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Abstract

.5

The characteristic of an asynchronous multiprocessor is that it is composed of
several processors capable of carrying out the execution of their own programs in a
completely independent fashion. As a consequence, parallel algoritbhms for asynchronous
‘multiprocessors present some unique aspects in hoth their design and their analysis. This
thesis explores the issues raised by the design and the analysis of parallel algorithms for
asynchronous multiprocessors and illustrates the various nolions and concepts involved
with these algorithms by considering problems in diverse areas. The thesis demonstrates
that asynchronous multiprocessors can be used efficiently in different problem domains,
provided that appropriate algorithms are used. It also illustrates various techniques
useful in the analysis of such algorithms. :

As evidenced by a series of experimental results, the computation time required by
a process to execute several instances of the same task on an asynchronous multiprocessor
cannot be regarded as constant and is actually subject to important fluctuations. These
fluctuations in compulation times have a negative effect on the performance of parallel
algorithms when several processes cooperating in the solution of a problem communicate
extensively among themselves. In this case, when synchronization is used, it tends to
introduce a prohibitive overhead which decreases the parallelism. On the olher hand, an
algorithm is presented lo illustrate that the flucluations are not always a negative factor
but can also be utilized advantageously. The algorithm demonstrates the seemingly
counter-intuitive result that the execution a purely sequential program can still be
accelerated on an asynchronous multiprOcessor without introducing any parallelism within
the program itself, bul only by taking advantage ot the fluctuations in computation times.
Two different parallel implementations of this algorithm are proposed (with and without
critical section), and analyses are presented to measure the speed-up achievable.

In the domain of numerical applications, the class of asynchronous iterative methods
“is introduced to remove the need for synchronization in the implementation of iterations
. for solving a system of equations on a multiprocessor. This class includes iterations
corresponding to parallel implementations in which the cooperating processes have a
minimum of inter-communication and do not make any use of synchonization. The Purely
asynchronous method is a typical example. A sufficient condition is established which
guarantees the convergence of any asynchronous iterations. This condlhon is satisfied for
‘'systems of equations found in numerous practical applications.

Several asynchronous iterations have actually been implemented on an asynchronous
multiprocessor. - Experimental results are reporled, and they show that the Purely
Asynchronous method achieves an almost optimal speed-up. The experiments constitute an
illustration of the various notions and concepts specific to the design and analysis of
parallel algorithms for asynchronous multiprocessors. It is also shown how simple
techniques drawn from order statistics and queueing theory can be used to predict the
experimental resulls with a fair accuracy.

The o~ pruning algorithm serves as an example of a non-numerical application in
this thesis. The sequential algorithm is first analyzed, and it is shown that the branching
factor of the w-A pruning algorithm for a uniform game lree of degree n grows with n as
O(nAn n). This confirms a claim by Knuth and Moore that deep cut-offs only have a
second order effect on the behavior of the algorithm. The results obtained with the
sequential algorithm are then used to derive an efficient parallel implementation of the
o~/ pruning algorithm on an asynchronous multiprocessor. An analysis of the parallel
implementation with b processes shows, rather surprisingly, an improvement over the
original algorithm by a factor larger than k.

il




e

Acknowledgements

The advice and assistance of H. T. Kung have been instrumental in the development
of this thesis. He has been more than an advisor to me, and | would llke to express very
special thanks to him for reading numerous drafts, for making many suggestions, and for
his continual encouragement.

I am also especially grateful to Joe Traub for his comments and support. As
Chairman of the Computer Science Department, he has contributed greatly to the
development of an atmosphere favorable to carrying out my research.

I would also like to thank the two other members of my commiltee, Bill Wulf and
Sam Fuller, for their help and cooperation.

Chapter Il was initially written as a technical report in conjunction with
Richard Brent, from The Ausiralian University at Canberra, and H. T. Kung. 1 am also
grateful to Peter Oleinick for helping me implement algorithms on C.mmp, and to
Levy Raskin for running the same experiments on Cm*. | would also like to thank
John Robinson and Bruce Weide, and Henryk Wozniakowski, from the University of Warsaw,
for useful comments and discussions. 2

Last but not least, 1 would like lo thank my wife for her inspiration, understanding
and TLC throughout this ordeal.

Miite Sectioe
L} Wil Socties (3 !
WANNODRCED al
JOSTIFGATION
. PIREIE R g
DISTRIBUTION AVAILABILITY comgy
e,

22 MAIL and, w0 SPEGIAT




o Cunégonde
to my wife

and

To K

vit

|

3 -

.
, . L e —————————————




La quatriéme planéte était celle du bustnessman. Cet
homme eétail si occupé qu'il ne leva méme pas la téte
4 'arrivée du petit prince.

—Bonjour - lui dit celui-ci. Votre cigarette est
eteinte.

—Trois et deux font cingq. Cing et sept douze.
Douze et trois quinze. Bonjour. Quinze et sept
_vingt-deux. Vingt-deux et six vingt-huit. Pas le
temps de la rallumer. Vingl-six et cing trente-et-un.
Ouf! Ca fait donc cing cent un millions six cent
vingt-deux mille sept cent trente-et-un.

—Cing cent millions de quoi?
"~ —Hein? Tu es toujours La? Cing cent un millions
de ... je ne sais plus ... j'al tellement de travail!

Je suis serieux, moi, je ne m'amuse pas a des
balivernes! Deux et cing sept . ..

Antoine de Saint Exupéry, Le Petit Prince
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Chapter 1

: Introduction

1 - Introduction and motivation

Parallel ‘computers andA multiprocessors offer a natural solution to the-
ever-increasing demand for computing power. At the same time, their evolution has
brought about the need for the development of efficient parallel algorithms. This need is
nbw becoming more and more acute since recent advances in computer technology have
drastically reduced the cost of components, and il is éuite conceivable that barallel

computers composed of 1000 or more processors will be builtt in the near future.

Parallelism is achievable in a variety of ways, as exemplified by the various
archilectures of parallel computers already existing. Following Flynn's classification [21],
wé mention below only a few among the more important ones. For a general overview,
Stone [57] o!lers an introductory presentation of parallel computer architecture; Kuck [36]
evaluates some parallel machine organlza‘l'\ons in relation to their programming; and
Enslow [19] surveys specifically multiprocessor organization, which is of central interest

to us in this thesis.

The ILLIAC IV computer [5] is a typical example of an SIMD (Single Instruction
stream Multiple Data stream) machine [21]. Often referred to as an array processor, the
ILLIAC IV was designed explicitly for solving partial differential equations by the method

of finite ditferences (typically, for weather forecast). It is composed of 64 identical

processing elements, organized as an 8x8 array, which execule synchronously the same
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instruction possibly operating on different data. The CDC STAR-100 [29] and the Cray-1
computer [54] are also SIMD machines in Flynn's classification. They are often referred to
as wvector computers, and they gain their efficiency by providing for vector-type
instructions, capable of execuling in parallel the same operation on all elements of a
variab(e size vector rather than on a single scalar. Pipelined computer; and.associat'we
processors also belong to the class of SIMD machines; a general presentation of their

architectures can be found in [12] and [65], respectively.

This thesis is concerned with another type of parallel computer, classified by Flynn
as an MIiMD (Multiple Instruction stream Multiple Data stream) machine [21]. Throughout
the thesis, this type of computer will be referred to as an asynchronous mutltiprocessor,

since we think this term better reflects the view we are taking here.

_ Examples of asynchronous multiprocessors include commercially available computers
like the UNIYAC 1108 bi-processor; special purpose computers like the D825 [1], produced
for command and control military applications; and research products like C.mmp [63] and
Cm?* [59]. C.mmp and Cm* have been (and are being) built at Carnegié-Mellon University
using mini-processors, slightly modified versions of the DEC PDP-11 and the DEC LSI-11.
While C.mmp is truly a multiprocessor, in that each processor has a direct access to each

j memory bank through a cross-point switch, Cm* could also be considered as a local
network, in which 'intercpmmunicétion iakes place between clusters (each processor,
however, can actually access the entire common memory through a sophisticated address

.mcchanism [30], [59]).

We do not intend to go into the details of the archilecture of any asynchronous
multiprocessors.‘ (See [19] for a general survey of the architectures of existing
multiprocessors.) For the purpose of the thesis, it is sufficient to consicler an
asynchronous multiprocessor as composed of a sel of indepondent processors sharing a
common memory, each processor being able to carry out thg execution of its own program.

In this respect the execulion of programs on an asynchronous multiprocessor, unlike on an

ol " o
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SIMD machiﬁe, {s made in a completely asynchronous fashion and takes on a chaotic
appearance. This is especially true since the processors are nol necessarily of the same
type, as is the case with C.mmp (composed of both PDP-11/20 and POP-11/40), and could
actually have drastically different characteristics, parlicularly in speeds. Another reason
is that access to memary is not necessarily unifarm, as is the case with Cm*. Notice that,
in this broad sense, a network of computers could be viewed as an asynchrono'us
multiprocessor as well since, in this case, the computers can still be considered to share a
common memory, although very indirectly. As a matter of fact, the algorithms that we.
propose in this thesis for asynchronous multiprocessors are also well suited for
implementation over a network, especially if the time required for the intercommunicatton

between the computers is not too high compared to the time required by the computation

on each computer.

After this very brief presentation of parallel computer architecture, let us now turn
our atlention to the issue of parallel algorithms. From an algorithmic point of view, SIMD
machines have been the most widely studied to date, and particularly the ILLIAC IV type of
computer. Due to‘ its specific structure, the efficient utilization of an array processor
requires that a problem be decomposed into identical subtasks which communicate among
each o.thcr in some regular fashion, and the range of possible applications ls.. therefore,
limited (mainly to linear .atgebra oriented problems). Numerous examples of parallel

algorithms for SIMD machines in the area of numerical linear algebra can be found tn a

receﬁt survey by Heller [27]). Examples of non-numerical algorithms can be found, for

instance, in [9], [58], and [61].

Being composed of a set of independent processors, an asynchronous multiprocessor

allows for grealer flexibilily in its programming than does an SIMD machine. Although .

asynchronous multiprocessors have now been in existence for several years (the D825 [1l,

in fact, dates back to the early 60°s), very little has been published so far on how to

design parallel algorithms that run efficiently on an asynchronous multiprocessor. Until
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recently, emphasis in the design of parallel algorithms for multiprocessors has been

placed mainly on techniques for recognizing the intrinsic parallelism of existing sequential

algorithms rather than on the direct construction of parallel algorithms. Some of these

techniques have- actually been irﬁplemented in a version of the Algol-68 compiler running .

on Cm* [28]. Typically, the transformation of a sequential program is accomplished by
identifying independent subtasks within the program and introducing precedence relations
between them; a parallel program then can execute the various subtasks according to the
graph of the relations. However, a parallel program resulting directly from this automatic
transformation requires considerable communication and extensive synchronization to
control the flow of execulion of the various subtasks. This ultimately reduces its

efficiency.

In the domain of numerical analysis, a different approach in designing algorithms for
asynchronous multiprocessors has proved to be more fruitful. Rather than adapting
existing seqbential algorithms, Chazan _and Miranker [11‘] have presented a class of
iterative methods for the solution of a linear system of equalions which takes into account

the asynchronous nature of multiprocessors.,

Essentially initiated by a recent paper by Kung [37], a systematic study -is now
under way {'o explore some of the unique issues raised specifically by the design and the
analysis of parallel.algorithms for asynchronous multiprocessors. This study certainly
benefits from an extensive research done on a different, but related, area concerning
time-shared processors rather than true multiprocessors. However, results in the latter
area deal mostly with special problems typically encontered in time-sharing or
multiprogramming operating systemsA,‘ e. g, resource allocation, co-ordination of
independent devices (typically, 1/0 devices), and they address directly the issue of
co-operation of processes without addressing general (issues, such as problem
decomposition, involved with the design of multiprocessor algorithms. ‘See, for
ex'amp\e. [16] for an early presentation of this area, and (2] for some examples of typical

problems.)

—
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In addition to [37], a few examples of typical algorithms for multiprocessors ha_ve
already appeared, and they illustrate several important notions unique in their design [6],

[38], [39], [40] and in their analysis [3), [4], [8], [51).

This thesis is concerned specifically with the design and the 'ana(ysls of parallel

algorithms for asynchronous multiprocessors. In Section 2 of this chapter, we briefly

discuss the main issues involved in their designs. The remaining chapters of the thesis
study these issues in depth in several problem domains. These results are summarized in

Section 3 of this chapter.

2 - The design of algorithms for asynchronous multiprocessors

Algorithms for SIMD machines and algorithms for asynchronous mul‘tiprocessors are
similar in principle, in that they both rely on the decomposition of a problem into subtasks
executed in parallel. Thi.s is, however, their only similarity, and these two types of
‘parallel al'govjithms in general present drastic differences with respect to both their design
and their analysis. Let us examine, in this section, some of the unique Issues raised by

parallel algorithms for asynchronous multiprocessors.

Most of the problems associated with the design of parallel algorithms for
asynchronous multiprocessors have been clearly exposed by Kung [37]. Throughout the
thesis, we use the notions and concepts introduced in his paper, and, below, we briefly
review some of the more important ones. In parlicular, [37; p. 156): :

"We define a parallel algorithm for multiprocessors as a collection of

concurrent processes thal may operate simultaneously for solving a

given problem.”
It is important to distinguish between the notion of process, which corresponds to the
execution of a procedure or a piece of program, and the notion of processor, the physical
entity which carries out the execution of a process. While we have control over the

processes in the design of a parallel algorithm, we do not us‘ua\ly have control over the

processors, which are administered by the operating system. In particular, the same
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process is not necessarily execuled by only one processor during its entire lifetime, and,

upon declsions of the operating system, several processors might be assigned successively
to its execution. As an immediale consequence, the time required for the execution of a
process on an asynchronous multiprocessor can fluctuate in an almost unpredictable way.
There are, in fact, numerous reasons contributing to this unpredictable behavior; we
already mentioned the fact that the different proc;ssors of an asynchronous
multiprocessor might have difierent speeds and that the access to memory is not
necessarily uniform; several other features of an asynchronous multiprocessor or of its
environment which also contribute to the fluctuations in the execution time of a process

are listed in [37].

Communication is very likely to be required among the processes co-operating in
the solution of a problem.. Kung [37] regards a process as a sequence of stages defined

between two consecutive interaction points at which the process communicates with other

-processes. Parallel algorithms for multiprocessors are then classified according to the

way in which communication is accomplished. In a synchronized parallel algorithm (or,
simply, a synchronized algorithm) processes explicitly use synchronization primit'(ves, and,

upon complelion of a stage, a process may have to wait for the results of other processes

before resuming its execution; a producer-consumer type of program is a typical example -

of a synchronized algorithm. In an asynchronous parallel algorithm (or, simply, an’

asynchronous algorithm) the processes communicate among themselves only through the
use of global variables (possibly updated within a critical section), and, at the completion
of a stage, a process either terminales or proceeds further, without any delay, according
to the current contents of the global variables. Examples of asynchronous algorithms are

presented in the following chapters.

Let us now address briefly (and informally) the ‘issues of correctness and of

efficiency, both of which. we feel should always be dealt with in the design of any

algorithms. These issues are nol the only ones which should be taken into account, but, in
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the case of parallel algorithms for asynchronous multiprocessors, these two issues become
parlicularly inleresting and important because of the a priori unpredictable behavior in
the execution of these algorithms. For this very reason, however, we can anticipate that
proving the correctness and analyzing the efficiency of an algorithm for multiprocessor

are, in general, difficult tasks.

2.1 = Correctness

Correctness is obviously a requirement for any ailgorithm. Considerable research
has been done on the proof of correctness of sequential programs, and a detailed
treatment of some of the techniques available can be found, for example, in Dijkstra’s
recent text [17]. These techniques, however, are mostly applicable to sequential programs
with a simple structure (with no complicated data structures, for instance), and their
generalization to parallel programs (especially asynchronous parallel programs) is still

quite limited’

An early paper by Dijkstra [16] contains the first major statement on the proof of
correctness of parallel programs. Research in this area has been restricted mostly to
prO\.ling the correctness of the solulions of small problems, which could be used for the
:lmplementation of some mechanisms in larger parallel programs (e. g., the readers and
writers problem [13], or the producer-consumer scheme [26]). Several attempts have
been made only very recently to extend some of the techniques to the proot ot

correctness of complete and more complex parallel programs [47], [20].

Despite the lack of a formal- theory, we still feel that we have givﬁn with every
algorithm presented in this thesis a convincing argument that it performs corr.ectly. This
proof o.[ correctness can take on very different aspects. In Chapter I, for example, we give
a proof of the correctness <':f a parallel program by verifying that global variables .used in
the program satisty some property which holds during the entire execution of the program;

this is achieved by checking the possible transitions of the global variables before and

!
e " ... 3. W |
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after interaction points. In some respect, the proof resembles more, in this case, the
formal proof of a sequential program using assertions and invariants; this is partly due to
the simple structure of the particular parallel program we are dealing with. In Chapter IiI,

on the other hand, the proof of the correctness (and of the termination) of the algorithm

follows: directly from the theorem of convergence which is derived through techniques of

numerical analysis.

2.2 - Efficlency

In the design of any algorithm, efficiency is always an important issue. Since one of

the primary goals in the design of a parallel algorithm is to achieve better efficiency than

with a sequential algorithm, this issue must be considered very seriously in the case of an

algorithm for asynchronous multiprocessor.

We would like to illustrate below that, because of the fluctuations in the execution
times on an asynchronous multiprocessor, synchronized a(gor'dhms will generai\y ﬁhow 2
very poor performance. This is true for several reasons. The execution time of the
synchronization primilives'thcmselvés s often very lime cor?sum'mg (a typical execution
time for these primitives is usually on the order of a couple of hundreds of additions).
Also, and most importantly, the use of synchronization implies the blocking of the
processes co-operating in a task, and, in turn, either causes some of the processors to be
idle or entails the switching of contexts. In both cases, the use of synchronization may
reduce the parallelism and decrease the speed-up that we hope to achieve by using an

asynchronous multiprocessor.

To illustrate this point., let us consider Jacobi's method to sotve the linear system of
equations given by:
z: = Az + b,
where A is an hzn-mntrlx, and b and z are n-vectors. Let zb be an initlal approximation to
the solution of this system, Jacobi‘s method conslst.s of computing the sequence of iterates

z; for i = 1, 2, ..., through the recurrence:

|
i3
|
i
1
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x:

ol Az'-__, + b.

This melhod is well suited for parallel computation since, at each step of the iteration, the

computations of all components can be carried out in parallel. For example, assuming that

n processors are available, a natural way to dec.oﬁnpose the computalion of a new iterate
ts to assign to each of the n processors the corﬁpulalion of one of the n components of the
iterate. This implementation requires, however, that at the end of each s'tep all processes
be synchronized before they can start the compulatlon of the next iterate. In case all
processes take exactly the same amount of time to compute a component, the overhead
introduced by the synchronization is reduced to the execution time of the synchronization
primitives themselves. However, it follows from the discussion at the beginnihg of the
section that i.t is more realistic to assume that the time taken by a process to compute a
component is a random variable rather than a constant. In this case the time it takes to
compute the whole set of components of a new iterate is given by the maximum of n
randéms variables. In particular, to give an idea, assume that the time for the compt;lation
of any component is distributed according to the same exponential distribution with mean
z, then, sirﬁple calculus shows that the mean computing time for obtaining a new iterate is

given by H,.z, where H, = I + % ® o ® % is the n-th harmonic number. The coefficient H,

represents the penalty imposed by the synchronization.

This simple example shows _that the apparent parallelism in Jacobi's method for
solvilng linear syster;\s of equations is considerably reduced by the fact that this method
.lmplicitly.réquires synchronization at each step of the computation. In fact, it can be
shown that the proportion of time wasted by the processes (while they are idle, waiting

for the completion of the last computation) is given by:
!_Hl.‘Hz‘...‘ n-I'_ 8 o i l’—L—
e H, Ha Inn

and tends to I as n tends to infinily, which means thal the proce:s:: ire almost always idle

waiting for each other!

This example also shows that, when programming an asynchronous multiprocessor,
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the problem of the fluctuations in the execulion times requires much attention, and that
synchronization should be used very carefully. In particular, the desigh of parallel
programs for asynchronous multiprécessors should take into account the fact that the
various processors execule their programs independently and possibly at very different
speeds, and that, therefore, communication among the processes co-operating n a ta"sk

should be reduced to a strict minimum,

3 - Thesis overview

This thesis explores the issues raised by the design and the analysis of parallel
algorithms for asynchronous multiprocessors. The various notions and concepts involved
with these algorithms are illustrated by considering very diverse problem areas for
numerical as well as non--numerical applications. The thesis demonstrates, in particular,
that asynchronous multiprocessors can be used very effectively in different problem
domains, provided that appropriate algorithms are used. The thesis also {llustrates
various techniques useful in the analysis-of such algorithms. The remaining chapters are

briefly summarized below.

We have just shown, in Section 2.2'. that the fluctuations in the execution times of
programs that are run on an asynchronous multiprocessor could cause a very important

degradation in the performance of synchronized algorithms, even for a problem which is, a

_priori, well suited for parallel implementation. "In Chapter II, we show that we have the

reverse phenomenon with asynchronous algorithms, even for a purely sequential problem.

.Namely, given a sequence of tasks to be performed serially, we propose an asynchronous

algorithm to accelerate the execution of the tasks on an asynchronous multiprocessor
without introducing oparallelism within the tasks but only by taking advantage of
fluctuations in the exocution times. We give a parallel program requiring no critical .

section to implement the algorithm, and we prove its correctness. We also give a

spacewise more efficient implementation, which requires the use of critical sections. We
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then present an analysis for both implementations to estimate the speed-up achievable

‘with the pﬁrallel algorithm, and we show that, when the execution times are exponentially

distribuled and no critical section is used, the algorithm with k processes yields a

speed-up of order VK.’

In Chapter 1II, we introduce the class of asynchronous iterative methods for solving a
(linear or non-linear) system of equations. We identify existing iterative methods in terms
of asynchronous iterations, and we propose new schemes corresponding to a purely
asynchronous algorithm (with no synchronization bctwe?n the co-operating proeesses).

We give a sufficient condition (salisfied in most practical applicaticns) to guaraniee the

convergence of any asynchronous iterations and extend the results :to include

asynchronous iterative methods with memory. We lhen evaluate asynchronous iterative
methods from a computational point of view; we derive bounds for the efficiency and

briefly compare the bounds with experimental results (see Chapter V).

Chapter IV deals with the a-8 pruning agorithm. In the first part of Chapter IV, we
énalyze the sequential «-f pruning algorithm, using the number of térm‘mal nodes
examined by the algoritl;m as the cost measure. The analysis takes into account both
shallow and aeep cut-offs, and we also consider the poséibllity of ties between terminal
positions: specifically, we assume that all bollom values are independent identically
distributed ;andom variables drawn from a discrete probability distribution. We show that
the Qorst cage of the algorithm can be achieved even whe.n only two distinct Qalues are
assigned to the terminal nodes, and we deduce that the branching factor of the
-/ pruning algorithm in a uniform game tree of degree n grows with n as @(nAn n),

therefore confirming a claim by Knuth and Moore [35] that deep cut-ofis only have a

second order effect on the behavior of the algorithm.

In the second part of Chapler IV, we propose a parallel implementation of the
«-/3 pruning algorithm requiring very little communication between the processes. In the

parallel scheme, the processes work independently by searching for the solution of the
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game tree over disjoint subinlérvals. We develop an analysis of the parallel algorithm,
from which it follows that the parallel implementation with k processes shows an
improvement over the sequential a~2 pruning algorithm by a factor larger than k for k = 2
or 3. This leads to the rather surprising discovery that the sequential «-f prunﬁng

algorithm is not optimal.

In Chapter V, we present the results of mcas'urements performed by running severavl
asy«\;hronous iterations (introduced in Chapter 1II) on C.mmp [63], an asynchronous
multiprocessor. at Carnegie-Mellon University. These experiments have proved to be an
invaluable fool for providing us with some insight into the.behavior of parallel algor:lthms,
and, in particular, they constitule a clear illustration of the advantage of purely

asynchronous algorithms over synchronized algorithms.

In Chapter VI, we show how the classical tools of quéucing theory can be applied to
the analysis of the facrformance of parallel algor.ithms for asynchronous multiprocessors,
.and, in part:icular. we develop a simple queueing model to account for the behavior of a
paraliel proéram which uses critical sections. We then compare the analytical results
derived from the model with the experimental results presented in Chapter V, and the

comparison shows an excellent agreement.

In the last chapter, we summarize the principal results of the thesis, mention some
possible extensions and give some concluding remarks. We also present some topics for

future research.




Chapter II

Parallel Execution of a Sequence of Tasks

on an Asynchronous Multiprocessor

1 - Introduction

We are interested in the des'(gn and analysis. of parallel algorithms for asyng:hronous
multiprocessors such as C.mmp [63) or Cm* [59]. For any given task, the task execution
time 01.1 such a system is dependent upon the properties of the operating system, effects
of other users, processor—r‘ncmory intererence, aﬁd many other factors. As a result, it is
necessary to assume that task execution times are random variables rather than con;tants.
.(See .Chapter V for experimental results supporting this assumption.) In this chapter we
propose a novel way of using asynchronous multiprocessors, which takés advantage of
.ﬂuctualions in task execution times. We will present our result as a solution to the
problem of executing a sequence of n tasks w, .., w, under the following conditions:

Cl. For i =2, .., n, task w; cannot be starled before the compleiion of task w;_; A ﬂ

(i. e., the tasks are linearly ordered). ' ' i

C2. Forie=1{,.,n, no.parallellsm can be utilized in the execution of task w; (l._ e.,
we are not allowed to decompose a task).

C3. The execution time of a task is a random variable rather than a constant.

(This condition corresponds lo the asynchronous nature of the multiprocessor.) H

We will view a parallel algorithm for asynchronous multiprocessors as a collection

of asynchronous processes which communicate among each other through the use of global

13




L SO

14 ' . : : CHAPTER Ii

variables. Such an algorithm will be defined by giving the procedure each of its
processes execules when assigned lo a processor. While anal&zing the algorithm, we will
always assume that a processor is available for any of the runnable processes of the

algorithm. (See Kung [37] for a general discussion of asynchronous parallel algorithms.)

In Section 2 we give an algorithm which uses k > { asynchronous processes to solve
the problem. The algorithm is interesting because at most one process ls doing useful
work at any given time. Nevertheless, by taking advantage of condition C3, the mean

execution time is less for k > { than for k = I, L. e., a speed-up is achieved.

As an éxample, consider the computation of Z(y sy Zp defined by
iy = plx, 2, ),
where z4, z_, ..., %_q are given and p is some iteration function. Let w;,y be the task of
computing p(x,,..,x;_4). Our algorithm could be used to execute tasks Wy, ., Wy, Which is

equivalent to evaluating Ty Zp

’

The speed-up ratio §y(n) of a parallel algorithm using k processes is defined in
Section 3, and some preliminary results are proved there. In Section 4 we give programs
to implement our algorithm both with and without critical sections and prove lﬁformally
their correctness. In Section 5 we consider the implementation without critical sections,
and obtain an analytic éxprcssion for the speed-up under certain assumptions (Al and A2
:of. Section 5). For large n and k, our result is Si(n) ~ Y2k/x. In Section 6 we consider the
implementation which uses critical sections. Here the analysis is more difficult, and we
can obtain analytic results only for k < 2. Some conclusions and open problems are stated

in Section 7.

2 - The algorithm

For each positive integer k, we define an algorithm with k processes for executing
tasks w 1» =» W under conditions Cl Qnd C2 stated in the preceding section. The algorithm

is specified as follows: o
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Whenever a process, P, is ready to execute a task,
(i) Uf no task has yet been compleled by any process, process P starls executing
lask wy, .
(il) otherwise, if the last task w, has not yet been completed by any process,
process P starts executing a task which is unfinished and ready for execution.
For simplicity, we will assume that no two tasks are completed at the same time. Then,

due to the linear ordering of the tasks, condition (ii) defines without ambiguity a unique

: task la be execuled by process P.

Let tl.’ to, t3, .. with 'ti < t;, be the limes of task completion by the processes. The

.diagram of Figure 2.1 illustrates a possible scheduling of the tasks when they are

executed by the algorithm with three processes.

w, w2. : W3 : W4 u/6 wa
Py —+—i ' : F %
) -2 _ t ti0 o S
w w w w w, w
Py ¥ 1 o 3} 4 : 5 : 6 ’ 8
ty ts ty t11 tiq
wy wy wg wg wy "’é
Py | : . it
t3 tg tg t12 t13

Figure 2.1 ik possible task scheduling with three processes

Note that, when process Pj finishes task wj at time tg, process P; has already completed
task wy. Thus, after P3 completes wy, it starts execuling wg rather than wy. Task wy is
skipped by P3. Similarly, tasks wg and w; are skipped by P, and tasks w; and w; by P,.
After any one of the lhree processes has execuled six tasks, Atasks w through wg rather

than lasks w through wg are completed. A speed-up has been achieved!

Observe that at any given time at most one process is doing work usetul for later
computét'\or\. With respect to the scheduling given by Figure 2.1, the time intervals on

which proceéé.es are doing useful computations are indicated in Figure 2.2.

-
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.to be the time of the first completion of task w;
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w w
P, St
ty ¢
w w
P2 ot
t4 ts t7
< w w w
P3 vion 5: ¢ 4 7+...
tg g t12 t13

Figure 2.2 - Time intervals on which processes are doing useful work

Thus the speed-up is not achieved by sharing work among the processes, but is

achieved by taking adrvantage of fluctuations in the execution times.

3 - A speed-up measure

Consider the algorithm with k processes as specified in the preceding section. The
algorithm is said to be the sequential algorithm if k = 1 and to be a parallel algorithm if
k> 1. Let T,(n) be the time to execute tasks wy, .., w, by the algorilhm. with k processes.
Let Tk(n) be the mean of the ;'andom variable Ty (n). We define the speed-up ratio of ‘the
algorithm with k processes to be

Syln) = T,(n) /Tk(n).

For each k and {or each execution of the algorithm with k processes, we define Ski

, and define s, n = 0. For example, with .
i k,0

' réspect to the scheduling of Figure 2.1, with k = 3, we have:

$3,0 = ty, 532 = t2, 833 = t5, 834 = t7,

Sl e T Bt Ll e U

The following theorem describes the relation between (’k,i} and {t;} in terms of the
scheduling of the tasks. This theorem is important in Sections 5 and 6 for computing

speed-up ratios.
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Thoeoram 3.1:

Suppose that s ; = t, with f<ign-1. Then s ;.4 = trs ) for some 1 < /j<k if
and only if
(a) the j processes completing tasks at times ¢, ¢ ., tpyj-y @re all distinct, and
(b) the process completing task w;,; at time trej is one of the j processes
mentioned in (a).
Proof: .

