must have bee~n assigned to true through

instruc tion (4.5) by some process P1 with rn1 having the value m. Since P1 exec utes

instruc tion (4.5) only after the completion of task w
~~1 

and since in1 Is not modified In

between, we conclude tha t t ask ~~ is completed. I

We are now able to prove the fol(owtng theorem.

Theorem 4.1:

Program A satisfies properties P1, P2 and P3.

Proof: 5 0

Suppose that process P is executing task W~ 1 with at — rn � 2. Then, by

S Lemma 4.2, M[rn-1) is true, and hence, by Lemma 4.4, task ~~~~ is completed and its

output is on U(tn -I ] .  We conclude that Program A satisfies property P1. 5

Proper ty P2 folLows from statement (ii) of Lemma 4.1 sInce rn1 is incremented by I

In each execution of a loop.

• 
. Suppose that a process , say process P

s,, 
lerminates. This happens only when

in — it. 1. Thus, by Lemma 4.2, M(n] is !~i~ 
for all rn — I, ..., a. Therefore , by Lemma 4.4,

all tasks are completed. We have shown that Program A also satisfies property P3. I

Program A Is very reliable in the following sense. Property P3 Implies that, even if

some processes fa~l (for reasons ex ternal to the algorithm: e. g., cras h of the processors

executing the processes), the program may still continue executing tasks and eventually

complete all tasks , provided that there remains at least one active process. We wILL not

.thls reliability issue any further , though we believe It is important.

I

IIi ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~

--

~~~~~~~~

—

~~~~~ 

S

-- 0 5~ ~~~~~~~~~~~~~~~~~~~~~~~ S

_ S S~~~

S PARALLEL EXECUT ION OF A SEQUENCE OF TASKS 21

4.2 — A program with critical section;

For problems where we are only interestcd In the output of the Last task w~ , the

use of the global arrays Uf1:n] and MLI:n .I] in Program A can be avoIded at the expense

of using critical sections.

We will Illustrate the idea with the following example. Consider the probLem of

generat ing the ,z-th iterate x~ by x~ a r(x~.j) given the initial iterate r0. Suppose that

we use Program A. Then, corresponding to the global array U(I:n], we have the global

array x[O:n) where x[iJ keeps the value of the ~-th iterate , and instructions (4.3) and (4.4)

becom e

:— r(x E ni1-I])

Note that we only need x [n] . The use of the array x [O:n] is wasteful in space , and might

even be impractical (e. g., when a is large or when the elements z(O], .. ., x [a] are

themselves vectors or complicated structures). The following program eliminates this

problem. ,

Program B:
5

S global integer in ; global
~~~

Initialization: 
S

begin

at : — !; x : — x 0;

start processes P1. •••
~

end

- -  ~~~~~~ • - S S  ~~~~~~~~~~~~~~~~~~~~~~~~



-5- —

22 CHAPTER Ii S S

S Pr ocess

begin inteLer at
1
; real y~; 

S

:— at ; ,‘
~~ 

:— x) ;  (4.7)

S while m1~~n do

• begin

:— ~~i’~~ );

S 
in1 — in ~~~ (at :— at1; x :— ~~)}; (4.8)

S 

(in1 :— at; y : .  x) 5 (4.9)

end • 
S

S end

S S ~t is crucial to assume that the statements enclosed within a pair of curly brackets

S (Lines (4.7), (4.8) and (4.9)) are programmed as critical sections. (As a matter of fact , the

two lines (4 .8) and (4.9) can be programmed as one critical section.) With this assumption

it is possiole to prove the correctness of the above program. The proof is based on the

observation that the global variable nt is a non-decreasing function of time which takes on

alt integer values between I and a+i. The proof is relatively easy and hence is omitted

here. S

Note that, as was already mentioned, x an d y may represent large amount of data.

Hence the execution of x :— y,, or :— a~ may take a significant amount of time. After

presenting, in Sec t ion 5, an analysis for programs which do not have critical sections, we

wiLl give, in Section 6, an analysis for programs which do have critIcal sections.

5 — Speed-up ratios: Implementations without critical sections

Let tj,j be the random variable representing the time to execute tasK w1 by process

P1. In this end the next sect4oa, we assume that the t~,1, for i — 1, ..., a and j  — I, ..., k , are

independent and identically distributed. The assumption is reasonabl. when all tasks are

of the same complexity and executed by identical processors. We will use T to denote shy

of the random variables ti,j , and use r to denote the mean of T.

_____________________________________ •



— —-- -- ~~ 5 5-5~~~ S~~ ~~~~~~~~~~~~~~~~~~~~~~~ S 5-~~~~ S

S 
PARALLEL EXECUTION OF A SEQUENCE OF TASKS 23

It is easy to obtain Tj (n). By equation (3.1) with k — I, we have:

Tj (n) — r 1(1) + r 1(2) e .

Since, in this case , the r1(i) are Independent and identically distributed with mean r, we

- deduce that

~T1(a) — a r.  (5.1)

In the rest of the chapter , in order to evaluate Yk(n) , we impose the following 
-

f urther assumptions: 
S

Al. Alt processes start at the same time ta 0. (1. e, at t0 all the Ic processes start

with the execution of task w1.)

A2. The random variable T is exponentially dis tributed with mean r.

• We observe that by the independence of the t5j and by assump tion A2 the

quantities rk(i), s 1, ..., n, are independent random variables. It follows, from

equation (3.1), and assumption A2 , that

T~(n) — • (5.2)

where ~,~(i) is the mean of rh(s).

In addition, by assumption Al , rk(J) is given by the minimum of k random variables

distributed as T. Since T is exponentially distributed, the minimum has the mean:

• Vh (I) — ~~~~. 
(5.3)

Wó now consider Vh(i+1) for s — 1, ..., n-I. Define the distribution probability Ph,)’
) — 1, 2, ..., as follows. (We use here the same notation as in Section 3.) Let Pk ,~ 

be the
S 

probability that 5h,i+I — r,.~~ given that — t r for some r. Hence for ) — 1, ..., Ic, Ph,) is

the probability that conditions (a) and (1) of Theorem 3.1 hold. Using the same argument

S as used In the proof of Theorem 3.lg it Is easy to show that Ph,1 — 0 If i> Ic. In addition,

assumption A2 implies that, from tho memory-less property of the exponential

distribution, 
~k,j is independent of i and r. We have: S

• - —I

L - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ~~~~~~~~~~~ • -5 • _•--5-5~ 
— 

S_~S -~~~~~~~~~~ —__—-—-----5- — -  ---

24 
5 CHAPTER II

S 

S 

tr4 l — tr with probability Pk ,1 • 

S

• 

S 

~r# i  — t ,) • 
+ (tr,2 — tr#i ) with probability 

~k,2 
S

r k44l)  — (5.4)

(t r+i t~)  + ... 4 
~~~~~~~~ 

— tr.k. 1) with probability
~k ,k

Since by assumption A2 the random variables tr4j - tr, r — 1, 2, ..., are Independent (and

identically distributed) random variables w ith mean ~r, we derive from equation (5.4) that ,

for s — 1, ..., n-I , the mean of r k (i+ l) is given by:
S

—
~~ k) ”k ,J —

~ 1s~�k
I PJ,k (5.~~

By equations (5.2), (5.3) and (5.5), we obtain that

Tk (n) — r (1 • (n_ 1)
l~~~k

).Pf,k) . (5.6)

• To eva luate Th(n), we need to know the following quantity:
S S

Nh —
11�k J.PJ,k . S S

Lemma 5.1:

• F o r j a l , ..., k:
j icI

P i k — . . (5.7)
~~‘ k11 (k—j)t

Proof:

We first observe that , by assumption A2 , f o r r a 1, 2, ..., any one of the k processes

is equally Likely to complete a task at time tr~
Suppose that — t,. and ‘k,s.l — tr +j .

Then, by condition (a) of Theorem 3.1, the j processes completing tasks at time tr, tr+l~
tr+ J J are different. This occurs with probabILity

~ ~
(
~-~~1)

— Ic J(k-j) I ’ ’
• • (5.8)

More over, by condition (b) of Theorem 3.1, the process completing a task at time t,~’+j must

be one of the j processes mentioned above. This occurs with probability f/ k. Hence the

S probability that 5k,i — tr and 5k,i.1 a t,.4~ is: S

S .L~~~
k!

S
•

•

k kJ (h-j $

The problem of computing the Leading terms In the asymptotic series for Nh I s

rather difficult. Fortunately, some known results can be used here. DefIne
t Q - Z kI

Ic I�j �k kJ Oc—j) I

_____ 5 5 5 5 ~~~~~~~~~~~~~~~~~~~~~~~ _~~~~5 5 5 -5 -5S -S•_S-5 •-S

PARALLEL EX ECUT ION OF A SE QUENC E OF TASK S 25

We are now able to establish the following.

Lemma 5.2: s

S Nk - Q k .

S Proof:
S

We have
S N~ -

~~~~ 
J.Pk,f 

~~~~ 
[k-

~
k-P].pk,f

.

S

— Ic
1I~�k Ph,) -

1�~�k
1k-i).pk,)

— ~~~~
i.k! - y j.k!

~~~~ h1(k-j)t 1�1?h1 k~~
1(Ic-j-1)t 

S

• I 
j .k! 

- 
~~~ 

(j- 1) h!
1�)�k k) Oc-j) t 1s) ~k kJ (/ c—j) 1 S

S kI
1�f�k kJOc_j)~

The Leading terms in the asymptot ic series for are known [34, p. 118):

Hence, by equations (5.1), (5.6) and Lemma 5.2, we have the following theorem.

Theorem 5.1

Using k processes , the speed-up ratio Is given by
S

—
rt.k

1 + (n— 1) N k
whore

N
2 3 12 2k k

Asymptotically, when both a and Ic are large, we ob ta in:
S

Sk (n)
~
.

~~‘ 0.798 ~~~~~ S
S

6 — Speed-up ratios: Implementations with critical sections
.

S

In this section, we analyze speed-up ratios achievable by the algorithms when they
• are implemented with critical sec tions.

555 5 5 S 5~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _

S ~~~_ S S~~~ ~~~
S S -5~~5-5 S S~~S~~ -5S S~~~5 555 5 5 5-5-5 -~~~ S

26 CHAPTER II

The diagram of Figure 6.1 illustrates a portion of a possible scheduling of the tasks

by the paralleL algorithm with two processes.

S
V4 U443 V~,3 U445 V

~,5
t4~46

4 ~—O--— 4 0 4 ... S

S ti t4•3 t445
S U5,j ~‘

j, J ~s+2 ~‘s,2 “i.4 v4,4 lZi,7

4. —0 V~/5HA—o
ti,1 ti,2 ti,4 S

S Figure 6.1 — A possible task scheduling with two processes

In the diagram, the marks ‘—f-- ° and ‘— c— ’ indicate the sequences of time instants u4 and

£ — 1, 2, ..., when a process comple tes a task and when the same process completes the

subsequent critical section. Since, at any time , only one process can execute the critical

section, a process may have to wait before entering the critical section. The periods of

waiting times are indicated by the mar ks ~~~~~~~~~~ The time instants t4 when processes

ac tually enter the critical section are indicated by the marks ‘—o-—’.

As in the preceding section, we assume that the time a process takes to execute a

S task is a rAndOm variable independent of the process and of the task. Let F be its

distribution function, and 1 its density function. Similarly, we assume that the time a
S process takes to execute the critical section is a random variable independent of the

S process. Let B he its distribution function and b its density function. Furthermore , let r

and /3 denote the average execution times for a task and for the critical section,

respectiveLy.

In the following we derive a general formula for evaluating the speed-up ratio

achievable by the parallel algorithm with two processes for the case when F is an

exponentiA l distribution function and B is a general distribution function.

Observe that at time t4 when a process enters the critical section, the second

process Is. necessarily perform ing some task (possibly just starting a task). Stnce the

S

~~~~~~~~S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 5 - --~~~~~ • -5~~ 5-



PARALLEL EXECUTION OF A SEQU ENCE OF TASKS 27

distribution function F is exponential , at lime t~ the remaining execution time for the task

perf ormed by the second process is thstr ibuted according to the same distribution function

F. Therefore the evolution of the processes , from time t 4 on, Is independent of the past

S 
for any distribution B. In particular , the random variables t4,1 — t4, for i — 1, 2, ..., are

independent and identically distributed, and the same holds for the random variables 
S

S rh6.J), for £ — 1, 2, ..., defined in Section 3.

S 
In this section , let Tj(n) and T2(n) denote the time to complete task w~ and the

subsequent critical section by the sequefltial algorithm and the parallel algorithm with two

processes , respec tively. Let i’1(n) and T2(~) denote their means. It follows from the

- above discussion that , f or Ic — I and 2, we have:

Tk~’
n) — E(1) ‘ ~(2) + ... . ~(n) ‘ /3 ,  . (6.1)

where the last term , /3, accounts for the time to execute the last critical section (after the

comple tion of task wa) .

Consider first the sequential algorithm. In this case , we simply have ~(I) — r, and,

for i a 2, ..., n, ~(i) /3 ‘ r. Therefore , by equation (6.1):

— a (r + / 3 ) .  (6.2)

(Here we ignore the fact that in the sequential algorithm the critical section can be

shortened, since there is no need to include synchronization primitives.) S

Consider now the parallel algorithm. As with equation (5.3), we have: .

• r .  (6.3)

For ) — I and 2, Let p1 be the probability that 
~~~~ 

— tr4j I given that 52,i t,. for

some r. As in Section 5, by Theorem 3.1, we obtain, for i a I, ..., n-I ,
S

I trej — tr with probability Pi
r2(i’I) — 4 (6.4)

I. (t ,,.,1 — tr) 4 (tr,2 —

~~~ 
with probabiLity p2

We have already mentioned that the random variables t ,.,1 
- t~., r — 1, 2, ..., are independent

and icidnticatty distributed. Let p denote their mean. It follows from equation (6.4) that

the mean of r 2(i.1) is given by: 
S

-55-- - ~~~~~~~~~ 5-~~~~S~~~~~~~ - - -5  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



5 5 -  -SS ,~~~~~~~~~~~~~ --- ---- -~~~~~,--~~~~~—

28 5 CHAPTER II S

P.Pj • 2p.p2 — (2-p 1 ) .p ,  (6.5)

since p 1 ‘ p 2 — I.

The following lemma establishes the values of p and p 1.

L.mma 6.1:

Let Bt denote the Laplace transform of the distribution function B. We have:

p — /3 + ~.B *(~), 
5 

(6.6)

— ~~~~~ 
(6.7)

Proof: 
S

We consider transitions for passing from time to time t~,j . Up to a permutation of

the processes, there are three possible transitions as defined by the folLowing diagrams:

ti: t~~1 ti
~ r —~ø S

Aj :  A2: A3: S
~‘u///If6S t

~4j t i,1

whore the notation of F~gure 6.1 is assumed.

Let I-I/ O, j  — 1, 2, and 3, be the probability that transition A
1 

takes place and that S

ti,1 - t6 � t. We have: 
S

H1(t) — (1 - F(x)) b(y) fix -7) d y  dx , 
S

H~(t) — J0~ f ( )  b(y) (I - F(x-y)] dy dx ,

H31’t) a b(x) Fix) dx .

But we observe that H(e) — H1(t) • H2(t) • H3(t) is the distribution function for t441 — t
4 

and

that the same process enters the critical section at both times e4 and t4,1 only with

- transition A1. Hence:

p — t dH(t) (I - H(t) ] dt ,

— 1° dH 1(t) — (1 - Fix)] 
~ç 

b(y) fix-y) dy dx ,

from which equations (6.6) and (6.7) folLow easily. I

By collecting the preceding results, we obtain the following theorem.

-5 — - --5 
---5



5- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- S
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _  — S

PARAI.LEIS. EXECUTION OF A SEQUENCE OF TASKS 29

Theorem 6.1:

The speed-up ratio of the parallel algorithm with two processes is given by:

32(n) =
(n -I) (2  - 

~ B’(~))[/3 ‘~~ B’(~,)] .~~ • /3
S I x ~~~~~~ . o(.L)

2 - ~~ B*(’~) /3 ~~

We give below for some distribution functions B.

.(i) B is exponential (with parameter 11/3):

B’~
1
~ 

____ 
S

S 

r ’ f 3
(ii) B Is uniform over [a, b]:

S I ~~~~ 
- 

~~~~
S S (b-a)/~

(iii) B is the Dirac function at the point /3:
S

B~(~) a 0-/3/t -
S

In Figure 6.2, we have plotted the asymptotic speed-up ratio S2 as a function of the

rat io ~ t/ (~’/ 3) for the three distributions mentioned above (in the second case , a and b

have been chosen as /3/ 2 and 3~3/2 , respectively).

When a~ tends to 0 (or /3 tends to infinity), the algorithm approaches its worst case

performance , since the evaluations of the two processes tend to be exactly interleaved. S

When a’ — 1 (Or /3 — 0), the critical section is non-existent and we have the results of

Section 5.

We observe from Figure 6.2 that the best speed-up ratio is always obtained when B

is an exponential distribution (the first case). We also note that the results obtained for

the two other cases are very close to each other and cLose to the results obtained with

the exponential distribution. This suggests that the results obtained with the exponential

distribution could be used as approximations to results obtained with other distributions.

I

_ _ _ _ _ ~~

30 CHAPTER II -

S

S Speed-up ratio S

1.3

1.2 I

1.1 5 . S

1.0 .
~~~~~~~~~

/‘

‘

7

/ 

,
/ I0.9 / I I S

Examp le (i) SS 
S

0.8 Example (ii) -
Examp le (iii ) — — 

S

0. 7

0.6

0.5

:;
•

0.1 S

0 I I I t I ‘ I I I I I I
0 0.2 0.4 0.6 0.8 1.0 1.2

S 

S 

Ratio a’
S Figure 6.2 - Speed-up ratio with 2 processes for various distributions B -

L We. can observe from Figure 6.2 that , unlike the implementation without critical

section, better speed-up is not necessarily achieved by using more processes , though we

assume (list a proce ssor is always available to each processt More precisely, the figure



5 5 5 -55

PARALLEL EXECUTION OF A SEQUENCE OF TASKS 31

indicates that (when B is an exponential distribution) in order to achieve the best .

spee d-up when two processors are ava itab le , one should create two processes when

a ’ > 0.586 , but only one process when a’ � 0.586. Similar results are useful in practice ,

s ince they can be used to determ ine the optimal number of processes to create In order to

minimize the overa lL execution time.

7 — Conclusions and open problems 
S

I

In recent years , research in parallel algorithms has dealt mostly with synchronized S

array or vector process ors such as the ILLIAC IV or the CDC STAR , and there are very few .
S resul ts on the design and anal ysis of a lgorithms for asynchronous multiprocessors. In this

chapter , we have proposed a novel me thod of using asynchronous multiprocessors which

takes advantage of their asynchronous behavior . We have also pres~nted ana lytic

techniques to evaluate the performance of an asynchronous algorithm using the method.

The algorithm is expected to achieve a large speed-up when the fluctuations in the task S

execu tion times are relatively large. Moreover , as noted in Section 4, the algorithm has a

nice re liability property. The same idea may also be used to construct other reliable

algorithms.

For the implementation with critical sections we obtained analy tic results for two

processes. The results show that the parallel algorithm using two processes is not

necessarily faster than the sequential algorithm, because of the critical sect ion overheads

S 
associated with the parallel algorithm. This confirms the practica l experience that the

speed -up ratio does not necessarily increase as the number of processes increases. IL

would be interesting to extend our analy tic results for more than two processes. We have

chosen to deal with a simple problem by imposing the condition that the tasks are linearly

ordered. An interesting extension would be to consider a set of tasks (possibly generated S

dynamically) which are ordered by a directed graph (i. e., partially rather than Linearly

ordered). Another interesting extension would be to design algorithms where the

555

55 5 5 5~~~~5 -5-5-5~~~~ 555 s 5-s~~~~~~~~



_  5 - 5 5

32 5 CHAPTER II

execution of a task by a process may be interrupted by another process. We expect that

this approach would rosutt in more eff ic ient algorithms, since processes which are not

doing useful work can be interrupted. A careful performance analysis incLuding the

S additional overheads introduced by the interruption mechanism is needed here. This

problem has been addressed in two recent papers by Barak and Downey (3] and (4).

Finally, we note that the results of this chapter are not restricted to multiprocessor S

S systems. The ideas can be used to solve any problem In Operations Research which

satisfies conditions similar to Cl , C2 and C3.

S I S

5 - 5 55 5 5 -~~~~ 55 5~~ 5~~~ 5-~~ 5-555~~~~~~~~~



F 5 S S S S 
5 - _ _ _ _ _ _S -- -- - S

Chapter III

Asynchronous Iterative Methods

S 
for Multiprocessors ’

I

1 — Introduction S

S In this chapter we investigate the fixed point problem for an operator F from ff?’~

into itself: we want to find a vector x in ~~ a which satisfies the system of equations

represented by

z F(x). (1.1)

In (11), Chazan and Miranker introduced the chaotic rck,.xation scheme, a c lass of

iterative methods for solving equation (1.1) where F Is a linear operator given by

F(x) — Ax + b. They showed that iterations defined by a chaotic relaxation scheme

converge to the solution of e-~uation (1.1) It and only if p(IAI) < 1. (If M is a real

nxn matrix , p(M) denotes its spectral radius and IMI denotes the non-negative nxn matrix S

obtained by replacing the elements of M by their absolute values.)

S In (41] and (43], MieLtou generalized the chaotic relaxation scheme to include

non-linear operators and obtained convergence results similar to those of (11] in the case

of contracting operators (see, for example , (46, p. 433)). 5

In (11], [41) and (43), the motivation of defining chaotic relaxation is to account for

S the parallel implementation of itera tive methods on a multiprocessor system so as to

‘Copyright 1978, AssocIation for Computing Machinery, Inc., reprinted by permission.
This chapter appeared in Journal of the ACM, Vol. 25, No. 2, ApriL 1978, pp. 226-244 .

5 33

- - - 5 - 5 5 . — --- S - ~~~~~~~~~~~~~ - 5_ 5 -  S S
SS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S 555 S5-5~~~~5 5 5 5 5 5~~~~~~~



34 CHAPTER III

reduce communica tion and synchronization between the cooperating processes. This

reduction is obtained by not forcing the processe.s to follow a predeterminod sequence of

S 
computations , but simply by allowing a process , when starting the evaluation of a new

iterate, to choose dynamically not only the components to be evaluated but also the values

of the previous Iterates used In the evaluation.

S 

The chaotic relaxation scheme does not, however , allow for a comp letely arbitrary

S 
choice of the antecedent values used in the evaluation of an iterate. A restriction is that

there must exist a fized positive integer s such that, in carrying out the evaluation of the

S 
s-th iterate, a process cannot make use of any value of the components of the j-th iterate

it j  < i-s. We will show that this condition can be replaced by a more general one, which

stiLL guarantees the convergence of the iteration.

In the next section we introduce the class of o4ynchronous aercatiue m e t  hod: which

relaxes the assumption mentioned above, and we show that ex isting iterative methods (and,

in particular , the chaotic relaxation) can be represented as speciaL cases of asynchronous

itL ra tions. Section 3 gives the definition and reviews some propertIes of contracting

operat ors . Then the theorem of Section 4 generaLizes the sufficient condition on the

convergence of the chaotic relaxation obtained by Chazan and Miranker (LI] and by Si

MieUou (41) and [43]. This result is further extended, in Section 5, to include iterative

methods with memory. In Section 6, we consider the tomplexity of asynchronous iterative

methods, and we derive bounds on the eff iciency. These bounds are then compared with

actual measurements of asynchronous iterations. The experimental results , presented in

Section 7, show a considerable advantage for itera tions making no use of synchronization. S 

- 

S

S Section 8 is devoted to the study of an asynchronous iteration showing super-Linear

convergence and, through a specif ic analysis , we give tower bounds on the order of
S 

convergence and on the efficiency. . Possible extensions of the results are discussed in

Section 9, and concluding remarks are presented in the last sectIon.

S 
_ _ _ _ _ _

S 
=~

S S __
~55S S~~5 5 - S . . S

SS



S .  ___  
SSS ~~~~~S~~~~~~~~~~~~~ 

S~~~~~~~~~ 5 S _S5~ -~~ S_S~~~~~_ 5~~~~~ 55 5 _ __~~~~5 5 -~~~ 5 5 - 5~~~~~~

ASYNCHRONOUS ITERATIVE METHODS

2 — The class of asynchronous lter~tive methods

The following notations will be used throughout the chapter. If x is a vector of I?”,

its components will be denoted by a~~, i — 1, ..., it . To avoid confusion , a sequence of

vectors of I?it will be denoted by r(j), I a O~ I If F is an operator of ff~% into itself ,

F(x) wiLl also be represented in components by f~(x) or by f4(xj ,  ..., z,,~), 1. 1, ..., a. We

denote by ff4 the set of alt. non-negative integers. S

2.1 — Definition of asynchronous iterative methods

The definition of chaotic iteration is originally due to Chazan and k4iran$cer (11), and

the definition we give below for asynchrottou~ iteration is similar to their definition.

Dofinition 2.1:

Let F be an operator from ~~ to ,Rit . An a:ynchroaeu .s iterat ion corresponding

to the operator F and starting with a given vector x(O) is a sequence x(j.), j — 0, 1,

of vec tors of ff?lt defined recursively by:

S ( x~(j - I )  if S if J
1 

-

— 5 (2.1)
1. fj x 1(s 1(j ) ) , ..., X~ ($~ f j ) ) )  if S C Jp

S where 
~ — J1 J ) — 1, 2, :.. ) is a sequence of non-empty subsets of { I , ..., a) and

S 4 { (:1(f) , ,.. , s,~t’j)) I ) — 1, 2, ... ) is a sequence of elements in ff4~

In addition, a and 4 are subject to the following conditions:
S for e a c h i — 1,..., n

(a) s~(’f)  � f — I , j  — 1, 2, ..., 
S S

(b) s~(/) , considered as a function of f ,  tends to infinity as j  tends to infinity,

(c) s occurs infinitely many often in the sets J., f 1, 2 

An asynchronous iteration corresponding to F, starting with x (0) and defined by

S ~ 
and 4 wIlt be denoted by (F ,x(O),,7,~ó). N

_ _  --__________ —— - s— 5- —”r~~~ztr~~~~rr . : S r Ss ~S55 SSS_ _~~ .S~~~~S _ _S S_SSS~ S S5 5 S



5 55 5 5 ~~~~~~~~~~~~~~~~~~~ _ 55S~ _ 5 5 5S~~~~~ _ _S 5 5 5 5 _ S

36 CHAPTER III

In the definition of chaotic iterntion.s , Chazan and Miranker (11] use the following

condition

(b)  ther~ ex ists a fixed integer $ such that j  - s~(j ) � £ for j  — 1, 2, ... and i — 1, ..., a,

In Lieu of condition (b). Clearly, condlltion (b’) implies condition (b), and, in this sense,

asynchronous iterations provide a generalization of chaotic relaxations.

An asynchronous iteration (F ,x(O) H7 ,4) may be thought of as corresponding to the

S following sequence of computations on an asynchronous multiprocessor. S

Assume we have a pool of processors available. Let t ., j  — 1, 2, ..., be an increasing

- 
sequence of time instants. At time t1 processor P is idle and is assigned to the evaluation

of the iterate z(j), x (j )  differs from x (j - I)  by the set of components { z5 i C  .1. ) and P

starts computing these components using values of components known from previous

iterates, namely the r- th component of the sr(J)_th iterate , for r — I, ..., a. The choice of

the components may be guided by any criterion, and, in particular , a natural crIterion is to

pick up the most recently available values of the components. This scheme does not

require any synchronization between the processes. At some time tk, later on (k
s
> 1) ~

wiLL finish its computations and wILL be assigned to a new evaluation: x(k).

The use of asynchronous iterative methods is obviously Snot restricted to

multiprocessor systems , and the scheme is also well suited f or execution on a network of

computers , In particular , when the communication between elements of the network is not

too expensive as opposed to the computation itself. S

S We notice that , in the evaluation of an iterate , nothing is imposed on the use of the

S values of the previous iterates. The only thing required, by condition (b) of the definition, 
S

is that, eventuaLLy, the values of an early iterate cannot be used any more in further

evaluations, and more and more recent valuos of the components have to be used instead.

On a multiprocessor , this condition can be satisfied as long as no processor crashes (and

completes its computation). S



S 
. 

ASYNCHRONOUS ITERATIVE METHODS 37

Condition (a) of the definition states the fact that only components of previous

iterates can be used in the evaluation of a new iterate. Condition (c) guarantees that no

component be abandoned forever.

2.2 — Examples and particular cases of asynchronous iterations

S Classical iterative methods: point or block Jacobi, Gauss -Seidel, etc., as welt as

others introd uced more recently: chaotic relaxatio n scheme (11], periodic chaotic

scheme (18], it~ ration chaofique ~t retard: (41] and (43], itkat ion chaoti qi~e

s~rie—paraU~1e (50), can all be seen as particular cases of asynchronous iterations.

For example, the point-Jacobi method defined on the operator F with the initial S

approx imation z(0) can be represented by the asynchronous iteration (F,x(O),?,4) where a
and 4 are defined by:

~~~~~~~~~~~~ for j . 1, 2, ... ,

s~(j) — .j —J for j — 1, 2, ... and S — I, ... , a

The sa m e point-Jacobi method can equivalently be represented by the asynchronous
S

S iteration where ~ and 4 are defined by:

.J1a (1 . (f — l mod a)) for j a l,2,...,

s/ j) . n [(j —1) / n J for 1 — 1 , 2,... and i — 1 ,...,n .

S 5 Although those two representations correspond to the same point-Jacobi method,
S

they differ by the implicit information they contain about the decomposition of the

computations. In the first case , alt components are evaluated at once and this, presumably,

wilt be done by one computational process. In the second case, however , each component

is evaluated separateLy, and up to it processes can be used to perform the evaLuations.

Between the two extreme representations of the point-Jacobi method, In terms of

asynchronous Iterations, several others can be proposed, each of which can be interpreted S

in ternic of decomposition into computational processes and in terms of implementation by

concurrent processes.

_ _ 5 S S ~~~~~~~~~~~~~~~~~~~~~~~~~ S
S.

S
~~~~~



S S S5~~~~ ~~~~~~~~~~~ S S555555SSS__55 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

38 CHAPTER III 
S

The iterative method proposed by Robert, Charnay and Musy (iti,ration chaotique

s~rie-po.ralL~lc (50]) can be obtained as a special case of an asynchronous iteration in

which s~(j) — f — I  (for alt S — I, ..., a and j  — 1, 2, ...). This corresponds to a strictly

S sequentiaL computation of sets of components. The choice of the components within a set

is arbitrary and the calculations of their values can be done simultaneously but the

evaluation of a new set of components cannot be started before alt components of the

previous set have been computed and their new values relaxed. The goal of their

researc h was to show that , f or example, in the iterative solution of linear systems

resulting from the application of the method of finite differences to partial differential

equations, it is possible to concentrate the computations more on those points of the grid

where the convergence is slower than on other nodes. This is not the case with ordinary
S iterative methods for which any component is iterated as many times as any other

S component. 
S

Chazan and Miranker [11] have proposed a chaotic relaxation scheme to solve a

l inear system. As we have already mentioned, our definition of an asynchronous iterative

method is simiLar to the definition they give for a chaotic iterative scheme. Our definition,

however , does not require the condition that f-s/ f)  has to be uniformly bounded by some

fixed integer , say s , (for all i — I , .. ., a and j  — 1, 2,...). This assumption, however , happens

to be satist ied in most usual implementations , with small values for s. It will be usefuL in

Sections 6 and 7, and we will use this assumption explicitly in order to derive bounds on

the rate of convergence and on the efficiency of various methods Implemented on art

asynchronous multiprocessor.

Although alt chaotic relaxation methods (as presented In (ii], (41] and (43)) can be

identified as asynchronous Iterations, the converse is not true as is illustrated by the

foLlowing example. Let F be an operator from 1?2 Into Itself. Assume we have two

processes P1 and P2 attached to the evaluations of the first and second components,

respectively. To avoid synchronization, the processes always use in an evaluation the

1. 55_ • S S S ~~ 55 5 S S S 5S S S S S S 55 ~SS S55__ S S S S SS~~_ ~~~ S 5 SS S55 ~~ S S S S S S



S _ _ 5 5 5 5 5~~~~~55 5

S 
ASYNCHRONOUS ITERATIVE METHODS 39

values of the components currently available at the begining of the computation. If we

assu m e that it always takes I unit of time for P1 to perform the evaluation of x 1 and it

takes It units of time for P2 to perform the k-th evaluation of x2, then the quantity

f — 2~
J
~ 

grows as .17 which is unbounded. This iteration Is a legitimate asynchronous

iteration, it is not , however , alLowed in the setting of [11], (41) and [43].

3 — Contracting operators

In the next section we shalt give a sufficient condition on the operator F for the

convergence of any asynchronous iteration. Needed definitions are given in this section.

3.1 — Lipschitzian and contracting operators

Contracting operators, to be defined below, correspond to P-contractions

in (46, p. 433]. They seem to have been first introduced by Kantorovitch, Vulich and

Pinsicer in (3 3 ], and they have been further studied by Robert (49]. The notion was used

in particular to obtain the results of [10), [41], [43] and [50).

S Definition 3.1:

An operator F from H?’ to IV is a L&pschitzian operator on a subset 0 of ~~“ if

there exists a non-negative n~a matrix A such that:

S 
jF(x)-F(y)$ � Ajr-y~ , V x, y C 0 , (3.1)

where, if z is a vector of R~ with components z5, 5 —
S j , ~~~~ it, ~zJ denotes the vector

S 
with components 1z4 1, & — I, ..., it, and the inequality holds for every component.

The matrIx A will be called a Llpsc hitziaa matrix for the operator F. I

From this definition we can see thaI any Llpschitzian operator is continuous and, in -

fact , uniformLy continuous on D. However, this definition is too broad and, in particular , S

we are not guaranteed of the existence and of the uniqueness of a fixed point as is shown

by the following example. Take the operator F from V~ to R defined by F(z) — 1x2+a2,

this operator is Lipschitzian on I? because S

_ _ _ _  S S~~~~~~ SS ~~~ S S ~~5~~~~~~~~ ±SSSS55~~~ 5 S 5555 5 55 _ _ _ _



55 _ 5 ~~~_~~

40 
5 

CHAPTER IU 
S

IF~x)-F~øl ~(x~y) [~x,y) / (I ~~,a2 • /y2,~2)]~ ~ Ix-yI , V x, 
~ 

C 
~~~~~•

However, the equation x — (corresponding to a — I) has no solution. On the other
S

hand, the equation x lxi, (corresponding to a — 0) has an infinity of solutions, and, in

fac t, a cont inuum of solutions. S
S

We will, therefore , restrict ourselves to the following cLass of operators.

Definition 3.2:
5

An operator F from IV’ to IV’ is a contracting operator on a subset 0 of IR” if. it

is a Lipschitzian operator on 0 with a Upschitzian matrix A such that p(A) < I (where

p(A) is the spectraL radius of A). 5 5

The matr ix A will be called a contracting matrix for the operator F. I

The fact that , unlike Lipschitzian operators , contracting operators are guaranteed to

have a unique fixed point in the subset 0 can be easily derived from the definition. In

addition, U we assume, for examp le, that 0 is closed and that Ff0) is a subset of 0, we are

also guaranteed of the existence of a fixed point in the subset 0. A proof can be found
- in (46, pp. 433-434).

3.2 — Examp les of contracting operator;

Let F be a Linear operator given by F(x) — Ax + b, where A is an ,zxn matrix and 6 is

a vector of I?”. We observe that F is a contracting operator if and only if p (IA() < I.

Therefore , in the case of linear operators , the notion of contracting operators cotncides

with .lhe property stated by Chazan and Miranker for their convergence resuLt (11], and

their resuLt wiLl appear as a particular case of the theorem of the next section.

We could have considered a more general definition for asynchronous Iterative S

S

methods by introducing a re laxation factor c . > 0. ThIs would simply consist of replacing,
S S S in equations (2.1), the operator F by the operator F,, — c~F • (I -Q)E, where E is the

Identity operator of IV’. It folLows that

S 5
5

~~5 5 5 5 ~~~
5 555 ~~~~~55 5 S _ 5~~~~~~~55 5__ ~~~~~~ S 55

S~~~~~~~~S S 5 5~~~~~~~~~~~~~ 5~~~~~~~~~~~~~~~~~~

-~~
S~~~~~~_S-~ 5 5 S S S~~~~~~~ S 5 5 ~ v~~~~~~~~~~ —~

S 5 5 5 5 5~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ASYNCHRONOUS ITERATIVE METHODS 41

S lF0(x)-F
~,,

(y)l � (~IF(2
~~F(Y) l • I1-QIIx-yl ,

and, if F’ is a contracting operator with a contracting matrix A, F
~,

is a Lipschitzian

operator with the Llpschitzian matrix AQ — QA • f1-øjl. The matrix A being non-negative

we have p010
) — op Ol)

~
)1-~4, and, if we choose S

S

.
0 <~~~ < 2/[1+ p (A)] , 5 (3.2)

S F~ is also a contracting operator. In particular , as long as condition (3.2) is satisf ied, the

results of the next section also apply to asynchronous iterative methods with relaxation.

Condition (3.2) Is ctassicat and is mentioned, in par ticular , in [11, p. 221), (43, p. 62),

and [50, p. 31).

S If we consider a linear system of equations derived from a linear elLiptic differential

equation by the method of finite differences , we note that the system is represented by

5 Ax — b, where 6 is a vector of IV’ obtained from the boundary conditions and A is an

?tx~~ M-,natrix (see, for example , (62, p. 85)). Therefore the system can be written into the

form of equation (1.1) in which F is the contracting operator given by

F(x) — (I - D 1A)x 0-16, where 0 is the matrix composed of the diagonal elements of A.

This example shows, In the case of linear operators , the importance of contracting

operators.

On the other hand, non-linear contracting operators , too, constitute a very important

class. A first example is directly derived from the previous one. Elliptic partial
S

differential equations, obtained by the addition of a smalL non-linear perturbation to a

Linear parti’at differential equation, can also be shown to give rise to (non-linear)

contracting operators. S

S More important, if C is a non-Linear operator from IV’ into itself with the simple

root 4’, superLinear iterative methods have been devised to find the root 4’ of C, provided

that an initial approximation x(0) sufficiently close to 4’ Is already known. For exampLe,

S Newton iterative method generates the sequence of iterates S

x (S.1) — F(x(i)) — x (i) — IC (z(Q)T10(x(O) , for S — 0, 1,

________ 5 5 S SS 5555 — SSSS55_SS 555 _ _SSS S S S S S 5 5 5

42 CHAPTER III
S

which converges quadratically to the root (of C. In this parlicular example , we can easiLy
S derive, under usual assumptions (for example, C’ satisfies some Lipschitz condition in a

neighborhood of 4’), that the Newton operator. F’ corresponding to C Is a contracting

operator. (This resuLt will be derived in a more general context in Section 8.)

S

In fact this result is very general. Let F be an operator from tV’ into itseLf with a

fixed point 4’. If we assume that F is continuousLy differentiable in the set

Dr — { x h r- IN <r) and that the derivative F vanishes at 4’ and satisfies a Lipschitz

condition S

IIF’t’x)-FYx)hI � M~x-y~ , V X, 7 C 0r ’ S

then it can be easily shown that S

hlFix.)-F(y)hI � 2Mr~x- . V x, y C 0,~
S

S Therefore , by choosing the vector norm lirli k11 ... ix,,l (which only changes the
S constant M), the operator F is certainly a Lipschitzian operator with the Lipschitzian

matrix A — [a51] where a
51

— 2Mr , for 5, J — 1, ... , it. In particular , if we know a sufficiently

close approximation to the fixed point ((i. e., if r is small enough), the operator F is also

a contracting operator . This shows that the cLass of contrac ting operators contains, under

weak conditions, all iterative functions occurring in the classical superlinear Iterative

S methods. S

4 - Convergence theorem S 5

Before stating a sufficient condition ensuring the convergence of an asynchronous

iteration, we give a characterization of a non-negative matrix with spectral radius less

than unity. The result is classical and an algebraic proof of this char acter izatton can be
S found in (11, p. 218). A shor ter proof , based on the continuity of the spectral radius of a

S matrix as a function of its coefficients , is given below.

Lemma 4.1:

Let A be a non-negative square matrix. Then p(A) c I if and only if there exists

a positive scalar c~ and a positive vector v such that:

L S S55 ~~~~ S 55 5 _ 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ 5~~~~~~~~~~~~~~~

- S 5 5 5 5555 ~~~~~5 SS S S ~~~~S S S S S ~~~S~~~~~~~ 5 5

S
ASYNCHRONOUS ITERATIVE METHODS 43

Au ~ cu and 0 < I . (4.1)

Proof:

We firs t assutno that (4 .1) holds. In this case we note that IIAIIU � o < I , w hore the S

S
matrix norm II .~I , is induced by the vector norm defined by: S

hIxIt~~~
max{ lx 5 h/t,5 h i . 1,...,n) .

Therefore the matrix A is convergent which implies p(A) < 1 (see, for exampLe, (62, p. 13]).

S Now assu’ne that pO V c 1. Let t be a non-negative scatar and At be the matrix

obtained by adding t to all nulL coefficients of A. Clearly, for any positive vector x , we

have Ax � Atx. On the other hand, pfA~
) is a continuous function of t. In particular , since

A0 A and p(A) < 1, we can always choose t > 0 smaLl enough so that p(A
~
) < I (in fact , we

also have pOl) � Then let o p(A
~
). As At > 0, from Perron ’s theorem (see , for

examp Le, (62, p. 30]), there exists a positive eigenvector v corresponding to the

eigenvalue o. The positive sca iar o and the positive vector u verify Au � A
~
u — c.w with

S

~
., < 1. And this completes the proof. U

S This proof shows , in particular , that o ~ p(A). But, we also see easily that the

S positive scalar o can be chosen arbitrarily close to p(A) .

We are now able to state a sufficient condition on the operator F for the

convergence of any async hronous iteration corresponding to F. Similar results were first

established for chaotic iterations , i. e., under condition (b ’), by Chazan and Miranker (11]

in the case of linear operators , and by Mieltou (41) and (43] in the case —ol contracting S

operators. The proof given hero follows the same idea as in (11, pp. 217 -218].

S Theorem 4.1:

If F is a contracting operator on a closed subset 0 of IV’ and If F(D) is a subset

of 0, then any asynchronous iteration (F ,r (O) ,J ,~i) corresponding to F and starting with

a vector x(0) in 0 converges to the unique fixed point of F in D.

L S S 5 - - ~~~ ~~_ 555555S~~ 55 5

5 55 5~~~~~~~~~~~~ 55 ~~~ 5 5~~~~~~~~~ 55

44 5 5
. CHAPTER III S

Proof: S
S 5

S L~t 4’ be the unique fixed point of F. By considering the operator F(x.4’) -I, we may

assume , without loss of generality, that 4’ — Ft’4’) — 0. By setting y — 4’ in equation (3.1),

the Lipschitz condition on the operator F gives:
S S

t F(x) I � A Jx I , Y x E D .

Let A be a contracting matrix for F and Let 0 and v be as defined in Lemma 4.1. 5

Since u is a positive vector , for any starting vector x(0) we can find a positive scalar ~

such that Jx(0)J ~ ~v.

We will show that we can cons truct a sequence of indices j
~
, p — 0, 1, ..., such that

the sequence of iterates of (F,x (0) ,,7,.~6) satisfies: 5

J z (f .)I � o’oPv for j �
~~~
,. (4.2)

S As 0 <o  < I , this shows that x (j ) -, 0 as I -~ co and this will prove the theorem.

We first show that inequality (4.2) holds for p — 0 if we choose I~ — 0. That is, for

j  � 0 we ha~e:

Ix(i)I � ~‘u. (4.3)

S 

~rom the choice of w, inequality (4.3) is true for j  — 0. Assume , for induction, that it

Is true for 0 � j  < k and consider x(~k) . Let z denote the vector with components 
S

— . x5(s5(k)), for i — i, ..., it. From Definition 2.1, the components of x(k) are given either

by x5(k) .. x4(k-I) if S £ 

~k’ in which case 1x 5fk)I — Ix 5~k—1) I � ~u5, or by x5(k) — f4(’z) if S

s e In this latter case , we note that , as s5Oc) < k (condition (a) of Definition 2.1), we

have:

IF(z)l ~ Alit ~ � ~ov 
S

and in particular: S

fr 4
(k)f  — tf~

(z)t ~~a’ov5 . 5

As 0 < o <  I , in this case too we obtain 1z5(k)I ~ a.v5 and (4.3) is proved by induction,

which shows that (4.2) is true for p - 0 if we choose — 0.

L S S S~ ~ S~~5 - ~~~~ S~~_~~ S5 S - ~5 S ~S5 55 ~~~~~~~~~ 
--



S S 55 555 55 ~~_555 ~~~~~~r r5r -~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 55 S S — 555555 -S 55

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S

ASYNCHRONOUS ITERATIVE METHODS 45

Now assume that has been four’:i and that inequality (4.2) hoLds for 0 � p <q. We

want to find and show that (4 .2) aLso holds for P — q. S

First define r by
S r— m i r i (k l V J � k S~(i) � 1q_j , for i a l , ..., n } .

We see, from condition (b) of Definition 2.1, that this number exists , and we note that , from

S condition (a), we have r> which shows , in particuLar , that lx(r)l �

Then take j ~ r and consider the components of x (j) . As above, Let z be the vector

with components z5 — z5~s5(j .)) . From the choice of r, we have
~
4.j~ for S — 1, ..., it ,

and this shows that lit � ~~~~~~ In particular , using the contracting property of the

~operator F we obtain: S S

S lF(z)t � A l i t �

S
This inequality shows that , if I C J1, x4(j) satisfies:

lx~(Ph — hf5~z)l �
S

On the other hand, if ~ f J1 the i-th component is not modified. Therefore , as soon as the

~—th component is updated between the r-(h and the j-th Iteration we have:

1x 5(J)l ~~ S 5 5 (4.4)

Now , define as:

iq
min{ j I j ~~r and { i , .., a) U ... U

(this number exists by condition (c) of Definition 2.1), then f or any j
~

every component

S is updated at least onc:e between the r-th and the j-th iteration and therefore inequality

(4.4) holds for S — I, ... , it . This shows that inequality (4.2) hoLds for p — q and this proves

the theorem. I

Considering only the class of Linear operators , F(x) — Ax + b, Chazan and

Miranker (11] have established a stronger result, namely, that the condition p(IA I) < I is

also a necessary condition for the convergence of chaotic iterations.

~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ S S S S S S S -SS_SS S S . S~~ 5

S S _~~~ 55 ~~~~ 5 5 - ~~

r 55 555 S S ~~~~~~~~~~ ~~ - S 5 5 S S

5

46 CHAPTER III
S 5

5 5 — The class of asynchronous iterative methods with memory S

The idea behind the definition of asynchronous iterations , as presented in Section 2,

-
is to allow, in the evaluation of F(x..), different (and independent) processes to compute

different subsets of the components. This corresponds to a natural decomposition for the

evaluation of F(x) when the operator F is known explicitly by the set of functions

..., f,~. This is not, however , always so. For example, if F Is the Newton operator

corresponding to a non-linear operator C, i. e.: Ff’x) — x - fG ’ (x))~~C(x), usualty only the

operator C is given and the operator F is not known explicitly. In this particular case ,

when two processors are available, a more natural decomposition, as proposed Wy Kung

in [37], is to have one process computing the value of C’ white the other process uses this

va lue for the evaluation of F. More precise ly, if z and y are two global variabLes

containing the current values of the iterate and of the reciprocal of the dórtvative of C,
S respec tively, the two processes correspond to the two following programs. S

Process 1: while (termination criterion not satisfied)

x :- z - y x C(x) .

S Process 2: while (termination criterion not sa tisfied)

do y :— [C’(x)] ’.

Starting with the initial values z(0) and [C’(x (0))]~ for x and y respectively, the

two processes execute their programs asynchronously and use for x and
~

whatever

values are currently availaL te when needed. They implicitly define the sequence of

iterates x (j) , f or I — 0, 1, ... , through formulas of the form: S

x (j) — H[x (J-I) ,x (k~~] , with ~ f-i , (5.1)

where
S

S H (x ,y) — x - [C’(y)] 1C(x) . S

S

This iteration, however, is not allowed in the setting of Definition 2.1, because, in

equation (5.1), x(j) Is defined in terms of two previous iterates. This motivates the need

for a generatizatton of the class of asynchronous iterative methods.

S S -S~~~ 5
55 ~~~

S -SS S _____
5- ~~ - - S

ASYNCHRONOUS ITERATIVE METHODS 47

5.1 — Asynchronous iterations with memory

A generalization to Definition 2.1 ran be obtained by noting that , if , for J — 2, 3,

it happens that — j-2 in equation (5.1), (his equation defines a sequence of iterates

S
- which corresponds exactly to the sequence generated by an iterative method with one

memory. This remsr1~ suggests the following generalization for the problem stated in

equation (1.1).

Given an operator F from [j ~hl]~hI into R’~, the problem is now to find a vector 4’ in

I?’~ such that:

5

4’ — lim
~

F(x ’,...,x.’~) .
5

(5.2)
j x -+4’, .,x~~-~4’) S

S The vector 4’ will still be called a fixe d point for the operator F.
S

In very much the same way as we introduced the class of asynchronous iterative

methods to solve equation (1.1), we now introduce the class of asynchronous iterative

methods wit h memory to solve equation (5.2).

Definition 5.1:

Let F be an operator from L/R’9” lnto R”. An asynchronous iteration with

mern.ory corresponding to the operator F and starting wi th a given set of vectors

x (na-I) is a sequence x(j) , I — 0, 1, ..., of vectors of I?” defined for

f x 5(’j — I) if i S!’ J1
S I f1(z~;...,z’~

) if S C) 1,

where i’ , I s r � nt, 5 the vector with components z(— X1(31r(I)), I � S � it.’ As in

Definition 2.1, ~7 — I .J If — at, m i S , ...) is a sequence of non-empty subsets of

(I , .. ., it) which correspond to the subsets of components evaluated at each step of the

iteration. But the sequence 4 is now to be replaced by:

4 — (s~~(J), ,
~,, ~~~~~

1
(J), ,~2(~) ..., ~~in(J)) I f a ~, m.1, ... ,

S

a sequence of elements in (tV~]m. In addition, white condition (c) of Definition 2.1

remains the same, conditions (a) and (b) now become:

¼

_ 5 5
55

- S

48 CHAPTER III

for each S — 1, ... , it

(a) max{ s((j) I � r ~ in) ~ f—I , for j — in, rn+I ,

(b) min{ s((j) I ~ r � in) tends to infinity as j tends to Infinity.

• An asynchronous iteration with memory corresponding to F, starting with a set X

S of in vectors and defined with ,7 and 4 wilt be denoted by (r ,X j ,4) . I

S

For practicaL reasons (e. g., stability in the impLementation on a computer), we might

want to have the additional condition that the vectors z~, ..., are alt distinct. But this

restriction is not essential for our purpose here if we assume , for example, that the

operator F is defined by continuity when two or more vectors are identical. This wiLl be

the case with the class of operators we wiLl consider.

In order to obtain, for asynchronous iterat ions with memory, a convergence result

similar to the result stated in Theorem 4.1, we need to generalize the notion of

S contracting operators to operators from [ff ~~~~]in into I?”.

In the remainder of the section, we will use the following notation. If {x 1, .. ., xinj is

a se t of vectors in I?”, z — max[x 1,..., 5in] denotes the vector in ~~ w ith components

— max{ x[I I ~ r � in }, i — I , ..., n. A natural generalization to the notion of

contracting operators is given in the following.

Definition 5.2:

An operator F from [ff??~]i~ into H?” is an rn-contracting operator on a subset D of

Ri% if there exists a non-negative flxfl matrix A with spectral radius less than unity

satisfying, for alt x 1, .. ., x ’1’, y~~, 5
5

5

S
IF(x 1, ..., x”) — F(,1, ~m) 1 s A max(Ix ’—y ’I, ..., Jx~~—y’~~J.

S

S The matrix A wiLl be called a contracting matrix for the operator F. U

When at — I , the preceding definition corresponds exactly to DefInition 3.2, and

rn-contracting operators have alL the properties we have already mentioned for

I

•
•

~

.

S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



5 5  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ASYNCHRONOUS ITERATIVE METHODS 5 49

contracting operators. In particular , it is clear from the definItion that in—contracting

opera tors are continuous and, in fac t , uniformly continuous on 0m~ The uniqueness of a

f ixed point in D is also easily derived. In addition, if we assume that D is a closed’ subset

of H?” such that Fi~Dm) is a subset of 0, then we are guaranteed the existence of a fixed

• point in 0: the fixed point is, fo r examp le, obtained as the limit of the sequence x(j ),

I — 0, 1, ..., defined by:

x (j )  — F (x (j —1) , ..., x( j -m ))  , j  — in, rn+I ,

S which is independent of the set of starting vectors x(0), ... , x (na-1) in 0.

We are now able to state the analogue of Theorem 4.1 for in-contracting operators

in the follow ing.

Theorem 5.1:

If F is an rn-contracting operator on a closed subset 0 of 1?” such that F(0”) is S

a subse t of 0, then any asynchronous iteration with memory corresponding to the

operator F and starting with an arbitrary set of in vectors in 0 converges to the

unique fixed point of Fin C. S

S Proof:

With slight modifications , the proof of this theorem is IdenticaL to the proof of

Theorem 4.1.

5.2 — ~xampIos of asynchronous iterations with memory

In the beginning of this section, we considered the Asynchronous Newton’s method to

find the simple root 4’ of a non-Linear operator C. This method led to the sequence of

iterates generated by the asynchronous iteration with memory (H,{x (0) ,x(0)),, 7,4) , where:

for j 2 , 3, ... ,

s~1(j ) _ j _ J , s5
2(j ) — h1 for f . 2 , 3, ... and i — I, ..., n .

In addition, as the operator H can easily be shown to be a 2-contracting operator

(assuming, for example, some Lipschitz condition for the derivative of C in a smaLL

A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 55



S~~~_ S5•5555•~~~~55 — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5_•~~~~ 55 S5~~_

50 CHAPTER III

neighborhood of the root 4’), we see that (ho sequence defined by equation (5.1) converges

to 4’, provided that k~ tends to infinity with j  (which simply states the fact that the

processes eventually complete each step of their computations). S

S 
•
. • 

Let F be an operator from (E?”]” into IV’, and let o be a positive scalar. Consider

the operator F0 from (1V’]”~ into H?” obtainód from the operator F by the introduction

of the relaxation factor o, and defined as 
. 

S

S 
F0f’x0, x1, ..., x”) — (I-~ )x° + c.~F(x 1, ..., x”~.). S

We first note that both F and F0 have the same fixed points (If any). We also note that, if

F is an rn-contracting operator on some subset 0 of IV’ with the contracting matrix A,

- then, for alt x0, x1, ..., ~~~ y0, y1, ~~~, y~ in 0, the operator F0 sa tisfies:

I F 0(x 0, ..., xm) _F 0(y(
~, ... , y~)I � ii-olIx °-y01 + oIF(x t , ..., x in)_ F(ny I, —,

~ PI—oIiz °-y°l + oAmax[1x 1-y1I, ... ,

~ [Il—oil • oA)max[ iz°—y°J, in —y~ I~ ..., Ix nlt_y m i]  , 
S 

S

and, provided that 0 < 0  < 2/ [1+p (A) J, F0 is an (sn.1)-contracting operator on0  with the

• contracting matrix A0 — ~I-o~I + oA. This reestablishes , in a more general setting, the S

result mentioned in Section 3.2 for asynchronous iterative methods with relaxation.

In [42], MielLou introduced a generalization of the idea of it&rations chaotiques &

retards for the problem of finding the fixed point of an operator F from [iR”]2 into H?”. His

S generalization is a par ticular case of an asynchronous iteration with memory 
S

corresponding to the operator F (with in — 2). MieLlou, in addition, gives convergence

results under different assumptions on the operator F (monotony, continuity and existence

of a fixed point). S S

Many more examples of asynchronous iterations with memory can be give~n and, in

part icular , all classical iterative method with memory can be expressed in this way. In

addition, all usual super-linear iterative methods with in memories can be shown (under

weak conditions) to correspond to some (m.l)-contracting operator , therefore ensuring the

convergence of any asynchronous iterations corresponding to this operator.



55 

5— — 
5- 

5 S5 S S 5 S ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~--~~ S-

S 
• S 5 ASYNCHRONOUS ITERATIVE METHODS 51

6 — On the complexity of asynchronous iteration.

Let F be an operator from iV’ (
~ itself with a fixed-point 4’ and satisfying the

ass umptions of Theorem 4.1. We now investigate some measures of comptextty for the

• convergence of the asynchronous iteration (F,x (0) ,,~7,4) toward the fixed-point 4’ of F. 
S

We wilL first derive, in Section 6.1, resuLts applicable to asynchronous iterations in

general , then , in Section 6.2, using conchtion (b ’) in Definition 2.1, we will derive more

specific results for the particular case of chaotic iterations. S

The construct ive proof of the theorem already provides us with bounds for the error

vector x (j )  — 4 ’ .  And, in fact , if F is a contracting operator with the contracting matrix A,

we note that an estimate of the error committed with the asynchronous iteration

(F,x(0),~7,4) is directly obtainable from the asynchronous iteration (A ,Ix (O) -4 ’L7,4) . This

estimate is used in this sec tion to derive bounds for the complexity of asynchronous

iterations corresponding to contracting operators. However , since (A,jz (0) -4 ’i ,~7,4) can

only reflect ’ Linear convergence, this estimate is certainly not adequate to deal with alt

asynchronous iterations, and, in Section 8, using an example s we present an analysis for an

asynchronous iteration with super-Linear convergence. S

For convenience, we only consider the convergence in norm of the error vector

x(’f) — 4’. By choosing, for example, the norm flxjj — rnaxf Jx4 i I I — I, ..., a }, this

S 
• 

corresponds to the wors t possible case for the convergence of the components.

To measure the linear convergence of the sequence n o) , j  — 0, 1, ..., toward its Limit

4’, we consider the following complexity measures often referrod to In the titeraturo. The

rate of convergence of the sequence is defined as:

— tim Lnf 1..,~, ((-Log ~x (j ) -4 ’~) / j J . 
S

In addition, if c1 is the cost associated with the evaluations of the f irst J iterates,

..., x(j), we define the complexity of the sequence by:

£ — tim inf1.,~ ((-logflx(f)-flP/c1J. S 
S

_ _  - - • S S

S S S S5 S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-S---5-S -S S SS S-- SS5~~~~S~~__ S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _



S 5 
5- 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5-- 5555 5 - 5  -~

52 CHAPTER III 
S

If alt logarithms are taken to the base JO , I/ .~ measures the asymptotic number of steps
S required to divide the error by a factor of 10, whereas lIE measures the corresponding

cost. We note that , if c/f tends to some finite limit c~ (which corresponds to the average

cost per step), then the complexity is simply given by £ — 
~~~ 

S

The costs c~, j 1, 2, ..., can be chosen according to any convenient measure. In our

case , we consider the cost to correspond etther to the number of evaluations of the

operat or F, or to the time to perform the evaluatio is. In the former case , if each

component is equally as hard to compute, the cost can be directly evaluated from the

sequence ,7 by considering S

5
. c

j~~ (I J 1I • ... + I J 1P / it , (6.1)

whore lJ ~I is. the cardinality of the set J~, i. e., the number of components evaluated at the
S

, j -th step of the iteration. In the latter case, the cost is better suited to deal with parallel -

algorithms, and can be evaluated through the classic al tools of queueing theory. When it
S

is necessary to indicate which cost measure is used in the evaluation of the complexity,

we use the notations C~ If the cost is measured in number of evaluations of F, and E
~

U

the cost is measured by the time needed to perform (sequentialLy) one evaluation of F.

6.1 — General bounds: asynchronous it.rations

We return to the proof of Theorem 4.1, and we use the same notations. The proof

simply consists of constructing an Increasing sequence of indices 4, p — 0, 1, ..., satisfying 5

l$z(i) — f l~ ~ ooP for j � j ~ , .
S

where the positive constant ~ can be taken to be ~ — qx(0)-~ j . From the construction of

this sequence we note that S
S

11, +1a4 + rp •t p for p 0 , J , ...,

whore rp and are integers chosen to satisfy: (1) starting with the index J~4r~ alt

evaluations of Iterates do not make any more use of values of components corresponding

to Iterates with indices smatter than 4; and (2) alt components are evaluated at Least once

between the’ (J~.r~) -th and the (i~.r~.t~) _ th iterates.
S

-- S •55 5~~ S55~ 5
55

5 _~5 555~~~ 5 S ~~•5•~~S_ __SSS 5S55 S


~~~~~~~~~ 5 5 55S S 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
5- 5-

ASYNCHRONOUS ITERATIVE METHODS - .53

Now let S

p1 — sup~ p (r0 + t 0 + ... + r~_ 1 + t ,,_j � 1) for I — 0, 1 (6.2)

Then, if we know r~ and for p — 0, 1, ... , we can deduce a bound on lIx~i) - 1’lI since

- lix(i)-rlI ~d’i for j — o, i,...,
which shows that the sequence x(j), j — 0, 1, ..., converges at least as fast as the sequence

o
p1. j — ~, 1, ..., with a rate of convergence ~ such that

S

S
-

- [ti m ~~~~~~ (p/f)] logo . . S

And, if c1 is the cost associated with the evaluations of the first j iterates , we have the

S following bound for the com plexity:

E ~
- [ti m ~~~~~~ (p1/e1)] Logo . • S

In addition, as was noticed “ar tier , if A is a c:ontr acting matrix for the operator F, o can be

chosen arbitrarily close to p(A) . This shows that in the bounds we have just obtained we

can simply rep lace o by p(A) , and this yields the following.

Thoorem 6.h

Let F satisfy the condition of Theorem 4.1, and let A be a contracting matrix for

the operator F. Then the asynchronous iteration (F ,z(0)j ,4) converges to the fixed

point of F with a rate of convergence

S - [Lim inf1~~ (p1/j)] togp (/l) - ,

S and a complexity

£ ~ — [tim inf1~~, (p1/c1)] Log pM),

- where the sequence p. is defined from J and 4 by equation (6.2).

An exempt. S

As an illustration, we consider the parallel implementatIon of Jacobi ’s method with k

S processes. For simplicity, we assume that a is a multiple of lc, and we set q — n/k.

To avoid an overhead in the selection of the components to be updated at each step

of the iteration, each process is assigned to the evaluation of a fixed subset of the

components. In particular, when alt components are equally as hard to compute, and when

_ _ _ _ _ _ _ _ _ _ _ _ _ S —~~~~~~~ 5 5- - —~~~~~~~~~~

— --—55- 5-— -
— - -5 - - 5 - - - - - -

--5— ____
5- 55

54
5

CHAPTER III S S

alt processors are equally as fast , (t is natural to decompose , the set of components into
S

subsets of equal sizes , and, f or example, to assign the first process to the evaluation of

the first q components , the second process to the evaluation of the next q components, and

so forth. Corresponding to this decomposition, a paralleL implementation of Jacobi ’s

method with k processes can be represented by the asynchronous iteration (F,x(O),a,4),

where ~ and 4 are defined by:

J1 { & I l + (j - J mod k) q � & � q + (j _ l mod k) q } for j — 1 , 2, ... ,

— L(j - l) / kj q for I — 1, 2, ... and ia 1, ..., a .

The two asynchronous iterations we introduced in Section 2.2 to represent Jacobi’s

method correspond to the particular cases k — I and k — it . S S

S It is easy to check that r~ and are given by I and k , respec tively, for p — 0, 1,

This shows that p1 — U/kJ and therefore

~ -(LogpM))/k .

Now, if c1 measures the number of evaluations of F required to compute the first j
iterates, using equation (6.1), we haVe c1 — f /k. This gives for the compLex ity:

E6t~k) � - logp ’A) . . (6.3)

For alt values of k, we obtain the same bound for the complexity. In particular , when F is

the Linear operator defined by F(x) — Ax b, whore A is a non-negative axa matrix with

spectral radius less than unity, then A can be chosen as a contracting matrix for F and the

bound (6.3) is known to be sharp.

S Since the asynchronous
, iteration we are considering corresponds to a paraLlel

S impLementation of Jacobi ’s me thod, instead of measuring the cost by the number of

evaluations of F, it is more naturaL to use the average time to perform the evaluations as a

measure of the cost. Let the time unit be the average time to perform (sequentially) one

evaluation of F. Then, if pk � j
~

(p.1)k , we have c~~ ~ c1 ~ C(p.j)k and — p[Ah/k].

The expression Ak/k corresponds to the time for the k processes to execute in parallel

their computations and to synchronize their executions. The factor Ak is the penALty factor

I. 55 555 5 5 5 5 5 5 5 555555 5_ S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-——---5-


~~~~5-5S 5 5 - 5  —~,---- - —-- S-_ S

S ASYNCH~)NOUS ITERATIVE METHODS 55

S introduced 5by Kung in [37]; tt measures the overhead due to the fLuctuations in the

~computing times of the k processes , and can be evaluated if we know, for example , the
S - 

distribution function for the time to evaluate F. In particular , we have A 1 — I and, for -

k � 2, Ak ~ 1 with the equality- only when it always take the same constant time to

evaluate F (I. e., there are no fluctuations in the computing time). This cost measure

yields the following bound for the complexity:

E~(k) � -[k/A~]Logp(A) .
S Again, these bounds are sharp for the linear operator we mentioned above, and the ratio

E
~

k)/ E
~
(1) — k/ A k measures the speed-up achieved by using a paralLel implementation

• with k processes. We would expect the implementation with k processes to be k times as

eff icient as the sequentiaL implementation (with k — 1), but this is not so because of the S

overhead introduced by synchronizing the k processes and measured by the penaLty

factor Ak.

6.2 — Additional assumptions: chaotic iterations S

Iii the preceding example , we have been abLe to carry out the analysis for Jacobi ’s

method (and even obtain sharp bounds on the complexity) because the representation in

terms of asynchronous iterations is known explicitly and follows a very regular pattern.

This is not, j~owever, generally so. For example, in a parallel implementation with several

processes using no synchronization (as presented in Section 2.1), the sequences 4% and ~
(and, therefoh,, the sequences r~ and ti,, p — 0, 1, ...) are not known directly but, are only

• . defined implicitly by the processes in the course of their executions.

S BeLow , we present alternate bounds for ~ and £ under conditions often satisfied in

usual implementations of asynchronous Iterations. We assume that we know bounds on

and r ,, and we restrict the definition of the cLass of asynchronous iterative methods by

replacing conditions (b) and Cc) of Definilion 2.1 with the following:

- 
(b’) There exists a positive integer r such that, for I — 1, 2,... end ~ — I , .. ., n, 

S

s~(j) � f—r , 
- S

- S S S 5 S SS S 5S~~ 5- 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



56 . CHAPTER III 
. 

S

(C ’) there exists a non-negative integer t such that, for I — 1, 2, ...,

S 
Jj U ...UJ j .~~~{1, ..., nJ.

As was already mentioned, condition (b’) was proposed by Chazan and Miranker in the

definition of the chaotic relaxation scheme [11]. ALthough the convergence result obtained

under condition (h) of Definition 2.1 is mathematicalLy more satisfactory, condition (b’) is

very often satisfied in practicaL applications, in par t icular , w hen the computations of alt

components have the same compLexit y (which is the case with a Linear operator).

Condition Cc ’) is also satisfied for most of the usual implementations of asynchronous

iterations, since it is natural that (1) a process evaluates a component by using the most

recently updated values of alt components; and (2) two processes never evaluate the same

component at the same time; in this case It follows directly that , by taking r — t+ 1,

conditions (b ’) and (c ’) are equivalent.

Under the additional conditions (b ’) and (c ), we clear ly have r~ � r and ~ t , for

S 
p — 0, 1, ..., and, t herefore, p � (j / (r +t) J. From the bounds stated in Theorem 6.1, we

S ~immediatety obtain the following. 
S

Corollary:

Let F satisf y the condition of T heorem 4.1, and let A be a contracting matrix for

F. If the asynchronous iteration (F,x (O),,~,4) satisfies the additional cond itions (b ’)

and (c ’), then it converges to the fixed point of F with a rate of convergence

— [ I/ (r . t) ]  logpOU ,

and a complexity 
S

E � - [lirn1.,,~ j / (ri. t) c1J Logp(A) . S

7 Experimental resufls

The results of this section are reported in detail in Chapter V. A very brief 
S

presentation is given below as an immediate illustration of asynchronous iterative

S methods.

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -  5 - 5 5 _ 5 5 5 _ 5  - -s - s-— --ss~~- ~~_S~SS__ 5 S S 5 5 S 5 S5__
,,

ASYNCHRONOUS IT ERAT IVE METHODS 57

Sovera~ asynchronous iterations have been experimented with on C.mmp, the 
•

s

S S Carnegie-Mellon multiprocessor [63], thny are descri bed in Section 7.1, and the actual

measurements are presented in Section 7.2. Although asynchronous iterative methods are

applicable to non-linear problems, the experiments reported here deal only with linear

problems. More specific treatments for non-linear problems wilt be reported elsewhere.

7.1 — Experim ents with asynchronous iteration;

- ALL asynchronous iterations we have experimented w ith consist of the paralleL

execution of k processes. As we did with the parallel implementation of Jacobi ’s me thod,

we ass ign to each of the processes the evaluation of a fixed subset of the components.

Each process computes cyclically new values for the components in its subset , and the

methods only differ by the choices nf the values used in the evaluations. -

Asynchronous Jacobi ’s met hod (AJ): For the evaluations of all components , a process

uses only values of the components known at the beginning of a cycle, and the

process releases all new values at the end of each cycle.

Asy,tchrorzous Causs-3e~del ’s method (AGS): Same as the AJ method except . that the

process uses new values of the components In its subset as soon as they are

known for further evaluations in the same cycle. Again, it releases the new

values (for the other processes) at the end of its cycle.

Purely Asynchronou.s method (PA): A process computes the new values of each

component by using the most recent values of alL components and releases each

new value immediately after its evaluation .

The PA method is certa inly the easiest method to implement, and, as far as space is

S 
concerned, is clearly the most efficient one, whereas the AJ method is the worst one, since

it requires from each process not only a complete duplication of all components (as of the

beginning of its cycle) but still another copy of the components in its own subset. This

can hardly be j ustified but experimental results give useful comparisons between the AJ



—~~~~ 
- ----~--,~~-.—— -S -~~S.SS- 5•~~~~~~ ~s-_-s.~~~~~~~-

S S S~~~~~~~

58 CHAPTER HI

method and the actual Jacobi ’s method (also between the AGS and Gauss-Seiciel ’s

methods). S

• In addition, both the AJ and AGS methods also require the need for a critical section

in order to read all components at the beginning of a cycle and to update the values at the

end of a cycle , whereas no critical sec tion is needed with the PA method. However , C.mmp

has the drawback that no indivisible instructions exist to read or write floating point

numbers (implemented on two consecutive words of memory), therefore , if we are to

implement the PA method on C.mmp, only t he first 8 bits of the mantissa can be considered

significant, and the admissible error in the termination criterion has to be chosen

accordingly.

7.2 - Result;

The three methods just described, as welt as - Jacobi ’s method , have been

impLemented ’ on C.mmp to solve the Dirichlet problem for Laplace ’s equat ion on a

• re ctangular domain of II??. Using the method of finite differences , an approx imate solution

to this problem can be found by solving a linear system of equations. In the experiments

repor ted here, a regular gr id has been chosen with 21~24 interior points, result ing in a

linear system of size it — 504. This system can be represented in the form

z F(z ) — Ax • b, where the vector b is obtained from the boundary conditions , and the S

matrix A is a (very sparse) non-negative matrix with spectral radius pOl) — 0.991. Since

p(~/I)) .. p01) < 1, this shows that A is a contracting matrix for the operator F, and,

therefore , that the result of Theorem 4.1 can be applied to F to ensure the convergence of

each iterative method. • 
S

At the time the measurements have been taken, the configurat ion of C.mrnp included S

six processors , and alt iterative methods have been run with a number of processes

k — 1, 2, 3, 4, and 6. Each of the results ~ported here Is the average of three

measurements, but, since C.mmp was used in stand-atone mode during the experiments,

S very Little difference was noted from one run to the next.

S 
5S S S S S S S S ~~~~~ 5 5  -



—-‘

ASYNCHRONOUS ITERATIVE METHODS 59

In Table 7.1, w~ report for the four methods the average number of vector

evaluations required to reduce (asymptoticaL ly) the error vector by a factor of JO: this

corresponds to the cost measure 1/E,. And, in Table 7.2, we repor t the average time

(expressed in seconds) required to achieve this reduction: this corresponds to the cost 
S

mesure 1/E s.

The bounds obtained from the results of the prev ious sect ions are mentioned in

parentheses along with the measurements. The parameters in these bounds have been
S 

evaluated - either directly (e. g., pOl) 0.991) , or through measuremen ts by tracing the

executions of the processes. In part icutar , for the AJ, AGS and PA methods , the bounds r

and t , defined in Section 6.2, have been determined by observing the sequencing of the

S tasks performed by the different processes. Similarly, the penalty factor in JacobVs

me thod and the overhead due to the critical section in the AJ and AGS methods have been

obtained by direc t measurements: they are presented in Tables 7.3 and 7.4.