We will only prove the necessary condition since the proof for the sufficient

condition is similar,

-

Suppose that some process P compleles two tasks at times t,yp and -t for
0<h<msg j-1. Then, since at time t.,, task w; has already been completed, the task

completed at lime ¢t by process P must be w;,;. This contradicts the fact that w;, is

r+m

comb\eted for the first time at time ¢ since ¢ <t., ;. This proves (a).

r+ rem J
Let P be the process completing task w;,; , for the first time, at time trsjr Suppose
that P does not complete any task in the interval [t,, t,_,j_,]. Then the task completed by

P at time t,., ;. must be started before time t.. But at any time before t., task w; is not

J i
compleled yet. Hence any task starled before time t, cannot be w;,;. In particular, the

task completed by P at time trej cannot be w;,q- This contradiction proves (b). |

For i=1,..,n, let a‘k(i) be the random variable representing the quantity

Sgi = Ski-1- Then, since Ty(n) = Sk We have
Ty(n) = £)(1) + rk.(2) 4 4 Tp(n). * - (3.1)
Equation (3.1) will be used later to compute 'fk(n). which is needed for evaluating the

speed-up ratio §,(n).

4 - Parallel programs for the algorithm and their correctness

We give two programs to implement the algorithm with k processes: one without

critical sections and one with critical sections.
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‘4,1 - A'program without critical sections :
Program A:

" glahal inteper (or real) array U I:n};

global boolean array M[l:n+!};

Initialization:
begin
for m:=1 to n+! do M(m]:= false;

start processes Py, ..., Py

end : ; |

Process P j

begin integer m ; : .

mj = 1;

while M{mj} do m:= mj+ 1 ] (4.1)

while m;<n do (4.2)
e .
perform task wmj-; (4.3)
write the output of task w"‘j on U[ml-]; (4.9)
M[mj] := true; (4.5)
while M{m ;] do mj=m+ | . (4.6)

| end
end

~

Assume that the tasks are not allowed to aller the array M and integers m ;. We will

j.
prove that Program A is correct in the following sense:

ik i At "~

Pl. For m = 2. .., n, task w,, is executed only (f task Wy, has been finished and
its output has been written on U[m-1).
& P2. For j=1{,.. k, process Pj can execute the loops at (4.1), (4.2) and (4.6) at

\

most n times.
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P3. Al the tasks wy, .., w, will have been completed at the time when any one of

the processes P, .., Py terminales ils execution.

- Properly P2 guaraniees that the program will terminate. (Note that there is no
possibility of deadlocks in the program.) Property Pl ensures that the linear ordering
requirement of the executions of the tasks is maintained, and property P3 implies that

when the program terminates all the tasks are completed.

Lemma 4.1

(i) Form «{,.. n,if M{m]is set to true, it remains true aflerwards.
(il) After being initialized to false, M(n+1] is never modified.
Proof:
After initialization, M can only be modified through statement (4.5) executed by
some process Pj. But, when entering the main while-loop (starting with statement (4.2)),

m ; saticfies the condition m; < n and is not modified before execution of (4.5). Therefore

J J
M(n+1] can never be modified. |
Lemma 4.2:

For j=1,.. k,if m; has the value m 2 2, then M[m-1] is true.

Proof:

Suppose that mj’- =m with m2 2 al time ¢t. If mj was incremented by I to the value
m inside the while statement (4.1) or (4.6), then the test of M[mj] being true with
mj= m-1 must have been satisfied. Hence M[m-1] was true at some time before t. Thus,

by Lemma 4.1, M{m-1] is true at time t. W

Lemma 4.3:

For m = 2, .., n, if M[m] is true, then M[m-1] is true.
Proof:
Suppose that M{m] is true. Then M{m) must have been assigned to true through
instruction (4.5) by some process Pj with m; having the value m. Therefore, by
Lemma 4.2, M[m-1] is true. |
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Lemma 4.4:

Ft;r m=1,..,n, if M(m]is true, then task w,, is compleled and its output is on
Ulm].
Proof:
Suppose that M[m] is true. Then M[m] must have been assigned to true through
instruction (4.5) by some process Pj with m having the value m. Since Pj executes

instruction (4.5) only after the completion of task w, = and since m; ts not modified Ln

'

between, we conclude that task w,, is compleled. ]

We are now able to prove the following theorem.

Theorem 4.1:

Program A satisfies properties P1, P2 and P3.

] Proof:

m Wwith m = m;2 2. Then, by

Suppose that process Pj ts executing task w
Lemma 4.2, M[m-1] is true, and hence, by Lemma 4.4, task Wy, is cbmp(e(ed and its

output is on U[m-1]. We conclude that Program A satisfies property P1.

Property P2 follows from statement (it) of Lemma 4.1 since m is incremented by !

4 .' ln each execution of a loop.

Suppose that a process, say process Pj. lerminates. This happens only when
m;= n+1. Thus, by Lemma 4.2, M(n] is true for all m = {, .., n. Therefore, by Lemma 4.4,

all tasks are completed. We have shown that Program A also satisfies property P3. |

Program A is very reliable in the following sense. Property P3 implies that, even if

some processes fail (for reasons exlernal to the algorithm: e. g., crash of the processors
executing the processes), the program may still continue execuling tasks and eventually
complete all tasks, provided that there remalns'al least one active process. We will not

pursue this reliability issue any furlher, though we believe it is important.
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4.2 - A program with crilical soctions

For problems where we are only interested in the output of the last task w,, the
use of the global arrays U(I:n] and M[l:n+1] in Program A can be avolded at the expense

of using critical sections,

We will lllustrate the idea with the following example. Consider the problem of
generating the n-th iterate z, by z; := 9(z;_y) given the (nitial iterate »;. Suppose that
we use Program A. Then, corresponding to the global array U[I:n], we have the global
array z[0:n] where x[i] keeps the value of the i-th iterate, and instructions (4.3) and (4.4)
become

:r.[mj] = p(x[mj-l]) -
Note that we only need z[n). The use of the array x[0:n] is wasteful in space, and might
even be impractical (e.g., when n is large or when the elements z[0), .., x[n] are
themselves vectors or complicated structures). The following program eliminates this

problem. ,
Progfam B:

global integer m; global real xz;

Initialization:
begin
mi:m|; 2:m zg;
start processes Py, .., Py

end
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Process Pj:
begin integer m j; real yj
'vnj =m oy 1=z} (4.7)
while m;sn do '
begin

yji= o0y

{if mj=m then (m := mj z i yj)}; (4.8)
{mj:=m; yj:= 2} _ (4.9)
-end

end

It is crucial to assume that the statements enclosed within a pair of curly brackets
(lines (4.‘7), (4.8).and (4.9)) are programmed as critical sections. (As a matter of fact, the
two lines (4.8) and (4.9) can be brogrammed as one critical section.) With this assumption
it is possible to prove the correctness of the abave program. The proof is based on the
observation that the global variable m is a non-decreasing function of time which takes on
all integer values between 1 and n+l. The proof is relatively easy and hence is omitted

here.

Note that, as was already mentioned, x and yj may represent large amount of data.
Hence the execulion of z:e yj OF y;i= x may take a significant amount of time. After
presenting, in Section 5, an analysis for programs which do not have critical sections, we

will give, in Section 6, an analysis for programs which do have critical sections.

5 - Speea-up ratios: Implementations without critical sections

Let ti,j be the random variable representing the time to execute task w; by process
P J In this and the next section, we assume that the 7 7 Jori=1, ., nand j=1,..,k, are
independent and identically distributed. The assumplion is reasonable when all tasks are
of the same complexily and execuled by identical processors. We will use T to denole any

of the random variables t‘-, 7 and use t to cdenole the mean of T.

m—-—-—-—-——-——_“
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It is easy lo obtain T (n). By equalion (3.1) with k = 1, we have:
T,(n.) - U,(l) + &"(2) LN 8](’!) .
Since, in this case, the z (i) are independent and identically distributed with mean ¢, we
deduce that

Tl(n) - nr. (5.1)

In the rest of the chapter, in order to ev.aluale Tk(n), we impose the fbllowing
further assumptions:
Afl. All processes start at the same time teo @ e, at tj all the k processes start

with the execution of task w,.)

A2. The random variable T is exponentially distributed with mean z.

We observe that by the independence of the t;j and by assumption A2 the
quantities z,(), i=1,.,n, are independent random variables. It follows, from
equation (3.1), and assumption A2, that ‘

Ti(n) = E(1) + E4(2) + .. + Ey(n) , | 5.2) -

where &(i) is the mean of MO

In addition, by assumption Al, €y (1) is given by the minimum of k random variables
distributed as T. Since T is exponentially distributed, the minimum has the mean:

B - £ (5.3)

We now consider z)(i+1) for i = {, .., n-1. Define the distribution probability Pk, jr
- j=1,2,.., as follows. (We use here the same notation as in Section 3.) Let Pk, j be ‘the
probability that ’h,i;l =ty given that Ski=tr for some r. Hence for j -. 5 Pk,j is
the probapliity that conditions (a) and (b) of Theorem 3.1 hold. Using the same argument
as used (n the proof of Theorem 3.1, it is easy to show that Pk,j = 0if j> k. In addition,
assumption A2 implie's that, from the memory-less property of the exponential

distribution, ”k,)’ is independent of ¢ and r. We have:
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tap ™ 4, with probability Pk,1 »
(t.og-t) *+ (t. 0=t .q) with probability p
Y e Pt 2ty - ERPE

(tpag =t + w * (tpy = trypy)  With probability py 4 .
Since by assumption A2 the random variables t., - ¢t., r =1, 2, .., are Independent (and
identically distributed) random variables with mean i—c. we derive from equation (5.4) that,

fori=1,.., ﬁ-l. the mean of ¢, (i+1) is given by:

- . 7 e - ¥ : e e y
"’k(“ ) !s?sk (i k) Pk = & 15‘57_51, 1Pk (5.5)
By equations (5.2), (5.3) and (5.5), we obtain that
T = L : b k) - ; :
k() = ce(ls(n 1)15"‘ ipjk) (5.6)
To evaluate Tk(n), we need to know the following quantity: '
N Isﬁk P jik
Lemma 5.1:
For j=1,.. k:
j.be
g 5.7)

Pik = ————.
Ay 1 P

Proof:

We first observe that, by assumption A2, for r = [, 2, .., any one of the k processes
is equally likely to complete a task at time t,.. Suppose that Ski = tr and Skisl = trej
Then, by condition (a) of Theorem 3.1, thg J proceéses completing tasks at .tlme t,;, tregs o

trsj-g Ar€ different. This occurs with probability

B Bat) ) olciel) o Bl : ¥
| g T sl PYIPS] b

Moreover, by condition (b) of Theorem 3.1, the process completing a task at time t,."'j must

-be one of the j processes mentioned above. This occurs with probability j/k. Hence the

probability that sy ; = t. and s ., = tpyj st

— s o :
k" kN .

The problem of cohputing the leading terms in the asymptoﬁc serles for Ny s

rather difficult. Fortunately, some known results can be used here. Define

k!

% = 1k Kitk-jn
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‘We are'now able to establish lhe following.

; Lemma 5.2:

N = Q-

Nk - [s%k ka,j = ]s?gk [k'(k‘j)]pk’j

k 2

Sl F e oy
1$/2k Pk.j 1<jzk VP, j

P p flebe o Z;’ j.ke!
Isjsk pig-jn  1ssk=l gi*dge-jon

T 5 pk' 5 (l:‘flh!
Isjsk pigg-jn  1sisk gigk-jn

> K ; Gl
Isssk pigg-jn

The leading terms in the asymptotic series for Ok are known [34, p. 118]:
e AR s wily,
Ok 2 3 i E %

Hence, b); equations (5.1), (5.6) and Lemma 5.2, we have the following theorem,

Theorem 5.1
Using k processes, the speed-up ratio is given by
Sutn) w comlbillenc
SK® = Ftn-iig
where

Ny = /BE - L+ L/K  od,
vk C S s

Asymptotically, when both n and k are large, we obtain:

1 Spim) ~ J2& ~ 0798 VK.

6 - Speed-up ratios: Implementations with critical sections

In this section, we analyze speed-up ratios achievable by the algorithms when they

ire implemented with critical sections.
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The diagram of Figure 6.1 illustrates a portion of a possible scheduling of the tasks

by the parallel algorithm with two processes.

u; v Uis3 Vi3 Uis5 Yis5 Wis6
& —o— Mo - b——o0—%
L tis3 tiss tis6
Wisg Visg Y2 Vis2 Wisg Viegd Uisz
: o i e s —o—— W0 55 .
1 . tiel tis2 tieq

Figure 6.1 - A possible lask scheduling with two processes

In the diagram, the marks ‘——' and "—o—' indicate the sequences of time instants u; and v;,
i=1,2, ., when a process completes a task and when the same process completes lhe.
subsequent critical section. Since, at any lime, only one process can execute the critical
section, a process may have to wait before entering the critical section. The per‘iods of
waiting times are indicated by the marks ‘g#s’. The time instants t; when processes

_actually enter the critical section are indicated by the marks "—a—',

As in the preceding section, we assume that the time a process takes to execute a
task is a random variable independent of the process and of the task. Let F be its
.distribulio'n function, and f its density.function. Similarly, we assume that the time a

. ‘ process takes to execute the critical section is a random variable independent of the

{ process.' Let B be its distribution function and b its density function. Furthermore, let ¥

and B denote the average execution times for a task and for the critical section,

respectively. ; !

In the following we derive a general formula for evaluating the speed-up ratio
achievable by the 'parallel algorithm with two processes for the case when F is an

exponential distribution function and B is a general distribution function.

Observe that at time t; when a process enters the critical section, the second

process is. necessarily performing some task (possibly just starting a task). Since the
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distribution function F is exponential, at lime t; the remaining execution time for the task

- s e S A I

performed by the second process is distributed according to the same distribution function
F. Therefore the evolution of the processes, from time t; on, is independent of the past
for any dist;ibulion B. In particular, the random variables tisg ~tpfor i=1,2, ., are .
independent and identically distribuled, and the same holds for the random variables -

gy lis1), for i = 1, 2, ..., defined in Section 3.

In this section, let T‘(n) and T,(n) denote the time to complete task w, and the
subsequent critical section by the sequential algorithm and the parallel algorithm with two
processes, respectively. Let 'fl(n) and Tz(n) denote their means. It follows from the
above discussion that, for k = | and 2, we have:

7"k(n) = Z(1)+T)+..+8(n)+ B, - (6.1)
where the last term, 8, accounts for the time to execute the last critical section (after the

completion of task w).

Consider first the sequential élgorithm. In this case, we simply have £(1) = &, and,

for i = 2, .., n, £(i) = B + £. Therefore, by equation (6.1): . -
Tin) = n(z+p). ' (6.2)
(Here we ignore the fact that in the sequential algorithm the critical section can be

shorlened, since there is no need to include synchronization primitives.)

Consider now the parallel algorithm. As with equation (5.3), we have:

£y(1) = %r;. (6.3)

“For j =1 and 2, let Pj be the probability that $2,i¢1 = trejs given that $2i =1t for

some r. As in Section 5, by Theorem 3.1, we obtain, for i = I, ..., n-!,
; trsg = ¢ with probability py ,
z(isl) = (6.49)
(tpyy =tJ) ¢ (t.5-t,,;)  with probability p,,
We have already mentioned that the random variables trey “tmr =1,2, ., are independent

.and identically distributed. Let p denote their mean. It follows from equation (6.4) that

" the mean of ¢ (is1) is given by:
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Tofiv1) = ppys2upy = (2-ppu, ~ (6.5)

since Py *py=1.
The following lemma establishes the values of ¢ and Py

Lemma 6.1:

Let B* denole the Laplace transform of the distribution function B. We have:

PR .;_B*(g), : : (6.6)
pl - %B‘(é)- i (6.7)

Proof:
We consider transitions for passing from time t; to time tisg- Up to a permutation of

the processes, ihere are three possible transitions as defined by the followlng diagrams:

1 i+ [} ¢
00— SH——O— &4———0
A,: AZ" A3:
e —_— —
tisg tisg

where the notation of Figure 6.1 is assumed.

Let Hj(t). j=1,2, and 3, be the probability that tra&s(tion Aj takes ptace and that

t;sg - t; s t. We have: :

Hyw) = / Pl - Fe) ; % St fwy) il s

Hy®) = [ ftz) [)7 60) (1 - Fz-y)] dy dz,

Hy®) = /' bls) F(x) d .
But we observe that H(t) = H () + Hp(t) + H3(t) is the distribution function for t;, 4 - t; and
that the same process enters the critical section at both times ¢; and t;sq only with
transition A;. Hence:

o= [T edH® = [T - HO)de,

AR MO A (R [} by fiz=y) dy dz ,

trom which equations (6.6) and (6.7) follow ecasily. [ |

By collecting the preceding results, we obtain the following theorem.
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Theorem 6.1:

The speed-up ratio of the parallel algorithm with two processes is given by:

Syn) = n(z+f)
(n-1)[2 - %B'(&‘.)][/} . g B*1)) + g. Ny
= ! PPN S0 ST O(%) :

2-18%4)  peLEY)

We give below B'(g,) for some distribution functions B.

(i) B is exponential (with parameter {/8):
®ly . L E
B*(z) oy

(it) B is uniform over [a, b):

1) _ e~a/t _ b/t
: B'(g) (b-a)/x
(iit) B is the Dirac function at the point f3:

YY) - 6Bl

In Figure 6.2, we have plotted the asymptotic speed-up ratio S as a function of the
ratio @ = z/(z+f) for the three distributions mentioned above (in the second case, A and b

have been chosen as /2 and 34/2, respectively).

When o« tends to 0 (or 3 tends to infinity), the algorithm approaches its 'wof'st case
performance, since the evaluations of the two processes tend to be exactly interleaved.
When o« = 1 (or B = 0), the critical section is non-existent and we have the results of

Section 5.

We observe from Figure 6.2 that the best speed-up ratio is always ob!ained when B
is an exponential distribulion (the first case). We also nole that the results obtained for
the two otlwér cases are very close to each other and clo;e to the results obtained with
the exponential distribution. This suggests that the results obtained with the exponential

distribution could be used as approximations to results obtained with other distributions.
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Speed-up ratio

1.2 1

1.0

0.9 T

Example (i) —-

n
4—

0.8 Example (ii) -

Example (iil) —r~

0.7 A

O b~ e e e e e e e = D

0.5 A
0.4 -+
0.3 +
k
0.2 + :
0.1 + :
i
0 $ + —+ + + + + -t $ +
0 0.2 0.4 .6 0.8 1.0 1.2

Ratio o

Figure 6.2 - Speed-up ratio with 2 processes for various distributions B

We can observe from Figurb 6.2 that, unlike the implementation without critical
section, better speed-up is not necessarily achieved by using more processes, though we

assume that a processor is always available to each process! More precisely, the figure
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indicales that (when B is an exponential distribution) in order to achieve the best
speed-up when two processors are available, one should create two processes when
o > 0.586, but only one process when o < 0.586. Similar results are useful in practice,
since they can be used to determine the optimal number of processes to create in order to

minimize the overall execution time.

7 - Conclusions and open problems

In recent years, research in parallel algorithms has dealt mostly with synchronized
array or vector processors such as the ILLIAC IV or the CDC STAR, and there are very few.
results on the design and analysis of algorithms for asynchronous multiprocessorﬁ. In this
chapter, we have proposed a novel method of using asynchronous multiprocessors which

takes advantage of their asynchronous behavior. We have also presented analytic

techniques o evaluate the performance of an asynchronous algorithm using the method.
The algorithm is expected lo achieve a large speed-up when the fluctuations in the task

execution times are relatively large. Moreover, as noted in Section 4, the algorithm has a

nice reliability property. The same idea may also be used to construct other reliable

algorithms.

For the implementation with critical sections we obtained analytic results for two

processes. The results show that the parallel algorithm using two processes is not

necessarily faster than the sequential algorithm, because of the critical section overheads

associated with the parallel algorithm. This confirms the practical experrience that the
speed-up ratio does not necessarily increase as the number of processes increases. it
would be interesting to exiend our analylic results for more than two processes. We ha‘ve
chosen to deal with a simple problem by imposing the condition that the tasks are linearly
ordered. An interesting extension would be to consider a set of tasks (possibly generated
dynamically) which are ordered by a directed graph (i. e., partially rather than linearly

ordered). Another interesting extension would be to design algorithms where the
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_ execulion of a task by a process may be interrupted by another process. We expect that

this approach would result in more efficient algorithms, since processes which are not
doing useful work can be interrupted. A careful performance analysis including the
additional overheads introduced by the interruption mechanism is needed here. This

problem has been addressed in two ;ecent papers by Barak and Downey [3] and [4]. =

Finally, we note that the results of this chapter are not restricted to multiprocessor
systems. The ideas can be used to solve any problem in Operations Research which

satisfies conditions similar to Cl, C2 and C3.

m R e 2




Chapter III

Asynchronous Iterative Methods

for Multiprocessors!

-

1 =~ Introduction . 3 i

In this chapter we investigate the fixed point problem for an operator F from IR"
into itself: we want to find a vector z in R® which satisfies the system of equations
represented by

z = F(z). (1.1)

In [11], Chazan and Miranker introduced the chaotic relazation scheme, a class of
iterative methods for solving equation (1.1) where F is a linear operator given by
F(z) = Az + b. They showed that" iterations defined by a chaotic relaxation scheme

converge to the solution of eguation (l.1) U aﬁd only if p(lAl) < 1. (I M is a real

nxn matrix, po(M) denoles its spectral radius and |M] denotes the non-negative‘ nxn matrix : !
obtained by replacing the elements of M by their absolute values.)
In [41] and [43), Micllou generalized the chaotic relaxation scheme to include ‘

non-linear operators and obtained convergence results similar to those of [11] in the case

of contracting operators (sce, for example, [46, p. 433)).

In [11], [41] and [43), the molivation of defining chaotic relaxation s to account for

fhe parallel implementation of (terative methods on a multiprocessor system so as to

lCOpyright 1978, Assoclation for Computing Machinery, Inc., reprinted by permission.
This chapter appeared in Journal of the ACM, Vol. 25, No. 2, April 1978, pp. 226-244.
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‘reduce communication and synchronization between the cooperating processes. This

reduction ts obtained by not forcing the processes to follow a predetermined sequence of

computations, but simply by allowing a process, when starting the evaluation of a new

‘iterate, to'ch_oose dynamicall;} not only the components lo be evaluated but also the values

of the previous iterates used in the evaluation.

The chaotic relaxation schéme does not, however, allow for a completely arbltrary
choice of the antecedent values used in the evaluation of an iterate. A restriction is that
there must exist a fixed posilive lnléger s such that, in carrying out the evaluation of the
i-th iterate, a process cannot make use of any value of the components of the j-th iterate
U j<i-s. We will show that this condition can be rep(aced by a more general bne, which

still guarantees the convergence of the iteration.

In the next section we introduce the class of asynchronous iterative methods which
relaxes the assumption mentioned abweﬁand we show that existing iterative methods (and,
in particular, the chaotic relaxation) can be represented as special cases of asynchronous
iterations. Section 3 gives the definition and reviews some propert(e; of contracting
operators. Then the theorem of Sectiond generalizes the sufficient condition on the
convergence of the chaotic relaxation obtained by Chazan and Miranker (11] and by
Miellou [41] and [43]. This result is furlher extended, in Section 5, to include iterative
methods with memory. In Section 6, we consider the complexity of asynchronous iterative
methods, and we derive bounds on the efficiency. These bounds are then compared with
actual meas;rements of asynchronous iterations. The experimental results, presented in
Section 7, show a considerable advantage for iterations making no use of synchronization.
Section 8 is devoted to the study of an asynch.ronous iteration showing super-linear
convergence and, through a specific analysis, we give lower bounds on the order of
convergence and on the efficiency. . Possible extensions of the results are discussed in

Section 9, and concluding remarks are presented in the last section.
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2 - The class of asynchronous iterative methods

The following notations will be used throughout the chapter. 1f z is a vector' of IR™,

its components will be denoted by z;, i =1,.,n To avoid confusion, a sequence of

vectors of R™ will be denoled by z(j), j =0, 1,... If Fis an operator of K" into itself,

F(x) will also be represented in components by f(z) or by f,(x), ., z,), { = 1, ., n. We

denote by IN the set of all non-negative integers.

2.1 = Dafinition of asynchronous ilerative mothods

The definition of chaotic iteration is originally due to Chazan and Miranker [11], and

the definition we give below for asynchronous iteration ls similar to their definition.

Definition 2.1:

Let F be an operator from IR™ to R™. An asynchronous iteration corresponding

to the operator F and starting with a given vector 2(0J) is a sequence x(j), j =0, {, ..,

of vectors of IR® defined recursively by:
: z,(j-1) it iEJ; :
cx(j) = - (2.1)
: Filz (s (D), vy 2 (s (j)D) if i€ Jj .
where 2 = {'Jj ) j=1,2,:..} is a sequence of non-emply subsets of {I, .., n} and

A= { (s 4G50 oo sn(])) | j=1,2,.. )is a sequence of elements in N,

In addition, # and A are subject to the following conditions:

for each¢ =1, .., n

(@) st < i, j=1,2 .

(b) s;(j), considered as a function of j, tends to infinity as j tends to infinity,

(c) ¢ occurs infinitely many often in the sets Jj, J=1,2, ..

An asynchronous iteration corresponding to F, starting with z(0) and defined by

J and A will be denoted by (F,x(0),7,4). n
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In the definition of chaotic.ireratiom, Chazan and Miranker [11] use the following
condition
(b") there exists a fixed integer s such that j - s;(j)ss 'for j=1,2,..and i = |, .., n,

in lieu of condition (b). Clearly, condition (b’) implies condition (b), and, in this sense,

asynchronous iterations provide a generalization of chaotic relaxations.

An asynchronous iteration (F,2(0),7,4) may be thought of as corresponding to the

following sequence of computations on an asynchronous multiprocessor.

Assume we have a pool of processors available. Let tj, j=1,2, .. be an increasing
sequence of time instants. At time t; processor P is idle and is assigned to the evaluation
of the iterate z(j), =(j) differs from z(j-1) by the set of components { z; | i C Jj } and P
starts computing these components using values of components known ‘from previous
iterates, namely the r-th component of the s,_(j)-fh iterate, for r = {, ..., n.. The choice of
the components may be guidcd by én_y criterion, and, in particular, a natural criterion is to
pick up the most recently available values of the components. This .scheme does not
require any synchrdnization between the processes. At some time ¢, later on (k> P

“will finish its computations and will be assigned to a new evaluation: (k).

The use of asynchronous iterative melhods is obviously not restricted to

multiprocessor systems, and the scheme (s also well suited for execution on a network of

computers, in particular, when the communication between elements of the network is not

too expensive as opposed to the computation itself.

: We notice that, in the evaluation of an iterate, nolhing s imposed on the use of the
values of the previous iterates. The only thing required, by condition (b) of the definition,
is that, evénlually, the values of an early iterate cannot be used any more in further
evaluations, and more and more recent values of the components have to be used instead.
On a multiprocessor, this condition can be satisfied as long as no processor crashes (and

"eventually completes its computation).

R R T N T T S (R Ty B T Ry SO PPy oS
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Condition (a) of the definition states the fact that only components of previous
iterates can be used in the evaluation of a new iterate. Condition (c) guarantees that no

cémponent be abandoned forever.

2.2 - Examplos and partlicular casos of asynchronous iterations

Classical iterative methods: point or block Jacobi, Gauss-Seidel, etc., as well as
others introduced more recently: chaotic relaxation scheme [11], periodic chaotic
scheme [18], iteration chaotique a ratards [41] and [43], iteration chaotique

serie-parallele [50], can all be scen as parlicular cases of asynchronous iterations.

For example, the point-Jacobi method defined oﬁ the operator F with the initial
approximation z(0) can be represented by the asynchronous iteration (F,2(0),7,4) where #
and 4 are defined by:

Jj- {1,..,n} for j=1,2,..,

si(j) = j=1 for j=1,2,.. and i=1,.,n.

The same point-Jacobi method can equivalently be represented by the asynchronous

iteration where # and 4 are defined by:
Jj-{ 1+(j-1modn)} for j=1,2,..,

s()=n|(j~1)/n) for j=1,2,.. and i=1, ., n.

Although those two representations correspond to the same point-Jacobi method,
| they differ by the :tmplicit information they contain about the decomposition of the
computations. In the first case, all components are evaluated at once and this, presumably,
will be done by one computational process. In the second case, however, each component
is evaluated separately, and up to n processes can be used to perform the evaluations.
Between the two extreme representations of the point-Jacobi method, in terms of
asynchronous iterations, several others can be proposed, each of which can be interpreted
in terms of decomposition into computational processes and in terms of implementation by

concurrent processes. =

AR i A R o 5 0 i e
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The ilerative method proposed by Robert, Charnay and Musy (iteration chaotique
serie-parallele [50]) can be oblained as a special case of an asynchronous iteration in
which s,(j) = j-1 (for all i=1,.,n and j=1,2.) This corresponds to a strictly
sequential computation of sets of components. The choice of the components within a set
is arbitrary and lhe calculations of their values can be done simultaneously but the
evaluation of a new set of components cannot be started before all components of the
previou.s set have been compuled and their new values relaxed. The goal of their
‘research was to show that, for example, in the iterative solution of linear systems
-rcsulting from the application of the method of finite differences to partial differential
equations, it is possible to concentrate the computations more on those points of the grid
‘where lhe' convergence is slower than oﬁ other nodes. This is not the case with ordinary
ilerative methods for which any component is iterated as many times as any other

component.

Chazan and Miranker [11] have proposed a. chaotic relaxation scheme to solve a
linear system. As we have already mentioned, our definition of an asynchronous iterative
method is similar to the definition they give for a chaotic iterative scheme. Our definition,
however, does nol require the condition that j-s;(j) has to be uniformly bounded by some
fixed integer, say s, (for all i = 1, .., n and j = 1, 2,..). This assumption, however, happens
to be satisfied in most usual implementations, with small values for s. It will be useful in
Sections 6 and 7, and we will use this assumption explicitly in order to derive bounds on
the rate of convergence and on the efficiency of various methods Ilmplemented on an

asynchronous multiprocessor.

Although all chaotic relaxation mctho&s (as presented in {11}, [41] and [43)) can be
identified as asynchronous iterations, the converse is not true as is illustrated by the
following example. Let F be an operator from R? inlo ilself. Assume we have two
processes P', and P, attached to the evaluations of the first and second components,

respectively. To avoid synchronization, the processes -lwn'ys use in an evaluation the

’
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values of the components currently available at the begining of the computation. If we
assume that it always takes I unil of time for Py lo perform the evaluation of z; and (t
takes k units of time for P, lo perform the k-th evaluation of zy, then the quantity
J- :20), grows as ¥j which is unbounded. This iteration is a legitimate asynchronous

iteration, it is not, however, allowegl in the .r;ett'mg of [11], [41] and [43].

3 - Contracting operators

In the next section we shall give a sufficient condition on the operator F for the

convergence of any asynchronous iteration. Needed definilions are given in this secﬁon.

3.1 - Lipschitzian and coniraclingvoporators

Contracting operators, to be defined below, correspond to P-contractions
in [46, p. 433]). They seem to have been first introduced by Kantorovitch, Vulich and
Pinsker in [31], and they have been furlher studied by Robert [49]. The notion was used

in particular to obtain the results of [10], [41], [43] and [50].

Definition 3.1:

An operator F from IR™ to R™ is a Lipschitzian operator on a subset D of R" if

there exists a non-negative nvn matrix A such that:
|F(2)-F(y)| < Alx-y|, Y2, y€D, (3.1)
where, if z is a vector of R® with components z; i =1, ., n, |z| denotes the vector

with components Vlzil, im= l,‘..., n, and the inequality holds for every component.
The matrix A will be called a Lipschitzian matriz for the operator F. |

From this definition we can se.e that any Lipschitzian operator is continuous and, in
fact, unil.ormly eontim;ous on D. However, this definition is too broad and, in particular,
we are not guaranteed of the existence and of the uniqueness of a fixed point as is shown
by the following example. Take lhe operator F from R to R defined by F(z) = /zz—mz,

this operator is Lipschitzian on R because
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IF(2)-F(y)] = [(z-Pl o)/ 22402 + ¥ y24a2)])| s |2-y], Y 2, yC R
However, the equation z = v 22+1 (corresponding to a = [) has no solution. On the other
hand, the equation x » |2|, (corresponding to a = 0) has an infinily of solutions, and, in

fact, a continuum of solutions.

We will, therefore, restrict ourselves to the following class of operators.

Definition 3.2:

An operator F from IR™ to R™ is a contracting operator on a subset D of IR™ if.it
is a Lipschitzian operator on D with a Lipschitzian matrix A such that p(A) < I (where

p(A) is the spectral radius of A).
The matrix A will be called a contracting matrix for the operator F. a

The fact that, unlike Lipschitzian operators, contracting operators are guaranteed to
have a unique fixed point in the subset D can be easily derived from the definition. In

ﬁ addition, if we assume, for example, that D is closed and that F(D) is a subset of D, we are

also guaranteed of the existence of a fixed point in the subset D. A proof can be found

in (46, pp. 433-434).

3.2 - Examplas of contracting operators

Let F be a linear operator given by' F(z) = Az + b, where A is an nxn matrix and b s
a vector of R™. We observe that F is a contratting operator if and only if p(|A|) < 1.
Therefore, in the case of linear operators, the notion of contracting operators coincides
with lhe property stated by Chazan and Miranl;er for their convergence result [11], a_nd

their result will abpear as a parlicular case of thg theorem of the next section.

We could have considered a more general definition for asynchronous (terative
methods by introducing a rcla;xation factor ¢ > 0. This would simply consist of replacing,
in equations (2.1), the operator F by the operator Fe = oF ¢ (1-0)E, where E is the '

identity operator of R". It follows that
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IF (y(2)-F oy(9)] < @|F(2)-F(y)| + |1-0|lz-y| ,

and, if F is a contracting operalor wilth a contracting matrix A, F,, is a Lipschitzian

[A]

operator with the Lipschitzian matrix A, = @A ¢+ |[1-o|l. The matrix A being non-negative

‘we have p(A ) = op(A) + |1-w], and, if we choose

0 .< o < 2/[1+p(A)], : (3.2)
F, is also a contracting operator. In parlicular, as long as condition (3.2) is satisﬁed, the
results of the n;:xt section also apply to asynchronous iterative methods with relaxation.
Condition (3.2) is classical and is mentioned, in particular, in [11, p. 221], [43,. p. 62],
and [50, p. 31].

If we consider a linear system of equations derived from a linear elliptic differential
equation by the melhod of finite differences, we note that the system is represented by

Ax = b, where b is a vector of IR® obtained from the boundary conditions and A is an

nvn M-matrix (see, for example, [62, p. 85]). Therefore the system can be written into the
form of eguation ( 1.1) in which F is the contracting operator given by
F (z) =(I-D1A)x + D',b, where D is the matrix composed of the diagonal elements of A.
This example shows, in the case of lingar operators, the importance of contracting

operators. =

On the other hand, non-linear contracting Operatdrs. too, constitute a very important

class. A first example is directly derived from the previous one. Elliptic partial

differential equations, obtained by the addition of a small non-linear perturbatlbn to a

linear partial differential equation, can also be shown to give rise to (non-lineér)

contracting operators.

More important, if C is a non-linear operator from R™ into itselt with tﬁe simple
root [, superlinear iterative me\hdds have been devised to find he root ¥ of G, provided
that an initial approximation x2(0) sufficiently close to § is al?eady known. For example,
Newton iterative method generates the sequence of iterates

2(i+1) = F(2(i) = 20) - [C'(xG))])1C(2G)) , for i =0, 1, ..,
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which converges quadratically to the root § of G. In this parlicular example, we can easily

derive, under usual assum{alions (for example, G’ satisfies some Lipschilz condition in a

neighborhood of [), that the Newlon operator. F corresponding to G Is a contracting

'opera'itor. (This result will be derived in a more general context in Section 8.)

In fact this result is very general. Let F be an operator from IR™ into itself with a
fixed point ¥. If we assume that F is continuously differentiable in the set
D.={=z||lx-¥ll <r} and that the derivative F' vanishes at ¥ and satisfies a Lipschitz
condition

IlF*Ce)-F'Cx)ll s Mllz-yll , Y z,¥CD,,
then it can be easily shown that
IF(x)-F(yll < 2Mrfl=--| , Y 2,y C D, .
Therefore, by choosing the vector norm |lzll = |x] ¢ .. ¢ |x,| (which only changes the

constant M), the operator F is certainly a Lipschilzian operator with the Lipschitzian

“matrix A = [“i.j] where aj= 2Mr, for i, j = 1, .., n. In particular, if we know a sufficiently

close approximation to the fixed point [ (i. e., if ris small enough), the operator F is also

a contracting operator. This shows that the class of contracting operators contains, under

‘weak conditions, all iterative functions occurring in the classical superlinear iterative

methods.

4 - Convergénce theorem

Before stating a sufficient condition ensuring the convergence of an asynchronous

iteration, we give a characterization of a non-negative matrix with spectral radius less

_than unity. The result is classical and an algebraic proof of this characterization can be

found in [11, p. 218). A shorler proof, based on the continuity of the spec.tral radius of a

malrix as a function of its coefficients, is given below.

Lemma 4.1:

Let A be a non-negative square matrix. Then p(A) < I if and only if there exists

a positive scalar o and a positive vector v such that:

A St e
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Arsov and o< !. (4.1)

’,

Proof:

We first assume that (4.1) holds. In this case we nofe that [|All, < © < I, where the

matrix norm |||, is induced by the vector norm defined by: ‘
l=ll, = max{ |z|/v; |i=1,.,n}.

Therefore the matrix A is convergent which implies p(A) < I (see, for example, [62, p. 13]).

Now assume that p(A) < 1. Let t be a non-negative scalar and A, be the matrix
obtained by adding t to all null coefficients of A. Clearly, for any positive vector x, we
have Az < Ajz. On the other hand, p(A,) is a cont'\nuou.s function of t. In particular, since
Ag = A and p(A) < i, we can always choose t > 0 small enough so that P(At) < 1 (in fact, we :
also have p(A) < p(A)). Then let © = p(A). As A >0, from Perron’s theorem (see, for
example, [62, p. 30]), there exists a positive 'eigenvector v corresponding. to the
eigenvalue . The positive scalar © and the positive vector v verity Av < Ay = wv with

o < 1. And this completes the proof. ) [ |

This proof shows, in particular, that o 2 p(A). But, we also see easily that the

positive scalar o can be chosen arbitrarily close to p(A).

We are now able to s.late a sufficitent condition on the operator F'. for the
convergence of any asynchronous iteration corresponding to F. Similar results were first
established for chaotic iterations, i. e., under condition '(b'), by Chazén and Miranker [11]
in the case of linear operators, and by Miellou [41] and [43] in the case"*m' contracting '

operators. The proof given here follows the same idea as in [11, pp. 217-—2-18].

Theorem 4.1:

If F is a contracting operator on a closed subset D of R™ and if F(D) is a subset
of O, then any asynchronous iteration (F,x(0),7,4) corresponding to F and starting with

a vector x(0) in D converges to the unique fixed point of F in D.
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Praoof:

A ; ’ : :

Let ¥ be the unique fixed point of F. By considering the operator F(z+¥)-¥, we may
assume, without loss of generality, that § = F(Y) = 0. By setting y = ¥ In equation 3.1),
the Lipschitz condition on the operator F gives: ; i

|IF(z)] s Alz|, Y2€D.

Let A be a contracting matrix for F and let © and v be as defined in Lemma 4.1.
Since v is a positive vector, for any starting vector z(0) we can find a positive scalar o

such that |=(0)] < av.

We will show that we can construct a sequence of indices jp, p=0,1,.., such that
the seqbence of ilerates of (F,2(0),7,4) satisfies:
1=l s owPy for j> Jp- (4.2)

As 0 < @ < I, this shows that z(j) - 0 as j =+ o and this will prove the theorem.

We first show that inequality (4.2) holds for p = 0 if we choose jj = 0. That is, for
j20we have:

|2(j)| s av . ' (4.3)

From the choice of «, inequality (4.3) is true for j = 0. Assume, for induction, that it
is true for 0s< j<k and consider x(k). Let z denote the vector with components
z; = z,(s;(k)), for i = 1, .., n. From Definilion 2.1, the components of z(k) are given either

by z;(k) = z‘-(k-'l) if i €Jy, in which case |z;(k)| = |x;(k-1)] < av;, or by z;(k) = f(z) if

i
¢ € Jp. In this latter case, we note that, as s,(k) < k (condition (a) of Definition 2.1), we
have:

|F(z)] < Alz] < ®Av < wov
and in particular:

2, 0k)] = f,(2)| < wow; . ‘
As 0 <w <1, in this case too we oblain |x;(k)| < wv; and (4.3) is proved by Induction,

which shows that (4.2) is true for p = 0 if we choose jj = 0.
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Now assume that jp has been fourid and that inequality (4.2) holds for 0 < p <q. We

want to find jq and show thal (4.2) also holds for p = q.

First define r by
r=minf k| Y j2k :i(j)zjq_,, for i=1,.,n}.
We sce, from condition (b) of Definition 2.1, that this number exists, and we note that, from

condition (a), we have r > jq_, which shows, in particular, that |x(r)| < w91y,

fhen take )’z r and consider the components of r.(j).. As above, let z be the vector

“with components z; = z,(s;(j)). From the choice of r, we have s,(j) 2 jq-l' for i = 1, .., n,
and this shows that |z| <wodly. In particular, using the contracting property of the
‘operator F we obtain:

IF(2)] < Alz] < w9 Ay < wov .
This inequality shows that, if i € ,Jj. z,(j) salisties:

I, ()] = 1f(2)] < wey; .
On the other hand, if ( € Jj the i-th component is not moditied. Therefore, as soon as the

i-th component is updated between the r-th and the j-th iteration we have:

12, ()] < ey, . : .. (4.49)

Now, define jq as:
jg=min{jljxr and {J, ., n}=J U..UJ;}
(this number exists by condition (c) of Definition 2.1), then for any j > jq every component
is updated at least once between the r-lh and the j-th iteration and therefore inequality
(4.4) holds for i = 1, ..., n. This shows that inequality (4.2) holds for p = q and this proves

the theorem.. : | |

Considering only the class of linear operators, F(z) = Az + b, Chazan and
Miranker [11] have established a stronger result, namely, that the condition o(|A]) < I is

also a necessary condition for the convergence of chaotic iterations.
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5 =~ The class of asynchronous iterative methods with memory

The idea behind the definilion of asynchronous iterations, as presented in Section 2,
is to allow, in the evaluation of F(z), different (and independent) processes ‘to compute
different subsels of the components. This corresponds to a natural decomposition for the
evaluation of F(x) when the operator F is known explicitly by the set of functions
Sy = S This is not, however, always s0. For‘example, it F ls the Newton 'operator
corresponding to a non-linear operator G, i. e.: F(x) = 2 - [G "(x))"1G(2), usually only the
operator G is ‘given and the obcrator F is not known explicitly. In this. particular case,
when two brocessors are available, a more natural decomposition, as proposed by Kung
in [37], is to have one process computing the value of G’ while the other process uses this
value for the evaluation of F. More precisely, if z and y are two global variables
containing the current values of the iterate and of the reciprocal of the derivative of C,

respectively, the two processes correspond to the two following programs.

Process 1: while (termination criterion not satisfied)

do z := z - yxC(z).

Process 2: while (termination criterion not satisfied)

do y := [C'x)]L -

Starting with the initial values #(0) and [C'(z(0))]"! for = and y respectively, the
two processes execule their programs asynchronously and use for x and y whatever
.values are currently available wl?en needed. They implicitly define the sequence of
iterates z(j), for j “ VO, J thr'nugh formulas of lﬁe form:
%)) = Hlx(j-Dy2tk ), with ks j-1, (5.1)
where .
Hiz.») = % - (O 10(x)
This iteration, however, is nol. allowed in the setting of Definition 2.1, because, in-
equation (5.1), z(j) is defined in terms of two previous iterates. This motivates the need

for a generalization of the class of asynchronous iterative methods.
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5.1 = Asynchronous ilerations wilh mamory

A generalization to Definition 2.1 can be obtained by noling that, if, for j = 2, 3, ...,
it happens that hj = j-2 in equalion (5.1), this equation defines a sequence of ilerates
which corresponds exactly to the sequence generated by an iterative method with one
memory. This remark suggests the following generalization for the problem stated in

equation (1.1).

Given an operator F from [R"]™ into R™, the problem is now to find a vector ¥ in
IR™ such that:

¥ = lim Flal,.,x™) | ' (5.2)

{zloF,..,2M ) ;
The vector § will still be called a fixed point for the operator F.

In very much the same way as we introduced the class of asynchronous iterative
methods to solve equation (1.1}, we now introduce the class of asynchronous iterative

methods with memory to solve equation (5.2).

Definition 5.1

Let F be an operator from [[R")™ into R™ An asynchronous iteration with
memory corresponding to the operator F and starting with a given set of vectors
2(0), ..., x(m~1) is a sequence =z(j), j=0,1,., of vectors of R™ detined for
J = m, m+{, .. by: A

_ { 2, 0j-1) it i€y
z,(j) =
fieh, 2™ u icyy,

where 27, 1sr<sm, is the vector with components 2l w2, 1sis n.' ‘As in
Definilion 2.1, 7 = | Jj | j=m, msl, ..} is a sequence of non-empty subsets of
{1, ..., n} which correspond lo lhe subsets of components evaluated at each step of the
iteration. But the sequence 4 is now to be replaced by:

A w0y ey 801G, 8 2000, s 8GN | G ommy mad, ),
a sequence of elements in [IN?]™. In addition, while condition (¢) of Definition 2.1

remains the same, conditions (a) and (b) now become:
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foreachi=1{, ., n
(@ max{ s ()| 1<srsm}sjl1,for j=m, msi, .,

(b) min{ s(j) | 1 5 s m}tends to infinily as J tends to infinity.

An asynchronous iteration with memory corresponding to F, starting with a set X

of m vectors and defined with 7 and 4 will be denoted by (F,X,7,4). |

For practical reasons (e. g.A, stability in the implementation on a computer), we might
want to have the additional condition that the vectors z!, .., z™ are all distinct. But this
restriction is nol essential for our purpose here if we assume, for example, that the
oberator F is defined by continuity when two or more vectors are identical. This will be

the case with the class of operators we will consider.

In order to obtain, for asynchronous iterations with memory, a convergence result
similar to the result stated in Theorem 4.1, we need to generalize the notion of

contracting operators to operators from [R™*]™ into R".

In the remainder of the section, we will use the following notation. If {x’. s 2T} is
a set of vectors in R"™, z = max[z!, .., z™] denotes the vector in R™ with components
z; = max{ z[ |1sr<m}, i=1,.,n A natural generalization to the notion of

contracting operators is given in the following.

Dafinition 5.2:

An operator F trom [R™]™ into R™ is an m-contracting operator on a subset D of

’,

IR™ if there exists a non-negative nxn matrix A with spectral radius less than unity

_satisfying, for all 2l ., 2™yl ., y™in D,

|Fezd, ..., ™) - Feyl, ... y™)| s A max[lz’-yll, w |2M-y™(].

The matrix A will be called a contracting matriz for the operator F. ]

1 When m = I, the preceding definition corresponds exactly to Definition 3.2, and

m-contracting operators have all the properties we have already mentioned for
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contracting operators. In parlicular, it is clear from the definition that m-'contracllng
operators are continuous and, in fact, uniformly continuous on D™. The uniqueness of a
fixed point in D is also easily derived. In addition, if we assume that D is a closed subset

of R™ such that F(D™) is a subset of D, then we are guaranteed the existence of a fixed

5 G point in D: the fixed point is, for example, obtained as the limit of the sequence z(j),
f j =0, 1, .. defined by: A
2(j) = F(x(j-1), .., z(j-m)), j=m, m+|, ..,

which is independent of the set of starling vectors x(0), ..., x(m-1) in D.

We are now able io state the analogue of Theorem 4.1 for m-contracting operators

in the following.

Theoram 5.1

If F is an m-contracting operator on a closed subset D of R™ such that F(D™) is

a subset of D, then any asynchronous iteration with memory corresponding to the
operator F and starting with an arbitrary set of m vectors in D converges to the

unique fixed point of F' in D.

Proof:

With slight modifications, the proof of this theorem is identical to the proof of

Theorem 4.1. [ |

5.2 - Examploes of asynchronous ilerations with memory ;

In the beginning of this section, we considered the Asynchronous Newton's method to

fiﬁd the simple root ¥ of a non-linear operator G. This method led to the sequence of
iterates generated by the asynchronous iteration with memory (H,{x(0),2(0)},7,4), where:
Jj ={l,.,n} for j=23, ..,
si'(j) w j=1, :‘2(/') - kj
In addition, as the operator H can easily be showf; to be a 2-contracting operator

for je2,3,..and i=1,.,n.

(assuming, for example, some Lipschitz condition for the derivative of G in a small
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neighborhood of the root ¥), we see that the sequence defined by equalion (5.1) converges
to ¥, provided that & j tends 1o infinity with j (which simply states the fact that the

processes eventually complele each step of their computations).

-

Let F be an operator from [R™]™ into R, and let w be a positive scalar. Consider
the operator £, from (R"]"“’ into IR™ obtainéd from the operator F by the introduction
of tl_we relaxation factor , and defined as

Fo(xo, 2l 2™ = (1-0)20 + oF (2!, .., x™) . '
We first note that both F and F, have the same fixed points (if any). We also note that, if
F s an m-contracting operator on some subset D of R" with the contracting matrix A,
then, for all zo, =l ., =M, yo, yl, «» ™ in D, the operator F, satisfies:
F (20, oy 2™)-F (50, oy Y™ < 1-0l120-50] + 0|F (2!, .., 2™)-F(y!, .., y™)|
s 11-0llz%-5% + wAmax(|z!-y!|, .., [sM-y™|]
< [|[1-0}I + QA]max“zo-yo], Iz’-y, i. - |2T-y™]] »4
and, provided that 0 < o < 2/[1+p(A)], F¢, is an (m+1)-contracting operator on D with the
contracting matrix A, = [1~w|l + ©A. This rcesiéblishes. in a more ger;eral setting, the

Y IS
result mentioned in Section 3.2 for asynchronous iterative methods with relaxation.

In [42], Miellou introduced a generalization of the idea of iterations qhaoriquei a
retards for the problem of finding the fixed point of an operator F from [R"]‘? into R™. His

generalization is a particular case of an asynchronous iteration with memory

corresponding to the operator F (with m = 2). Miellou, in addition, gives convergence .

results under different assumplions on the operator F (monotony, continpity and existence .

of a fixed point).

Many more examples of asynchronous iterations with memory can be given and, in
particular, all classical iterative method with memory can be expressed in this way. In
addition, all usu‘al super-linear iterative methods with m memories can be shown (under

weak conditions) lo correspond to some (m+1)-contracting operator, therefore ensuring the

'corwergence of any asynchronous iterations corresponding to this operator.

ISP
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6 - On the complexity of asynchronous iterations

-

Let F be an operator from R" lo itself with a fixed-point ¥ and satisfying the
assumptions of Theorem 4.1. We now investigate some measures of complexily for the

convergence of the asynchronous iteration (F,x(0),7,4) toward the fixed-point ¥ of F.

We will first derive, in Section 6.1, results applicable to asynchronous iterations in
general, then, in Section 6.2, using condition (b’) in Definition 2.1, we will derive more

speclfic results for the parlicular case of chaotic iterations.

.The constructive proof of the thearem already provides us with bounds for the error
vector x(j) -¥. And, in fact, if F is a contracting operator with the contracting matrix A,

we note that an estimate of the error committed with the asynchronous iteration

(F,x(0),7,4) is directly obtainable from the asynchron_ous iteration (A,|z(0)-¥|,7,4). This | ‘
estimale is used in this section to derive bounds for the complexity of asynchronous |
iterations corresponding to contracting operators. However, since (A,|z(0)-¥|,7,4) can
only reflect’ linear convergence, this estimate is certainly not adequate to deal with all
asynchronous iterations, and, in Section 8, using an example, we present an analysis for an

-

asynchronous iteration with super-linear convergence.

For convenience, we only consider the convergence in norm of the error vector
z(j) - . By choosing, for example, the norm |lz|| = max{ lz;l léi=1,.,n} this i

corresponds to the worst possible case for the convergence of the components.

To measure the linear convergence of the sequence x(j), j = 0, 1, ..., toward its limit
¥, we consider the following complexity measures often referred to in the literature. The
rate of convergence of the sequence is defined as:

R = lim inf o [(-logliz(-/4]
In addition, if ¢ j is lhe cost associated with the evaluations of the first j iterates,
z(1), ..., 2(j), we define the complexity of the sequence by:

E = lim ir\fj_m° [{-logﬂz(j)-{ll)/cj] .
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If all logarithms are taken to the base 10, {/R measures the asymplolic number of steps
required to divide the error by a factor of 10, whereas !/E measures the corresponding -
cost.” We nole that, if c/-/j tends to some finile limit ¢ (which corresponds to the average

cost per step), then the complexity is simply given by E = R/¢.

The costs cj J = 1,2, .. can be chosen according {o any convenient measure. In our
case, we consider the cost to correspond either lo the number of evaluations of the

operator F, or to the time to perform the evaluations. In the former case, if each

-component is equally as hard to compute, the cost can be directly evaluated trom the

sequence 4 by considering

cj= (gl oo W 0/m, (6.1)

where IJjI is. the cardinality of the set Jj. i. e,, the number of components evaluated at the

Jj-th step of the iteration. In the lalier case, the cost is betler suited to deal with parallel
algorithrﬁs, and can be evaluated lhrougiw the classical tools of queueing theory. When it
is necessary to indicate which cost.meaa_‘-ure is used in the evaluation of the complexity,
we use the notations £ Uf the cost is measured in number of evaluations of F, and E, i

the cost is measured by the time needed to perform (sequentially) one evaluation of F..

6.1 - Genaral bounds: asynchronous ileralions

We return to the proof of Theorem 4.1, and we use the same notations. The proof

simply consists of constructing an increasing sequence of indices jp, p =01, .. satisfying

Hz(i) - Tl s wwP for j2 Joo
where the posilive constant & can be taken to be o = ||x(0)-¥ll. From the coﬁstruction of
{his sequence we note that :

Jpsg miptrptty for p=0, 1, ..,
where o and tp are integers chosen to satisty: (1) starting with the index ip*p» all
evaluations of iterates do not make any more use of values of components corresponding
to iterates with indices smaller than jp; and (2) all components are evaluated at least once

between the (jporp)-th and the (jp‘rpnp%lh iterates.
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Now let
pj-sup{ p lrootoh..orp,, *tpgsj)for ja=o,1, ... (6.2)

Then, if we know r, and ' for p = 0, 1, .., we can deduce a bound on ||x(j)-¥|| since

[
Hxe(i)-¥ll < wo'i for j=0,1, .,
which shows that the sequence x(j), j = 0, I, ..., converges at least as fast as the sequence
opj, j =0, 1, .. with a rate of convergence R such that
R 2> - [lim infj_,m (pj/j)] logw .
And, 'l.f‘ cj is the cost associated with the evaluations of the first j iterates, we have the
following bound for the complexity:
E > - [lim infj_,m (pj/cj)] loge .
In addition, as was noticed earlier, if Ais a contracting matrix for the operator F, @ can be

chosen arbitrarily close to p(A). This shows that in the bounds we have just obtained we

can simply replace o by p(A), and this yields the following.

Theorem 6.1:

Let F satisfy the condition of Theorem 4.1, and let A be a contracting matrix for -

the operator F. Then the asynchronous iteration (F,x(0),4,4) converges to the fixed
point of F with a rate of convergence

R 2 - [lim inf 1oy (p /1)) loBP(A),
and a complexity

E2 - [lim ""fj-wu (pj/cj)] logp(A) ,

where the sequence Pj is defined from 4 and 4 by equation (6.2).

An example

As an-illustration, we consider the parallel implementation of Jacobi's method with k

processes. For simplicity, we assume thal n is a multiple of k, and we set g = n/k.

To avoid an overhead in the selection of the components to be updated at each step
of the lteration', each process is assigned to the evaluation of a fixed subset of the

components. In particular, when all components are equally as hard to compute, and when

ot e
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all processors are equally as fast, it is nalural to decompose, the set of components into
subsets of equal sizes, and, for example, to assign the .ﬁrst process to the evaluation of
the 1irs£ q components, the second process tq' the evaluation of the next g components, and
so forth. Corresponding to this decomposition, a parallel implementation of Jacobi's
method with k processes can be represented by the asynchronous iteration (F,z(Q),J,AS),
where 4 and 4 are defined by:

Jj-{£|l¢(j-1 mod k)g<si<q+(j~-Imodk)g)} for j=1,2,..,

s;(j) = |(j-1)/k)q for j=1,2, .. and i=1,.,n. :
The two asynchronous iterations we introduced in Section 2.2 to represent Jacobi's

method correspond to the particular cases k = { and k = n.

It is easy to check.that r,, and ty are given by I and k, respectively, for p = 0, I, ....

P
}his shows that Pj= Li/k) and therefore

R(k) 2 -(logp(A))/k .
Now, if ¢j measures the number of evaluations of F required to compute the first ;
iterates, using equation (6.1), we have ¢ « j/k. This gives for the complexity:

Egtk) 2 - logp(A) . - : (6.3)
For all values of k, we obtain the same bound for the complexity.' In partic‘ular, when F is
the linear operator defined by F(x).- Ax + b, where A is a non-negative nxn matrix with
spectral radius less than unity, then A can be chosen as a contracting mat'rix fpr F and the

bound (6.3) is known to be sharp.

Since the asynchronous_iterétion we are considering corresponds lo a parallel
implementation of Jacobi’s method, instead of measuring the cost by the number of
evaluations of F, it is more natural to use the average time to perform the evaluations as a
measure of the cost. Let the time unit be the average time to per(or.m (sequentially) oﬁe
evaluation of F. Then, if pk < j < (ps1)k, we have Cpk S €j < S(pep)k l.md Cpk = plAy/k). .
The expression Xh/k corresponds to the time for the k processes to execute in parallel

their computations and to synchronize their executions. The factor X, is the penalty factor
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introduced by Kung in [37]; it measures the overhead due to the fluctuations in the

‘computing’ times of the & protesses, and can be evaluated if we know, for example, the

distribution function for the time to evaluate F. In parlicular, we have A, = [ and, for
k22, lj‘ 21 -w'sth the equality. only when it always take the same constant time to
evaluate F (i. e., there are no fluctuations in the computing time). This cost measure
yields the following bound for the complexity:
E,(k) > -[k/X) Nogp(A) .

Again, these bounds are sharp for the linear operator we mentioned above, and the ratio
E(k)/E (1) = k/X), r;weasures the speed-up achieved by using a paraAllel implementation
with k processes. We would expect the implementation with k processes to be k times as
efficient as the sequential implementation (with k = 1), but this is not so because of the
overhead introduced by synchronizing the k processes and measured by the penalty

factor }\h.

6.2 - Additional assumplions: chaotic iterations

In the preceding example, we have been able to carry out the analysis for Jacobi's
method (and even obtain sharp bounds on the complexity) because the representation in
terms of asynchronous iterations is known expliéitly and follows a very regular pattern.
This is not, however, generally so. For example, in a parallel implementation with several
processes using no synchronization (as presented in Section 2.1), the sequences 4 and #

(and, therefore, the sequences r_ and tpy P =0, 1, «.) are not known directly but. are only

P
defined implicitly by the processes in the course of lheir executions.

Below, we present alternate bounds for R and E under coﬁdltions often satisfied in
usua'll implementations of asynchronous iterations. We assume that we know boqnds on rp,
;nd tp and we restrict the definition of the class of asynchronous iterative methods by
replacing conditions (b) and (c) of Definilion 2.1 with the following:

(b’) There exists a positive integer r such that, for j=1,2,.. and i=1,..,n,

8,(j) 2 j-r,

“
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(c') there exists a non-negalive integer t such that, for ja=1,2, ..
Jj L.t Jjot = {1, .., n}.