Jacobi AJ AGS PA

k — 1 254 (254) 254 (254) 127 (254) 127 (254)
k 2 254 (254) 266 (i~88) 142 (888) 127 (762)
Ic — 3 254 (254) 267 (846 ) 149 (846) 127 (762)
k — 4 254 (254) 273 (825) 166 (825) 129 (762)
Ic — 6 254 (254) 285 (804) 196 (804) 128 (762)

Table 7.1 - Number of evaluations required to divide the error by a fac tor of 10

Jacobi AJ AGS PA

Ic — 1 337 (337) 337 (337) 168 (337) 168 (337)
Ic • 2 241 (241) 21 1 (705) 113 (705) 84 (506)

S Ic — 3 178 (178) 149 (471) 83 (471) 56 (337)
S Ic — 4 153 (153) 123 (372) 75 (372) 43 (253)

Ic — 6 131 (13 1) 102 (289) 70 (289) 28 (169)

TabLe 7.2 - Time required to divide the error by a factor of 10

p

- S - S  - -  —~ —5— —. S 
555 ~~ 5~ -~~ -55 5 - S



_____________________ - 
~~~~~~ S~~~~~~~ — - -— ~~~~~~~~~~~~~~~~~~~~~~~~~~ - S 

5”

60 CHAPTER III

k — I k — 2 k — 3 ! c .4 l c — 6
S

-

1 1.43 1.59 1.82 2.34

7. 0 29.9 37.1 45.1 57.3

S Tab le 7.3 - Penalty factor with Jacobi ’s method
S

and percentage of time wasted

S k - I k . 2 k~~ 3 k - 4 k~~ 6

X k 1 1.20 1.26 1.35 1.62

7. 0 16.6 20.8 26.0 38.2

Ta ble 7.4 .- Critical section overhead cost with the AJ ~nd AGS methods
S

and percentage of time wasted

These results must only be considered to illustrate the behavior of asynchronous

iterations, since , in particular , the two cost measures reported in Tables 7.1 and 7.2

s trongly depend on both the problem (i. e., the matrix A) and the multiprocessor system.

Yet , they show a clear advan tage of asynchronous methods over synchronized methods.

We note, for example , from Table 7.3 that , with Jacobi ’s me thod, when Ic — 6

processes arc? used, the penalty factor is as big as
~6 2.34. This means that about 57

percen t of the time is spent by a process waiting for the other processes to finish theIr

computations. This limits the possible speed-up to 2.6 rather than 6.

S

• We also note that the use of critical sections , too , should be avo ided, since , with the

AJ or AGS methods , when 6 processes are used , about 38 percent of the time is spent

waiting tar entering the critical section, again Limiting the possible speed-up to .3.7 rather

than 6. •

The measurements for the PA method , on the other hand, indicate that we achieve an

almost full speed-up with this method (at least with a small number of processes). An

obvious reason for this speed -up is the total absence of any form of synchronization;

________ -5-5 - ~~

ASYNCHRONOUS ITERATIVE METHODS 61

another reason, specif ic to the problem we have experimented with and indicated by the

results of Table 7.1, is due to the sparsity of the matrix A.

The hounds derived in Section 6 have been obtained in a very general case. Yet

Tables 7.1 and 7.2 show that they are always within a factor between 3 and 6 of the actual

measurements (excep t for Jacobi ’s method where they are sharp). In addition, we

cer tainty coULd obtain much sharper bounds by carrying out the analysis for the specif ic

problem we have experimented wi th (for example , by taking into account the sparsity of

the matrix). In particular , a spec ific analysis ~or the PA method can easily explain the fact
S

that I/En is almost independent of the number of processes (see Table 7.1).
-

8 Asynchronous iterations with super-linear convergence

As we already noticed, the bounds established in Section 6 are certainLy not

adequate to measure the complexity of iterations with super-Linear convergence. In this

- section, we use as an example the iterat ive method we have mentioned at the beginning of

Section 5 to show how an analysis of the complexit y can be done for this case.

To study the convergence of a sequence x (j) , j — 0, 1, ..., towar d its limit f, we now

use the following usual measures of complexity. The order of convergence is defined as

p — tim ~~~~~~ [(_ tog~x(j)~ ’jf)hI)J , -

S and, as before , if c is the cost associated with the evaluations of the first J Iterates ,

we define the complexi ty of the sequence by:

S
E — tim inf 1..,~ [(log-logj~x(j)-~~)/c1],

S Again, we note that , if the average cost per step c / f tends to some finite Limit ~ when j

tends to infinity, the complexity is simply given by E — aogp)/~. In the remainder of the

sec t ion, we assume that the limit ~ exists.

I,, order to find the simple root r of an operator G from 1V~ into itseLf , we use the

Asynchro rtotu Newton ’s rn.ethod, AN, as implemented by the two processes described at the

I- S S S S~~~~~5 _________ 5 5--- -- 5 -4

SS~~~~~ 5~~~-5 S~~~~S - 5 S~~~~~_ -5S_

62 CHAPT ER III

beginning of Section 5. Let r4, ~ — I , 2, ..., be the number of iterates evaluated by the first

process , P1, during the i-th evaluation of the derivative 0. by the second process , P2. Let

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
for the (p.1)-st evaluation of the derivative. Starting with the two initial values x (0) and

C’(x ( ’O)) , the AN method generates with the two processes P 1 and P2 the sequence of

iterates x(j), j  — 1, 2, ..., def&necl by

x (j + I )  — x (j )  — [ C ’(x (j ~
_ , ) ) F ’C (r (j ) )  , for i — 1, 2, ... and < I � i~+~ . (8.1)

The following theorem gives the measures of complexit y for this sequence if we

know some bounds on the sequence r~, i — I , 2 S

Thoorom 8.1:

Let the initial approximation r (0) be close enough to the root .~~~ that is

x (0)COc~~ (X l I l r ~l~l I < t J ,

and le t the derivative C~ satisfy some Lipschitz condition on

flO ?x) -C ‘&)f l � MlI x -yj J , V x, y C D
~
. S

If e satisfies the condition

MUG ‘~.rr’li. < 2/ 5

and if there exist some positive integers p and g such that

p �r ~~~~q ,  for ~~ — 1, 2, ... ,

then the’ order of convergence , p, and the complexity, E, of the sequence defined by

equation (8.1) satisfy:

~~~~~~ 
j ~~I/ q 5

- (8.2)

and S

-

E � 4ogX~~)/(q~~) , (8.3)

whore Is the largest root of the equation ~~~~ - - (p-I) z - I — 0 (for which we can

check easily that 0.4 • < 0.5 • ..‘
~~

, p — 1, 2, ..J.

Proof:

The proof is easy but technical , and below we only give an outline for this proof.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S 5 S -5 55_ S_ -5S __5 
~~- S- S S S S - --S S S~~ S -~~ S S S S S S~~~~~~~~



— _=;;__ _ - .- -5 _ _ _

ASYNCHRONOUS ITERATIVE METHODS . 63

Let ~ u MftG ’~’tr
1fl, and let c — 3~/ [2(1-e ’c) J. From the choice of c, we first note that,

starting with x (0) C D~, the sequence llx(j)-~iI, I — 0, 1, ..., is strictly decreasing and

sat isfies:

llz(i~.I)—rfl � cI)z(j~~2)—t 1lllx(J1)— rIl , for & — 2, 3, ...
and 

S

S S Il~(i~I)—r ll ~ cll~(i1_1)-rtlIlz(f)—fll , for i • 2, 3, ... and j i < j  c a 4 • .

By substitution, it fol lows that , for i — 2, 3,

llx(i~,j
)—

~ll � c 4IIxQ~~1)—~ f l ’  ~~~~~~~~~~~~~
and, if we set tL~ — -togc~x(j1)-~~l, we obtain:

u ,1 ~ • (r~—1)u~..1 • u~ 2 , for i — 2, 3 

Therefore , by using the tower bound on r~, we deduce that

~ 
u
~ 

+ (p—I) u~_ 1 • u~_2 , for i — 2, 3 

This shows that uL tends to infinity at least as fast as A~~. Theref ore , the order of

convergence, p ’, of the subsequence x(j~
), i — 0, 1, ..., must verify p ’ � A~. The ~bounds

(8.2) and (8.3) are derived directly from this last inequaUty. I

S In par t icular , if the cost c,~ measures the number of evaluations of the operator C,

we simply have c1 — j, and, therefore , 
~~ 

� (logX~,)/q. On the other hand, If the cost

corresponds to the execut ion time, the complexity wiLl depend on the implementation

itself. For examp le, an implementation corresponding strictly to the generation of the

sequence described by equation (8.1) requires the use of a crit ical section for reading and

writing, in a block , the values of the iterates and of the derivative. The use of a critical

section introduces an overhead, but, as is done with the PA method, the overhead can be

avoided if a process uses whatever values are currently available when needed. In this

case the bounds of Theorem 8.1 still holds, and ~ can be given the value ~ — 1.

The parameters p and q, too, depend on the particular Implementation of the AN

S method, and, especially, on the relative speeds of the processors executing the processes

P1 and P2. In practice , If the processors are equally as fast , we expect , with smelt



-—-—---—=— ~~~~~~~~~~~~ 555~~~~ _~_ _ _ _ _ _ _ _ _- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

64 CHAPTER III -

variations, r L to be ctose to it , and the values p a q a n can predict good estimates for the

S 
complexity of the AN method implemented with two processes.

The AN method is easily generalizabte to more than two processes. If k processes

are ava ilable , k 1 might be assigned to the evaluation of the sequence of iterates , white

— - are assigned to the evaluation of the derivative. The bounds of Theorem 8.1

still holds for this case as welt , only with different values for the sequence r~, I — 1, 2,

(or for the bounds p and q), determined by the parallel implementations of the two S

- evaluations. Further results in this direction wilt be reported elsewhere. S

9 — Extensions of the results

We mention below some direct extensions of the results presented in t’his chapter

and some points subject to further development. - 
S

A straighforward generalization of the results can be obtained if , instead of t?’~, we

consider the product P of it L3anach spaces B~ wit h norms 1•1~. I a 1~ ... , it. In this case , if z

is an element of P, x is determined by its components x~ C 81, 1 — 1, ... , it. And ~~
represents the non-negative vector of ~~~~ w ith components lxil~, I — 1, ... , it.

Considering only the class of linear operators , F(~x) — Ax • b, we have noted that the

notion of contracting operators coincides with the condition that p(IAI) < 1. In (11],

S Chazan and Miranker have shown that this condition is not only sufficient but also

necessary for the convergence of alt chaotic iterations. This implies , in particular , that alt

async hronous iterations corresponding to a linear operator F are convergent If and only if

F is a contracting operator. The necessit y of this condition, however , seems to be
S 

inherent to the linear nature of the problem, and when we also consider non-linear

- operators the proof given by Chazan and Mirenker does not apply any more. It would be

of interest to obtain conditions on the class of operators for which all asynchronous
S iterations are guaranteed to converge. Stmilar conditions for the convergence of a more

p 5



-I

ASYNCHRONOUS ITERAT IV E METHODS 65

restricted class of iterations would also he of interest , in particular , I or the subclass of

asynchronous iterative methods corresponding to the additional assumptions introduced In

Section 6.2.

The bounds we have obtained to estimate the rate of convergence of asynchronous

iterations have been derivi’.d by considering the worst possible case , and, compared to

actual measurements , these bounds are very conservat ive. It would certainty be very . S

useful to obtain bounds (or estimates ) corresponding to the average behavior of

async hronous iterations , f or example , given the probability distrIbutions of the two

5 sequences ~ and 4, or , more genera lly, given the distribution functions for the time it

takes the different processes to evaluate the components.

We have already mentioned the poss ibility of introducing a relaxation factor in

asynchronous iterations , and, f or contracting operators , we have derived a poss ible range

tha t guarantees the convergence of alt asynchronous iterations. Nothing is known,

however , about the optimal choice of the relaxation factor , f or examp le, given directly the

asynchronous iterat ion through ,7 and 4, or , again, given the distribution functions for the

evaluation times. 
S

10 — Concluding remarks

In the implementation of most parallel algorithms, synchronization seems to be

required to assure the communication between the processes , and to guarantee their

correc.t execu tions. However , the main drawback with synchronization is that It degrades

considerably the performance of the algorithms because It is very time consuming. The

class of asynchronous iterative methods avoids this drawback. It includes iterations

corresponding to a parallel implementation In which the cooperating processes have a

minimum of intercommunication and do not make any use of synchronization. The Purely

Asynchrenoas method described in Section 7.1 is a typical example of an asynchronous

iterative method. Asynchronous iterations follow the same goal as chaotic

re laxations (U]: to eliminate the need f or synchronization in a parallel computation. S

- S 

5



5 — 5 — -----5---—

66 CHAPTER in S

S Asynchronous iterations generalize to asynchronous iterations with memory which

allow dif lerent values of the same variable to be used within the same computation. Using

the not ions of corlt ractinE operators and of rn-contracting op era tors , Theorems 4.1 and 5.1

state suffic ient conditions to guarantee the convergence of any asynchronous iterations

and async hronous iterations with memory. These conditions are satisfied for a large class

of opera tors.

In the second part of the chapter , asynchronous iterations are evaluated from a

computational point of view, then the results of a series of actual measurements (obtained

by running asynchronous iterations on a multiprocessor) are presented. These results
S 

fully just ify the use of asynchronous iterative methods.

General bounds on the complexity of asynchronous itera tions are first derived

S directly from the proof of the convergence theorem. Although these bounds are sharp for

a para llel implementation of Jacobi ’s method , they are of Little app licability since they

require to know a priori the exact specification of each step of the iteration. Alternate

bounds are then derived under additional conditions which are usually sa t isfied in

prac tical applications. These bounds are consistent with actual measurements; for the

experimen ts we have run, they are always within a factor of 6 of the measurements. In

additions it is our feeling that these bounds can be largely improved if we take into

acc ount specific characteristics of the problem being solved, theref ore leading to a better .

understanding of asynchronous iterations. In Section 8, f or example , we have made a first

step in this direction, and we have presented an analysis for the Asynchronous Newton ’s

method.

A series of experiments has been conducted on C.nimp, a multiprocessor system

(w ith 6 processors at the time (he experiments have been run), and several async hronous

iterative ,nnthods have been implemented to solve a large linear system of equations.

They range from Jacobi ’s method, requiring a full synchronization of alt the processes at

each step of .the iteration , to tho PA method, which requires no synchronization at alt. In

~
t,S

i5S
~

-—

- — - -- 5 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S S


S

- ASYNCHRONOUS ITERATIVE METIK)DS 67

between, the A.l and AGS methods are derived from the usual Jacobi ’s and Gauss-Seidel’s

- methods, and they require the use of a critical section.

The experimental results show a considerable advantage for the iterative method

wi th no synchronization at alt. ror a number of processes up to the number of processors

avai lable on C.mmp, the PA method exhibits full parallelism and has an optimal speed-up

compared to Gauss- Seidet ’s method, the best sequential method experimented with. The

AJ and AGS me thods have a very similar behavior , and when 6 processes are used the

overhead caused by the critical section implies thaI 38 percent of the time a process is

wai ting for enter ing the critical section. As is intuitively expected , Jacobi ’s method has

the worst behavior of all the methods considered , and, w ith 6 processes , the overhead, due

to the synchronization of alt the processes at each step of the iteration, is about 57

percent (i. e., more than half the time a process is waiting for the other processes to

finish their computations). S

S On the basis of these experimental results , and for the problem we have considered, S

S there does not seem to be any alternatives: the PA method is obviously the most efficient

one. In addition, another advantage of the PA method is that it is the easiest one to

implement, and, spacew iso, it is also the most efficient one.

Finally, another possibility, which has only been outlined in this chapter , is the

introduc tion of a relaxation factor. Based only on a few experimental results (not

reported here), it is our belief that we can expect an improvement of the Purely

Asynchronous Over-Re!4xotion method over the PA method similar to the improvement of

the SOR method over the Gauss-Seidet’s method, if we choose the relaxation factor in an

S optimal way. The optimal choice of the relaxation factor depends not only on the system

being solved, hut also on the probability distributions of the various execution times by

the different processes.

5 S S

~

5 - S S S 5 5 S S S S S S S

5 5 5

Chapter IV

On the Alpha-Beta Pruning Algorithm

Part 1: The sequential algorithm

1 — Introduction S

S
Most so-called intelligent programs use some form of tree searching; among them,

mos t game playing programs are built around an efficient tree searching algorithm known

as the alpha-beta pr~n&ng algorit hm. In the first part of this chapter , we investigate the

eff iciency of this algorithm with respect to a cost measure first introduced by Knuth and

Moore in (35] and given in Definition 1.1 below. The second part of the chapter is

devoted to the study of a paraLlel implementation of the algorithm on an asynchronous

multiprocessor. -
S

DefInition 1.1:

Let N
~,d be the number of terminal positions examined by some algorithm A tn

searching a uniform tree of degree a and depth d. The quantity -

- ~~~ (N~~
) 1

~~ -

Is catted the branching factor corresponding to the search algorithm A. I

- -
Analyses of the a’-/~ pruning algorithm have been attempted in two recent papers by

Fuller , Gasc hnig and GUlogly (23] and by Knuth and Moore (35]. aoth papers address the~
problem of searching a uniform game tree of degree a and depth d with the c~-/3 pruning

algorithm under the assumptions that the S static values assigned to the terminal nodes
-

independent Identically distributed random var iables and that they are aLL distinct. We

- 5 - --- — — -5--- 5 S 5 ~~~~~~~~~~~~~~~~ 5 5 5 5 5 5 5~~~~~~~~~

70 CHAPTER IV

immediately observe that , in order to evaluate the branching factor , the Last assumption

requires that the ~d distinct values assigned to the terminal positions be taken , from an

infinite range. For most practical applications this is, however , unrea listic.

FuLLer , Gaschnig and Gittogly developed in [23] a general formula for the average

number of terminal positions examined by the ~ -~8 procedure. Their formula, howc ver, is

cOmpLltat iOflalty intractable and Leads to undesirable rounding errors for large trees (1. e.,

for large a and d) since it involves , in particular , a 2d—2 nested summat ion of ternis with

S alternating signs and requires on the order of ~d steps for its evaluation. Then they gave
S some empirical results based on a series of simulations, and compared the results with

S actua l measurements obtained by running a modified version of the Technology Chess

Program (24], (25). -

In (35), Knuth and Moore have analyzed, under the same conditions , a simpler

version of the full n’-/~ pruning algorithm by not considering the possibility of deep

cut-of Is; they have shown, in particular , that the branching fac tor of the resulting

algorithm is 0(’n/ln a). Knuth and Moore also cons idered other assumpt ions to account for

dependencies among the static values assigned to the terminal positions and developed

- analytic results under those assumptions. Their paper gives, in addition, an excellent

presentation and historical account of the c~-~ pruning algorithm.

eparkng from the assumptions at the two papers we just mentioned, we first

S consider the effect of possible equalities between the values assigned to the terminal -
S

nodes of ’ a uniform tre e, assuming that these va lues are independent identically distributed

random variables drawn from any discrete probability distribution. In Section 2, we

establish some notations and preliminary results , and in Section 3, we derive a general

formula for the number of ter m inaL nodes examined by the ~~~~~~~ pruning algorithm when we

take into account both shallow and deep cut-of Is. The evaluation of this formula requires S

only a finite summation over the range of possible values assigned to the terminal nodes S

and is relatively easy. We show , in particular , that , w hen the terminal nodes can only take

- -

- -~~ - - S~~~~~ - S - - — - ~~~~~ - S - ~~~~ 5 - - -

- - - S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PART 1: SEQUENTIAL Al.PHA-BETA PRUNING ALGORITHM 71

on two distinct values, the branching factor of the ~-/l pruning algorithm can grow with it

as O(nJL n a) for some choice of the probability distribution. In Section 4, we show that ,

w hen the discrete probability distribution tends to a continuous probability distribution,

the summation derived in Section 3 can be replaced by an integral, which constitutes the
F

wors t case over all, discrete probability distributions. In Section 5, an analysis of this

integral shows that the branching factor of the c~-/3 pruning algorithm for a uniform tree of

S degree a grows with n as O~n/Ln a,), therefore confirming a claim by Knuth and Moore [35]

that deep cut-o f fs have only a second order effect on the average behavior of the

cv-jI pruning algorithm. In Section 6, we propose a paral lel implementation of the

a~-$ pruning algorithm in which several processes search for the soLution (i. e., the value

assoc iated with the game tree) within different subintervals. This paralle l implementation

is analyzed in Section 7; the parallel implementation with 2 processes , in part icular , turns

-
out to be more than twice as efficient as the original a’-f? pruning algorithm, which is

consequent ly shown not to be optimal. Some concLuding remarks and open problems are

given in the Last section. -

2 — Presentation and initial properties of the o~—f3 pruning algorithm

There are two usual approaches for dealing with searching a game tree. Jn [23],

Fuller, Gaschnig and GiLLogly adopted tl,~ Mm -Max approach , while, in (35), Knuth and

Moore chose the Nega-Max approach. We wiLt briefly present , in Section 2.1, the two

appr oaches and introduce the ~-~l procedure in terms of the Nega-Max model. - Then, in

Section 2.2, we wiLt reestablish an initial result of j23] which was stated in terms of the

~~n-Max approach.

2.1 - The ~~ procedure

S Let us consider a game (like chess , checkers, tic-tac-toe or katah) played by two

players who take turns. It is common to represent the evolution of the game by means of

L 5 5 5 ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 5~~ ~ S S~~~ S - 5 S 5 5 S 5 S 5~ S~~~~~5 SS S 5 5 ~~~~~5 5 5 55 5 5
S 5~~ - 5 5 5 5 5 ~~~~~~~ ~~

r 5~~S-5~~~~_ 5 S ~5 S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______

— —
-5--— - - 5 - 5 - 5 S S~~~~~~~

5
~~

5
5 72 . CHAPTER IV

a go.n&e tree , w -,ere each position of the game is represented by a node. If the position is

a dead-end, the node is terminat , otherwise all possible moves from that position are

represente d as the successors of the node. The structure of the tree is preserved by not

generating moves Leading to some positions already generated (thus , avoiding cyctes)~ this

is the function of the ,noi’c generator. The evaluation function is another important

func tion in game playing programs; It assigns to each terminal position a static value by

es timating various parameters such as piece counts, occupation of the hoard, etc. The

evaluation function evaluates the terminal nodes from one ptayer s viewpoint, giving

higher values to positions more favorable to this player. It is convenient at this point to

name the two players Maw and M m . Hence, Max s strategy is to lead the game towards

positions with higher values, white M m ’ s strategy is to Lead the game towards positions

with lower values.
S

The rnininzax~ procedure is directly based on this formulation and can be used by

either Max or Mm to decide on his next move from a given position, assuming that his

S opponent will respond with his best move. Using a rather brute force approach, the

S

-

-
minimax procedure assigns values to all nodes of a gamne tree. It first assigns to terminal

nodes the results of the evaluation function, then Lt backs -up to internal nodes

corresponding to a position from which it is Maw ’s (Mm ’s) turn to play the maximum

(minimum) of the values assigned to its successors.
S

S Suppose it is Max ’s turn to play from an initial position (corresponding to the root

of the game tree), then it is his turn to play from any positions at even depth and Mm ’s S

turn to play from any positions at odd depth. Therefore , the minimax procedure wiL t

back- up values to the nodes of the game tree through a succession of

Minirnazing/Maximazing operations, This corresponds to the Mi-n-Max approach.

-
By observing that:

max{ min{ x
~
, x2, ...), mtn{ Yl, 72’ 1, ... I —

max (— max(—x 1, —z2, ...), -maxt
~YI~ 72’ —.

~“ I

5~~~~_ S~ 55 _ 5
55

PART 1: SEQUENTIAL At.PHA-BETA PRUNING ALGORITHM 73

the Mm -Max approach can be directly reformulated into the Nega-Mri.x approach. In the

Nega- Max formulation, a terminal node of a game tree should be assigned the result of the

evaluat ion function only if it is at an even depth (assuming it Is initially Max ’s turn to

play) and it should be assigned the opposite of the result of the evaluation function If it is

at an odd depth. The Nega- Max approach requires the same operator at aLL Levels of a

game tree , and’ the uniformity of the notation will make it easier to carry out an analysis.

This approach w ilt be used throughout.

Figure 2.] shows the effect of the minimax procedure in a uniform tree of degree 2

and depth 4. The values assigned to the terminal nodes have been chosen arbitrarily. The

pa th indicated by a darker tine shows the sequence of moves selected by the procedure.

S

-

8

~~~ 

I 

- 

4

.~~~~~~~~~~~~~~~~~~~~~~3 9 ~~~~~~~~~~~ - 7 O ~~~~~~~~I 7 4 - 3 2 
S

Figure 2.1 - Searching a game tree with the minimax procedure

The minimax procedure is clearly a brute f orce search and, when exp loring a node,

it uses none of the information already available from the nodes previously explored.

Obviously, by taking advantage of the information previously acquired we can easiLy

improve on the brute force search. Figure 2.2 presents some simple patterns in which the

distribution of the Information could lead to such improvements. In the figure, the circled

nodes have already been explored, and they are labeled with their backed-up values; the

values of the other nodes are yet to be determined. We are interested in the value v of

the top Level node in both patterns (a) and (b).

I

-  A



74 CHAPTER IV S

S 

. 

d;/
”::II:IIi::J 

S

- 

(a) shallow cut -off 
2

(b) deep cut—off

S 
- S Figure 2.2 - Examples at possible cut -offs

Let us consider the’ pattern of Figure 2.2 (a) first , From the definition of the

minirnax proce dure, the values v and z satisfy: 
-

- v — max~ 3, -x } , x — max I -2, ... I S

which shows that x � -2 or 2 ~ -x. Since 3 � 2 ~ -z , it foUows that independent of the

exact value of x, we will have u 3. This shows that we need not exp lore further the

successors of the node labeLed x if we are only interested in the va lue of v. This leads to S

a f irst type of cut -offs known as sht -iltow cut-oIls.

The pat tern of Figure 2.2 (b) iLlustrates a deeper cut-off. As with the previous

ey’imple, there are immediate relations between the values of the nodes. In particular , we

have y � -z, which leads us to consider two cases. Either y >  -z, and this means that the

value y is determined by its right son(s) and certainly does not depend on the right son(s)

of :. Or y — -z, In which case , since x 
~ 

-y and z � -2, we deduce x ~ -2 or -x � 2; but

since v - max~3, -x j it follows (hat v — 3, independent of the exact value of x and, a

- tortiori, independent of the exact vatue of z. This shows that in either case the successors

of the node labeled z need not be further explored since the final value of ti would In no

,way be affe cted. S 
S

The two examples presented in Figure 2.2 indicate that a r~ductton of the search 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S

PART 1: SEQUENTIAL Al.PHA-BETA PRUNING ALGORITHM
-

75 —

can be ac hieved if a node passes down to its sons the current value backed-up so far (3 in

the case of the two above examples) as a bound I or pruning branches 2, 4, 6, ... levels

below; the bound can , of course , be improved as the search progresses down the tree

(Leading to more and more possib le cut-oils). S

S Using two bounds for even and odd levels of a tree, these Improvements are

implemented in the following procedure adapted from [35). -

integer procedure Al,PHABE’~A(posit ion P, integer alpha, integer beta): S

begs injç~er 1~
t , n;

S determine the successor positions: P1. ... ,

if n 0 then
ALPHA13ETA :- f(P)

-

else
_____ 5

5

S or j : ~~1~~~~~~l~~~j i i n do
begin
t :— -ALPHAI3ETA(P1,-beta ,-alpha); S

if t > alpha then alpha := t; S

if aLp ha ~ beta ~~~ ~~~ done - S (2.1)

- done: ALPHAI3ETA :— alpha
end

end S

The Alpha-Beta procedure (from (35])

The function denoted by I Is the evaluation functiun which assigns static values to terminaL

positions.

Knuth and Moore (35] have shown this procedure to be correct in the sense that the

ca ll Al.PHA8ETA(P,-n,,’c~) ass igns to position P the value MINIMAX(P), assigned by the

mtntmax procedure. More generalLy, they showed [35, p. 297) that , Li alpha < beta:

ALPHAF3ETA(P,alpha,bcta) ~ alpha, if MINIMAX(P) ~ alpha, (2.2)

t~ ‘4l A f 3F ~~’~P.at pha,bC(a) — MINIMAX(P), if alpha < MINIMAX(P) < beta , (2.3)

a P~-iA ’t ‘ r ... p P~ .p~. ta) � beta, if MINIMAX(P) ~ beta. (2.4)

.• ~~~~~ • •~~
, ..., •~~~ ~~~~~ 2 ~~~ ‘at e th mtnunax procedure Is shown in

— — •-ft ~~ - - I s a c r Th. branc hes pruned by the

I.
- — -- S - — - -~~~

-~~~~
5~~~~~S:S

76 CHAPTER IV

S procedure are (nciic.ated with dashed Lines, and the nodes marked with a circle have not

been completely explored.

-

-
S

.

S

S / ~a L!J P U U S

E~J 5 ••‘

‘
~J L~1

”
~ -7 I -

~~ I . a

Figure 2.3 - Searching a game tree with the a~-a procedure

We observe that only 8 out of the 16 terminal positions and 19 out of all the 31 nodes are

examined by the w-f? pruning algorithm in this example , reducing greatly the cost of

searc hing the tree. As is seen by comparing Ft gurc’.s 2.1 and 2.3, the values bacS~ed-up by

the c~-,~? procedure to some interna t nodes are not necessarily the same as the values

backed-up by the minimax procedure , as reflected by the Indetermination in

equations (2.2) and (2.1). The top value, however , is not affected by this indetermination.

2.2 — Some properties of tho ac-fl pruning algorithm

In this section , we will introduce sonic notations which will be used throughout , and

we wilt reestablish , in terms of the Nega-Max approach, an initial result of (233 giving a

necessary and sufficient condition for any node of a game tree to be examined by the

a-fl pruning’ algorithm. -

2.2.1 — Notalions -
S

-
S

As in (35), we wiLt use the Dewey decimal notation to represent a node in a tree.

I,

-4

S S ~~
--- 5— -

PART 1: SEQUENTIAl. Al.PHA-L3ETA PRUNING A1.GORITHM 77 —

More precisely, let c, the empty sequence , denote t he root of the game tree. Then, If ~7
denotes some internal node of the tree with n sons , (7.j wUl denote the j -th son of node (7,
for I — 1, ... , n. In Figure 2.4, node 4.1.3.4.3 is the node at depth 5 whose path from the

root is indicated with a darker line.
S

2 Roo t • -

E~ E~J c (4) — 2

c (4 . 1) — - ~ S

~~~~~~ ~~~~~ c(4.1.3) — 3

~~~~~~~~~~
l 5

~~~~

~
j ~~~~~~~~~ c(4.1.3. 4) — -5

U1~~
?’ 

~~~~ ct4.1.3. 4.3, —

cv.~(4.1.3.4.3) — max{ c(4.1.3.4.3), c(4J .3) , c(4) } — 3

fl(’4.1.3.4.3) — -max{ c(4.1.3.4), c(4.1)) — 5

Figure 2.4 - Portion of a game tree showing the path to node <4.1.3.4.3>

The value associated w ith some node ,7 of a game tree by the miriimax procedure

S (see Section 2.1) will 1)0 denoted by v(J). Then, if ~7 is a terminal node, v(’) is the static

-value asignod to that terminal position, and, if (7 is an internal node, v((7) is the value

S backed-up to node (7 by the minimax procedure. In the latter case , If node (7 has a sons,

v(~7) is given by:

v((7) — max(-v((7.j) I I � I n). (2.5)

In Figure 2.4, the nodes on the path from the root to node 4.1.3.4.3 are evaLuated through

forniula (2.5) white the other nodes (including 4.1.3.4.3) are shown as terminat nodes and S

are assigned arbitrary values. (Nodes are labeled with their values.)

While the values v(J) deal with the static aspect of a game tree, the quantit ies we

.
- -

~~~~~~

L -- ~~ 5 5 5~~~ 
-
~~~~~~~~~


— ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ - S

78 5 CHAPTER IV -

wit(introduce next deal more with the dynamic aspect of the tree when being searched by

the a-fl procedure.

For any node J.) at depth d ~ 1, we define:

c((7.j) — max { -v(,7.i) ~1 ~ I � f- I)
(By convention, the maximum over an empty set is dot tned to be -

~~~~
; in particular ,

c((7.1) — -ce.) ~For the root of the tree we also define c(s) — -
~~~~. The quantity c(~7) accounts

for the information provided to node (7 by its elder brothers. These values are indicated

to the r ight of the game tree shown in Figure 2.4 for alt nodes on the path to node

4.1.3.4.3; only the nodes indicated with squares arc used in computing these values.

We finalLy define for any node (7 — fj Id at depth d � I in a game tree two

quantities directly associated with node (7 by the w-~ procedure. For I — 0, ..., d-1, Let

— Jd-~
We define:

~~,7) — max{ c ’,74) I i is even , 0 ~ I ~ d—1

— -max{ c(,7~
) I I is odd, 0 � I ~ d-I }

S It is convenient to define these two quantities for - the root of the game tree by c~(s) — -to

S anti / 3(c) — •co (which is consistent with the definition). These ~~~
- end fl-values are shown

In Figure 2.4 for the node 4.1.3.4.3 along with their definitions.

2.2.2 — Necessary and sufficient condition for a node to be explored by the ot-/ i procedure

The following lemma justifies the notations we just Introduced in the preceding

sec tion.

Lemma 2.1:

Assume that , Initially, the root of a game tree is explored by the ~-fi procedure

through the call -

ALPHAf3ETA(root ,-o,,~co) . (2.6)

Then, U node (7 Is examined, it is through a call of procedure ALPI-IABETA In which the

parameters alpha and beta satisfy:

- - - - - - _ _S S _5~~5~S - -- - - -- - 5 - 5 _ _ _ _

S -

PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM 79 —

S

alpha — a’(17.) , (2.7)

beta — /3~~) . (2.8)
S Proof: S

-
S

-

If (7 — f j
~d denotes some node explored by the procedure at depth d ~ 1, let, as

before ,
~~& — Ii Id-I’ for 0 ~ I �d-I. Thus node is the father of node (7, whiLe, If

Id ~ 2, node
~
7j

~
Jti-1

~
is the brother of (7 immediately preceding (7 (and explored just

before ~7). Observe that , if Jd — ~, c((70) — c((7) — -to and therefore:
- S

-
- cx~4~7) — max{ c((71) I I is even, 0 ~ i � d-I)

— — (-max{ c((71~1) I L is odd, 0 � I � d-2 J]
—

(simiLar ly, i~
(
~
7) — —a~

((7 1)) . Observe also that , if Jd � 2:

— max~ ~~~~~
c((7))

— max(a’~~2) , C[(7l.(jd-1)] , -v [Jj . (j d - I)])

and that fl(,7) / 3L71.(fd- ’)) .

By the call of line (2.6), relations (2.7) and (2.8) certainly hold for the root of the

game tree , since a~(L) — -to and fl(s) — •cu . Then the proof follows by induction from

S inspection of the procedure ALPHABETA, and from the relations we derived above. I
,

The f ollowing theorem states a useful relation that characterizes the fact that a

node of a tree is explored by the ~-fJ pruning algorithm. This relation was first

established by Fuller , Gaschnig and Gittogty (23] with different notations in terms of the

Miri-Max model.

Thoorom 2.1:

Assume that , Initially, the root of a game tree Is explored by the ~-fi procedure

through the call

AL.PHABETA(root,-to,~co) . S -

Then, an arbitrary node (7o f the game tree is subsequently explored If and only If

c i3(
~
7) . . (2.9)

-~~~ ~~~~~~~~~~~~~ 5~~ 5 S 5~~~~~~~~~~~~~~~~~~ 5

S - - S ____

80 CHAPTERS IV

Proof:

Because of the presence of Line (2.1) in the procedure ALPHABETA, the result

S folLows directly from the result of lemma 2.1. S~
- I

Since it wilt be more convenient in the following sections , ra ther than ~t(7) and

we wilt use the quantities:

A((7) — max(c(
~71) I I is even, 0 � I � d—i)

S B((7) — maxi c(~74) I S is odd, 0 � I � d-I } ,

w here (7~
is defined as before. The definitions of A ((7) and B((7) are more symmetrical , and

re lation (2.9) can also be rewritten in a more symi-netricat way:

-
A(~7) + Bt’(7) < 0 . (2.10)

3 — Number of nodes explored by the c~-f~ procedure: discrete case

As in [23] and [35], we wilt evaluate in this and the following section the amount of

work performe d in searching a random uniform game tree using the cv-fl pruning algorithm.

The definition and some properties pf random uniform game trees are given in Section 3.1.

The amount of work performed by the u-fl procedure is measured by the number of

terminaL nodes examined during the search and Is evaluated In Section 3.2.

3.1 - Random uniform game trees S -

In order to perform an analysis of the ~-fJ pruning algorithm, we will Limit
5

ourselves and consider the following class of game trees. S

Dotinition 3.1: -
-

S A game tree in which - .

(a) alt internal nodes have exactly n sons, and

(b) all terminal nodes (or bottom posLti.ons) are at depth d

is called a uniform game tree of degree a and depth d. S

A uniform game tree which satisfies the additional condition

S

-

r 5 S S 5 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ---- ‘- ~~_ -~~~~~~ -

PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM
-

81 —

-
- - (c) the values assigned to all terminal nodes (or bottom values) are independent

identically distributed random variables

is catted a random uni form game tree, or, for short, a rug tree. I

Unless otherwise specified, we wilt only cont.ider throughout a rug tree of degree n

and depth d.

- Since the value backed-up to a node by the minimax procedure only depends on the

backed-up values of its.sons , we immediately observe that , by condition (c), the backed-up

va lues of alt nodes at the same depth are also independent identically distributed random

var iabtes. In the remainder of the section , we wilt assume that the bottom values are -

S drawn from the finite set (r-~ - k/rn I -in ~ k ~m }, for some in> 0, and we wilt denote by -

~~~~~~~~~~~ 
or simply (p 5 (k) } the common probability distribution for the backed-up

values of alL nodes at depth d - I (i. e., p4(k) is the probabiLity that the value, v(~ ),

backed-up by the minimax procedure to some node (7 at depth d-i be k/ rn) . In particuLar ,

~p0(k)) is the common probability distribution for all, bottom values, and (p~~k)) is the

probability distribution for the value backed-up to the root of the rug tree.

The following lemma states the relations between these probabiLity distributions.

Lemma 3.):

For I — 0, ..., d-I, we have:
S p1,1(—ni) • ... + p1~j (k) — (p 4(-k) + ... + p 1(ni)] ” . (3.1)

Proof:

Let (7 be some internal node at depth d-s- 1, then by equation (2.5), ,.‘(.7)~ Sr if and

S 
only if. -v(J.j) ~ k, for J — 1, .. ., ,i. Equation (3.1) fo lLows easily from the fac t that all S

variables v(J .j ) are independent. I

Since the quantity p 4(- k)  + ... + p1t’rn) will occur again Later on, we def ine for

i — O .1,..;and -nt~~k � n::

S 

91(k) — p1(—k) + ... + p 1(m) .  
S 

- - - 
S -



82 CHAPTER IV -

For convenience, we also define ~‘4(-ni-I) — 0. Note that ~~ffi) is a non-decreasing function S

of Sr which satisfies p 1(- rn - I)  — 0 and p1(m) — p5(-n:) + ... + p4fri&) — I. By rewriting

equation (3.1), we see that p1 satisf ies:

p141
(— k— I )  — I — 

[ç1
(k)]4 for I — 0, 1, ... , (3.2)

and, therefore: . 
- -

p~42(k) — 1 — (I — Er1(k)]’ )” for I — 0, 1, ... . (3.3)

The folLowing quantities wiLL also be useful in Section 3.2. For I — 0, 1, ... and
-nt- I ~ Sr � in, define:

p1(k) — 1 4 (p1 (k) )  • _. • (c ’1(k)]’ ~~
1 , (3.4)

and S

o 11’k) — I • [p 1(-h- 1)] . ... + [q ’1(— k- 1)) ” 1 
. (3.5)

Observe that p~(-rn-1) — o’1(n:) — I and p 1(m) o’4(-n : -I)  a.

Lemma 3.1 ‘stablishos the probability distributions for all the values in the nodes

of a rug tree. The next lemma establishes a similar result for the quantities c((7) defined

In Section 2. 5

S L.mma 3.2: 
5 

-

Let (7.) denote any node at depth &, where & — i , ... , d. If j  — 1, c((7.j ) — -o.,. If S

I � 2, then the probability distribution of c((7.j), denoted by (q~((7.j)3_ 1~~~~1, sa tisfies:

— Ird...I(k)J ’ ’ . (3.6)

Proof:

When j  — 1, c( (7.j) — -to by definItion. When j  ~ 2, equation (3.6) follows from the

same .rgument given in the proof of lemma 3.1. 
. 

- I ‘

In order to evaluate,.through eqijalion (2. 10), the probability that a terminal node Is

explored, we first need to determine the probability distributions for the two qu~intities

A((7) and B((7). This is done in the following.

- ---—- - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~- - - -~~~-- - S  -



PART 1: SEQUENTIAL Al.PHA-BETA PRUNING ALGORITHM 83 —

Lemma 3.3: p

Let (7 — Id-I ~~~ 
denote any terminal node.

(1) If i~ 
a 1 for all even Integers i in the range 0 � I ~ d-1, then A((7) — -to.

(2) . Otherwise , the probability distribution for A47) , denoted by I~k(c?)}...
~t~k�in’

S sa tisfies:

+ 4 — rç Er 4(k)i” ~ 
, (3.7)

• where the product denoted by Ti~ is extended to all even integers In the range
S 0 � i ~~ d-I. 

- 5 
5

S 
Similarly, - 

-

(1’) If a I for all odd integers i in the range 1 ~ I � d-1, then B((7) — -to.

(2’) Otherwise , the probability distribution for B(~7) , denoted / (bk (
~V

} . fl1~k�~~
,

S satisfies:

b n:(7) ~ ... b~((7) — rç [~ 5(k) ]~’
1 
, 

- 
(3.8)

where the product denoted by 1T~ is ex tended to alt odd integers in the range

1~~ 4 �d-1 .

Proof:

We wilt only consicj er NJ) since the proof relative to B(J) is the same. Par t (1)

fo llows directly from the definition. For part (2), let (7~ denote the node Id-I j
~
. We

note that A( (7) � k if and only f c(J1) ~ Sr for all even integers I in the range 0 ~ I � d-I

such that f~ 
� 2. Since the - -~ariaI,Les c(71) are independent, equation (3.7) folLows from

equation (3.6) by observing that , in the product 1T~, a factor correspond ing to j
~ 

— I

amounts to 1. I

The Last Lemma in this section states the probability of exploring a terminal node.

Lemma 3.4: -

Let (7 Id-I f•~o denote any terminal node. The probability ,r((7) that node ‘

~~

(7- is examined by the tv-jO procedure Is given by: S

S ~r(,7) a I if — I for all even integers i in the range 0 ~ I � d-I ,

r(,~
) — I if — I for alt odd integers I in the range 1 ~ i i d-I , S

~ .II_



84 CHAPTER IV

-rn�~�~n-i ak ((7) [b ..~~ 7) . ... . b_~_ 1(
~7) ) otherwise. (3.9)

Proof:

When f~ 
— I for Ml even integers i in the range 0 � I � d-1 , by Lemma 3.3 A(,7) a -to .

Hence ‘A(’J) • B~J)  — -to too , and by Theorem 2.1 node (7 is certainly explored. Similarly

when ,
~ 

— I for alt odd integers in the range I � S � d-1.

Otherwise , both NJ) and 8(J) are finite. let A ((7) — xk. We observe that

A(J) • B (J)  < 0 if and only if -in � Sr � rn-I and 
~

Xm � B(J) � r_k.,1. Hence , equat ion (3.9)

S follows from Theorem 2.1 and the fact that NJ) and 8(J) are independent variables. I

Using equations (3.7) and (3.8), equation (3.9) can be rewritten as:

S r(17) a 
,~
:
i n 1  

ak(J) tç

~~~~~~~~~~~~~~~~~~~ 
01e (c,~(k)] ~~~ - li~ (,5 (k- 1)] ~

~~

J 110 (,~1(- k - i)] ~~
1 (3.10)

(recall that y’4(—in— I) — 0).

3.2 — Number of terminal nodes examined by the o~-4 pruning algor ithm: diacroto case

We are now able to evaluate the amount of work performed by the ~-f3 procedure

white searching a rug tree. As in (23] and (35), we have chosen to measure the amount of

work by the number of terminal nodes examined by the procedure. (We will also consider

S
br iefly, at the end of lhe section, the total number of internal and terminal nodes explored

‘by the procedure as a measure of performance.)

Theorem 3.1:
-

The average number, Nfl,d(rn) , of bottom positions examined by the

tv-/i procedure in searching a rug tree of degree a and depth d, for which the bottom

va lues are distributed according to the discrete probability distribution

is given by:

N~,/ n:) — ~1d/2J +
-rn�~�m

[I’~ p5(k) - 11e p/ k - I)] flS~ o 1(k) , (3.11)

where the quantities p/ k) and c~1(k) are defined by equations (3.4) and (3.5), and

whore the products denoted by TT
~ and 11,, are defined in Lemma 3.3.

- --—
~~~~~
--

~~~~~~~~- S - S— —S-—S ~~~~~.-


S• ~~SS•55 ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~_ SSS y
SS ~~~~~S~~~~S ~~~ -

S

PART 1: SEQUENTIAL Al.PHA-BETA PRUNING ALGORITHM 85

Proof:

By definition of the probability i~(J), the average number of bottom positions

examined by the c~’-/i procedure is

Nn,d(
~
nI) — Z

where the ~um is extended to all terminal nodes (7 — Id-I f j .J ~
, and is actually- a

d-nested summation over the range I
~ Jo ~ a, I �Jj ~~ a, ..~, 1 � Jd-l � a. The summation

S

can be rearranged as: -
.

5

S

- Nnu?71) —
~~

+ 10 w.’J) + 1 ~r(J) - w(I. .1) ,

S
w hore the three summations Z~, Z~ and I correspond to the three expressions for ,*“J-)
given in Lemma 3.4. The fourth term ‘r(I 1) is subtracted from the sum since it is

counted by both Z~ and 10. These two sums are easily evaluated s ince all the terms i’(,J)

are 1. As r(I 1) itself is I, we obtain:

Nfl d(
~

1) - ~
Id/21

~ L~
/2J - i • 1 ,r(7) . (3.1 2Y

S

- It is to be noted that the first three terms correspond exactly to the number of terminal

nodes examined by the w.~/i procedure under optimal ordering of the bottom values
S

(see (56, p. 201]).

We now evaluate the sum 1. Inside the sum the terms ~~7) can be evaluated

through equation (3.10). We note that ~lt the summations relative to j
~
, for I — 0, 1, ... , d—I , S

can be done independently, each one being the sum of a geometric series. Ustng the

quantities p/ k) and cr/ k) defined by equations (3.4) and (3.5), we obtain:

S I
-nt~~~nt- I

[l
~
i
~

p1Oc) - 11e p1Oc-I) J rç c /k) - 11e p/ rn- I) + I

The theorem follows from this last equation and equation (3.12), using the facts that

p/ ni) a a and that oS/ ni) — I. S I

S The formula of equation (3.11) can be easily evaluated and provides us with a

measure of performance for the tv../i pruning algorithm. For some applications, however
S

S (espociatty when the cost of generating moves is greater than the cost of evaluating
S positions), It is more convenient to use the total number of nodes (internal and terminaL)

I

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

86 . CHAPTER IV S

‘explored by the procedure as a measure of performance. Let T
~~d

(nt) denote the average

of this number. The same way we evaluated N
~ d(rn), we can evaluate T

~~j (ln) by summing

the probabilities ,r(’J) over ~(L nodes of the tree. We obtain:

T
~,d(rn) — Ng~~(rn) + N~~~(rn) + ... + N

~,d(rn) ,

where N
~ ,d(rn) is the average number of nodes examined at depth I, and is directly

derived from the expression of N
~,d~

rn) in equation (3.11) by replacing d by £ and {p0 i’k)}

by f Pd—/ ’~~ 
(recall that (p0 (k)} is the probability distribution for the values assigned to

the terminal nodes and that (pd_ I (k4 is the probability distribution for the values S

backed-up to tiodos at depth i).

3.3 - BI-valued rug t rees 
S

Atthough it is relatively easy in most game playing programs to obtain (by

inspection of the evaluation function) an accurate bound for the range of distinct values

ass igned to the various positions of the game , it is usually not so easy to derive a good

es timate for the probability distribution of these values. In the remainder of the section

we w iLl study rug trees in which the terminal nodes can only take on two distinct values,

S 
and we wiLt see , in particular , that a change in the probability distribution of these values

can lead to yery important differences in the growth rate of N
~ Ini) .

We wilt assume in the following that the values ass(~ned to the terminal nodes of a

S 
- rug tree can only be either -1 or .1 with respective probabilities I-p and p, for some

p C [ 0 , 1). Under these conditions, the number , T
~~/p) , of terminal nodes examined by the

tv-/i procedure can be obtained as a particular case of equation (3.11) in which m — I and

Is defined by p0(- 1) — i-p, P~
(O) a 0, Po~

1
~ 

— p. 
- 

S

Theorem 3.2:

Let p
~ 

a p, and, for I 1, 2, ..., let p1 — I - P~.J.

T
~,d(p) — nld/21 • ~l’4’2J - • (P~~~-iXP

0
- 1) , (3.13)

with S S

P — 1 1  ~14I P TI~~ 54I
C •, _ ‘ 0 O~~ _ S

‘ P 1 5

5 ’  

.

.

•

- - S - S  S~~ - 5-- - -—~ -



S 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—~ S~,-~~—-—-— 5 — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-- 5 — 5-.’

- PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM ‘ 87

where the products fl~ anti TI~ are def ined as before. -~~~

Proof: S
-

Choose rn — I and define the probability distribution {p o (k))_ ,
~~k�~1 by p0(-I) — I—p .

p0(O) — 0 and p0(1) — p. Hence p’0(-2) a 0, ,~ (-l) — r0~’O) — p — P~
and ro(’) I. By

S

equation (3.2) we obtain:

p / — 2) = O , ,~(“l) wj (0) p5 , p/ I)al , for i — 0 ,1,... .

Then equation (3.13) l~ ltows directly from Theorem 3.1 and equations (3.4) and (3.5). I

Equation (3.13) can be evaluated very easily and, in particular , we note that for

S - 0 < p < I :

S Tn,d(p) > T
fl,~(O) a T,~~(I) a ~Ia’/ 2l + - 1. (3.14)

This last equation shows that T~ ~~~
reac hes its minimum ~W21 . ~1t1/2J - I for p a 0 and

p a 1. This is in agreement with the result of SLagLe and Dixon (56, p. 201] since it
S corresponds to the case when all terminal nodes are assigned the same value and

S therefore alt possible cut-of fs do occur. Equation (3.14) also shows that TR Ip) admits a

maximum for p E (0, 1) ; aLthough the exact maximum cannot be readily obtained, we wiLl

derive a tower bound in the following. We first establish a preliminary result.

Lemma 3.5:

The unique positive root,
~

, of the equation

~~ - i — 0

is In the intervat (0, 1). Asymptotically (for large r) it satisfies:

I - In a. (3.15)

Proof:

As there is no ambiguity, we will drop the index a from in the following.

Let g(x) — + x - 1, note that g(O) — -, < 0 and g(I) — I > 0. Since g(z) is

continuous and strictly increases for x positive, the equation gt’x) — 0 admits a unique

positive root , rt which is in the interval (0, 1) .

We observe that equation ~~~ • 7 - I — 0 can be rewritten as

I
5 - - ----5- - - - - - 5 - — - -——5 —— - 5 — -

— - 5 — - -- —-

88 CHAPTER IV -

1- 7 — ,
. S S

- -

from which we deduce that

1- 7 > ._L_ . (3.16)
S n • I

On the other hand, since ~~ — I - 7, we obtain S

a (7
- 1) > n In 7 — Ln(I-7), S

whIch shows, along with equation (3.16), that

1 -
~ < ~ Ln(’n.I) a In a + O(n 2) . (3.17)

Similarly, taking the logarithm of both sides of equation (3.17), and using the facts that

7 — ~~ and that In 7> 1 - 1. , we obtain: S

7 <
1

1 • tn(nftn n +l)
S hence:

S

S
- 7 > ~ ln(n/%n n• 1) • O[(/ ~

In n)2] a In a + o(~ In In a).

Equation (3.15) foLlows d irectly from the previous equation and equation (3.17). ‘ - I

When p — we obtain immediately that , for £ — 0, 1, ..., p1 — 7,~
. Hence

S

“0 — ((4/(1_(~)]1d/21 and p0 — (r n/ (i- r rt)]
~
”2

~’ S

-

From equations (3.13) and (3.15) it follows that , for large a:
S

S

Tnd ((n) [n/t n ~j d ,
- (3.18)

while equation (3.14) shows that

T,~ j (O) a T~ / I) O(,~rd/ 2 1).
5

(3.19)

Equations (3.18) and (3.19) indicate that T~,1/p) can be Largely influenced by the

variations of the probability distribution f or the sta tic values. This result can be easily

generaLized to N
~,d(rn). In the next section, we wilt derive an approximation to N~ ~/ m)

which corresponds to its worst case behavior. -

4 — Number of nodes explored by the o~-~ procedure: continuous case

in this section, we derive an approximation to Na,/ rn) by considering the limit of
S

the finite series of equation (3.11) when nz tends to infinity while the discrete probability

I A S
_

‘

.

.

- - - — —5- -- - 4

- .

*0 A055 823 CARNEGIE—MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ——ETC FIG 912
THE DESI N AND ANALY SIS OF ALGORITHMS FOR ASYNCHRONOUS MULTI PRO——ETC(U)
APR 76 S M BAUDET N000Ik—76—C—0370

UNCLASSIFI ED CMU—CS—76—S16 - NL

055823

PART 1: SEQUENTIAL ALP1~4A-BETA PRUNING ALGORITHM 89

distribution (pQ(k)} .. ,,15k�,,L tends to a continuous probability distribution. This

corresponds to the c ase studied by Fuller , Gaschnig and GiLlogly (23] and by knuth and

Moore (35] when the terminal nodes of a rug tree are aR assigned distinct values. In

particular 1 we wUt reestablish (with a much simpler formula) a result of [23].

4.1 — Notationn and preliminary results

We first introduce the sequence of functions (4) mapping the intervaL (0, 1) into

itself , and defined recursively by:

=
— I — (1 — If ~_j (x)] ”) ’~ (0, I ,

It is readily verified by induction on i. that Mt functions 4 are strictly increasing on [0, 1)

and satisfy 4(0) 0 and 4(1) 1, i. e., 0 and I are two fixed points of the functions 4, for

alt it and &. The function 4 wiLt be shown to be related to the quantities r24(k) defined in

Section 3.1. SimiLarly, in relation to the quantities p2~(k) and o2~~1(h) , we define the

following functions on [0, 1]: for C — 1, 2, ..., let

r • (x) —
I t F

4(z)
s~(x)

If we define r4(1) — it and s~(0) — I , we observe that alt functions r
~

and s~ are continuous

-
on [0 , 1] (they are actualLy polynomials In x) , and that r4 is strIctly increasing white s4 is

strictLy decreasing.

In rotation to the two products li ~ and ll t,~
we also introduce, for i — 1, 2, ... the

following functions on (0, 1]:

R$x) — r j (x) x —: “ rri/2~
(x) ,

S~(x) — x — x

where S (z) — 1. Observe hero, too, that functions R1 and S~ are polynomials, and that,

when x increases from 0 to 1, R/x) increases from I to ~I~/2l white S1(x) decreases from

~1i~/2J to z.

— ~~~~ --~ ~~ -- - — - - —

90 CHAPTER IV

Lastly, for k — 0, 1, ..., 2,n.I, let

— ~0(k-m-1) .

Lemma 4.1:

For S — 1, 2, ... and k — 0, ..., 2nt.1, we have:

— p2~_ 2~k-nt-1) , (4.1)

• —
~2L-1~~~”~~

1
~

(4.2)

Proof:

• We ft rst show that for L — 0, 1, ... and k — 0, .. ., 2ns+1:
• f 4(e’k) — ~21t’Ic-m-1) . (4.3)

Since f0(z) — x , it foUows from the d efinition of
~k that equation (4.3) hoLds when S — 0.

Assume, for induction, that.equation (4.3) hotcis for S — h. Then by equation (3.3)

?2h,?(k~~~~1) — 1 - (I -
which shows that equation (4.3) aLso hoLds for S — li.I (from the definition of

Observe that r4(r k) — 1 (14_ , (r k)] ~ 1fs-I~k~]’~
1
’ then equation (4.1) folLows

from equations (4.3) and (3.4). SimiLarly, if we note that s/ z) can be rewritten as
I - (I - [14_j (x) rr

s~(x) —
I — (I — [J H]’9

equation (4.2) foLlows from equations (3.2), (4.3) and (3.5).

4.2 — Number of bottom positions examined by the ~~~~~ procedure: continuous case

Let up return to the definition of the sequence Tm — frk ~0�k�2nz.I As was

observed In Section 3.1 wIth the sequence {~~(k)), the sequence Tm Is non-decreasing and

defines a partition of the interval (0, 1], I. C.:

The norm of the partition Tm is

OTmH — max(
~k - r k_ I I I �k � 2ni.I) — max (p0(k) I -sit ~ k ~ sit

• in the remainder of the section we requite the following.

1 • •

• ~~

PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM •

91

Assumption: .

(Al) tim max{ p0(k) -m � k ~ m J — 0. Irn- co

This assumption ensures that the norm of the partition Tm tends to 0 when sn tends

to infinity. It also shows that , as m tends to infinity, the probabilit y o f two terminal

nodes being assigned the same value vanishes. This corresponds to the case studied by

• Fuller, Gaschnig and GiUogly (23], and by Knuth and Moore (35].

• With this assumption, we will now see that the finite series of equation (3.11) can

be replaced by an integral when m-’cu. This is established in the following.

Theorem 4.1:

Under assumption (Al), we have:

,~~ N,~ / m) - ,~Ld/2J • R /t) .SIt) .dt , (4.4)

where R~(z) is the first derivative of Rd(x).

Proofs

• Since there is no risks , of confusion, we wilt drop, in the following, the Index d from

the functions Rd and 3d•

•

•
It folLows directly from Lemma 4.1 that for k — 0, .. ., 2ns+I:

R(
~k
)
~

1T~ p/ k-rn- I) ,
•

•

3
~~k~ — fl 0 r/k-nt-1) ,

which shows that equation (3.11) can be simply rewritten as:

• N,1d(nl) . ,~(d/2J +
I�k1 rn+I

[R(r h) - R(r h..l) J S(r k) .

Let Am denote the series defined in this last equation.

Recall that R(x) is a polynomial. By considerIng the Taylor development of R(rh..,),

we obtain for k — I, _., 2r,s.1:

R(rh)-R (rk_ ,)~~ frh h_ I] ,9~~k
)

~
.[rb-rk..,]2 R (tk),

where rh_ I � � r~. Hence:

Am —
I~k~~m+I

[PJh-rk ...,JR’~
r k) S(’rh) .

•

2 ~ k~~k 1 J 2 R”ak) S
~~k

L
•

(4.5)

— - —

~

--

~~~

--- • -

~~~~

92
•

CHAPTER IV

Since R and S are polynomials, the quantity 1R ’(z)3(,)/21 is bounded by some constant,

say M, for a’ny x and ~ in [0 , 1]. In partic ular, the second sum in equation (4.5) Is bounded

in module by M.IIT~ jI.Fr2~ +,-~O] — M.IITmII and thoroforo tends to 0 when sri -. cu since,

from assumption (Al), IITmU ~ 0.

As for the fIrst sum In equation (4 5), we observe that It corresponds to a Rtemann

sum for the function R’(x)S(x) over the partition Tm of [0, 1]. Therefore since, In

particular , this function Is continuous and since IITmII tends to 0, the sum tends to the

integral of equation (4.4). This proves the theorem. I

In the remainder of the section we wilt reinterpret the limit of N~,érn) established

in Theorem 4.1.

Let G be the distribution function of some continuous probability density function g,

and assume , to simplify the discussion, that C(-I) a 0 and 0(1) — I (therefore , 0(x) — 0 for

z � —I and 0(x) — I for x ~ I) . We define a sequence of functions C
~

for in — 0, 1, ... as

• follows. For -sit � k � in, Let xk — k/ni. Function O,~ Is defined as the following step

function:

0 if

Ggp/x) — C(xk) if x~ � x c xk,I , for -rn � k � rn-I

I If I X m � Z .

The sequence of functions {G ,,J constitutes a sequence of approximations to the

• continuous function C. (It should be noLed that the convergence of the sequence Is

uniform on the Interval (0, 13.) The function G,,~ corresponds to the cumulative distribution

of the discrete probability distribution p0(k) Cm(xk) - Cn/X k) associated wIth the

polnts zg1 — k/sn,f o r h— - nt ,...,ni.

Using the approximation (p0 (k)}_ m5k ~m to the densIty function g, equation (3.11)

prbv(des us with an approximation to the average number of bottom positIons examined by

the ~-/3 procedure in a rug tree in which the bottom values are drawn from the continuous

~ - • • -
~-~~

• —--— •-—
~~

—-••——---——-

• PART 1: SEQUENTIAL At•PHA-BETA PRUNING ALGORITHM 93

probability density function g. When in becomes larger, the approximatIon becomes

better , and (due to the uniform convergence of the sequence 0m~
it can actually be shown

(in a rather technical way) that the limit of N
~ d(rn) when m -~ cu corresponds exactly to

the average number of bottom positions examined by the o~-~l procedure in the continuous

case. As a matter of fact , equation (4.4) could be derived directly by considering a

continuous probabitity distribution rather than a discrete one in very much the same way

we derived equation (3.11) In Section 3. This result is stated in the followIng.

Theorem 4.2:

Let f0(x) — z, and, for S a I, 2, define:

f5(x) — 1 — { I —
r/ x) —

1—f4 1 (x)

f5(x)s/x) — (J . () J f l

R (x) — r1(x) x ... x r[1/ 2) (x)

— s1(x) x
~ ‘LL/2J~~~

The average number , Nn,d, of terminal nodes examined by the c~-f3 pruning algorithm In

a rug tree of degree vi and depth d for which the bottom values are drawn from a

continuous distribution is given by:

N
~,d

- ,1(d/2j + R~
(t).Sd(t) .dt . (4.6)

It is to be noted that, unlike the case of a discrete probability distribution, when

the bottom values are drawn from a continuous distribution, the number of terminal

positions examined by the cs-~ procedure does not depend on the distribution function.

4.3 — Discret. case versus continuous case

Since equation (4.6) has been derived as tho Umit of equation (3.11), It Is reasonable

to investigate the validity of the approximation of N
~,Im)

by N
fl,d. As was seen In

Section 3.3, N
~ Ini)

strongly depends on the probability distribution (p o (k) J .,,i~k~ni and,

94 CHAPTER IV

therefore, we cannot expect Nfld to be a close approximatIon of Nnd (m) In all cases. We

wiLt see below, however, that Nfld provides us with a good insight into the behavior of

the ~~~~~~~~ pruning algorithm. Namely, we wilt see that It constItutes the worst case of

over aLt discrete probability distributions.

Since N
~,d

was obtained as the limit of N
~,Ina)

, It Is sufficient to show that, for alt

probability distributions (pQi’k)} nt�k~m, we have:

Nn,d ~ N~,/m). (4.7)

In order to prove Inequality (4.7), it Is convenient to give a geometric Interpretation of

both Nn,d and N~,/ns) .

Con~idcr the curve (C) defined by the Cartesian coordinates (x, y) through the

• parametric equations
• (C): (x — Rd(t) ,

~
Sd(’tf l,

where the parameter t varies in the interval [0, 1]. The Integral of equation (4.6)

represents the ari~a deUmited by the curve (C), the x-axts and the parallels to the y—axts

at the abscissas RIO) — I and R u) ~Fd/2l (see Figure 4.1). Since Rd(’O) — I and

• Sd(O) — ,~1d/2J, the term ,~Luh/2J of equation (4.6) can be accounted for by the area , of the

rectangle delimited by the x-axis, the y-axis and the tines x — 1 and y — ~tuh/ 2J (the latter

LIne extends the curve (C) In a continuous way). Figure 4.1 represents the curve (C) and

Its ext ension in the case n — 3, d — 6. The area below the unbroken Lines represents the

quantity Nn,d.

The sum of equation (3.11) can aLso be represented along with the curve (C.). It •

• follows directLy from the rotations of equations (4.1) and (4.2) that the terms of the sum

represent the areas of the rec tangles delimited by the tines x — R(rk_ l), x — R(rk), ~
— 0

and y — S(rk), for k — 1, 2, ..., 2m-I. The quantity N,.,,In&) represents therefore the area of

• FIgure 4.1 shown below the broken lines.

I . .

.

I

.
•

•

IL~~~~~ uht~~~~~ t ~~~~~~~~~~~~~~~~~~~~~~~~ • , •• - • - -~~~~~~-- •:~~~

_ _ _ _ _ _• -- . •
~

- - __________
_ _

PART 1: SEQUENTIAL ALPHA-ØETA PRUNING ALGORITHM 95

Sit)

27 -

24

21 a

I •

18 ‘ — — - - - - — - •

15

12

9

6

3

I
0 ‘- ———4 I I I I I

o 1 3 6 9 12 15 18 21 24 27

RIt)

• FIgure 4.1 - Geometric interpretation of Nfl,d and Nft,d(m)

inequaLity (4.7), then, follows directly from the fact that, when t Increases in [0, 1),

Ret) increases whiLe 5(t) decreases.

5 — On the branching factor of the o~-f3 pruning algorithm

We have deliberately chosen to Introduce first the case when the bottom values of a

• .
• • game tree are drawn from a discrete probability distribution since it is of most interest in

practical applications. The case of a continuous distribution, however, lends Itself more

• easily to an analysis, and, since it constitutes the worst case over alt discrete probabiLIty

distributions, we wilt, In this sec tion, examIne the integral of equation (4.6) rather than

the series of equation (3.11).

• • • -- • - - -—•— ~~~~~~
•
~~~~~

• - •
~



96 CHAPTER IV

5.1 — Previous results •

In Section 1, we Introduced the branching factor as a cost measure for the work

involved in searching a tree. Rather than considering the number, N
~ d, of terminal

positions examined by a search algorithm, as a measure of performance of the aLgorithm,

we could have considered the total number, T~,d, of nodes (terminal and InternaL) explored

during the voarch . In the case of the ~-j 3 pruni~ig algorithm, since Nfl,d, given by

equation (4.6), does not depend on the distribution function of the bottom values, we

deduce that ‘T,~,d satisfies: —

• Tn,d — I N,~,1 . ... + N
~,d .  

•

It can be checked easily thaI 0 ~ N~ ~~ ~~~~~ therefore N,~d 5  T
~ d ~ dN~ d’ anth

• 
• • 

~~!~
i (T

fl,d) IM 
~~cu 

(N
fl,d) ’I

~’ 
- ~~~~~~~ •

• Thus, DefinItion 1.1 provides us with a measure of performance useful to compare search

• algorithms. In the following, we review some of thc results which have already been

presented in the literature.

Minimax search

The minimax search examines sy~tematicaLty Ml nodes of a tree. It, therefore ,

examines Nn,d a n~ terminal nodes in a uniform tree of degree vi and depth d, leading to a

branching factor

~minimax~”~ 
- f l .  •

c 4  procedure under optimal ordering ,

Stag(e and Dixon (56, p. 201] have shown that, when all possible a- and ~O-eut-offs

occur , the cv-iO procedure examines

N
~,d — ‘~ 

Id/2l • ~td/2J -

terminal positions. In this case, the corresponding branching factor Is

*opt(ft) — n’12.

— 
-. 

ia-:j - 

- - - -



PART 1: SEQU ENTIAL AI.PI-IA-L3ETA PRUNING ALGORITHM 97

• o~~~/l procedure (experim ental results from [23])

Based on a series of simuLation results , Fuller , Gaschnig and Gittogty 1231 have

argued that the formula

• • Nfl,~j c(d) .si °72’
~

• 0.277

• . 

• constitutes a reasonable approximation to the number of bottom positions examined by the

~ -/3 procedure for small vaLues of n and d, and that I � c(d) � 2 (at least for the range of

values they considered). For purposes of comparison, Let us assume that their

approximation can be extrapolated for any vi and d. Provided that c(d) h/ d -, I when d -.

we obtain

— n0_ 72 . •

In view of the results of Section 3.3, we can question the accuracy of the approximation

for Large vi since it follows from Theorem 3.2 that

~rn ET fl,d(f ,~)] h/ d - O(n/ t n vi) .

o~~/3 procedure without deep cut-offs

Knuth and Moore 135) have analyzed a simpLer version of the ae-/3 procedure by not

considering the possibilities of deep cut-of fs. This /3-procedure is the same as the

v-/3 procedure except that no c~-vatuos are passed to the ~-/3 procedure; instead, the

lower value ~ is always set to -o., before exploring the successors of a node. Knuth and

Moore have shown that the branching factor of this procedure satisfies

f~3(n) - G(n/ ln vi).

Note that , s~,nce the /3-procedure always explores more nodes at any depth in a tree than

the full v-/? procedure does in the same tree , ~ /3(n) provides us with an upper bound f or

• 
• 

. ~k~~/3(fl). ‘ 

•

5.2 - Bounds on the branching factor of the .
~-fl 

proc.dure

In this section we will derive some lower and upper bounds on the branching factor

of the cv-/3 pruning aLgorithm. In particular , since the lower bound we derive grows with vi

_  -



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
____________--

98 CHAPTER IV

as a/t n n, we wilt be able to conclude, using the result on the branching factor of the

cv -j~ procedure without deep cut-of Is estabtished by Knuth and Moore in (35], that the

branching factor of the ~ -/3 procedure is O(n/tn vi).

• We introduced in Section 4.1 the sequence of functions f~, i — 0, 1, ..., from [0, 1) to

itself , and we observed that all functions 4 share the two fixed points 0 and I

• (independent of vi). Another common fixed point, which depends on vi, was Introduced In

Section 3.3.

Lemma 5.1:

For a given n, alL functions 4, for i — 0, 1, ..., share the common fixed point

~~ 
C (0, 1), the unique positive root of the equation

+ x - I — 0 .

Proof:

• For clarity, we will drop the index vi from in the following.

Since f0(x) a x, ~ Is certainty a fixed point of 
~~ 

assume, for Induction, that

— 
~~~, 

then from the definition of 4 we have

• 4(t) — I - (I - [f ,~VrY~ I - (I -t’~Y’ — I - a

• w hich shows that
~

is a fixed point common to all functions 4, 1 — 0, 1, —. I

Since
~~~~~ 

Is a fixed point common to all functions 4, S — 0, 1, ..., It Is easy to evaluate

at this point the functions r
~ 

and s~ defined In Section 4.1. For S — I, 2, ..., we deduce that:

a ~~~~ — t~/ (I - r n) .  (5.1)

In particular , it follows from Lemma 3.5 that, for large vi:

- :~l’(,~) — n/t n v i .  
• 

(5.2)

Equations (5.1) and (5.2) wiLt be useful to obtain the desired bounds in the remainder of

the section.

The geometric representation of equation (4.6), given In Figure 4.1, makes It easy to

• derive bounds on the quantity N
~,d. They are stated in the following.



- -

PART 1: SEQUENTIAL ALPHA-BETA PRUNING ALGORITHM 99

Thoorom 5.1:

The branching factor of the ~ -/? pruning algorithm in the search of a rug tree of

degree a satisfies:

• 

• 

n/ t n n r~/(’-~
) 

~ ~~~~~~~ ~ /nt~/ ( I-(
~

) ~~~~~~~ 
• (5.3)

for vi — 2, 3 
• Proof:

Since, when t increases in 10, 11, Rd(t) incrcases white Sdft) decreases , it follows

directly that for any ~~‘ in [0, 1] we have the following inequalities:

Rd(r
~
).Sd(

~
) < ~~~ < Rd~

r
~
).Sd ’O) • [R d(I) - Rd(&S dt&.  (5.4)

If we choose ~~ — 
~~~~~

, we have Rd(& (r~/(1_r~)]Fd/2l and [t~
/(1-t

~
)] t

~~
2j . Since

Rd(I) ~ ~ 1d/2) and 3d~
’0

~
— ,1d/2J, inequality (5.3) foL lows immediately from inequaLity (5.4)

and the results of Lemma 3.5. • • U

As an immediate consequence , we obtain the followIng.

Theorem 5.2: .

• The branching factor of the a-/i pruning algorithm in the searc h of a rug tree of

degree vi satIsfies , for large n:

- G(n/Th a) .

Proof:

• The result comes directly from the tower bound t~/ (I-t
~
) — n/ t n it of Theorem 5.1,

and from the upper bound f~/3(n) obtained I or the oe-13 procedure without deep cut-of Is,

w hich Knuth and Moore have shown to be O(n/Ln vi). I

This results confirms, as was suggested by Knuth and Moore (35, p. 310], that deep

cut-of Is have only a second order effect on the behavior of the w-/3 pruning algorithm. On

the other hand, it shows that the formula proposed by FuLler , Gaschnig and Gitlogly in [23)

and mentioned in Section 5.1, if It constitutes a reasonable approximation for small vaLues

of ,i and d (the range of values they considered is vi . d ~ 12) , is certainty not adequate for

large values.

I


~~~~~~~~~~~ “ - ~~-~~~~~~-— ------ •--- - - •-•-—-
~~--~~~ 

100 • 
• CHAPTER IV

We note that the bounds of Theorem 5.1 were obtained without dIfficulty by

conveniently c~aoosing just one p’)int, ~~~~~ on the curve (Q since It was easy to evaluate a

both R~q,1) and Sd(tn). In the next section , using a different approach, we will derive a

tighter upper bound for Nnd, and hence for

5.3 - Improved upper bound

Since, for d — 1, 2, ..., Nn,d~ 
N

~,d4, � nN,~ p then, if (N
fl,d) J

~
d tends to some limit

when d tends to infinity as an even integer , this quantity tends to the same lImit when d

tends to infinity as an odd integer. Therefore , without toss of generality, we will only

consider , in this section, the case when d is an even integer. Let d — 2h.