As was already mentioned, condition (b') was proposed by Chazan and Miranker in the
definition of the chaotic relaxation scheme [11]. Although the convergence result obtained
under condition (b) of Definition 2.1 is mathematically more satisfactory, condition (b')‘ is
very often satisfied in practical applicalions, in particular, when the computations of all
components have the same complexity (which is the case with a | linear operator).
Condition (c’) is also salisfied for most of the usual implementations of asynchronous
iterations, since it is natural that (1) a process evaluates a component by using the most
recently updated values of all components; and (2) two processes never evaluate the same
component at the same time; in this case it follows directly that, by taking r = t+f,

_conditions (b’) and (c') are equivalent.

Under the additional conditions (b’) and (c’), we clearly have r_ < r and tp St for

P
p=01,.. and, therefore, Pjs Li/(r+t)). From the bounds stated in Theorem 6.1, we

‘immediately obtain the lcllowing.

Corollary:

Let F satisfy the condition of Theorem 4.1, and let A be a contracting matrix for-

F. 1f the asynchronous iteration (F,x(0),7,4) satisfies the additional conditions (b")
and (c’), then it converges to the fixed point of F with a rate of convergence

R 2 - [1/(r+t)] logp(A) ,
and a.comptexi.ty

Ez- [lirr.\j_,w j/(r*t)cj] logp(A) .

7 - Experimental results

The results of this section are reported in detail in Chapter V. A very brief
presentation is given below as an immediate illustration of asynchronous iterative

methods.

b ok i o
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Several asynchronous iterations have been e:l(‘per'imented with on C.mmp, the'
Carnegie-Mellon multiprocessor [63], they are described in Section 7.1, and the actual
measurements are presented in Section 7.2. Although asynchronous iterative methods are
applicable to non-linear problems, the experiments reporled here deal only with linear

problems. More specific trealments for non-linear problems will be reported elsewhere.

7.1 - Experiments with asynchronous ilerations

All asynchronous iterations we have experimented with consist of the parallel
execution of k processes. As we did with the parallel implementation of Jacobi’s method,
we assign to each of the processes the evaluation of a fixed subset of the components.
Each process computes cyclically new values for the components in its subset, and the
methods only differ by the choicas nf the values used in the evaluations. .

Asynchronous Jacobi's ;rzetlrod (A)): For the evaluations of all components, a process
uses only values of the components known at the beginning of a cycle, and the
process releases all new values at the end of each cycle.

Asynchronous Gauss-Seidel’s method (AGS): Same as the AJ method except. that the
process uses new values of the components in its subset as soon as they are
known for further evaluations in the same cycle. Again, it releases the new
values (for the other processes) at the end of its cycle.

Purely Asynchronous method (PA): A process computes the new values of each
component by usiﬁg the most recent values of all components and releases each

new value immediately after its evaluation,

The PA method is certainly the easiest method to implement, and, as far as space is
concerned, is clearly the mosl efficient one, whereas the AJ method is the worst one, since
it requ‘\'rés from each process not only a complele duplication of all components (as of the
A beginning of its cycle) but still another copy of the components in its own subset. This

can hardly be justified but experimental results give useful comparisons between the AJ
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méthod and the actual Jacobi's method (also between the AGS and Gauss-Seidel’s

methods).

In addition, both the AJ and AGS methods also require the need for a critical section
in order to read all components at the beginning of a cycle and to update the values at the
end of a cycle, whereas no critical seclion is needed with the PA method. However, C.mmp
has the drawback that no indivisible instructions exist to read or write floating point
numbers (implemented on two consecutive words of memory), therefore, if we are to
implement the PA method on C.mmp, only the first 8 bils of the mantissa can be considered
significant, and the admissible error in the termination criterion has to be chosen

accordingly.

7.2 - Resulls

The t{hree methods just described, as well as .Jacobi's method, have been
'unplemcnted' on C.mmp to solve lhe Dirichlet problem for Laplace’s equation on a
rectangular domain of iR2, Using the method of finite diflerences, an approximate solution
to this problem can be found by solving a linear system of equations. In the experiments
reported here, a regular grid has been chosen with 2/x24 interior points, resulting in a
linear system of size n =504, This system can be represented in the form
z = F(x) = Az + b, where the vector b is obtained from the boundary conditions, and the
matrix A is a (very sparse) non-negative matrix with spectral radius p(A) = 0.991. Since
p(lA]) = p(A) < 1, this shows thal A is a contracting matrix for the operator F, and,
therefore, that the result of Theorem 4.1 can be applied to F to ensure the convergence of

each iterative method.

At the time the measurements have been taken, the configuration of C.mmp included
six processors, and all iterative methods have been run with a numl;er ol processes
k=1,234,and 6. Each of the resulls .:porled here is the average of three
mcasur;zmenls. bul, since C.mmp was used in stand-alone mode during the experiments,

very little difference was noled from one run to the next.
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In Table 7.1, we report for the four methods the average number of vector
evaluations required to reduce (asymplolically) the error vector by a factor of 10: this
corresponds to the cost measure 1/E,. And, in Table 7.2, we reporl the average time
(expressed in seconds) required to achieve this reduction: this corresponds to the cost

mesure 1/E,.

The bounds obtained from the results of the previous sections are mentioned in

parentheses along with the measurements. The parameters in these bounds have been

‘evaluated either directly (e. g., p(A) = 0.991), or through mecasurements by tracing the

execulions of the processes. In parlicular, for the AJ, AGS and PA methods, the bounds r
and t, defined in Section 6.2, have been determined by observing the sequencing of the
tasks performed by the different processes. Similarly, the penalty factor in Jacobi's
method and the overhead due to the critical section in the AJ and AGS methods have been

obtained by direct measurements: they are presented in Tables 7.3 and 7.4,

Jacobi Ad AGS PA

254 (254) 254 (254) 127 (254) 127 (254)
254 (254) 266 (888) 142 (888) 127 (762)
254 (254) 267 (846) 149 (846) 127 (762)
254 (254) 273 (825) 166 (825) 129 (762)
254 (254) 285 (804) 196 (804) 128 (762)

E g ol o o o
LI I B I |
DA WN

Table 7.1 - Number of evaluations required to divide the error by a factor ot 10

Jacobi Al AGS PA
kel 337 (337) | 337 (337) | 168 (337) | 168 (337)
k=2 | 241 240 | 211 (705) | 113 (705) | . 84 (506)
k=3 178 (178) | 149 (471) 83 (471) 56 (337)
k= 153 (153) | 123 (372) 75 (372) 43 (253)
k=6 131 (131) | 102 (289) 70 (289) 28 (169)

Table 7.2 - Time required lo divide the error by a factor of 10
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k=1 k=2 k=3 k=4 k=06
A 1 143 1.59 1.82 2.34
A 0 29.9 37.1 45.1 57.3

Table 7.3 - Penalty factor with Jacobi's method

and percentage of lime wasted

k=1 | k=2 | k=3 | k=t | k=6 o
A 1 1.20 1.26 1.35 162

7 0 16.6 20.8 26.0 38.2

Table 7.4 .- Critical section overhead cost with the AJ and AGS methods

and percentage of time wasted

These results must only be considered to illustrate the behavior of asynchronous
iterations, since, in particular, the two cost measures reported in Tables 7.1 and 7.2
strongly depend on both the problem (i. e., the matrix A) and the multiprocessor system.

Yet, they show a clear advantage of asynchronous methods over synchronized methods.

We nole, for example, from Table 7.3 that, with Jacobi's method, when k =6
processes are used, the penally factor is as big as Ag = 2.34. This means that about 57
.perccnt of the time is spent by a process wailing for the other processes to finish their

computations. This limils the possible speed-up to 2.6 rather than 6.

We ,al.so note that the use of critical sections, too, should be avoided, since, with the
AJ or AGS rﬁclhods, when 6 processes are used, about 38 percent of the time is spent
waiting for entering the critical section, again limiting the possible speed-up to 3.7 rather

than 6.

The measurements for the PA method, on the other hand, indicate that we achieve an
almost full speed-up with this method (at least with a small number of processes). An

obvious reason forv this speed-up is the total absence of any form of synchronization;
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another reason, specific to the problem we have experimented with and indicated by the

results of Table 7.1, is due to the sparsity of the matrix A.

The bounds derived in Section 6 have been obtained in a very general case. Yet
Tables 7.1 and 7.2 show that they are always within a factor between 3 and 6 of the actual
measurements (except for Jacobi's method where they are sharp). In addition, we
certainly could obtain much sharper bounds by carrying out the analysis for the specitic
problem we have experimented with (for example, by taking into account the sparsity of
the m.-;trix). ‘ln particular, a specific analysis for the PA method can easily explain the fact

that 1/€, is almos! independent of the number of processes (see Table 7.1).

8 « Asynchronous iterations with super-linear convergence

As we already noticed, the bounds established in Section 6 are certainly not
adequate to measure the complexity of iterations with super-linear convergence. In this
section, we use as an example the iterative method we have mentioned at the beginning of

Section 5 to show how an analysis of the compiexily can be done for this case.

To study the convergence of a sequence z(j), j = 0, I, ..., toward its limit §, we now

use the following usual measures of compl.exity. The order of convergence is defined as

p = tim inf g, [(-logll=()-E!/1],
and, as before, if cj is the cost associaled with the evaluations of the first j (terates,
x(1), .., =(j), we define the complexity of the sequence by:

E = lim inf ;,, [Qog-logll=(j)-¢l)/e ],
Again, we note that, if the average cost.per step cj/j tends to some finite limit ¥ when j
tends to infinity, the complexity is simply given by E = logp)/r. In the remainder of the

section, we assume that the limit ¢ exists.

In order to find lhe simplc root § of an operator G from R™ into ilself, we use the

Asynchronous Newton's nmhoc(, AN, as implemented by the two processes described at the




62 CHAPTER 1il

beginning of Section 5. Let r;, i = 1, 2, .., be the number ‘of iterates evaluated by the first
.process, P.I,. during the i-th evaluation of the derivative G’ by the second process, Pj. Let
Jg = 0 and j‘-‘ =rp s tryfori=1,2 .., then 2(j), i =0, 1, .., is the iterate used by P,
for the (i+1)-st evaluation of the derivative. Starting with the two initial values x(0) and
G'(2(0)), the AN melhod generates with the two processes Py and P, the sequence of
tlerates z(j), j = 1, 2, .., defined by

z(j+1) = x(j) - [C'(x(jl-_l))]"C(z(j)) y for i=1,2,.. and ji<jsjig. (81)

The following theorem gives the measures of complexity for this sequence if we

know some bounds on the sequence r;, i = 1, 2, ...

Theoram 8.1:

Let the initial approximation x(0) be close enough to the root f, that is

2(0) € D‘n{zlllr~§|l<t}. ; 3 ]
and let the derivative G’ satisfy some Lipschitz condition on D,:

NG (x)-C ()l s Milz=ll , Y2, 5CD,.
If ¢ satisfies the condition

MIC" () le < 2/5 ,
and if there exist some positive integers p and q such that .

psrpsq, for i=1,2, ..,
then the’ order of convergence, p, and the complexity, £, of the sequence defined by
equation (8.1) satisfy:

p2A,la, : LRy
and

E> (loglp)/(qt:) : (8.3)
where Ap is the largest root of the equation 27 - 22 - (p-1)z - | = 0 (for which we can
check easily that 0.4 + vp < Ap <05+Vp,p=1,2.)

Proot:

The proof is easy but technical, and below we only give an outline for this proof.

”@!@*—Hn« -
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Let @ « MG '({)"II. and let ¢ = 3w/[2(1-ac)). From the choice of ¢, we first no.le that,
starting with x(0) C D,, the sequence |lx(j)-§ll, j=0,1, ., ls strictly decreasing and
satisfies:

DxGigs1)-8l < ellx(ig_p)-Ellllx(ip)-8l , for i=2,3, ..,
and
Nx(je1)-¥1l < ellxCig_ )-Flll=(D-§ll , for i=2,3, .. and ji<j< jiag=ditri-
By substitution, it follows that, for i = 2, 3, ...,
NG -8 5 € G -0 e e -8
and, if we set @; = -logellz(j;)-Zll, we obtain:
Wiag2u * (ri-l)u.i_, Sy for i=2,3, ...
Therefore, by using the lower bound on r;, we deduce that
Wi g2 ¢ (p-u;_ g su; o, for i=23 ...
-. This shows that u; tends to infinity at least as fast as Ap‘. Therefore, the order of
convergence, p’, of the spbscqueﬁce x(j;), i = 0, 1, ..., must verity p’2 }\P. The bounds

(8.2) and (8.3) are derived directly from this last inequality. |

In parl-icular. if the cost cj measures the number of evaluations of the aperator G,

we simply have cj = j, and, therefore, £, 2 (\oglp)/q. On the other hand, if the cost
corresponds to ‘the execution time, the complexily will depend on the implementation
itself. For example, an implementation corresponding strictly to the generation of the
sequence described by equation (8.1) requires the use of a critical section for reading and
writing, in a block, the values of the iterates and of the derivative. The use o_f a critical
section introduces an overhead, but, as is done with the PlA method, the overhead can be

avoided if a process uses whatever values are currently available when needed. In this

case the bounds of Theorem 8.1 still holds, and ¢ can be given the value ¢ « {.

The parameters p and q, too, depend on the particular implementation of the AN
method, and, especially, on the relative speeds of the processors executing the processes

Py and Py In practice, if the processors are equally as fast, we expect, with small

T
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variations, r; to be close to n, and the values p » q = n can predict good estimates for the

complexity of the AN method implemented with two processes.

The AN melhod is easily generalizable o more than two processes. If k processes
are available, k; might be assigned to the evaluation of the sequence of iterales, while

ky = k - k; are assigned lo the evaluation of the derivative. The bounds of Theorem 8.1

still holds for this case as well, only with different values for the sequence r;, i = 1, 2, ...

(or for the bounds p and q), determined by the parallel implementations of the two

evaluations. Furlher results in this direction will be reported elsewhere.

9 - Extensions of the results’

We mention below some direct extensions of the results pres‘ented in this chapter
and some points subject to further development. . -

A straighforward generalization of the results can be obtained if, instead of R™, we

consider the product P of n Banach spaces B; with norms I.I‘-, i =1,.,n. Inthis case, if x

is an element of P, x is determined by ils components =z, € B, i =/, .., n. And x|

represents the non-negative vector of R"™ with components |x;|;, i = 1, ., n.

Considering only the class of linear operators, F(x) = Ax + b, we have noted that the

notion of contracting operators coincides with the condition that p(jA]) < 1. In [ll],'

Chazan and Miranker have shown that this condition is not only sufficient but also
necessary for the convergence of all chaolic ilerations. This implies, in particular, that all
asynchronous iterations corresponding to a linear operator F are convergent if and only if
F is a contracting operator. The necessity of this condition, however, seems to be

inherent to the lincar nature of the problem, and when we also consider non-linear

.operators the proof given by Chazan and Miranker does not apply any more. It would be

‘of interest to obtain conditions on the class of operators for which all asynchronous

iterations are guaranteed to converge. Similar conditions for the convergence of a more
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restricted class of iterations would also be of interest, in particular, for the subclass of
asynchronous iterative methods corresponding to the additional assumptions introduced in

Section 6.2.

The bounds we have obtained to eslimate the rate of convergence of asynchronous
tterations have been derived by considering the worst possible case, and, compared to
actual measurements, these bounds are very conservative. It would cerlainly be very
useful to obtain bounds (or estimates) corresponding to the average behavior of
asynchronoué iteralions, for example, given the probabil'\ly distributions of the two
sequences # and 4, or, more generally, given the distribution functions for the time it

takes the different processes {o evaluate the companents.

We have already mentioned the possibility of introduci.ng a relaxation factor in
asynchronou’s iterations, and, for contracting operators, we have derived a possible range
that guarantees the convergence of all asynchronous iterations. Nothing is known,
however, abaut the optimal choice of the relaxation factor, for example, given d'\rect'ly the
asynchronous iteration through # and 4, or, again, given the distribution functior;os for the

evaluation times.

10 - Concluding remarks

In the implementation of mos! parallel algorithms, synchronization seems to be
required o assure the communication between the processes, and to guarantee their
correct executions. However, the main drawback with synchronization is that {t degrades
considerably the performance of the algorithms because it is very time consuming. The
class of asynchronous iterative methods avoids ‘this drawback. It includes iterations
corresponding to a parallel implemcntali.on in which the cooperating processes have a
minimum of intercommunication and do not make any use of synchronization. The Purely
Asynchronous method described in Section 7.1 is a lypical example of an asynchronous
iterative method. Asynchronous ltera(ions' follow the same goal as chaotic

relaxations [11]): to eliminate the need for synchronization in a parallel computation,
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Asynchronous iterations generalize to asynchronous iterations with memory which
allow different values of the same variable lo be used within the same computation. Using
the nolions of contracting operators and of m-contracting operators, Theorems 4.1 and 5.1
state sufficient conditions to guarantee the convergence of any asynchronous iterations

and asynchronous iterations with memory. These conditions are satisfied for a large class

-of oper'alors.

In the second part of the c.hapter, asynchironous iterations are evaluated from a

computational point of view, then the results of a series of actual measurements (obtained

by running asynchronous iterations on a multiprocessor) are presented. These results

fully justify the use of asynchronous iterative methods.

General Bounds on the complexity of asynchronous iterations are first derived
directly from the proof of the convergence theorem. Although these bounds are sharp for
a parallel implementation of Jacobi's method, they are of little applicaﬁilily since they
require to know a priori the exact specification of each step of the iteration. Al@ernate
bounds are then derived under additional conditions which are usually satisfied in
practical applications. These bounds are consistent with actual measurements; for the
experiments we have run, they are always within a factor of 6 of the measurements. In
addition, it is our feeling that these bounds can be largely improved if we take into
account specific characteristics of the problem being solved, therefore leading to a better
understanding of asynchronous iterations. In Section 8, for example, we have made a first
step in this 'direction, and we have presented an analysis 'for the Asynchronous Newton's

method.

A series of experiments has been conducted on C.mmp, a multiprocessor system
(with 6 prou;,ssors at the time the experiments have been run), and several asynchronous
iterative me’\hods have been implemented to solve a large linear system of equations.
They ;ange from Jacobi’s method, requiring a full synchronizatlion of all the processes at

each step of .the iteration, to the PA method, which requires no synchronization at all. In
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between, the Al and AGS methods are derived from the usual Jacobi's and Gauss-Seidel’s

methods, and they require the use of a critical section.

The experimental results show a considerable advantage for the iterative method
with no synchronization at all. For a number of processes up to the number of processors
available on C.mmp, the PA method exhib:lls full parallelism and has an 'optlmal speed-up
compared to Gauss-Seidel's mclhod,. the best sequential method experimented with. The
AJ and AGS methods have a very similar behavior, and when 6 processes are used the
overhead caused by the critical section imp(ies' that 38 percent of the time a process is
waiting for entering the critical section. As is intuitively expected, Jacobi’s method has
the worst behavior of all the methods considered, and, with 6 processes, the overl\ead; due

to the synchronization of all the processes at each step of the iteration, is about 57

percent (i. e., more than half the time a process is waiting for the other processes to

finish their computations).

On the basis of these experimental results, and for the problem we have considered,
there does not seem to be any alternatives: the PA method is obviously the most efficient
one. In addition, another advantage of the PA method is that it is the easiest one to

implement, and, spacewise, it is also the most efficient one.

Finally, another possibility, which has only been outlined in this chapter, is the

" introduction of a relaxation factor. Based only on a few experimental results (not

reported here), il is our belief that we can expect an improvement of the Purely

.Asynchronois Over-Relaxation method over the PA method similar to the improvement of

the SOR method over the Gauss-Seidel’s method, if we choose the relaxation factor in an

optimal way. The oplimal choice of the relaxation factor depends not only on the system

being solved, bt-st also on the probability distributions of the various execution times by

the different processes.

T —




Chapter IV

On the Alpha-Beta Pruning Algorithm
Part 1: The sequential algorithm

1 - Introduction

Most so-called intelligent programs use some form of tree searching; among them,
most game playing programs are built around an efficient tree searching algorithm known
as the alpha-beta pruning algorithm. In the first part ot this chapter, we investigate the
efficiency of this algorithm with respect to a cost measure first introduced by Knuth and
Moore in [35] and given in Definition 1.1 below. The second par! of the chapter is
devoted to the study of a parallel implementation of the algorithm on an asynchronous

multiprocessor.

Dafinition 1.1:

Let Nn,d be the number of terminal positions examined by some algorithm A in
searching a uniform tree of degree n and depth d. The quantity
; 1/d
Rpin) = Yjm (N, P!/
is called the branching factor corresponding to the search algorithm A. . |

’

Analyses of the o-A pruning algorithm have been attempled in two recent papers by
Fuller, Gaschnig and Gillogly [23] and by Knuth and Moore .[35]. Both papers address the
problem of searching a uniform game tree of degree n and depth d with the a-ﬁ pruning
algorithm under the assumptions that the nd static values assigned to the terminal nodes

are independent identically distribuled random variables and that they are all distinct. We

69
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immediately observe that, in order to evaluate the branching factor, the last assumption
requires thal the a9 distinct values assigned to the terminal positions be taken from an

infinite range. For most practical applications this is, however, unrealistic.

Fuller, Ga;r.chnig and- Gillogly developed in [23] a general 1ormula. for the average
number of terminal posilions examined by the ae_-/! procedure. Their formula, however, is
computationally intractable and leads to undesirable rounding errors for large trees (i. e.,
for large n and d)‘s'mce it involves, in particular, a 2d-2 nested summation of terms with
alternating signs and requires on the order of nd steps for its evaluation. Then t'hey gave
some empirical results based on a series of simulations, and compared the results with
actual measurements obtained by running a modified version of the Technology Chess

Program [24], (25].

In [35], Knuth and Moore have analyzed, under the same conditions, a simpler
version of the full «-f8 pruning algorithm by not considering the possibility of deep
cut-offs; they bhave shown, in parlicular, that the branching factor of the resulting

algorithm is ©(rnAn n). Knuth and Moore also considered other assumptions to account for

_dependencies among the static values assigned to the terminal positions and developed

. analytic results under those assumptions. Their paper gives, in addition, an excellent

presentation and historical - account of the v-4 pruﬁing algorithm.

Dep'art'\_ng from the assumplions of the two papers we just mentioned, we first
consider the effect of possible equalilies belween the values assigned to the terminal
nodes of a unifo_rm tree, assuming that these values are independent identically distributed
random variables drawn from any discrete probability distribution. In Section 2, wel
establish some nolations and preliminary results, and in Section 3, we derive a general
formula for the number of terminal nodes examined by the «-f pruning algorithm when we
take into account both shallow and deep cut-offs. The evaluation of this formula requires
only a finite summation over the range of possible values assigned to. the terminal nodes

and is relatively easy. We show, in particular, that, when the terminal nodes can only take
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on two aist‘mct values, the branching factor of the «-f pruning algorithm can grow with n
as O(nAAn n) for some choice of the probability distribution. In Seclion 4, we show that,
when the discrete probability distribution tends to>a continuous probability distribution,
the summation derived in Section 3 can be replaced by an integral, which constitutes the
worst case 'over all discrete probability distributions. In Section 5, an analysis of this
integral shows that the branching factor of the o /3 pruning nlgonthm for a uniform tree of
degree n grows with n as ©(nAn n), therefore confirming a claim by Knuth and Moore [35]
that deep cut-offs have only a second order effect on the average behavior of the
«-A pruning algorithm. In Section 6, we propose a parallel implementation of the
u—ﬁl pruning algorithm in which several processes search for the solution (i. e., the valué
associated with the game tree) within different subintervals. This parallel implementation
is analyzed in Section 7; the parallel implementation with 2 processes, in particular, turns
out to be more than twice as efficient as the original -8 pruning algorithm, which is

consequently shown nol to be optimal. Some concluding remarks and open problems are

given in the last section.

2 - Presentation and initial properties of the -4 pruning algorithm

There are two usual approaches for dealing with searching a game tree. ]n [23],
Fullcf, Gaschnig and Gillogly adopted the Min-Max approach, while, in [35], K.nuth and
Moore chose the Nega-Max approach. We will briefly present, in Section 2.1, the two
approaches and introduce the «-f procedure in terms of the Nega-Max model. - Then, in
Section 2.2, we will reestablish an initial result of [23] which was stated in terms of the

Min-Max approach.

2.1 = The «=/A procedure

Let us consider a game (like chess, checkers, tic-tac-toe or kalah) played by two

players wh.o take turns. It is common to represent the evolution of the game by means of
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a game tree, where each position of the game is represented by a node. If the position is
a dead-end, the node is lerminal, otherwise all possible moves from that position are
represented as the successors o{ the node. The structure of the tree is preserved by not
generating moves leading to some posilions already generated (thus, avoiding cycles); this
is the function of the mowve generator. The euo.lu.otto‘n function is another important
fdnction in game playing programs; It assigns to each terminal position a static value by
estimating various parameters such as piece counts, occﬁpalion of the board; etc.  The
evatuation function evaluates the lerminal nodes from one player’s viewpoint, giving
higher values to posilions more favorable to this player. It is convenient at this point to
name the two players Max and Min. Hence, Max's strategy is to lead the game towards

positions with higher values, while Min's strategy is to lead the game towards positions

with lower values.

The minimax procedure is directly based on this formulation and can be used by

either Max or Min to decide on his nex! move from a given position, assuming that his

opponent will respond with his best move. Using a rather brute force approach, the

minimax proc.edure assigns values to all nodes of a game tree. It first assigns to terminal
nodes the results of the evaluation function, then it backs-up to internal nodes

’

corresponding to a position from which it is Max's (Min's) turn to play the maximum

(minimum) of the values assigned to its successors.

Suppose it is Max's turn to play from an initial position (corresponding to the root
of the game iree), then it is his turn to play from any positior;s at even depth and Min's

turn to play from any positions al odd depth. Therefore, the minimax procedure will

back-up values to the nodes of the game tree through a succession of

Minimazing /Maximazing operations. This corresponds to the Min-Max approach.

By observing that:
max{ min{ 2, 25, .. , min{ yp, ¥ o b } =

max{ -max{ -z, ~¥3, .. }, -max{ P Y P
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the Min-Max approach can be directly reformulated into the Nega-Maz approach. In the
Nega-Max formulation, a terminal node of a game tree should be assigned the resﬁlt of the
evaluation function only if it is at an even depth (assuming it is initially Max’'s turn to
play) and it should be assigned the opposite of the result of the evaluation function it it is
at an odd depth. The Nega-Max approach requires the same operator ‘at all levels of a
game tree, and the uniformity of the notation will make it easier to carry out an analysis.

This approach will be used throughout.

Figure 2.1 shows the effect of the minimax procedure in a uniform tree of degree 2
and depth 4. The values assigned to the terminal nodes have been chosen arbitrarily. The

path indicated by a darker line shows the sequence of moves selected by the procedure.

Figure 2.1 - Searching a game tree with the minimax procedure

The minimax procedure is clearly a hrute force search and, when exploring a node,
it uses none of the information already available from the nodes previously explored.
Obviously, by taking advantage of the information previously acquired we can easily
improve on the brute force search. Figure 2.2 presents some simple patterns in which the
distribution of the information could lead lo such improvements. In the figure, the circled
nodes have already been explored, and they are labeled with their backed-up values; the
values of the other nodes are yet to be determined. We are interested in the value v of

the top level node in both patterns (a) and (b).
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(a) shallow cut-off
(b) deep cut-off

Figure 2.2 - Exam'p{es of passible cut-offs

Let us consider the pattern of Figure 2.2 (a) first. From the definition of the

minimax procedure, the values v and z satisfy:
x = max{ -2, ..},

' : v « max| 3, -z} ,
which shows that z 2 -2 or 22 -z. Since 32 22 -z, it follows that independent of the

exact value of z, we will have v = 3. This shows that we need not explore further the

successors of the node labeled z if we are only interested in the va(ué of v. This {eads to

a first type of cut-offs known as shatlow cut-offs.
The patlern of Figure 2.2 (b) illustrates a deeper cut-off. As with the previous
erample, there are immediate relations between the values of the nodes. In particular, we
have y 2 -2, which leads us to consider two cases. Either y > -z, and lhis means that the
value y is determined by ils right son(s) and certainly does not depend on the right son(s)_
of z. Or y = -z, in which case, since z 2 -y and z 2 -2, we deduce 2 > -2 or ~x < 2; but
since v = max{3, -z} it follows that v = 3, independent of the exact value of z and, a

forliori, independent of the exact value of 2. This shows that in either case the successors

of the node labeled z need not be furlher explored since the final value of v would in no

.way be affected.
The two examples presented n Figure 2.2 indicate that a reduction of the search
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can be achieved if a node passes down to its sons the current value backed-up so far (3 in
the case of the two above examples) az a bound for pruning branches 2, 4, 6, ... levels
below; the bound can, of course, be improved as the search progresses down the tree

(leading to more and more possible cut-offs).

Using two bounds for even and odd levels of a tree, these improvements are

implemented in the following procedure adapied from [35].

integer procedure ALLPHABETA(position P, integer alpha, integer beta):
begin integer j, t, n;
determine the successor positions: Py P
it n=0 then
ALPHABETA := fiP)

nt

else
begin

g for j:=1 step ! until n do
begin
t := -ALPHABETA(P ;,-beta,-alpha);

5 if t> alpha then alpha:=t; _
if alpha 2 beta then goto done 2 (2.1)
end;

F . done:  ALPHABETA := alpha
end
end

The Alpha-Beta procadure (from [35])

The function denoted by f s the evaluation function which assigns static values to terminal

positions.

Knuth and Moore [35] have shown this procedure to be correct in the sense that the
call ALPHABETA(P,-c,+c0) assigns o position P the value MINIMAX(P), assigned by the
minimax procedure. More generally, they showed f35, p. 297] that, if alpha < beta:

} ALPHABETA(P,alphabeta) < alpha, if MINIMAX(P) s alpha, (2.2)
AL PHABETA(P,alpha,bela) « MINIMAX(P), f alpha < MlNIMAX(.P) < beta, (2.3)
AL PHADE TALF alphabela) 2 bela, if MINIMAX(P) 2 beta. ; (2.4)

b aew lrmw sed n Figare 21 1o lustrate the minimax procedure is shown in

Wi te e stlesis o e -/ procedure. The branches pruned by the
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procedure are (ndicated with dashed lines, and the nodes marked with a circle have not

been complelely explored.

Figure 2.3 - Searching a game tree with the o-/ procedure

We observe that only 8 out of the 16 terminal positions and 19 out of all the 31 nodes are
examined by the «-f pruning algorithm in this example, reducing greatly the cost of
searching the tree. As is scen by comparing Figures 2.1 and 2.3, the values backed-up by
the -4 procedure to some internal nodes are not necessarily the same as the values
backed-up by the minimax procedure, as reflected by the indetermination in

equalions (2.2) and (2.4). The top value, however, is not affected by this indetermination.