For x in [0 , 1] and for S - 1, 2, ..., we define pL(x) - r
~
(x )s5(x) .

Lemma 5.2:

All, functions p5, for L — 1, 2. ..., have the same absolute maximum , M~ . in the

interval [0 , 1].

Proof:

• From the definitions of r4(x) and 55(x) we have for S — 1, 2, ...:

r5(x)  — r j [ f ,~.1(x) J ,

and

s~(x) a sj [ f ~...1(x) ]

Therefore , for S — I, 2, ..., we also have, from the definition of p5(x):

p 5(x) a

- 
The Lemma follows by observing that, for S — 1, 2, ..., ~~ Is a one-to-one function from

10, 1] to itself. I

Lemma 5.2 shows that, in order to study the maximum of p5(x), when x E (0 , 1], It Is

sufficient to study the maximum of the polynomial S

p 1(x) — 
- z1

~ I - (I x”Y~ f or x C [0 , 1).
1 - x  x



- 
PART 1: SEQUENTIAL AL.PHA-I3ETA PRUNING ALGORITHM 101 

•

Observe that 
~ 

a (r~/~—~
))2, in particular , since It can be checked easily

that, for a — 2, 3, ... ,
~~~~~~~~

> I~/ (!+ / ~), it follows that

> vi for vi — 2, 3 (5.5)

• Theorem 5.3

S The branching factor of the ~~~~~~~ pruning algorithm for a rug tree of degree a

satisfies:

� 4~~, (5.6)

• where M~ is defined in Lemma 5.2.
-

Proof:

From the definition of R2h(O, we ohtain for h — 2, 3,

• - R2h(t) — R
~h..2(t) .r h(t) • R2h..2(t).r h(t) .

By multiplication by S2h(t) it folLows that
-

Rj ~ (i).S2~(t) a R
~h_ 2(t) .S2h_ 2(r) .ph (t) + R2h_ 2 (t) . S’2h_ 2 (t).r h(t) .Sh(t.) .

Since, for t C (0, 1], all factors in this equation are non-negative, we deduce, usIng the

results of Lemma 5.2 and the fact that sh ’t) � vi when t C (0, 1] , that:

R2h(t)
~2h(t) � M

~
R

~h..2(t)S2h_ 2 (t) • vi M,~~
’1 r~(O .

- S
SLnce, in addition,

R~~r) S2ft) — r~(t) s j (t) � a r~’t) ,

it follows that for t C [0 , 1] and h a 1, 2, ...:

R
~,h

(t) 82h(t) � ~ %f h I (r~(t) + ... + r~(t)). (5.7)

Let tn,d be the IntegraL defined In equation (4.6). By Integrating inequality (5.7) over

(0 , 1] we see that ‘n,d satisf ies:

‘n,2h ~ ~ M~h~~ (h (n -I)] a n (vi-I) h M4~~
•

-

since r4(0) — I and r5(I) a n for i a 1, 2 This shows that

~ ,~h + vi(n-I) h M~h ’ .

Equation (5.6.) now follows directly from inequaLity (5.5). I

I

±±.

~

. . •

~

:J

- - S
5 • 5 ~~~ - - -•- —~~

• - - - ----

102 • CHAPTER IV

• 5.4 — Numerical results S

Table 5.1 summarizes the results of this section. It presents the various tower and

upper bounds we have derived for the branc hing factor of the ~-~3 pruning algorIthm from

equations (5.3) and (5.6).

lower bound upper bounds

q43 “~t~/(’-t~
) from [35]

2 1.618 • 1.622 - 1.799 1.884
3 2.148 2.168 2.538 2.666
4 2.630 2.678 3.243 3.397
5 3.080 3.166 3.924 4.095
6 3.506 3.638 - 4.587 4.767

• 7 3.915 4.098 5.235 5.421
8 4.309 4.549 5.872 6.059
9 4.692 4.993 6.498 6.684
10 5.064 5.430 7.116 7.298
11 5.427 5.062 7.726 7.902
12 5.782 6.290 8.330 8.498

• 13 6.130 6.713 8.927 9.086
14 6.473 7.133 9.519 9.668
15 6.809 7.549 1 0.1 07 10.243 5

16 7.141 7.963 10.689 10.813
17 7.468 8.373 11.268 11.378
18 7.791 8.782 11.842 11.938
19 8.110 9.188 12.413 12.494
20 8.425 9.591 12.980 13.045
2! 8.736 9.993 13.545 1 3.593
22 9.045 10.393 14.1 06 14.137
23 9.350 1 0.791 14.665 1 4.678
24 9.653 11.188 15.221 15.215
25 9.952 11.583 15.774 15.748
26 10.250 11.976 16.325 16.265
27 1 0.545 12.369 16.873 16.778
28 10.838 12.759 17.420 1 7.208
29 11.1 28 13.149 17.964

-
17.796

30 11.416 13.537 18.507 18.300
31 11.703 • 13.924 • 19.047 18.802
32 11.987 14.310

•
19.586

• tab(e 5.1 - Bounds on the branching factor of the ~-/3 pruning algorithm

Although we have not been able to give an estimate for the asymptotic growth of
•

~41, we can easIly derive an upper bound for this quantity by studying rug trees of depth

2 sInce:

M~ ~
N
~,2 ~ 2nf~

/(I -I,~
) - lI~/ (1 -I~

))2 2,i2fln vi ,

L~~

S

S

5 -.---- — --- -- 5 — -- • - . •- S - • -- --- --- •— --

S
PART 1: SEQUENTIAL • ALPHA -BETA PRUNING ALGORITHM 103

which shows that 4~ � O(n/ ’~~~~) . The numericaL results of Table 5.1 indicate that

is a much better upper bound for ~~~~~~ than ~n~~/ (1-~~
) for the range of values we

have considered.

I

I .

~~— ~~~~~~~~~~~~~~~~~~ ~~~~~~ •
_ _ _ _

~

Part 2: A parallel implementation of the algorithm

6 — A parallel o~-/~ pruning algorithm

When several processes are available a solution that comes naturally to mind for

implementing the
~-f~

pruning algorithm is to have each process explore in parallel a

different subtree of the entire game tree. Each subtree would be explored using the

~~~~~~~~ procedure to back -up its value to its rool, say some node P, then the value should be

reported to the father of node P in order to decide if the remaining brothers of node P

can be pruned.

A possible implementation for this solution Is to have the parallel algorithm

organized around a static decomposiüon of the game tree, for example , by generating f irst

alt nodes at, say, depth I or depth 2 before starting all processes in paraLlel. As Is shown

In (37), however, static decomposition is not weLl adapted for execution on an

asynchronous multiprocessor; this is espec ially true when processes have different speeds

and the various subtasks have different sizes. S

A dynamic decomposition of the game tree , on the other hand, Is better suited for -

the processes to adjust their Loads according to their own speeds. We immediately

observe, however, that a dynamic Implementation wilt require a global data structure for

the processes to communicate among themselves. Since this data- structure has to be -

• updated by more than one process in parallel, synchronization will almost necessarily be 
S

required to preserve the validity of the structure at any time; In consequence, this wILL

create a large (and unwanted) overhead.

• 105



106 CHAPTER IV

Most important is that , by exploring in parallel and independently dIfferent subtrees

of the game’ tr ee, we loose the power of the ~~~~~ pruning algorithm. By looking back at

the original algorithm, we observe that it~ eff iciency is mainly achieved by the fact that,

at any point during the search, the decision of pruning branches Is based upon alt the
• information previously acquired during the search. Obviously, when different subtrees are

expLored independently in parallel rather than sequentially, less information ts available • -

to each process , and, consequently, In the overall more nodes have to be explored. As
• will be seen, the parallel algorithm we propose below for the a-jO pruning does not suffer

from the loss of Information communicated between the various processes.

- 

6.1 — A parallel implementation for the ~~~~~~~~ pruning algorithm

While proving the correctness of the ALPHABETA procedure, Knuth and Moore (35]

have established equations (2.2), (2.3) and (2.4) mentioned in Section 2. We now

reinterpret these equations. Let V — ALPHA8ETA(P,~,j~?), and let V0 — MINIMAX(P). It

• follows directly from equations (2.2), (2.3) and (2.4) that when ~ <

If V~~c~ • then ~~~~~ (6.1)
• - if ~ < V ~ /~ 

then V0 — V , (6.2)

if V ~ then V0 � ~0.  (6.3)

The value lf
~ 

(and the path in the game tree associated with that value) is the solution we

~re seeking when the node P Is the root of the game tree. Equations (6.1) to (6.3) suggest

• that the problem of finding the solution V0 can be viewed as the problem of locating the

root of a rrtonotonlc function over some interval using only asynchronous parallel

S evaluation of the function. (This root finding problem has been studied by Hyaf IL and

S Kung, see (373 and (44].) Several differences are , however, immediately noticeable. In

the root finding problem we are only Looking for an approximation to the root and each

evaluation of the functIon takes place at a singLe point. In the game tree searching

problem, on the other hand, we are interested in the exact solution and each Intermediate

search, or part ial search, executed through the call ALPHABETA(P,~,~), examines an open

I— S S S ~~~~~~~~~~~~~~~~~~~~~~~ -



__________ ~~~~~~ ----- - - -  - - -—- - —-- ———~~~~~~- —-- - --~~~~~~~~~~~~~~~~~ — - - -~~~~~~ -

• 

• - 
. PART 2: PARAI.LEL ALPHA-BETA PRUNING ALGORITHM 107

Interval: (
~ , ~~). .Equation (6.2) shows that , provided the exact value lies in this open

S interval, the call returns the exact soluUon, and this terminates the entire search. The

following program gives a parallel implementation of the 
~~~~~~~ pruning algorithm based on

this decomposition. -

S

-

Program A:

global intei~er GAI.PHA, OBE TA;
S Initialization:

begin
CALPH #4 :. -cu; GBETA :- •cu ;
start processes ~ J.

~~~ S

Process P
beau?
integer A • B -. V. ;
((A 1. B,) /.. SLE&TNEW INTERVAL);
while A <8) ~Qbegin

V :— AB(Rool ,A

~C8ETA :- rnrn(CBETA.A el); (6~4)
(A~ B~

) :— SELECTN(WIN’rERVAL)

begin
(CALPHA :- max (GALPHA,B - -1); (6.5)
(A1, B1) :— SELECTNEWINTE~VAL) . 

-end
else S

{GALPHA :- CBETA :- V1) ; (6.6)
S re turn the sntution: V.;

terminate
end

terminate

The two global variables OAI.PHA and CBETA define th, current open intervaL

known to conta in th, solution V0. (When this solution is found, however , both GALPHA and

CBE TA are set to V0.) Tb, interval (CALPHA, CBE TA) is initial ized to (-cc., ‘cc.) and is

updated each t im. a pro cess finiit. $ a partial search over the game tree. The proc edure

- — 



S _ S _S_~_•• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S . S~ ’~~~~S’ ~~~~~~~~~~~~~~~~~~~~~~~~~~ S. ~~~~~ —

108 CHAPTER IV -

SELECTNEWINTERVAI. uses, without modifying them, the variables CALPHA and CBETA (as

welt as A1, ... , A~ and B,, 
~~~~ 

8k~
to determine a new interval (A1. B~) over which process -

S P . wiLl proceed to a new partial search. This procedure is critical to the efficiency of

Program A and wilL be discussed in more detail in Section 7. For the time being, we wIL L

only assume that it meets the following specif ications. Given the variables GALPHA and

GBETA (and the variables A1, ... , A~ and B1, ..., Bk) , let (A , B) :— SELECTNEWINTERVAL:

(a) A - B if GALPHA - OBETA;

- (b) A < B otherwise.

• As we are only dealing with integers, condition (b) is equivalent to the condition A � B-i.

• Since the two global variables CALPHA and CBETA are updated in parallel by

several processes, their use is restricted within critical section (indIcated In Program A
S . with curLy brackets); the use of the procedure SELECTNEWINTERVAL also occurs within -

• critical section. .
- S S

-

Theorem 6.1: .
-

At any time in the execution of Program A (outside a crItIcal section), the -

S

solution V0 satisfies either one of the following two conditions:
• S

CALPHA < V0 < GBETA ,
-

(6.7)

GALPHA - V0 . OBETA . (6.8)

Proof:
S After initialization, at time t0, the variables GALPHA and CBETA are only modified

(in a critical section) through one of the instructions (6.4), (6.5) or (6.6) executed at the

time instants t 1, t2, —, t~, — (with t
1

� t4_~ for i � 2). After t0, CALPHA — —co and

CBETA — ‘co, therefore condition (6.7) is certainly satisfied. • Assume that after t~ _j , for

&~~ 1, condition (6.7) or (6.8) Is satisfied: If instruction (6.6) is executed at time t~ by
-

process P~, it fo ttows from equation (6.2) that V1 — I’0, therefore condition (6.8) is satisfied

after t i. If Instruct Ion (6.4) Is executed at time t~ by process P1, It follows from

equation (6.1) that V0 � A1, or eqivalently V0 < A
1
..l (recalL that both V0 and A1 are . -

I

_ - S

_ _ - — -S -~~~~~~~~~~ ” --— -~~~--- — - -

PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM 109 -

S
integers); if , prior to t 4~ condition (6.7) were satisfied, then V0 < GBETA, which shows that

V0 < min(GBE TA,A1e1) and condition (6.7) rema ins satisfied after t1~ if , prior to

condition (6.8) were satisfied , then GRETA — V0 < A .1, which shows that

- mln(GBETA,A1+1) — GRETA and condition (6.7) remains satisfied. The same holds . when

instruction (6.5) is executed. a

Theorem 6.1, along with the specifications (a) and (b) of the procedure
• SELECTNEWINTERVAL proves the correctness of Program A in the sense that if the

program terminates it generates the correct solution.

Proving the termination of Program A, on the other hand, requires additional

specification of the procedure SELECTNLWINTERVA(.. Observe , for examp le, that , if we

always have A . — B - I , the open interval ~A1, B~) does not contain any integer (/~j and B1
arc integers themselves) and no so lution can ever be found. If , however, we replace

condition (b) above by: -

(b) A � B-2 otherwise ,

it can be shown easily that the length of the intervaL (GALPHA, GRETA) decreases at least

by 1 each time a process completes a partial search. Since in a practical implementation

the interval (-co, ceo) is actually a finite interval in which we know that the solution V0 is

to be found, we are guaranteed of the termination of Program A under condition (b’).

6.2 - Some improvements on Program A

A feature of the para llel implementation presented in Sec tion 6.1 Is that
S Intercommunication betweàn processes is reduced to a minirnium, and confined to the

selection -of a new interval over which a partial search is to take place next. As e

S
• consequence, once a process has -Initiated a partial search, It runs until completion S

oblivious of the results of the other processes. This can obviously be overly wasteful

since the Interval searched by a process might be ruled out by some other process very

soon after the beginning of the search.

_ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

110 CHAPTER IV

This shortcoming can be eliminated In severa l ways. First, a process completing a

partial search could check alt other processes , causing thorn, If necessary, either to abort .
S

their searches or to readjust their Intervals. This solution, however, requires a tot of

book-keeping and becomes unpractical when a large number of processes are cooperating.

Another solution is to have each process modify its own Interval by regularly S

checking possible changes of the variables C ALPHA and GRETA during the search. Let

A ’ � A < B ~ B’, and consider the two calls: -

ALPHAI3ETA(Root,A ’,B) and ALPHARETA(Root,A,R).

It is easy to check, by induction, that if node P is explored by the second call, through
-

Al PHABETA(P,~,~), node P is also explored by the first call, through ALPHABETA(P,~~,~0).
-

- • Moreover , the bounds a’, ~~~, a” and ,3’ satisfy:

a’ max jne ’,A) , — min{j~’,G) , If P is at even depth, (6.9)
-

S
S a’ — max(a”,-BJ , ~8 — min (,~

’,-A) , if P is at odd depth. (6.10)

The procedure AR, below, is a modification of the procedure AIPHABETA, in which the

bounds alpha and beta are regularly updated according to the relations (6.9) and (6.10) to

take Into account the changes of the two variables C ALPHA and GRETA.

integer procedure AR(position P, nteg~~ alpha, integer beta, bootean even):
begin
determine the successor positions! P1. ... ,

if n - 0 then
AB :- /(P) S -

else -

- -
-

begin
!QL j : - I ~~~ I

~~~ n do
begin - - 

S

t :— -A13(P .,-beta,-alpha,not even);
~ t >  alpi(a ~~~~~~ alpha a S

If even then
S (alpha a max{alpha,CALPHA~; beta :— min(beta,CBETA))

else - 
S

(alpha :— max(aipha,-GBETA); beta :— mln(beta,-CALPHi4Th
lj alpha � beta 

~~~ ~~~ 
done

done: AG :- alpha
end

A modified Alpha-Beta procedure

S -
—-S

~~ —-~~~~ -— —--5- - -

~ 5— - - . ~— S• - S ~~

PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM - 111

Relations similar to the relations (6.1), (6.2) and (6.3) hold for the procedure AB as

welt. Consider the call: S

V: — Af3(P,a’4,true) , • (6.11)
S

and as before define V0 :— MINIMAX(P). Also, let A and B denote the values of the two

variables CALPHA and GRETA when returning from the call (6.11) (i. e., as of the last time

they are used during the execution of the call). For A’ and B’ satisfy ing A’ � A and B’ � B,
S define a” — max{a’,A’) and /~

‘ niin{j~,B’). We have the following.
S

Theorem 6.2

With the above notations , provided that:

A’ �V 0 �B’ arid a ” c / I’,

we have:
S

S
if Vg a ” then V0~~a” ,

if eie’ < V c ~ 3’ then V0 — V ,

if V>. / J’ then V0 � / J’ .

Proof: .
S

The proof follows easily (by induction on the depth of node P) from the

rotations (6.1), (6.2) and (6.3) and the relations (6.9) and (6.10). a

Program B, below , directly implements the relations stated in this theorem. Since

the analog of Theorem 6.1 can be proved for Program B as well, its correctness Is a direct

consequence of Theorem 6.2.

Progr~m B:

global Lnteac~ C ALPHA, GRETA ;
.

S
S

Initialization:
S begin

CALPHA :- -cu; GRETA :- ‘cu;
start processes P1,

S

S
_ ___- - ——--

112 CHAPTER IV •

S

- Process P
begin S

((A ., B) :— s~LEóTNCwINTERvAL);
wI,t’~o A . c B - do ‘ - S

begtn -

- V. :— A13(Root,A ,B .,~.rjj~); S

1 :- max(A -,CA’LP’HA); B~ :- min(B1,GBE TA); S

S

•

~f
1A1<B 1~~b.~j i

begin
S . if V1s A 1 then S

begin
(GRETA :- min(GBETA,A .1); 5 S

(A 1, B1
) a SELECTNEWIPhERVAL)

end S

else
- if V1~~B1 then S

begin
- {GALPHA a max(GALPHA,B -1);
(/1~ By):. SELECTNEWINTEf~VAL)
end

else
- begin

jGA LPHA :- GRETA :-
return the solution:
terminate

- end
end

else
j (A1, B.) :— SELECTNEWINTERVAL}

• S

terminate -

end

Procedures ALPHJtf3ETA and AR implement two extreme alternatives in which the

bounds alpha and beta are never updated and in which they are updated each time they

are used. A more efficient implementation w~utd be to update alpha and beta only when

changes have been made on the variables GASLPHA and GRETA. This can be achieved very

easily by introducing a global counter incremented by I inside the critical section after

each of the instuctions of Program B modifying CALPHA and/or GRETA, and by introducing

a counter local to each process to check if the latest modifications of GALPHA and GRETA

have been taken into account. Since the counters can only Increase, no additional critical S

section Is required. We wILl not present the impLementation details, but the point, here, is
S

mainly to show that Uls possible to ImpLement (at a very low extra cost) each process so

that It Is continuing a partial search only if the result of the search can produce the

L

S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S SS ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -  ~S •~ ~_ 5~~~~~ 5 • _

PART 2: PARALLEL ALPHA BETA PRUNING ALGORITHM 113

solution or , at at Least, a reduc tion of the Interval in which the solution can - lie. In

par ticular , ~ e note that , in Program 13, pr ocess P .  will terminate its search as soon as, for

examp le, GALPHA � B .  or CBE TA A - , either condition ruling out the original interval

(A1, B1
). This proper ty wilt be taken Into account in the analysis presented in Section 7.

7 — Analysis of the parallel o~—~3 pruning algorithm

We wi lt proceed in this section to the analysis of the parallel algorithm described in

the preceding section. Since the algorithm is organized around parallel executions of

partiaL searches , it is the first thing we want to analyze. Most of this analysis differs very

sLight ly from the analysis developed in Sections 2 and 3, and we w ilt only present in

Sect ion 7.1 and 7.2 the main results Leading to the evaluation of a partial search. The

overall evaluation of the algorithm-depends upon the procedure SELECTNEWINTERVAL and

will be derived in Section 7.3.

7.1 — Condition for a node to. be examined under a par liat search 
S

As in Section 2, let ? a Ji~ 
... ... denote a node at depth d in a game tree and, for

0 ~ i � d-I , let 
~~ 

— Jd-i~ 
The notations for v(~7) and c(~

) remaining the same, we

now defLne : 
S

— max( c(ad 1) I S is odd, I ~ ~ d }

— rnax { C(3 d ..4) S is even, I � & s d  }

Given the two bounds a and b, we also define:

— max{ a,

B’ (a) — maxj -b, 13’(a) J .

The analog of Theorem 2.1 for a partial search can now be stated in the following.

Theorem 7.1

S 
Assume that the root of a game tree is explored through the call

ALPHAI3ETA(Root,a’,f~) 
S

5 5 5 5 5 _ S 5 5 5 - - ~~~~~~~~~ S S S 5~~~~~~~~~ S~~~~~ S_~~~~~~ SS S S •  S S S  S 5



5 
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S S  S~~S S~~~~~~~~~~~

114 CHAPTER IV

by some process executing the parallel procedure of Section 6.1. Then, with the

above notations and provided that a ~ b, an arbitrary node ~ of the game tree will be

S subsequent ly explored if and only if:

• A ’~?) + B ’W <0 .  S 
• - - (7.1)

Proof: 
S

S The proof is immediate by induction, a

• Observe that , when the procedure AR of Section 6.2 is used instead of the

procedure ALPHAI3ETA, condition (7.1) only remains a necessary condition for node ~7 to be

exp lored through the call AB(Root ,a’,~l). It is no longer a sufficient condition since, by

updating the-bounds a’ and /1 during the execution of the procedure AR, additional pruning

might occur.

S 
in the fo lLowing evaluation of a partial search we will assume that the process

executes the procedure ALPHAE3ETA, and we w ilt utiLize condition (7.1) to characterize the

fact that node ,.7 is explored.

7.2 — Average number of nodes exp lored wider a partial search S

S
. - As before , we wilt consider a rug tree of degree a and depth d, and we will assume

firs t that the bottom values are independent identically distributed random variabtes

distributed according to some discrete probability distribution (po (k)} _
~~ h5~1, where p0(k)

Is the probability that a bollom value be assigned the value xk — k/ rn, for -rn ~ It �

Given two bounds a’ and ,3, we define k 1 and k2 by:

- 
- 

a ’ X k , /3. .Zk .

S Since the values a’ and /3 could be unbounded, It Is convenient to define z_,11~ — -to and

— +co. Throughout we wilt only consider the partial search corresponding to the call

ALPHAL3ETA(Root,a’,f3), and we will assume that a’ < / 3 , whic h can equivalently be expressed

as -nt—I � It1 c k 2 s ni.1.

S 

S

L_~~~
_ 

~~~~~~~~~~~~~ -- S S - - 

j

—

S - PART 2: PARALLEL Al.PHA-BETA PRUNING ALGORITHM 115

UsIng arguments Identical to those 5Qf Section 3.1, the probabiLity distributions for

the quantities A ’(2) and B ’(a) can be obtained immediately as a function of the quantities

S p5(k) , for 0 s S ~ d and -rn-i � k � in. Then the probability ~r(,7) that some node a of the

game tree be explored under a partial search can be derived from these results using the

characterizat ion given by condition (7.1). As with Theorem 3.1, the fottowing theorem

S results directty from the expression for ,r(a). In order to present a uniform result

(independent of the parity of d) in this theorem, we depar t slightly from the notations of

.

• Section 3.1, and the products denoted by 11e and fl ’,, are now ex tended over all even and

odd integers i , respec t&vely, in the range I s i s d.
-

S

Theorom 72:

The average number , N~,d(rn ,ar ,$) , of bottom positions examined under a partial

search Is given by:

Nn,InL,a ’J3) —
~~o Pd-~0’I~

T’ e °~d-~~ i~

-

k 1. I k
~

-I ~~ Pd_ & (’k) -
~~O Pd-s~~

-
~~

] x
~~e ~d-6’~~

(7.2)

Proof:

As w ith the proof of Theorem 3.1, the result follows directly by summing the

probabilities ‘r(a) over alt terminal positions 7. S -

When assuming that alt bottom values are distributed according to some continuous

probability distribution (or , similarly, are alt distinct), again we can obtain, as in

Section 4, the average number of bottom positions examined under a partial search by

considering the limit of N f l ,d(rn ,a ’,$) in equation (7.2). At this point it is convenient to

consider the cumulative distribution for the value v(Root) with respect to the two points a’

and /3. Namely, given the probability distribution (pd (k))..nt�k�rn (or equivalently

and given a’ — 5k 1
and ~3 — Xk

2
, we introduce:

— p/ -rn) + p/ k j) — I - p/ -k j - I) ,
-

-

— p/ -rn) ~ ... p/ k r) - I -

if , in general, we let:

t — P/ ’Pi) ...
“1 ~~~~

— I - p/ - k - i) ,

_ S ~~~~~~~~ • •• • • • • .. .~~~~

- S ____ 5

116 CIIAPTER IV S

and define in an obvious way the func tions P and Q on (0, 1] by the correspondence:

—
~~o ~d-S~~~ - S -

Q(t) — fl~ °‘d-i~~~’
S S

we can state the Limit of equation (7.2) in the following theorem.

Theorem 7.3: , -

S Provided that:

llm max{ p0(k) I -in � It � i n) — 0 5
S f l 1 4to S

and that: S 5

tim am — a , tim b~1 — b , -
-m-9c0 f l I - cu

the limit of N
~,d(rn,a’,/3) , when in -. to, is given by: S

N
~ d(a,b) — P(a) .Q(a) + J ~’ P’f’t) .Q(t) .dt . - (7.3)

Both fheorem 7.2 and Theorem 7.3 provide us with a cost of executing a partial S

S
-

search, measure d by the number of terminal positions examined during the search, when

the bottom values are distributed according to either a discrete or a continuous

probability distribution.

• In Figure 7.1, we have plotted, for z C (0, 1], the two quantitIes -

C(x) — P(x) .Q(x) ,
S

Ho — P’(t) .Q(t) .dt .

-We deduce from equation (7.3) that N~,/ a,b) can be expressed directly from these two

S
• • quantities as: S

S
N,.~,/ a,b) a 6(a) + H(b) - H(a) ,

with an immediate Interpretation in Figure 7.1. If we consider the case when the bottom

values are distributed according to a discrete probability distribution, then Nnd(m ,a’,/3), as

given by equation (7.2), can be expressed simiLarly as a function of a
~

and b,,~. The

functions C and H are , in this case , simply replaced by step functions, which coincide with

the continuous functions C and H at the points tk — I - p/ -k-I) 1 for -in � It ~~ in.

-H

. 5 — S S~~~~~~~~~~~~ - —~~ - S

_ _ _ _ _ _
S ---- - . S

I ~
-

- PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM 117

0(x) , H(x)

200

I 4

150 H(x) .__

-

S -
‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

G(x)

50

o i , t i , , i i ~ i ’
0 0.2 0.4 0.6 - 0.8 1.0 1.2

x

S Figure 7.1 - An Interpretation for

7.3 — The analysia of the parallel ~ —fi pruning algorithm

The results of Section 7.2 show that the cost of executIng the partial search

corresponding to the call

At.PHABETA(Rool,a’,/3)

can be expressed by: S

c(a,b) — 0(a) + (H(b) - H(a)] ,

- - -~~~~~ ~~~~~~ -- --- — -~~----~~~~~~~~~~ - -



~~~~~~~—--— - • • ~~~ -~ - — -  . .. ~~~~~~~~~~~~~~ . . .~~~~~~~~~~~~~~~ S --

118 CHAPTER IV S
S

- with .

S

a — Proba(V � a ’) , b — f’robaL V� / 3)

where V is the random variable representing the value backed-up to the root of the game

tree (by the MINIMAX procedure). Given the probability distribution for the random

variable 1’, we have a one-to-one correspondence between intervals (a’, / 3) of (-a,, .co) and

intervals (a, b) of (0, 1). Using this correspondence, we will only talk in the following

about partial searches over inter~?a ts of (‘0, 1) .

Although the two func tions C and H are readily computed numerically, they do not

lend themset’~’es very easily to analysis and, in the remainder of the section, we wiLt
5 consider an approximation suggested by Figure 7.1. We notice In the example depicted in

this figure that 0(x) remains nearly constant when x varies in the interval [0, 11 and that

Ht’x) varies almost linearly on the same interval. While the numerical results presented in

Figure 7.1 correspond to a partial search of a rug tree of degree a — 3 and depth d — 6,

numerical results obtained with other values of a and d actually show that the

approximation of C by a constant and of H by a linear function Is even better for large

values of a and d. This is especiaLly true in an open interval contained in [0, 1]. In
5 consequence, we wilt assume in the following that the cos t of executing a partial search S

over any interval (a, b) of (0 , 13 is exactly given by:
S

cfrs,b) — p + q(b - o] ,
5

(7.4)

-
-

where p and q only depend on the rug tree Itself (I. e., on a and d) . Numerical results , not

presented here, nave been run for a — 3, 4, 8, 16 and 32 and for 2 � d ~ 8, it turns out that,

if , obviously, p and q are very dependent on a and d, the ratio A — p/ g does not show a
S

5
5

large variation and ties typically in the range 0.2 � A ~ 0.4.
-

Without loss of generality, we wiLl normalize the cost c(a,b) of equation (7.4) by

assuming that q — I (hence p — A) and we will consider throughout that:

c(a,b) — A + b - a ,

or , equivalently, with b — a ‘It, that:

c(a,a- h) — A • It. . . (7.5)

-

--

-

• PART 2: - PARALLEL ALPHA-BETA PRUNING ALGORITHM 119

This cost wilt aLso be taken, in the following section, as the time for a process to execute

a partiat search over the interval (a, b) — (a, a.h) .

7.3.1 — An analysia of the par&lo implementation: Optimal decomposition

Given the cost of a part.iaL search through equation (7.5), we will determine in this

section the optimal decomposition of the interval [0 , 1] and, with this result, the optimal

procedure SELECTNEWINTERVAL, introduced in Section 6.1 for k ~ 2, processes can be

defined.

As an examp le , we first examine the special case when the interval [0 , 1] is split

into It subintervals ~~ I~ searched in parallel by processes P1, ..., ~k’ respectively. Let

be the size of I~, for & — 1, ... , It, with ... + — 1. Under this decomposition, process

will find the solution, w ith probability s~, after a cos t A •
~~

Therefore , the average

cost (or time) to find the solution is, in this case , simply given by:

• . t — s~.(A + sj) 4 ... •

S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S

for which the minimum, T0, is achieved when — ~~
., for i — 1, ..., It (recall that

• ... 4 — 1). This yields:

S T0 _ A + f ~.

The decomposition of the interval [0 , 1] presented in this examp le Is the simplest one, and

It does not allow any feedback between the processes since the It partial searches cover

• the whole interval [0 , 13. The example confirms , however , the obvious fact that, in order

to achieve the minimum cost, the k subintervats searched by the k processes should be of

equal length.

In order to introduce some feedback between the processes , we now consider a

further decomposition of the Interval (0, 13 Illustrated in the diagram of Figure 7.2 In the

case of two processes.

5
55 5 ~~~~~~~~ 5 SS



______ _____ 
~~~~~~~~~~~~ ‘~~~~ - ~~~~~~~~~~~~~~~~~~~~ - —

120 -. CHAPTER IV -

s i t~srn~scss~i i ric~sss~s#~1 ~
-i

0 a b c d 1 5

- Figure 7.2 - A decomposition of (0,1]

The two processes P 1 and P2 start exploring in parallel the two subintervals (a, b] and

(c, d], respectively. If either process finds the solution at the completion of this first

search, with probability (b-a) or (d-c), the execution terminates with a cost of either

(A.b—a) or (A’d—c). Otherwis~, consider that process P 1 finishes first. If It finds out that

the solution lies in the interval (0 , a], we know that , with the implementation proposed in

Section 6.2, process P2 wiLl terminate its search immediately after and, therefore , both

processes can start simultaneously new partial searches within the interval (0, a]. If , on

the other hand, process P1 finds out that the solution lies in the Interval [6, 1], It wilt

star t arbitrarily a partial search over an interval within (6, c) or (d , 1] white waiting for

process P2 to complete its initial partial search and, possibly, will readjust its search as

soon as process P2 finishes. If we assume that both intervals (a, b] and [c , d] are of equal

Length, both processes will finish their initial searches roughly at the same time. We wilt

neglect In the followIng the delay involved in making the decision as to which subinterval

S actually contains the solution, and we will assume that , if the solution has not yet been

found , the processes restart a new partial search simultaneously.
S

According to this decomposition, It subintervals are Initially searched by the k

processes and, If the solution is not found during this firs t trial, it Is known to tie in I of

k.I subintervals depending upon the outcomes of the first partial searches. Thus k

subintervals wilt be searched during the second trial out of a totaL of k(k. 1) possible

subintervals. In general, if not successful after the &-th trial, the It processes will start
S simultaneously k new partiat searches over a~ — k(k.I) ’ possible subintervals during the

(&+I)—st trial.

Let h0•— 1, and, for L — 1, 2, ..., let It4 be the total length of the Interval [0, 1) that
5 . stiLl could be expLored after the &-th trial. Then, for L — I, 2, .. ., - It4 measures the

I

~~~~~~~~~~~~~ ±~~~~~~~~~~~~~~~~~~~~~~~~ _ _ ~~~~~~ S S — _ ~ _ _ _  - ----



~ S~- --- _-- - -  ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- —~~ — -  —

PART 2: PARAI.LEL ALPHA-BETA PRUNING A(.GORITI4M 
• 

121 •

total length of alt a4_ 1 subintervats that could be searched during the L-th trial. It also

S measures the probability that the solution be found at that time at ler a cost c~ given by:

— (A + (h~ 
- h j )/ a0] • ... ‘ [A + (1i~_ ,  - h4)/ a4_ j ) ,

assuming that the a4_ 1 subintervals that couLd be searched during the i-th trial have all

the same length: (h~_ 1 - h~)/ a~_ 1.

The total average cost , T, follows immediately. We have:

T — I (h~_1 - h4) .c4 ,

T — Z iA(h~..1 — h4) . Z1 [ (h 4 1  - h4) 
~~~~~~. 

(h1_ 1 - h ’)/a 1_ 1] ,

T — A Z It4 + 2~ h4 (h4 - h4 , j) / a4 . (7.6)

The following theorem states the optima l decomposition {h~)~~0 Leading to the
-

• minimum average cost of expression (7.6). For It ~ 2, we wilt consider the folLowIng

sequence of i.ntervals (recall that a — k(k.I)J): S

S A0 — (1/ a 0, ~~~~

AJ — (I/ a 1, (k— 1) 1a1) , for f — 1, 2, ... ,

and

B — (Oc-1)/ a 1, I/ a 1..1) , for f . 1, 2 S

Theorem 7.4:

Assume It � 2, and let Ck(A) denote the minimum of expression (7.6) over alt

possible decompositions {h4) 4~0. - •

(a) If A C Aj , for some j — 0, I , ..., the minimum of expression (7.6) Is achieved for:

h0 — ... — It1 — I and h141 — It142 — ;. . — 0 ,

yielding: S

Ck(X) . (j. 1)A ~ d-~
S -

(b) Otherwise , If A C B1, for some j — 1, 2, ..,, the minimum Is achieved for : .

h0 — ... — h~..1 — I h,~ — aj (r’—j~
- A) and It1•1 — It1•2 — ._ — 0 ,

yielding: 5

CItO..) — jA • -

~aj (a-Lj~~
A)2 . S

LL~
_

-

S

122
- CHAPTER IV

Proof:

Observe first that the decomposition [h~j5~0 satisfies: S

1 h0 � It 1 � ... � h~_ 1 � h 1 �...� 0.

Assume that A � 1/a 1, for some I � 0. Given any decomposition {h114�o, consider

another d ecomposition {
~~5~~~o defined by: -

•
-

~
It4 If i5~~f~• • g i _ l S

0 if & � j . I , S

-

and let T’ denote the expression (7.6) where (h~j~~0 is replaced by
~~~~~ We havi:

S T - T ’  — A Z  h • Z .Lh4 (h4 - h .~,)t~ j +1 ‘ t~j +1 ~ t 4 5

• [A - It1 + It141 (It141 - h142 ) ]

• 0 • 0 (J-~ 
- d— • 

~~
4-

~ 

It141 (It141 - h142 ) ]
S 

— ~4-7 h1+, (h141 - h 142 ) � 0 ,

which shows that T is minimized when It5 — 0 for 5 ~~ j +I. 
- 5

Assume now that A < ~k-1)/ a1 for some I ~ I. Assume furthermore that h5_ 1 — I for

some &, I ~ S � j (recall that h0 — 1) . We have:

A c (k-1)/ ci 1 � (k-1)/ a4 ,

which shows that the derivative, t5, of T wdb respect to It4 satisfies: 
- 

. 
S -

— 2I~-h 5 • A - ~-i~1
h~.1 - J~-h 541 

S

- _ 2 d h s + X - ah~~~
..h&+, 

S

S S 
- 2 ~~~~ 

(1 - It5) - 
~~- h~41 ~ 0 - ~~~ 

:~ ~~~~~
. 

-

This last Inequality shows that T decreases when h5 increases from 0 to . I and that,

S 
therefore, the minimum of T is achieved when It5 — I. Since It0 — I, we have shown

part (a) of the theorem. - - S 
- 

•

S Assume now that A C B1 for some J � I , I. e.:

(k’- I )/ a1 ~ A .c I/ a 1_ 1. - - 

S

- In particular , since It � 2, A ~ I/ a1 and A c (k- 1)/ a1_j . It follows from the above proof that

— ... — h1...1 — I and that It1•1 — It142 — ... — 0. Hence, expression (7.6) becomes: 
S

-

- 

. T — IA • - (‘
~14.j

.-A) hj . ~~~~ 
- 

-

_ _  5 5 5 S S S S S S S S ~~~~~~~~~~~~~~~~ 
S _

~~•~55~s S____



S 
PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM 123

f torn which part (b) of the theorem follows directly. I

Theorem 7.4 states as a function of A, the initial cost for a partial search, the

optimal decomposition of the interval [0 , 1] and the corresponding optimal average cost

CkO~
) to find the solution using the parallel implementation with k processes. In

Figure 7.3, we compare the cos t CItOJ with the cost COJ of the original (seqOential)

algorithm as presented in Section 2. 
5 

5

S 

- 

SItO)

4 5  . —

3

2 -

- 

S 

~~~~~~~~~~~~~~~ E 2

I

0 1 I I I— I I I I I
0 0.2 0.4 0.G o.e 1.0 1.2

A
-

FIgure 7.3 - Relative speed-up of the parallel implementation

Since in the original w-f3 pruning algorithm the whole interval (0, 1] Is searched at once, S

C(A) can be obtained directly from equation (7.5) and is given by:

CQ) — c(0,i) • A + 1

124 CHAPTER IV .
S

The various curves of Figure 7.3 represent the speed-up Sk (X) — C(A)/ Ck CA) achieved by

the paraLlel implementation with It processes over the original algorithm for k — 2, 3, 4 and

for the limiting case It — co. In this Latter case I/a0 simply reduces to 0 and we always

have A C It follows from Theorem 7.4 that C~
(A) — A and therefore

SJA) - - 14 ~
..

S

-

S

7.3.2 — Implications of th. results and validity of the assumptions

Let us examine the results of the preceding section as Illustrated in Figure 7.3. We

S noticed earlier that the Initial cost of a partial search, A~ typically ties in the range

(0.2, 0.4). We observe from Figure 7.3 that when It - 2, for example , the parallel

implementation can improve upon the original (sequential) €~-/J pruning algorithm by a

-
factor which can be larger than 2 when A ties in the range of practical Interest. Moreover ,

when A becomes small , the improvement actually becomes unbounded, as can be seen by

choosing A I/ a 1 for which we have: Sh(A) - (a
1
. I) / (j . 2) . An Immediate consequence

of the results of Section 7.3.1, therefore , is that the ~~~~ pruning algorithm (as described

in Section 2) is not optimal. The same strategy used for the parallel implementation with

two or more processes is obviously also suitable to the case of onLy one process , and, in a

similar fashion, we can deduce an optimal decomposition of the interval (0, 1] for this case

as welt. Although the results of Theorem 7.4 are not applicable for the sequential case

(only the first part of the proof is relevant when k — 1), simple calculus shows that when

A C (0.2, 0.4) an improvement between IS?. and 257. can be achieved over the origInal

algorithm, and this constitutes a substantial gain.
S

The analysis developed in Section 7.3.1 relies Implicitly on the knowledge of the

• dIstrIbution f or the value V0 backed-up to the root of the game tree. In particular , when

we state, In Theorem 7.4, the optimal decomposition of the Interval (0, 1] In terms of

we really need to know the distribution of V0 to actually Implement the procedure

SELECTNEWINTERVAL according to this optimal decomposition. When nothing is known

t S

5~~~~~~~~~~~~~~ 5 5 ~~

~~. —-— ---~~~~~~~~~~~~
S

PART 2: PARA1.LEI. ALPHA-BETA PRUNING ALGORITHM 125

• S -

about the distribution of V0, the results of Theorem 7.4 stating the optimal cost Ch(A) can -

be simply reinterpreted as a lower bound on the cost achievable by an algorithm using

this strategy of decomposition with partial searches.

S In practice , however , atthough the distribution of V0 is not known exactly, some

information is actually available from the evaluation of the game tree at previous moves.

In chess , for examp le, unless an important capture was hidden from the horizon of the

search , successive evaLua tions of the game tree will yield closely related values, and It is

common to be able to predkt a priori an interval which contains the solution V0 with some

S
probability p, where, typically, p — 807.. In the actual Implementation of a chess program,

this interval is examined first , and, if the solution is not found after this trial, the whole •
- S

interval to its left (or to its right, depending on the outcome of the first search) is

exam ined next. See Figure 7.4 (a). S

0 1

~5 5 i 5 5 # 1 5 / 5 5 f 55 5 / f/iF1F#5FFuf1#F/5I4
S ,~

X p 1 - x - p S

(a) Actual decomposition
I

2 .0 3 3 1
S I ~55555H5øøH515f/55I55H1iA S

-

(b) OptimaL decomposition (A — ~
) S

Figure 7.4 - Comparison of the actual and optimal decompositions of (0 ,1]

Under these conditions, let us consider the cost of finding the solution V0 wIth I process ,

and let us assume, to give an idea, that A — 1/3. For purposes of comparison, the optimal

decomposition can be shown, in this case , to be h0 — 1, h1 — 2/3 and It2 — h3 a ... — 0, see
S

-

Figure 7.4 (b), yielding the minimum cost TO — 10/ 9 — 1.11, whIle the cost of the original

algorIthm is simply given by T1 a A • I — 4/3 1.33 (an Increase of 20Z over the optimal

cost). . S

S
•

.

.

S~~~~~~~~

5 5 5
~~~~~~~~ 

- - 5 - --_-~~--—— --- -~~S 5 - _ _ S S 5~~~~~~~~~~~~~~~ _S _ S S _ S _ _ _ _ S _ _ _ _S_ 5 S _ S _ S S S~~~~~~~



r -- -- - -  —- -  ~~~~~~~~~~~~~~~ --~~~~~~~~~~~~~~~~~~~ - --- ~~~~~~ - --- - -  - - - -~~~~~~~—~~- - - - -• • - -- - - -- --

126 
- 

CHAPTER IV

The cost associated wIth the actual decomposition Is eas ily evaLuated and Is given

by:

T — p .(A.p)  • x . ( A + p + X + x )  • ( I - z - p ) . ( X + p + A + I - z - p )

—~~2 - p ) A + p + x 2 + ( 1 - p - x ) 2 , S

fr om which we deduce that the worst case , ac hieved for x — 0 or x — 1 - p, is given by:

T2 — ( 2 X + 1 ) - 4 7 k + 1 ) p . p2 ,

S 

- 

corresponding to — 1.24 when A a 1/3 and p - 0.8. Although this worst case stIlt

corresponds to an Increase of II .SX over the optimal cost , it is an improvement of 7Z over

the cost of the original algorithm. Yet, in view of the optimal case, one could think of ,
improving the cost by reducing the firs t interval so as to have p — 1/3 , but then this would

increase the worst case, which would, in fact , correspond in this case to the cost of the

original algorithm, therefore , showing no improvement. (Looking at the best case,
S 

however , •we could achieve the optimal case in this way, but only with the risk of

S aggravating the worst case.) -

S The results we have developed rely on several simplify ing assumptions, and we

would like to conclude this section by examining their validity. While equations (7.2)

and (7.3) provide us with the exact cost of a partial search over some interval (ei , /1) (or

S f~, b) equivalently), measured by the number of terminal positions examined during the

search, we have used the approximation given by equation (7.5) to derIve the results of

Section 7.3.1. As we have mentioned, however , this approximation seems to be reasonable

and more and more acc urate as the game t ree bec omes larger , and we do not feel that this S

approximation leads to a large error In the analysis. In order to check on the validity of

this approximation, however, we have run a series of simulations and compared the resuLts

with the results predicted by Theorem 7.4, where A was computed numerically by using a

least square approximation to the functions C(x) and H(x) on the Interval (0, 1) (see

Figure 7.1). The simulation results were very consistent with the analytical results and

showed an ac tual improvement over the original algor ithm between 57. and 107. better than

the Improvement predicted by the theory.



PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM - 127

The simulat ion was also aimed at verifying another simplifying assumption we have

used in the analysis. While equation (7.5) provides us with the ~cnconditionaL average cos t

of a par tial search over an interval (a, h) , what we realty need to derive equation (7.6) is

the cost of a partial search over an interval (a, b) condi-tionned by the fact that the

solution lies in some interval (a , b’) (possibly the same interval). Here, too, the

- simulation results were useful to validate this simplifying assumption.

8 — Conclusions and open problems

We have presented in the first parl .of the chapter an analysis of the performance of

the a’-f? pruning algorithm for searching a uniform tree of degree n and depth d when the

values assigned to (he terminal nodes are independent identically distributed random
S variables. The analysis takes Into account both shallow and deep cut-off s, and we have

also cons idered the effect of equalities between the values assigned to the terminal nodes. S

A s~mpte formula was derived , in Seclion 3, to measure the number of terminal

nodes examined by the cv-~ procedure when the bottom values are drawn from a finite

range according to an arbitrary ~liscrotc probability distribution. Although the formula can

be eas iLy computed numerically, a direct analysis is made difficult by the presence of the

probability distribution. In the case when only two distinct values can be assigned to the

terminal nodes, it is shown that , by choosing appropriately their probabilIty distribution,

the number of terminal nodes examined by the w-,~ procedure can grow at Least as

O[ ~n/ t n &‘~], which, in fact , corresponds to the worst case behavior of the algorithm (over

all possible probability distributions).

A formula was then presented in the form of an integral to measure the number of

terniinat nodes explored by the e~-~ procedure when the bottom values are alt distinct. An

-analysis of the integral shows that the branching factor of the a’-,9 pruning algorithm is

S e(nfln ,t) , a result which confirms a claim by Knuth and Moore (353 that deep cut-offs only

have a second order effect on the behavior of the ~-~9 pruning algorIthm.

- S -- 5~~~~~~~__-~~~~~ -S SS _ __ _ _ _



128 - CHAPTER IV 
S 

S

We think that the main contribution of this analysis Is to give a better understanding

of the a~-g pruning algorithm. In particular , we have shown that the a priori unrealistic

assump tion that all the values assigned to the terminal nodes of a game tree be distinct

corresponds , in fac t, to the worst case performance of the algor ithm. Moreover, we have . 
S

shown that this worst case performance can be attained even in the very sImple case when

the bottom values can only take on two distinct values, by choosing appropriately their

probability distribution. We think that this can be important in practice because , it is

relative ly easy in most game playing programs to obtain (by inspection of the evaluation

func tion) an accurate bound for the range of distinct values assigned to the various

posit ions of the game , but it is usually not so easy to derive a good estimate for the

probabiLity flistribution of these values.

S Simitar1y, the branching factor analyzed in Section 5 prov(des us only with ar~
S 

- 
asymptotic measure of perf ormance for (lie ~-,3 pruning algorithm (I. e., f or trees of large

depth). As indicated by the resuLts of Section 3.3, however , the branc hing factor can also 
-

be used as a realistic measure of the worst case even tor small trees.

We have measured the efficiency of the ~~~~~~~ pruning algorithm by the average

number of terminal nodes explored during the search. It would be interesting to also

obtain an estimate for the standard deviation of this number.

The scheme we have considered for assigning values to terminaL nodes of a uniform

tree lent itself easily to analysis; 1t is, however , very simplistic. Different schemes for

assigning static values have been proposed in (23), (35] and (45]. AnaLyses of these

schemes would be helpful for various applicationst a step in this direction was presented

in (45] for game trees of dópth 2 and 3.

In the second part of this chapter we have investigated the possibilities of

S 
Implementing the ~~~~~~ pruning algor ithm in parallel. Due to the intrinsically sequential

character of the algorithm, it seems difficult to achieve a high efficiency with a parallel

- -~~~~~~~~~ -~~~ -~~~~~~~~~- S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 5 5 _ S S 5 5 ~~~~~~~~~5



S PART 2: PAPA L I.EL AL.PHA -BETA PRUNING ALGORITHM 129

implementation based on a dirett- rotor-mutation of the original algorithm. Rather than

having the processes search in parallel various subtrees of a game tree for the solution,

we have proposed, in Section 6, a parallel impLementation in which the processes work

independently by searching the entire game tree for the solution over disjoint

subiritervals. The idea is similar to the notion of aspirat ion leuci implemented S

S (sequentialLy) in the TechnoLogy Chess Program [24), [25].

In Section 7, we have developed an analysis of our parallel implementation of (he

cw-/~ pruning algorithm, and Theorem 7.4 states an optimal sequence of intervals (which

-depends on the degree Ic of parallelism, i. e., the number of processes cooperating in the

search) for minimizing the average cost of the algorithm. It fol lows , in particular , that,

when (he degree of paralLelism Ic is small (Ic 2 or 3), the paraLlel algorithm shows an

improvement over (he original algorithm by a factor which is Larger than Ic. A surprising

consequence of the results , therefore , is that the ce-f? pruning algorithm is not optimal. 
S

This fact has been confirmed through a series of simulations, and for a typical tree (with a

degree Of about 30, and a depth of about 5) the results show tha t the c~’-fl pruning

algorithm can be improved by ISZ to 257.. It is to be noted that these figures are very

consistent with empirical measurements of the Technology Chess Program [25] showing -

that the implementation of the aspiration level reduces the search by 237..

The analysis we have developed relies on severa l simplifying assumpt ions , and it

would be interesting to develop a more accurate analysis , for examp le, by using a closer -

approximation for the cost of a partial search , or by evaluat ing the cost of a partial search

over some interval (a, b) given that the solution Lies in some interval (a ’, b) .  The analysis

could also be refined by not assuming that the processes cooperating in the searc h restart

new partial searches simultaneously. S

Although the parallel implementation we have proposed appears to be efficient with

a small number of processes , the maximum speed-up achievable is limited typically to 5 or

6 (see Figure 7.3 with Ic — co). We feel that a better way to implement in parallel the

_ _ _ _  _ _ _ _  _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



___ 
-- —~ S

- 130 CHAPTER IV

c~-f~ pruning algorithm with a large number of processes would be to combine both (ho

strategy of decomposition we have proposed and the Independent exploration of different

subtrees of the entire game tree. For example , we could have two groups of processes ,

each group executing a partial search over a different subinterval, and eac h process in a

group exploring a different subtree. We think, however , that the results are - very

important and should be used systematically in a sequential implementation, in conjunction

with some dynamic evaluation of the probability distribution of the value of a game tree.

~~~~ 

_

S .
- — I

- S ~~~ -~~

S —

Chapter V

Experimental Results S

S

-
with Asynchronous Multiprocessors

1 — Introduction

By simulating a multiprocessor system , Rosenfeld (52) and Rosenfeld and

S Driscoll (53) have reported a series of results to measure the effectiveness of

programming an asynchronous multiprocessor for the solution of the Dirich(et problem

using chaotic iterations (11]. The problem consists of solving the set of linear equations

associated with Laplace ’s equation through the method of finite differences.

In this chapter , we describe a series of eKperiments in which various asynchronous

Iterative methods (see Chapter III) are implemented on an asynchronous multiprocessor

(C.mmp under the operating system Hydra (63], [64)) to solve the Dirichtet problem. We

first present the results of measurements obtained with these experiments. We then show

how very simple techniques from order statistics (see , f or examp le, (14)) - and f rom

queueing theory (see , for example, (33]) can be used effectively to explain and predict

with a fair accuracy the experimental results. S -

In Section 2, we briefly describe C.mmp and Hydra, and we outline the solution of

the Dirichlet problem In Section 3, we Introduce the various asynchronous IteratIve

methods that we have implemented on C.mmp. In Section 4, we repor t the results of the

experiments, and, In Section 5, we present simple analytical techniques to account for

these experimentaL results. Concluding rema ks are given in the last section.

131

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ S~ S S

132 - CHAPTER V

2 - Description of the experiments

In Section 2.1, we only pre~ ’nt the main tharacter istics of C.mmp and of Hydra

w hich are relevant to our purpose here; a formal presentation of C.mnip is given in (63]

and of Hydra in [64). Likewise, a full treatment of the use of the method of finite

differences f or soLving the Dirichlet problem can be found, for example, In [22], and we

only briefly describe the method in Section 2.2.

2.1- — The .nvironrnent

The following descr iption corresponds to a very simplified version of C.mnip under -

the operating system Hydra but will be sufficient to provide a reasonable model for our

experiments. S

C.mmp is a multiprocessor composed of p processors (p is currently 16, but, at the

time the experiments were run, it was oscillating between 4 and 9), p1 of those processors

are POP-I 1 model 20 and
~2 — - are PDP-1 1 model 40. For purpose of comparison,

we will indicate with the results the number and type of processors used in the

experiments. Those processors are connected to m memory blocks (each with 1M words)

through an nixp cross-point switch; at is currently 16 (it was 13 at the time of the
S

- experiments), but, since we are not Limited by the size of the memory in our experiments , S

the exact value of at is irrelevant here. In addition, each processor Is also connected to

its own local memory (4K words). Although the memory available is very large , because of

t~e small address field of an instruction (16 bits), only a small fraction (32K words) is

directly addressable by a process at a given time. The Hydra system, howev er , provides

the user with tho fac lt(ty of modifying the address registers In order to access the entIre

- memory.

The Hydra system also provides the user with a set of macro-Instructions for the

manipulation of processes (creation, synchronization, etc.). In addition, the ~~ OLiSC7 module

- S S _ _ _— ~~~~~~~~~~~~~~~~~ -

- - -~~~~~ - S- -
~~~~- S--~~~~~~~-— —- —-—~~---- ~~~ . - S -  

EXPERIMENTAL RESULTS 133

ensures some critical functions of the system (process scheduling, processor allocation,

etc.); in particular , It ensures that eac h active process receives its fair share of processor

S time and a processor is allocated to a process only for some fixed quantum of time: at the

end of a quantum the processor is deallocated from the process , and the latter Is put back

f or re-scheduling into the pool of processes waiting for a process or.

2.2 - The problem S

We consider a welt-known problem, namely, the so-catted Qu ichiet problem for

- Laplace ’s equation (see, for example, [22, Section 20.9)).

The probLem Is to solve the partial differential equation:

S 5 LXXX + — o - (2.1)

in a rectangular domain D of R2: 0 { (z,y) 1 0 � z � ~~~~, 0 � y � /3 ) , when values of ii on
S 

the boundary S of 0 are specified by the condition: -

S U ~~
• S Ø ~~~ 

- 5 (2.2) 
-

or some given function g defined on S. Many applications require solving this partial

differential equation (or very similar ones) (22].

An approximation to the solution of equation (2.1) can be obtained through the

method of ftSfldC differences. Assume that ~ — (rt.1)h and /3 — (m4 1) h , and define a regular

grid on the domain 0 with mesh size h. This induces the set of points S

I M~, (x 4.ih,71—j h) I 0 � I ~~ 
n,1 , 0� I ~ nt+1 ). Let 

~~~ 
denote idM 1,1); the values it0,1,

~~~~~~~ IL1,0 and LLI,m,I, on the boundary 3, are known from equation (2.2). Using, I or the

second order derivative u~~ at the point (z,y) , the approx imation

u~~
(x ,,) — (u(x.h ,y) • u(’x-h,y) - 2u(z ,y) J/h 2

and a similar approximation for ~~~~~~~ it can be shown (see , for example ,

(22, Section 23.4)) that a solution to the set of linear equations:

S du~,j — u1_ 1 ,1 — it1,j ,, 
— u1,1_1 — ~~~~ — 0 , I ~ i s it I ~ I s m (2.3)

gives an approximation to the solution of equation (2.1) for the points M11 within an error 

-_ - S  S~~~S_SSS ~ S S



134 CHAPTER V

of order h3 (assuming bounded properties of the fourth order derivatives of the solution S

u) . A piecewise linear approximation for the solution it on the domain 0 can then be

deduced from the solution of system (2.3).

The set of equations (2.3) constitutes a linear system for which we are Investigating

S 
- the solution. This system can be wr itten, in matrix form, as:

S A x  a .  (2.4)

When x is the nm-vector corresponding to the row-major ordering of the grid points:

- 

— (it 1,1, ..., it~~1, U1,2, ..., - 

~~~~~ , .

we deduce from this ordering the n,nxnm-matrix A and the nat-vector a of equatIon (2.4),

S the Latter being known from the values of the function g giving the boundary conditions.

- Different iterative schemes have been implemented on C.mmp to solve this system.

They are described in the following section.

3 — Some implementations of asynchronous iterations S

S
- The matrix A of equation (2.4) is a very sparse matrix (at most five elements are not

zero in any given row), and, in this case , iterative methods, although they do not provide

us with the exact solution, are usually advantageous.

The first two methods we have considered are two basic iterative methods: the

point Jacobi and the Gauss-Seidel s methods. These two methods have been widely

studied and wilt be useful as a basis of comparison. These and other iterative methods

that we have Implemented are described in the following sections. Throughout, we discuss

paraLlel Implementations with k- processes (Ii — I corresponding to a sequential

S Implementation), and, for simplicity, we assume that the size net of the matrix A is a

multiple of k and let q — nm/k. In all implementations, we make use of a global vector ,

S - - called X, to contain the current value of the solution vector.
-

- S -~~~ S

- 5 5 5~~~~~~~~~ — 55 ~~~~~~~~ 5 5 5

EXPERIMENTAL RESULTS 135

3.1- — Jacobi’s method and Asynchronous Jacobi’s method

Since all diagonal elen~nnts of the matrix A have the same value of 4, the point

Jacobi matrix is readily obtained. Let x(i) denote the i-th iterate computed by Jacobi ’s

method. We simply deduce from equation (2.4) tha t:

x(S. l) — (I - I A) xW • ~ a — B za) • b . -

The ma trix

B - I - I A
4

is the Jacobi matrix associated with our problem. This matrix has been extensively

- studied, and its spectral radius, which determines the rate of convergence of Jacobi ’s

me thod, is given by:

p (B) — ~
.(cos

~~T
+ cos jjc 1.).

5 (3.1)

S We see that with Jacobi ’s me thod alt components of an Iterate are computed

simultaneously using the values of the previous iterate , and that parallelism can,

therefore , be introduced easily. A natural parallel implementation with k processes is to

simply decompose the evaluation of an iterate into k subcomputations , each one

corrusponding to the evaluation of a subset of q - run/k components , and to have the k

processes carrying out the evaluation of the k subsets of components In parallel. When a

- process completes its computation, it must then bLock Itself and wai t until the completion

of alt other subcomputations before starting the evaluation of the next Iterate. Our

implementation corresponds to this description, in which process P1 always evaluates the

f irst q components of the iterate , process P2 the next q components , ... and process
~ k the

Last q components. After each subcomputation all processes synchronize themselves using

a semaphore , and, af ter having updated the components, they all resume their executions

for the evaluation of the next Iterate. S

S The complete synchronization of all processes at each step of the Iteration Is an

evident drawback in the parallel implementation of Jacobi ’s method, and we can anticipate

that this wiLt result in a substantial overhead. The Aj ynchronou, Jacobi ’s method (or A l

S S - - - 5 - ~~~~~~~~~~~~~~ -- S S S SS- ~~~~~~ S

— — —~~~~~~~~~~~~~ — ~~ ~~~

136 CHAPTER V S

method) is a variation of Jacobi~s method in which a process never waits for the other

processes to complete their computations. As soon as a process completes the evaluation
- of its subset of components , it rnIea~es the new values for the other processes by

updating the corresponding components of the global vector X, and, Immediately after , the

S process starts re-evaluating its subset , using in the computat ion, the vaLues of the

-components as they are known at the beginning of the re-evaluation. The AJ method has

S
- been implemented using a critical section for updating the com~onents of the global vector

X at the -end of an evaluation, and f or copying the components of X required for the next

evaluation.
S

II can be seen easily that , if a process is never suspended indefinitely, the AJ

me thod can be expressed as an asynchronous iterative method reLative to the Linear

operator corresponding to the Jacobi matrix B. Since B is a non-negative matrix with a

spectral radius less than unity, it is a contracting matrix , and the convergence of the AJ

method for our problem is a direct consequence of the results of Chapter III.

-

3.2 — Gatiss-Soidel’s method and Asynchronous Gauss-Seidel’s method

Gauss-Seidel s method differs from Jacobi ’s method in that the components of an

iterate are evaluated in sequence and the value of Zr6) is used In the computation of

when s > r (that is, as soon as it is available). Let L and U be the strictLy lower and upper

triangular matrices defined from:

B — I - ~ A - L • U .

The sequence of iterates , for Gauss-Seidel ’s me thod, sat isfies:

~ (S.i) — L x6+ I) • U x(’i) • b

The matrIx S S

S
C . (! - L T 1 U

S S

defines x (s. 1) directly as a function of x.(O. Its spectraL radius determines the rate of
S convergence of Gauss-Seidel’s method and is given by:

p(C) — (p (13)] 2 , (3.2)

- - - - S S ~~

F - ~~~E. ~~~~~
- —

~~~ 
— — ~~~~~~~~~~ — — — - — 5~~~~~~~~~~

EXPERIMENTAL RESULTS 137

w here pW) is the spectral radius of the Jacobi matrix and is given by equation (3.1).

We notice that Gauss-Seiciol ’s method is intrinsically sequential, and that- parallelism

S 
canno t be easily introduced. The method has been implemented sequentially (I. o., with I

pr ocess) as a particular case of the Asynchro itou.s Gauss-Seidel ’ s met hod. ‘ S

The Asynchronous Gauss-Seidet ’ s method (or ACS method) s similar to the AJ method

except that a process evaluates the components in its subset sequentially and uses the S

new vaLue of a component within the sante subset as soon as it becomes available. In this

respect , the AGS method resembles Gauss-Seidet ’s method for the computation within a

subset of components, and, in particular , when the AGS is implemented with only one 
5

process , It simply reduces to Gauss-Seidel’s method.

As in the case of the AJ method, the AGS method can be shown to correspond to an

asynchronous iterative method relative to the Jacobi matrix B, and, in this case too, the

convergence of the AGS method follows from the results of Chapter 111 since the matrix B

(in the particuLar case of our problem) is a contracting matrix.

- 3.3 - Purely Asynchronous it.retiv. method

• The Purely Asy nchronou s method (or PA method) is the simpLest method we have
S 

Lmptemented. It basically resembles the AGS method, but It uses no critical section for

releasing the values of the components In its subset of for copying the vaLues of the
S components required in the computations. Rather , a process fetches directly from the

global vector X the values of the components as they are needed and releases new values

of the components one by one, immediatel y after the evaluation of each component. Again,

S the PA method can be easiLy expressed as an asynchronous Iteration relative to the linear

operator correspondIng to the contracting matrix B, and the convergence of the PA method,

for our problem, follows directly from the results of Chapter III.

In addition to being the simplest method to implement from a programming point of

— - — 5- - - - —S S -S - —S---



_ _ _  
-~~~----- -—~~~~-• 

5 — -

138 CI-4APTER V

view , the PA method is also, spacewise , tho most efficient method since no extra variable

is required to copy the values of an itc~rate as of the beginning of an evaluation or to

contain the new values of the components before being released. The main advantage of
S the PA method, however , is the total ab~ence of any form of synchronization, w hich,

therefore , makes it very attrac tive for implementation on an asynchronous multiprocessor. 
S

S An apparent disadvantage of the PA method is that alt processes frequently access

the common globaL vector X, therefore possibLy causing memory conflicts. This is not so

for the parlicular problem we are considering in case of a large system of equations (I. e.,

for large a and in). Because of the sparsity and the special form of the matrix associated

with our system, accesses to the vector X by a given process w ill be mostly confined to

accesses of components within its own subset and only a few accesses to components in

- the two adjacent subsets. Moreover , this is the general case for the solution of linear

systems resulting from the application of the method of ftnite differences to partial

differential equations. Therefore , this apparent problem can be solved easily stmpLy by S

alLocating different memory banks to difforents subsets of components of the global vector

X. 
S -

Another problem with the PA method is specific to C.mmp (and Cmt) and is’ due to

the absence of uninterruptibLe double word instructions on the POP-il (or the LSI-1 1). In

• par ticular, since a floating point number is ImpLemented on two consecutive 16 bit words,

simultaneous updating and reading of the same component by two processes might result

in a Lost of precision of the last 16 bits of the mantissa. Although this problem is very

unLikely to occur , it Is real, and the precision achievable on the solution vector has to be

chosen accordingly.

3.4 - Oth.r possible implemontaflons

The methods we have introduced are Intended to be an Illustration of the Issues

raised by the Implementation of parallel algorithms on an asynchronous multiprocessor ,

5 ± 5

- 

5 - - --- -- -~~~~~~~~~ - - S -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
S ~~~~~~~~~~~~ S

-

S
EXPERIMENTAL RESULTS 139

and they are not necessarily the most efficient way to solve a lInear system of equations -

by iteratIon. In this section, we mention several techniques which should be used In the

practical Implementation of asynchronous iterative methods. S

3.4.1 — Asynchronous iterations with relaxation

The introduction of a relaxation factor is a well known technique for improving the

performance of iterative methods , and, although we do not report here any results

concerning iterative methods using relaxation , we have run some exper iments which show 5

that the introduction of a relaxation factor is a very promising way to accelerate

asynchronous Iterative methods.

Let F be an operator , and let c~ be a positive scalar. An iteration relative to F with

the relaxati’ i factor c defines the sequence of iterates through:

x (i • I) — o F x6) • (I—o) x6) .

In particular , when o — I , this corresponds directly to the Iteration relative to F. This

~technique is very useful, in general, since the reLaxation factor o can be chosen to

maximize thç efficiency of the Iteration. - S

As particular cases , let us examine the methods we have implemented. The Jacobi

S Over- Relaxation method (or JOR method) produces the sequence of iterates defined by:

x6•1) — — 1. A) x (i) • a] • (I—o) x (i) ,

and, therefore , corresponds to Jacobi ’s method with the Jacobi matrix:

B~, - I - ~~o A - oB • (I - o) I .

It follows that, In our case ,

p(80) — ~~~~ • o p(B) ,

therefore , o — I minimizes p(80), which means that JacobI ’s method cannot be improved

using relaxation.

The Successive Over-ReLaxatio n method (or SOR method) is derived from

Gauss-Seldot ’s method. The SOR method defines the sequence of Iterates:

S - - ~~~~~~~~~~~~~~~~~~~~ - -- 5 - ———- 5 - ~~_-~~~~~~ S 5 - ~ 55 - 55 •~~~~SS~~~~~~~5 •5 ~~S~~~~S ~~5-~ 5_5_

5 - -- --- ~~~ 5~~~ 55 ~~~ 5- 5 - -S--•S - - —--——

140 CHAPTER V

xt’t’1) — o [L xa.I) • U xf ’i) • b] 4 (1-o) xt’i) ,
S

• and it can be shown (see, for example, [62, p. 203)) that the spectral radius of the SOR

matrix

— (I - oLi1[(1-o) I ~ oU]

is minimized when: -

I • -/1-p ’(B)

Similarly we can define the AJOR, ASOR and P~4OF? methods from the AJ, AGS and PA

methods, respective ly. Alt three methods are easily shown to correspond to asynchronous

iterative methods relative to the linear operator associated with the matrix B0. In

par ticular , since

p (I B&I — I1-oI • o

provided that:
S

0 < ~ < 2 (3 3)
1~~ p(B) -

the matrix B0 is a contracting matrix , and we are guaranteed of the convergence of aLt
S

three methods In the part icular case of our problem. Nothing, .however , is known In - -

general as to the best o, and further results in this direction would certainly be of

interest. Note that condition (3.3) only represents a sufficient condition for convergence,

and that the methods can still converge outside of this range.

3.4.2 — Adaptative asynchronous il.ration*

AL L of the Implementations that we have proposed are based on a static

decomposition of the computation involved in the evaluation of an Iterate , and, in alt cases ,

each process is assigned to the evaluation of a fixed subset of components. With Jacobi ’s

method, this results in a substantial overhead since all processes have to wait for each

other at the end of each step of the iteration. A possibility far reducing this overhead is

to decompose the components of an Iterate into more subsets than processes , and to Let

the processes adjust their own speeds by evaluating more or fewer subsets of

p

5— S - - S _S - ~~ --- - - - S S

- ~~
5-5- ~~~~~~~~5- 5-

S EXPERIMENTAL RESULTS • 141

components. For example , the parallel impLementation of Jacobi ’s method with 2 processes

which seems the best suited for execut ion on an asynchronous muLtiprocessor is to have

one process update the components starting with the f irst one and to have the second

process update the components stai ting with the Last one; an iteration step terminates

when the two processes m eet (not necessarily exactly in the middle). With this
- implementation, the difference in execution times between the two processes is limited at

mos t to the time to evaluate only one component , which obviously reduces significantly

the wading time. - S

Another way to take into account the different speeds of the processes ~vould be to

subdivide the components into subsets of different sizes, and ass ign the computat ion of a

larger subset of components to a faster process. The speed of a process , h6wover ,

depends mainly on the speed of the processor on which the system decides to execute the

process , and this is usually not known a priori.

There is another advantage of not pre-assigning to a process the evaluation of a

f ixed subset of components since, at each step of the iteration this allows for some

flexibility In the selection of the subset to be evaluated next. Many criteria can be used

for this selection, in particular:

(1) LRU: the subset selected Is the one which has been the Least Recently

Updated among those not currently updated.
S

(2) GRE: the subset selected is the one which carries the Greatest Relative Error

(also among those which are not currently updated).

The GRE selection, for instance , should increase the efficiency of an iterative method by

reducing the number of iterations required to achieve some given admissible error. The

selection of a new subset at each step of the iteration might, however , Introduce

S • additional overhead and, in particular , wilt almost necessariLy require the use of a cr iticaL

S section. We do not think that this should be used, therefore , In conjunction with the PA

method.

I.- --------~~S—- - 5~~~~ - — --•—---5-- S - S - - 5 5 5 5 5

_ _ _ ~~ 5 5 - S

142 CHAPTER V S

3.5 — Organization of the program

Before presenting the results we give a br ief descrip tion of the programs. AU of

the different methods have been implemented in BLISS-i 1 (15) and all programs have

basically the same following structure. S

Master process~ Computa tional process I:

InitiaLization: read in n, ni, t, k; P(mutex);
f.~ i — 1, ... , k ~~ Reac t all necessary components of X;

Create and start process L; V(rnutex); -

f O r i — 1 ,..., h~~Q repeat
P(complction); EvaLuate all components of subset i;

Output the stat ist ics about the run; Pfrrnj tex); S

Update all components in subset t;
Read all necessary components of X;

V(mutex);
~j~~j (global error <e;
V(comptet ion);

S

S The method impLemented by this program is embedded in the instruction ‘EvaLuate

all components of subset &.
“ From the program each process can be thought of as a

succession of identical cycles; each cycle being composed of an evaluation section folLowed

by a critical section.

The programs for Jacobi ’s method and for the PA method are slightly different but

-
follow basically the same structure.

4 — The results of the experiments

We report, in this section, the measurements obtained by running on~ C.mmp the
-

various iterative methods that we have introduced in Section 3. We discuss, in -

SectIon 4.1, the different parameters of the program and the decisions leading lp their

choices. In Section 4.2, we present the locaL behavior of the processes within each cytle,

and, in Section 4.3, we present the global results and compare the different methods.

S i
-

- -

— _S.

_

55- 5~~~~~~~ 5 5 5 5 _ _ _
5 ~~~~~~~~~ S S 5 - 5 - —

EXPERIMENTAL RESULTS 143

4.1 — Choice of the param eters

AU of the experiments have been run under the same conditions, and, before

presenting the results of the measurements , we brief Ly discuss below the choices we have

made for the various parameters of our problem. -

4.1.1 — Siz. of the system

We want to choose the size of the system to be solved Ci. e., to choose a and in)

large enough so that the problem be realistic , but, on the other hand, since we do not

want to deal here with problems of memory addressing, we have limited ourselves to a

size that permits alt of the data to be directly addressable. The main restriction , in this

case , comes from the fact that the ~izo of the data local to a computational process has to

fit into the stack of local variables (contained in page 0), I. e., in about 31< words. With

the AJ method, for instance , each process has to have the values of the components it is

updating and a copy of the values of the components used in the evaluation, as of the

starting time of the computation. There may be up to 2n,n elements each of which fits into

two words of memory. Therefore nm has to be chosen below 700. The number 504 has
-

been chosen (mainly because It is divisible by 1, 2, 3, 4, 6, 7, 8, 9 ... and aLmost by 5 too!),
S

and a and in have been chosen to be 21 and 24, respectively, in the series of experiments

repor ted hero.

4.1.2 - Error of th. solution vector

An experiment is stopped when some norm of the error vector Is smatter , in

magnitude, than a given admissible error c. (The norm we have chosen is II.HO,I the

maximum over alt components.) Since we want to be able to compare the experimentaL

results with the resuLts of a theoretical analysis, we want to choose e small enough so that

asymptotic rates of convergence can be estimated through experimenta l results. For our

purposes, the asymptotic rate of convergence for a method m can be defIned as:

—
i
L.
~~
,

— ~ 8n
U~l~ (4.1)

S S - -

- __

144 CHAPTER V

whore is the error vector after the i-tb sub-iter a tion (a sub-iteration corresponds to an

evaluation by one process so that /t sub-iterations are carried out simultaneousLy in a

paralle l implementation with k processes), and where is the mean number of times each

component has been evalu~ited up to the i-tb sub-iteration. For alt the implementations

we have considered the components are divided into k equal subsets , and ni Is simply

given by n~ — i /k . (The norm in equation (4 .1) is the same norm as the one used in the

termination criterion.) This definition of asymptotic rate of convergence corresponds to

the classical definition and, in particular , we have 1Q(Jacobt) — -tog p(B).

The interpretation of the rate of convergence is that 1/ f ~(Tf1) Is an asymp totic

measure of the average number of times each component has to be updated In order to

decrease the norm of the error vector by a factor of 10 (if the log of equation (4.1) is base

10) . In particular , when c te nds to 0, the average number of itera tions (per component)

required to solve the system with an error Less than c grows Linearly like -Log(c)/~ (fl?).

In Figure 4.1 we have plotted the number , N(c), of iterations required to solve our system

(a 21, in 24) wit hin an error c, versus -Log(c) for both the AJ and the AGS methods

when k — 1 and 3 processes are used. This shows clearly that the asymptotic rate of

convergence is reached very fas t since, when -Log(c) > 0.25 Ci. e., £ < 0.56), N () var ies

linearly with -log(c) . -

- When h — I the AJ and AGS methods reduce to Jacobi ’s and Gauss- Seidei s methods ,

respec tively, and the slopes obtained from Figure 4.1 can be compared to the theoretical -

va lues (-log pW)1 1 and [-log p (C)] 1, respec tively, where:

p W) — (cos
~~~~~~ 

• cos ?~~
-1
~
) 0.99097 , 

-

p(.C) — (pW)]2 — 0.98202 .