2.2 - Somo properties of the «=2 pruning algorithm

In this section, we will introduce some notations which will be used throughout, and
we will reestablish, in terms of the Nega-Max approach, an initial result of (23] giving a
necessary and sufficient condition for any node of a game tree to be examined by the

«~A pruning algorithm.

2.2.1 - Notalions

As in [35], we will use the Dewey decimal notation to represent a node in a tree.
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More precisely, let ¢, the emply sequence, denole the root of the game tree. Then, Uf 7
denoles some internal node of the tree with n sons, 4.j will denote lhe j-th son of node 7,
for j = {,..,na. In Figure 2.4, node 4.1.3.4.3 is the node at depth 5 whose path from the

root ls.indicaled with a darker line.

c(4) = 2
c(4.1) = -0
c(4.1.3) = 3
c(4.1.3.4) = -5

c(4.1.3.4.3) = 0

«(4.1.3.4.3) = max{ c(4.1.3.4.3), c(4.1.3), c(4) } = 3

f(4.1.3.4.3) = -max{ c(4.1.3.4), ¢(4.1) } = §
Figure 2.4 - Portion of a game tree showing the path to node <4.1.3.4.3>

The value associated with some node J of' a game iree by the minimax procedure

(see Section 2.1) will be denoted by v(7). Then, if J is a terminal node, v(7) is the static

-value asigned to that terminal position, and, if J is an internal node, v(#) is the value

backed-up to. node # by the minimax procedure. In the latter case, f node J has n sons,
v(7) is given by:

v(7) = max{ -v@.j) | 1sjsn}. (2.5)

In Figure 2.4, the nodes on the path from the root to node 4.1.3.4.3 are evaluated through

formula (2.5) while lhe other nodes (including 4.1.3.4.3) are shown as terminal nodes and

are assigned arbitrary values. (Nodes are labeled with their values.)

While the values v(7) deal with the static aspect of a game tree, the quantities we
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will introduce next deal more with the dynamic aspect of the tree when being searched by

the «-f procedure.

For any node J.; at depth d 2 1, we define:
c’(J.j) = max{ -v(7.i) | 1si< j-1}.
(By convention, the maximum over an emply set is def'@ned to be -o; in particular,
c(J.1) = -c0.) For the root of the tree we also define c(¢e) = -co. The quantity e(7) accounts
for the information provided to node J by ils elder brothers. These values are'indicated
to the right of the game tree shown in Figure 2.4 for all nodes on the path to node

4.1.3.4.3; only the nodes indicaled wilh squares are used in computing these values.

We finally define for any node J = j;....jq at depth d 21 in a game tree two
quantities directly associated with node J by the «-p procedure. For i =0, .., d-1, let
Fi = Jpe o Jd-i- We define:

ofd) = max{c(7;) |iiseven, 0sisd-1},

B(F) = -max{e(7;) | iisodd, 0<is<d-1}.
It is convenient to define these two quantities for the root of the game tree by w(e) = -co
and f(e) = +eo (which is consistent with th.e definition). These «- and B-values are shown

in Figure 2.4 for the node 4.1.3.4.3 along with their definitions.

2.2.2 - Nacossary and sufficiont condilion for a node to be explored by the e«=/4 procedure

The following lemma justifies the notations we just introduced in the preceding

seclion.

Lemma 2.1:
Assume that, initially, the root of a game tree is explored by the «-2 procedure
through the call .
ALPHABETA(root,-os,+c0) . (2.6)
Then, if node J is examined, it is through a call of procedure ALPHABETA in which the

parameters alpha and beta satisfy:
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alpha = wo(g), (2.7)
beta = A(7). (2.8)

Proof:

It =jj .. -Jg denoles some node explored by the procedure at depth d > I, let, as
before, #; = jj. ... .jg-j» for 0 < i <d-1. Thus node #) is the father of node 7, while, if
Jg 22, node 74.(jy-1) is the brother of 7 immediately preceding 7 (and explored just
before 7). Observe that, if jy = 1, c(7y) = ¢(J) = -c0 and therefore: '

w(d) = max{c(J;) |iis even, 0<isd-1}
= -[-max{ef;,)|iisodd, 0sis<d-2}]
- - B3y
(similarly, A(7) = -a(7,)). Observe also that, if g2 2
o(F) = max{ o(7;y), c(7)}
= max{ o(d;), cld;jg-1)], -v[J.Gg-1)1} :
and that A(7) = B[d .(jg-1).

By the call of line (2.6), relations (2.7) and (2.8) certainly hold for the root of the
game lree, since wofe) = -0 and f(c) = +0. Then the proof follows by induction from

inspection of the procedure ALPHABETA, and from the relations we derived above. : |

The following theorem states a useful relation that characterizes the fact that a
node of a tree is explored by the «-f pruning algorithm. This relation was first
established by Fuller, Gaschnig and Gillogly [23] with different notations in terms of the

Min-Max model.

Thaoram 2.1:
Assume that, initially, }he root of a game tree is explored by the «-4 procedure
through the call
ALPHABETA(root,-o,+0) .
Then, an arbitrary node 7 of the game tree is subsequently explored if and only if

w(?) < B(3). ; (2.9)
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Proof:

Because of the presence of line (2.1) in the procedure ALPHABETA, the result

follows directly from the result of Lemma 2.1. 3 N |

Since it will be more convenient in the following sections, rather than «(7) and ‘
B(4), we will use the quantities:
AF) = max{ c(7;) | iiseven,0<sisd-1},
B(7) = max{e(7;)|iisodd, 0sis<d-1},
where 7, is defined as before. The definitions of A(#) and B(2) are more symmetrical, and
relation (2.9) can also be rewritten in a more symmetrical way:

A7) + B(7) <0. (2.10)

3 = Number of nodesiexpllore'd by the <-4 procedure: discrete case

As in [23] and [35], we will evaluate in this and the following section the amount of
work performed in searching a random uniform game tree using the «-8 pruning algorithm.
The deﬁnltion.and some >properti‘es of random uniform game trees are given in Section 3.1.
The amount of .work performed by the «-f procedure is measured by the number of

terminal nodes examined during the search and is evaluated in Section 3.2.

3.1 = Random uniform game troes

In order to perform an analysis of the «-@ pruning algorithm, we will limit

ourselves and consider the following class of game trees.

Datinition 3.1:
A game tree in which
(a) all internal nodes have exactly n sons, and
(b) éll terminal nodes (or bottom positions) are at dlep‘h d

ts called a uniform game tree of degree n and depth d.

A uniform game tree which satisfies the additional condition
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(c) the values assigned to all terminal nodes (or bottom values) are independent
identically distributed random variables

is called a random wuniform game tree, or, for short, a rug tree. |

Unless otherwise specified, we will only consider throughout a rug tree of degree n

and depth d.

Since the value backed-up to a node by the minimax procedure only depends on the
backed-up values of its sons, we immediately observe that, by condition (c), the backed-up
values of all nodes at the same dc;;lh are also independent identically distribuled random
variables. In the remainder of the section, we will assume that the bottom values are
drawn from the finite sel { x; = k/m | -m < k sm }, for some m > 0, and we will denote by
{Pi(k)} . mck<m ©OF Simply {'pi(k)} the common probability distribution for the backed-up
values of all nodes at depth d -i (i.e., p;k) is the probability that the value; v(d),
backed-up by the minimax procedure to some node 7 at depth d-i be k/m). In particular,
{pgfk)} is the common probability distribution for all bottom values, and {py(k)} is the

probability distribulion for the value backed-up to the root of the rug tree.

The following lemma states the relations between these probability distributions.

Lemma 3.1:
For i = 0, ..., d-1, we .have:
Pisg(-m) + . ¢ iy y(k) = [p(-k)+ ..+ pi(m)]" . (3.1)
Proof:
Let 7 be some internal node at depth d-i-!, then by equation (2.5), v(7) < k if and
only if. -v(7.j) < k, for j=1,.,n Equation (3.1) follows easily from the fact that all

variables v(4.j) are independent. i |

Since the quantity .p"(-k) + . ¢ p(m) will occur again later on, we define for
‘i=0,1, .. and -m<s k< m:

pik) = pi-k)+ ..+ p(m),
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For convenience, wé also define ¢;(-m-1) = 0. Note that p;(k) is a non-‘decreaslng function
of k which satisfies p;(-m-1) =0 and p,(m) = p(-m)+ .. +p(m)=1. By rewriting
equation (3.1), we see that .p‘- salisfies:

Pisg(-k=1) = 1~ [p()]* for i=0,1,.., (3.2)
and, therefore: -

Piaglk) = 1-{1-[p )] for i=0,1,... (3.3)

The following quantities will also be useful in Section 3.2, For i =0, 1, .. and
-m-1 < k £ m, define: '
plk) = 14 [p )]+ o [p01 L, (3.8)
and
oik) = 1+ [p-k-1)]+ ..+ [p~k-1]""1 . (3.5)

Observe that p‘-(-m:l) = oi(m) = | and p;(m) = oi(-m-1) = n.

Lemma 3.1 ostablishes the probabilily distribulions for all the values in the nodes
of a rug lree. The next lemma establishes a similar result for the quantities e(g) defined

in Section 2.

Lemma 3.2:
Let J.j denote any node at depth i, where i = I, ..., d. If j =1, ¢(7.j) = -c0. If
j 2 2, then the probabilily distribution of ¢(7./), denoted by {qy(#./)}_pck<m Satisties:
(@A) + e Q(@-0) = (g iV ; (3.6)
Proof:
When j = 1, ¢(J.j) = -c0 by d'eﬁnltion. When j 2 2, equation (3.6) follows from the

same argument given in the proof of Lemma 3.1. : |

In order to evaluate,-through equalion (2.10), the probability that a terminal node (s
explored, we first need to defermine the probability distributions for the two quantities

A(#) and B(7). This is done in the following.
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Lemma 3.3:

Let # = jy-g1 o -Jy-Jo denole any terminal node.
(1) If j; = 1 for all cven integers i in the range 0 < i < d-1, then A(}) = -co.
(2) . Otherwise, the probability distribution for A(7), denoled by [ey(?)} ,ick<ms
saltisfies:
a(@) v ay@ = T i @.7)
where the product denoled by ﬂ, is extended to all even integers In the range

0<isd-l.

- Similarly,

(1°) 1f j; = 1 for all odd integers i in the range ! < i < d-1, then B(J) = -0,

P11 o B L A Ty A SN T e T T T b

(2°) Otherwise, the probability distribution for B(#), denoted ; {by(?)} pck<my
satisfies:

b (3) 4 s by(@) = TT, o) .. B8
where the product denoted by ﬂo is extended to all odd integers in the range
1<isd-l.

Proof:
We will only consider A(J) since the proof relative to B(#) is the same. Part (1)

follows directly from the definition. For part (2), let J; denote the node jj_;. ... .j;

We
note that A(7) < k if and only if e(7;) s k for all even integers i in the range 0 < i < d-!
such that j; .2 2. Since the ‘cariables c(7;) are independeﬁt. equation (3.7) follows from
equation (3.6) by observing that, in the product ﬂ,. a factor corresponding to j; = !

amounts to 1. |

The last lemma in this section states the probability of exploring a terminal node.

Lemma 3.4: *
Let 7 = jy.4. ... .Jj.Jg denote any lerminal node. The probability x(7) that Anode
# is examined by the «-f procedure is given b>": .
(@) = 1 if j; = 1tor all even inlegers i in the range 0 < i < d-,

n(}) = 1 it j; =1 for all odd integers i in the range ! < i < d-{,
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n(J) = _ms{s ey Ck@) [ (@) ¢t by ()] otherwise. (3.9)

Proof:
When Ji =1 for all even integers { in the raﬁge 0<isd-1, by Lemma 3.3 A(,?) = ~co.
Hence A(J) + B(7) = - too, and by Theorem 2.1 node & is certainly explored. Similarly

when j; = 1 for all odd integers in the range / < i < d-1.

Otherwise, both A(7) and B(7) are finite. Let A(J) = z,. We observe that
A(7) + B(7) <0 if and only if -m <k < m-1 and -z, < B(7) < z_j_;. Hence, equation (3.9)

follows from Theorem 2.1 and the fact that A(7) and B(J) are independent variables. ]

Using equations (3.7) and (3.8), equation (3.9) can be rewritten as:

e (=-K- /i-'
"3 = Esm-l ay () T, [p,(-k-1T*

ms<

.-- a.- p .,—1
). Z AT, o 7 - TT, o k- TT 1o (k1)1 (3.10)

-ms

(recall that p (-m-1) = 0).

3.2 - Number of terminal nodas examined by the «¢=8 pruning algorithm: discrete case

We are now able to evaluate the amount of work performed by the «-8 procedure

~ while searching a rug tree. As in [23] and [35], we have chosen to measure the amount of
work by the number of terminal nodes examined by lhe procedure. (We will also consider
briefly, at the end of the séction, the total number of internal and terminal nodes explored

'by the prdceduro as a measure of perlorrﬁance.)

Theorem »3.] :

The average number, 'Nn'd(m), of bollom positions examined by the

«-/3 procedure in searching a rug tree of degree n and depth d, for which the bottom

values are distribuled according to the discrete probability distribution
{PoR)} . pick<my iS Biven by: :

Npalm) = /2o 2 [Ty pitk) - Tl pith-0] T, otk @1

where the quantities p;(k) and o(k) are defined by equalions (3.4) and (3.5), and

where the products denoted by TT, and ﬂ, are defined in Lemma 3.3.
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Proof:
By definilion of the probability x(7), the average number of bottom positions

examined by the «-A2 procedure is

Nn,d(’") =2 n(J),
where the sum is extended to all terminal nodes J = Jd-1- = +d1-dg and is actually: a
d-nested summalion over the range ! < jy<n, | Sjpsn .y 18jggsn The summation
can be rearrdnged as:

Nogm) = Zon(@) « Zon(@) + X n(@) = n(l...t),
where the three summations Ze, Zo and Z' correspond to the three expressions for x(7)
given in Lemma 3.4. The fourth term x(l....1) is subtracted from the sum since it is
counted by both Ze and Zo‘ These two sums are easily evaluated since all the terms x(7)
are 1. As x(1....1) itself is 1, we obtain:

Ny g(m) = nld/2) o ald/2) - g0 57 0g) @3.12)°
It is to be noled that the first three lerms correspond exactly to the number of terminal

nodes examined by the o-f8 procedure under optimal ordering of the bottom values

(see [56, p. 201)).

We now evaluate the sum Z'. Inside the sum the terms x(7) can be evaluated
through equation (3.10). We nole that all the summations relative to j;, fori =0, 1, .. d-1,
can be done independently, each one being the sum of a geometric series. Uslng the
quantities p,(k) and o;(k) defined by equations (é.d) and (3.5), we obtain:

Znqe  F (gp) =Ty pk-) T, o) = Ty pifm=1) + 1.,
The theorem follows from this last equation and equation (3.12), using the facts that

pi(m) = n and that o;(m) = 1, : |

The formula of equation (3.11) can be easily evaluated and provides us with a
measure of performance for the w-f pruning algorithm. For some applications, however 1
(especially when the cost of generating moves is greater than the cost of evaluating

positions), it is more convenient to use the lotal number of nodes (internal and terminal)
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‘explored Dy the procedure as a measure of performance. Let T, ,(m) denote the average
: n,d

of this number. The same way we evalualed Nn,d(’")’ we can evaluate Tn,d('") by summing
the probabilities x(7) over all nodes of the tree. We oblain:

Tn,d('”) = Ng'd(m) + erz,d('") 44 Nﬁ’d(m) 5

where Nn,d(’") is the average number of nodes examined at depth i, and is directly
derived from the expression of Nn,d('") in equation (3.11) by replacing d by i and {py(k)}
by {py-;(k)} (recall that {p,(k)} is the probability distribution for the values assigned to
the terminal node§ and that {p,_;(k)} is the probability distribution for the values

backed-up to nodes at depth i).

3.3 - Bi-valued rug trees

Although it is relatively easy in most game playing programs to obtain (by
inspection of the evaluation function) an accurate bound for the range of distinct values
assigned to the various positions of the game, it is usually not so easy to derive a good
estimate for the probability distribution of these values. In the remainder of the section
we will study rug trees in which the terminal nodes can only take on two distinct values,
and we will see, in particular, that a change in the probability distribution of these values

can lead to yery important differences in the growth rate of Nn,d(’”)-

We wil} assume in the following that the values assigned to the terminal nodes of a
rug tree can only be either -1 or +1 with rcspeftive probabilities I-p and p, for some.
p € [0, 1]. Under these conditions, the number, Tn,d(P)' of terminal nodes examined by the
o~ procedure can be obtained as a particular case of equation (3.11) in which m = { and

{po(k)} - pmck<m is defined by po(-1) = 1-p, po(0) = 0, py(1) = p.

Theoram 3.2:

Let pg = p, and, for i = 1,2, ., let p; = 1 - plt .
Tpd® = al&/2 a2y 1,1, (3.13)
with

P« §i Sl p e I, L
s - ¥ °1-p; ]
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wﬁcre the products ﬂ, and TTO aré defined as before.
Proof:

Choose m = I and define the probability distribution {pg(k)}_,,cx<m BY Po(-1) = 1-p,
po(0) = 0 and po1) = p. Hence po(-2) = 0, po(-1) = p(0) = p = pg and py(1) = 1. By
equation (3.2) we oblain:

pi(-2) =0, p(-1) =p(0) =p;, p(l) =1, fOor i=0,1,...

Then equation (3.13) fallows directly from Theorem 3.1 and equations (3.4) and (3.5). | |

Equaiion (3.13) can be evaluated very easily and, in particular, we note that for
O<pc<l:
Tnd® > Tod@ = Toy) = nld/21 pld/2) (3.14)
‘This last equation shows that Tn,d(P) reaches its minimum n[d/zl o nld/2) 4 for p =0 and
‘p = 1. This is in agreement with the result of Slagle and Dixon [56, p. 201] since it
corresponds to the case.whcn all terminal nodes are assigned the same value and
‘therefore 'all,possible cut-offs do occur. Equation (3.14) also shows that Tn,d(P) admits a
maximum for p € (0, 1); although the exact maximum cannot be readily obtained, we will

derive a lower bound in the following. We first establish a preliminary result.

Lemma 3.5:
The unique positive root, §,, of the equation
2"+ x - | « 0
is in the interval (0, 1). Asymptotically (for large r) it satisfies:
1-%, ~ Linn. (3.15)
Prcof:

As there is no ambiguily, we will drop the index n from fatn the following.

Let g(x) =2+ 2 -1, nole that g(0) = -1 <0 and g(I) =1>0. Since g(z) is
continuous and strictly increases for » positive, the equation g(z) = 0 admits a unique

positive root, I, which is in the interval (0, 1).

We observe thal equation ™ + ¥ - | = 0 can be rewritlen as
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~

ful w L :
1o(1epe.egnl)
from which we deduce that

z-g>nfl. ' (3.16)

On lhe other hand, since §® = I - ¥, we obtain

n(f-1) > nlnf = In(l-}),
which shows, along with equation (3.16), that

1-¢ < Lintmet) = Linn « 0a?). (3.17)
Similarly, taking the logarithm of hoth sides of equation (3.17), and using the facts that

J-F=ftandthatiny>1- % , we obtain:

el Ty T
i 1 + ln(aAAn n+t)’
hence:"
1-F > %ln(n/\n n+l) + O[(;’;ln n)?] = %ln n o+ O(%ln lnn).
Equation (3.15) follows directly from the previous equation and equation (3.17). g 2

; When p = [, we obtain immediately that, fori=0,1,.,p; =%, He‘nce
P, = [5,/(1-5,019/2) and P, = [¥,/01-§ 01972,
From equations (3.13) and (3.15) it follows that, for large n:
Tnd@n) ~ laAna)?, ' (3.18)
while equation (3.14) shows that
Tnd® = Toq(t) ~ O(nld/2)). ' (3.19)

Equations (3.18) and (3.19) indicale that Tn,d(”) can be largely influenced by the
varialions of the probability distribution for the static values. This result can be easily
generalized to Nn,d('")' In the next section, we will derive an approximation to Nn,d(’”)

which corresponds to its worst case behavior.

"4 - Number of nodes explored by the oc-8 procedure: continuous case

In lh(s section, we derive an approximation to Nn,d("‘) by considering the limit of

the finite series of equation (3.11) when m tends to infinity while the discrete probability
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distributlion {Po(k)}-n;sksm tends to a continuous brobability distribution, This
corresponds to the case studied by Fuller, Gaschnig and Gillogly [23] and by Knuth and
Moore [35] when the terminal nodes of a rug tree are all assigned distinct values. In

parlicular, we will reestablish (with a much simpler formula) a result of [23].

4.1 - Notalions and praliminary results

We ﬂr.r.t introduce the sequence of functions {5} mapping the interval [0, {] into

itself, and defined recursively by:

fol2) = =,

fiz) = 1= {0 - [ I for i=1,2,...
It is readily verified by induction on ¢ that all functions f; are strictly increasing on [0, 1]
and satisfy }im) =0and fi(I) = 1,1 e, 0and [ are two fixed points of the functions £ for
all n and .. Ihe function f; will be shown to be related to the quantities 9"2,;(*) defined in
Section 3.1. Similarly, in relation to the quantities pai(k) and a-ﬁ,,(k), we define the

following functions on [0, 1]: for i = 1, 2, ..., let
I-[fl-__t(x)]"

1-f;_y(z) '
Sy

If we define ri(1) = n and 5,(0) = 1, we observe that all functions r; and s; are continuous

""‘(x) -

si(z) =

on [0, 1] (they are actually polynomials in z), and that i is strictly increasing while s; is

strictly decreasing.

In relation to the two products ﬂ, and TT_, we also introduce, for i « 1, 2, .y the

o’
following functions on [0, 1]:
R‘-(x) - rl(x) X we X rh-/z‘(z) 5

Si(2) = sy(2) x . x :l,;/zl(Z) s

where §((z) = 1. Observe here, too, that functions R; and §; are polynomials, and that,

when z increases from 0 to 1, R;(x) increases from [ to nlé/2] white §,(z) decreases from

nlé/2) 4o .

"

™"
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L'astly, for k = 0, 1, .., 2m+{, let

Zk ~ Po(kfm-') .

Lemma 4.1: -
'For i=1,2,..and k =0, ..., Zm;l. we have:

ri(@y) = poi-ptk-m-1), ‘ (4.1)

nley) = v o=t} A
Proof:

We first show that for ({ = 0, {, .. and k = 0, ..., 2m+1{:

fi(z)) = poitk-m-1) . - (43)
Since fy(z) = z, it follows from the definition of z; that equation (4.3) holds when i = 0.
Assume, for induction, thal.equation (4.3) holds for i = h. Then by equation (3.3)

Pope2fk-m=1) = 1 - {1 - [fp(z,)]"}",

which shows that equation (4.3) also holds for i = h+! (from the definition of f},,).

Observe that rieE) = 1+ (i1 )] + s (S ,(zk)]"". then equation (9.1) follows

from equations (4.3) and (3.4). Similarly, if we note that s;(z) can be rewritten as
1- {1 - [fi_g)*}® \

(x) = g
T T U |
equation (4.2) follows from equations (3.2), (4.3) and (3.5). B

4.2 - Number of boitom positions examined by the «¢=4 procedura: continuous case

Let us return to the definition of the sequence T_ = {t))lockcomss- AS was
observed in Section 3.1 with the sequence ‘;‘i(k)}’ the sequence T, is non-decreasing and
defines a partition of the interval [0, 1], i. e.:

OnZpgSE <. S8y, S =1,
The norm of the parlition T, is » |
HT pull = max{ ey -2, ;| 1 sks2mel ) = max{ potk) | -msksm}.

In the remainder of the section we require the following.




Ty =TT

-nodes being assigned the same value vanishes. This corresponds to the case studied by

--P}oof: .
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Assumbtion:

(A1) lim max{ 'po(k) |-m<sksm} = 0. | ]
n-co

. This assumption ensures that the norm of ihe parlition T, tends to 0 when m tends

to infinity. It also shows that, as m tends to infinity, the probability of two terminal

Fuller, Gaschnig and Gillogly [23], and by Knuth and Moore [35].

With this assumption, we will now see that the finite series of equation (3.11) can 4

be replaced by an integral when m=co. This is established in the follow(ng.

Theorem 4.1:

Under assumption (Al), we have:

lim N, m) = nl9/2) o fo' Rif().S ft)dt , (4.9)

m-=ro

where R&(z) is the first derivative of R 4(z).

. Since there is no risks of confusion, we will drop, in the following, the index d from

the functions Rd and Sd'

It follows directly from Lemma 4.1 that for k = 0, ..., 2m+1:
Rzy) = TT, pitk-m-1) ,
Sy =TT, oylk-m=1)
which shows that equation (3.11) can be simply rewritten as:
- nld/2) ' 3
Npdlm) = nl/4 e 5"” ; [Rey) - Riey_p)) Stey) .

Let A,, denote the series defined in this last equation.

Recall that R(z) is a polynomial. By considering the Taylor devélo;amcnt ot R(zy_y),
we obtain for k = {1, ..., 2m+1:
Rley) - Rlep.p) = lextp- ) Rey) + Ligge, P R7Gp),
where ¢4 _; <t} < &), Hence:
[2)-ty-1) R'(2)) SCzy)

A. =
o Isks%mol
- 2 "
5 1<k<2mel g(‘h zk-l] R (lk) S(ck),
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Since R and § are polynomials, the quantity |R"'(z)S(y)/2| is bounded by some cbnslant,
say M, for any z and y in [0, ). In particular, the second sum in equation (4.5) is bound‘ed
in module by M.IT,ll.[25,,,1-%0] = MAT Il and therofore tends to 0 when m = since,

from assumplion (A1), IT Il = 0.

As for the first sum in equation (4.5), we observe that it corresponds to a Riemann
sum_for the function R'(x)S(z) over the partition T, of [0, 1). Therefore since, in
particular, this function is continuous and since ||T,,|l tends to 0, the sum tends to the

integral of equation (4.4). This proves the theorem. n

In the remainder of the section we will reinterpret the limit of Nn,d(’") established

in Theorem 4.1.

Let G be the distribution function of some continuous probability denéity function g,
and assume, to simplify the discussion, that G(-1) = 0 and G(1) = { (therefore, G(z) = 0 for
z < -1 .and G(z) = 1 for x 2 1). We define a sequence of functions G, for m .- 0,1, .. as
follows. For -m < k s m, let zy = k/m. Functibr.\ G, is defined as the following step
function: ¥

0 if z<z_, =0,

-m
Cplz) = Clzy) it zpsz<z,, for -msksm-1, i
1 if lez, <x.
The sequence of functions [Gm} constitutes a sequence of apﬁroximations to the
continu;)us function G. (It should be noted that the convergence of the sequence is
uniform on the (nterval [0, 1].) The function G, corresponds to the cumulative distribution

of the discrete probability distribution p,(k) .cm(z,,’)-cm(z,,') associated with the

points z; = k/m, for k = -m, ..., m.

Using the approximation {pg(k)}_ycxcq tO the density function g, equation (3.11)
provides us with an approximation to the average number of bottom positions examined by

-the u-ﬁ procedure in a rug tree in which the bottom values are drawn from the continuous




. PART 1 SEQUENTIAL Al.PHA-BETA PRUNING ALGORITHM 93

- probability - density function g. When m becomes larger, the approximation becomes
betler, and (due lo the uniform convergence of the sequence G,)) it can actually be shown
(in a rather lechnical way) that the limit of Nn,d(”‘) when m -+ o corresponds exactly to
the average number of botlom positions examined by the o~ procedure in the continuous
case. As a matter of fact, equation (4.4) could be derived directly by considering a
continuous probability distribution rather than a discrete one in very much the same way

we derived equation (3.11) in Section 3. This result is stated in the following.

Theorem 4.2;
Let fo(z) = z, and, for i = |, 2, ..., define:
f(x) = 1= {1 - [f_ ",

ri(z) = 1
I-fi_l(z)
3‘-'(2) & f‘(Z)

Ri(x) = ry(z)x ..x '[L'/?](z) .

.S“-(z) = sy(x) x o x ’[i/2j(’) ‘
The average number, Nn,d' of lerminal nodes examined by the «-A pruning algorithm in
a rug tr;e of degree n and depth d for which the bottom values are drawn from a.

continuous distribution is given by:

Nog = al¥/2 . /o' Ri(e).S glt)dt . (4.6)

It is to be noted that, unlike the case of a discrete probability distribution, when
the bottom values are drawn from a continuous distribution, the number of terminal

posilions examined by the «-f3 procedure does not depend on the distribution function.

4.3 - Diacrote case versus continuous case

Since equation (4.6) has been derived as the limit of equation (3.11), it is reasonable
to investigate the validity of the approximation of Nn,d(”‘) by Nn,d' As was seen in

Section 3.3, Nn,d(’") strongly depends on the probability distribution (Pb(")]-msksrn and,

LA
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therefore, we cannot expect Nn,d to be a close approximation of Nn,d(”‘) in all cases. We .

will see below, however, that Nn,d provides us with a good insight into the behavior of

the «-8 pruning algorithm. Namely, we will see that it constitutes the worst case of

Nn,cl(’”) over all discrete probability distributions.

Since Nn,d was obtained as the limit of Nn,d("‘)' it is sufficient to show that, for all
probability distributions {pg(k)}_,, <k<m» We have:

: Npd 2 Npglm). (4.7)

_In order to prove inequality (4.7), It is convenient to give a geomelric interpretation of

both N,, 4 and N, 4(m).

Consldf:r the curve (L) defined by the Cartesian coordinates (z, y) through the

paramelric equations
(L): [z =Ryt), y=Syt)],

where the pars'lmeter t varies in the interval [0, 1]. The integral of equation (4.6)
represents the area delimiled by the curve (£), the z-axis and the parallels to lhé y-ails
at the abscissas Ry(0) = 1 and Ry(1) = nld/2] (see Figure 4.1). Since Ry(0) = ! and
S4(0) = nld/ 21, the term nld/2] of equation (4.6) can be accounted for by the area of the
rectangle delimited 'by the z-axis, the y-axis and the lines z = 1 and ’,. nld/i’j (the latter
line extends the curve (L) in a continuous way). Figure 4.1 represents the curve (£) and
its extension in the case n‘- 3, d = 6. The area below the unbroken lines represents the

quantity Nn,d'

The sum of equation (3.11) can also be represented along with the curve (£). It
follows directly from the relations of equations (4.1) and (4.2) that the terms of the sum
represent the areas of the rectangles dclin.\ited by the lines z = R(z)_;), z = R(z)), y = 0
and y = S(zy), for k = 1, 2, .., 2m-1. Th? quantity Nn,d(’") represents therefore the area of

Figure 4.1 sh_ow_n below the broken lines.
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"

Rgft)

Figure 4.1 - Geometric interpretation of Nn,d and Nn,d(’")

Inequality (4.7), then, follows directly from the fact that, when ¢t increases in [0, 1], |

R(t) increases while S(t) decreases.