In TabLe 4.1, we report the observed and theoretical number of IteratIons required to

asymptotically divide the norm of the error vector by a factor of 10.



----—--5-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ - - - 5-----—

EXPERIMENTAL RESULTS 145

N(t)

450 - AJ (k — 3)
S AJ (k — 1)

-

400

350 -

300 -
5 -

250 AGS (k — 3)

:~~~:

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AGS (k- i)

100 -

50 - 

-

0 I I I I I I I I I I I —l-
- 

0 0.25 0.5 0.75 1 1.25 1.5 1.75

S - tog(c)

Figure 4.1 - Number of iterations required with the AJ and AGS methods . -

AJ AGS

k — I  k — 3  k — i  k — 3

Observed: 254 257 127 143

Theoretical: 254.79 - 127.89 -

Table 4.1 - ComparIson of the rates of convergence for the AJ and AGS methods

In all the experiments reported below, the termination criterion uses t — 0.1 for the

value of the admissible error. This value corresponds to a reasonabLe execution time, in -

the order of 3 mm ., and allows us to base our measurements on more experiments.

— - - S  
~~~ SS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ s s~~~~~~~~~~~~~~~~~~~ S S5 -~~~


.146 - CHAPTER V
-

S

• 4.1.3 - Other parameters

Since we are mainly Interested in comparing the differen t methods with respect to

their rates of convergence toward the solution vector , we simply set the displacement

vector b to be 0 so that the solution is known to be ~ — 0. As the system we are studying

is Linear , we do not loose any generalit y, but this w iLL result in a simpler test for the
• termination criterion since , in t his case , the curren t iterate is exactly the error vector.

Lastly, in all the experiments , the initial approximation has been chosen as the vector with

alL components equal to 1.

4.2 — Local behavior of the program - S

We present , in this section, the Local behavior of the computational processes by

Looking at the time they spend during each cycle in the evaluation sec tion and (except

with the PA method) in the critical section of the program. In Section 4.2.1, we present

the results of the measurements , and, in Section 4.2.2, we give an interpretation.

4.2.1 — Results of the moasuremonts

S

The results presented in this section have been derived from the information given

by the tracer David Lamb implemented on C.mmp. (Among many other things, eac h P and V

operation is reported by the tracer along with the time instant when it was executed , the

process executing the operation and the processor carrying out the execution.) Since the

code of the programs for the different methods are identical (with respect to these
S measurements) we Limited ourseLves to take measurements on the AJ method. Four

experiments have been run with Ic — 1, 3, 6, and 17 processes. In alt of them p — 7

S processors were available: 5 PDP-11/20 and 2 PDP-11/40. The histograms for the

distribution of the time spent in the evaluation section as well as the distribution of the

time spent In the critic al section , for each of the experiments , are plotted In Figures 4.2

through 4.9. (In the case of the critical section, the results presented in these figures aLso
S include, when Ic > 1, the possible waiting time before entering the crItical section.)

--

EXPERIMENTAL RESULTS 147

Frequency 7.

40

30 -
S

- 20 -

10 -

o -I- ~. r-
(~~~
. ~~. f l.

0 300 600 900 1200 1500 1800

-

S Time (ms.)

•
- Figure 4.2 - Time spent in the evaluation section (Ic — I)

Frequency ‘I.

50 -

40

30

20 -

10

0
•

1~0

-

20 30 ~ I
70

Time (ms.)

Figure 4.3 - Time spent In the critical section (Ic — 1)

- - - - 5- - - - -

_ _

148 CHAPTER V -

-

Frequency ‘I

- 1’
r .

0 150 . 300 450 600 750
•

900

Time (ms.)’

S • Figure 4.4 - Time spent In the evaluation section (Ic a 3)
-

- Frequency 7.

S

20 -
•

S

S
j 5 s

S
- 0 I I ‘ ~ I~~

’
~~~~~~1 ‘~~~

-
~ 

~~~~~~~~~~ ‘1— - •  • ~~~~

0 10 20 30 40 50 60
•

- S Time (ms.)

Figure 4.5 - Time spent In the critical section (Ic — 3)

- ~~~

.

_ _

_ _

~~ ~~~~~~~~—
.—‘—- -- S

~~~~~~~~~~ 

_ T_
~~~

__
~~~~~~~~~~~~~~~ S •-5-—-—~~~~~~~



____  - _ _ _ _ _ _ _ _ _ _  - -

S 
EXPERIMENTAL RESULTS 149

• Frequency 7.

10

9

6 -

i-I

4 .  

5 

I .
~~~~ 

r~~~~~~~~~

0 100 200 300 400 500 600

Time (ms.)

Figure 4.6 - Time spent in the evaluation section (k — 6)

Frequency 7.

.12 1
- -

S

6 -

•
0 1~0 2

1
0

-

S

S Time (ms.)

FIgure 4.7 - Time spent in the critical section (Ic — 6)

L S_ - _ _ _ _ _

____________ -
— - -

150 - CHAPTER V

Frequency 7.

a

-

S

I-I-i
S

•

~~~~

. 

- 

- 

: 
S 

- 

S

2 -  151 
1
~Sl

S -
~~~~~~ 

-

0 - I I I I 4
0 50 100 150 200 250 300

Time Cms.)

Figure 4.8 - Time spent in the evaluation section (Ic — 12)

Frequency 7.

-

J_j l~
1
~ •

2

0 ~~~~~ ~~~~~~~~~~~~~ I I-
S

-
.

• 0 50 100 150 200 250 300

• Time (ins.)

-

- FIgure 4.9 - Time spent in the critIcaL section (Ic — 12)

- 5- —S •~~5-S5- ~~S - j5fl5- I •

- -

-

EXPERIMENTAL RESULTS 151

These figures show clearly that two different types of processors are used. When

Ic — 3, for examp le, the distributions have two main peaks (at about 18 ms. and 28 ms. in

Figure 4.5), and, in particuLar 1 we can derive from our results an estImate for the relative

speeds of the PDP-11/20 and the PDP-11/40. The ratio of the speeds is certainLy

probLem dependent but, in our case , I second on a POP-I 1/40 corresponds to about

1.4 seconds on a PDP-1l/20, i. e., the use of a PDP-11/40 instead of a PDP-11/20

corresponds to a gain of about 307. in running time. If we Look more closely, we can see

that each mai n peak Is composed of several subpeahs corresponding to each processor;

two different processors , even of the same type, ac tually have different speeds. This is

particularly evident in Figures 4.2 and 4.3, where the two main peaks correspond to the

executions on each of the 2 POP-11/40. Since it is the policy of Hydra to allocate first
S

the POP-I 1/40 , the third peak in Figure 4.2 does not correspond to to an execution on a

POP—I 1/20 but, In fac t, corresponds to executions on a PDP-1 1/40 which IncLt.~Je some

overhead due to the re-scheduling of a process at the end of a quantum.

• -4.2.2 - An interpietation of the results

The main statistics about the distributions presented In the figures of Section 4.2.1

are coLlected in TabLe 4.2 (a) and (c) for the evaluation section and the criticaL section
S

•

(including the possible waiting time), respectively, in addition, Table 4.2 (b) contains the

same statistics concerning the critical section by itself , exc luding any wait ing time. (Alt
• timings in the table are expressed in ma.) S

In Figures 4.10, 4.11 and 4.12, we have plotted the variations of the average

execution times for the two sections of the program as they can be found In

Table 4.2 (a), (b) and Cc), respectively. The results of Figure 4.11 represent strictly the

execution time of the critical section, white the timings presented in Figure 4.12 also

S contain the possible waiting time before entering the critical sectIon.

- - - S - - - S S - ---—~~~~~—Srn—-~~~~~~~

-
~~~~~~~~~~~~~~~ 

5- —-—-5------- -5 ~-S•-S—-- ,—— -S--—---S-- — — ---- —---- -

152 CHAPTER V

I c — I  k — 3  k — 6  k — 1 2

Minimum 1123.85 348.30 239.36 100.07
Maximum 1889.60 1524.13 834.97 502.02
Average 1292.72 534.35 423.04 187.86

S Standard dcv. 136.5 1 118.88 84.23 47.10
Coeff . of var. 0.106 0.222 0.199 0.251

- (a) Evaluation section

k — I  k — 3  k . 6  k — ~~2

S Minimum 43.49 16.82 13.59 7.44 
• 

•
S , Maximum 174.82 186.02 170.96 21.91 -

Average - 47.75 23.96 21.65 11.57
S Standard dcv. 13.91 11.71 7.67 2.77

Coeff. of var. 0.291 0.488 0.354 0.240

(b) Critical section (without the blocking) -

S k 1  k~~ 3 l c — 6  k a I 2

Minimum 43.49 16.82 13.59 7.44 -

Maximum 174.82 199.64 196.97 431.65
Average 47.75 25.63 27.81 117.04
Standard dcv. 13.91 13.90 17.67 48.35
Coeff. of var. 

- 0.291 0.542 0.635 0.273

(c) Critical section (including the blocking)

S Table 4.2 - Statistics about the two sections of the program . 
S

Time (ms.) 
.

- 

_ _ _ _ _ _

- 

- S

I 

S Number of processes
S Figure 4.10 - Mean tIme spent In the evaluation section

______________________  — 
---~~~~~~ - - S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- EXPERIMENTAL RESULTS 
- 

153

Time (ms.)

40 

- 

- 

S

. 

-

20 -

10 
S

0 -  I I I I I I I I I —l
0 1 2 3 4 S 6 7 8 9 10 11 12 

-

Number of processes

Figure 4.11 - Mean time spent in the critical section (waiting time excluded) -

Time (ms.) 
S

200

S 
, 

S 

Number of processes

Figure 4.12 - Mean time spent in the critical section (waiting tIme Included) S

We note that , white a process does not suffer a very Important delay (before the

- critIcal section) in the parallel Implementation with k — 3 and 6 processes, Figure 4.12

shows a very sharp increase In the waiting time for Ic — 12. In fact , further results

obtained by tracing the execution of the program showed that, In the parallel

implementation w th  12 processes, the queue to the critical sectIon contained almost

S - S - S - S



- -5-  - - S - -- - -- 5 - 5 - -  — S

154 CHAPTER V 
-

always 6 or more processes (not counting the process executing the crIticaL sectIon). ThIs

means that there has almost always been at least one processor idle among the 7

processors available. The fact that the processes are never competing for a processor

can, therefore , exp lain the steady clncrear.e of the execution times presented • in

Figures 4.10 and 4.11. In both cases a first approximation can be obtained in the form

a • ~
. b, for some appropriate constants ‘~~~ and 6. However, since It wilt be useful in

S 
- - 

Section 5, we deveLop below a closer approximation which takes into account the policy of

Hydra to allocate first a PDP-11/40 (L. e., a faster pr ocessor).

- Let pj  and P2 be the number of PDP-11/20 and PDP-11/40 available, respectiveLy;-

and Let 
~ 

— P2• We denote by p the relative speeds of the two types of processors;

exper imental evidence, from the results of Section 4.2.1, showed that p — 1.4 corresponds

to a reasonable estimate in the particular case of our problem. Consider a program which

requires an average time x when it is executed on a PDP-I 1/40, and let ‘Ic be the average

execution time of the same program when it is executed in an environment with Ic

processes (eac h process is assumed to receive its fair share of computing power). Firstly,

when Ic � P2’ a POP-I 1/40 is allocated to the process , and its actual execution time is,

therefore , simply given by: - -

‘Ic — z if Ic � 
~2 ’ 

. (4.2)

Ncxt , assume that p2 < Ic � p — p
~ 

4 p2. In this case , the process is allocated a POP—i 1/40

the fraction of the time, and it is allocated a POP-11/20 the fraction 
~~

_k?!
~
Z of the time.

This means that I unit of actual execution time contributes to 
~ ~~~~~~~~~~ ~~ units of 

I

• (POP-I 1/40) time toward the total time x. We then have: S

‘Ic - 

Ic - P~~ ~‘~2 
x if p2 < Ic 

~~ 
p - • P2~ 

(4.3)

Lastly, U Ic > p — p1 • P2’ let us assume , as it is evidenced in the experiments, that the

processes are not In competition for a processor (I. e., at least k-p processes are always

waiting for entering the critical section). With the same argument as above, we find, In

this case , that:
- p.P

- ‘Ic — - X If Ic > ~ - pl -~ P2• (4.4)
Pi •

- S 

-- 5 -— — —  - -~~~



F- 
-

~~~~~~
—- - -—

~~~~~~~ 

—==5-- - 5 5~~~~~~~~~~~~~~ 5-~~~ 5 5~~~~~~~~~~~~~~ - - 
S 

~~~~~~~~~~~~~~~~~~~~~~

S
S EXPERIMENTAL RESULTS 155

S
- This shows that, in eac h of the three cases , the average execution tIme ‘Ic can be

-

expressed as: -

‘Ic —

where the factor Is deduced from equations (4.2), (4.3) and (4.4).

We can now find an approximation in the form (a • b ~~
.)

~k for the average execution

times of the evaluation section and of the critical section in the implementation with Ic
S

processes (denoted by rIc and ck, respect ively). We determine the values a and b using a

Least square approximation to the values in Table 4.2 (a) and (b). We find that:

— (82.89 • 1207.73
~~~ ?‘k ’  (4.5)

Ck — (7.972 • 39.907 
~~) ~k ’  (4.6)

Using p 1 — 5 and — 5 (and p — 1.4) in the evaluation of the factor 
~~ we find that , for

Ic — 1, 3, 6 and 12, the values obtained from equations (4.5) and (4.6) are consistently

within 157. of the experimental results. In addition, these two equations provide us with

some estimates for 
~k and ck which are a useful complement to the values of Table 4.2, for

other values of Ic.

4.3 — Global results 
-

I

In this section, we report the global measurements of the parallel implementations S

with Ic processes for the iterative methods that we have presented in Section 3. Jacobi’s,

the AJ and the AGS methods have been implemented on C.mmp with a configuration of

— 6 processors (4 POP-I 1/20 and 2 POP-I 1/40), and all the experiments have been run

with Ic — 1, 2, 3, 4, 6, 7, 8, 9, 12 and 14 processes. The PA method has onty been

implemented Later , by Raskin (48], on Cm* [59] (along with the first three methods); and

the results we present below for this method are the results of his measurements. A

comparison between the results of C.inrnp and of Cm’ for the three other methods showed

a complete agreement, and we have normalized the timings of the PA method so that it

S 
coincides with those of the AGS method for the implementation with I process (since, in

—- 5- 5---- - - - s s s_~~~S~~~~~~~ S ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - —-—-— - - -S-S ~ -__• 5- S SSS _~ -S

156 CHAPTER V

this case , both methods reduce to Gauss -SeicleVs method). The configuration of Cm5

included 8 processors (LSI-1l) at the lime of the experiments , and the PA method has been

implemented with Ic — 1, 2, 3, 4, 6, 7 and 8 processes. (The results corresponding to 7 and

8 processes cannot be compared with the results obtained on C.mmp, and they are

Indicated with dashed lines in all the figures.)

In Figure 4.13, we present the total running times for the various methods as a

function of the number of processes used in the parallel implementation.

S Time (sec.)

400

350

S 

- 300 •

. 

250

~~~~~~~~~~~~~~~~ 

Jacobi

100 \ ~~~~~~~~~~~~
—. AGS

5 0 -

- 0 I I I I I I I I I I I I I I I—
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-
Number of processes

Figure 4.13 - Total execution times with Jacobi s, the AJ, the AGS and the PA methods

This direct comparison is somewhat “unfair ” vis ~ vis Jacobi ’s and the AJ methods
S

since we know that , for the particular problem we are considering, Gauss-Seidet ’s method

Is already twice as fast as JacobVs method. In Figure 4.14, we have reported the relative
-

S
—5-- - - - -— - — 5--

—5- —5-5------- 5--~—--- --- — S—5--
~-—- —_- - -5- -- 5-,’

F—

EXPERIMENTAl.. RESULTS
-

157

varia tion of the running time (I. e., t i / t Ic where tIc is the running time when Ic processes

are used). This Is aLso a measure of the -peed-up achieved in using Ic processes.

Speed-up ratio -

6 -

,PA
- 5 ,

4 .

-

S ‘
. Jacobi

0 I 1 . 1 —I I I I I t I I I I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of processes

Figure 4.14 - Relative improvements with Jacobi ’s, the AJ, the AGS and the PA methods

F Figure 4.14 shows clearly the eff ects of using the different fornis of synchronization

in a paralleL algorithm. Due to the full synchronization of all processes at each step of

the Iteration, Jacobi ’s method exhibits the worst behavior of alt four methods, while the

PA method, which uses no synchronization at alt, achieves an almost optimal speed-up.

Although the AJ and AGS methods are very similar in nature, Figure 4.14 shows that
S the speed-up ratios achieved by the two methods differ substantially. This difference is

S mainly due to the fact that the total number of iterations Increases onty slightly with the

number of processes for the AJ method, while the increase Is more important for the AGS

- S S S5- 5-5-_~~~~~~~S- 5-5-5-
— — —5- — 55— —5- —5-

- ~~~ S S 5-5- S~~~~~ 5S5-5 _~~ 5-S55 S S S ~~~

158 CHAPTER V S

method. This is illustrated in Figure 4.15 where we have plotted the number , N(Ic), of

Iterations required to solve our system u”~ing Ic processes as a function of k.

N(/c)

350 ~~~~~~~~~~~~ _ _~~~~~—
-—

~~~~~ AJ

300 
~~~~~~~~~~~~ S S S .~~~S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

__

S

____ Jacobi

250
_ ,

~~~~~~~..,... _ —‘ AGS

200

S 
.~~~~~~~~~~~ — -- — ‘  •— -- - -. PA

15: ~ 

I 4 
1
1
2 13 I~4 15

Number of processes: Ic

Figure 4.15 - Number of iterations required to solve the system

S 
, Figure 4.15 shows that for the AJ, AGS and PA methods N(k ) increases regularly S

S (and aLmost linearly) with Ic. This difference with respect to the sequential method

(Jacobi ’s or Gauss-SeideL’s method) is one of the factors that determine the totaL running
- time of the various methods , but, obviously, the presence (or absence) of synchronization

is another importa’~t factor. When the number of processes Inc rease s, a critical section,

or instance, acts as a bottleneck , which tends to decrease the parallelism and increase the

total execution time. In the next section, we proceed to the evaluation of this fac tor. 
S

5 — On the analysis of algorithms for asynchronous multiprocessors , -

We want to illustrate in this section that the analysis of parallel algorithms for

S asynchronous multiprocessors can benefit from techniques developed In the f ramework of

other general theories. We show that some simple results of order statistics (see , for



~~~~~~~~~~~ — - .

EXPERIMENTAL RESULTS 159

examp Le, [14)) and of queueing theory (see , f or example, [33)) can be used effectIveLy in

the analysis of algorithms for mu(tiprocer~ors.

As examples of multiprocessors algorithms , we use in this section some of the

asynchronous iterative methods described in Section 3. We use the paralLeL

implementation of Jacobi ’s method (Section 3.1) as a typical example of a synchronized
S

algorithm ,, and we use the AJ and AGS methods (Section 3.2 and 3.3) as typicaL examples of

S a.synclzronous nlgorithnz.s In which communication takes place through the use of a critical

section.

The evaluation of the performance of an asynchronous iteration depends principally

on two main factors. The number of iteralion steps required to solve the system of

equations within some given admissible error c Is one of the important factors which

determine the global running time of an iterative method. This number can be derived

through the tools of numerical analysis , and we w iLl not be concerned with its evaluation

in this section We wilt simply use the empirical results observed in the experiments

themseLves. (Upper bounds on the number of iteration steps for various asynchronous

Iterative methods have been derived in Section 6 of Chapter III. In the case of Jacobi ’s

me thod, the exact number of iterations can, in fact , be derived from the theory.) The

(average) t ime for each process to execute a complete cycle (I. e., from the Instant it starts

an eva luation to the instant it starts the next evaluation) is another important factor

contributing to the global runrnng time. This factor is evaluated in the present section.

We assume throughout that the execution times for the evaluation section by alL Ic

processes are Independent Identically distributed random variables distributed according

to the probability distribution TIc’ associated with the density function ‘Ic’ Let rIc and

denote their mean and variance , respective ly. Similarly, we assume that the execution S

times for the critical section by alt Ic processes are independent Identically dtstrlbuted

random variables distributed according to the probability distribution 6k’ associated with

the density function SIc’ Let ck denote their mean. Estimates for the quantities
~Ic and cIc

- — -- - - 5 - -- - -~~~~~~

S - S - S

160 CHAPTER V

are given in equations (4.5) and (4.G)~ an estimate for the quantIty o~ can be derived

simiLar ly. 5

In Section 5.1, we consider Jacobi ’s method and, in Section 5.2, the AJ and AGS

methods. The results derwed in these two sections are compared, In Section 5.3, wi th the

exper imental results. S

5.1 — Synchronized algorithms

It follows from our parallel implementation of Jacobi ’s method that each process

cooperating in the evaluation of an iterate has the cyclic behavior depicted in the diagram

of Figure 5.1.

Evaluation Wa iting Waiting Critical
-
,

I-
section section -

section section

part 1 part 2

Cycle

Figure 5.1 - Cyclic pattern of a process with Jacobi ’s method

5 The first waiting section is due to the full synchronization of all processes at the end of

the evaluation of an iterate and before the evaluation of the next Iterate. The second

waiting section is simply due to the presence of the critical section used for updating and

S reading the values of the components of the current iterate. (A process might have to wait

if another process is aLready executing the critical section.) The average time tk to S

execute a complete cycle In the paréltet implementation wIth Ic processes can, therefore,

be decomposed as:

tIc — ak .b k , -
- (5.1)

where and are the average execution times for the first and second parts of the

S cycle respectively.

r
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - -

- 
EXPERIMENTAL RESULTS ‘ 

. 161

Let us first consider the quantity °k’ It corresponds to the largest finishing time of

the evaluation section by the Ic processcs. When k � p, therefore , 
~k is simply given by

the average of the maximum of Ic independent random variables distributed according to

the same probability distribution and we have (see, for example , [14, p. 46]):

— .f ° t.d[r ~(t) J — j~;
co 

[1 - Fk ,)] .dt , (5.2)

where , f or clarity, the index Ic has been dropped from Fk. Let us examine some

S 
probability distributions F’k for which analytical results can be derived from

equation (5.2).

(I) Exponential distribution with parameter ~ — 4. Using simple integral

calculus, equation (5.2) yieLds: 
-

S — J~
° [1 - (I _ e ”Pt) k J .dt — j

~ 
j

1 
~~~~~ da

S
- J~/

1 Z tz~’1 .du - I Z
~~~ 0 k~’�k ~

a 
~~ 

H~ - Hk.r k ,

where Hk is the k-th harmonic number.

(ii) Uniform distribution over the , interval [rk-o.k’/~ ~k 4a-k~
/ rl (i. e., with mean rIc

and standard variation a-k). Integration of equation (5.2) yields, in this case

(see , for example, [14, p. 27)):

— 

~k ‘ 

~‘L’ 0 k~ ’~~ 
(5.4)

k+I
Sim~L~r results can be obtained for other probability distributions 

~~ 
but unfortunately

they usually cannot be expressed so easily. For most common probability distributions

Fk, however , 4k is shown to be in the form a~ — ~ ~~~~ (as is the case In

S equation (5.4), for examp Le), where the coefficient 
~k (which deponds on FIc ) can be found

in many numerical tables. (See, for example, (14, p.S0j for a short table Listing 
~k In the

case of the normal and the uniform distributions.) -

When k > p, the quantity a,~ cannot be obtained directLy from equation (5.2) since, as

long as i processes, with p < S �k, have not completed their evaluation sectIons , they are

in competition for the p processors available, and they are, therefore, stowed down by the

S S 

‘



- —
~~~~~~~~~~~~~ --~~~~~~ --~~~-- -  

-~~ --- - — - --— - ~~ — — - - -= -~~~~~~~~

162 CHAPTER V

factor ~~. Let x~, for 1 � S � k , be - the i-tb smaLlest execution time required by the Ic

- - processes. The first , process to complete its evaluation section has to share the p

processors with the remaining Ic-i processes during its entire execution. It finis,hes

therefore after a time y~ x-j. Similarly, the second process to complete Its evaluation

section, finishes after a time
~2 a yj + ~~ (x 1-x 2). The last process to complete its

evaluation section finishes after a lime: S

ak — ~~~~~~

~ ‘2 - ~~~~~ ~ ic-p - ‘~k-p-1~
+ (X~g - x k_ pL (5.5)

S

The quantities x~, for I � S � Ic, can be evaluated directly from the distribution function Fk,

and we have (see, for example, [14, p. 25)):

Ic ~~ ~~ .
~~~~°‘ t F”~ (t) [1— F ( t) ] 1” dF’(t) , (5.6)

w here, for cLar ity, the index Ic has been dropped from Fk. Again, x5 can be evaluated .

explicitly for some distribution functions Fk. In particular , we have the following resuLts.

(I.) Exponential distribution with parameter p — 4. Integrating equation (5.6) by

parts and soLving a recurrence re lation, we find that: 
S

— 
1’ k-i4’

~~r th  ~ 
— ( H ,~ 

- Hk_ 1 1

where H0 is def ined to be 0. We deduce immediateLy from equation (5.5) that:

+ H~ ] rIc . (~~ •~~)

(it) un iform distribution over the interval (
~k~

a-k 13” ~k°’k”~J’ From [14, p. 27]),

we obtain: S S

— - k ’2i ~J a-k ~~~~~~ 
S 

-

S k+1
S We deduce Immediately from equation (5.5) that, In this case:

- e’k °‘k ‘~ 3’~ S 

(5.8)

Again, I or other probability distributions Fk, equation (5.6) can always be Integrated

S numericalLy, and, for most probability distributions, numerical tables are available (see,

for exampLe, [60) for the normal distribution).

Let us now consider the quantity bk of equation (5.1). Since all processes wIll try

to access the critical section at the same time (when (be Last process completes its

evaluation), bk (S simply given by:

b,~ — 

~~~ ~
2
~k ~~~~~~ +kC k) — ~j~

t Ck -
.

-

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
-

- 55 



—. -~~~~~
- -  _ _

S EXPERIMENTAL RESULTS 
- 

163

S 

Table 5.1 summarizes the results of this sect ion and presents , for Ic — 1, 3, 6 and 12,

the average time t Ic for a compleie cycle when the distribution Fk is exponential, normaL

and uniform. In these three cases , the parameters rIc and are taken directly from the

S estimates derived in Section 4.2,2; °k has been estimated in the same way , These results

are ompare.d to the results derived from the experiments presented In Section 4.3. (Alt

timings in the table are given in ms.)

I c — I  k . 3  k — 6  k — 1 2

F ExponentiaL: 1338.50 1087.99 923.27 872.88

NormaL: 1338.50 694.90 5 13.73 604.39
- Uniform: 1338.50 696.74 511.37 589.70

Experimental: 1327.47 700.20 515.96 629.42

S TabLe 5.1 - The average execution time for a complete cycle with Jacobi ’s method

We notice that the exponential distribution certainly does not predict adequately the
S 

exporirnental results. A reason 5 for this discrepancy is that the exponential distribution

does not take into account the standard deviation o.k, which is a direct measure of the

fluctuations in the execution times of the evaluation section. These fluctuations have an

important role in the case of Jacobi ’s method since the processes (in the first part of their

cycles) synchronize themselves on the Largest exec ution time. The results obtained with

the normal and uniform distribution, on the other hand, show a fair agreement with the

exper Imental results; the difference , In this case , is partly due to the fact that the

experiments have not always been run in a consistent manner (for instance, the resuLts

presented in Section 4.2 and 4.3 have not been obtained with the same number of

processors).

5.2 - Asynchronous algorithms -

In the parallel implementations of the AJ and AGS methods, the processes

S.

.55 .- -~~~~ S-



- - S S SS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 

164 CHAPTER V

- 

- 
cooperating In the evaluation of an iterate have the cyclic behavior depicted In Figure 5.2.

In this case , the waiting section is only due to the presence of the critical section.

Evaluation Waiting Critical
-l -l

section section section

0- 
-t

S Cycle

Figure 5.2 - Cyclic pattern of a process with the AJ and AGS methods

The paraLlel implementation with Ic processes on p processors can be modeled by

the queueing system of Figure 5.3.

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(a) Ic customers in the whole system: our processes;

(b) p servers in system (1): the evaluation sec tion;

(c) I server in system (21: the critical section;

(d) wUb the res triction that at most p servers are
S 

active at the same time in the entire system.

FIgure 5.3 - A queueing system for asynchronous algorithms

This queueing system has been extensively studied in the case Ic — p as a modeL of

time-shared processor [55), (33), when the tw o probability distributions 
~k and CIc are

-exponentIal. We show that the results can be extended to the case Ic � p.

S 

Let us assume that Fk and are exponential distributions with parameter p —



S ________ S -

EXPERIMENTAL RESULTS 
- - - 

165

and X lick, respec tively. For 1- — 0, 1, ... , k , Let q5 be the steady slate probability that S

customers be in system U) of Figure 5.3 (i. e., i processes are executing their evaluation

sec tions, white k-i processes are ready to execute the critical section). Let ~r0 denote the

probabiLity that no process be executing (ho critical section, either because alt processes

are wi thin their evaluation sections or , possibly, because no processor i-s allocated to a 
-

process read y to ex ecute the critica l section.

We assume throughout that , if there exists at any time in the entire system S

processes , with 5 >  p, which are not blocked (waiting for another process to comp lete the

cr itical section), each of the S processes receives the same fraction 4 of the computing

power. It follows directly that the probability ~~ is given by:

— + 
p�i~ c-i 

~ q5 . 
5 

(5.9)

Theorem 5.1:. 
5

S 
- S Assume that k 

~ 
p. The average time tIc required to execute a complete cycle is

given by: 
S S

- t k — k cIc / (I ’~
( o) , (5.10)

S where 
~o is the probability that the server of system (2) be idle (I. e., no process is

executing the critical section, although some may be blocked because no processors

are availabLe). If we assume that each process which is not blocked receives an equal S

share of the computing power , the probabilities q•, for S 0, I, ... , Ic, satisfy:

if i r k ,

g’ — (s .I)  (k-I) l 13k-i 
~~ 

if p � i~~k-1 , (5.11)
1_I

p (k 1)t ,3k s  q
~ If 0 s S s p-i .

Proof: ‘ 

-

S t Equations (5.10) and (5.11~ are immediate consequences of simple res~.zLts of
-

~ queue(ng theory. Equation (5.10) follows directly from Little ’s formula (see, f or example,

(33, p.17]) by considering the throughput of system (2). Equation (5.11) also follows

directly from the fact that (under the exponential assumption for both Ph and 0k~ 
the

I 

-

- -  S ~~~~ S~~ S S S ~~~~ S . S~~~~~~~~~~~~~~~~~~~ -.~~



S~ S 5~ 5~ ~~~~~~~~~~~ -- 

166 CHAPTER V

sys tem of Figure 5.3 corresonds to a pure birth-death process (see, for example ,

(33, p.89]). I

The average execution time , tk, for a comple te cycle can now be evaluated from the

results of Theorem 5.1 using equation (5.9) and the fact that:

5.3 — A comparmon with the experimental rasults

S The results of Sections 5.1 and 5.2 provide us with an estimate of the ~verage time

tIc required to execute a complete cycle in the parallel implementation with Ic processes of

JacobVs methoc~ and of the AJ and AGS methods. In order to evaluate the total running 
-

time TIc f or the three methods , we also need some estimate of the number of iterations Nk
required by each of the methods in the parallel implementation with Ic processes. In the

case of Jacobi ’s method, Nk does not depend on k and can be computed analytically from

the spectral radius, pW), of the Jacobi matrix. In the case of the AJ and AGS methods, we

have simply chosen to take directly the number of iterations observed In the experIments

themselves. - S

The totaL running time TIc — Nk.t k now follows immediately. The resulting vaLues

are plotted in Figure 3.3, along with the values observed -from the experiments. (In the

case of Jacobi ’s method, tk is evaluated using for Fk a uniform distribution.)

_ _  - -  S~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~



-____________ _______ 
- - — ---- --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -~ -

EXI’ERIMENTAL RESULTS 167

Time (sec.)

400 •—-• ——- ‘ Experimental results

- -— Theoretical results
350

.

.
300 5 -

250 -

Jacobi
200 - \

\
150 

~~~~~~~~~~~~~ AJ

1 0

—
..---,-

~~~

-— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ G

:~~~

A S

0 I I I I 4 I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 25

Number of processes

Figure 5.4 - Experimental and theoretical running times

We see that the ~theory” matches fair ly well the actual measurements especially in

S the case of most interest , L e., when k � p (cLearly we cannot expect any gain from using

S
more processes than processors). In particular , if we rely on our model, at Least for k �

S we can compute the optimum value for Ic (beyond which no gain is obtained), and we find, -

in particULar , that - S

S 14 for Jacobi ’s method,

a 15 for the AJ method,

12 for the AGS method.

“ -55-

_ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~ -

- - —5 ~~~~~S-~~~~~~~~~ S --—-—---- -

168 - CHAPTER V -

6 - Concluding remarks

The ac tual impLementat ion of parallel algorithms on an asynchronous m ultiprocessor

has proved to be an invaluable heLp for providing us with a better understanding of

para llel algori thms, f or iuustrating some of the notions and concepts associated with these

algorithms , and for suppor ting some of the assu m ptions tha t we have introduced in their

ana lysis. In particular , the figures of Section 4.2.1 show clearly that the execution time of

a program can hardly be regarded as a cons tant , and tha t it is more accurate to consider

this execution time as a random variable distributed according to sonic probability

dist ribution. In view of the histograms presented in Figures 4.2 through 4.9, an Ertang or

a normal distribution ~.eems to be a reasonable approxima tion, In our case , to account for

the fluctuations in the execut ion times of the programs that we have implemented on

C.mmp.

S These experiments also constitute a clear illustration of the advantage of pureLy

S asynchronous algor ithms over synchronized algorithms . To give a quantitative evaluation

of the effects of synchronization, assume that it takes I unit of time for a process to

S
perform one step of the iteration (excluding any overhead). Then, It fo llows from the

resuLts we have presented that, in a parallel implementation with 6 processes , it wilt take

cacti process an average of about 1.05, 1.62 and 2.34 units of time with the PA, the AJ and

Jacobi~s methods, respec tively, to perf orm the same step of the Iteration (for that matter ,

both the AJ and the AGS methods have the same behavior). While the overhead in the PA

method (about 57.) is mainly due to memory contention, the overheads In the AJ and

Jac obi ’s methods measure almost directly the effects of using criticaL sections and of using

full synchronization between the processes , respec tiveLy.

In addition to the experiments reported in this chapter , we have also run some other

exper iments to consider the effect of the introduction of a relaxation facto r in the S

different iterative schemes. These results confirmed exactly the simulation results

obtained by Rosenfeld and presented in [52]. In par ticular , white we are guaranteed of

- -

— - S~~~~—

S

-

EXPERIMENTAL RESULTS 169

the convergence of any async hronous iterations when we use a reLaxation factor c in the

range 0 < 0 < 2/ [l+ p W)] , this Is not so when o � 2/ (i+p (B)] , and divergence was , indeed,

of ten observed (for the problem that we have considered, pt’B) 0.991, thus

2/ (l +p W)] 1.005) . It seems to be very useful to obtain more (experimental or analytical)

results on the effects of u!Jng relaxation factors , since our experiments show that (when S

• convergence is achieved) it is a very promising way to accelerate the iteration.

The results presented in Section 5 are also an interesting aspect of this chapter.

We have shown how simple techniques from order statistics and queueing theory could be
•

• adap ted to the analysis of algorithms for asynchronous multiprocessors. The analysis that

we have developed gives a fa ir account of the experimental results. This is very useful in

practice since it can be used to predict the opt imal decomposition of a problem (i. e., the

optimal number of processes to create in order to, for example , minimize the overaLt S

execution time).

S -

SS - - _______ - —
~
--

~~~~~~~~
-—----- --

I

• Chapter V I - 

5

S Conctusion

- 

1 — A summary of the results and their implications

An evident advantage of using asynchronous multiprocessors , and para llel computers

in general, ra ther than conventionaL uni-processors , is to be able to substantially reduce

the execution time required for solving a problem. Given a particular parallel computer, -

therefore , one of the first goals in designing a parallel algorithm for solving a probLem is

to try to minimize the required execution time on the given machine. This Leads us

S naturally to consider the execution time of a parallel algorithm as one of the primary

measures of the performance of the algorithm.

When we consider a sequential algorithm for solving a given problem, say, sort ing or S

• matrix multiplication, the number of comparisons or the number of scalar multiplications

performed by the algorithm is usually used as the measure of complexity of the algorithm.

In this respect , parallel algorithms for SIMD machines are very similar to sequential

algorithms , in the sen~e that , in this case , the number of parallel instructions (e. g., po.rctllet

comparisons or paralleL multipkcati-oris) is the usual compLexity measure of an algorithm.

The intuitive reason for this cost measure with both sequential algorithms and parallel

algorithms for SIMO machines is that the execution time in these two types of algorithms

is directLy related to ti-me number of instructions executed, and that, therefore, It is

- realistiè to only count those instructions for performance evaluation purposes.

When we are dealing with a parallel aLgorllhm for asynchronous multiprocessors ,

- 

- 

- - 

S 

- 

5 

- 

171 

S S ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ -S--



__________________________________________________________________________________________ ‘1~~

172 - CHAPTER VI

however , its non—de terministic behavior contributes to making Its analysis drastically

dUlerent from the analysis of a sequential algorithm. In particular , there usually does not

see m to exist a direct relation between the (average) execution time of - a paraLleL

algorithm tor multiprocessor and the number of instruclions executed by each of the

S processes. As an illustration , let us exam ine again Jacobi ’s method for solving a linear

system of n equations , and consider a parallel implementation w ith k processes in which

eac h process evaluates q — n/ k components. Let us first choose , as a measure of S

performance I or this implementation , the number of parallel eualuations of a component

(or , within a factor of a, the number of parallel multiplications). The immediate concLusion,

in this case , is that , in order to decrease the cost of the algori thm, we should always

increase the number of processors. Let us now consider directty the total average time Tk

required to perform one step of the iteration with the parallel implementation with h

processes. Assume, as before , that the execu lion times for the evaluation of q components

by all k processes are independent identically random variab les distributed according to

an exponent ial distribution with mean 
~k• Then, due to the synchronization between the

processes , the total average time for one iteration step is given by Tk a Hk.rk, where Hk

S is the h-tb harm onic number. Let us further assume that 
~k Is of the form t

~k a + ~~
- b

(whic h is natural in view of our decomposition). Then, it follows that for large k , the total

aver age time grows with k like a.Lnt’k) and, thus, increases as the number of processes

increases. Therefore , we conclude, in this case , that there exists a (finite) number k of

processes which minimizes the total average time Tk. This Is In contradiction wIth the

conc lusion derived from using the other cost measure.

- - This example shows that the analysis of the efficiency of a parallel algorithm for

asynchronous multiprocessors usually requires techniques very different from those

previously developed in the analysis of sequential algorithms or parallel algorithms for

SIMD machines. We think that one of the main contributions of this thesis is to have

presented and used very diverse techniques applicable In the anatysts of paraLlel

algorithms for asynchronous multiprocessors. These techniques are used in various

-

I- - - ------- -— 
S — -  S~~~~~~ - 



_ _ _  
—~~-- - — 55 -~~~~~

• CONCLUSION 173

applications areas. The analyses developed in Chapter 11 Section 5 and In Chapter IV

Section 7.3.1, for instance , are re lated to sonic analyses commonly found in Operations

Researc h, while the treatment of Section 6 of Chapter II applies some techniques typical of

renewal theory. In Chapter III Sections 6 and 8, the comp lexity of asynchronous iterative

methods is der ived using the tools of numerical analysis (this is obviously due to the

nature of the problem treated in this chapter).

We also have presented in Chapter V Section 5 some of the techniques which seem

to be most typical of the analysIs of parallel algorithms for mutt iprDcessors , namely

S techniques drawn from order statistics and from queueing theory. An important advantage

of this approach is that a large number of resul ts are available from welt developed

theories. Most of these results are directly applicable to the analysis of parallel

algorithms for asynchronous mult iprocessors , and we have shown, in particular , that a very

simple queueing model (initially intended to represent a time -shared uni-processor)

accounts appropriately b r  the behavior of an asynchronous paralleL algorithm in which

the processes communicate among themselves through the use of a critical section. These

results can be used to predk t the optima~ decomposi tion of a problem (i. e., the optimal

number of processes cooperating in the solution of the problem). Some other examples of

the use of queueing theory to the analysis of parallel algorithms for multiprocessors are

also presented in [51) with various applications to sorting algorithms.

A deficiency common to several of the analyses that we have presented is that, in

some cases, strong assumptions must be macfe in order to be able to carry out the analysis

of an algorithm. In Chapter II Section 5 and in Chapter V Section 5.2, for Instance, our

results are base d on the assumption that the various execution times are exponentialLy

distributed. We have observed, however , that whenever we were also able to derive an

analysis of an asynchronous algorithm based on other (more realistic) probability

déstributions (see Chapter II Section 6, for instance), the results did not show any

~b ?? nttal  ,dif lerences with the results derived from the exponential distribution.

-~~~~~~ SS ~~~~~~~~~~~~~~~ —-~~~— 
-



~ -~~~-~~~~~~~~~ - 

174- CHAPTER VI

Moreover , the analy tical results derived in Chapter V Section 5.3 are in excellent

agreement with the experi m ental results that we have presented in Chapter V. Therefore ,

it seems that , although the exponential distribution is not necessar ily a very realistic

assump tion for the distribution of the execution times , it stiLL provides us with useful

results for asynchronous algorithms. In the case of synchronized algori thms (see

Chapter V Section 5.1), however , analytical results obtained with the exponential 
-

dis tribUtion do not show an exce llent agreement with the experimental results , whereas a

closer approx ima tion is achieved w ith the normal and the uniform distributions. A reason

for this discrepancy is that the fluctuations are measured directly by the standard

deviation of the probability distribution and this cannot be captured by the exponential

distribution (for which the standard deviation is the same as the mean). 
-

Another very important aspect of the thesis is to have presented and illustrated

some of the notions and concepts unique in the design of parallel algorithms for

async hronous multiprocessors. The algorithm proposed in Chapter II, for examp le,

illustrates an a priori very counter-intuitive idea that the execution of a purely sequential S

program can be sped-up on an asynchronous multiprocessor without introducing any

para llelism within the program itself. The acceleration is achieved by decomposing the

program into a succession of tasks (executed seriaLly), and by taking advantage of the

fluctuations in the execution times of the tasks. These fLuctuat ions In computing times

represent a dimension unique in the design of paraLlel algorithms for asynchronous

multiprocessors. Their consequences are twofold. A negative aspect is evidenced with

the example of Jacobi ’s metho d presented in the introductory chapter; the net effect , in 
-

this case , is to create a substantial overhead due to the use of a full synchronization of

the processes. The algorithm of Chapter II, on the other hand, demons trates that the

f luctuations in the computing times can actually be used to accelerate the execution of a

program. Although we do not feet that the algorithm in this chapter should be used

directly as (I ts presented , we think that the idea embedded Into the algorithm can be used

together with other considerations , such as reliability, in the constructi on of asynchronous S



-_ ~~~~~
---- --

~~~
-- ~~~~~-~~~~— -—-———- _~~ -

CONCLUSION 175

algorithms. Probably the most important aspect of the algorithm presented in Chapter II is

that it illustrates the fact that innovations are required for the design of paralleL

algori thms for asynchronous multiprocessors. -

TI-me experimenta l results presented in Chapter V are fundamentaL In the thesis.

They lend us insight into the behavior of para llel programs executed on an asynchronous

multiprocessor; and, with a better understanding of their behavior , we can expect to be

able to design better parallel algorithms for multiprocesso rs. In addition, they have been

particularly useful in validating some of the assu,nptions that we have n-made in our

ana lyses. These experimenta l results are important in another practical aspect , name ly,

S they provide us with a quantitative comparison of the different uses of synchronization.

The results that we have mentioned so far contribute directly toward the general

goal of the thesis: design and anal ys is of paralleL algorithms for asynchronous

multiprocessors. Some of the results of the thesis seem to be of theoretical and practical

impor tanc e in their own rights.

In Chapter III, for instance , we have introduced the cLass of asynchronous iterntive

methods to remove the need f or synchronization in the implementation of iterative methods

on a multiprocessor. We think that the results presented in this chapter are a contribution

to the area of Iterative methods , and, in par ticular , they prov ide son-me extensions and
-

genera lizations of previously published resu lts (11), (41), [42], (43], [50]. Theorem 4.1,

for example , extends the convergence results obtained by Chazan and Miranker for chaot ic

iterations (11], by relaxing a technical condition that they had introduced; furth~rmore ,

our results also provide a generalization to non-linear operators. The results of

Section 5, on the class of asynchronous i-tern ti-ye methods with memory, also generalizes

some of the resuLts obtained by Miettou (42).

Chapter IV contains some important results concerning the ~~~~~~~ pruning algorithm.

We have shown In the first part of this chapter that the branching factor of the

‘ 5 --- 5 - - - - - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ - -

176 CHAPTER VI

~~~~~~ pruning algorithm in a uniform game tree of degree n is O(n/tn n), when alt bottom

values are assigned incieponcient identically distributed random variables. This confirms a

claim by Knuth and Moore [35] that deep cut-of fs only have a second order effect on the

behavior of the algorithm. The resul ts of the second part constitute the main contribution

of Chapter IV. We have proposed in this part an asynchronous parallel Implementation of

the ~~-g pruning algor ithm. Our analysis of the paralle l implementation with k processes 
S

shows , rather ~urprtsing ly, that the speed-up is larger than k. This implies that the

(sequential) a -fl pruning algorithm is not optimal and can be substantially improved upon.

This particular result , which has been obtained very indirectly in the thesis, might find S

applications in the area of Artificia l Intelligence. -

• 2 — Some topics for future research

We cer tainly do not believe that we have covered in this thesis every possible - 
S

aspec t of the design and the analysis of algorithms for asynchronous multiprocessors.

Clearly, much research remains to be done in this area , and this section mentions several

topics for future research. -

We think tha t the thesis has clearly illustrated an important characteristic of

algorithms for multiprocessors , name ly, the a priori unpredictable behavior in their

execu tion. This characteristic , theref ore , makes it an absolute requirement to consider

very carefully the correctness of parallel algorithms for multiprocessors , and researc h in

this area would certainly be very useful. We are (personally) convinced that every

algorithm prQposed in this thesis performs correctly, and we have also given (we hope)

- 
- convincing arguments for their correctness. However , In each case , the proof of

correctness is based on techniques which are , usually, only adequate to the problem at

• hand. A formal (and genera l) theory would certainly be a very useful tool for the design

of al gorithms for multiprocessors.

Probably, the greatest emphasis of the thesis has been placed on the analysis of

- -— -~~- - - - S~~~~



Fr -- -. -  
- - -  —- 

S

CONCLUSION 177

parallel algorithms f or asynchronous multiprocessors , and we have presented (and used)

diverse Lechniques which appear to be applicable to numerous problems. . Those

techniques have proved to be effective to the al~or ithms presented, but we think that n-most

of them could still be improved upon, in par ticular with regard to the generality of their

app lications. Possible generalizations in this area would include, for instance,, the

re Laxation of some of the assumptions used in the various ~anatyses that we have

presented. The execut ion time of an algorithm has been regarded in most of the thesis as

the primary measure of complexity of the algorithm. White this measure is, in fac t, of

primary importanc e in real time applications , other complexity measures should also be

considered. Processor utilization, f or example , would be another meaning fuL measure of

performance , particular ly if an asynchronous multiprocessor is used in a multi—user

environment. In this case, it would also be of interest to consider the possibiLity of

increasing the processor utilization by multiprogramming several programs (for example ,

several instances of ti-me same paralle l algorithm).

The experiments presented in Chapter V have proved to be an invaluable toot. In

generaL , direc t experimentation on an asynchronous multiprocessor can be very usefuL

especially when it is difficult to derive any analytical results. In particular , it wouLd be
S very interesting to perform more experimen ts with asynchronous iterations , for example ,

to consider the effec ts of using a relaxation factor. Other experiments could also be

performed to evaluate some of the adaptatwe asynchronous iteratio ns described in

Section 3.4.2 of Chapter V.

The parallel implementat ion that we have proposed for the ~-f3 pruning algorithm

appears to be very efficient when lew processes are used, but the maximum speed-up

achievable with this method Is typically limited to 5 or 6 even with an infinity of

processes. It does not seem that a direct adaptation of the s~-f3 pruning algorithm into a

parallel algorithm is the best approach to follow , particularly because It Is based on a

depth first search, which is inherently sequential. A better approach would probably be 
-

- ~ --



-- -.~~~---- S~~~-~~~ S

178 CHAPTER VI

to consider a game tree searching algorithm based on a best first search along with a

preliminary evaluation of (he internal nodes.

Lastly, we view this thesis as a first slep towards a systemat ic study of the issues
- 

raised by the design and the analysis of algorith ms for asynchronous multiprocessors. 
-

‘

4 . - 

- - -



— 5 — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S

S

- -
Bibliography -

(1] Anderson, J. P., Hoffman , S. A., Shifman, .1., and Will iams, R. J., 0825 - A multiple
- computer system for command and control, Proceedings of the AF IPS 1962 FaU Joint

Computer Conference , VoL. 22, 1962 , pp. 86-96.

[2] Ancller, S., Synchronization primitives and the verification of concurrent programs,
Carnegie-Mellon UniversIty, Computer Science Department Report, May 1977.

(3] Barak , A. H., and Downey, P. .J., Asynchronous paralle l execution of a chain of tasks
wi th interrupts, The Pennsylvania State University, Computer Science Department
Report , December 1977.

(4] Barak , A. B., and Downey, P. J., Using task duplication to reduce finishing t ime, The
Pennsylvania State University, Computer Science Department Report , February 1978. .

-

(5) Barnes, G. H., Richard, M. B., Kato , M., Kuck , 0. J., Stotnick , D. 1., and Stokes , R. A., The
ILLIAC IV computer , IEEE Transactions on Computers , Vol. C-17, No. 8, August 1968,
pp. 746-757.

(6] Baudet , G. M., Asynchronous iterative methods for multiprocessors , Journal of the
ACM, Vol. 25, No. 2, ApriL 1978, pp. 226-244.

(7] Baudet , G. M., On the branching factor of the Alpha-Beta pruning al- .’orithm,
Carnegie-Mellon University, Computer Science Department Report, September 1977.
(To appear in Ar-1 ifi-ci.aL Intelligence.)

-

[8] Baudet, G. M., Brent , R. P., and Kung, H. T., Parallel execution of a sequence of tasks
on an ~sync hronous multiprocess or , Carnegie-Mellon Univers ity, Computer Science
Department Report , June 1977.

(9) Baudet , £~., and Stevenson, D., Optimal sorting algorithms for parallel computers , IEEE
Transactions on Computers , Vol. C-27 , No. 1, January 1978, PP. 84-87.

S
• (10] Charnay, M., Iterat ions chaotiques sur un produits d espaces m&triques, These de

3Cmc cycle, Universit C Claude Bernard, Lyon, 1975.

(11) Chazan, 0., and Miranker , W., Chaotic relaxation, Linear Algebra and Its Applications,• VoL. 2, 1969, pp. 199-222.
• (12) Chen, 1. C., Overlap and pipeline processing, In Introduction to Computer Architecture ,

ed. by H. S. Stone, Science Research Associates , Chicago, 1975, pp. 375-43 1.

(13] Courtois, P. J., l-teymans, F., and Parnas , D. L., Concurrent control with readors ’ and
wri ters , Communicat ions of the ACM, Vol. 14, No. 10, October 1971, pp. 667-668.

-

(14] David, H. A., Order Statistics , John Wiley and Sons, New York , 1970.

(15] Digital Equipment Corporation, BUSS-li programmer °s manueL, DEC. Maynard, 1972.

179 .

S - - - - —----— ~~~~~~ S S — 5 -~ -~~~~

_ _ _
— - . - . - -- -~~,--.-- ~~~ - - . — S . - -

180

(16] Dijkstra , E. W., Co-opera ting sequential processes , in Programming Languages , ed. by
F. Genuys, Academic Press , Now York , 1966, pp. 43-112.

(17] Dijkstra , E. W., A Discipl ine of Programming, Prentice -Hall, Eng(ewood Cliffs, New
Jersey, 1976.

[18) Donnelly, J. 0. P., Periodic chaotic relaxation , Linear Algebra and Its Applications,
Vol. 4, 1971, pp. 117-128.

(19] Enslow , P. H., Multiprocessor organization - A survey, Computing Surveys , VoL. 9,
S

No. 1, March 1977, pp. 103-129.

[20] flon, L , On the design and verification of operating systems , Ph.D. dissertation,
Carnegie-Mellon University, May 1977.

(21] FLynn, M. J., Very high-speed computing systems , Proceedings of the IEEE, Vol. 54,
No. 12, December 1966, pp. 1901-1909.

[22] Forsythe , G. E., and Wasow , W. R., Finite-Difference Methods for Partial Diffes-enti.aL
Equ.ation_s, John Wiley and Sons , Now York , 1960.

(23] FulLer , S. 14., Gaschnig, J. C., and Gittogt y, J. J., Ana lysis of the alpha-beta pruning
algor ithm, Carnegie -Mellon University, Computer Science Department Report , July
1973. - -

-

(24) Gitlogty, J. J., The Techno logy chess program, Arti ficial Intelli gence , Vol. 3, No. 3, Fall
S 1972, pp. 145-163.

[25] Gittogly, J. J., Performance analysis of the Technology Chess Program, Ph.D.
disser tation, Carnegie -Mellon University, Marc h 1978.

[26) Habermann, A. N.,- Synchronization of communicating processes , Communications of the
,4CM, VoL. 15, No. 3, March 1972, pp. 171-176.

(27] HeLter , 0., A survey of parallel algorithms in numerical Linear algebra,
Carnegie -Mellon University, Computer Science Department Report, February 1976.
(To appear in SIAM Review.)

(28] Hibbard, P., Hisgen, A., and Rodeheffer , T., A language implementation design for a
multiprocess or computer system, Preceodings of the Fifth Annual Symposium on
Computer Arch&tectare, Palo Alto, Cal ifornia , April 3-5, 1978.

(29] H(ntz , P. G., and Tate , D. P., ControL Data STAR -100 processor design, Proceedings of
Compcon 72, IEEE Computer Society Confere nce, IEEE, New York , 1972 , pp. 1-4.

(30) Jones, A. K., Chansler , R. J., Durham, I., Feiter~ P. H., Scetza , 0. A., Schwans , K., and S

Vegdahl, S. R., Programming issues raised by a multiprocessor , Proceedings of the
S IEEE , Vol. 66 , No. 2, February 1978, pp. 229-237.

(31] Kantorovitch , 1. V., Vutich, B. Z., and Pinsker , A. G., Functional Analysis in Partially
Ordered Spaces (Russian), Gostekhizdat , Moscow, 1950.

(32] Kleinrock , L., Certain analytic results for time-shared processors , Information
Processing 68, North-Holland, Amsterdam , 1969, pp. 838-845.

(33) Kleinrock , L., QuetLeing Systems , Volume I: Theory, John Wiley and Sons, New Yor ’~,1975. -

- - — -- -- --5 - - -- -- S - -- - -. 55

r

- .
-— S-V--S .. --

BIBLIOGRAPHY - 181

5 [34) Knuth, D. E., Tim Art of Computer Programming, Volume 1: Fundamental Algorithms ,
Addison-WesLey, Reading, Mass., 2nd edition, 1973.

S -
(35) Knuth, 0. E., and Moore, R. W., An analysis of alpha-beta pruning, Art ificiaL S

Intelligence, Vol. 6, No. 4, Winter 1975 , pp. 293-326.

[36) Kuck, 0. J., A Survey of paraLlel machine organization and programming, Computing
Surveys , VoL. 9, No. 1, March 1977, pp. 29-59.

(37) Kong, H. T., Synchronized and asynchronous parallel algorithms for multiprocessors , In
Algorithms and Comp lczit y: New Ou~ections and Recent Results , ed. by J. F. Traub ,
Academic Press , New York , 1976, pp. 153-200.

- [38) Kung, H. T., The complexity of coordinating parallel asynchronous processes ,
Proceedings of the Fi fteenth Annual Allerton Conference on Communication, ControL,
and Computing, Universit y of Illinois at Urbana-Champaign, 1977, c~ 34-43.

[39) Kung, H. T., and Lehman, P. L., A concurrent database manipulation problem: binary
search trees , Carnegie-Mellon University, Computer Science Department Report , to
appear.

-

[40] Kong, H. T., and Song, S. W ., A parallel garbage collection algorithm and its
correctness proof , Proceedings of thc Eighteent h Annual Symposiu m on Foundations of
Computer Science , October 1977, pp. 120-131.

(41] MieUou, J.-C., It~ rat ions chaot iques ~i retards , Co,nptes F?endus de l ’Acad~mie des
Sciences de Paris , Series A, VoL. 278, April 1974, pp. 957-960.

(423 MteUou , 1.-C., ltt~rations chaotique~ ~i retards; ~tudes do In convergence dans Ic cas
d’espaces par tieltement ordonnbs, Comptes Rendus de l Acctd~niie des Sciences de
Paris , Series A, Vol. 280, January 1975, pp. 233-236.

[43) Miettou, J.—C., Algorithmes de relaxation ~ retards , R. A. I. A. 0., Vol. 9, R— 1 , April
1975, pp. 55-82.

[44) Miranker , W. 1., ParalLel methods for solving equations, IBM 1. J. Watson Research
Center , Research Report RC 6545 (No. 28250), May 1977.

(45] Newborn, M. M., The efficiency of the alpha-beta search on trees with
branch-dependent terminal node scores , Artiaciat Intelligence , Vol. 8, No. 2, Apr Il
1977, pp. 137 -153.

(46] Ortega , J. U., and Rheinbo(dt , W. C., Itera t ive Solution of Nonlinear Equations in
Several Variable s, Academic Press, New York, 1970.

(47] Owic.ki, S., and Cr ies, 0., Verif ying properties of parallel programs: an axiomatic
approach, Contnwnico..tiorts of the ACM , Vol. 19, No. 5, May 1976, pp. 279-285.

- (48) Paskin, L., Performance of a stand alone Cm’ system, In Cm review , ed. by
S. H. Fuller, A. K. Jones, and I. Durham, Carnegie-Mellon UniversIty, Computer Science
Department Report , June 1977, pp. 26-56.

[49) Robert, F., Contractions en nornie vector ielte, Linear Algebra and Its Applications,
VoL. 13, 1976, pp. 19-35.

(503 Robert , ~~~., Charnay, U., and Musy, F., Iterations chaotiques sbrie-paratlèLe pour des S
S

~quations non-linèaires de point fixe , Aplikace Matematicky, Vol. 20, 1975, pp. 1-38.

I

- — -~~~~~~ - — . -- 5 — - — - - - -—5— ~~~~~~~~~~~~~~~~~

182

(51] Robinson, J. T., Analysis of asynchronous multiprocessor algorithms with appLication
to sorting, Proceedings of the 1977 International Conference on Parallel Processing, S

August 1977, pp. 128-135. (A revi~-od vers ion is to appear it, IEEE Transactions on
Software Engineering.)

(52] RosenfeLd, J. L., A case study in programming (or parallel processors , Communications
-

- of the ACM, VoL. 12, No. 12, December 1969, pp. 645-655.

(53] Rosenfeld , J. L., and DriscoU, C. C., Solution of the Dirkhtet problem on a simulated
parallel processing system, Information Processing 68, North-Holland, Amsterdam , S

1969, pp. 499-507.

[54] Russel, P. M., The CRAY-i computer system , Comnzu nicatioas of the #4CM, Vol. 21,
No. 1, January 1978, pp. 63-72.

(55] Scherr , A. L., An Attalysis of Time-Shared Computer Systems, MIT Press, 1960.

156] SIngle, J. R., and Dixon, J. K., Experiments with some programs that search game trees ,
J ourna l of t he ACM, Vol. 16, 1969, pp. 189-207.

157) Stone, H. S., Pau sUel computers , in Introduction to Computer Archite cture , ed. by
H. S. Stone, Science Research Associates , Chicago , 1975, pp. 318-374 .

[58) Stone , H. S., Sorting on STAR , IEEE Transactions on Software Eng ineering, Vol. SE-4 ,
No. 2, March 1978, pp. 138-146. 5

(59] Swa~i, R J., Fuller , S. H., and Siewiorek , D. P., Cm*: a modular muLti—microprocessor ,
S Proceedings of the AF!PS 1977 National Computer Conference, VoL. 46, 1977 ,

pp. 637-644.

5 [60] Teichroew , 0., Tables of expected values of order statistics and products of order
sta tistics for samples of size twenty and less from the normal distribution, Annals of
Mathematic al Statistics , Vol. 27, 1956, pp. 410-4 26.

[61] Thompson, C. D., and Kung, H. 1., Sort~.ng on a mes h-connected parallel computer ,
ConLnuuücaliorss of the ACM, VoL. 20, No. 4, ApriL 1977, pp. 263-271.

(62] Varga , P., Matrix Iterative Analysis , Prentice-Halt , Englewood Cliffs , New Jersey, 1962.

(63] WuIf , W. A., and Belt, C. C., C.mmp - A multi-mini-processor , Proceedings of the AFIPS
S-

1972 FaU Joint Computer Conference , VoL. 41, December 1972, pp. 765-777.

(64) WuIf , W., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C., and PoUack , F., -S
“Hydra: the kernel of a multiprocessor operating system,” Conanuini-cations of the
ACM, Vol. 17, No. 6, June 1974, pp. 337-345.

(65] Yau, S. S., and Fung, H. 5., Associative processor architecture - A survey, Com puting -

S
Surveys, VoL. 9, No. 1, March 1977, pp. 3-27.

~15 -


~~~- - - • -~~~~~~~~~~~~~ -- ——- -~-—---.

I IN C L & S ST F T Pn  

S 
-

S ECURITY CLASS IF ICAT ION OF T HIS PA G E  (N7i.n Dog.

D~~PADT n l u u m ~I T A r t n b J  DA
~~~~ 

READ INSTRUCTIONS
S ‘ ~‘~~~‘-“ ~~~~“ ‘ “ ‘ “s’ ‘~~ BEFORE COMPLETING FORM -

I. REP ORT NUMBER ~2. GOVT ACC ESSION NO 3 REC IP IENT ~ 5 C A T A L O G NUMBER

CMU-CS-78-1l6~ I _____________________________

4. T ITLE (ond SubtIU.) S.
-

TY P E O F R EP O R T 6 P E R I O D CO V ER ED

- THE DESIGN AND ANALYSIS OF ALGORITHMS FOR Inter im
5

ASYNCHRONOUS MULTIPROCESSORS - a. PERFORMING ORG. REPORT NUMBER

7. AuT ~~~ R(.) 4. CONTRACT OR G R A N T ~iLj UBER(l)

- Gerard M. Baudet NOOOi4-7.6-C-O37O~

9. PERFOR MING O R G ANI Z A T I O N NAME AND A DDRESS ID. P R O G R A M E L E M E N T. PRO J ECT . T A S K

Carnegie-Mellon University -
AR EA A W ORK UNIT NUMBERS

- Dept. of Computer Science /
5 Pittsburgh , PA 15213 5

II. CONTROLLING OFFICE NAME ANO A DDRESS 12. REPORT DATE

-

. April 1978
5 5 - 13. NUMBER OF PAGES

—

S 198
IA. MONITORING AGEN CY NAME 6 ADDRESS(I1 diu.r.nT:ro., Controlling 0111cm) IS. SECURITY CLASS. (of h im t.potl)

-

S

UNClASSIFIED
S

-
S

- - IS.. OECL ASS IF,CATI O N/000HGRA DI NG
—

- 5 SCHEDULE

14. DISTRIB UTION STATEMENT (of thi. R.po:t)

Approved for public release; distribution unlimited.
.

• 17. DISTRIB UTION STATEMENT (of A. .b.tracf .nt.r. d In Block 20, ii dift.r.nl ftoal R.povl)
S

1$. SUPPLEMENTARY NOTES

IS. kEY WORDS (Conlinu. on tsr.,.. aid. If n.c.a..vy wd d.nIISy by block nu~’b.t) 5

20. ABSTRACT (C.iilSnu. .n ,.r.,a . aid. II nsc,••~~) .~d Id.ntify by block m~~,b.r)

- The characteristic of an asynchronous multiprocessor is that It is composed of
-l

-

- several processors capabLe of carrying out the execution of their own programs In a
completely independent fashion. As a consequence, parallel algorithms for asynchronous
. multiprocessors present some unique aspects in both their design and their analysis. This

• thesis explores the issues rmscd by the design and the analysis of parallel algorithms for
• asynchronous multiprocessors and illustrates the various notions and concepts involved

with these algorithms by considering problems In diverse areas. The thesis demonstrates
that asynchronous multiprocessors can be used efficiently in different problem domains,

I J A N 73 1473 £o ’TioH oc ’ N:v e’ is eUOI E+ t UNClASSIFIED
. . SECURITY CLASS IFICATION OF THIS PA GE (R7,.n bat. *nl.r.d.)

- .
- - S S~~~~ .-

5 5.— ’

h.~ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ S S S S S S S S
SS ~~~~~ . S A

F - — 5 - - —
5 5

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - S  5. 

~ - • S S S

UNCLASSIFIED
~L t.. UNITY CLASS I F ICAT ION OF THIS PAGEflI1, .n Oat. Enl.t.d)

20. abstract (continued) S

provided thaI approprtale algorithms are used. It also illustrates various techniques

~useful in the analysis of such algorithms. S -

As eviden~~cI by a series of experimental results , the computation time required by~
5. a process to exec ute several instances of the same task on an asynchrOnous multiprocessor

cannot be regarded as constant and is actually subject to important fluctuations. These
f(uc tuations in computation limes have a negative effect on the performance of parallel
aLgorithms when several processes cooperating in the solution of a problem com m unicate
extensively among themse lves. In this case , when sync hronization is used, it tends to 

-

introduce a prohibitive overhead which decreases the parallelism. On the other hand, an
algorithm is presented to illustrate that the fluctuations are not always a negative factor
but C:afl also be utilized advantageous ly. The algorithm demonstrates the seemingly
counter—intuitive result that the execut ion of a purely sequentiaL program can sti lt be
accelerated on an asynchronous multiprocessor without introducing any parallelism within
the program itself , hut only by taking advantage of the fluctuations in computation times.
Two different parallel implementations of this algorithm are proposed (with and without
critical section), and analyses are presented to measure the speed-up achievable.

In the domain of numerical applications, the class of asynChro nous iter ati-ue methods
Is introduced to remove the need for synchronization in the implementation of iterations

S 
- for solving a system of equations on a multiprocessor. This class includes iterations
corresponding to parattet implementations in which the cooperating processes have a
minimum of inter-communication and do not make any use of synchonization. The PureLy
o..synchronous method is a typical example. A suff icient condition is established whic h
guarantees the convergence of any asynchronous iterations. This condition is satisfied for

• sys tems o~ equations found in numerous practica l apptications. S

Several asynchronous iterations have actually been Implemented on an asynchronous
multiprocess or. Experimental results are reported, and they show that the PureLy
Asynchronous method achieves an almost optimal speed-up. The experiments constitute an

S iltuslratiön of the various notions and concepts specific to the design and analysis of
para lLel algorithms for asynchronous mult iprocessors. It is also shown how simple
techniques drawn from order stat istics and queueing theory can be used to predict the
experiment~ t results with a fair accuracy.

The ~-/l pruning algorithm serves as an example of a non-numerical application in
this thesis. The sequential algorithm is f irst analyzecf~ and it is shown that (he branching 

S

— 
factor of the ~~~-$ pruning algorithm for a uniform game tree of degree ,t grows with n as
O(n/Ln it). This confirms a claim by Knuth and Moore that deep cut-of fs only have a
second order effect  on the behavior o( the algorithm. The results obtained with the
sequential algorithm are then used to derive an efficient parallel implemcntation~of the !

~-/ pruning algorithm on an asynchronous multiprocessor. An analysis of the parallel
implementation with k processes shows , rather surprtsingty, an improvement over the
original algorithm by a factor larger than Is. 

- 
-

S UNCL SST~~~T~~mS 
$(CUR$TY CLA SSIPIcA r ,o N OF THIS PAGE(W hsfl Oat. Enl.r. ~~

- S