§ - On the branching factor of the o= pruning algorithm

We hav‘e deliberately chosen to introduce first the case when the bottom values of a
game tree are drawn from a discrete probability distribution since it is of most interest in
practical' applications.: The case of a continuous distribution, however, lends itself more
easily to an anaiysis. and, since it constitutes the worst case over all discrete probabillly'
distributions, we will, in this section, examine the Integral of equation (4.6) rather than

the series of equation (3.11).




T
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5.1 = Pravious rosults

In Section 1, we Introduced the branching factor as a cost measure for the work

involved in searching a tree. Rather than considering the number, N

n,d? of terminal

positions examined by a search algorithm, as a measure of performance of the algorithm,

we could have considered the total number, Tn,d' of nodes (terminal and internal) explored

during the search. In the case of the «-f8 pruning algorithm, since Nn,d' given by

equation (4.6), does not depend on the distribution function of the bottom val;nes, we

deduce that ’Tn.,d satisfies: '
T!"-d - 1 Nn,l ‘. Nn,d .

It can be checked easily that 0 < Nn,i-l < N_ ., therefore Nn,d < Tn,d < dNn,d' and:

n,i’
; 1/d _ i I/d
Q-Tw ( Tn'd) 91‘:"oa (Nn,d) R“_ ﬂ(n) 5

Thus, Definition 1.1 provides us with a measure of performance useful to compare search

algdrithms. In the following, we review some of the results which have already been

presented in the literature.

Minimax search

The minimax search examines systematically all nodes of a tree. It, therefore,
examines Nn,d = nd terminal nodes in a uniform tree of degree n and depth d, leading to a
branching factor

Rminimax(®) = n.

o=/ procedure under optimal ordaring
Slagle and Dixon {56, p. 201] have shown that, when all possible o- and B-cut-offs

occur, the -2 procedure examines
N'ld = n[dlzl + nldlzj - 1

. terminal positions. In this case, the corresponding branching factor s

Ropt(n) = nl/2

Woens
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-cc.-ﬂ pr'ocodure (experimental results from [23])
Based on a series of simulalion results, Fuller, Gaschnig and Gillogly [23] have
argued that the formula
“N 0.72d + 0.277

n

d " c(d).n
constitutes a reasonable approximation to the number of bottom posilions examined by'the
o-f3 proceduré for small values of n and d, and that 1 < c(d) < 2 (at least for the range of
values they ct;nsidered). For purposes of comparison, lel us assume that their
approximation can be extrapolated for any n and d. Provided that cd)!/d 5 1| when d » o,
we obtain
Ru_ﬂ(n) ~ n072
In view of the results of Section 3.3, we can question the accuracy of the approximation

for large n since it follows from Theorem 3.2 that

E}Tm [Tn,d({n)lud = O(nAn n).

o~/ procadure without deap cut-offs

Knuth and Moore [35] have analyzed a simpler version of the w-8 procedure by not
considering the possibilities of deep cul-offs. This ﬂ-prochure is the same as the
«-f3 procedure except that no w-values are passed to the «-f procedure; instead, the
lower value « is always set to - before exploring the successors of a node. Knuth and
Moore have shown that the branching factor of this procedure satisfies

Rﬂ(n) = O(nfinn).

Note that, since lhe fA-procedure always explores more nodes at any depth in a tree than
the full w-f procedure does in the same tree, Rﬁ(n) provides us with an upper bound for

-~

Runﬂ(n).

5.2 - Bounds on the branching factor of the «¢=/4 procedure

In this section we will derive some lower and upper bounds on the branching factor

of the w-/ pruning algorithm. In particular, since the lower bound we derive grows with n
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as a/in n, we will be able to conclude, using the result on the branching factor of the
- procedure without deep cut-offs established by Knuth and Moore in [35], that the

branching factor of the x-f8 procedure is ©(rnAn n).

We introduced in Section 4.1 the sequence of functions f;, i = 0, 1, ..., from [0, 1] to
itself, and we observed that all functions f; share the two fixed points 0 and I
(independent of n). Another common fixed point, which depends on n, was introduced in

Section 3.3.

Lemma 5.1t
For a given n, all functions f;, for i =0, {, .., share the common fixed point
¥, € (0, 1), the unique posilive root of the equation
zt + 2z -1 = 0.
Proof:

For clarity, we will drop the index n from [, in the following.

Since fy(x) =z, ¥ s certain(y a fixed point of fy; assume, for Induction, that
£i-1(¥) = ¥, then from the definition of f; we have
7t I R T (710 7) o PR IR O [ LI

. which shows that ¥ is a fixed point common to all functions f;, i = 0, I, ... [ |

Since §, is a fixed point cbmmon to all functions f;, i = 0, 1, ., It is easy to evaluate.

at this point the functions r; and s; defined in Section 4.1. For i = 1, 2, .., we deduce that:

rCp) = 80 = L /0=, (5.1)
In particular, it follows from Lemma 3.5 that, for large n:

riE) = si(fy) ~ nAnn. ' ey
Equations (5.1) and (5.2) will be’ useful to obtain the desired bounds in the remainder of

the section.

The geometric representation of equation (4.6), given in Figure 4.1, makes it easy to

derive bounds on the quantity Nn,d- They are stated in the following.
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Theorom 5.1t

Tl';e branching factor of the w~A pruning algorithm in the search of a rug tree ‘of
degree n‘satisﬂes:
RAN R ~ £ 1-E) < Ry pin) s YR 5D ~ n/ff0A, 63
forn =2, 3, ..
Proof:
Since, when t increases in [0, 1], Ry(t) incrcases while §y(t) decreases, it follows
airectly that for any o in [0, 1] we have the following inequalities: '
Ry(w).Sylw) < Np g < Ry(w).S4(0) + [Ryg(1) - Ry(w)].S yle) . (5.4)
If we choose « = ¥, we have Ry(w) = [{n/(l-fn)][d/zl and §(w) = [{n/(l-gn)]ld/zj. Since
Ry(1) = nl4/2] and 540) = al9/2), incquality (5.3) follows immediately from inequality (5.4)

and the results of Lemma 3.5. : : 2
As an immediate consequence, we obtain the following.

Theorem 5.2:

The branching factor of the w-A pruning algorithm in the search of a rug'tree of
degree n satisfies, for large n: '
Ra-/.?(") - G(n/lr; n).
Proot:
The result comes directly from the lower bound §,/(1-f,) ~ n/An n of Theorem 5.1,
and from the upper bound Rﬂ(n) obtained for the o~/ procedure without deep cut-offs,

which Knuth and Moore have shown to be ©(rAAn n). |

This results confirms, as was suggested by Knuth and Moore [35, p. 310}, that deep
cut-offs have only a second order effect on the behavior of the o~/ pruning algorithm. On
the other hand, it shows that the formula proposed by Fuller, Gaschnig and Gillogly in [23]
and mentioned in Section 5.1, if it constitutes a reasonable approximation for small values
ofn and d (the range of values they considered is n + d s 12), is certainly not adequate for

_large values.

LA
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We note that the bounds of Theorem 5.1 were obtained without difficulty by
conveniently cuoosing just one paint, ¥, on the curve (L) since it was easy to evaluate
both Ry(¥,) and Sy(r,). In the next seclion, using a different approach, we will derlve a

tighter upper bound for Nn,d' and hence for Ru_ﬂ(n).

5.3 - Improved upper bound

Since, for d = 1, 2, ..., Nn,d‘ Nn,d'l < "Nn,d' then, if (Nn'd)l/d lends to some limit §
when d tends to infinily as an even integer, this quantity tends to the same limit when d ° e
tends to infinity as an odd integer. Therefore, without loss of generality, we will only

consider, in this section, the case when d is an even integer. Let d = 2h. =

For z in [0, 1] and for i = 1, 2, ..., we define p;(z) = r(z)s;(x).

Lemma 5.2:

All functions p;, for i = {, 2, .., have the same absolute maximum, M,, in the
interval [0, 1].

Proof:

-

From the definitions of r;() and s;(x) we have for i = 1, 2, ...
riz) = r,[!-_‘(x)] .
and

si(x) = sy[f;_1(2)].

Therefore, for i = 1, 2, .., we also have, from the definition of p;(z):
piz) = pylfi_ (2)].
The lemma follows by observing that, for i = 1,2, .., f;_; ls a one-to-one function from

[0, 1] to itself. B |

Lemma 5.2 shows that, in order to study the maximum of p;(x), when z € [0, 1], it is

sufficient to study the maximum of the polynomial

pyx) = ’,‘_’:"“z‘ﬁ”")", for =€ [0, 1].
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Observe that M, 2 p,(¥,) = [_l‘n/(l-fn)lz, in parlicular, since it can be checked easily
that, for n = 2, 3, .., ¥, > Yn/(1+/n), it follows thal

M, >n for n=2,3, ... (5.5)

n

Theorem 5.3
The branching factor of the a-A2 pruning algorithm for a rug tree of degree n
satisfies: :
Ry-pn) s VM, (5.6)
where M, is defined in Lemma 5.2.
Prao-f: .
From the definition of Ryy(t), we obtain for h = 2, 3, .

Rop(t) = Rop_o(thrp(t) + Rop oltdrp(t) .
By multiplication by S,(t) it follows that

R5p(t).Sop(t) = R'Zh_.z(t).SZh_z(t).ph(t) + Ropop(t)Sop_ot)rp(t)sp(t) .
Since, for ¢ € [0, 1], all factors in this equation are non-negative, we deduce, using the
results of Lemma 5.2 and the fact that sy(t) < n when ¢t C [0, 1], that:

' Rop®ISop(t) s MpRop.o®S2p.0) + n MR rite) .

Since, in addition, |

R5(t) Sy(t) = ry(t) syt) s nryct),
it follows that for t C [0, I]and h = 1, 2, ...:

Ropft) Sop) < n ML (i) o o rp®). . (5.7)
Let In,d be the integ'ral defined in equation (4.6). By integrating lnequality (5.7) over
[0, 1] we see that I, 4 satisfies: '

Iyop s nMPT [ha-1)] = ntm-1) h M1
since r;(0) = 1 and ri(1) = nfori =1, 2, ... This shows th?t

Naoh s n* + ntn-0) hMPL

Equation (5.6) now follows directly from inequality (5.5). a

LA
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5.4 - Numerical resulls

CHAPTER IV

Table 5.1 summarizes the resulls of this section. It presents the various lower and

upper bounds we have derived for the branching factor of the a-8 pruning algorithm from

equations (5.3) and (5.6).

s

N NJ N) »a e — n e by e $
NeNddaNGArhAGN~aOYRINOGOAWLN

23

Table 5.1 ~ Bounds on the branching factor of the -4 pruning algorithm

lower bound

Ep/(1-E )

1618
2.148
2.630
3.080
3.506
3915
4.309
4.692
5.064
5.427
5.782
6.130
6.473
6.809
7.141
7.468
7.791
8.110
8.425
8.736
9.045
9.350
9.653
9.952
10.250
10.545
10.838
11.128
11416
11.703
11.987

ST,
1622
2.168
2.678
3.166
3.638
4.098
4.549
4.993
5.430
5.802
6.290
6.713
7.133
7.549
7.963
8.373
8.782
9.186
9.591
9.793

10.393

10.791

11.188

11.583

11.976

12.369

12.759

13.149

13.537

13.924

14310

upper bounds

w/n{n7(t -In)

1.799
2538
3.243
3.924
4.587
5.235
5.872
6.498
7.116
7.726
6.330
8.927
9.519
10.107
10.689
11.268
11.842
12.413
12.980
13.545
14.106
14.665
15.221
15.774
16.325
16.873
17.420
17.964
18.507
. 19.047

19.586

from [35]

1.884
2.666
3.397
4.095
4.767
S.421
6.059
6.684
7.298
7.902
8.498
9.086
9.668
10.243
10.813
11.378
11.938
12.494
13.045
13.593
14.137
14.678
15.215
15.748
16.265
16.778
17.288
17.796
18.300
18.802

.'. [ L S

Although we have not been able to give an estimate for the asympiotic growth of

/ﬂ;. we can easily derive an upper bound for this quantity by studying rug trees of depth-

2 since:

My s Npa s 208, /1-Fp) = [p/(1-F)R ~ 2n%Ana,
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which shows that VM, < O(r/vinn). The numerical results of Table 5.1 indicate that VM,

is a much better upper bound for Ru_ﬂ(n) than Jn{n/(l-fn) for the range of values we

have considered.




Part 2: A parallel implementation of the algorithm

6 - A parallel -8 pruning algorithm

When several processes are available a solution that comes naturally to mind for

implementing the «-# pruning algorithm is to have each process explore in parallel a
different subtree of the entire game tree. Each sublree would be explored using the
«-A procedure to back-up ils value to its root, say some node P, then the value should be

reported to the father of node P in order to decide if the remaining brothers of node P

can be pruned.

A possible implementation for this solution is to have the parallel algorithm
organized around a s.mtic decor;zpositiou of the gahe tree, for example, by generating first
'all nodes at; say, depth 1 or depth 2 before starting all processes in parallel. As is shown
in [37]), however, static decomposition is not well adapted for. execution on an
asynchronous mubltiprocessor; this is especially true when processes have different speeds

and the various subtasks have different sizes.

A dynamic decomposition of the game tree, on the other hand, is better suited for
the processes to adjust their loads according to their own speeds. We immediately
observe, however, that a dynamic implementation will require a global data structure for
the processes to communicate among themselves. Since this data structure has to be
updated by more than one process in parallel, synchronization will almost necessarily be
required to preserve the validity of the structure at any time; in consequence, this will

create a large (and unwanted) overhead.

105
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Most important is that, by exploring in parallel and independently ditferent subtrees
of the game’ iree, we loose the power of the -8 pruning algorithm. By looking back ‘at
the original algorithm, we observe that ils efficiency is mainly achieved by the fact that,
at any polnt‘during the search, the decision of pruning branches s based upan all the
information previously acquired during the search. Obviously, when different subtrees are
explored independently in parallel rather than sequentially, less information is available
to each process, and, consequently, in the overall more nodes have to be explored. As
will be seen, the parallel algorithm we propose below for the -8 pruning does not suffer

from the loss of information communicated between the various processes.

6.1 - A parallel implementation for the «=8 pruning algorithm

While proving the correctness of the ALPHABETA procedure, Knuth and Moore (35]
have established equations (2.2), (2.3) and (2.45 mentioned in Section 2. We now
reintefbret these equations. Let V = ALPHABETA(P,2,4), and let Vg = MleMAX(P). it
follows directly from equatio'ns (2.2), (2.3) and (2;4) that when o < 8:

M Vse . then Vp<o, (6.1)
i w<VeB  then VgV, _ (6.2)
if Vagp then Vo2 4. ‘ (6.3)

The value Vj (and the path in the game tree associated with that value) is the soiution we
are seeking when the node P is the root of the game tree. Equations (6.1) to (6.3) suggest
that the problem of finding the solution ¥, can be viewed as the problem of locating the
root of a menolonic function over some interval using only asynchronous parallel
evalﬁation of the function. (‘i’his root f{inding problem has been studied by Hyafil and
Kung, see [37] and [44]).) Several differences are, however, immediately noticeable. In
the root flr.\ding problem we are only looking for an approximation to the root and each
evaluation of the function takes place at .a single point. In the game tree searci'!lng
probleng, on the other hand, we are interested i.n the exact solution and each intermediate

.search. or partial search, executed through the call ALPHABETA(P,x,8), examines an open
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interval: (w, R). -Equalion (6.2) shows that, provided the exact value lies in this open

interval, the call returns the exact solulion, and this lerminales the entire search. The

following program gives a parallel implementation of the w-# pruning algorithm based on

this decompaosition.

Program A:
global integer GALPHA, GBETA;

Inilialization:
begin
CAI.PHA := -co; GBETA := +co;
start processes P,. e Pk

end ;

Process P :
begid
integer Aj, B,V
((A,, B) "= SELECTNEWINTERVAL);
begin
V, := AB(Rool,A B /.!T‘_'Q)i
if V;sA, thed
begih
{CBETA :« minlCBETAA 1)
. (A;, B)) := SELECTNEWINTERVAL)
end
else
» ¥ V,28B j then
begin
{CALPHA := max(CALPHAR ~1);
(Aj, B) := SELECTNEWINTERVAL)
end
else
begin
{GALPHA Je CBETA = Vl}i
return the sotlulion: V Ji
terminate
end
end;
terminate

end

(6.9)

(6.5)

(6.6)

The two global variables GALPHA and GBETA define the current open interval

known to contain the solution V. (When this solulion is found, however, both GALPHA and

CBETA are se! to Vo) The interval (CALPHA, CBETA) is initialized to (-co, *c0) and is

updated each time a process finish. s a partial search over the game tree. The. procedure

-
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SELECTNEWINTERVAL uses, without modifying them, the variables GALPHA and GBETA (as
well as Ay, .., A, and By, .., By) to determine a new interval (Aj. Bj) over which process -
Pj will proceed to a new partial search. This procedure is critical to the efficiency of
Program A and will be discussed in more detail in Section 7. For the time being, we will
only assume that it meets the following specifications. Given the variables GALPHA and
GBETA (and the variables Ay, .., Ay and By, .., By), let (A, B) := SELECTNEWINTERVAL:

(a) A=B it GALPHA = GBETA

(b) A<B otherwise.

" As we are only dealing with integers, condition (b) is equivalent to the condition A < B-1.

Since' the two global variables CALPHA and GBETA are updated in parallel by

several processes, their use is restricted within critical section (indicated in Program A

with curly brackets); the use of tt';c procedure SELECTNEWINTERVAL also occurs within

critical section. .

Theoram 6.1:

At any time in the execution of Program A (outside a critical sectiorn), the
solution V; satisfies either one of the following two corgdlltons: L

GALPHA < Vy < GBETA, ' (6.7)

GALPHA = Vj = GBETA. (6.8)

. Proof:

After initialization, at time tg, the variables CALPHA and GBETA are only modified
(in a critical section) through one of the instructions (6.4), (6.5) or (6.6) executed at the
time instants ¢y, t;, ., t;, .. (with ;218 for i22). After t;, GALPHA = - and
GCBETA = ‘m,. therefore condition (6.7) is certainly salistied. ‘Assume that after t,_;, for
i 2 1, condition (6.7) or (6.8) is satisfied. If instruction (6.6) is executed at time t; by
process P p it follows from equation (6.2) that V f A Vo, therefore condition (6.8) is satisfied
after t;. If instruction (6.3) is executed at time t; by process P J it follows from

equation (6.1) that V5< A por eqivalently Vo<Al~l (recall that both Vy and A j are

4
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integers); if, prior to t;, condition (6.7) were salisfied, then Vy < GBETA, which shows that
Vo<min(GBETA,Aj¢1) and condition (6.7) remains salisfied after t4 if, prior to ti
condition (6.8) were satisfied, then GCBETA = Vo < Al-d, which shows that
mi.n(GBETA,Ajd) = GBETA and condition (6.7) remains satisfied. The same holds . when

instruction (6.5) is executed. B

Theorem 6.1, along with {he specifications (a) and (b) of the procedure
SELECTNEWINTERVAL, proves the correctness of Program A in the sense that if the

program terminates it generates the correct solution.

Proving the termination of Program A, on the other hand, requires add{tional
specification of the procedure SELECTNEWINTERVAL. Observe, for example, that, if we
always have Aj = Bj-!, the open interval (Aj, Bj) does not contain any iﬁteger (/Ij and Bj
are integers themselves) and no solution can ever be found. If, howevier,'we replace
condition (b) above by: .

(b’) A< B-2 otherwise,
it can be shown easily that the lenglh of the interval (GALPHA, GBETA) decreases at least
by ! each time a process combleles a parlial search. Since in a practical implementation
the interval (-m, +) is actually a finile interval in which we know that the solution V‘., is

to be found, we are guaranteed of the termination of Program A under condition (b°).

6.2 - Some improvemants on Program A

A feature of the parallel implementation presented in Section 6.1 is that

intercommunication between processes is reduced to a minimium, and confined to the

selection of a new interval over which a partial search is to take place next. As a

consequence, once a process has .initiated a parlial search, it runs until completion
oblivious of the results of the other processes. This can obviously be overly wasteful
since the interval searched by a process might be ruled out by some other process very

soon after the beginning of the search.

©

PR
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This shorlcoming can be eliminated in several ways. First, a process compleling a
parlial search could check all other processes, causing them, if necessary, either 'to abort
their searches or to readjust their intervals. This solulion, however, requires a lot of

book-keeping and becomes unpractical when a large number of processes are cooperating.

Another solution is to have eﬁch process modify its own Interval by regularly
checking po;sible changes of the variables CALPHA and CBETA during the search. Let
A’ < A< B < B’, and consider the two calls: .

QLPHABETA(Rool.A',B') and ALPHABETA(Root,AB) .
It _is easy to check, by induction, that if node P is explorgd by the second call, through
ALPHABETA(R,w,R), node P is also explored by the first call, through ALPHABETA(P,a’,8°).
Morecover, the bounds «, 8, @’ and 8’ satisfy: .

o = max{n'A}, B 5 min{A',B} , if P is at even depth, (6.9)

o« = max{n',-B}, B = min{A’,-A} , it P is at odd depth. (6.10)
The procedure AB, below, is a modification of the procedure ALPHABETA, in which the
bounds alpha and beta are regularly updated according to the relations (6.9) and (6.10) to

take into account the changes of the two variables GALPHA and GBETA.

integer procedure AB(position P, integer alpha, integer beta, boolean even):

begin :
determine the successor posilions: Py, ..., Pp;
if n=0 then
AB := f(P)
else
begln
for j:=1 step I until n do
begin ot
t := -AB(P ,,-beta,-alpha,nol even);
if t> alpl(a then alpha := ¢; i

i even then ]
(alpha :» max{alpha,CALPHAY}; beta := min{beta,GCBETA})
else ; i
(alpha :» max{alpha,-GBETAY}; beta := min{beta,~-CALPHA});
if alpha 2 beta then goto done
end;
AB := alpha
end

A modified Alpha-Beta procedure
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Relations similar to the relations (6.1);(6.2) and (6.3) hold for the procedure AB as

well. Consider the call:

Vim AB(P v Slcun), | 6.11)

and as before define Vj := MINIMAX(P). Also, let A and B denote the values of the two

variables GALPHA and GBETA when returning from the call (6.11) (i. e., as of the last time

they are used during the execution of the call). For A’ and B’ satisfying A' 2 A and B' < B,

define &’ = max{a,A’) a.and A" = min{B,B’}. We have the following.

Theorem 6.2

With the above notations, provided that:
A'sVyg<B' and a'<f’,
we have: ;

if Vseo' then Vy<eo',

if @’'<V<g then Vy=V,

if Vvapg’ then Vp2 8.
Proof:

The proof follows easily (by induction on the depth of node P) from the

relations (6.1.). (6.2) and (6.3) and the relations (6.9) and (6.10): |

Program B, below, directly implements the relations stated in this theorem. Since
the analog of Theorem 6.1 can be oroved for Program B as well, its correctness is a direct

consequence of Theorem 6.2.

Progr;m B:
global integer GALPHA, GBETA;

Initialization:
begin
GALPHA :2 -c0; GBETA := +co;
start processes Py, .., P,

end

"
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Process P
bepid
'mte,_gAj.,B-.V-; <
{(A,, B)) = SELECTNEWINTERVAL);

whtJle JA-<Bjc_ig o,

—— ]

begin
V; := AB(Root,A ;B ;lrue);
A’j := max(A ,CALFHA); B 1= min(B ;GBETA)
i Aj < Bj “hﬁ‘.
begin
¥ V,<A; then
begin

{CBETA := min(CBETA,A #1);
(A}, Bj) := SELECTNEWINTERVAL]
endl
else
if V;2B; then
— Ib g T
begin
{GALPHA := max(GALPHA,B ;-1);
(A, B;) = SELECTNEWINTERVAL}
end

lse
if

(1]
—

se

begin
{GALPHA := GBETA := Vj};
return the solution: V I
terminate
o A

end
else

R {(A jo B j) := SELECTNEWINTERVAL}
. end; :

terminate

end

Procedures ALPHABETA and AB implement two extreme alternatives in which the

bounds alpha and bela are never u;->dated and in which they are updated each time they
are used.. A more eﬂl.c'tent implementation would be to update alpha and beta only when
changes have been made on the variables GALPHA and GBETA. This can be achieved very
easily by inlroducing a global counter incremented by I inside the critical section after
each of the instuctions of Program B modify'ing GALPHA and/or GBETA, and by introducing
a counter local to each process to check if the latest modifications of GALPHA and GBETA
have been taken into account. Since the counters can only increase, no additional critical
section is required. We will not present the implementation details, but the point, here, is

mainly to show that it is possible to implement (at a very low extra cost) each process so

that it is continuing a partial search only if the result of the search can produce the
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solution or, at at least, a reduction of the interval in which the solution can lie. In
parlicular, we note that, in Program B, process PJ' will terminate its search as soon as, for
example, GALPHA 2 Bj or GBETA < Aj, either condition ruling out the original interval

(Aj, Bj). This property will be taken Into account in the analysis presented in Section 7.

7 - Analysis of the parallel o¢~=43 pruning algorithm

We will proceed in this section lo the analysis of the parallel algorithm described in
the preceding section. Since the algorithm is organized around parallel execulions of
partial searches, it is the first thing we want to analyze. Most of this analysis differs very

slightly from the analysis developed in Sections 2 and 3, and we will only present in

Section 7.1 and 7.2 the main results leading to the evaluation of a partial search. The
overall evaluation of the algorithm.depends upon the procedure SELECTNEWINTERVAL and

will be derived in Section 7.3.

7.1 = Condilion for a node to be examined under a partial search

As in Section 2, let 7 = j;. ... .j4 denote a node at depth d in a game tree and, for ;
0<i<d-1, let ;= jj ...jgy; The notations for v(7) and c(#) remaining the same, we
now define:

a'(F) = max{e(Fy ;) |iisodd, 1<sisd},

P

B(7) = max{ec(Fy ) |iilseven, Isisd]}.

Given the two bounds a and b, we also define:
A(}) = max{a, a'(F) ]},
B'(3) = max{ -b, 8°(3)}.

_ The analog of Theorem 2.1 for a partial search can now be stated in the following.

Theorem 7.1

Assume that the root of a game tree is explored through the call

ALPHABETA(Root,x,R)
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by some process executing the parallel procedure of Section 6.1. Then, with the

above notations and provided that a < b, an arbilrary node 7 of the game tree wlll‘be
subsequently explored if and only if:
A'(F) +B'(F)<0. : , AN A1)
Proof: |

The proof is immediate by induction, |

Observe that, when the procedure AB of Section 6.2 is used instead of the
procedure ALLPHABETA, condition (7.1) only remains a necessary condition for node # to be
explored through the call AB(Root,w,R). It is no longer a sufficient condition since, by
updating the.bounds « and A during the execulion of the procgdure AB, additional pruning

might occur.

In the following evaluation of a partial search we will assume that the process
execules the procedure ALPHABETA, and we will utilize condition (7.1) to characterize the

fact that node 7 is explored.

’

7.2 - Average number of nodas explored under a parlial search

-

As before, we will consider a rug tree of degree n and depth d, and we will assume
first that the bottom values are independent identically distributed random variables
distributed according to some discrete probability distribution {pg(k)}_,,cxcme Where pg(k)

is the probability that a botlom value be assigned the value z; = k/m, for -m < k < m.

Given two bounds & and f3, we define k; and k; by:
dt-zkl, ﬂ-zkz.
Since the values o and B could be unbounded, it is convenient to define 2_,,_; = -0 and
%41 = *. Throughout we will only consider the partial search corresponding to the call

ALPHABETA(Root,w,R), and we will assume that o <'B, which can equivalently be expressed

as -m-1 ¢ k‘ < kz < m+l.,
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"

Using arguments identical to those ‘of Section 3.1, the probability distributions for &
the quantities A'(7) and B’(7) can be oblained immediately as a function of the quantities
p;(k), for 0 s isd and -m-1 s k < m. Then the probability x(7) that some node 7 of the
g;-ame ll:ee be explored under a partial search can be derivgd from these results using the
“characterization given by condition (7.1). As with Theorem 3.1, the following theorem
results direptly from the.expression for n(7). In order to pres',ent a uniform result
‘(independent of the parity of d) in this theorem, we depart slightly from the notations of
Section 3.1, and the products denoted by ﬂe and TTO are now extended over all even and

odd integers i, respectively, in the range { < i < d.

Theoram 7.2:

Theq average number, Nn,d(m,d,ﬂ). of bottom positions examined under a partial
search is given by:
Nn’d(m,oe,'ﬂ) - TTO Py-ilky) x ﬂe oq-ilky)

. kl‘,s)kj‘hz_‘ (T, py-i(k) - TT, Py-itk-1]x Ty og k). (7.2)

Proof:
As with the proof of Theorem 3.1, the result follows directly by summing the

probabilities x(7) over all terminal positions 7. ' ' |

When assuming that all bottom value; are distributed according to some continuous
probability distribution (or, similarly, are all distinct), aéain we can obtain, as in
Section 4, the average number of botfom positions examined under a partial search by
considering the limit of Nn,d(m,o:,ﬂ) in equation (7.2). At this point it is convenient to

consider the cumulative distribution for the value v(Roat) with respect to the twa points @

and p. Na'mely, given the probability distribution {pk)}_ . ck<cm (OF equlvélently
{potk)}. mck<m) @nd given & = ”k, and £ = z")' we 'mtroduc.e:

ag, = py(-m)+ ..+ pyhy) = | -pf-ky-1),

by, = pyf-m) s .. s pyhy) = 1-pyl-kp-1).
If, in general, we let: .

t = py(-m)+..+pyk) = 1-py-k-1),
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and define in an obvious way the functions P and Q on [0, 1] by the correspondence:
P(t) = Tlo Pd-ik) ,
Q) = n, oy-i(k),

we can state the limit of equation (7.2) in the following theorem.

Theorem 7.3: A
Provided that:
lim : - -
Wm max{ pg(k) | - msksm} = 0
and that:
Al om0 i b - b

the limit of Nn'd(m,a,ﬁ), when m = o, is given by:

b
Nndlab) = P@.O@)+ [ P't)0w)de . . (7.3)

Both Theorem 7.2 and Theorem 7.3 provide us with a cost of executing a partial
search, measured by the number of terminal positions examined during the search, when
the bottom values are distributed according to either a discrete or a continuous

probability distribution.

In Figure 7.1, we have plotted, for x € [0, 1], the two quantities
G(z) = P(z).Q(z), .
Hz) = [7 P®0@.d: .
‘We deduce from equation (7.3) that Nn,d(a,b) can be expressed directly from these two
quantities as:'

Np dfa,b) = Gla) + H(b) - Hla) ,

with an immedi#te interpretation in Figure 7.1. If we consider the case when the bottom

values are distributed according to a discrete probability distribution, then Nn'd(m,&,ﬂ). as
given by equation (7.2), can be expressed similarly as a function of a, and b,. The
functions G and H are, in this case, simply replaced by step functions, which coincide with

the continuous functions G and H at the points ty =1 -py(-k-1),for -m < k < m.




"

- PART 2: PARALLEL ALPHA-BETA PRUNING ALGORITHM 117

‘G(z), H(z) 5 :
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Figure 7.1 - An interpretation for N, j(a,b)

7.3 = The analysis of the parallel =4 pruning algorithm

The results of Section 7.2 show that the cost of executlﬁg the partial search.‘
corrésponding to the call
ALPHABETA(Root,w,/3)
can be expfessed by:

cla,b) = G(a) + [H(b) - Ha)],




118 . CHAPTER IV

with

a = Proba{ V<o), b = ProbafVs<sg},
;thre V is the random variable representing the value backed-up to the root of the gamé‘
tree (by the MINIMAX procedure). Given the probability distribution for the random
variable ¥, we have a one-lo-one correspondence between intervals (@, 8) of (-e, +c0) and
intervals (a, b) of (0, 1). Using this correspondence, we will only talk in !hq following

about partial searches over intervals of (0, {).

Although the two functions G and H are readily compuled numerically, they do not
lend Ehcmselyes very easily to analysis and, in the remainder of the section, we will
consider an approximation suggested by Figure 7.1. We notice in the example depicted in
this figure that G(xz) remains nearly constant when z varies in the interval [0, 1] and that
H(z) varies almost linearly on the same interval. While the numerical results presented in
Figure 7.1 correspond to a parlial search of a rug tree of degree n = 3 and depth d = 6,
numerical results obtained with other values of n and d actually show that the
approximation of G by a constant and of H by a linear function is even better for large
values of n 'and d. This is especially true in an open interval contained in [0, I]. In
consequence, we will assume in the following that the cost of executing a partial search
over any 'mt'erval (a, b) of [0, 1] is exactly given by:

cl@b) = p+qlb-a], ' : (7.8)
where p and g only depend on the rug tree itself (i. e., on n and d). Numerical résults, not
presented here, have been run for n = 3, 4, 8, 16 and 32 and for 2 < d < 8, it turns out that,
if, qbviously, p and q are very dependent on n and d, the ratio A = p/q does not show a

@arge variation and lies typically in the range 0.2 < A < 0.4.

Without loss of generality, we will normalize the cost c(a,b) of equation (7.4) by
assuming that g = I (hence p = A) and we will consider throughout that:
clab) = A+b-a,
or, equivalently, with b = a ¢+ A, thal:

cla,a+h) =« A+ h. ' . (2.9)
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This cost will also be taken, in the following section, as the time for a process to execute

a partial search over the interval (a, b) = (a, a+h).

7.3.1 = An analysis of the parallel implemantation: Optimal decomposition

Given the cost of a partial search through equation (7.5), we will determine in this
section the optimal decomposition of the interval [0, I] and, with this result, the optimal
procedure SELECTNEWINTERVAL, introduced in Section 6.1 for k > 2, processes can be

defined.

As an example, we first examine the special case when the interval [0, 1] is split

‘into k subintervals ! T Iy searched in parallel by processes Py, ..., Prs respectively. Let
s; be the size of I, for i - 1, o k, with sy + ..+ 5 = I. Under this decomposition, process
P; will find the solulion, with probabilily s;, after a cost A + s, Therefdre, the average
"cost (or time) 1o find the solution is, in this case, simply given by:

t = spResy) ¢ e s)‘.(l + )

« Ao s e esh,

for which the minimum, T, is achieved when s; = '%, for i =1,.,k (recall that
Sp 4t sy = 1) This yields:

Tg = A+ %
The decomposition of the inlerval [0, 1] presented in this example is the simplest one, and
it does nol allow any feedback between the processes since the k partial searches cover
the whole interval [0, 1). The example confirms, however, the obvious fact that, in order
to achieve the minimum cost, the k subintervals searched by the k processes should be of

equal length.

In order to introduce some feedback belween the processes, we nov;' consider a
further decomposition of the interval [0, 1] illustrated in the diagram of Figure 7.2 in the

case of two processes.
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Figure 7.2 - A decomposition of [0,1]

The two processes FP; and P, start exploring in parallel the two subintervals (a, 6] and
[e, d), respectively. If either process finds the solution at the completion of this first
search, with probability (b-a) or (d-c), the execution terminates with a cost of either
(A+b-a) or (A+d-c). Olherwise, consider that process P finishes first. If it finds out that
the solution lies in the interval [0, ], we know that, with the implementation proposed in
Section 6.2, process P2 will terminate ils search.immedialely after and, therefére, both
processes can slart simultaneously new parlial searches within the interval [b, a] If, on
the other hand, process P; finds out that the sc;lution lies in the interval [b, 1], it will

start arbitrarily a partial search over an interval within [b, c] or [d, 1] while waitihg for

‘process P, to complele its initial parlial search and, possibly, will readjust its search as

soon as process P, finishes. If we assume that both intervals [a, b] and [c, d] are of equal
length, both processes will finish their initial searches roughly at the samé time. We will

neglect in the following the delay involved in making the decision as .to which subinterval

actually contains the solution, and we will assume that, if the solution has not yet been

found, the processes restart a new partial search simultaneously.

According to this decomposition, k subintervals are initially searched by the k
processes and, if the solulion is not found during this first trial, it is known to lie in ! of
k+1 subintervals depending upon the outcomes of the first partial searches. Thus k

subintervals will be searched during the second trial out of a total of k(k+!) possible

.subintervals. In general, if not successful after the i-th trial, the k processes will start

- simultaneously k new parlial searches over a; = k(ks 1)t pbssible subintervals during the

[}

(i+1)-st trial.

Let hg.= 1, and, for i = 1, 2, .., let h, be the total length of the interval [0, 1] that

still could be explored after the i-th trial. Then, for i = 1, 2, .., h;_y - h; measures the

T P R T P QP R P S S T L I 0 e ._;_L.-‘.'._.J
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total length of all e subintervals that could be searched during the i-th trial. It also
measures the probability that the solulion be found at thal time afler a cost c; given by:

c; = [Ae(hyg-hplagl + . ¢ [A+(hyy-h)a; ],
assuming that the a;_; subintervals that could be searched during the i-th trial have all

the same length: (h;_; - h‘;)/n‘-_‘.

The total average cost, T, follows immediately. We have:

T = g_‘l (hi_g - hj)ey,

e2!
T = Xfo h; + zé:o h; (h; = hiy()a; . (7.6)

T = X iXhyy=-h) + 5, [Chg - by 15“ (hjy = hplajg),

The ff)llowing theorem states the optimal decomposition {hi.}izo leading to the
minimum average cost of expression (7.6). For k22, we will consider the following
sequence of intervals (recall that aj= k(ks1)J):

Ag = [1/ayp, +e) ,
Aj = [l/aj, (k-1)/a}), for j=1,2,..,
and

Bj = [(k-1)/a, l/aj_,), for jml,2, ..

Theorem 7.4:
Assume k 2 2, and let C () denote the minimum of expression (7.6) over all
possible decompositions {A;};5 0
(a) It XA € Aj, for some j = 0, I, .., the minimum of expression (7.6) is achieved for:
hg=..=hj=1 and hj,, = "j~2 =.=0,
[ : yielding: .
ChM = oAk,

(b) Otlherwise, if A € Bj, for some j = 1, 2, ..., the minimum ls achieved for: . .
ho-...-hj_, -], hji%d,(c—’-l:r'l) and hj.,-hj‘zi..-o,
yielding:
CkA) = A+ gL - 5“](5'}"7'”2'

Q,_,

| ;

"
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Proof:

Observe first that the decomposition {A;};, satisfies:

1-hozh,z...zh‘-_,zhtz...zo.

Assume that A 2 f/a j for some j 2 0. Given any decomposition {"i}i.zo', consider
another decomposition {g;};50 defined by:
: { h, W isj,
. " -
~ 0 if i2 /e,
and let T’ denote the expression (7.6) where {h;};,, is replaced by {g;}iz0- We have:

G i L p (h -h
T-T Ak.z:dh‘*klz‘,nih‘(h‘ hivy)

1 1
+ [l - d_./-hj b °j01 h/’l (h/‘l ‘h'l‘z)]

204-0‘_1--.!.0!
T

1
- Gl—q.hl’f "‘jol"'on) 20,

hj.j (hj’I = hj‘z)]

which shows that T is minimized when h; = 0 for i 2 j+1.

Assume now that A < (k-l)/aj for some j 2 I. Assume furthermore that hi-y = 1 for
some ¢, ! < i < j(recall thaf hg = 1). We have:
A < (k-l)/aj s (k-1)/a;,

which shows that the derivative, t;,y of T with respect to h; satisfies:

1 1
= 250 ¢ X - gohig - g by
: | 1
L LR ~ LY

This last inequality shows that T decreases when h; increases from 0 to. { and fhat,
therefore, the minimum of T is achieved when h; = 1. Since hg = 1, we have shown

part (a) of the theorem.

4

Assume now that A C B j for some j 2 1, l. et
(bl)/al < A < ,/Gj-l. ;
In particular, since k22, A2 1/a j and A < (k-1)/a 1 It follows from the above proof that

hg= .. = hj_, = | and that hj.‘ - hj,z = .. = 0. Hence, expression (7.6) becomes:

T« Ao 6}1_7 - (;’J_—‘-x)hj . él;hi
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! from which part (b) of the theorem follows directly. [ |

Theorem 7.4 states as a function of A, the initial cost for a parfial search, the
oplimal decomposition of the interval [0, ] and the corresponding optimal average cost

Ci) to find the solulion using the parallel implementation with k processes. In

§ Figure 7.3, we compare the cost C Q) with the cost C(A) of the original (sequential)

algorithm as presented in Section 2.
Sy

4 4

Figure 7.3 - Relative speed-up of the parallel implementation

Since in the original o-8 pruning algorithm the whole interval [0, {] ls searched at once,
C(\) can be obtained directly from equation (7.5) and is given by:

CA) @ ¢c(0,1) = A+1,
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The various curves of Figure 7.3 represent the speed-up §, ) = Cﬂ)/Ck(l) achieved by
the parallel implementation with k processes over the original algorithm for k = 2, 3, 4 and
for the limiling case k = co. In this latler case I/aj simply reduces to 0 and we always
have A C Ay It follows from Theorem 7.4 that C /(&) = A and therefore

A
S = -;—’ g xo%.

~

7.3.2 - Implications of the results and validity of the assumptions

Let us examine the results of the preceding section as illustrated in Figure 7.3. We
noticed earlier that the initial cost of a partial search, A, typically lies in the range
(0.2, 0.4). We observe from Figure 7.3 that when k = 2, for example, the parallel
implementation can improve upon the original (sequential) «-8 pruning algorithm by a
factor which can be larger than 2 when A lies in the range of practical interest. Moreover,
when A becomes small, the improvement actually becomes unbounded, as can be seen by
choosing A = J/nj for which we have: §;) = (uj ¢ l)/(j'o 2). An immediate consequence
of the results ot Section 7.3.1, theretore, is that fhe «-f3 pruning algorilhm (as described
in Section 2) is not optimal. The same strategy used for the parallel implemeﬁtaﬁon with
two or more processes is obviously also suitable to the case of only one ﬁrocess. and, in a
similar fai-hion, we can deduce an optimal decomposition of the interval [0, 1] for this case
"as well. Although the results of Theorem 7.4 are not applicable for the sequential case
(only the first part of the proof is relevant when k = {), simple calculus shows that when
A € (0.2, 0.4) an improvement between 15% and 257 can be achieved over the original

algorithm, and this constitutes a substantial gain.

The analysis developed in Section 7.3.1 relies implicilly on the knowledge of the .
distribution for the value Vjy backed-up to the root of the game tree. In particular, when
we state, in Theorem 7.4, the oplimal decomposition of the interval [0, I] in terms of
{h;};0» we really need to know the distribulion of Vj to actually implement the procedure

SELECTNEWINTERVAL according to this optimal decomposition. When nothing is known
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about the distribulion of V), the results of Theorem 7.4 stating the optimal cost C, ) can

be simply reinterpreted as a lower bound on the cost achievable by an algorithm using

this strategy of decomposition with partial searches.

In practice, however, although the distribution of Vj, is nol known exactly, some’

lﬁformation is actually available from the evaluation of the game tree at previous moves.
In chess, for example, unless an important capture was hidden from the horizon.of the
search, successive evaluations of the game tree will yield closely related values, and it is
common to be able to predict a priori an interval which contains the solution Vo with some
probability p, where, typically, p. = 80%. In the actual implementation of a chess program,
this interval is examined first, and, if the solution is not found after this trial, the whole
interval to its left (or to its right, depending on the oulcome of the f'u's.t search) is

examined next. See Figure 7.4 (a).

z p l-z-p

(a) Actual decomposition

oy 4 2 ,
| BAsssss S sSssa5 5855555 —

(b) Optimal decomposition (A =« é)
Figure 7.4 - Comparison of the actual and optimal decompositions of [0,1]

Under these conditions, let us consider the cost of finding the solution Vo with 1 process,
and let us assume, to give an idea, that A « 1/3. For purposes of comparison, the optimal
decomposition can be shown, in this case, to be hg = I, hy = 2/3 and hy = hy = ... = 0, see
Figure 7.4 (b), yielding the minimum cost Ty = 10/9 ~ t.ll; while the cost of the original
algorithm is simply given by T;= 1 + 1 Q4/3 ~ 1.33 (an lncre#se of 20% over the optimal

cost).

"
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The cost associated with the actual decomposition is easily evaluated and is given

T = pA+p) + A +p+tdtx) + (|-z-plAepetA+l-x-p)
= (2-p)X + p + 22 o (I-p-z)z,

from which we deduce that the worst case, achieved for x = 0 or z = { - p, is given by:

Ty =@+l - QA+Dp + p?,
corresponding to T, = 1.24 when A = {/3 and p = 0.8. Although this worst case still
corresponds to an Increase of [1.6% over the oplimal cost, it is an improvement of 77 over
the cost of the original algorithm. Yet, in'view of the optimal case, one could think of.
improving the cost by reducing the firsi interval so as to have p = 1/3, but then this would
increase the \.\;orst case, which would, in fact, correspond‘in this case to the cost of the

original algorithm, therefore, showing no improvement. (Looking at the best case,

.however, .we could achieve the optimal case in this way, but only with the risk of

aggravating the worst case.)

The results we have developed rely on several simplifying assumptions, and we
would like to conclude this section by examining their validity. While equations (7.2)
and (7.3) provide us with the exact cost of a parlial search over some interval («, 2) (or
(e, b) equivalently), measured by the number of terminal positions examined during the
search, we have used the approximation given by equation (7.5) to derive the results of
Section 7.3.1. As we have mentioned, however, this approximation seems to be reasonable
and more and more accurate as the game tree becomes larger, and we do not feel that this
approximation leads to a large error in the analysis. In order to check on the validity of
this approximation, however, we have run a series of simulations and compared the results
with the results predicted by Theorem 7.4, where A was computed numerically by using a
least square approximation to the functions G(z) and H(z) on the interval [0, 1] (see
Figure 7.1). The simulatlion results were very consistent wllﬁ the analytical results and
showed an actual improvement over the original algorithm between 5% and 10% better than

the improvement predicted by the theory.
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The simulation was also aimed at verifying another simplifying assumplion we have
used in the analysis. While equatioi; (7.5) provides us with the unconditional average cost
of a partial search over an interval (a, ), what we really need to derive equation (7.6) is
the cost of a partial search over an interval (a, b) conditionned by the fact that the
solution lies in some interval (a’, b’) (possibly the same interval). Here, too, the

simulation results were useful lo validate this simplifying assumplion.

8 =~ Conclusions and open problems

We have presented in the first parl_.ol the chapter an analysis of the performance of
the «-f pruning algorithm for searclsing a uniform tree of degree n and depth d when the
values assigned to the terminal nodes are independent identically distributed random
variables. The analysis takes into account both. shallow and deep cut-offs, and we have

also considered the effect of equalities between the values assigned to the terminal nodes.

A simple formula was derived, in Section 3, 1o measure the number of terminal

nodes examined by the «-R procedure when the bottom values are drawn from a finite

range according to an arbitrary discrete probability distribution. Allhough the formula can

be easily computed numerically, a direct analysis is made difficult by the presence of the
probability distribution. In thé case when only two distinct values can be assigned to the
terminal nodes, it is shown that, by choosing appropriately their probability distribution,
the number of terminal nodes examined by the «-f procedure can grow at least as

O[(n/An n)d], which, in fact, corresponds lo the worst case behavior of the algorithm (over

all possible probabilily distributions).

A formula was then presented in the form _ol an integral to measure the number of

terminal nodes explored by the n-8 procedure when the bottom values are all distinct. An

-analysis of the integral shows that the branching factor of the «-f pruning algorithm is

©(n/An n), a result which confirms a claim by Knuth and Moore [35] that deep cut-offs only

have a second order effect on the behavior of the a-# pruning algorithm.

"
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We think thal the main contribution of this analysis is to give a betler understanding
of the «-8 pruning algorithm. In particular, we have shown that the a priori unrealistic
assumption that all the. values assigned to the terminal nodes of a game. tree be distinct
corresponds, in fact, to the worst case performance of the algorithm. Moreover, we have
shown that this worst case performance can be attained even in the very simple case when
the botlom values can only take on two distinct values, by choosing appropriately their
p.robability distribution. We think that this can be important in practice because, it is
relatively easy in most game playing programs to obtain (by inspection of the evaluation
function) an- accurate bound for the range of distinct values assigned to the various
posilioﬁs of the game, but it is usually not so easy to derive a good estimate for the

probability fistribulion of these values.

Similarly, the branching factor analyzed in Section 5 prov(des us only with an
asymplotic measure of performance for the w-8 pruning algorithm (i. e., for trees of Large
depth). As indicated by the results of Section 3.3, however, the branching factor can also

be used as a realistic measure ot the worst case even tor small trees.

We have measured the efficiency of the -8 pruning algorithm by the average
number of terminal nodes explored during the search. It would be interesting to also

obtain an estimate for the standard deviation of this number.

The scheme we have considered for assigning values to terminal nodes of a uniform
tree lent itself easily to analysis; it is, however, very simplistic. Different schemes for
assigning static values have been proposed in t23], [35] and [45]. Analyses 6' these
schemés would be helpful for various applications; a step in this direction wa; presented

in [45] for game trees of depth 2 and 3.

_In the second part of this chapter we have investigated the possibilities of
implementing the «-A pruning algorithm in parallel. Due to the intrinsically sequential

character of the algorithm, it seems difficult to achieve a high efficiency with a parallel
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: implemcntaao_n based on a direct relormulation of the original algorithm. Rather than
having the processes search in parallel various sublrees of a game tree for the solution,
we have proposed, in Section 6, a parallel implementation in which the processes work
independently by searching the entire game {ree for the solution over disjoint
subintervals. The idea is s.imil‘ar to the notion of aspiration level implemented

(sequentially) in the Technology Chess Program [24], [25].

In Section 7, we have developed an analysis of our parallel implementation of the

o~ pruning algorithm, and Theorem 7.4 states an optimal sequence of intervals (which

‘depends on the degree k of parallelism, i. e., the number of processes cooperating in the

search) for minimizing the average cost of the algorithm. It follows, in particular, that,
when the degree of parallelism k is small (k = 2 or 3), the parallel algorithm shows an
improvement over the original algorithm by a factor which is larger than k. A surprising
consequence of the results, thcrcforé, is that the «o-A pruning algorithm is not optimal.
This fact has been confirmed through a series of simulations, and for a typical tree (with a
degree of about 30, and a depth ot about 5) the results show that the o-f pruning
algorithm can be improved by 157 to 25/. It is to be noted that these figures are very
consistent with empirical measurements of the Technology Chess Program [25] showing

that the implementation of the aspiration level reduces the search by 237,

The analysis we have developed relies on several simblifying assumptions, and it
would be interesting to develop a more accurate analysis, for example, by using a closer
approximation for the cost of a partial search, or by evaluating the cost of a partial search
over some interval (a, b) given that the solution lies in some interval (a’, b°). The analysis
could also b'e refined by not assuming that the processes cooperating in the search restart

new partial searches simultaneously.

-

Although the parallel implementation we have proposed appears to be efficient with
a small number of processes, the maximum speed-up achievable is limited typically to 5 or

6 (s'ee Figure 7.3 with k = ). We feel that a better way to implement in parallel the

"\

T}
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-3 pruning algorithm with a large number of processes would be to combine both the
strategy of decomposilion we have proposed and the independent exploration of different
sublrees of the entire game tree. For ea;ample, we could have twp grohps of processes,
each group executing a partial search over a different sublpterval. and each process in a
group exploring a different subtree. We think, however, that the results are very
important and should be used systematically in a‘ sequential implementation, in conjunction

with some dynamicl evaluation of the probability distribution of the value of a game tree.




Chapter V

Experimental Results

with Asynchronous Multiprocessors

1 - Introduction

By simulating a mulliprocessor system, Rosenfeld (52] and Rosenfeld and
Driscoll [53) have reported a series of results to measure the effectiveness of
programming an asynchronous muliiprocessor for the solution of the Dirichlet _pfoblem
using chaotic iterations [11]. The problem consists of solving the set of linear equations

associated with Laplace’s equation through the method of finite differences.

In this chapter, we describe a series of ex'perimcn!s in which various asynchronous
tterative methods (see Chapter [II) are implemén(ed on an asynchronous multiprocessor
(C.mmp under the operating system Hydra [63], [64)) to s'olve the Dirichlet_problem. We
first present the results of measurements obtained with these experiments. We then show
how very simple techniques from order statistics (see, for example, [14))- and from
queueing theory (see, for example, (33]) can be used effectively to explain and predict

with a fair accuracy the experimental results.

In Section 2, we briefly describe C.mmp and Hydra, and we outline the solution of
the Dirichlet problem In Section 3, we introduce the various asynchronous iterative
methods that we have implemented on C.mmp. In Section 4, we report the results of the

experiments, and, in Section 5, we present simple analylical techniques to account for

these experimental results. Concluding remarks are given in the last section.

131
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2 - Description of the experiments

In Section g.l, we only prese2nt the main characteristics of C.mmp and of Hydra
which are relevant to our purpose here; a formal presentation of C.mmp is given in [63]
and of Hydra in [64]). Likewise, a full lreatment of the use of the method of finite
differences for solving the Dirichlet problem can be found, for example, in [22]. and we

only briefly describe the melhod in Section 2.2.

2.1 = The environment

The following description corresponds to a very simplified version of C.mmp under
the operating system Hydra but will be sufficient to provide a reasonable model for our

experiments.

C.mmp is a multiprocessor composed of p processors (p is currently 16, but, at the
time the experiments were run, it was oscillating between 4 and 9), py of those processors
are PDP-11 model 20 and p; = p - p; are PDP-11 model 40. For purpose of comparison,
we will inqicate with the results the number and type of processors used in the
experiments, Those processors are connected to m memory blocks (each with 1M words)
through an mxp cross-point switch; m is currently 16 (it was 13 at the time of the
experiments), but, since we are not limited by the size of the memory in our exﬁeriments.
the exact value of m is irrelevant here. In addition, each processor ls also connected to
its own local memory (4K words). Although the memory available is very large, because of
the small address field of an instruction (16 bits), only a small fraction (32K words) is
directly addressable by a process at a given time. The Hydra system, however, provides
the user with the facility of modifying the address registers in order to access the entire

memory.

The Hydra system also provides the user with a set of macro-instructions for the

manipulation of processes (creation, synchronization, etc.). In addition, the policy module
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ensures some critical functions of the system (process scheduling, processor allocation,
etc.); in parlicular, (t ensures that each active process receives its fair share of processor
time and a processor is allocaled 1o a process only for some fixed quantum of time: at the
end qf a quantum the processor is deallocated from the process, and the latter is put back

for re-scheduling into the pool of processes waiting for a processor.

2.2 = The problem

We consider a well-known problem, namely, the so-called Dirichlet problem for

‘Laplace s equation (see, for example, [22, Section 20.9)).

The problem is to solve the bartial differential equation:

By ¢ Uyy = 0 - (2.1)

in a rectangular domain O of R2: D w{ (z,y) |0sz<sa,0<y< B}, when values of u on

the boundary S of D are specified by the condition:
g ' (2.2)
for some given function g defined on §. Many applications require solving this partial

differential equation (or very similar ones) [22].

An approximation to the solution of eguation (2.1) can be obtained through the
method of finite differences. Assume thal & = (n+])h and A = (m+{)h, and define a regular
grid on the domain D with mesh size h. This induces the set of points
{ Mi.} (x.‘«-i.h,yj-jh) |0sisn+l, 0 j<sme+l}) Let u; denole u(M‘-,j); the values wo j»
Unet,jp %0 and t; o,y 1 ON the boundary S, are known from equation (2.2). Using, for the
second order derivative u,, at the point (z,y), the approximation

Uy (2,y) = (ulz+h,y) + u(z-h,y) - 2u.(z,y)]/h2
and a similar approximation for u.”(z.y), it can be shown (see, for example,
[22, Section 23.4)) that a solution lo the set of linear equations:

AU = g T g, T By e T ey 0, lsisn, 1sjsm, (2.3)

gives an approximation to the solution of equation (2.1) for the points Mi.i within an error

“
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of order h? (assuming bounded properties of the fourth 6rder derivatives of the solution
w). ‘A piecewise linear approximation for the solution u on the domain D can then be

deduced from the solution of system (2.3).

The set of equations (2.3) constitutes a linear system for which we are investigating
the solution. This system can be written, in matrix form, as: ‘
Az = a. (2.9)
When z is the nm-vector corresponaing to the row-major ordering ot the grid points:
z = [u,,,, v Up gy g2 ey u.n'm]T .
we dec.luce from this ordering the nmxnm-matrix A and the nm-vector a of eql.Jatlon (2.4),

the latter being known from the values of the function g giving the boundary conditions.

Different iterative schemes have been imblemented on C.mmp to solve this system.

They are described in the following section.

3 - Some implementations of asynchronous iterations

The _matrix A of equation (2.4) is a very sparse matrix (at most five elements are not
zero in any given row), and, in this case, iterative methods, although théy do not provide

us with the exact solution, are usually advantageous.

The first two methods we have considered are two basic iterative methods: the
point Jacobi and the Gauss-Seidel's methods. These two methods have been widely

studied and will be useful as a basis of comparison. These and other iterative methods

‘that we. have implemented are described in the following sections. Throughout, we discuss

“parallel implementations with k processes (k =1 corresponding to a sequential

tmp(ementat.ion). and, for 's(mp(icity, we assume that the size nm'of the matrix A is a

‘multiple of k and let g = nm/k. In all implementations, we make use of a global vector,

called X, to contain the current value of the solution vector.
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3.1- = Jacobi's mathod and Asynchronous Jacobi's method

Since all diagonal elements of the matrix A have the same value of 4, the point
Jacobi matrix is readily obtained. Let xz(i) denote the i-th iterate computed by Jacobi’s
method. We simply deduce from equation (2.4) thal:

xs1) = A-LW2w) + Lo 2 B2@ + b,
The matrix

B = I- ‘14 A
is the Jacobi matriz associaled wilh our problem. This matrix has been extensively
- studied, and its spectral radius, which determines the rate of convergence of Jacobi’s
method, is given by: | :

p@B) = %(cosﬁ% + cos ;%1 ). ; (3.1)

We see that with Jacobi’s method all components of an (terate are 'computed
simultaneously using the values of the previous iterate, ‘and that parallelism can,
therefore, be lntroducéd easily. A natural parallel implementation with k processes is to
simply decompose the evaluation of an iterate into k subcomputations, each one
corresponding to the eva;uation of a subset of g = nm/k components, and to have the k
processes carrying out the evaluation of the k subsets of comppnenis in parallel. When a
process completes its £omputation, it must then block itself and wait until the completion
of all other subcomputations before starling the evaluation of the next iterate. Our
implementation corresponds to lhis'dcscr'\pt'\on, '\n.wh'\ch process P always evaluates the
first g components of the iterate, process P, the next g components, ... and process Py the
last ¢ éOmponents. After each subcomputation all processes synchronize _thems'elves using
a semaphore, and, after hail'mg updated the components, they all resume their executions

for the evaluation of the next ilerate.

The complete synchronization of all processes at each step of the iteration is an
evident drawback in the parallel implementation of Jacobi’s method, and we can anticipate

that this will result in a substantial cverhead. The Asynchronous Jacobi's method (or AJ
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method) is a varialion of Jacobi's method in which a process never waits for the other
processes to complele their computations. As soon as a process compleles the evaluation
'of its .subset of components, it releases the new values for the other processes by
“updating the corresponding components of the global vector X, and, immediately after, the
process sla.rts re-evaluating its subset, using in the computation, the values of the
‘components as they are known at the beginning of the re-evaluation. The AJ method has
been implemented using a critical section for updating the comﬁonents of the global vector
X at the -end of an evaluation, and for copying the components of X required for the next

evaluation.

It can be seen easily that, if a process is never suspended indefinitely, the AJ
meti'\od can be expressed as an asynchronous ilerative method relalive to the linear
operator corresponding to the Jacobi matrix B. Since B is a non-negative matrix with a
spectral radius less than unity, it is a contracting matrix, and the convergence of the AJ

method for our problem is a direct consequence of the results of Chapter III.

3.2 - Gauss-Seidel's mathod and Asynchronous Gauss-Seidel's method

Gauss-Seidel’s melhod differs from Jacobi's method in that the components of an
iterate are evaluated in sequence and the value of z,.(i) is used in the computation of z,(i)

when s > r (that is, as soon as il is available). Let L and U be the strictly lower and upper

triangular matrices defined from:
B'.I-%A-Lou.

The sequence of iterates, for Gauss-Seidel’s melhod, satisfies:

2(is1) = LzGs1) + UzG) + b.
The matrix

Z - -ty
defines z(i+1) directly as a function of z(i). Its spectral radius determines the rate of
convergence of Gauss-Seidel’s method and is given by:

p(L) = [pB), (3.2)
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where p(B) is the spectral radius of' the Jacobi malrix and is given by equation (3.1).

We nolice that Gauss-Seidel’s method is intrinsically sequential, and that parallelism
cannot be easily introduced. The method has been implemented sequentially (L. e., with 1

process) as a particular case of the Asynchronous Gauss-Seidal’s method.

The Asynchronous Gauss-Seidel’s method (or AGS method) is similar to the AJ method
except that a process evaluates the components in its subset sequentlaily and uses the
new value of a component within the same subset as soon as it becomes available. In this
respect, the AGS melhod resembles Gauss-Seidel’s method for the computation within a
subset of components, and, in parlicular, when the AGS is implemented with only one

process, it simply reduces to Gauss-Seidel’s method.

As in the case of the AJ method, the AGS method can be shown to correspond to an
asynchronous iterative method relative to the Jacobi matrix B, and, in this case too, the
convergence of the AGS method follows from the results of Chapter IIl since the matrix 8

(in the particular case of our problem) is a contracting matrix.

3.3 = Purnly Asynchronous iterative method

The Purely Asynchronous method (or PA method) is the simplest method we have
tmplemented.” It basically resembles the AGS method, but it uses no critical section for

releasing the values of the components in its subset of for copying the values of the

components required in the computations. Rather, a process fetches directly from the.

global vector X the values of the components as they are needed and releases new values
of the components one by one, immediately after the cvaluation of each component. Again,
the PA method can be easily expressed as an asynchronous iteration re’latlve: to the linear
operator corresponding to t‘w contracting matrix B, and the converge;nce of tl';e PA method,

for our problem, follows directly from the results of Chap!ér 111

" In addition to being the simplest method to implement from a programming point of

P—
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view, the PA method is also, spacewise, the most eflicient method since no ex.lra variable
is required to copy lhe values of an itcrate as of the beginning of an evaluation or to
contain the new values of the components before being released. The main advantage of
the PA mcl;md, however, is the total absence of any form of synchronization, wh'u;h.

therefore, makes it very attractive for implementation on an asynchronous multiprocessor.

An apparent disadvantage of the PA method is that all processes frequently access
the ‘common global vector X, therefore possibly causing memory conflicts. This is not so
for the parlicular problem we are considering in case of a large system of equations (i. e.,
for large n and m). Because of the sparsity and the special form of' the matrix associated
with our system, accesses to the vector X by a given process will be mostly confined to’
accesses of components within its own subset and only a few accesses to components in
the two adjacent subsets. Moreover, this is the general case for the solution of linear
systems resulting from the application of the method of finite differences to partial °
differential equations. Therefore, ihis apparent problem can be solved easily simply by
allocating different memory banks to differents subsets of companents of the global vector

X.

Another problem with the PA method is specific to C.mmp (and Cm*) and is’ due to
the absence of uninterruptible double word instr.uclions on the PDP-11 (or the LSI-11). _ In
particular, since a floating point number is implemented on two consecutive 16 bit words,
simultaneous updating and reading of the same component by two processes might result
in a lost of precision of the last 16 bils of the mantissa. Although this problem is very
unlikely to occur, it is real, and the precision achievable on the solution vector has to be .

chosen accordingly.

3.4 - Other possible implementalions

The methods we have introduced are intended to be an illustration of the issues

raised by the Implementation of parallel algorithms on an asynchronous multiprocessor,
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and they are not necessarily lhe most efficient way lo solve a linear system of equations
by iteration. In this section, we mention several techniques which should be used Ln the.

practical implementation of asynchronous iterative methods.

3.4.1 - Asynchronous iterations with ralaxalion

The lntroduct:\on of a relaxation factor is a well known technique for improving the
performance of iteralive methods, and, although we do not report here any results
concerning iterative melho&s using relaxation, we have run some experiments which show
that the introduction of a relaxation factor is a very promising way to accelerate

asynchronous iterative methods.

Let F be an operator, and let © be a positive scalar. An iteration relative to F with
the relaxati~n factor o defines the sequence of iterates through:
z(i*]) = o F 2() + (1-0) z@) .
In particular, when o = I, this corresponds directly to the iteration relative to F. This
stechnique is very useful, in general, since the relaxation factor o can be chosen to

maximize the efficiency of the iteration.

As par}icular cases, let us examine lhe methods we have implemented. The Jacobi
Over-Relaxation method (or JOR method) produces the sequence of iterates defined by: |
2(is1) = o [(I- %A) i) + La] e (1-0)2@),
and, therefore, corresponds to Jacobi's method with the Jacobi matrix:
' Bo-l-faA-oBo(l-o)I.
It follows that, in our case,
p(Bg) = |1-w| + o p(B),
therefore, o = 1 minimizes p(B,), which means that Jacobi's method cannot be improved

using relaxation.

The Successive Ouer—Rehzc.m'on method (or SOR method) is derived from

Gauss-Seidel's method. The SOR method defines the sequence of lterates:
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z2(i+l) = o[ Lz@+1) « Uz@) + b] + (1-0) 26),

and il can be shown (see, for example, [62, p. 203]) that the spectral radius of the SOR

matrix
L, = (I- ol (-0) + 0U)

is minimized when:

i 2
NaMnllt Frw e T

Similarly we can define the AJOR, ASOR and PAOR methods from the AJ, AGS and PA
ﬁnethods, respectively. All three metlhods are easily shown to correspond to asynchronous
‘iteratlve methods relative to the linear operator associated with the matrix B, In
particular, since

P(IB = |1-0f + . w p(8),

provided t.hét:

0 <o e (3.3)
NPT :

the matrix B, is a contracting matrix, and we are guaranteed of the convergence of all

three methods ln the parlicular. case of our problem. Nothing, however, is known in.

general as to the best o, and further results in this direction would certainly be of

interest. Note that condition (3.3) only represents a sufficient condition for convergence,

and that the methods can still converge outside of this range.

3.4.2 - Adaptative asynchronous ilerations

All of the lmpleméntations thal we have proposed are based on a static
decomposition of the computation involved in the evaluation of an iterate, and, in all cases,
each process is assigned to the evaluation of a fixed subset of components. With Jacobi’s
melhod, this resulls in a substantial overhead since all processes have to wait for each

other at the end of each step of the iteration. A possibility for reducing this overhead is

to decompose the components of an iterate into more subsets than processes, and to let

the processes adjust their own speeds by evaluating more or fewer subsets of

B
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components. For example, the parallel implementation of Jacobi’s method with 2 processes
which seems the best suited for execution on an asynchronous multiprocessor is lo have
one process update the components starling with the first one and to have the second
process update the companents starting with the last one; an iteration step terminates
when the two processes meet (not necessarily exactly in the middle). With this
implementation, the difference in execution times between the two processes is limited at
most to the time to evaluate only one component, which obviously reduces signiﬂcantly

the waiting time.

Another way to take into account the different speeds of the processes would be to
subdivide the components into subsets of different sizes, and assign the.computalion of a
larger subset of components to a faster process. The speed of a process, however,
depends mainly on the speed of the processor on which the system decides to execute the

process, and this is usually nol known a priori.

There is another advantage of not pre-assigning to a process the evaluation of a
fixed subset of components since, at each step of the iteration this allows for some
flexibility In the selection of the subset to be evaluated next. Many criteria can be used
for this selection, in particular.: |

(1) LRU: the subset selected is the one which has been the Least Recently
. Updated among those not currently updated.
(2) GRE: the subset selected is the one which carries the Greatest Relative Error

(also among those which are not currently updated).

‘The GRE selection, for instance, should increase the efficiency of an iterative method by

reducing the number of iterati_ons required to achieve some given admissible error. The

selection of a new subset at each step of ti‘ue iteration might, however, introduce

additional'o'verhead and, in particular, will almost necessarily require the use of a critical

section. We ‘do not think that this should be used, therefore, in conjunction with the PA

method.
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3.5 = Organization of the program

Before presenting the results we give a brief description of the programs. All of

the different methods have been implemented in BLISS-11 [15] and all programs have

-

basically the same following structure.

Master process: Computational process i:
Initialization: read in n, m, ¢, k; P(mutex);
for i =1, .., k do Read all necessary components of X;
Creale and start process i; Vimutex);
for i = 1, ..., k do repeat
P(complelion); Evaluate all components of subset i;
Cutput the stalistics abaut the run; Pimutex); :
Update all components in subset i;
. ) Read all necessary components of X;
V(mutex);
until global error < ¢
V(completion);

The method implemented by this program is embedded in the instruction "Evaluate
all components of subset i" From the program each process can be thought of as a
succession of identical cycles; each cycle being composed of an evaluation section followed

by a critical section.

The programs for Jacobi's method and for the PA method are slightly different but

follow basically the same structure.

4 - The results of the experiments

We report, in this section, the measurements obtained by running on C.mmp the
various iterative melhods that we have introduced in Section 3. .We discuss, in
Section 4.1, the different parameters of the program and the decisions leading to their
'cho'\c.es. In Section 4.2, we present the local behavior ot the processes within each cycle,

and, in Section 4.3, we present the global results and compare the different methods.
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4.1 - Choico of the paramelers

All of the experiments have been run under the same conditions, and, before
‘presenting the results of the measurements, we briefly discuss below the choices we have

made for the various parameters of our problem. -

'4.1.1 - Size of the sysiem

We want t§ choose the size of the system to be solved (i. e., to choose n and m)
large enough so that the problém be realistic, but, on the other hand, since we do not
want to deal here with problems of memory addressing, we have limited ourselves to a
size that permits all of the data to be directly addressable. The main restriction, in this
case, comes from the fact that the size of the data local to a computational process has to
fit into the stack of local variables (contained in page 0),‘ i. e, in about 3K wt-ards. With
the AJ method, for instance, each process has to have the values ot the components it is
updating and a copy of the values of the components used in the evaluation, as of the
starting time of the computation. There may be up to 2nm elements each of which fits into
two words of memory. Therefore nm has to be chosen below 700. The number 504 has
been chosen (mainly because it is divisible by 1, 2, 3, 4, 6, 7, 8, 9 ... and aimost by 5 too!),
and n and m have been chosen to be 2! and 24, respectively, in the series of experiments

reported here.

4.1.2 - Error of the solution vector

An experiment is stopped when some norm of the error vector is smaller, .in
magnitude, Ehan a given admissible error ¢. (The norm we have chosen is ||, the
maximum over all components.) Since we want to be able to compare the experimental
results with lhe results of a theoretlical analysis, w.e want to choose ¢ small enough so that
asymplotic rates of convergence can be estimated through experimental results. For our

purposes, the asymptotic rate of convergence for a method 77 can be defined as:

R(M) = lim -"’_“_'!‘_i',

[nd -] ¢

(4.1)
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where ¢; is the error veclor afler the i-th sub-iteration (a sub-iteration corresponds to an
evaluation by one process so thal k sub-iterations are carrled out simultaneodsly in a
parallel implementation with k processes), and where n; is the mean number. of times each
component has been evaluated up to the i-th sub-iteration. For all the‘ implementations
we have considered the components are divided into k cqual subsets, and n; ls'simply
given by n; = i/k. (The norm in equation (4.1) is the same norm as the one used in the

termination criterion.) This definition of asymptotic rate of convergence corresponds to

the classical definition and, in particular, we have R(Jacobi) « -log p(B).

The interpretation of. the rale of convergence is that 1/R(7?) ls an asymptotic
measure of the average number of times each component has to be updated in order to
decrease the norm of the error vector by a factor of 10 (if the log of equalion (4.1) is base
10). In parl'\éular, when ¢ tends to 0, the average number of iterations (per component)
required lo solve the system with an error less than ¢ grows linearly like -log(e)/R(TN).
In Figure 4.1 we have plotted the number, N(¢), of iterations required to solve our system
(n = 21, m = 24) within an error ¢, versus .-log(c) for both the AJ and the AGS methods
‘when k = 1 and 3 processes are used. This shows clearly that the asymptotic rate of
convergence is reached very _fasl_since, when -log(e) > 0.25 (i. e., € < 0.56), N(e) varies

linearly with -log(e).

When k = 1 the AJ and AGS methods reduce to Jacobi’s and Gauss-Seidel’s methods,
respectively, and the slopes obtained from Figure 4.1 can be compared to the lhcor'et'lcal
values [-log p(B_)]" and [-log p(.C)]", respectively, where:

pB) = L(cos ffy + cos 7ify) ~ 099097,
p(L) = [p(B)2 ~ 0.98202.
In Table 4.1, we report the observed and theoretical number of terations required to

asymplotically divide the norm of the error vector by a factor of 10.
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AJ (k = 3)
Al (k= 1)
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Figure 4.1 - Number of iterations required with the AJ and AGS methods .

AJ AGS

kel ka3 kel k=3

Observed: 254 257 1272 143
Theoretical: 25479 - 12789 -

Table 4.1 - Comparison of the rates of convergence for the AJ and AGS methods

In all the experiments reported below, the lermination criterion uses ¢ = 0.1 for the
value of the admissible error. This value corresponds to a reasonable execution time, in

the order of 3 min., and allows us to base our measurements on more experiments.
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4.1.3 - Othor paramolers

Since we are mainly interested in comparing the different melhods with respect to
their rates of convergence toward the solution vector, we simply set the displacement
vector b lo be 0 so that the solulion is known to be ¥ = 0. As the system we are studying
is linea.r, we do not loose any generality, but this will result in a simpler tgst for the
termination criterion since, in this case, the current iterate is exactly the error vector.
Lastly, in all the experiments, the initial approximation has been chosen as the vector with

all components equal to 1.

4.2 - Local behavior of the program

We present, in this section, the local behavior of the computational processes by
looking at the time they spend during each cycle in the evaluation section and (except
with the PA method) in the critical section of the program. In Section 4.2.1, we present

the results of the measurements, and, in Section 4.2.2, we give an interpretation.

4.2.1 - Results of the measurements

’

The results presented in this section have been derived from the information given
by the tracer‘ David Lamb implemented on C.mmp. (Among many other things, each P and V
operation is reported by the tracer along with the time instant when it was exec.u\ed, the
process executing the operation and the processor carrying out the execution.) Since the
code of the programs for the different methods are identical (with respect to these
measurements) we limited ourselves to take measurements on the AJ method. Four
experiments have been run with k =1, 3,6, and 12 processes. In all of them p =7
processors were available: § PDP-11/20 and 2 PDP-11/40. The histograms for the
distribution of the time spent in the evaluation section as well as the distribution of the
time spent in the critical section, l.or each of the experiments, are plotled in Figures 4.2
through 4.9. (In the case of the critical section, the results presented in these figures also

include, when k > 1, the possible waiting lime before entering the critical section.)
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Figure 4.7 - Time spent in the critical section (k = 6)
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Figure 4.8 - Time spent in the evaluation section (k = 12)
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Figure 4.9 - Time spent in the critical section (k = 12)
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These figures show clearly that two different types of processors are used. When

k = 3, for example, the distributions have two main peaks (at about 18 ms. and 28 ms. in

Figure 4.5), and, in parlicular, we can derive from our results an estimate for the relative
speeds of the PDP-11/20 and the PDP-11/40. The ratio of the speeds is cértainly
problem dependent but, in our case, lsecond on a PDP-11/40 corresponds to about
1.4 seconds on a PDP-11/20, i.e. the use of a PDP-11/40 instead of a PDP-11/20

corresponds to a gain of about 307 in running time. If we look more closely, we can see

that each main peak is composed of several subpeaks corresponding to each processor;

two different processors, even of the same type, actually have different speeds. This is
particularly evident in Figures 4.2 and 4.3, where the two main peaks correspond to the
executions on each of the 2 PDP-11/40. Since it is the policy of Hydra to allocate first
the PDP-11/40, the third peak in Figure 4.2 does nol correspond to to an execution on a
PDP-11/20 but, in fact, corresponds to executions on a PDP-11/40 which include some

overhead due to the re-scheduling of a process at the end of a quantum.

.4.2.2 = An interpretation of the results

The main statistics about the distributions presented in the figures of Section 4.2.1
are collected in Table 4.2 (a) and (¢) for the evaluation section and the critical section

(including the possible waiting time), respectively. In addition, Table 4.2 (b) contains the

same statistics concerning the critical section by itself, excluding any waiting time. (All

timings in the table are expressed in ms.)

In Figures 4.10,4.11 and 4.12, we have plotted the variations of the average
execution times for the two sections of the program as they can be found in
Table 4.2 (a), (b) and (c), respectively. The results of Figure 4.11 represent strictly the

execution lime of the critical section, while the timings presented in Figure 4.12 also

r
1
contain the possible waiting time before entering the critical section. i
!
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k=1 k=3 k=6 k=12
; Minimum 1123.85 318.30 239.36 100.07
; Maximum 1889.60 1524.13 834.97 502.02
‘ Average 1292.72 534.35 423.04 187.86
Standard dev. 136.51 118.88 84.23 47.10
Coeff. of var. 0.106 0.222 - 0.199 0.251
f (a) Evaluation section
g k=1 k=3 k=6 SN
fr Slnisium 43.49 16.82 1359 248
| Maximum 174.82 186.02 170.96 21.91
f _Average 47.75 23.96 21.65 1157
1 Standard dev. 13.91 11.71 7.67 2.77
| Coeff. of var. 0.291 0.488 0.354 0.240
i (b) Critical section (without the blocking) .
5
k=1 k=3 k=6 k=12
( Minimum 43.49 16.82 13.59 7.44
’ Maximum 174.82 199.64 196.97 431.65
! Average 47.75 25.63 27.81 177.04
Standard dev. 13.91 13.90 17.67 48.35
Coeff. of var. 0.291 0.542 0.635 0.273
(c) Critical section (including the blocking)
Table 4.2 - Statistics about the two sections of the program
Time (ms.)
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Figure 4.10 - Mean time spent in the evaluation section
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Figure 4.11 - Mean time spent in the critical section (waiting time excluded)
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Figure 4.12 - Mean lime spent in the critical section (waiting time included)

We note thal, while a process does not suffer a very important delay (before the
critical section) in the parallel implementation with k = 3 and 6 processes, Figure 4.12
shows a very sharp increase in the waiting time for k = 12. In fact, further results
obtained by tracing the execution of the program ;howed that, in the parallel

implementation with 12 processes, the queue to the critical section contained almost
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always 6 or more processes (not cournting the process executing the critical section). This
means that there has almost always been at least one processor idle among the 7
processors a.vailable. The fact that the' processes are never competing for a processor
can, therefc:re, explain the steady decrease of the execution times presented in
Figures 4.10 and 4.11. In both cases a first approximation can be obtained in the form
a+ ib, for some appropriate constants“a and b. Howev;ar, since it will be useful in
Section 5, we develop below a closer approximation which takes into account the.paucy of

Hydra to allocate first a PDP-11/40 (i. e., a faster processor).

Let p; and p;y be the number of PDP-11/20 and PDP-11/40 available, respectively;
and let p = p; + pp. We denote by p the relative speeds of the two types of processor‘s;
experimental evidence, from the results of éeclion 4.2.1, showed that p ~ 1.4 corresponds
to a reasonable estimate in the parlicular case of our problem. Consider a program which
requires an average time z when it is executed on a PDP-11/40, and let x; be the average
execution time of the same program when it is executed in an environment with k
processes (each process is assumed to receive ils fair share of computing power). Firstly,
when k < py, a PDP-11/40 is allocaled to the process, and its actual execution tim;is.’
therefore, simply given by:

z, =z if kspy. . (4.2)
Next, assume that py; <k < p = p; ¢ py. In this case, the process is allocated a PDP-1 1/40

k_
the fraction f,;?- of the time, and it is allocated a POP-11/20 the fraction —LQ of the time.

5 . k 3 k-p> P ]
. Lk-r2 , P2
This means that I unit of actual execution time contributes to T units of
(PDP-l.l/llO) time toward the total time z. We then have:
rk :
2 = x if pp<kspm=pg+py. (4.3)
k k- pp+ ppy 2 1*P2

Lastly, tf k> p = p; ¢ py, let us assume, as it is evidenced in the experiments, that the -

processes are not in competition for a processor (i. e., at least k-p processes are always
waiting for entering the critical section). With the same argument as above, we find, in

this case, that:

P-p
Rl B n—t— f kopa= + . (4.4)
k Py * PPy i S




EXPERIMENTAL RESULTS 155

This shows that, in each of the three cases, the average execution time %, can be
expressed as:
zk = z.pk,

where the factor ) s deduced from equalions (4.2), (4.3) and (4.4).

We can now find an approximation in the form (a + b ’%) ) for the average execution

times of the evaluation section and of the critical section in the implementation with k

processes (denoled by g, and ¢, respectively). We determine the values a and b using a
least square approximation.lo the values in Table 4.2 (a) and (b). We find that:

z) = (82.89 + 1207.73 :%) Pk » (4.5)

e, = (7.972 + 39.907 f) P - (4.6)

Using py = 5 and p; = 5 (and p = 1.49) in the evaluation of the factor P)s we find that, for

k =1,3,6 and 12, the values obtained from equations (4.5) and (4.6) are consistently

within 157 of the experimental results. In addition, these two equations provide us with

some estimates for ¢, and c; which are a useful complement to the values of Table 4.2, for

other values of k.

4.3 - Global rasults

In this section, we report the global measurements of the parallel implementations
with k proce;ses for the iterative methods that we have presented in Section 3.- Jacobl's;
the AJ and the AGS methods have been implemented on C.mmp with a configuration of
P = 6 processors (4 PDP-11/20 and 2 PDP-11/40), and all the experiments have been run
with k = 1, 2, 3, 4,6, 7, 8,9, 12 and 14 processes. The PA method has only been
implemented later, by Raskin [48), on Cm* [59] (along with the first three methods), and
the results we present below for this melhod are the results of his measurements. A
comparison between the results of C.mmp and of Cm* for the three other methods showed

a complete agreement, and we have normalized the timings of the PA method so that it

coincides with those of the AGS method for the implementation with I process (since, in
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this case, both methods reduce to Gauss-Seidel’s method). The configuration of Cm*
included 8 processors (LSI-11) at the lime of the experiments, and the PA method has been
implemented with k = 1, 2, 3, 4, 6, 7 and 8 processes. (The results corresponding to 7 énd
8 processes cannot be compared with the results obtained on C.mmp, and they are

indicated with dashed lines in all the figures.)

In Figure 4.13, we present the total running times for the various methods as a

function of the number of processes used in the parallel implementation.
Time (sec.)
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Figure 4.13 - Total execution times wilh Jacobi's, the AJ, the AGS and the PA methods

This direct comparison is somewhal "unfair® vis 3 vis Jacobi's and the AJ methods
since we know that, for the particular problem we are considering, Gauss-Seidel’s method

is already twice as fast as Jacobi's method. In Figure 4.14, we have reported the relative
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variation of the running time (i. e, t ;/t; where ty is the running lime when & processes

are used). This is also a measure of the speed-up achieved in using k processes.

Speed-up ratio
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Figure 4.14 - Relative improvements with Jacobi’s, the AJ, the AGS and the PA methods ,

Figure 4.18 shows clearly the effects of using the different forms of synchronization |
in a parallel algorithm. Due to the full synchronization of all processes at each step of

the iteration, Jacobi’s method exhibits the worst behavior of all four methods, while the

PA method, which uses no synchronization at all, achieves an almost optimal speed-up.

Although the AJ and AGS methods are very similar in nature, Figure 4.14 shows that
the speed-up ratios achieved by the two methods differ substantially. This difference is ;
‘mainly due to the fact that the total number of iterations increases only slightly with the

number of processes for the AJ method, while the increase is more important for the AGS
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method. This is illustraled in Figure 4.15 where we have plotled the number, N(k), of

iterations required to solve our system using k processes as a function of k.

N(k)
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Figure 4.15 - Number of iterations required to solve the system

Figure 4.15 shows that for the Al, AGS and PA methods N(k) increases regularly
(and almost linearly) with k. This difference with respect to the sequential method
(Jacobi's or Gauss-Seidel’s method) is one of the factors that determine the total running
time of the various methods, but, obvioﬁsly. the presence (or absence) of synchronization
is another important factor. When the number of processes increases, a critical section,
for instance, acts as a botlleneck, which tends to decrease the parallelism and increase the

total execution time. In the next section, we proceed to the evaluation of this factor.

§ - On the analysis of algorithms for asynchronous multiprocessors

"We want to illustrate in this section that the analysis of parallel algorithms for
asynchronous multiprocessors can benefit from techniques developed In the framework of

other general theories. We show that some simple results of order statistics (see, for




EXPERIMENTAL RESULTS : 159

example, {14]) and of queueing theory (see, for example, [33]) can be used effectively in

the analysis of algorithms for multiprocessors.

As examples of multiprocessors algorithms, we use in this section some of the
asynchronous iterative methods described in Section3. We wuse the parallel
implementation of Jacobi's melhod (Section 3.1) .as a typical example of a synchronized
algorithm,, aﬁd we use the Al and AGS methods (Section 3.2 and 3.3) as typical examples of
a.tynchronou:l algorithms in which communication takes place through the use of a critical

section.

The evaluation of the performance of an asynchronous iteration depends principally
on two main factors. The number of iteration steps required to solve the system of
equations within some given admissible error ¢ is one of the important factors which
determine the global running time of an iterative method. This number can be derived
through the tools of numerical analysis, and we will not be concerned with its evaluation
in this section We will simply use the empirical results observed in the experiments
themselves. (Upper bounds on the number of iteration steps for various asynchronous
iterative methods have been derived In Section 6 of Chapter Ill. In the case of Jacobi’s
method, the exact number of iterations can, in fact, be derived from the theory.) The
(average) time for each process to execute a complete cycle (i. e., from the instant it starts
an evaluation to the instant it starts the‘next evaluation) is another important factor

contributing to the global running time. This factor is evaluated in the present section.

We assume throughout that the execution times for the evaluation section by all k
processes are independent identically distributed random variables distribuled according
to the probability distribution F, associated with the density function fi- Let gy and o
denote their mean and variance, respectively. Similarly, we assume that the execution
times for the critical section by all k processes are independent identically distributed
random variables distributed according lo the probability distribution Ck' associated with

the density function g,. Let c; denote their mean. Estimates for the quantities ) and ¢y
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are given in equations (4.5) and ({1.6)'. an estimate for the quantity o) can be derived

similarly.

In Section 5.1, we consider Jacobi's method and, in Section 5.2, the AJ and AGS
methods. The resulls derived in these two sections are compared, in Section 5.3, with the

experimental results.

5.1 = Synchronized algorithms

It follows from our parallel implementation of Jacobi’s method that each process
cooperating in the evaluation of an iterate has the cyclic behavior depicted in the diagram

of Figure 5.1.

Evaluation Wailing Waiting Critical
) . | 1 1 1A=
LI I S L] 1
section section ~ section section
part 1 part 2
Cycle

Figure 5.1 - Cyclic pattern of a process with Jacobi's method

The first waiting section is due to the full synchronization of all processes at the end of

.the evaluétion of an iterate and bcfore- the evaluation of the next iterate. The second

waiting section is simply due to lhe'prcsence of the critical section used for updating and
reading the values of the companents of the current iterate. (A process might have to wait
if another process is already executing the critical section.) The average time t, to
execute a complete cycle in the' parallel implementation with k processes can, therefore,
be decomposed as:
' bow ey e by | SRRCRY
where a, and by are the average execution times for the first and second parts of the

cycle respectively.
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Letl us firi:t consider the quantity ay. It corresponds to the largest finishing time of
the evaluation section by the k processcs. When k < p, therefore, ay is simply given by
the average .of the maximum of k independent random variables distributed according to
the same probability distribution F), and we have (see, for example, [14, p. 46]):

ay = [ rdlrke) - IV -rbonge, =5 (5.2)
where, for clarity, the index k has been dropped from Fi. Let us examine some
probability distributions Fj for which analylical results can be derived from
equation (5.2).

(1) Expcnential distribution with parameter u = gl-k- Using simple integral
calculus, equation (5.2) yields:
k

© 1
- o (f-a—lt)k =l 1 -u
ay /O [1 - (1-e"H')")dt “/0 T du

1 ¢
- L o B | 1
A 15‘5;";,5:“ S ﬂzs‘zsk"

= LH = Hergo (5.3)
where H is the k-th harmonic number.

(i) Uniform distribution over the interval [z-0¥3, £} s0¥3] (L. e., with mean &
and standard variation o). Integration of equation (5.2) yields, {n this case

(see, for example, (14, p. 27)): . |
ap = & *"-:%;-vkﬂ. _ ..(5.4)
Similar resulis can be oblained for other probability distributions F ), but unfortunately
they usually cannot be expressed so easily. For most common probability distributions
Fi, however, a, is shown to be in the form aj = &) ¢ op.0, (as is the case in

equation (5.4), for example), where the coefficient ), (which depends on F) can be found

In many numerical tables. (See, for example, (14, p.50] for a short table listing &, in the '

case of the normal and the uniform distributions.)

When k > p, the quantity a) cannot be obtained directly from equation (5.2) since, as
long as i processes, with p < i <k, have not completed their evaluation sections, they are

in competition for the p processors available, and they are, therefore, slowed down by the
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factor 1:’- Lél x, for 1<isg k, be .the i-th smallest execution time required by the k
processes. The first process t_o complete its evaluation section has to share the p
processors with the remaining k-1 processes during ils entire execution. It finishes
therefore after a time y; = % %y Similarly, the second process to compl.ete its evaluation
section, finishes after a time yj; = y; 0%(1:,-:2). The last process to complete its
e;/aluation section finishes afler a time: '

ay = %‘z, + !‘—"’—l(zz -—xy) +..0 E;—'(xk_p - ’k-p-l) ¢ iz ~ ’k-p) . (55)
The quantities x;, for I < i < k, can be evaluated directly from the distribution function F,
and we have (see, for example, [14, p. 25]):

z = k(521 L7 eF T peFw)e d